

4-Bit Cellular Automata Encryption

Analysis

A Master Thesis By

Dallas Leitner

Fulfilling a partial requirement for the Degree of

Master of Science in Engineering Technology

Middle Tennessee State University

August 2017

Thesis Committee:

Dr. Karim Salman, Chair

Dr. Walter Boles

Dr. Saleh Sbenaty

ii

ABSTRACT

Various niches have used forms of cellular automata for decades. One such use

is random number generation for data encryption. Of the numerous methods

developed for encryption, most use the 3-bit rule space. While this rule space

has been tested and proven to possess the desired traits, limiting CA to only the

3-bit rule space severely limits the potential for extreme levels of complexity. To

that end, this research aims to explore the 4-bit rule space to find new potential

rules that possess the desired level of complexity with the hope that the

methods used will allow for exploration of even greater rule spaces in the

future. Through mass testing of the rule space in the Diehard test suite, has

shown 362 4-bit rules that show good potential for use in cellular automata

encryption.

iii

TABLE OF CONTENTS

LIST OF TABLES .. iv

LIST OF FIGURES ... v

PREFACE: RESEARCH FOCUS ... vi

CHAPTER ONE: A BRIEF OVERVIEW OF ELEMENTARY CELLULAR AUTOMATA 1

Section 1.1: Elementary Cellular Automata Introduction .. 1

Section 1.2: Cellular Automata Structure ... 1

Section 1.3: Previous Works ... 4

CHAPTER TWO: 4-BIT STRUCTURES ... 5

Section 2.1: 4-Bit Clusters .. 5

Section 2.2: Left and Right ... 6

Section 2.3: Behavior Differences .. 7

Section 2.4: 3-Bit Equivalents .. 8

CHAPTER THREE: BIT SIGNIFICANCE .. 11

Section 3.1: The Need for a New Method ... 11

Section 3.2: The Theory for Bit Significance .. 11

Section 3.3: 3-Bit Analysis .. 12

Section 3.4: Testing the Theory ... 20

CHAPTER FOUR: CODING ... 22

Section 4.1: Workbook and Driver ... 22

Section 4.2: 4BitAllRules .. 23

Section 4.3: Support Programs .. 25

CHAPTER FIVE: RESULTS... 26

Section 5.1: Overview .. 26

Section 5.2: Initial Testing .. 27

Section 5.3: Clusters ... 30

Section 5.4: Left and Right Applications .. 30

CHAPTER SIX: CONCLUSIONS ... 33

REFERENCES ... 34

iv

LIST OF TABLES

Table 1: 7 Cell Cellular Automaton seed. ... 2

Table 2: 3-bit equivalent rules for left and right handed structures. 10

Table 3: Output bit comparison to present state for rules 45 and 30 (left to right). 13

Table 4: Bit A comparison to next state for rule 45. .. 14

Table 5: Bit B comparison to next state for rule 45. .. 15

Table 6: Bit C comparison to next state for rule 45. .. 15

Table 7: List of all balanced 3-bit rules .. 17

Table 8: Truth table for rule 29. ... 19

Table 9: Results of Die Hard test for left hand structure rules 21000-21999. 29

Table 10: All passing results grouped into clusters. ... 32

v

LIST OF FIGURES

Figure 1: Truth table for rule 30. .. 3

Figure 2: 4-bit minterm cube ... 6

Figure 3: 4-bit neighborhood for left and right handed structures. .. 7

Figure 4: Automation of rule 25957 for left and right handed structures (left on left, right on

right). .. 8

Figure 5: Test results for RaBiGeTe (left) and Die Hard (right) for rule 45. 20

Figure 6: Test results for RaBiGeTe (left) and Die Hard (right) for rule 30. 21

Figure 7: Test results for RaBiGeTe (left) and Die Hard (right) for rule 150. 21

Figure 8: 4BitAllRules program main menu and testing input screen. .. 24

vi

PREFACE: RESEARCH FOCUS

Cellular automata have been around since the 1960’s [1] and research has

proven it is useful for use in data encryption [2]. However most work done has

had a focus on the 3-bit rule space. While there are various applications of the

3-bit rules they still utilize the same 256 rule space. A large contributing factor

to why other rule spaces hare not used is due to the computational power

required to test larger rule spaces. While a 3-bit rule space only contains 256

unique rules, a 4-bit rule space contains 65536 unique rules and 5-bit is in the

millions. This research has 2 goals. The first of which is to test the entire 65536

rule space to find suitable rules for encryption applications. The second more

tangential goal is to discover potential efficient ways to find good rules in higher

bit rule spaces without the requirement of mass testing in the rule space.

1

CHAPTER ONE: A BRIEF OVERVIEW OF ELEMENTARY CELLULAR

AUTOMATA

Section 1.1: Elementary Cellular Automata Introduction

Cellular Automata (CA) are grid based models that use colored cells to display

data with a finite number of states, and change according to set rules across a

number of discrete time steps. Elementary cellular automata (ECA) is the

simplest class of CA. ECA neighborhoods are 3-bit, one dimensional, and each

cell contains a binary value of 1 (high) or 0 (low). The cells are arranged

horizontally in a single row to represent the current state of the automaton,

because of this each subsequent row can be used to represent the next state

generated by the given rules. This creates a two-dimensional table from one-

dimensional data that shows changes over time. The data contained within the

first row is predetermined in order to initialize the automaton but can consist of

any desired series of binary data.

Section 1.2: Cellular Automata Structure

The basic structure of ECA consist of 4 key parts. The first is seed. The seed is

simply the name of the initial data used for the automaton. As previously

mentioned, the seed can contain any data desired in addition to being any

length. The length of chosen seed determines the length for the entire system. If

the seed contains 150 bits of data, every row in the CA will contain 150 bits of

2

data. Lastly although the seed may contain any data, for practical use for data

encryption, it is best to use a random seed. The second major component is the

neighborhood. The neighborhood is simply the subsection of local data used to

determine the next state. In ECA systems, the neighborhood is 3 bits long. This

means that the current state of the 3 cells in the neighborhood define the next

state for the center bit in each cell. As an example table 1 shows a seed with a

length of 7 bits. The label of each bit from left to right is A, B, C, D, E, F, and G. For

bit B, the neighborhood would consist of bits A, B and C. For bit C, the

neighborhood would contain bits B, C, and D. The exceptions to this are the two

end bits for which the rules can differ slightly. However this study only uses

periodic systems. In a periodic system the end bits simply use the bit on the

opposite end for their vacant spot in the neighborhood. Thus A’s neighborhood

would be bits G, A, and B, while G’s would be bits F, G, and A.

Table 1: 7 Cell Cellular Automaton seed.

A B C D E F G

1 0 1 1 0 1 0

The third part is the rule. The rule determines how the data changes based on

the data contained in each neighborhood. The 3-bit CA rules pace contains a

total number of 256 rule which may be used. The rules use binary logic to

determine their functions. For a 3-bit system there is a total possible number of

8 different states the 3 bits could be in. These states range from 000 to 111. The

3

next state has a value of 1 or 0 for each of the possible present states, as can be

seen in figure 1 below.

Figure 1: Truth table for rule 30.

In this case if the data in a neighborhood contains 000, then the next state for

the center bit would 0. If the neighborhood contains 001, the next state is 1 and

so on. The name for a rule is simply the binary number produced by the output

state. The figure above shows rule 30. The outputs listed from bottom to top

produce the binary string of 00011110, which when read as a binary number is

30. The last part required for a CA system is the time step. The time step is when

the change actually happens. A time step is when the data changes during each

clock cycle. When the clock triggers, each cell’s state changes based on the rule

4

and the data contained in each of the neighborhoods, and all changes happen at

once.

Section 1.3: Previous Works

Jon Neumann first published work on CA in the 1960’s and later Stephen

Wolfram published findings showing the potential use of CA in random number

generation. Since then extensive studies have attempted to further understand

and expand upon CA applications and potential. Building upon the results from

previous works Dr. Karim Salman has narrowed the 256 rule space of 3-bit ECA

to a set of only 16 rules which are chaotic in nature and thus are able to produce

good random numbers [3]. The chaotic rules are 30, 45, 60, 75, 86, 89, 90, 101,

102, 105, 135, 149, 150, 153, 165, and 195. These 16 rules proven in other

studies to have use for random number generation, set the baseline for other CA

applications to reach in terms of complexity.

Stephen Faulkenberry wrote a thesis providing strong evidence to back up the

claims of Stephen Wolfram from the 1980’s that CA has use in random number

generation. His thesis focused on the application of two modern day random

number testers, Die Hard and NIST, to prove that CA random number generation

is complex enough to still play a role in modern day encryption and other

applications. Stating that CA’s simplicity and exponential scalability is enough

reason to pay attention to CA’s potential [2].

5

CHAPTER TWO: 4-BIT STRUCTURES

Section 2.1: 4-Bit Clusters

The cluster structure for 4-bit rules is the same as for 3-bit rules described in [3].

A 4-bit rule clusters are created by applying the appropriate operation or

combination of operations to the base rule. The differences in the clusters is

simply the structure of how the minterms change. Although the application of

the operations is still the same, the increased number of minterms in a 4-bit rule

effect how minterms are changed. The minterms for a 3-bit rule can be

represented on a 3-D plain as a single cube, but the diagram for a 4-bit rule has

two cubes, with the two cubes representing a shift on a fourth axis, where the

same points on the two cubes are one step away from each other. Figure 2

shows the cubic representation.

6

Figure 2: 4-bit minterm cube

Section 2.2: Left and Right

In typical 3-bit CA, the center of each neighborhood is the one being changed.

However, in any even bit system there is no center bit. This means that 4-bit CA

can either have a left hand structure or a right hand structure. Figure 3 shows a

4-bit neighborhood. For a left handed structure the central bit would be the B

bit, while C is the center bit for right handed structures. All rules have a left

handed and a right handed variant, since the structure changes how the rule is

applied but not actually modifying the rule itself, which effectively double the

rule space.

7

Figure 3: 4-bit neighborhood for left and right handed structures.

Section 2.3: Behavior Differences

A rule applied as a right hand structure tends to behave similarly but different

from the same rule when applied to the left. This is due to how the minterms

react to the changing of the center bit. The most common change seen in the CA

data graphs is a variation between straight and diagonal lines. Figure 4 shows an

image of rule 25957 graphed for both left and right structures. Although there

are many differences in the graphs, they both follow a similar pattern with the

exception that the left hand variant runs the pattern with diagonals, while the

right hand variant creates vertical drops. Although different, they are both share

the similar traits of having 2 bit wide drops. In addition to the width, the length

of the drops are typically the same. The horizontal location of these drops

change between rules due to the left hand structures diagonal tendency, but

they still share vertical placement.

8

Figure 4: Automation of rule 25957 for left and right handed structures (left on left, right on

right).

Section 2.4: 3-Bit Equivalents

For any rule space of any size, there will always be an overlap of rules that use a

smaller neighborhood. This happens when the logic of a rule from a larger rule

space ignores one or more bits in the neighborhood. 2-bit rule 6 and 3-bit rule

60 demonstrate this equivalence in how they both share the logic of an

exclusive OR relationship between bits A and B. The only difference between

the two is that rule 60 ignores the C bit, while rule 6 does not possess a third bit,

which means that rule 60 effectively emulates rule 6. Similarly a 4-bit rule with

the same logic, can emulate any 3-bit rule.

Since 4-bit rules have two structures, the rules that emulate 3-bit rules differ for

each structure. The binary number of a 3-bit rule plays a key role in finding the

4-bit equivalent. To find the rule simply duplicate the binary number in one of

two ways, depending on if it is a left or right hand structure.

9

For a right hand structure the equivalent rule will be the binary number for the

rule written from start to finish twice. For instance 3-bit rule 30’s, 00011110, 4-

bit equivalent is rule 7710 which in binary is 000111100001110 or rule 30

twice (00011110 00011110). This is because for a right handed rule, the bit that

needs to be ignored is bit A, and since the first half of the logic represents A in

the digital off state (0) and the second half represents A in the digital on state

(1), if the logic of bit A on and bit A off match, the bit can be ignored.

A similar process can produce the rule for a left hand structure. The difference

between the two is that for a left hand structure, the bit that needs to be

dropped is bit D. For this configuration the product looks more complicated, but

is actually just as simple to produce. The state of D = 0 is represented by every

other row on a truth table, with D=1 being represented on the rows between

those. No other logic changes between each of these pairings, so if the logic is

the same for each pair of rows, the D bit will not affect the logic. This means that

to make a left hand structure equivalent rule for a 3-bit rule, one simply needs

to write each digit of the binary number twice. This means that the 4-bit rule

1020 (0000001111111100) emulates the 3-bit rule 30 (00011110). If the

binary number is divided up into pairs it appears the same as rule 30 only every

10

digit is used twice, 00 00 00 11 11 11 11 00. Table 2 shows the 4-bit equivalent

rules for all 16 of the 3-bit chaotic rules.

Table 2: 3-bit equivalent rules for left and right handed structures.

11

CHAPTER THREE: BIT SIGNIFICANCE

Section 3.1: The Need for a New Method

In previous works in addition to Diehard and NIST test, state diagrams helped

isolate potential rules. Mapping out the state diagrams catalogues the number of

unique cycles, transient lengths and the number of Garden of Eden states.

Generating state diagrams for the 4-bit analysis proved less productive, because

there was a far greater amount of variation in how the rules’ ranked in these

categories, in contrast to rule 45’s cluster’s near dominance in all categories for

the 3 bit rules. This made comparing the effectiveness of a rule much more

difficult and it is likely this complexity will increase with size of the

neighborhood. This difficulty created a need for another way to compare the

rules. The ideal method needed to be extremely quick to perform, filter out

likely useless rules, highlight rules which would have the highest potential, and

be as resource light as possible to make it scalable to larger neighborhoods.

Section 3.2: The Theory for Bit Significance

The process began with one simple question “what makes an output random?”

In order for an output to be random, it needs to have no correlation to the input.

However, the very concept of CA is systematic and thus the input directly

influences the output. Therefor the best approach would be to find rules that

showed as little correlation between the input and output as possible. The term

12

“bit significance” references correlation between a single input bit and the

output.

Section 3.3: 3-Bit Analysis

The method used for measuring bit significance is simple and only requires a

quick look at the truth table of any given rule. For this experiment each bit in a

3-bit system, bits A, B, and C, begins with a base significance of 0. This implies

that the bit has 0 correlation with the output. Then by comparing input value of

each bit with the output value they produce the significance changes. If the bits

are the same the bit significance is incremented by 1 or if the bits are different

the significance value is decremented. Table 3 shows the truth tables for rules

45 and 30. The first three columns show the value of A, B, and C respectively,

with the last three simply showing the output produced by each rule. The output

value repeats 3 times to compare with each of the three input bits. If the cell is

white, the bits are different and the significance level goes down, when the cell

is red, the bits are the same and the significance level goes up. The ideal

significance level is 0. This would imply that the bit is the same as and different

from the input exactly half the time. Meaning they have very little correlation

with each other.

13

Table 3: Output bit comparison to present state for rules 45 and 30 (left to right).

In both cases with these two rules, they end up showing a theoretical correlation

with bit A at -4, and 0 for both B and C. This is because the A bit is only red twice

and white 6 times, while both C and B’s are equally split between white and red

cells. Since there are a possibility of 8 combinations and 6 of those 8 show a

negative correlation, when this rule is used the output should theoretically be

the inverse of the A input approximately 75% of the time. Additionally the

output should be the same as B and C approximately 50% of the time. To test

this, rules 30 and 45 used random seeds to generate data. Tables 4, 5 and 6

show a seed of length 25 with 9 time steps for rule 45, and is colored based on

if the bit follows the trend or not. The summing of the two possible states

ignores the seed state since the seed does not have an input. This means that

there are 9 rows of 25, which leads to a total of 225 cells. The first table colors

the cells if the cell is the inverse of the A input for the neighborhood and

remains white if it is the same.

A B C 45

0 0 0 1 1 1

0 0 1 0 0 0

0 1 0 1 1 1

0 1 1 1 1 1

1 0 0 0 0 0

1 0 1 1 1 1

1 1 0 0 0 0

1 1 1 0 0 0

A B C 30

0 0 0 0 0 0

0 0 1 1 1 1

0 1 0 1 1 1

0 1 1 1 1 1

1 0 0 1 1 1

1 0 1 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0

14

Table 4: Bit A comparison to next state for rule 45.

The table highlights and counts the number of cells which are equal to the

inverse value of the respective cell’s A input in the neighborhood, and the value

is displayed in the bottom right corner. Since there is a 168 out of the total 225

that are the inverse, the cells output appears to have a 74.667% (168/225)

correlation to the inverse of A, as predicted.

The relationships for B and C also follow the predicted pattern, showing a near

perfect 50% correlation to the respective cell’s input and inverse, which can be

seen in the following tables.

!A cell is green if it equals !A

1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 0 1 0 0

1 1 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0

1 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 0

1 0 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0

1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0

1 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0

1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0

1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1

0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1

0 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0

9 6 9 6 9 7 5 7 6 9 5 9 5 7 7 5 7 7 8 6 7 4 8 8 2 168

15

Table 5: Bit B comparison to next state for rule 45.

Table 6: Bit C comparison to next state for rule 45.

This correlation could suggest a relationship between the truth table and the

data generated using said the rule. However a single test is too small of a sample

to be the bases of any assumptions. To this end, multiple test were performed

with multiple rules, and they all showed the same relationship between the truth

table’s “bit significance” and the data produced by a given rule. Table 7 shows

B Cell is green if it equals B

1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 0 1 0 0

1 1 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0

1 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 0

1 0 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0

1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0

1 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0

1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0

1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1

0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1

0 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0

8 2 3 4 3 3 5 6 5 5 4 5 3 5 3 5 6 3 3 4 6 6 5 6 7 115

C Cell is green if it equals C

1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 0 1 0 0

1 1 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0

1 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 0

1 0 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0

1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0

1 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0

1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0

1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1

0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1

0 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0

3 5 4 3 2 4 3 6 6 5 3 2 4 6 6 7 5 7 4 4 5 4 4 8 3 113

16

the bit significance for every balanced rule in the 3-bit rule space. The

highlighted rules are the rules that produced good results as shown in [3].

17

Table 7: List of all balanced 3-bit rules

Rule A B C Balance Rule A B C Balance

15 -8 0 0 0 135 -4 0 0 0

23 -4 -4 -4 0 139 -4 0 4 0

27 -4 -4 0 0 141 -4 4 0 0

29 -4 0 -4 0 142 -4 4 4 0

30 -4 0 0 0 147 0 -4 0 0

39 -4 -4 0 0 149 0 0 -4 0

43 -4 -4 4 0 150 0 0 0 0

45 -4 0 0 0 153 0 0 0 0

46 -4 0 4 0 154 0 0 4 0

51 0 -8 0 0 156 0 4 0 0

53 0 -4 -4 0 163 0 -4 4 0

54 0 -4 0 0 165 0 0 0 0

57 0 -4 0 0 166 0 0 4 0

58 0 -4 4 0 169 0 0 4 0

60 0 0 0 0 170 0 0 8 0

71 -4 0 -4 0 172 0 4 4 0

75 -4 0 0 0 177 4 -4 0 0

77 -4 4 -4 0 178 4 -4 4 0

78 -4 4 0 0 180 4 0 0 0

83 0 -4 -4 0 184 4 0 4 0

85 0 0 -8 0 195 0 0 0 0

86 0 0 -4 0 197 0 4 -4 0

89 0 0 -4 0 198 0 4 0 0

90 0 0 0 0 201 0 4 0 0

92 0 4 -4 0 202 0 4 4 0

99 0 -4 0 0 204 0 8 0 0

101 0 0 -4 0 209 4 0 -4 0

102 0 0 0 0 210 4 0 0 0

105 0 0 0 0 212 4 4 -4 0

106 0 0 4 0 216 4 4 0 0

108 0 4 0 0 225 4 0 0 0

113 4 -4 -4 0 226 4 0 4 0

114 4 -4 0 0 228 4 4 0 0

116 4 0 -4 0 232 4 4 4 0

120 4 0 0 0 240 8 0 0 0

18

All the highlighted rules follow one of two patterns in terms of their significance.

Either it has a 0 significance for each bit or it has a -4 significance for exactly

one of the neighboring bits of the center bit for the neighborhood. This suggest

that good rules will show either a low or no correlation to the input bits.

For rules similar to rule 15 with any bit significance of -8 for any bit, this means

that the rules produces the invers of that bit, in this case A, 8 more times than it

produces a bit that is the same. Since there are only a possible 8 states for a 3-

bit neighborhood, this means the logic for such a rule would simply be that the

next state equals the inverse of A. The inverse is implied with a +8 significance,

that the output is always equal to bit A. This is not random data, the data is

simply being shifted one cell to the right in the second case, while in the first

case that data is shifted and inverted.

The next scenario is the case of rule 29 and similar rules. These rules show a -4

significance on two bits, bits A and C in this case. While this relationship is a bit

more complicated, the truth table reveals why it is not random.

19

Table 8: Truth table for rule 29.

The cells highlighted in red show that every time that bits A and C hold the same

state, the next state is always the inverse of the state that those two bits hold.

This leads to the next state bit having a strong inverse correlation to both A and

C, which leads to very weak random number generation.

During the extended testing phase, a rule was discovered that possessed the

desired characteristics of a perfect 50% ratio between all input bits and their

inverse or a bit significance of 0 for all three bits. The rule 150’s logic is a three

way exclusive or relationship (ABC) between all three inputs. This creates a

perfect balance between all three inputs, which could theoretically create better

test results.

20

Section 3.4: Testing the Theory

Although the discovery of this potential relationship could be significant, it

amounts to little if there is no proof to suggest that a rule with a 0 bit

significance performs any better than other rules. To test this, various data was

generated and tested with various rules with various bit significances. Because

Die Hard test results did not produce any clear results, a more strenuous testing

method was used. The tests RaBiGeTe test runs are much more difficult to pass

and thus getting an overall pass requires the data to have an exceptionally high

perforce. Below are graphs displaying the resulting P-value charts for RaBiGeTe

as compared to Die Hard for the exact same data for rules 45, 30, and 150.

These graph show that the rule with the net 0 bit significance does noticeably

better on these test.

Figure 5: Test results for RaBiGeTe (left) and Die Hard (right) for rule 45.

21

Figure 6: Test results for RaBiGeTe (left) and Die Hard (right) for rule 30.

Figure 7: Test results for RaBiGeTe (left) and Die Hard (right) for rule 150.

Although it is not conclusive, these results would suggest that it would be

worthwhile to continue these test on larger rule spaces.

22

CHAPTER FOUR: CODING

Section 4.1: Workbook and Driver

Various programs were used for the generation and testing of the data. Most of

the initial testing was done with the use of two programs, the CA workbook and

driver. Created by Stephen Faulkenberry [2], the workbook and driver are

specially designed programs created to work in tandem to make generating 3-bit

CA data easy and efficient. The workbook, written in C#, is an interface program

that allows the user to choose from various configurations, lengths, starting

string, and test type. The program has three main operating modes: diehard test,

NIST test, and automation. The first two modes are designed to run a single test

for the corresponding test type, and give a detailed report of the specific test.

The automation page is designed to run one specific test various times, for

different parameters and give a simplified report for each test run. These reports

are much smaller for automation and consist only of the number of passes in

each test and the overall P-value for the test. Using this test method, massive

amounts of test could be run with relative ease.

The driver is the program that generated the data and ran the Diehard test. The

driver works based on a configuration string generated by the workbook. The

string contained all the information for the test to be performed, such as the ID

for the test type, seed length/content, and test type. The driver starts by reading

23

in this string, breaking it down into its base components, and generate the data

based on the parameters given. This structure is what allows the driver to be

used independently, without the workbook when require or with use of another

program.

While many minor changes and functions were added to the workbook

throughout the course of the research, the largest changes happened within the

driver. The driver was initially designed only for windows systems and when the

need arose for use on a Linux based system for use on a super computer,

compatibility became an issue. While functionality was not changed, many of

the core functions in the program were windows reliant and had to be recoded.

Additionally the workbook had no functionality for the super computer since the

computer had to be controlled via command prompt. This required a new

automation program to be created that could run the driver only use text based

command and would lead to the development of a program that would

eventually become the 4BitAllRules program used for all future 4BitTesting with

Die Hard.

Section 4.2: 4BitAllRules

Although the workbook and driver combination boasted a lot of features and

functionality, certain limitations made adding new functionalities range from

difficult to impossible. Due to the focus of the research when the workbook was

24

being developed, most of the functionality was designed around 3-bit designs

and variations. In addition, since the workbook was GUI based, it could not work

on systems that did not support GUIs. Due to these issues, a new program had to

be designed. A command prompt based program that could perform similar

functionality to the workbook but designed around 4-bit CA.

4BitAllRules was essentially the culmination of several smaller programs

designed with a much smaller scope. The initial testing of the 4-bit rule space

had many approaches that involved testing subsection of the rule space, but

when the decision was made to test the entire rule space, this program was

created.

Figure 8: 4BitAllRules program main menu and testing input screen.

25

Figure 8 shows the main menu and inputs for running a series of tests for rule

11730. The program has the ability to run automated test based on a range of

rules, ranges of seed lengths, create truth tables, find rule clusters and show bit

significance. Although not as user friendly as the workbook, 4BitAllRules is

generally less finicky and more easily modified.

Section 4.3: Support Programs

Although many features are built into 4BitAllRules, since the initial goal was to

create a workbook replacement, the CADriver program is still required to run any

sort of testing. In addition to CADriver, several other small support programs

were created in order to take advantage of 4BitAllRules, but not add any

complexity to the code for 4BitAllRules. Although most were variations on how

to test subsections of the rule space, others include a K-map generator,

multithread support, and a program to take a large list of rules and organize

them into clusters and remove duplicates.

26

CHAPTER FIVE: RESULTS

Section 5.1: Overview

The ultimate goal of this research was to determine which rules in the 65536

rule space provide the best use for CA based encryption. To do this several

rounds of testing and organizing were required. The first task, which was the

largest and most difficult to deal with, was running the initial battery of tests.

Since results from previous tests showed that CA based random number

generation tends to have a stable level of complexity when the seed length is

greater than 300, the testing preformed was all done at lengths below 300 [4].

This was done with the assumption that if a rule was able to produce good

results at seed lengths lower than 300, then results at length greater than 300

would continue to be satisfactory.

After the initial list of rules was obtained, it was important to organize the rules

into clusters. This is due to the relationship between rules in a cluster. To do this,

a modified version of 4BitAllRules’ cluster finder program was made to sort and

organize the rules. During this step an additional measure was taken to filter out

linear rules. This was done to limit the number of rules that would require

further testing. Nonlinear rules were chosen over linear due to the fact that

linear rules possess a liability of being able to be reversed.

27

The last step in the process was to organize the list of rules into three

categories. The three categories are left hand rules, right hand rules, and rules

that work with both. For this step in the process, every rule produced was tested

at a seed length of 350 for both left hand and right hand structures. Once the

results were obtained, the data was organized and all rules were placed in the

appropriate category based on the results of the test.

Section 5.2: Initial Testing

The initial testing was performed on the entire rule space for both left and right

handed structures. This meant that for every seed length that would be tested, a

minimum of 131072 tests would need to be performed with 65536 tests being

ran on the right hand structure and 65536 being run for the left handed

structure. Since this quickly produced an unwieldy amount of data, the test was

designed to give usable results with the smallest amount of testing required.

The testing size was ultimately decided to be limited to seed length between 30

and 300, with every test being performed at increments of 10. These seed

lengths were decided based on the results of [4] which showed that in classical

3bit 1D CA, once the seed length no longer had a noticeable effect on the

passes of test using Diehard. This would mean that testing above 300 would

likely show similar results to the test done at seed length of 300 itself.

Consequently all data that would distinguish the rules, would be seen at seed

28

lengths lower than 300. The interval of 10 was selected to keep testing to a

minimum as this would still be able to give a sample of how the rule performed

at various given lengths while still being able to have the testing done within a

reasonable amount of time. Even this limited testing took over 2 weeks per

structure while running nonstop on MTSU’s super computer. This meant that

testing every seed length between 30 and 300 would take roughly 5 months per

structure which required too much time for this study.

In order to organize this data, the data was divided up into sub sections based

on the rules numerical values. The subsection contained 1000 rules each,

starting with the first subsection consisting of rules 0-999, the next was 1000-

1999, and it continued until 65536 was reached. Since the data for rules 64000

and higher was predicted to not produce any passing results, the 64000 group

contained the remaining 536 rules from 65000-65536.

Once all the data was appropriately divided up, a pivot table was designed for

each subsection. The table listed each rule as a row, and used the columns to

display the number of test passed in a run of diehard for each given seed length.

At the end of the table in the final column, the averages of all the passes was

calculated. Additionally the P-values produced from the test were used as a filter

to farther limit the data to be analyzed. When a test fails diehard, a P-value of

29

either 0 or 1 is produced. Using this output, all rules that did not pass a single

test could be filtered out before the analysis. An example of these tables can be

seen in table 9 below which shows the results from the 21000-21999 range.

Table 9: Results of Die Hard test for left hand structure rules 21000-21999.

Once the table is made, it is much easier to tell which rule may be worth looking

at. Rules such as 21850 show a very high potential with multiple passes before

seed length of 150 and with passes on most seed lengths. While a rule like

21930 would require more testing to determine its usefulness as it does show

some potential but on a much smaller scale.

Row Labels80 110 120 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 (blank)Grand Total

21165 209 219 226 226 223 215 214 213 223 225 214 224 223 223 219.786

21420 215 219 222 223 210 227 219 224 211 224 222 220 221 225 225 220.467

21675 224 218 218 220 215 225 219 226 213 218 222 226 219 225 221 220.6

21850 222 222 226 227 226 224 224 223 221 227 225 223 223 227 223 224 222 226 224.167

21862 219 225 227 227 223 226 225 221 222 223 229 222 229 227 228 224 224 227 224.889

21865 213 223 228 220 223 222 224 219 219 223 223 222 222 224 227 226 221 221 222.222

21866 225 228 225 219 228 225 225 226 222 229 228 226 227 223 226 227 223 222 225.222

21910 217 224 226 227 223 222 220 225 224 216 225 224 222 223 222 228 217 224 222.722

21913 217 224 224 218 220 228 223 224 220 226 224 224 224 223 224 227 226 217 222.944

21914 219 226 228 225 223 223 222 224 222 227 226 227 221 226 219 226 226 226 224.222

21925 219 226 219 218 219 226 224 224 222 226 220 225 223 227 223 219 223 212 221.944

21926 226 223 219 227 225 227 227 225 221 225 228 225 226 221 220 223 222 222 224

21929 222 222 219 220 224 225 226 223 227 218 225 228 222 224 222 225 224 223 223.278

21930 225 219 226 217 222 223 222

30

Section 5.3: Clusters

Once all the base rules had been found, it is important to group them into their

respective clusters. This step is important because rules from the same clusters

share many of the same characteristics from the number of GOE’s and cycle

lengths, to how they tend to perform when being tested. Additionally there is

the potential that do to the limited nature of the test, a rule that belongs in the

same cluster as a rule in the list may not have met the criteria from the initial

test, but may still be useable for data encryption. Furthermore, since rules from

the same cluster perform similarly in test, a cluster leader can be used for test to

compare the cluster to other clusters. In addition, linear rules were phased out

during this process, since the goal of this research was to find the best rules for

use in encryption and linear rules are not good for independent encryption use.

Section 5.4: Left and Right Applications

After reorganizing all of the rules into their appropriate clusters, some new rules

were added, which required some testing to determine if the new rules could

meet the criteria. Additionally during the clustering phase, the data for left and

right hand structures was combined in order to make the list all inclusive. This

means that all rules needed to go through one final round of testing to

determine their usefulness.

31

 For this test, all the rules were ran in Die Hard on 5 different seeds for both left

and right hand structures. The average of the 5 test was taken and each rule was

placed into one of 4 categories and placed into table 10.

The first of these is the useless rules that failed both left and right. These rules

were left uncolored in the final table. Next is the green rules in the table, which

are the rules that passes only when applied to a left hand structure. The red

rules represent the right hand structure rules, while yellow is used for rules that

work in both structures. The final count was 57 clusters with 11 right hand only

rules, 60 left hand only rules, and 291 rules that work with both. This brings the

count of good rule up from 16 to 378.

32

Table 10: All passing results grouped into clusters.

33

CHAPTER SIX: CONCLUSIONS

3-bit based CA has proven to have use in random number generation, and 4-bit

shows even more potential with its 378 rules as opposed to 16. While 3-bit’s

complexity is limited, there are many complex variations of its application and

most if not all are applicable to 4-bit. With 4-bit’s increased rule space, it could

mean that applications that showed extremely high potential such as 3D and 2D

CA could have even greater complexity. More testing will always be required to

verify results, but the potential to use 4-bit in place of 3-bit CA could make a

significant impact on data encryption as the increase in rules will makes

reversing the encryption exponentially more complex.

Even though 4-bit does add many new rules that can be used for encryption,

there is little reason to stop at 4-bit. As technology advances and more efficient

methods of testing rules become available, the potential to develop more

complex CA will always grow. There is no limit to seed length of a neighborhood

that can be used outside of technical limitations. This means that larger bit

neighborhood can scale with technology as long for the foreseeable future.

34

REFERENCES

[1] J. V. Neumann, “The Theory of Self-Reproducing Automata”, Urbana and

London: University of Illinois Press, 1966.

[2] S. Faulkenberry, “Optimal Analysis, Coding and Testing for Encryption”

master’s thesis, Middle Tennessee State University, 2016,

http://jewlscholar.mtsu.edu/handle/mtsu/4888

[3] K. Salman, "Elementary Cellular Automata (ECA) Research platform,"

Journal of Selected Areas in Software Engineering (JSSE), vol. 3, no. 6, 2013.

[4] D. Nichols, “Optimum Cellular Automata Configurations for Encryption”

master’s thesis, Middle Tennessee State University, 2015,

http://jewlscholar.mtsu.edu/handle/mtsu/4527

http://jewlscholar.mtsu.edu/handle/mtsu/4888
http://jewlscholar.mtsu.edu/handle/mtsu/4527

