4-Bit Cellular Automata Encryption
Analysis

A Master Thesis By

Dallas Leitner

Fulfilling a partial requirement for the Degree of
Master of Science in Engineering Technology
Middle Tennessee State University

August 2017

Thesis Committee:
Dr. Karim Salman, Chair
Dr. Walter Boles

Dr. Saleh Sbenaty

ABSTRACT

Various niches have used forms of cellular automata for decades. One such use
is random number generation for data encryption. Of the numerous methods
developed for encryption, most use the 3-bit rule space. While this rule space
has been tested and proven to possess the desired traits, limiting CA to only the
3-bit rule space severely limits the potential for extreme levels of complexity. To
that end, this research aims to explore the 4-bit rule space to find new potential
rules that possess the desired level of complexity with the hope that the
methods used will allow for exploration of even greater rule spaces in the
future. Through mass testing of the rule space in the Diehard test suite, has
shown 362 4-bit rules that show good potential for use in cellular automata

encryption.

TABLE OF CONTENTS

LIST OF TABLES ... ceeeeieieieieieieieteee ettt ettt ettt ettt et ettt ettt ettt ettt ettt et ettt et et e et e e e et e e e e ee e et e ee et ee e et eeeeneneeenenenene iv
LIST OF FIGURES.ottt ettt sttt ettt st st st ettt e bt e s bt e s b e sateeaeeesbeenbeesbeesanenas v
PREFACE: RESEARCH FOCUS ...ttt ettt ettt st st st ettt e sbe e sme e saeeemteenneen vi
CHAPTER ONE: A BRIEF OVERVIEW OF ELEMENTARY CELLULAR AUTOMATA.....ccoiiiiieieeeeeeeeeeeeee. 1
Section 1.1: Elementary Cellular Automata Introduction.........ccccecveeiiicier e, 1
Section 1.2: Cellular AUtOMAata SEFUCLUIEcouiiiiiiieiieeeeee et 1
Section 1.3: PrevioUs WOTKS ..o ettt st s st 4
CHAPTER TWO: 4-BIT STRUCTURES ...ttt e e e e ee s 5
SECHION 2.1: 4-Bit CIUSTEIS ..eeeiiieeiiteeiee ettt ettt ettt st e e sttt e st e e sbeesbteesabeeebeeesabeesbeeesabeeanns 5
Section 2.2: Left and RIGNt...c.uuii i e e e e 6
Section 2.3: BEhaVior DIiffEr@nCeS......cocviiiieieeeeee et 7
Section 2.4: 3-Bit EQUIVAIENTS ...ccciuiiiee ettt ettt e et e e e et e e e e ae e e e e 8
CHAPTER THREE: BIT SIGNIFICANCE ... s ees 11
Section 3.1: The Need for a New Methodcocciiiiiiiiiiiieiee e 11
Section 3.2: The Theory for Bit SignifiCanceoccvveiieciiii e 11
SECHION 3.3: 3-Bit ANAIYSIS eiiiiiiiie e e e e et e e e et e e e e bte e e e ebraeaeeanes 12
Section 3.4: TeStING The TREOIY ..c..eiiee ettt et e e e e ette e e e e bbe e e e ebreeeeennes 20
CHAPTER FOUR: CODINGutiiuiiitieitetteitesiee sttt et ettt sae e sttt sre e st s reesieesaneenreesneesenesane e 22
Section 4.1: Workbook and DIiVer.......ccoieeiieiiiiiieieeneenee ettt e 22
SeCtion 4.2: ABItAIIRUIES «...o.eeiiieeee ettt st st sttt e 23
Y =Tord o] oI BC TANYU] o] oo o fl o o ={ - 0 13U TSRS 25
CHAPTER FIVE: RESULTS....c ettt ettt ettt e e e e e ettt e e e e e e anbe et e e e e e e s nnnneneeeeas 26
SECLION 5.1: OVEIVIEW ...eiiiiiiiiiiiiiiiiiiict ettt sar e sra e s 26
SeCtion 5.2: INItIal TESTING .eeiiiiiiie et ere e e e e re e e s st ae e e e sbae e e s ebraeeeennes 27
SECTION 5.3: ClUSTEIS. .o iutiieiiie ittt ettt et e s e e s e e e sar e e sbeeesnreesrenesaneesn 30
Section 5.4: Left and Right AppPliCatioNScccuviiiiciiiee ettt et 30
CHAPTER SIX: CONCLUSIONS ..ottt ettt e e e e et e e e e e e e anreeeeeee s s s nnneeeeeeas 33
REFERENCES ...ttt ettt sttt ettt ettt st et e b e bt sbe e s et e et e et e e sbeesanesaneeaneenneennes 34

LIST OF TABLES

Table 1: 7 Cell Cellular AUtomMaton SEEd.ccccueiiiieiiiiieree ettt 2
Table 2: 3-bit equivalent rules for left and right handed structures.ccccceeeeevveeeennenn. 10
Table 3: Output bit comparison to present state for rules 45 and 30 (left to right). 13
Table 4: Bit A comparison to next state for rule 45.ueeeeiiiecciiiiieee e 14
Table 5: Bit B comparison to next state for rule 45.veeeeeiieiciiiiiieeee e 15
Table 6: Bit C comparison to next state for rule 45.veeeeeiiiiciiiiiieee e 15
Table 7: List of all balanced 3-bit rulescccoiiiriiiiii e 17
Table 8: Truth table for rule 29. ... 19
Table 9: Results of Die Hard test for left hand structure rules 21000-21999.................... 29
Table 10: All passing results grouped into ClUSTErs.........cccvveeeiiiiciiiiiieee e 32

Figure 1:
Figure 2:
Figure 3:
Figure 4:

Figure 5:
Figure 6:
Figure 7:
Figure 8:

LIST OF FIGURES

Truth table fOr rUl@ 30.....coo ettt e e e e e e eeeees 3
L oYLl 0 01T 0L (=T 0 4 oLV o <IN 6

4-bit neighborhood for left and right handed structures.ccccccvevviiiinicee e, 7

Automation of rule 25957 for left and right handed structures (left on left, right on

... 8
Test results for RaBiGeTe (left) and Die Hard (right) for rule 45.ccceeevvevveeecrneenee. 20
Test results for RaBiGeTe (left) and Die Hard (right) for rule 30.ccceeevveevieeereeenee. 21
Test results for RaBiGeTe (left) and Die Hard (right) for rule 150.cccccccvvevveeerveennen. 21
4BitAllRules program main menu and testing input screen.cccoeeeeeecieeeecveee e, 24

PREFACE: RESEARCH FOCUS

Cellular automata have been around since the 1960°'s [1] and research has
proven it is useful for use in data encryption [2]. However most work done has
had a focus on the 3-bit rule space. While there are various applications of the
3-bit rules they still utilize the same 256 rule space. A large contributing factor
to why other rule spaces hare not used is due to the computational power
required to test larger rule spaces. While a 3-bit rule space only contains 256
unique rules, a 4-bit rule space contains 65536 unique rules and 5-bit is in the
millions. This research has 2 goals. The first of which is to test the entire 65536
rule space to find suitable rules for encryption applications. The second more
tangential goal is to discover potential efficient ways to find good rules in higher

bit rule spaces without the requirement of mass testing in the rule space.

Vi

CHAPTER ONE: A BRIEF OVERVIEW OF ELEMENTARY CELLULAR
AUTOMATA

Section 1.1: Elementary Cellular Automata Introduction

Cellular Automata (CA) are grid based models that use colored cells to display
data with a finite number of states, and change according to set rules across a
number of discrete time steps. Elementary cellular automata (ECA) is the
simplest class of CA. ECA neighborhoods are 3-bit, one dimensional, and each
cell contains a binary value of 1 (high) or O (low). The cells are arranged
horizontally in a single row to represent the current state of the automaton,
because of this each subsequent row can be used to represent the next state
generated by the given rules. This creates a two-dimensional table from one-
dimensional data that shows changes over time. The data contained within the
first row is predetermined in order to initialize the automaton but can consist of

any desired series of binary data.

Section 1.2: Cellular Automata Structure

The basic structure of ECA consist of 4 key parts. The first is seed. The seed is
simply the name of the initial data used for the automaton. As previously
mentioned, the seed can contain any data desired in addition to being any
length. The length of chosen seed determines the length for the entire system. If

the seed contains 150 bits of data, every row in the CA will contain 150 bits of

data. Lastly although the seed may contain any data, for practical use for data
encryption, it is best to use a random seed. The second major component is the
neighborhood. The neighborhood is simply the subsection of local data used to
determine the next state. In ECA systems, the neighborhood is 3 bits long. This
means that the current state of the 3 cells in the neighborhood define the next
state for the center bit in each cell. As an example table 1 shows a seed with a
length of 7 bits. The label of each bit from left to rightis A, B, C, D, E, F, and G. For
bit B, the neighborhood would consist of bits A, B and C. For bit C, the
neighborhood would contain bits B, C, and D. The exceptions to this are the two
end bits for which the rules can differ slightly. However this study only uses
periodic systems. In a periodic system the end bits simply use the bit on the
opposite end for their vacant spot in the neighborhood. Thus A’s neighborhood

would be bits G, A, and B, while G's would be bits F, G, and A.

Table 1: 7 Cell Cellular Automaton seed.
A|B|C|D|E|F|G
i1|o0(1j1j0(1|0

The third part is the rule. The rule determines how the data changes based on
the data contained in each neighborhood. The 3-bit CA rules pace contains a
total number of 256 rule which may be used. The rules use binary logic to
determine their functions. For a 3-bit system there is a total possible number of

8 different states the 3 bits could be in. These states range from 000 to 111. The

3
next state has a value of 1 or O for each of the possible present states, as can be

seen in figure 1 below.

Rule 30
Present State Next State
A|lB|C B*
000 0
001 1
0]1]0 1
011 1
1|lofo 1
1]of1 0
1|10 0
111 0

Figure 1: Truth table for rule 30.

In this case if the data in a neighborhood contains 000, then the next state for
the center bit would 0. If the neighborhood contains 001, the next state is 1 and
so on. The name for a rule is simply the binary number produced by the output
state. The figure above shows rule 30. The outputs listed from bottom to top
produce the binary string of 00011110, which when read as a binary number is
30. The last part required for a CA system is the time step. The time step is when
the change actually happens. A time step is when the data changes during each

clock cycle. When the clock triggers, each cell’s state changes based on the rule

4
and the data contained in each of the neighborhoods, and all changes happen at

once.

Section 1.3: Previous Works

Jon Neumann first published work on CA in the 1960’s and later Stephen
Wolfram published findings showing the potential use of CA in random number
generation. Since then extensive studies have attempted to further understand
and expand upon CA applications and potential. Building upon the results from
previous works Dr. Karim Salman has narrowed the 256 rule space of 3-bit ECA
to a set of only 16 rules which are chaotic in nature and thus are able to produce
good random numbers [3]. The chaotic rules are 30, 45, 60, 75, 86, 89, 90, 101,
102, 105, 135, 149, 150, 153, 165, and 195. These 16 rules proven in other
studies to have use for random number generation, set the baseline for other CA

applications to reach in terms of complexity.

Stephen Faulkenberry wrote a thesis providing strong evidence to back up the
claims of Stephen Wolfram from the 1980's that CA has use in random number
generation. His thesis focused on the application of two modern day random
number testers, Die Hard and NIST, to prove that CA random number generation
is complex enough to still play a role in modern day encryption and other
applications. Stating that CA's simplicity and exponential scalability is enough

reason to pay attention to CA's potential [2].

CHAPTER TWO: 4-BIT STRUCTURES

Section 2.1: 4-Bit Clusters

The cluster structure for 4-bit rules is the same as for 3-bit rules described in [3].
A 4-bit rule clusters are created by applying the appropriate operation or
combination of operations to the base rule. The differences in the clusters is
simply the structure of how the minterms change. Although the application of
the operations is still the same, the increased number of minterms in a 4-bit rule
effect how minterms are changed. The minterms for a 3-bit rule can be
represented on a 3-D plain as a single cube, but the diagram for a 4-bit rule has
two cubes, with the two cubes representing a shift on a fourth axis, where the
same points on the two cubes are one step away from each other. Figure 2

shows the cubic representation.

Dlill}/ 0101 i lill}/ 1101
A
//0;11 1010 1011
»{ 0001 1000 //1;01

w=10 w=1

WZYX

Figure 2: 4-bit minterm cube

Section 2.2: Left and Right
In typical 3-bit CA, the center of each neighborhood is the one being changed.

However, in any even bit system there is no center bit. This means that 4-bit CA
can either have a left hand structure or a right hand structure. Figure 3 shows a
4-bit neighborhood. For a left handed structure the central bit would be the B
bit, while C is the center bit for right handed structures. All rules have a left
handed and a right handed variant, since the structure changes how the rule is
applied but not actually modifying the rule itself, which effectively double the

rule space.

ABCD |ABCD

Figure 3: 4-bit neighborhood for left and right handed structures.

Section 2.3: Behavior Differences

A rule applied as a right hand structure tends to behave similarly but different
from the same rule when applied to the left. This is due to how the minterms
react to the changing of the center bit. The most common change seen in the CA
data graphs is a variation between straight and diagonal lines. Figure 4 shows an
image of rule 25957 graphed for both left and right structures. Although there
are many differences in the graphs, they both follow a similar pattern with the
exception that the left hand variant runs the pattern with diagonals, while the
right hand variant creates vertical drops. Although different, they are both share
the similar traits of having 2 bit wide drops. In addition to the width, the length
of the drops are typically the same. The horizontal location of these drops
change between rules due to the left hand structures diagonal tendency, but

they still share vertical placement.

Figure 4: Automation of rule 25957 for left and right handed structures (left on left, right on
right).

Section 2.4: 3-Bit Equivalents

For any rule space of any size, there will always be an overlap of rules that use a
smaller neighborhood. This happens when the logic of a rule from a larger rule
space ignores one or more bits in the neighborhood. 2-bit rule 6 and 3-bit rule
60 demonstrate this equivalence in how they both share the logic of an
exclusive OR relationship between bits A and B. The only difference between
the two is that rule 60 ignores the C bit, while rule 6 does not possess a third bit,
which means that rule 60 effectively emulates rule 6. Similarly a 4-bit rule with

the same logic, can emulate any 3-bit rule.

Since 4-bit rules have two structures, the rules that emulate 3-bit rules differ for
each structure. The binary number of a 3-bit rule plays a key role in finding the
4-bit equivalent. To find the rule simply duplicate the binary number in one of

two ways, depending on if it is a left or right hand structure.

For a right hand structure the equivalent rule will be the binary number for the
rule written from start to finish twice. For instance 3-bit rule 30's, 00011110, 4-
bit equivalent is rule 7710 which in binary is 000111100001110 or rule 30
twice (00011110 00011110). This is because for a right handed rule, the bit that
needs to be ignored is bit A, and since the first half of the logic represents A in
the digital off state (0) and the second half represents A in the digital on state

(1), if the logic of bit A on and bit A off match, the bit can be ignored.

A similar process can produce the rule for a left hand structure. The difference
between the two is that for a left hand structure, the bit that needs to be
dropped is bit D. For this configuration the product looks more complicated, but
is actually just as simple to produce. The state of D = 0 is represented by every
other row on a truth table, with D=1 being represented on the rows between
those. No other logic changes between each of these pairings, so if the logic is
the same for each pair of rows, the D bit will not affect the logic. This means that
to make a left hand structure equivalent rule for a 3-bit rule, one simply needs
to write each digit of the binary number twice. This means that the 4-bit rule
1020 (0000001111111100) emulates the 3-bit rule 30 (00011110). If the

binary number is divided up into pairs it appears the same as rule 30 only every

10
digit is used twice, 00 00 00 11 11 11 11 00. Table 2 shows the 4-bit equivalent

rules for all 16 of the 3-bit chaotic rules.

Table 2: 3-bit equivalent rules for left and right handed structures.

Rule 30 cluster Rule 45 Cluster
30| 1020 7710 43 3315 11565
86| 22102(13116 101| 25957 15411
135] 49215 34695 73| 12495 19275
149| 38293| 49971 89| 22873 13251
Rule 150 Cluster Rule 90 cluster
105]| 15555 90| 13260
105 26985 90| 23130
130] 499380 165 52275
150] 78550 165] 42405
Rule 60 Cluster
60| 4080(15420| right hand equivalint
102| 26214| 15420| Left hand equivalent
195] 61455| 50115 3 Bit Equivalent
153] 39321| 50115

11

CHAPTER THREE: BIT SIGNIFICANCE

Section 3.1: The Need for a New Method

In previous works in addition to Diehard and NIST test, state diagrams helped
isolate potential rules. Mapping out the state diagrams catalogues the number of
unigue cycles, transient lengths and the number of Garden of Eden states.
Generating state diagrams for the 4-bit analysis proved less productive, because
there was a far greater amount of variation in how the rules’' ranked in these
categories, in contrast to rule 45's cluster’s near dominance in all categories for
the 3 bit rules. This made comparing the effectiveness of a rule much more
difficult and it is likely this complexity will increase with size of the
neighborhood. This difficulty created a need for another way to compare the
rules. The ideal method needed to be extremely quick to perform, filter out
likely useless rules, highlight rules which would have the highest potential, and

be as resource light as possible to make it scalable to larger neighborhoods.

Section 3.2: The Theory for Bit Significance

The process began with one simple question "what makes an output random?”
In order for an output to be random, it needs to have no correlation to the input.
However, the very concept of CA is systematic and thus the input directly
influences the output. Therefor the best approach would be to find rules that

showed as little correlation between the input and output as possible. The term

12
"bit significance” references correlation between a single input bit and the

output.

Section 3.3: 3-Bit Analysis

The method used for measuring bit significance is simple and only requires a
quick look at the truth table of any given rule. For this experiment each bitin a
3-bit system, bits A, B, and C, begins with a base significance of 0. This implies
that the bit has O correlation with the output. Then by comparing input value of
each bit with the output value they produce the significance changes. If the bits
are the same the bit significance is incremented by 1 or if the bits are different
the significance value is decremented. Table 3 shows the truth tables for rules
45 and 30. The first three columns show the value of A, B, and C respectively,
with the last three simply showing the output produced by each rule. The output
value repeats 3 times to compare with each of the three input bits. If the cell is
white, the bits are different and the significance level goes down, when the cell
is red, the bits are the same and the significance level goes up. The ideal
significance level is 0. This would imply that the bit is the same as and different
from the input exactly half the time. Meaning they have very little correlation

with each other.

13

Table 3: Output bit comparison to present state for rules 45 and 30 (left to right).

A|B| C]|A45 A|lB]C]30

0]J]0]O0 1 1 1 0]J]0]O0 0O 0 O
0|01 O 0 O 0|01 1l 1 1
0]1]0 1l 1] 1 0]1]0 1l 1] 1
0|11 f 11 1 0|11 f 11 1
100 0 0 O 100 1l 1 1
1 (0|1 1 11 1 1 (0|1 0O 0 O
1 (1|0 0 0 O 1 (1|0 0 0 O
1 (11 O 0 O 1(1(1 0O 0 O

In both cases with these two rules, they end up showing a theoretical correlation
with bit A at -4, and 0 for both B and C. This is because the A bit is only red twice
and white 6 times, while both C and B's are equally split between white and red
cells. Since there are a possibility of 8 combinations and 6 of those 8 show a
negative correlation, when this rule is used the output should theoretically be
the inverse of the A input approximately 75% of the time. Additionally the
output should be the same as B and C approximately 50% of the time. To test
this, rules 30 and 45 used random seeds to generate data. Tables 4, 5 and 6
show a seed of length 25 with 9 time steps for rule 45, and is colored based on
if the bit follows the trend or not. The summing of the two possible states
ignores the seed state since the seed does not have an input. This means that
there are 9 rows of 25, which leads to a total of 225 cells. The first table colors
the cells if the cell is the inverse of the A input for the neighborhood and

remains white if it is the same.

14

Table 4: Bit A comparison to next state for rule 45.
1A cellis greenif it equals |A
1 1 1] 1] 0

vlo|lo|lr|Rr|Rr|R|R|RLR|RL]|~
| |O|Rr|[O|C|R|O|O |- |O

Olr|Olr|r|lOo|lr|r|Oo]|~

|Oo|0|C R [O|R[OC|OC|O |F

OlRr|r|lo|lr|lo|lr|r|r|O]|~

Nl |lo|lolr|lololofr]|o
nlrlr|(r|lololololr]|o
Nlo|lo|r |||~ |o|O
olololo|r|lololr ||~
olr|r|lolr|r|lololo]r |+
nlo|lr|o|l~r|lo|lolololo|r
wlo|lr|lo|lr|r|r|r|[Lr|lo]|o
nlol|lr|lolr|lolo|~|olo]|o
Nl |lololr|r|lolr|Rr|R]|~
NikPr|IP|R|IO|IR|IO|IO|R|O |-
nlololr|r|lolololr]|r]|o
b=l E=R =) =0 =0 =0 L= = N
Nk |k |olr|lo|lolr|k|lo|r
= = S S = = N = =)
olo|lr|o|l~|lo|lolololr |+
N =1 =1 N SN SN S =1 ==
sl |lololr|ololo]o
w|lr|lo|lr|r|lolr|r|r|r]|~
I N =1 S == =1 = ==
N]|olkr|r|lolo|lolololo]o

168

The table highlights and counts the number of cells which are equal to the
inverse value of the respective cell's A input in the neighborhood, and the value
is displayed in the bottom right corner. Since there is a 168 out of the total 225
that are the inverse, the cells output appears to have a 74.667% (168/225)
correlation to the inverse of A, as predicted.

The relationships for B and C also follow the predicted pattern, showing a near
perfect 50% correlation to the respective cell's input and inverse, which can be

seen in the following tables.

15

Table 5: Bit B comparison to next state for rule 45.

Cell is greeniif it equals B
1 o| 1| 1y 1f 2] 1f 1) of 1} 1] of O] 1| 1| of 1] 1f o] 1f O] O] 1| O] O

B

1] 1 1| 0] Of O] Of O] 1] 1] O] Of O] 1| O] 1f 1] Of 1] 1] O] O] 1f O] O

1 o, 0] O] 1] 1] 1} O] 1f of O] 1| O] 1] 1] 1] O] 1f 1| Of O] O] 1] 0] O

1 0] 1 O] 1f 0] Of 1) 1f O] O] 1| 1] 1| O] Of 1] 1f 0] O] 1| O] 1f O] O
1 1| 1| 1 1f O] Of 1] O] O] O] 1| O] of O] Of 1] of O O| 1| 1} 1f O] O

1] 0| O| O] Of O] Of 1) Of 1} O] 1| O] 1| 11 Of 1] Of 1] O] 1] O] Of O] O

1 0| 1| 1y 1f 13 Of 1] 1| 1} 1| 1| 1| 1| O] 1f 1] 1f 1] 1] 1] O] 1| 1] O
1 1) 1] 0] 0] O] 1} 1f Of Of O] O] O] O] 1] 1] O] Of Of O] O] 1] 1] 0] 1

0Ol 0 O Of 1) Of 1] Of O] 1| 1] 1] 1f O] 1f o] Of 1] 1] 1] O] 1f O] 1f 1
0 1f 1) Of 1) 1f 1] O] Of 1] of O] Of 1] 1f O] O] 1) O] O 1] 1f 1] 1 O

8234335655453535633466567115|

Table 6: Bit C comparison to next state for rule 45.

Cellis greenifitequals C
1 o| 1| 12y 1 12y 1f 1) of 1} 1] of O] 1| 1} of 1] 1f o] 1f O] O] 1| O] O

1 1] 1| 0] O O] Of O] 1f 1) O] O] O] 1f O] 1f 1] Of 1] 1f 0] O] 1] O] O

C

1| o] Of O] 1| 1] 1f o) 1f 0] O] 1| O] 1f 1] 1f O] 1f 1] Of O] O] 1| O] O
1 0] 1/ O] 1| O] Of 1] 1f 0] O] 1| 1] 1| O] Of 1] 1f 0] Of 1) O] 1] O] O
1 1] 1/ 1] 1f 0] Of 1) Of 0] O] 1] O] Of O] Of 1] Of O] Of 1) 1] 1 O] O
1] 0| 0| O Of O] Of 1) Of 1) O] 1| O] 1 1] Of 1] Of 1] Of 1] O] O] O] O

1 0| 1| 1y 1| 1y of 1) 1f 1} 1| 1 1] 1f O] 1| 1} 1f 1] 1f 1) O] 1] 1] O
1 1] 1] 0] 0] O] 1] 1f Of Of O] O] O] O] 1] 1] Of Of O O] O] 1] 1] 0] 1

Ol 0 O] Of 1) Of 1] Of O] 1| 1] 1] 1f O] 1f O] Of 1} 1] 1] O] 1f O] 1f 1
O] 1f 1) Of 1) 1f 1f 0] of 1] Of O] Of 1] 1] O] O] 1] O] Of 1] 1f 1] 1f O

3543243665324667574454483113|

This correlation could suggest a relationship between the truth table and the
data generated using said the rule. However a single test is too small of a sample

to be the bases of any assumptions. To this end, multiple test were performed

with multiple rules, and they all showed the same relationship between the truth

table’s "bit significance” and the data produced by a given rule. Table 7 shows

the bit significance for every balanced rule in the 3-bit rule space. The

highlighted rules are the rules that produced good results as shown in [3].

16

17

Table 7: List of all balanced 3-bit rules

Balance

C

B

A

Rule

135

139
141
142
147
149

150
153

154

156
163
165

166
169

170
172
177

178

180
184
195
197

198
201
202

204
209

210
212

216
225

226
228
232

240

Balance

C

B

A

Rule

15
23
27
29
30
39
43

45

46

51

53

54
57

58
60
71

75

77
78

83

85

86

89
90

92

99
101
102
105
106
108
113
114
116
120

18
All the highlighted rules follow one of two patterns in terms of their significance.
Either it has a O significance for each bit or it has a -4 significance for exactly
one of the neighboring bits of the center bit for the neighborhood. This suggest

that good rules will show either a low or no correlation to the input bits.

For rules similar to rule 15 with any bit significance of -8 for any bit, this means
that the rules produces the invers of that bit, in this case A, 8 more times than it
produces a bit that is the same. Since there are only a possible 8 states for a 3-
bit neighborhood, this means the logic for such a rule would simply be that the
next state equals the inverse of A. The inverse is implied with a +8 significance,
that the output is always equal to bit A. This is not random dats, the data is
simply being shifted one cell to the right in the second case, while in the first

case that data is shifted and inverted.

The next scenario is the case of rule 29 and similar rules. These rules show a -4
significance on two bits, bits A and C in this case. While this relationship is a bit

more complicated, the truth table reveals why it is not random.

19

Table 8: Truth table for rule 29.

=

out

[IR ol R Y T e
= = R ==
=lo|lk|laolk|lal=|a|o
ale|la|lk (ke |-

The cells highlighted in red show that every time that bits A and C hold the same
state, the next state is always the inverse of the state that those two bits hold.
This leads to the next state bit having a strong inverse correlation to both A and

C, which leads to very wealk random number generation.

During the extended testing phase, a rule was discovered that possessed the
desired characteristics of a perfect 50% ratio between all input bits and their
inverse or a bit significance of O for all three bits. The rule 150's logic is a three
way exclusive or relationship (A®B®C) between all three inputs. This creates a
perfect balance between all three inputs, which could theoretically create better

test results.

20

Section 3.4: Testing the Theory
Although the discovery of this potential relationship could be significant, it

amounts to little if there is no proof to suggest that a rule with a O bit
significance performs any better than other rules. To test this, various data was
generated and tested with various rules with various bit significances. Because
Die Hard test results did not produce any clear results, a more strenuous testing
method was used. The tests RaBiGeTe test runs are much more difficult to pass
and thus getting an overall pass requires the data to have an exceptionally high
perforce. Below are graphs displaying the resulting P-value charts for RaBiGeTe
as compared to Die Hard for the exact same data for rules 45, 30, and 150.
These graph show that the rule with the net 0 bit significance does noticeably

better on these test.

P-VALUE DISTRIBUTION

FFFFFFFFFFFFF

1 F\
p 0.8
F II"',.f'
3 0.6
7 "4
.r"
£ 0.4
2 "2
e L
e
e 0.2
. . e "’j
7 o
~ o
A SE2RESRESRSZ2EB2EEE88828

Figure 5: Test results for RaBiGeTe (left) and Die Hard (right) for rule 45.

21

P-VALUE DISTRIBUTION

A A
-, 08 a
_,"‘ /::': f
;" p ’
o d ra ; 0.6 ’J
A
- 04 F o
g r
A 02
> Nrall
e 7 ~=RS%RSRESSSRSFEEEE55ER

Figure 6: Test results for RaBiGeTe (left) and Die Hard (right) for rule 30.

P-VALUE DISTRIBUTION

:5;,?—&!— .
i
;gr";
o ' p . '

0.4

Figure 7: Test results for RaBiGeTe (left) and Die Hard (right) for rule 150.

Although it is not conclusive, these results would suggest that it would be

worthwhile to continue these test on larger rule spaces.

22

CHAPTER FOUR: CODING

Section 4.1: Workbook and Driver

Various programs were used for the generation and testing of the data. Most of
the initial testing was done with the use of two programs, the CA workbook and
driver. Created by Stephen Faulkenberry [2], the workbook and driver are
specially designed programs created to work in tandem to make generating 3-bit
CA data easy and efficient. The workbook, written in C#, is an interface program
that allows the user to choose from various configurations, lengths, starting
string, and test type. The program has three main operating modes: diehard test,
NIST test, and automation. The first two modes are designed to run a single test
for the corresponding test type, and give a detailed report of the specific test.
The automation page is designed to run one specific test various times, for
different parameters and give a simplified report for each test run. These reports
are much smaller for automation and consist only of the number of passes in
each test and the overall P-value for the test. Using this test method, massive

amounts of test could be run with relative ease.

The driver is the program that generated the data and ran the Diehard test. The
driver works based on a configuration string generated by the workbook. The
string contained all the information for the test to be performed, such as the ID

for the test type, seed length/content, and test type. The driver starts by reading

23
in this string, breaking it down into its base components, and generate the data
based on the parameters given. This structure is what allows the driver to be
used independently, without the workbook when require or with use of another

program.

While many minor changes and functions were added to the workbook
throughout the course of the research, the largest changes happened within the
driver. The driver was initially designed only for windows systems and when the
need arose for use on a Linux based system for use on a super computer,
compatibility became an issue. While functionality was not changed, many of
the core functions in the program were windows reliant and had to be recoded.
Additionally the workbook had no functionality for the super computer since the
computer had to be controlled via command prompt. This required a new
automation program to be created that could run the driver only use text based
command and would lead to the development of a program that would
eventually become the 4BitAllRules program used for all future 4BitTesting with

Die Hard.

Section 4.2: 4BitAllRules

Although the workbook and driver combination boasted a lot of features and
functionality, certain limitations made adding new functionalities range from

difficult to impossible. Due to the focus of the research when the workbook was

24
being developed, most of the functionality was designed around 3-bit designs
and variations. In addition, since the workbook was GUI based, it could not work
on systems that did not support GUIs. Due to these issues, a new program had to
be designed. A command prompt based program that could perform similar

functionality to the workbook but designed around 4-bit CA.

4BitAllRules was essentially the culmination of several smaller programs
designed with @ much smaller scope. The initial testing of the 4-bit rule space
had many approaches that involved testing subsection of the rule space, but
when the decision was made to test the entire rule space, this program was

created.

tional mode:

= of K for
h tab

the rule to use: 11730
the Tower 1imit for K:
the upper Timit for K:

the number of se

Which center bi L) or right(R):

Figure 8: 4BitAllRules program main menu and testing input screen.

25
Figure 8 shows the main menu and inputs for running a series of tests for rule
11730. The program has the ability to run automated test based on a range of
rules, ranges of seed lengths, create truth tables, find rule clusters and show bit
significance. Although not as user friendly as the workbook, 4BitAllRules is

generally less finicky and more easily modified.

Section 4.3: Support Programs

Although many features are built into 4BitAllRules, since the initial goal was to
create a workbook replacement, the CADriver program is still required to run any
sort of testing. In addition to CADriver, several other small support programs
were created in order to take advantage of 4BitAllRules, but not add any
complexity to the code for 4BitAllRules. Although most were variations on how
to test subsections of the rule space, others include a K-map generator,
multithread support, and a program to take a large list of rules and organize

them into clusters and remove duplicates.

26

CHAPTER FIVE: RESULTS

Section 5.1: Overview

The ultimate goal of this research was to determine which rules in the 65536
rule space provide the best use for CA based encryption. To do this several
rounds of testing and organizing were required. The first task, which was the
largest and most difficult to deal with, was running the initial battery of tests.
Since results from previous tests showed that CA based random number
generation tends to have a stable level of complexity when the seed length is
greater than 300, the testing preformed was all done at lengths below 300 [4].
This was done with the assumption that if a rule was able to produce good
results at seed lengths lower than 300, then results at length greater than 300

would continue to be satisfactory.

After the initial list of rules was obtained, it was important to organize the rules
into clusters. This is due to the relationship between rules in a cluster. To do this,
a modified version of 4BitAllRules’ cluster finder program was made to sort and
organize the rules. During this step an additional measure was taken to filter out
linear rules. This was done to limit the number of rules that would require
further testing. Nonlinear rules were chosen over linear due to the fact that

linear rules possess a liability of being able to be reversed.

27
The last step in the process was to organize the list of rules into three
categories. The three categories are left hand rules, right hand rules, and rules
that work with both. For this step in the process, every rule produced was tested
at a seed length of 350 for both left hand and right hand structures. Once the
results were obtained, the data was organized and all rules were placed in the

appropriate category based on the results of the test.

Section 5.2: Initial Testing

The initial testing was performed on the entire rule space for both left and right
handed structures. This meant that for every seed length that would be tested, a
minimum of 131072 tests would need to be performed with 65536 tests being
ran on the right hand structure and 65536 being run for the left handed
structure. Since this quickly produced an unwieldy amount of data, the test was

designed to give usable results with the smallest amount of testing required.

The testing size was ultimately decided to be limited to seed length between 30
and 300, with every test being performed at increments of 10. These seed
lengths were decided based on the results of [4] which showed that in classical
3bit 1D CA, once the seed length no longer had a noticeable effect on the
passes of test using Diehard. This would mean that testing above 300 would
likely show similar results to the test done at seed length of 300 itself.

Consequently all data that would distinguish the rules, would be seen at seed

28
lengths lower than 300. The interval of 10 was selected to keep testing to a
minimum as this would still be able to give a sample of how the rule performed
at various given lengths while still being able to have the testing done within a
reasonable amount of time. Even this limited testing took over 2 weeks per
structure while running nonstop on MTSU'’s super computer. This meant that
testing every seed length between 30 and 300 would take roughly 5 months per

structure which required too much time for this study.

In order to organize this data, the data was divided up into sub sections based
on the rules numerical values. The subsection contained 1000 rules each,
starting with the first subsection consisting of rules 0-999, the next was 1000-
1999, and it continued until 65536 was reached. Since the data for rules 64000
and higher was predicted to not produce any passing results, the 64000 group

contained the remaining 536 rules from 65000-65536.

Once all the data was appropriately divided up, a pivot table was designed for
each subsection. The table listed each rule as a row, and used the columns to
display the number of test passed in a run of diehard for each given seed length.
At the end of the table in the final column, the averages of all the passes was
calculated. Additionally the P-values produced from the test were used as a filter

to farther limit the data to be analyzed. When a test fails diehard, a P-value of

either O or 1 is produced. Using this output, all rules that did not pass a single

test could be filtered out before the analysis. An example of these tables can be

seen in table 9 below which shows the results from the 21000-21999 range.

Table 9: Results of Die Hard test for left hand structure rules 21000-21999.

Row |~ | 80(110|120|140| 150| 160| 170| 180| 190(200(210(220| 230| 240| 250| 260| 270| 280| 290 300|(bla|Grand To
21165 209]219|226|226 223|215(214(213|223]225|214|224(223)| 223 219.786
21420 215|219 222|223 210]227|219(224(211|224|222|220{221| 225|225 220.467
21675 224)218| 218|220 215|225|219(226(213|218|222|226(219| 225|221 220.6
21850 |222]222|226(227|226 2241224(223(221(227)225|223|223(227|223| 224|222 226 224.167
21862 |219]225|227(227|223 226|225|221(222(223)|229|222|229(227|228| 224|224 227 224.889
21865 |213]223|228(220|223 222|224|219(219(223|223|222|222(224|227] 226|221 221 222.222
21866 |225|228|225[219(228 225|225|226(222(229)|228|226|227(223|226| 227|223 222 225.222
21910 |217]|224|226(227|223 222|220|225(224(216|225|224|222(223|222| 228|217 224 222.722
21913 |217|224|224(218|220 228|223|224(220(226| 224|224|224(223|224)| 227]| 226 217 222.944
21914 |219|226|228(225|223 223|222|224(222(227)226|227|221(226|219| 226|226 226 224.222
21925 |219]226|219(218(219 226|224(224(222(226|220|225|223(227|223]| 219|223 212 221.944
21926 |226|223|219(227|225 227|227(225(221|225|228|225|226(221|220| 223|222 222 224
21929 |222|222|219|220(224 225|226|223(227(218|225|228|222(224|222| 225|224 223 223.278
21930 225 219 226|217 222 223 222

Once the table is made, it is much easier to tell which rule may be worth looking

at. Rules such as 21850 show a very high potential with multiple passes before

seed length of 150 and with passes on most seed lengths. While a rule like

21930 would require more testing to determine its usefulness as it does show

some potential but on a much smaller scale.

30

Section 5.3: Clusters

Once all the base rules had been found, it is important to group them into their
respective clusters. This step is important because rules from the same clusters
share many of the same characteristics from the number of GOE's and cycle
lengths, to how they tend to perform when being tested. Additionally there is
the potential that do to the limited nature of the test, a rule that belongs in the
same cluster as a rule in the list may not have met the criteria from the initial
test, but may still be useable for data encryption. Furthermore, since rules from
the same cluster perform similarly in test, a cluster leader can be used for test to
compare the cluster to other clusters. In addition, linear rules were phased out
during this process, since the goal of this research was to find the best rules for

use in encryption and linear rules are not good for independent encryption use.

Section 5.4: Left and Right Applications

After reorganizing all of the rules into their appropriate clusters, some new rules
were added, which required some testing to determine if the new rules could
meet the criteria. Additionally during the clustering phase, the data for left and
right hand structures was combined in order to make the list all inclusive. This
means that all rules needed to go through one final round of testing to

determine their usefulness.

31

For this test, all the rules were ran in Die Hard on 5 different seeds for both left
and right hand structures. The average of the 5 test was taken and each rule was

placed into one of 4 categories and placed into table 10.

The first of these is the useless rules that failed both left and right. These rules
were left uncolored in the final table. Next is the green rules in the table, which
are the rules that passes only when applied to a left hand structure. The red
rules represent the right hand structure rules, while yellow is used for rules that
work in both structures. The final count was 57 clusters with 11 right hand only
rules, 60 left hand only rules, and 291 rules that work with both. This brings the

count of good rule up from 16 to 378.

Table 10: All passing results grouped into clusters.

1020

2040

2550

3060

3315

4550

5100

B8B5

7140

8670

5180

9945
12750
13005
13116
14025
14028
15043
15045
16065
17340
17595
17850
18105
18795
19125
19275
20655
21675
23070
24275
24735
26005
27029
28050
29835
30090
31110
33405
35190
36210
39015
40035
41055
42075
43055

46155
47175
50003
51000
51075
52020
54825
55080
57630
61710

22102
22118
25842
26198
25957
21850
22106
26201
26202
22870
23126
23141
22874
23129

7710
23145
23160
27465
27225
27241
22166
21925
21926
22181
13763
26261
13251
21913
21929
13212
26281
22933
18615
26775
27046
22953
22954
27034
38485
42326
42342
42329
42345
39253
39269
43349
43365
39273
43353
33735
38566
50083
42646
38569
38570
35318
39322

49215
57375
36975
53295
12495
34935
51355
22695
55335
33915
50235
25755
35955
19635
49971
27795
52371
15523
23715
31875
49725

8925
41565
25245
10605
21165
11565

2805
10965
34725
31365

1785
22105
22121
46665
11985
44625
40545
16830
37230
45350

6630
14730

9630

5610
13770
11730

7650
13628
58140
15500
54060
27540
60180
34680
36720

38293
39317
38233
38297
22873
42325
42389
26009
42353
38245
38309
22949
42341
26021
34695
27045
57765
27945
26025
27049
38549
23125
39509
23189
15443
22169
15411
26197
27221
50739
27289
22117

4845

5865
39529
27237
43621
42601
21910
38234
39258
25546
26970
21862
22886
21866
22850
26982
25562

7230
39574
14508
38554
27286
43670
38502
425598

64515
63495
62985
62475
62220
60945
60435
58650
58395
56865
56355
55590
52785
52530
52419
51510
51507
50492
50450
49470
48195
47940
47685
47430
46740
46410
46260
448830
43860
42465
41310
40800
39530
38506
37485
35700
35445
34425
32130
30345
29325
26520
25500
24480
23460
22440
21420
19380
18360
15532
14535
14460
13515
10710
10455

7905

3825

43433
43417
39593
39337
39578
43685
43429
39334
35333
42665
42409
42394
42661
42406
57825
42350
42375
38070
38310
38294
43369
43610
43609
43354
51772
39274
52284
43622
43606
52323
39254
42602
46920
38760
38489
42582
42581
38501
27050
23209
23193
23206
23190
26282
26266
22186
22170
26262
22182
31800
265969
15452
22889
265966
265965
26217
26213

16320

2160
28560
12240
53040
30600
14280
42840
10200
31620
15300
39780
29580
43300
15564
37740
13164
50012
41820
33660
15810
56610
23970
40250
54930
44370
53970
62730
54570
30810
34170
63750
43430
43414
18870
53550
20910
24350
48705
28305
20145

50745

59925
51765
53805
57885
51507

7355
49635
11475
37995

5355
30855
28815

27242
26218
27302
27238
42662
23210
23146
39526
23142
27290
27226
42586
23194
39514
30840
38450

7770
37590
39510
38486
26986
42410
26026
42346
50092
43366
50124
39338
38314
14796
38246
43418

59670
26006
38298
21914
22934
43625
27301
26277
39589
38565
43673
42649
43669
42645
38553
39573
58305
25961
50627
26981
38249
21865
27033
22937

32

33

CHAPTER SIX: CONCLUSIONS

3-bit based CA has proven to have use in random number generation, and 4-bit
shows even more potential with its 378 rules as opposed to 16. While 3-bit's
complexity is limited, there are many complex variations of its application and
most if not all are applicable to 4-bit. With 4-bit's increased rule space, it could
mean that applications that showed extremely high potential such as 3D and 2D
CA could have even greater complexity. More testing will always be required to
verify results, but the potential to use 4-bit in place of 3-bit CA could make a
significant impact on data encryption as the increase in rules will makes

reversing the encryption exponentially more complex.

Even though 4-bit does add many new rules that can be used for encryption,
there is little reason to stop at 4-bit. As technology advances and more efficient
methods of testing rules become available, the potential to develop more
complex CA will always grow. There is no limit to seed length of a neighborhood
that can be used outside of technical limitations. This means that larger bit

neighborhood can scale with technology as long for the foreseeable future.

[4]

34

REFERENCES

J. V. Neumann, "The Theory of Self-Reproducing Automata”, Urbana and
London: University of Illinois Press, 1966.

S. Faulkenberry, "Optimal Analysis, Coding and Testing for Encryption”
master’s thesis, Middle Tennessee State University, 2016,

http://jewlscholar.mtsu.edu/handle/mtsu/4888

K. Salman, "Elementary Cellular Automata (ECA) Research platform,"
Journal of Selected Areas in Software Engineering (JSSE), vol. 3, no. 6, 2013.
D. Nichols, "Optimum Cellular Automata Configurations for Encryption”
master’s thesis, Middle Tennessee State University, 2015,

http://jewlscholar.mtsu.edu/handle/mtsu/4527

http://jewlscholar.mtsu.edu/handle/mtsu/4888
http://jewlscholar.mtsu.edu/handle/mtsu/4527

