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ABSTRACT 

Various niches have used forms of cellular automata for decades. One such use 

is random number generation for data encryption. Of the numerous methods 

developed for encryption, most use the 3-bit rule space. While this rule space 

has been tested and proven to possess the desired traits, limiting CA to only the 

3-bit rule space severely limits the potential for extreme levels of complexity. To 

that end, this research aims to explore the 4-bit rule space to find new potential 

rules that possess the desired level of complexity with the hope that the 

methods used will allow for exploration of even greater rule spaces in the 

future. Through mass testing of the rule space in the Diehard test suite, has 

shown 362 4-bit rules that show good potential for use in cellular automata 

encryption. 
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PREFACE: RESEARCH FOCUS 

 

Cellular automata have been around since the 1960’s [1] and research has 

proven it is useful for use in data encryption [2]. However most work done has 

had a focus on the 3-bit rule space. While there are various applications of the 

3-bit rules they still utilize the same 256 rule space.  A large contributing factor 

to why other rule spaces hare not used is due to the computational power 

required to test larger rule spaces. While a 3-bit rule space only contains 256 

unique rules, a 4-bit rule space contains 65536 unique rules and 5-bit is in the 

millions. This research has 2 goals. The first of which is to test the entire 65536 

rule space to find suitable rules for encryption applications. The second more 

tangential goal is to discover potential efficient ways to find good rules in higher 

bit rule spaces without the requirement of mass testing in the rule space.
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CHAPTER ONE: A BRIEF OVERVIEW OF ELEMENTARY CELLULAR 

AUTOMATA  

 

Section 1.1: Elementary Cellular Automata Introduction 

Cellular Automata (CA) are grid based models that use colored cells to display 

data with a finite number of states, and change according to set rules across a 

number of discrete time steps. Elementary cellular automata (ECA) is the 

simplest class of CA. ECA neighborhoods are 3-bit, one dimensional, and each 

cell contains a binary value of 1 (high) or 0 (low). The cells are arranged 

horizontally in a single row to represent the current state of the automaton, 

because of this each subsequent row can be used to represent the next state 

generated by the given rules. This creates a two-dimensional table from one-

dimensional data that shows changes over time.  The data contained within the 

first row is predetermined in order to initialize the automaton but can consist of 

any desired series of binary data.   

 

Section 1.2:  Cellular Automata Structure 

The basic structure of ECA consist of 4 key parts. The first is seed. The seed is 

simply the name of the initial data used for the automaton. As previously 

mentioned, the seed can contain any data desired in addition to being any 

length. The length of chosen seed determines the length for the entire system. If 

the seed contains 150 bits of data, every row in the CA will contain 150 bits of 
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data. Lastly although the seed may contain any data, for practical use for data 

encryption, it is best to use a random seed. The second major component is the 

neighborhood. The neighborhood is simply the subsection of local data used to 

determine the next state. In ECA systems, the neighborhood is 3 bits long. This 

means that the current state of the 3 cells in the neighborhood define the next 

state for the center bit in each cell. As an example table 1 shows a seed with a 

length of 7 bits. The label of each bit from left to right is A, B, C, D, E, F, and G. For 

bit B, the neighborhood would consist of bits A, B and C. For bit C, the 

neighborhood would contain bits B, C, and D. The exceptions to this are the two 

end bits for which the rules can differ slightly. However this study only uses 

periodic systems. In a periodic system the end bits simply use the bit on the 

opposite end for their vacant spot in the neighborhood. Thus A’s neighborhood 

would be bits G, A, and B, while G’s would be bits F, G, and A. 

 

Table 1: 7 Cell Cellular Automaton seed. 

A B C D E F G 

1 0 1 1 0 1 0 

 

The third part is the rule. The rule determines how the data changes based on 

the data contained in each neighborhood. The 3-bit CA rules pace contains a 

total number of 256 rule which may be used. The rules use binary logic to 

determine their functions. For a 3-bit system there is a total possible number of 

8 different states the 3 bits could be in. These states range from 000 to 111. The 
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next state has a value of 1 or 0 for each of the possible present states, as can be 

seen in figure 1 below.  

 

 
 

Figure 1: Truth table for rule 30. 

 

In this case if the data in a neighborhood contains 000, then the next state for 

the center bit would 0. If the neighborhood contains 001, the next state is 1 and 

so on. The name for a rule is simply the binary number produced by the output 

state. The figure above shows rule 30. The outputs listed from bottom to top 

produce the binary string of 00011110, which when read as a binary number is 

30. The last part required for a CA system is the time step. The time step is when 

the change actually happens. A time step is when the data changes during each 

clock cycle. When the clock triggers, each cell’s state changes based on the rule 
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and the data contained in each of the neighborhoods, and all changes happen at 

once. 

 

Section 1.3:  Previous Works 

Jon Neumann first published work on CA in the 1960’s and later Stephen 

Wolfram published findings showing the potential use of CA in random number 

generation. Since then extensive studies have attempted to further understand 

and expand upon CA applications and potential. Building upon the results from 

previous works Dr. Karim Salman has narrowed the 256 rule space of 3-bit ECA 

to a set of only 16 rules which are chaotic in nature and thus are able to produce 

good random numbers [3]. The chaotic rules are 30, 45, 60, 75, 86, 89, 90, 101, 

102, 105, 135, 149, 150, 153, 165, and 195. These 16 rules proven in other 

studies to have use for random number generation, set the baseline for other CA 

applications to reach in terms of complexity.  

 

Stephen Faulkenberry wrote a thesis providing strong evidence to back up the 

claims of Stephen Wolfram from the 1980’s that CA has use in random number 

generation. His thesis focused on the application of two modern day random 

number testers, Die Hard and NIST, to prove that CA random number generation 

is complex enough to still play a role in modern day encryption and other 

applications. Stating that CA’s simplicity and exponential scalability is enough 

reason to pay attention to CA’s potential [2]. 
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CHAPTER TWO: 4-BIT STRUCTURES 

 

Section 2.1: 4-Bit Clusters 

The cluster structure for 4-bit rules is the same as for 3-bit rules described in [3]. 

A 4-bit rule clusters are created by applying the appropriate operation or 

combination of operations to the base rule. The differences in the clusters is 

simply the structure of how the minterms change. Although the application of 

the operations is still the same, the increased number of minterms in a 4-bit rule 

effect how minterms are changed. The minterms for a 3-bit rule can be 

represented on a 3-D plain as a single cube, but the diagram for a 4-bit rule has 

two cubes, with the two cubes representing a shift on a fourth axis, where the 

same points on the two cubes are one step away from each other. Figure 2 

shows the cubic representation. 
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Figure 2: 4-bit minterm cube 

 

Section 2.2: Left and Right 

In typical 3-bit CA, the center of each neighborhood is the one being changed. 

However, in any even bit system there is no center bit. This means that 4-bit CA 

can either have a left hand structure or a right hand structure. Figure 3 shows a 

4-bit neighborhood. For a left handed structure the central bit would be the B 

bit, while C is the center bit for right handed structures. All rules have a left 

handed and a right handed variant, since the structure changes how the rule is 

applied but not actually modifying the rule itself, which effectively double the 

rule space.  
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Figure 3: 4-bit neighborhood for left and right handed structures. 

 

Section 2.3: Behavior Differences 

A rule applied as a right hand structure tends to behave similarly but different 

from the same rule when applied to the left. This is due to how the minterms 

react to the changing of the center bit. The most common change seen in the CA 

data graphs is a variation between straight and diagonal lines. Figure 4 shows an 

image of rule 25957 graphed for both left and right structures. Although there 

are many differences in the graphs, they both follow a similar pattern with the 

exception that the left hand variant runs the pattern with diagonals, while the 

right hand variant creates vertical drops. Although different, they are both share 

the similar traits of having 2 bit wide drops. In addition to the width, the length 

of the drops are typically the same. The horizontal location of these drops 

change between rules due to the left hand structures diagonal tendency, but 

they still share vertical placement. 
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Figure 4: Automation of rule 25957 for left and right handed structures (left on left, right on 

right). 

 

Section 2.4: 3-Bit Equivalents 

For any rule space of any size, there will always be an overlap of rules that use a 

smaller neighborhood. This happens when the logic of a rule from a larger rule 

space ignores one or more bits in the neighborhood. 2-bit rule 6 and 3-bit rule 

60 demonstrate this equivalence in how they both share the logic of an 

exclusive OR relationship between bits A and B. The only difference between 

the two is that rule 60 ignores the C bit, while rule 6 does not possess a third bit, 

which means that rule 60 effectively emulates rule 6. Similarly a 4-bit rule with 

the same logic, can emulate any 3-bit rule. 

  

Since 4-bit rules have two structures, the rules that emulate 3-bit rules differ for 

each structure. The binary number of a 3-bit rule plays a key role in finding the 

4-bit equivalent. To find the rule simply duplicate the binary number in one of 

two ways, depending on if it is a left or right hand structure.  
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For a right hand structure the equivalent rule will be the binary number for the 

rule written from start to finish twice. For instance 3-bit rule 30’s, 00011110, 4-

bit equivalent is rule 7710 which in binary is 000111100001110 or rule 30 

twice (00011110 00011110). This is because for a right handed rule, the bit that 

needs to be ignored is bit A, and since the first half of the logic represents A in 

the digital off state (0) and the second half represents A in the digital on state 

(1), if the logic of bit A on and bit A off match, the bit can be ignored. 

 

A similar process can produce the rule for a left hand structure. The difference 

between the two is that for a left hand structure, the bit that needs to be 

dropped is bit D. For this configuration the product looks more complicated, but 

is actually just as simple to produce. The state of D = 0 is represented by every 

other row on a truth table, with D=1 being represented on the rows between 

those. No other logic changes between each of these pairings, so if the logic is 

the same for each pair of rows, the D bit will not affect the logic. This means that 

to make a left hand structure equivalent rule for a 3-bit rule, one simply needs 

to write each digit of the binary number twice. This means that the 4-bit rule 

1020 (0000001111111100) emulates the 3-bit rule 30 (00011110). If the 

binary number is divided up into pairs it appears the same as rule 30 only every 
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digit is used twice, 00 00 00 11 11 11 11 00. Table 2 shows the 4-bit equivalent 

rules for all 16 of the 3-bit chaotic rules. 

 

Table 2: 3-bit equivalent rules for left and right handed structures. 
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CHAPTER THREE: BIT SIGNIFICANCE 

 

Section 3.1: The Need for a New Method 

In previous works in addition to Diehard and NIST test, state diagrams helped 

isolate potential rules. Mapping out the state diagrams catalogues the number of 

unique cycles, transient lengths and the number of Garden of Eden states. 

Generating state diagrams for the 4-bit analysis proved less productive, because 

there was a far greater amount of variation in how the rules’ ranked in these 

categories, in contrast to rule 45’s cluster’s near dominance in all categories for 

the 3 bit rules. This made comparing the effectiveness of a rule much more 

difficult and it is likely this complexity will increase with size of the 

neighborhood. This difficulty created a need for another way to compare the 

rules. The ideal method needed to be extremely quick to perform, filter out 

likely useless rules, highlight rules which would have the highest potential, and 

be as resource light as possible to make it scalable to larger neighborhoods.  

 

Section 3.2: The Theory for Bit Significance 

The process began with one simple question “what makes an output random?” 

In order for an output to be random, it needs to have no correlation to the input. 

However, the very concept of CA is systematic and thus the input directly 

influences the output. Therefor the best approach would be to find rules that 

showed as little correlation between the input and output as possible. The term 
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“bit significance” references correlation between a single input bit and the 

output.  

 

Section 3.3: 3-Bit Analysis 

The method used for measuring bit significance is simple and only requires a 

quick look at the truth table of any given rule. For this experiment each bit in a 

3-bit system, bits A, B, and C, begins with a base significance of 0. This implies 

that the bit has 0 correlation with the output. Then by comparing input value of 

each bit with the output value they produce the significance changes. If the bits 

are the same the bit significance is incremented by 1 or if the bits are different 

the significance value is decremented. Table 3 shows the truth tables for rules 

45 and 30. The first three columns show the value of A, B, and C respectively, 

with the last three simply showing the output produced by each rule. The output 

value repeats 3 times to compare with each of the three input bits. If the cell is 

white, the bits are different and the significance level goes down, when the cell 

is red, the bits are the same and the significance level goes up. The ideal 

significance level is 0. This would imply that the bit is the same as and different 

from the input exactly half the time. Meaning they have very little correlation 

with each other.  
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Table 3: Output bit comparison to present state for rules 45 and 30 (left to right). 

 

       

 

In both cases with these two rules, they end up showing a theoretical correlation 

with bit A at -4, and 0 for both B and C. This is because the A bit is only red twice 

and white 6 times, while both C and B’s are equally split between white and red 

cells. Since there are a possibility of 8 combinations and 6 of those 8 show a 

negative correlation, when this rule is used the output should theoretically be 

the inverse of the A input approximately 75% of the time. Additionally the 

output should be the same as B and C approximately 50% of the time. To test 

this, rules 30 and 45 used random seeds to generate data. Tables 4, 5 and 6 

show a seed of length 25 with 9 time steps for rule 45, and is colored based on 

if the bit follows the trend or not. The summing of the two possible states 

ignores the seed state since the seed does not have an input. This means that 

there are 9 rows of 25, which leads to a total of 225 cells. The first table colors 

the cells if the cell is the inverse of the A input for the neighborhood and 

remains white if it is the same.  

A B C 45

0 0 0 1 1 1

0 0 1 0 0 0

0 1 0 1 1 1

0 1 1 1 1 1

1 0 0 0 0 0

1 0 1 1 1 1

1 1 0 0 0 0

1 1 1 0 0 0

A B C 30

0 0 0 0 0 0

0 0 1 1 1 1

0 1 0 1 1 1

0 1 1 1 1 1

1 0 0 1 1 1

1 0 1 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0
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Table 4: Bit A comparison to next state for rule 45. 

 

 

The table highlights and counts the number of cells which are equal to the 

inverse value of the respective cell’s A input in the neighborhood, and the value 

is displayed in the bottom right corner. Since there is a 168 out of the total 225 

that are the inverse, the cells output appears to have a 74.667% (168/225) 

correlation to the inverse of A, as predicted.  

The relationships for B and C also follow the predicted pattern, showing a near 

perfect 50% correlation to the respective cell’s input and inverse, which can be 

seen in the following tables. 

 

!A cell is green if it equals !A

1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 0 1 0 0

1 1 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0

1 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 0

1 0 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0

1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0

1 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0

1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0

1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1

0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1

0 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0

9 6 9 6 9 7 5 7 6 9 5 9 5 7 7 5 7 7 8 6 7 4 8 8 2 168
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Table 5: Bit B comparison to next state for rule 45. 

 

 

 

Table 6: Bit C comparison to next state for rule 45. 

 

 

This correlation could suggest a relationship between the truth table and the 

data generated using said the rule. However a single test is too small of a sample 

to be the bases of any assumptions. To this end, multiple test were performed 

with multiple rules, and they all showed the same relationship between the truth 

table’s “bit significance” and the data produced by a given rule. Table 7 shows 

B Cell is green if it equals B

1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 0 1 0 0

1 1 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0

1 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 0

1 0 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0

1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0

1 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0

1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0

1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1

0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1

0 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0

8 2 3 4 3 3 5 6 5 5 4 5 3 5 3 5 6 3 3 4 6 6 5 6 7 115

C Cell is green if it equals C

1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 0 1 0 0

1 1 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0

1 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 0

1 0 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0

1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0

1 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0

1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0

1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1

0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1

0 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0

3 5 4 3 2 4 3 6 6 5 3 2 4 6 6 7 5 7 4 4 5 4 4 8 3 113
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the bit significance for every balanced rule in the 3-bit rule space. The 

highlighted rules are the rules that produced good results as shown in [3].  
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Table 7: List of all balanced 3-bit rules 

Rule A B C Balance  Rule A B C Balance 

15 -8 0 0 0  135 -4 0 0 0 

23 -4 -4 -4 0  139 -4 0 4 0 

27 -4 -4 0 0  141 -4 4 0 0 

29 -4 0 -4 0  142 -4 4 4 0 

30 -4 0 0 0  147 0 -4 0 0 

39 -4 -4 0 0  149 0 0 -4 0 

43 -4 -4 4 0  150 0 0 0 0 

45 -4 0 0 0  153 0 0 0 0 

46 -4 0 4 0  154 0 0 4 0 

51 0 -8 0 0  156 0 4 0 0 

53 0 -4 -4 0  163 0 -4 4 0 

54 0 -4 0 0  165 0 0 0 0 

57 0 -4 0 0  166 0 0 4 0 

58 0 -4 4 0  169 0 0 4 0 

60 0 0 0 0  170 0 0 8 0 

71 -4 0 -4 0  172 0 4 4 0 

75 -4 0 0 0  177 4 -4 0 0 

77 -4 4 -4 0  178 4 -4 4 0 

78 -4 4 0 0  180 4 0 0 0 

83 0 -4 -4 0  184 4 0 4 0 

85 0 0 -8 0  195 0 0 0 0 

86 0 0 -4 0  197 0 4 -4 0 

89 0 0 -4 0  198 0 4 0 0 

90 0 0 0 0  201 0 4 0 0 

92 0 4 -4 0  202 0 4 4 0 

99 0 -4 0 0  204 0 8 0 0 

101 0 0 -4 0  209 4 0 -4 0 

102 0 0 0 0  210 4 0 0 0 

105 0 0 0 0  212 4 4 -4 0 

106 0 0 4 0  216 4 4 0 0 

108 0 4 0 0  225 4 0 0 0 

113 4 -4 -4 0  226 4 0 4 0 

114 4 -4 0 0  228 4 4 0 0 

116 4 0 -4 0  232 4 4 4 0 

120 4 0 0 0  240 8 0 0 0 

 

 



18 
 

 
 

All the highlighted rules follow one of two patterns in terms of their significance. 

Either it has a 0 significance for each bit or it has a -4 significance for exactly 

one of the neighboring bits of the center bit for the neighborhood. This suggest 

that good rules will show either a low or no correlation to the input bits.  

 

For rules similar to rule 15 with any bit significance of -8 for any bit, this means 

that the rules produces the invers of that bit, in this case A, 8 more times than it 

produces a bit that is the same. Since there are only a possible 8 states for a 3-

bit neighborhood, this means the logic for such a rule would simply be that the 

next state equals the inverse of A. The inverse is implied with a +8 significance, 

that the output is always equal to bit A.  This is not random data, the data is 

simply being shifted one cell to the right in the second case, while in the first 

case that data is shifted and inverted. 

 

The next scenario is the case of rule 29 and similar rules. These rules show a -4 

significance on two bits, bits A and C in this case. While this relationship is a bit 

more complicated, the truth table reveals why it is not random. 
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Table 8: Truth table for rule 29. 

 

 

The cells highlighted in red show that every time that bits A and C hold the same 

state, the next state is always the inverse of the state that those two bits hold. 

This leads to the next state bit having a strong inverse correlation to both A and 

C, which leads to very weak random number generation.  

 

During the extended testing phase, a rule was discovered that possessed the 

desired characteristics of a perfect 50% ratio between all input bits and their 

inverse or a bit significance of 0 for all three bits. The rule 150’s logic is a three 

way exclusive or relationship (ABC) between all three inputs. This creates a 

perfect balance between all three inputs, which could theoretically create better 

test results. 
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Section 3.4: Testing the Theory 

Although the discovery of this potential relationship could be significant, it 

amounts to little if there is no proof to suggest that a rule with a 0 bit 

significance performs any better than other rules. To test this, various data was 

generated and tested with various rules with various bit significances. Because 

Die Hard test results did not produce any clear results, a more strenuous testing 

method was used. The tests RaBiGeTe test runs are much more difficult to pass 

and thus getting an overall pass requires the data to have an exceptionally high 

perforce. Below are graphs displaying the resulting P-value charts for RaBiGeTe 

as compared to Die Hard for the exact same data for rules 45, 30, and 150. 

These graph show that the rule with the net 0 bit significance does noticeably 

better on these test.  

 

  

Figure 5: Test results for RaBiGeTe (left) and Die Hard (right) for rule 45. 

 



21 
 

 
 

 

Figure 6: Test results for RaBiGeTe (left) and Die Hard (right) for rule 30. 

 

 

 

Figure 7: Test results for RaBiGeTe (left) and Die Hard (right) for rule 150. 

 

Although it is not conclusive, these results would suggest that it would be 

worthwhile to continue these test on larger rule spaces. 
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CHAPTER FOUR: CODING 

 

Section 4.1: Workbook and Driver 

Various programs were used for the generation and testing of the data. Most of 

the initial testing was done with the use of two programs, the CA workbook and 

driver. Created by Stephen Faulkenberry [2], the workbook and driver are 

specially designed programs created to work in tandem to make generating 3-bit 

CA data easy and efficient. The workbook, written in C#, is an interface program 

that allows the user to choose from various configurations, lengths, starting 

string, and test type. The program has three main operating modes: diehard test, 

NIST test, and automation. The first two modes are designed to run a single test 

for the corresponding test type, and give a detailed report of the specific test. 

The automation page is designed to run one specific test various times, for 

different parameters and give a simplified report for each test run. These reports 

are much smaller for automation and consist only of the number of passes in 

each test and the overall P-value for the test. Using this test method, massive 

amounts of test could be run with relative ease.  

 

The driver is the program that generated the data and ran the Diehard test. The 

driver works based on a configuration string generated by the workbook. The 

string contained all the information for the test to be performed, such as the ID 

for the test type, seed length/content, and test type. The driver starts by reading 
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in this string, breaking it down into its base components, and generate the data 

based on the parameters given. This structure is what allows the driver to be 

used independently, without the workbook when require or with use of another 

program.  

 

While many minor changes and functions were added to the workbook 

throughout the course of the research, the largest changes happened within the 

driver. The driver was initially designed only for windows systems and when the 

need arose for use on a Linux based system for use on a super computer, 

compatibility became an issue. While functionality was not changed, many of 

the core functions in the program were windows reliant and had to be recoded. 

Additionally the workbook had no functionality for the super computer since the 

computer had to be controlled via command prompt. This required a new 

automation program to be created that could run the driver only use text based 

command and would lead to the development of a program that would 

eventually become the 4BitAllRules program used for all future 4BitTesting with 

Die Hard.  

 

Section 4.2: 4BitAllRules 

Although the workbook and driver combination boasted a lot of features and 

functionality, certain limitations made adding new functionalities range from 

difficult to impossible. Due to the focus of the research when the workbook was 
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being developed, most of the functionality was designed around 3-bit designs 

and variations. In addition, since the workbook was GUI based, it could not work 

on systems that did not support GUIs. Due to these issues, a new program had to 

be designed. A command prompt based program that could perform similar 

functionality to the workbook but designed around 4-bit CA.  

 

4BitAllRules was essentially the culmination of several smaller programs 

designed with a much smaller scope. The initial testing of the 4-bit rule space 

had many approaches that involved testing subsection of the rule space, but 

when the decision was made to test the entire rule space, this program was 

created.  

 

 

Figure 8: 4BitAllRules program main menu and testing input screen. 
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Figure 8 shows the main menu and inputs for running a series of tests for rule 

11730. The program has the ability to run automated test based on a range of 

rules, ranges of seed lengths, create truth tables, find rule clusters and show bit 

significance. Although not as user friendly as the workbook, 4BitAllRules is 

generally less finicky and more easily modified.  

 

Section 4.3: Support Programs 

Although many features are built into 4BitAllRules, since the initial goal was to 

create a workbook replacement, the CADriver program is still required to run any 

sort of testing. In addition to CADriver, several other small support programs 

were created in order to take advantage of 4BitAllRules, but not add any 

complexity to the code for 4BitAllRules. Although most were variations on how 

to test subsections of the rule space, others include a K-map generator, 

multithread support, and a program to take a large list of rules and organize 

them into clusters and remove duplicates.  
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CHAPTER FIVE: RESULTS 

 

Section 5.1: Overview 

The ultimate goal of this research was to determine which rules in the 65536 

rule space provide the best use for CA based encryption. To do this several 

rounds of testing and organizing were required. The first task, which was the 

largest and most difficult to deal with, was running the initial battery of tests. 

Since results from previous tests showed that CA based random number 

generation tends to have a stable level of complexity when the seed length is 

greater than 300, the testing preformed was all done at lengths below 300 [4]. 

This was done with the assumption that if a rule was able to produce good 

results at seed lengths lower than 300, then results at length greater than 300 

would continue to be satisfactory.  

 

After the initial list of rules was obtained, it was important to organize the rules 

into clusters. This is due to the relationship between rules in a cluster. To do this, 

a modified version of 4BitAllRules’ cluster finder program was made to sort and 

organize the rules. During this step an additional measure was taken to filter out 

linear rules. This was done to limit the number of rules that would require 

further testing. Nonlinear rules were chosen over linear due to the fact that 

linear rules possess a liability of being able to be reversed.  
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The last step in the process was to organize the list of rules into three 

categories. The three categories are left hand rules, right hand rules, and rules 

that work with both. For this step in the process, every rule produced was tested 

at a seed length of 350 for both left hand and right hand structures. Once the 

results were obtained, the data was organized and all rules were placed in the 

appropriate category based on the results of the test.  

 

Section 5.2: Initial Testing 

The initial testing was performed on the entire rule space for both left and right 

handed structures.  This meant that for every seed length that would be tested, a 

minimum of 131072 tests would need to be performed with 65536 tests being 

ran on the right hand structure and 65536 being run for the left handed 

structure. Since this quickly produced an unwieldy amount of data, the test was 

designed to give usable results with the smallest amount of testing required.  

 

The testing size was ultimately decided to be limited to seed length between 30 

and 300, with every test being performed at increments of 10. These seed 

lengths were decided based on the results of [4] which showed that in classical 

3bit 1D CA, once the seed length no longer had a noticeable effect on the 

passes of test using Diehard. This would mean that testing above 300 would 

likely show similar results to the test done at seed length of 300 itself. 

Consequently all data that would distinguish the rules, would be seen at seed 
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lengths lower than 300. The interval of 10 was selected to keep testing to a 

minimum as this would still be able to give a sample of how the rule performed 

at various given lengths while still being able to have the testing done within a 

reasonable amount of time. Even this limited testing took over 2 weeks per 

structure while running nonstop on MTSU’s super computer. This meant that 

testing every seed length between 30 and 300 would take roughly 5 months per 

structure which required too much time for this study.  

 

In order to organize this data, the data was divided up into sub sections based 

on the rules numerical values. The subsection contained 1000 rules each, 

starting with the first subsection consisting of rules 0-999, the next was 1000-

1999, and it continued until 65536 was reached. Since the data for rules 64000 

and higher was predicted to not produce any passing results, the 64000 group 

contained the remaining 536 rules from 65000-65536.  

 

Once all the data was appropriately divided up, a pivot table was designed for 

each subsection. The table listed each rule as a row, and used the columns to 

display the number of test passed in a run of diehard for each given seed length. 

At the end of the table in the final column, the averages of all the passes was 

calculated. Additionally the P-values produced from the test were used as a filter 

to farther limit the data to be analyzed.  When a test fails diehard, a P-value of 
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either 0 or 1 is produced. Using this output, all rules that did not pass a single 

test could be filtered out before the analysis. An example of these tables can be 

seen in table 9 below which shows the results from the 21000-21999 range. 

 

Table 9: Results of Die Hard test for left hand structure rules 21000-21999. 

 

 

Once the table is made, it is much easier to tell which rule may be worth looking 

at. Rules such as 21850 show a very high potential with multiple passes before 

seed length of 150 and with passes on most seed lengths. While a rule like 

21930 would require more testing to determine its usefulness as it does show 

some potential but on a much smaller scale.  

 

 

Row Labels80 110 120 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 (blank)Grand Total

21165 209 219 226 226 223 215 214 213 223 225 214 224 223 223 219.786

21420 215 219 222 223 210 227 219 224 211 224 222 220 221 225 225 220.467

21675 224 218 218 220 215 225 219 226 213 218 222 226 219 225 221 220.6

21850 222 222 226 227 226 224 224 223 221 227 225 223 223 227 223 224 222 226 224.167

21862 219 225 227 227 223 226 225 221 222 223 229 222 229 227 228 224 224 227 224.889

21865 213 223 228 220 223 222 224 219 219 223 223 222 222 224 227 226 221 221 222.222

21866 225 228 225 219 228 225 225 226 222 229 228 226 227 223 226 227 223 222 225.222

21910 217 224 226 227 223 222 220 225 224 216 225 224 222 223 222 228 217 224 222.722

21913 217 224 224 218 220 228 223 224 220 226 224 224 224 223 224 227 226 217 222.944

21914 219 226 228 225 223 223 222 224 222 227 226 227 221 226 219 226 226 226 224.222

21925 219 226 219 218 219 226 224 224 222 226 220 225 223 227 223 219 223 212 221.944

21926 226 223 219 227 225 227 227 225 221 225 228 225 226 221 220 223 222 222 224

21929 222 222 219 220 224 225 226 223 227 218 225 228 222 224 222 225 224 223 223.278

21930 225 219 226 217 222 223 222
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Section 5.3: Clusters 

Once all the base rules had been found, it is important to group them into their 

respective clusters. This step is important because rules from the same clusters 

share many of the same characteristics from the number of GOE’s and cycle 

lengths, to how they tend to perform when being tested. Additionally there is 

the potential that do to the limited nature of the test, a rule that belongs in the 

same cluster as a rule in the list may not have met the criteria from the initial 

test, but may still be useable for data encryption. Furthermore, since rules from 

the same cluster perform similarly in test, a cluster leader can be used for test to 

compare the cluster to other clusters. In addition, linear rules were phased out 

during this process, since the goal of this research was to find the best rules for 

use in encryption and linear rules are not good for independent encryption use. 

 

Section 5.4: Left and Right Applications 

After reorganizing all of the rules into their appropriate clusters, some new rules 

were added, which required some testing to determine if the new rules could 

meet the criteria. Additionally during the clustering phase, the data for left and 

right hand structures was combined in order to make the list all inclusive. This 

means that all rules needed to go through one final round of testing to 

determine their usefulness. 



31 
 

 
 

 For this test, all the rules were ran in Die Hard on 5 different seeds for both left 

and right hand structures. The average of the 5 test was taken and each rule was 

placed into one of 4 categories and placed into table 10. 

 

The first of these is the useless rules that failed both left and right. These rules 

were left uncolored in the final table. Next is the green rules in the table, which 

are the rules that passes only when applied to a left hand structure. The red 

rules represent the right hand structure rules, while yellow is used for rules that 

work in both structures. The final count was 57 clusters with 11 right hand only 

rules, 60 left hand only rules, and 291 rules that work with both. This brings the 

count of good rule up from 16 to 378. 
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Table 10: All passing results grouped into clusters. 
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CHAPTER SIX: CONCLUSIONS 

 

3-bit based CA has proven to have use in random number generation, and 4-bit 

shows even more potential with its 378 rules as opposed to 16. While 3-bit’s 

complexity is limited, there are many complex variations of its application and 

most if not all are applicable to 4-bit. With 4-bit’s increased rule space, it could 

mean that applications that showed extremely high potential such as 3D and 2D 

CA could have even greater complexity. More testing will always be required to 

verify results, but the potential to use 4-bit in place of 3-bit CA could make a 

significant impact on data encryption as the increase in rules will makes 

reversing the encryption exponentially more complex. 

 

Even though 4-bit does add many new rules that can be used for encryption, 

there is little reason to stop at 4-bit. As technology advances and more efficient 

methods of testing rules become available, the potential to develop more 

complex CA will always grow. There is no limit to seed length of a neighborhood 

that can be used outside of technical limitations. This means that larger bit 

neighborhood can scale with technology as long for the foreseeable future.  
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