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ABSTRACT

NUMERICAL ANALYSIS AS APPLIED TO X-RAY SCATTERING CURVES -

Thomas V. Jeffries

Various numerical methods involving polynomials were 

employed for both interpolation and linear least-squares 

curve fitting of the atomic scattering factors of X-ray 

diffraction. This included use of Lagrangian and orthogonal 

Legendre polynomials, as well as cubic spline and Stineman 

interpolât ion.

Interpolation is a method that uniquely matches known 

data points within small segments of an unknown curve to 

approximate points in between. Special emphasis was placed 

on establishing both the minimum grid spacing and polynomial 

degree that are needed to perform accurate interpolations. 

The grid spacing in a region of the x-argument near 1.0 A“  ̂

that is commonly employed in standard tabulations of X-ray 

scattering factors was found to be too coarse for wholly 

accurate interpolation by polynomials of low degree.

Least-squares curve fitting is a procedure that 

approximates the entire unknown curve with an analytical 

function that matches the known data points as closely as 

possible by minimizing the sum of their squared deviations 

from the fitted curve. Analytical representations of X-ray 

scattering curves are advantageous, since otherwise the 

complete scattering table must be stored and the values of
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Thomas V. Jeffries

individual scattering factors derived by interpolation. The 

literature of previous nonlinear least-squares fits of 

Gaussian expansions and polynomial series to approximate 

X-ray scattering curves is reviewed exhaustively. Several 

transformations were tested for linear least-squares curve 

fitting of X-ray scattering factors. It was concluded that 

the best approximation is obtained from a combination of 

Gaussian and polynomial terms.

A special chapter on the historical impact of numerical 

analysis by computers in modern chemical education is also 

included.
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CHAPTER 1 

Introduction

The first chemical concept presented to beginning 

students is usually an empirical definition of matter as 

anything displaying the fundamental quantities of mass and 

volume, whose ratio is the derived physical property of 

density for a particular sample. Subsequently, the three 

states of matter--the gas, liquid, and solid phases--are 

classified by a similiar empirical approach in terms of the 

observable qualities of volume and shape (1). A solid is 

described as a state of matter having a definite volume 

that, as in the liquid state, is only slightly altered by 

compression and also having a definite shape that, unlike 

both gases and liquids, is maintained even in the presence 

of large elastic forces. Later, students are taught that 

the term solid is strictly reserved for substances having a 

crystal structure and, still later, that advanced study of 

the properties of solid materials is largely a study of the 

crystalline state of matter (2-7) .

The difference between a noncrystalline or amorphous 

substance and a crystalline one is the same as a comparison 

between a kindergarten classroom and a military academy.

The chemical species, whether they be molecules or ions, of 

a noncrystalline substance are disordered, being arranged in

1
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a chaotic, hit-or-miss fashion; whereas in a crystal, the 

arrangement forms a symmetrically repeating pattern in 

three-dimensional space having the lowest potential energy 

that conforms to the laws of close packing (8). This 

pattern is extended indefinitely throughout the crystal.

The essential symmetry requirement for crystal packing 

establishes a space lattice, which is a three-dimensional 

grid system of points occupying an identical environment 

within the crystal. There are 14 such Bravais space 

lattices that, symmetrywise, can be classified into one of 

seven crystal systems: triclinic, monoclinic, orthorhombic,

tetragonal, rhombohedra1, hexagonal, and cubic. These 

crystal systems describe a para 1leIpiped-shaped volume 

called the unit cell of the crystal. Repetitious unit 

translation of this unit cell in three dimensions affords 

the entire crystal structure because it possesses a complete 

representation of the symmetrical pattern. Thus, a crystal 

is described as being made up of parallel planes of atoms, 

spaced regularly in numerous directions, that are repeated 

periodically by lattice translations. The total number of 

intermolecular arrangements capable of producing such 

patterns of perfect periodicity in three dimensions is 

limited to 230 unique combinations of symmetry operations 

called space groups (9-13). They are authoritatively 

summarized for X-ray crystallographers in an international 

publication (14).

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



3

When a narrow and nearly monochromatic beam of parallel 

X-rays fall on a crystal, a portion is scattered in certain 

definite directions with various relative intensities, a 

phenomenon which is called X-ray diffraction (15-20). The 

positions of these so-called Laue diffraction maxima are 

related to the dimensions of the space lattice of the 

crystal. Their relative intensities are determined by the 

symmetry of the space group, by the three-dimensional 

arrangement and thermal vibrations of atoms within the unit 

cell, and by the different capacity of individual atoms to 

scatter X-rays. The subsequent development of X-ray 

crystallography permitted structural determination of the 

individual repeating unit and, hence, provides an extremely 

powerful technique for establishing the chemical structure 

of both organic and inorganic compounds (21-27). Although 

the effect of single-crystal X-ray diffraction in three 

dimensions is analogous to the one-dimensional diffraction 

of visible light by a ruled optical grating (28, 29), the 

actual process involves absorption of the unidirectional 

incident radiation by the electrons of atoms and subsequent 

re-emission in all directions under conditions where 

coherent Thomson scattering greatly predominates over either 

incoherent Compton scattering or X-ray fluorescence (30-32).

William Lawrence Bragg, in 1913, showed that the X-ray 

diffraction pattern from crystals is more easily interpreted 

if treated mathematically as the result of the interaction
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of X-rays with a reflection grating rather than with a 

diffraction grating (33). To understand this approach, the 

previously defined concept of the crystallographic space 

lattice is needed. An infinite number of families of 

parallel and equidistant geometrical planes may be drawn 

through the lattice points of a crystal in various periodic 

ways. Bragg noted, as a theoretical model, that the 

diffracted X-ray beam acts as if it were being reflected 

from these sheets of imaginary lattice planes following the 

ordinary law of mirror reflection: the angle of incidence is 

equal to the angle of reflection, and both occur in the same 

plane as the perpendicular to each set of mutually parallel 

reflecting planes of the crystal lattice.

Bragg theorized, then confirmed by experiment, that 

such "reflected" X-rays must exhibit mutual interference. 

Constructive interference can occur only when the incident 

X-ray beam makes a particular angle, 0, with a successive 

set of parallel planes of the crystal lattice having 

interplanar spacing d, for only at this angle are they 

mutually in phase. For a given family of crystallographic 

planes, destructive interference predominates at all other 

angles. Consequently, single-crystal X-ray diffraction 

patterns appear as a symmetrical distribution of spots on 

photographic film, one spot for each family of planes. Such 

diffraction spots are commonly referred to as reflections, 

the etymology of which is self-evident.
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The strict condition for reinforcement is one where 

differences in path length between waves scattered from 

successive planes, 2 d (sin 0), are an integral number of 

wavelengths of the radiation employed. This is summarized 

by the familiar Bragg equation as n 1 = 2 d (sin 0) where n is 

an integer called the diffraction order, Ais the wavelength 

of the monochromatic X-rays, d is the perpendicular spacing 

between lattice planes in the crystal, and the glancing or 

Bragg angle, 0, is the complement of the angle of incidence 

for the penetrating X-ray beam satisfying the essential 

diffraction condition (33).

The contribution of a particular atom to the overall 

intensity of a diffracted X-ray beam is described by a set 

of dimensionless quantities called atomic scattering 

factors, f(s), that are a function of the type of atom and 

both the Bragg angle and the wavelength of the radiation in 

the combination of s = (sin 0)/A. They are necessary to 

account for the fact that the electrons, which are the 

scattering matter, are situated in a volume around atomic 

nuclei rather than being concentrated at discrete points.

The amplitude of X-rays scattered in a particular direction 

by a free, single electron, A(s)g, is well-known (29, 34), 

and the scattering amplitude due to electrons in an atom, 

A(s)atom' merely f(s) times that due to an isolated 

electron under similiar conditions as expressed by the ratio 

f(s) = A ( s ) ( s ) g , which is sometimes referred to as a
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form factor or atomic scattering power. The dependence of 

f(s) on the atom type is a direct result of their different 

electron densities. The variation with s is because the 

constituent waves scattered by each electron partially 

interfere, which causes a decrease in the amplitude of the 

resultant wave scattered by the whole atom as a function of 

the Bragg angle.

Atomic scattering factors are essential parameters 

employed during the solution and refinement calculations 

involved in a single-crystal X-ray diffraction analysis.

Each atomic species has a unique set of X-ray scattering 

factors, which collectively are called a scattering curve 

when the scattering factors are plotted as a function of the 

crystallographic Bragg angle and are referred to as a 

scattering table when the numerical values of the individual 

data points are listed. The evaluation of such coherent 

X-ray scattering factors, although well-known in practice, 

is a complicated quantum mechanical calculation (31, 35-38). 

They are obtained from the theoretical wave functions of an 

atomic species through numerical integration of the radial 

distribution of the electron density over the volume of its 

electron cloud, the atomic center being taken as the origin. 

James and Brindley (29, 39) were the first to employ the 

Hartree self-consistent field model to calculate X-ray 

scattering curves, although some of their early scattering 

tables were actually obtained through interpolation of the
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scattering factors of several different elements and were 

later shown to be inaccurate (40-42).

X-ray scattering tables are now available from the more 

refined Hartree-Fock wave functions (36, 43), and the most 

reliable of these are collected together for all elements 

and a large number of elemental ions in Internat iona1 Tables 

(44, 45). The Hartree solution was found unsatisfactory for 

heavy atoms, but relativistic Hartree-Fock wave functions 

(46-48) can now be used to replace both the Dirac-Slater 

approximation (49, 50) and the earlier Thomas-Fermi-Dirac 

statistical model (51).

These solutions are strictly valid only within three 

fundamental assumptions inherent to the atomic model that 

X-ray crystallographers employ by necessity, if not by 

choice, in their calculations. First, they assume that the 

radial dependence of electron density can be modeled after 

an isolated atom or ion that is spherically symmetrical 

about the nucleus with respect to both its valence-shel1 and 

core electrons. Second, they assume that the scattering 

amplitude of each volume element of the electron cloud 

during integration is proportional to that of a free, single 

electron--the previous A(s)g term--whose absolute 

scattering amplitude is taken as the unit to normalize the 

total electron charge to the formal number of electrons of 

the atomic species. Finally, they assume that the atom is
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at rest, with f(s) corresponding to the scattering power of 

a stationary atom.

The latter two assumptions can be accounted for during 

refinement of an X-ray crystal-structure solution through 

use of anomalous dispersion corrections and atomic thermal 

parameters, respectively, together with various other 

corrections that depend upon the experimental conditions.

The first assumption, that of spherical symmetry for the 

charge distribution, cannot be so easily corrected and is 

violated by incomplete electron shells and the aspherical 

charge density of bound atoms (5, 42, 52, 53). The problem 

here is that the exact electron-density distribution of an 

atom depends upon the atom type, its bonding state, and its 

volume in ways that are unknown and are only grossly 

approximated by various levels of theory. Fortunately, the 

anisotropic temperature factors (54, 55) absorb much of this 

error in the practical use of X-ray scattering factors 

during the least-squares refinement of a crystal-structure 

solution. Furthermore, Weiss (35, 46, 82) has shown that 

the numerical values for the calculated scattering factors 

are not very sensitive to inaccuracies in the electron 

densities from which they were derived and that different 

theories give quite similiar results. He estimates that the 

theoretical free-atom Hartree-Fock scattering factors are 

accurate to within about 1%.
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Figure 1 shows the X-ray scattering curves of neutral 

hydrogen, nitrogen, and bromine atoms together with those of 

the iron(II) and cesium(I) cations. Here, the scattering 

factors, f(s), are plotted against s = (sin 9)/A, The 

shape of these plots is roughly the same for all atoms and

ions, with the greatest differences in magnitude occurring

at low values of s where the valence electrons chiefly 

contribute to X-ray diffraction phenomena.

The magnitude of f(s) for discrete atoms and ions at 

any given s is accurately proportional to their electron 

density and only roughly proportional to their formal number 

of electrons, an effect readily noticed when the scattering

curves of isoelectronic species are compared (37), The

numerical value for f(s) of a neutral atom is equal to its 

atomic number, Z, in the special case of the unique s = 0 

intercept, where the curves reach their maximum. At this 

point, the resultant diffraction amplitude from the whole 

atom is proportional to the total number of electrons in the 

incident beam direction because the X-rays scattered by any 

particular electron have the same path length and are, 

therefore, in phase. The value of f(0) is increased or 

decreased from Z by the magnitude of charge for an ionized 

atom. As the Bragg angle increases, f(s) rapidly decreases 

due to the destructive interference of increasing phase 

differences of X-rays diffracted from different parts of the 

atom. Thus, a set of X-ray scattering factors for a given
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Atomic Scattering Curves for 
H, N, Fe(II), Br, and Cs(I )
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atom or ion represent the effective number of electrons at 

any diffraction angle.

The result is an S-shaped curve with no points of 

inflection that rapidly decreases as s increases, then 

asymptotes to a known function (35, 46, 56). This shape is 

similiar to plots resulting from a combination of two 

curves, one which shows an exponential rate of decrease 

dominating at low values of s and the other which shows an 

exponential rate of increase dominating at high scattering 

angles. The intermediate values of f(s) are nearly linear 

with s and lie between two regions of opposite curvature 

and rapidly changing slope.

The storage of entire scattering tables for all atoms 

and ions at sufficiently small intervals of s to insure 

completely accurate numerical interpolation of f(s) during 

crystal-structure solution is, of course, possible for a 

high-speed computer with a large memory (57-61). The 

limited memories of early computers, however, encouraged a 

search for mathematical functions that could serve as 

accurate, analytical representations for individual X-ray 

scattering curves in condensed form (62-64). Although the 

steady improvement of main-frame computers has overcome such 

difficulties, the possibility of doing crystallographic 

calculations on personal computers (65) and the present 

needs of protein crystallographers (25, 66, 67) has returned 

the problem of storage to its former significance. One
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serious disadvantage of an analytical approximation, 

however, is that it is expressed as a set of coefficients 

for a function. Any typographical errors in the publication 

of these values will cause the entire X-ray scattering 

curve, not just a single scattering factor, to be erroneous. 

This worry is not mere paranoia, for decimal errors in two 

different coefficients of separately fitted scattering 

curves have already been published (6 8 ).

It is the purpose of the present dissertation to apply 

the numerical-analysis techniques of both interpolation and 

curve fitting to X-ray scattering curves. Much theory and 

many computer programs are available for fitting curves to 

data (69-80); however, the proper technique comes from a 

careful and deliberate choice. The hasty selection of an 

inappropriate procedure that merely "connects the dots" can 

be misleading and may ultimately misrepresent the actual 

curve.

Several possible functions were considered in the early 

literature for use as an approximation of X-ray scattering 

curves; however, the one most frequently employed is the 

nonlinear least-squares fitting of a Gaussian expansion (69) 

having the form:

f(x) = c + ^   ̂ a^[exp(-b^x^)] Equation 1.1

i = 1
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where k is the number of Gaussian terms and c is a constant 

term. The scattering curve is represented when the set of 

a , b^, and c coefficients are obtained from leas t-squa res 

fitting of the scattering factors, f(x), taken as a variable 

dependent upon an expression, x, which is related to the 

crystallographic Bragg angle. Such a Gaussian function is 

already contained as a subprogram in standard software for 

other computations in X-ray crystallography, and it has the 

advantage of very rapid convergence. It also has a simple 

Fourier transform (81) that allows calculation of electron 

density using parameters proportional to the coefficients of 

the fitted X-ray scattering curve (35, 82-85).

Costain (8 6 ) and Booth (87) were among the first to 

suggest and apply a symmetric two-parameter (k = 1 , c = 0 ) 

Gaussian function to approximate the distribution of atomic 

electron densities, which has found more recent application 

in estimating the separate contribution of core electrons to 

X-ray scattering factors (88-90). Increasingly better fits 

are obtained when additional Gaussian terras are added to 

form an expansion, but each new term requires that the 

values of two additional parameters (i.e., the a a n d  b^ 

coefficients) be evaluated. Witte and WOlfel (91) used the 

four-parameter (k = 2 , c = 0) expansion to approximate the 

X-ray scattering factors of NaCl. Vand, Eiland, and 

Pepinsky (62) employed it to systematically calculate each 

set of four coefficients needed to fit early tabulations of
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X-ray scattering factors. Successive cycles of nonlinear 

least-squares approximation of f(s) showed errors rarely 

exceeding 4̂ 1% over the limited 0.00 < s < 0.65 range of 

copper radiation, but poor fits occurred for the much larger 

0.00 ^ s _< 1.40 range accessible by the short wavelength of 

molybdenum radiation. These calculations were facilitated 

for the computational machines of the 1950's by imposing a 

least-squares fitting condition that + ^2  ̂ ' where N is

the number of electrons in the neutral atom (N = Z) or ion 

(N = Z ^ charge).

They suggested that improved fits over larger ranges of 

s would be obtained by inclusion of a constant term and the 

condition â  ̂ + 32 + c = N, but also noted that subsequent 

least-squares calculation of the five coefficients would 

cease to be straightforward and would involve a laborious 

successive approximation procedure. The inclusion of the 

constant, c, rather than a third Gaussian term is not a 

mathematical requirement, but was based solely on the fact 

that this is the simplest possible extention of the equation 

for the limited computing facilities then available. It 

has, however, an important effect on high values of s, for 

the expanded Gaussian tends to asymptote to the numerical 

magnitude of the constant term as the limit. It should also 

be noted that these functions and their coefficients are 

only numerical fits and have no theoretical basis or 

significance.
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The five-parameter (k = 2) Gaussian expansion, with 

some computational modifications, was applied by Forsyth and 

Wells (92) and later by Moore (93) using three cycles of 

least-squares reiteration to fit the best scattering factors 

of most atoms and many ions through the publication of 

Volume 3 of International Tables (45). The use of a 

five-parameter (k = 2) expansion for the X-ray scattering 

factors of 0^“ (94) has been compared critically with the

results obtained from a nine-parameter (k = 4) expansion 

(95), the latter also being employed to fit the atomic 

scattering curve of bonded hydrogen in H 2 (36 , 44 , 96) and

the molecular scattering factors of H 2O (97). The Gaussian 

expansion of Equation 1.1 has also been applied as an 

analytic approximation for incoherent X-ray scattering 

factors (97, 98), for the scattering factors of electron 

diffraction (47, 99, 100), and for the scattering factors of 

the core and valence electrons independently as three- and 

four-term Gaussian expansions (52, 8 8 , 101). Representation 

of scattering factors with one, two, or three Gaussian terms 

finds special application in protein crystallography (25), a 

device that allows ready inclusion of isotropic temperature 

factors (6 6 , 67).

Current practice is reflected by International Tables, 

Volume 4 (44), which employs a nine-parameter (k = 4) 

Gaussian expansion. Use of the reciprocal space variable as 

X = s = (sin Q ) / K  allows the Gaussian coefficients of the
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least-squares fit to be independent of the wavelength of the 

radiation and is, therefore, preferred over the original use 

of X = sin 9 that was employed in the early literature. 

Least-squares fitting is now carried out as the minimum sum 

of squares for nonlinear functions by cycles of successive 

approximation (i.e., reiteration), which is no longer a 

tedious operation with a modern computer. Thus, the 

original c + Z a ̂ = N condition has been relaxed resulting in 

an improved fit over a more useful range of s. A weighting 

factor having the form w(s) = exp[-(s - s)^] is generally 

employed during the least-squares refinement to insure best 

agreement of the fitted curve with the tabulated data near 

the "middle" of most X-ray scattering curves and corresponds 

to a Bragg angle where most X-ray data are measured for 

crystal-structure determination. The value of 5 is often 

taken as 0.5 and 1.0 for copper and molybdenum radiation, 

respectively.

Table 1 presents the average errors reported in the 

literature for least-squares fitting of the indicated number 

of X-ray scattering curves over the range 0.00 £ s _< s^^% 

for the x-argument as a Gaussian expansion of Equation 1.1 

having various numbers of terms. The average error is given 

as E , which is the standard deviation of the fit expressed 

as a percentage of the number of electrons associated with 

individual atoms or ions as defined by Equation 2.3 in 

Chapter 2. The results obtained by these different workers
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Table 1

Summary of Gaussian Expansion Fitting Errors

Number of 
Parameters 
in Gaussian 
Expansion

Number of 
f {s ) Curves 
Averaged

®max '
w(s)3

Mean 
E, % Re f .

2 4 0 .34 C + 0.8 103

2 2 1. 50 unit + 4 .6 35

3 2 1.50 unit + 1.1 35

4 10 0 . 34 C + 0 .1 103

4 29 0.70 unit + 0 , 52 62

5 258 0.70 A +0.10 2 93

5 100 0.65 A +0.166 102

5 94 1.30 A +0.576 92

5 210 1.30 B +0.429 93

5 100 1.40 B +0.459 102

9 36 1.20 A +0.063 97

9 208 2 . 00 A +0.015 49

9 54 2 .00 unit +0.083 47

^Weighting schemes are denoted as: A for w(s) =
exp[-(s - 0 .5)2 ], B for w(s) = exp[-(s - 1 .0 )2],
C for w(s) = s , and unit for w(s) = 1.
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are not strictly comparable because the details of their 

computational methods--such as the weighting scheme, the 

data grid spacing, the method of least-squares refinement, 

and the accuracy of the original sets of scattering 

factors--are not exactly the same. Nevertheless, the 

general trends of E decreasing as more Gaussian terms are 

added and E increasing as the range of is extended

can be seen clearly.

The crystallographic literature involving polynomial 

approximation, when compared with the similar use of the 

Gaussian expansion, is relatively sparse, diffuse, and 

obscure. The first application of a polynomial series to 

represent X-ray scattering factors was by Mayer (64, 104), 

but was rejected by him as being "not significantly faster 

then table-searching and...appreciably less convenient 

unless the problem of storage room is critical." This was 

reinvestigated by Freeman and Smith (63), who applied a 

nested form (105, 106) of Equation 2.1 (Chapter 2, p 28) for 

a nonlinear least-squares fitting of the X-ray scattering 

tables for 37 atoms and ions. An average fitting error of 

E = +0.17% was obtained for the 0.00 < s ^  0.70 range using 

a sixth-degree polynomial series and, generally, 0.05 

intervals of s. A glance at Table 1 shows this to 

correspond approximately to the typical performance of a 

five-parameter Gaussian expansion. They reported that no 

improvement was obtained when polynomials of higher degree
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were employed and found that inclusion of s > 0.7 caused 

the function to diverge wildly.

Gillis (107) claimed pessimistically that the error of 

a nonlinear least-squares fitting of a ninth-degree 

polynomial is less than 1% for 0.00 ^ s _< 0.8 and less than 

5% for 0.0 < s ^  1.3 when applied to the carbon scattering 

table. Silverman and Simonsen (108) attempted to extend 

this range by fitting ln[f(s)] against s as a more nearly 

linear function and obtained E = +0.33% for 0.00 ^ s _< 0.70 

and E = +^0.90% for 0.00 _< s ^ 1.30 using a sixth-degree 

polynomial for eleven fitted curves. Onken and Fisher (109) 

employed this transformation in a nonlinear least-squares 

fitting of a sixth-degree polynomial for all X-ray 

scattering tables listed in Volume 3 of International Tables 

(45). Silverman and Simonsen (108) obtained exact fits for 

0.00 ^ s ^ 1.30 when scattering curves were subdivided into 

four to six successive ranges containing six tabulated 

points and each was separately fitted by a fifth-degree 

polynomial, but now four to six sets of coefficients would 

be needed to cover this range and the least-squares problem 

begins to approach one of interpolation. Polynomials have 

been used to fit electron scattering curves (110, 111) and 

have also been applied in both Lorentzian (47, 65) and 

orthogonal (112) forms for X-ray scattering factors over the 

limited range of copper radiation.
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Polynomials have always played a central role in 

mathematical approximation (69-80). They can wiggle in a 

number of satisfactory ways to fit a variety of curves. No 

polynomial, however, ever has a true asymptote. Thus, a 

polynomial series should be grossly inefficient in fitting 

f(s) for both high and low values of s. A Gaussian 

expansion (69, 70, 80, 113), on the other hand, is 

essentially an asymptotic series and should improve in 

accuracy as s increases.

It is obvious from this review of the literature that 

X-ray crystallographers have generally accepted expanded 

Gaussian functions for approximation of X-ray scattering 

curves. Experts in the field of numerical analysis, 

however, do not rely on such exponential fitting methods and 

even caution against their use. An exponential series of 

this type can be extremely ill-conditioned because it fits 

data as differences of very large numbers. Consequently, 

the use of exponentials tend to limit significant figures as 

an inherent feature of the function in even the best cases 

and produce instability in the worst. Another disadvantage 

of least-squares fitting of an expanded Gaussian function is 

that it really is not applicable to memory-limited personal 

computers (65, 114), being a nonlinear summation of 

exponentials.

For these reasons, the best approximation of an X-ray 

scattering curve would probably employ a polynomial times a
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suitable Gaussian term so that the best features of both 

functions could be exploited and the worst minimized. This 

idea is not original, but is standard practice in the field 

of numerical analysis for dealing with problems that are 

exponential in character (115). The recent incorporation of 

Jacobi polynomials (52) into the previous expanded Gaussian 

approximation (101) for the generalized valence-she 11 X-ray 

scattering factors of R. F. Stewart (54, 83, 84) is an 

example of this approach. Indeed, its widespread use should 

delegate the methods both cited and applied herein as 

belonging to the classical period of X-ray scattering factor 

approx imation.

The present dissertation examines the behavior of 

polynomials in fitting these curves. There is more concern 

here with understanding this behavior than in artificially 

obtaining "good fits." Consequently, polynomial series will 

be applied in unadulterated form as linear least-squares 

fits using unit weights. No pretense is made here to have 

solved this problem, but the basis for its solution has been 

defined in the practical terms of numerical analysis.
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CHAPTER 2 

Computational Methods

The results of our application of various methods of 

numerical analysis (69-80) to the distinctly different 

problems of both interpolating and curve fitting the atomic 

scattering factors of X-ray diffraction are discussed in 

Chapter 3. This was accomplished by several computer 

programs referred to as Curve Fitter, Curve Fitter-PC,

Polft, and Lagi. Curve Fitter and Curve Fitter-PC are 

multi-purpose programs with the capabilities of polynomial, 

cubic spline, and Stineman interpolation as well as curve 

fitting by linear least squares. Polft is a specialized 

program that only performs a linear least-squares fit with a 

classical Legendre orthogonal polynomial series. Lagi is 

also a specialized program capable of interpolation by the 

Lagrange polynomial method. These methods of numerical 

analysis are all based on operations involving polynomial 

functions, the details of which are discussed below.

The general algebraic polynomial (116) is given as

f(x) = 30 + a^x + 3 2%^ + ... +

where f(x) = y is the dependent variable, the x-argument is 

the independent variable, the n is some nonnegative

22
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integer called the degree or order of the polynomial, and 

the set of a^ (where i = 0 , 1 , n) are n + 1 real

constants called the coefficients of x ̂ in the polynomial 

series. The general product a^x^ is called the J^th-order 

term of the polynomial, and the a^x^ = a g coefficient of the 

zero-order term is sometimes referred to as the constant 

term. A condensed form of this equation using summation 

notation is shown in Equation 2.1. Solution for the unique 

polynomial amounts to finding the values of the coefficients 

from a given set of known x,y data pairs, which are called 

the bivariate standards.

The solution has many applications, one of which is to 

produce a smooth curve so that values of unknown points may 

be calculated. The existence of polynomials that accomplish 

this is assured by the Weierstrass Approximation Theorem 

(73, 117, 118), which states that any cont inuous function 

can be uni formly approx imated in a finite interval by a 

unique polynomial of sufficiently high deg ree; however, this 

should not be taken to mean that any particular method using 

polynomials will be universally valid because some functions 

are simply not "polynomial-like" throughout their entire 

domain and have special properties that polynomials are 

incapable of handling effectively unless a prohibitively 

high degree is employed. The practical realization of 

Weierstrass' Theorem of 1885 for the general case awaited 

the development of the high-speed computer and has been

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



24

realized only within the past thirty years (119-123). Such 

numerical approximation may be applied to either the fitting 

of curves of empirical data whose functional values contain 

random errors or, as in our case, the approximation of 

complicated mathematical functions of a real variable with 

much simpler functions like polynomials that are numerically 

equivalent within some arbitrary accuracy. This is 

accomplished, in turn, by either of two conceptually 

different approaches called curve fitting and interpolation.

In the case of interpolation, a smooth curve is 

constructed from a polynomial of degree n that exactly 

matches n + 1 successive data points spanning each 

interpolated point within small segments of the real, but 

unknown, curve. An exact fitting of invarient standards is 

inherent to all interpolation processes. When this is 

achieved, the model may be used to estimate additional 

points so that a curve.can be plotted. The form of the 

interpolation polynomial may appear to be altered, as with 

Lagrange interpolation; however, these apparent differences 

are for computational purposes only, and they all can be 

manipulated back to the same unique polynomial of degree n 

that yields their common and exact solution for n + 1 

standards. These various forms of the unique interpolating 

polynomial may be applied differently, however, as with the 

specialized Stineman (124, 125) or with piecewise fitting of 

the first and second derivitives of a third-order polynomial
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as in interpolation with cubic splines (78, 117, 120, 122). 

Whatever method is selected, interpolation is best suited 

for fairly precise data because it provides no smoothing for 

any random errors in the exactly fitted standards.

Alternately, the concept of invarient standards is 

abandoned, and the polynomial may be used to approximate the 

entire curve as an analytical function by fitting the data 

as closely as possible through a least-squares technique 

(i.e., the so-called L 2 or Euclidean norm) where the sum of 

the squared deviations between the standards and the fitted 

curve is minimized (71, 126). Such least-squares fitting 

routines, also called regression analysis or merely curve 

fitting, assume that major errors occur only in the y values 

and that the errors in the x values are negligible. This 

approximation, while not related by any coherent or physical 

theory, is numerically equivalent to the real curve and is 

also "smoothed" of any random errors of the original 

standards; therefore, it may be used to find f(x) for any 

value of X, including unknown values between the data 

points. Unlike the Chebyshev or other more advanced norms, 

least squares requires only K = n + 1 data points to solve 

the single system of simultaneous equations having degree n. 

The polynomial is not unique because its solution depends 

upon both n and K, often becoming ill-conditioned (127) when 

n + 1 approaches K. In practice, an overdetermination of 

data (i.e., K >> n + 1 ) is usually required to find a
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solution that minimizes the L2 norm of the least-squares 

fit.

In the lowest nonconstant case of first-order or linear 

polynomials, it is assumed that the unknown points between 

closest standards during interpolation, or of the entire 

data set during curve fitting, can be described by the 

familiar equation of a straight line where ag is the 

y-intercept, a^ is the slope, and all other coefficients 

of the polynomial are zero. The polynomial series may be 

expanded to higher and higher degree; however, this does 

not, necessarily, yield a more accurate approximation 

because higher-order polynomials exhibit what is called 

"induced stability" and tend to introduce oscillations into 

the fitted curve (72, 77, 128, 129) that afford a gross 

misrepresentation of the overall shape of the real curve. 

This occurs even during the interpolation process, where the 

fitted curve is required to pass through all the standards.

Here, agreement between the standards of the unknown

function and the interpolating polynomial is obtained only 

at a cost of very large deviations within intervals between 

the points. In practice, numerical experiments will often 

suggest the appropriate polynomial degree as a compromise 

between the smoothness of the overall curve and the 

closeness to the standards, generally being the lowest 

degree that fits the data within the desired accuracy and

is not wasteful of computational effort.
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In the present dissertation, all bivariate curve 

fitting by a linear least-squares orthogonal polynomial 

method (70, 73, 74, 79, 120, 128, 130) was accomplished

using the program Polft running under the CP-6 operating 

system on the Honeywell DPS 8/49 mainframe computer. Polft 

is a public domain program written in FORTRAN and is part of 

the Time-Sharing-System Programs Library (131, 132) that was 

supplied by Honeywell.

The program allows the user to specify the lowest 

degree, n, of the algebraic polynomial (Equation 2.1) to be 

fitted, then successively fits polynomials of ascending 

degree in the range of a minimum n = 0 to a maximum n = 1 1 . 

It is limited to 100 data points and employs unit weights. 

Values of the independent variable, x, should be spaced at 

constant intervals and have identical random errors, each 

individually equal to the common standard deviation of the 

population, for exact orthogonality of the polynomial fit to 

be attained (77, 132, 133). As a practical test of this 

orthogonality condition, least-squares fitting of higher and 

higher order polynomials must result in nearly unchanged 

coefficients for the lower-order terms (77). In a test of

Polft, values of y = 8 + 2 x w e r e  fitted for all integral x

values from 1 to 12. An exact fit was obtained for a

polynomial order of n = 4, and neither the coefficients nor

the error estimates were altered on going to higher orders.
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Output includes a tabular presentation of the x and y 

standards, and Ygtd' the calculated values of y for the

fit, Ycalc' their absolute and relative deviations, deVy

and % deVy, respectively; the index of determination, r ^ , 

whose square root is the correlation coefficient, r; the 

standard error of estimate for the y standards, Sy; and the 

n + 1 polynomial coefficients. These are displayed on the 

monitor at each stage, and the user has the choice of going 

on to the next highest degree of fit or entering new read 

data. The definition of absolute error given by Polft in 

Equation 2.2 is not followed in either the text or the 

tables of Chapter 3. Instead, the equivalent expression 

with reversed algebraic sign was used. We merely note that 

both definitions are found in the literature of numerical 

analysis. Other statistical conventions (134) employed in 

these calculations follow:

Ycalc = ^i (Xstd)" Equation 2.1
i = 0

deVy = Ygtd - Ycalc Equation 2.2

% deVy = 100 [ (deVy) / (Yj^aic) 1
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29yi (deVy,i)2/(Sy = / /  (devv.i)^/(K - n - 1)

i = 1

K

ÿ = Yi/K
i = 1

K

SSTO =

i = 1
 ̂V (Ystd,i Ystd)

K

(ystd,i - Ÿcalc)^
i = 1

K

SSR =

i = 1
y i  (YcalCfi - Ÿstd)^ = SSTO - SSE

r2 = SSR/SSTO = (SSTO - SSE)/SSTO = 1 - SSE/SSTO
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where y is the simple mean, K is the number of standards 

(i.e., the number of independent variables), n is the degree 

of the polynomial, K - n - 1 is the number of degrees of 

freedom (because the K data calculates n + 1 coefficients), 

SSTO is the "total sum of squares," SSE is the "error sum of 

squares," and SSR is the "regression sum of squares." This 

treatment contains the standard statistical assumptions that 

ygtd is a normally distributed and mutually uncorrelated 

variable and that the residuals of the least-squares fit are 

independent of each other, of and of the parameters,

being normally distributed with zero mean and constant 

variance (76, 134-141). These calculations were performed 

with a floating decimal place and double precision accuracy 

of 18 digits internally for the fractional part, but only 

eight digits (i.e., seven decimal places) are displayed in 

the calculated coefficients when expressed in scientific 

notation and only seven digits in the other calculated 

results.

The following equation has been selected by previous 

workers in this area as the standard least-squares fitting 

error for an X-ray scattering curve (47, 49, 62, 63, 92, 93, 

97, 102, 112). It is the standard deviation of the fit 

expressed as a percentage of the X-ray scattering factor, 

f(s), at zero Bragg angle, which is a maximum on any 

particular scattering curve and is equal to the number of 

electrons associated with the atom or ion.
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E = 100/f(0) Wi (devy,i)2/ ^ 2

i = 1 i = 1

Equation 2.3

Here, is the weight employed for an individual data point 

in the least-squares fit. In our case, weights of unity 

were used, so w^ = 1 and Z w^ = K, the number of tabulated 

values fitted by the function. It should be remembered that 

this is only an estimate of the average error. For example, 

the fact that E is found to be smaller than unity does not 

mean that deviations greater than 1% cannot occur over parts 

of the curve. Consequently, a very small value of E should 

not be taken too seriously without scanning the individual 

deviations to confirm that regions of significant errors do 

not occur in isolated segments of the fitted curve. The fit 

should also be tested graphically for polynomial oscillation 

by using the least-squares coefficients to calculate points 

at much smaller intervals of the x-argument than were the 

original standards (109).

The mainframe computer of the Middle Tennessee State 

University Computer Center is located in the basement of the 

Cope Administration Building. Interactive access from 

remote terminals is provided by the Time-Sharing System
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(TSS), which is an integrated and multidimensional 

information processing system operating under the common 

command language of the General Comprehensive Operating 

Supervisor (142). Although TSS jobs may be sent to the 

batch job stream, the conversational mode of entering data 

on a Hazeltine Esprit II terminal in the Student Computer 

Laboratory of Kirksey Old Main and obtaining the output from 

a Honeywell Model B300-22 printer located in the same room 

was preferred.

X-ray scattering factors, f(s) = f(x) = y , were calcu­

lated for any value of the Bragg angle, s = (sin Ô) /A  = x, 

from the least-squares polynomial coefficients obtained from 

Polft, or either version of Curve Fitter, using the program 

Tenth Degree, which was written in BASIC by Tom Jeffries 

(Appendix I, June 1984) for the IBM PC and compatible 

microcomputers (143, 144) and performed with a floating 

decimal place in single precision (9 digit) accuracy. This 

program prompts the user for the coefficients of any given 

algebraic polynomial (Equation 2.1) up to the tenth degree. 

If the degree of the fitted polynomial is lower than n = 10, 

zeros are entered for the coefficients of higher-order terms 

(i.e., i > n). The program allows the continuation with the 

same coefficients by entering the number 1 when the user is 

prompted for a change. If a change is desired, any other 

single number digit is entered. The numerical value of the 

independent variable, x, must correspond to the transposed
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form, such as x = or x = exp(-s), that was employed in

the original least-squares fit. The calculated result, the 

entered x value, and the coefficients are displayed on the 

monitor, and a hardcopy may be obtained from the printer.

Lagrange interpolation (70, 73-75, 80, 129, 145) was 

performed initially with a Perkin-Elmer 3600 Data Station 

(16K bytes of random access memory) using the program Lagi, 

which was written in BASIC by Tom Jeffries (July 1983) and 

later modified for IBM PC and compatible microcomputers 

(Appendix II, October 1986). This program was validated by 

checking it against a set of test data (146). Lagrangian 

interpolation was originally developed to allow solution by 

hand calculation (147), but it is still used today with most 

of the computational work delegated to the computer. It is 

expressed explicitly in terms of the ordinates, rather than 

in finite or divided differences, and may be applied to both 

evenly spaced and unevenly spaced data. It should be noted 

that a "K-point Lagrange" requires K = n + 1 data arranged 

as symmetrically as possible about the point to be 

interpolated and corresponds to an interpolating polynomial 

of degree n.

The program Lagi requires that a set of standards be 

entered on line 230 of the program. When the data statement 

is entered, the program prompts the user for the number of 

standards and the value to be interpolated. The user then 

has the choice of continuing interpolation using the same
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set of standards or writing a new data statement on line 

230. Only 249 characters are allowed as a maximum line 

length on the Perkin-Elmer Data Station. This includes the 

number "230" (3 characters), the word "data" (4 characters),

one space following the line number and another following 

the line statement ( 1 + 1 = 2  characters), the 2K decimal 

points and 2(4)K digits of the K standards, and the 2K - 1 

commas separating the data entries. For example, a total of 

K = 20 bivariate data having four significant figures may be 

entered as calculated from

3 + 4 + 2 +  2 K + 8 K +  (2K - 1) < 249

These calculations were performed with a floating decimal 

point at single precision (6 digit) accuracy, but double 

precision accuracy (16 digit) may be chosen as an option. 

Lagi is not as convenient a program to use as the previous 

ones described. A hardcopy listing the standards and 

interpolated values is only obtainable on the IBM PC 

version, and the Lagrange coefficients employed in the 

interpolations are not included as output in any form. 

Furthermore, the data statement of the program must be 

rewritten each time the standards are changed.

Finally, the program Curve Fitter was written in 1980 

for Interactive Microware, Inc. by Paul K. Warme (125).

Curve Fitter has many options available including data
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scaling (to produce a compact plot), N-point data averaging 

(to reduce the number of data), and N-point data smoothing 

(to average noise); interpolation of y values by polynomial 

(degree 1 to 6 ), cubic spline, or Stineman Methods (124); 

and linear least-squares fitting by any of three functions: 

an ordinary (i.e., nonorthogona 1 ) algebraic polynomial 

function (degree 1 to 6 ) solved directly by Gaussian 

elimination (148), a geometric function (i.e., y = a(x)^ by 

fitting the logarithmic transformation), or a one-term 

exponential function (i.e., y = a[exp(bx)l also by fitting 

the logarithmic transformation). The program is relatively 

easy to use, being versatile in user interaction and 

selection of methods.

Data may be entered from the keyboard or input from 

either a previously stored disc file or from an optional 

analog to digital converter for instrumental interfacing. 

Pairs of either evenly-spaced bivariate data or y values 

with constant x interval can be entered. After all the 

standards have been input, the program allows the abscissa 

and ordinate axes to be redefined so that inverse 

interpolation (i.e., interchange of x and y data) is 

possible; however, only linear interpolation of the x values 

is then applied. The raw data at this point are in the 

natural units that were originally measured, but these can 

be scaled through use of a multiplying scale factor, offset 

by a constant amount, or converted to either common or
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natural logarithms if desired. The standards can be listed 

and plotted using 320 by 200 point graphics while the 

program automatically calculates suitable numeric labels 

along the scaled axes. Any one of the interpolation or 

least-squares methods may then be applied to calculate a 

curve superimposed upon the standards.

After all calculations have been made and the curve 

plotted, the user must decide if the fit is satisfactory 

and, also, whether the fitted curve is to be erased. One 

may choose not to erase the curve so that it can be visually 

compared with other curves obtained from different fitting 

methods or with polynomials of higher degree. When an 

acceptable fit has been achieved, unknown values of other 

points may be calculated. Statistical measures of the 

accuracy of the least-squares fit include the coefficient of 

determination, the correlation coefficient (i.e., the square 

root of the coefficient of determination), and the standard 

error of estimates. The observed and calculated values, 

together with the percentage deviation, are also listed.

All working files may be saved on the same disc for later 

addition or deletion of individual data points. A hardcopy 

of the plotted curve can be obtained using the compatible 

program Scientific Plotter, also written in 1980 by Paul K. 

Warme (149), which accepts the formats of the standards file 

from Curve Fitter as input and also accepts data from the 

keyboard as well as data calculated by a user-defined
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subroutine. Multiple sets of data can be plotted on the 

same graph using any one of 20 different plotting symbols 

and, as an option, superimposed variable-length error bars.

Early use of Curve Fitter at Middle Tennessee State 

University was with a 54K Apple 11+ microcomputer having 

Applesoft ROM, floating decimal point, and single precision 

(9 digit) accuracy; however, most of our final results that 

are reported in Chapter 3 were calculated on a Kaypro-PC 

microcomputer at Campbe11svi1le College, Campbe1Isvi1le, 

Kentucky using the program Curve Fitter-PC, which is version 

of Curve Fitter written for the IBM PC. The Kaypro-PC has 

an 8088-2 chip that runs on eight megahertz instead of the 

4.7 MHz chip of the IBM PC. This provides a much faster 

calculation time, about 1/4 the time required for the IBM PC 

and about 1/6 that required for the Apple II+.

The minimal requirements of Curve Fitter-PC is a 12BK 

IBM PC or compatible microcomputer, a color/graphics board, 

a color monitor, one disc drive, and at least PC DOS 1.1 or 

greater. It contained the 1984 improvements of Corl and 

Warme (150), including function-key plot and graph-labeling 

capabilities; however, the actual calculation routines in 

single precision remained unchanged. The advanced IBM 

BASIC, BASICA, is contained, in part, on the ROM of the IBM 

PC and is required for the program to automatically execute 

itself. This had to be changed to Microsoft BASIC (143) in 

order for it to be totally compatible with the Kaypro-PC.
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CHAPTER 3 

Results and Discussion

In Chapter 1, the crystallographic literature was 

reviewed for previous applications of numerical analysis to 

the atomic scattering curves of X-ray diffraction. In the 

present chapter, the results of our own investigations in 

this area using the computational methods detailed in 

Chapter 2 are discussed. There are many tables in this 

chapter that must be referred to in several different 

orders. Consequently, all tables have been placed at the 

end of the chapter as a convenience to the reader.

The present study is limited to numerical methods that 

perform an analytical operation with polynomial functions. 

Other approximations that are based upon trigonometric and 

exponential functions enjoy wide use as computational 

algorithms; however, none of these have managed to displace 

polynomials from their central role in numerical analysis 

for computer evaluation of mathematical functions (105). 

Whatever approximating function is finally selected, it can 

be applied in either of two conceptually different ways 

(69-80). First, it can be employed in an interpolation 

process that matches the data exactly and estimates 

additional, unknown values of the real curve within 

intervals between these standards. Alternately, it can be
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used to curve fit the data by a least-squares method where 

the sum of the squared deviations between the data and the 

fitted curve of the approximating function is made to be a 

minimum at the data points.

Least-squares fits are often applied to data where 

random errors occur in the measured values, the curve 

passing as close as possible to the known points within the 

limitations of the fitting function. The purpose here, 

however, would be to approximate the precise values of an 

X-ray scattering table in the condensed form of a single, 

analytical function whose least-squares coefficients 

accurately reproduce the continuous scattering curve and, 

hence, the set of individual scattering factors. Thus, the 

complex function from physical theory that originally 

calculated the X-ray scattering curve is replaced with a 

numerically equivalent, but mathematically much simpler, 

polynomial function in a process which is called numerical 

approximation or, sometimes, analytic substitution.

We have followed, for both interpolation and curve 

fitting, the common practice of taking s = (sin 0)/A = x as 

an exact, independent variable and the value of the atomic 

scattering factor, f(s) = f(x) = y, as a real function 

dependent only on s. While the absolute value of f(s) will 

contain determinate errors inherent to their original 

quantum mechanical evaluation, the relative values within 

any particular X-ray scattering curve must be internally
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self-consistent because they were all calculated from the 

same wave function. Consequently, the atomic scattering 

tables contain no indeterminate or random errors and require 

no smoothing for numerical analysis. We have also assumed 

that all data of a given X-ray scattering table are of equal 

importance in determining its scattering curve and have used 

unit weights in all our calculations. The Criterion of Fit 

that defines the successful interpolation of a scattering 

factor or a good least-squares fit of the scattering table 

is taken as dev^^gj = ftsi^aïc " table i ±0-002 because

the X-ray scattering factors are generally calculated with 

three decimal places. The choice of this criterion over 

±0.001 avoids trivial complications due to roundoff errors 

in the last significant figure for differences between our 

fitted values.

X-ray scattering factors for the light atoms hydrogen 

(1 e“ ) and nitrogen (7 e“ ), the intermediate iron(II) cation 

(24 e ” ), and the heavy bromine atom (35 e“ ) and cesium(I) 

cation (54 e“ ) were selected for our interpolation study 

from Internat iona1 Tables for X-ray Crystallography (44) and 

are plotted in Chapter 1 as Figure 1. This selection was 

made for the somewhat arbitrary reasons that the species are 

chemically significant and represent a range of atomic 

numbers, ionization states, and different positions on the 

periodic table. The values of f(s) are tabulated at s 

intervals of 0.01 up to 0.20 , 0.02 up to 0.50 0.05
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O _ 1up to 0.70 h , and 0.10 thereafter. The scattering tables 

contained 51 f(s) values ranging 0.00 £ s <_ 1.50 for atomic 

hydrogen and 56 f(s) values ranging 0.00 £ s £ 2.00 for 

each of the other atoms or ions. It was noted by the 

editors of Internat ional Tables that "these intervals are 

such that linear interpolation is reasonably accurate (44)."

Except for hydrogen, these X-ray scattering factors 

were calculated by Doyle and Turner (47, 48) using the 

relativistic Hartree-Fock atomic wave functions of Coulthard 

(151) that included the potential of a point, rather than a 

finite, nucleus (i.e., neglect of magnetic term) and also 

ignored the effects of electron correlation within the atom 

(i.e., neglect of off-diagonal Lagrange parameters). Doyle 

and Turner (47) noted that their results are tabulated to 

three decimal places "as an aid to interpolation" even 

though the absolute accuracy of the third (and probably also 

the second) decimal place is questionable. These tables 

have been since revised to include high-angle data (46); 

however, the numerical values for the ranges studied herein 

have remained unchanged. For hydrogen, the non-re 1 ativistic 

Hartree-Fock calculations of Cromer and Mann (152), using 

the wave functions of Mann (153), were employed. The atomic 

model in all cases was the usual isolated, symmetrical 

sphere of uniform electron density in its ground state and 

at rest.
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The act of sampling a continuous function implies a 

potential loss of information. Thus, our first concern was 

to find the minimum interval of s that is required for an 

accurate interpolation of f(s). This is sometimes called 

the step size or grid spacing. The values of f(s) for the 

X-ray scattering factors described above (47) were obtained 

by numerical integration over the range 0.00 _< s £ 6.00 by 

repeated use of an equal-interval formula based on seven 

successive points for up to 180 of the 201 values of the 

radial electron density provided by the wave function (151) . 

It would seem, perhaps naively, that = 6.00/180 =

0.033 should be the "natural" grid spacing of this data set.

The literature establishing the intervals employed in 

current tabulations of X-ray scattering factors (44, 45) is 

sparse, nonrigorous, and appears based upon conclusions 

drawn during the first applications of digital computers in 

X-ray crystallography (20, 29, 63, 87, 112, 154, 155) using 

early and often inaccurate scattering tables. Simple table 

searching without interpolation would result in a maximum, 

absolute error in s of one-half the grid spacing selected 

(64). Storage of the f(s) values at smaller and smaller 

intervals of s would, of course, increasingly improve the 

accuracy of the table search, but at a corresponding 

increase in the computer-storage requirements as well as the 

cost of the calculation in time and money.
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Computer memory requirements can be reduced with 

equivalent accuracy by linear interpolation of scattering 

factors for each atomic species when tabulated as f(s^), a 

more nearly linear function. This has been applied at 

equally spaced intervals of (156), but is much more 

powerfully employed using successive intervals graded in 

groups so as to give roughly constant increments in the 

intervals of the corresponding values of the scattering 

factors (157) . The latter method is in use today in many 

computer programs for crysta1lographic calculations, and 

variations of this procedure involve the Fourier Transforms 

of the X-ray scattering curves (158) as well as semi-log and 

log-log cubic spline interpolation (36, 46). It is usually 

also possible to roughly fit two straight lines through a 

plot of log[f(s)] against s^, one through the high-angle 

region and one through the low-angle region (62). The size 

of the grid spacing has also been shown to be critical in 

the related calculation of structure factors during 

single-crystal X-ray structure determinations (66, 67, 103, 

158, 159).

Initial interpolation studies of the atomic scattering 

factors of bromine and nitrogen were performed by cubic 

spline, Stineman, and polynomial (2 _< n _< 6) methods using 

the program Curve Fitter. The first degree interpolating 

polynomial (n = 1) is, of course, merely a straight line and 

was excluded. Our methodology was to enter all f(s) values
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on the Curve Fitter disc at selected table intervals of s 

over the 0.00 _< s _< 2.00 range of the x-argument, then 

remove each individual value one at a time and use the 

remaining data to interpolate it. The deleted value was 

then returned to the standards file, and new ones were 

selected for successive deletion and interpolation.

As shown in Tables 2 and 5, interpolation of the 

nitrogen and bromine atomic scattering factors using only 

those values of s spaced at 0.10 were within +^0.002 for 

values at s above c_a. 1.0 for third and higher polynomial 

orders; however, interpolation at smaller values of s are 

seen to be progressively inaccurate. The effect of using 

interpolating polynomials of higher degree is shown in 

Figure 2, where the domains of the scattering table that 

accurately interpolate within the Criterion of Fit are 

plotted. The curves for nitrogen and bromine are roughly 

equivalent and show that no polynomial of any order can be 

made to interpolate X-ray scattering factors within ^0.002 

when they are below an s of about 0.6 or 0.7 and spaced at 

0.10 intervals. Figure 3 shows that, when the grid density 

was increased to include also every s unit of 0.05 up to s 

= 0.70, the interpolation of nitrogen scattering factors 

(Table 3) was somewhat improved, but the domain within the 

Criterion of Fit for bromine (Table 6) was virtually 

unchanged. The full range of data, excepting f(s) values 

at s = 1.0, could be interpolated within +0.002 at fourth
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and higher polynomial orders when intervals of 0.02 were 

added below s < 0.50 (Tables 4 and 7).

The interpolations were repeated using the cubic 

spline, Stineman, third- and fourth-degree polynomials, and 

the four-point Lagrange applied to s intervals of 0.02 up 

to 0.50 0.05 up to 0.70 A~^, and 0.10 K"^ thereafter.

In addition to nitrogen (Table 9) and bromine (Table 11), 

hydrogen (Table 8), iron(II) (Table 10), and cesium(I)

(Table 12) were also included in the final calculations. 

These various interpolation methods all share the common 

feature of being expressed explicitly in terms of the 

ordinates rather than in terms of their differences or 

divided differences. As a result, they all may be applied 

to both evenly spaced and unevenly spaced data. The 

four-point Lagrange is mathematically identical to the 

third-degree interpolating polynomial, and small +0.001 

differences between these two provide a measure of the 

roundoff error involved in the present calculations. The 

four coefficients of this third-degree interpolating 

polynomial are calculated from n + 1 = 4 successive 

standards spanning each point to be fitted. In the case of 

cubic spline interpolation, each set of four successive 

points are employed in a piecewise fashion to calculate the 

three coefficients of the continuous first and second 

derivitives of a cubic polynomial for each pair of adjacent 

standards. As can be seen in Tables 2-12, the cubic spline
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consistently out-performed the third-order interpolating 

polynomial for all but the most extreme value of s .  It was 

also more efficient in computer time. The Stineman method, 

however, gave inconsistent results to show that this 

specialized interpolation technique is inappropriate for 

X-ray scattering curves. Its general performance was 

somewhere between that of interpolating polynomials having 

second and third order.

It was found that the light elements hydrogen and 

nitrogen could be accurately interpolated within +0.002 for 

all values of s using third- and higher-order polynomials 

or even the Stineman. The iron(II), bromine, and cesium(I) 

interpolated scattering factors had a small patch of 

relatively small error in the intermediate range of s from 

0.8-1.1, 0.8-1.0, and 0.7-1.3, respectively, when a 

third-order polynomial was applied and still showed a 

"delinquent" point at s = 1.0 with an error of ^0.002 to 

+^.004 at the fourth degree. This latter error, as seen for 

bromine in Table 7, did not disappear until an interpolating 

polynomial of the sixth degree was employed. It is clear 

that the x-grid spacing is too coarse in this region for 

reliable interpolation; however, inclusion of finer 

intervals over the range of about 0.50 £ s £ 1.50 would 

then allow completely accurate interpolation using even a 

third-degree polynomial. This might amount to extending the

0.05 intervals to s = 1.50, but might also require that an
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even finer grid spacing be employed for this especially 

difficult region to fit.

The calculations up to this point have dealt with 

interpolation only. Analytical representations of X-ray 

scattering curves are advantageous in computer calculations 

since otherwise the complete scattering table must be stored 

for interpolation. Our attempts at linear least-squares 

curve fitting involved an orthogonal Legendre polynomial as 

contained in the program Polft. Polft was employed to curve 

fit the atomic scattering factors from Internat ional Tables 

(44) for all neutral atoms from hydrogen (1 e~) through neon 

(10 e“) at all polynomial orders from zero (n = 0) through 

eleven (n = 11) as shown in Tables 13-16. The data should 

be evenly spaced in order to maintain the orthogonality of 

the polynomial. The standards here, however, were unevenly 

spaced. Thus, the results should actually be similiar to 

least-squares fits with ordinary polynomials.

The linear least-squares fitting errors from the 

orthogonal polynomial are approximately a factor of ten 

larger than those obtained by nonlinear least-squares 

fitting of equivalent Gaussian expansions or polynomial 

series as documented by the citations in Chapter 1. For 

example, the values presented in Table 15 have an average 

error of E = j^0.60% for the linear least-squares fitting of 

an eighth-degree polynomial, which has the same number of 

coefficients as the nine-parameter Gaussian expansion whose
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nonlinear fitting error is summarized in Table 1 of Chapter

1. It is clear, then, that the solution for the best set of 

polynomial coefficients presents a nonlinear minimization 

problem.

Still, it is interesting to consider how close a linear 

least-squares fitting technique could actually approach the 

best approximation of an X-ray scattering curve. For 

example, the fitting errors shown in Tables 13-16 decrease 

as the polynomial order increases from sixth to ninth degree 

suggesting a beneficial use of high-degree polynomials. On 

the other hand, merely increasing the polynomial order to 

higher and higher degree does not, necessarily, produce a 

better approximation of the overall X-ray scattering curve, 

because convergence to the standards may result in 

divergence from the points on the real curve in between due 

to polynomial oscillation. Such oscillations grow without 

bound as the degree of the polynomial series is increased.

Another approach to this problem is transformation.

When polynomial approximation alone does not appear to be 

appropriate, one or both of the variables can be transformed 

to make the function more amenable to linear least-squares 

fitting. There are no strict rules concerning this option, 

and the suitable transformation must be found by the trial 

and error results of numerical experiment.

The X-ray scattering factors due to a single hydrogen 

atom covalently bound in a hydrogen molecule was selected as
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a simple test case. The X-ray scattering table for bonded 

hydrogen has been calculated by Stewart, Davidson, and 

Simpson (95) using a modified form of the Kolos-Roothaan 

wave function. These calculations were facilitated by the 

symmetry of the hydrogen molecule. Both sides of the 

diatomic molecule give the same one-electron density 

function that, when normalized to unity, is half the value 

of the H2 molecular scattering factor. A spherical shape 

was assumed (i.e., a spherical approximation) for both 

hydrogen atoms individually within the molecule, and the 

electron density of each atom was allowed to float away from 

its central proton until an error function was minimized. A 

minimum error of ^0.11% was obtained when the center of the 

spherically symmetrical electron density of each atom was 

optimally positioned 0.070 A off the protons and into the 

covalent bond. The resulting X-ray scattering curve of 

bonded hydrogen is compared with the X-ray scattering curve 

obtained from the isolated atom in Figure 4.

An analytical approximation of the X-ray scattering 

curve of bonded hydrogen using the coefficients obtained by 

nonlinear least-squares fitting of a nine-parameter Gaussian 

expansion have been reported (44). The scattering table has 

been extrapolated to higher Bragg angles and interpolated to 

finer grid spacing (36). For our study, we employed the 46 

original values of f(s) for the range 0.0000 _< s £ 1.7176 

reported by Stewart, Davidson, and Simpson (96). Our
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least-squares fits were repeated using 41 values selected at 

evenly spaced intervals of s = 0.0429 in an attempt to 

maintain the orthogonality of the polynomial.

The results from x = s, x = exp(-s^), and x = exp(-s) 

are shown in Tables 17-19, respectively. Small improvement 

in linear least-squares fitting did result from using evenly 

spaced data; however, the polynomial coefficients varied 

with the degree of the polynomial to show that orthogonality 

was not attained. Clearly, the x = exp(-s) transformation 

of Table 19 produced the best fit. That this inclusion of a 

Gaussian function into a polynomial series also affords a 

better 1 inear least-squares fit than does the nonlinear 

least-squares fitting of a Gaussian expansion is highly 

significant and implies that its "natural" shape more 

closely approximates that of an X-ray scattering curve prior 

to any iterations. This comparison is made between the 

linear fit of our eighth-degree orthogonal polynomial (E = 

0.063%) with the corresponding nine-parameter Gaussian 

expansion (E = 0.072%) fitted by nonlinear least-squares 

(44) .
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Table 2

Scattering Factor Differences (X 10^) Interpolated for
N i trogen at 0.10 Intervals of s = (sin 8)/A

s , K ^
Cubic
Spline Stineman n = 2

---- POLYNOMIALS
n = 3 n = 4 n = 5 n = 6

0.00 _ _
0.10 -336 -398 357 206 -87 12 28
0.20 146 -136 355 137 44 0 -9
0 .30 4 136 82 65 -44 -4 6
0.40 4 50 48 4 -36 -4 -6
0 . 50 -7 27 56 -10 -9 -5 5
0.60 -3 11 36 -8 1 0 3
0.70 -2 2 20 -6 2 0 0
0.80 -1 1 9 -3 2 0 0
0.90 0 1 3 -1 -1 0 0
1.00 0 0 -1 -1 0 0 0
1.10 0 0 0 0 1 0 0
1.20 0 0 0 0 0 0 0
1.30 0 0 1 0 0 0 0
1.40 0 0 1 0 0 0 0
1.50 0 0 0 0 0 0 0
1.60 0 0 0 0 0 0 0
1.70 0 0 0 0 0 0 0
1.80 0 0 0 0 0 0 0
1.90 1 2 0 0 -1 -1 -1
2.00

Mean
Error 26 40 51 23 12 1 3
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Table 3

Scattering Factor Differences (X 10^) Interpolated for
Nitrogen from Available Data at 0.05 and

0,10 Intervals of s = (sin 0)/A

s , X" ̂
Cubic • POLYNOMIALS ---
Spline Stineman n = 2 n = 3 n = 4 n = 5 n = 6

0.00 _ _ _ _
0.10 20 -36 58 0 -6 -4 -4
0.20 5 3 4 1 0 1 -1
0 . 30 1 6 1 3 3 -1 -1
0.40 1 4 -8 -1 -1 -1 0
0.50 -1 2 -7 -1 0 0 0
0.60 -1 1 -4 -1 0 0 0
0.70 -1 -1 -7 0 0 0 0
0.80 -1 1 9 -3 2 0 0
0.90 0 1 3 -1 -1 0 0
1.00 0 0 -1 1 0 0 0
1.10 0 0 0 0 1 0 0
1.20 0 0 0 0 0 0 0
1.30 0 0 1 0 0 0 0
1.40 0 0 1 0 0 0 0
1.50 0 0 0 0 0 0 0
1.60 0 0 0 0 0 0 0
1.70 0 0 0 0 0 0 0
1.80 0 0 0 0 0 0 0
1.90 1 2 0 0 -1 -1 -1
2 .00

Mean
Error 2 3 6 1 1 <1 <1
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Table 4

Scattering Factor Differences (X 10^) Interpolated
for Nitrogen from Available Data at 0.02, 0.05,

and 0.10 Intervals of s = (sin 9)/A

s ,
Cubic 
Spline Stineman n = 2

--- POLYNOMIALS -----
n = 3 n = 4 n = 5 n = 6

0.00 _ . _
0.10 0 -1 4 0 0 0 0
0.20 0 1 2 0 0 0 0
0 .30 0 0 0 0 0 0 0
0.40 0 0 -1 -1 0 -1 0
0.50 0 0 -7 0 0 0 0
0.60 0 1 -4 -1 0 0 0
0.70 -1 1 -7 -1 0 0 0
0.80 -1 1 9 -1 0 0 0
0.90 0 1 3 -1 -1 0 0
1.00 -1 -1 -1 -1 0 0 0
1.10 0 0 0 0 1 0 0
1.20 0 0 0 0 0 0 0
1.30 0 0 1 0 0 0 0
1.40 0 1 1 1 0 0 0
1.50 0 0 0 0 0 0 0
1.60 0 0 0 0 0 0 0
1.70 0 0 0 0 0 0 0
1.80 0 0 0 0 0 0 0
1.90 1 2 0 0 -1 -1 -1
2.00

Mean
Error <1 1 2 <1 <1 <1 <1
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Table 5

Scattering Factor Differences (X 10^) Interpolated for
Bromine at 0.10 Intervals of s = (sin 0)/A

s,
Cub i c 
Spline S t i neman n = 2 n =

POLYNOMIALS ----
3 n = 4 n = 5 n = 6

0.00
0.10 -949 -1076 -987 715 -454 -229 -58
0.20 486 404 986 477 227 92 19
0.30 -54 121 34 99 -226 -70 -11
0.40 -13 7 -164 -49 -89 -49 12
0.50 -18 -27 -66 -35 1 -4 26
0.60 -1 -6 3 — 8 16 4 5
0.70 -2 8 19 5 8 3 1
0.80 4 11 10 7 2 2 -1
0.90 1 9 -4 3 -2 0 -1
1.00 -1 — 8 -2 -1 -2 -2 -1
1.10 0 8 -17 0 -1 0 0
1.20 0 6 -17 1 0 0 0
1.30 -1 4 -9 -1 0 0 0
1.40 -1 3 -13 -2 0 0 0
1.50 0 1 0 -2 1 0 2
1.60 0 1 -7 -1 0 0 0
1.70 0 1 -5 -1 0 0 0
1.80 0 0 -3 -1 0 0 0
1.90 0 3 -2 1 0 0 0
2.00

Mean
Error 81 90 124 74 54 24 7
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Table 6

Scattering Factor Differences (X 10^) Interpolated
for Bromine from Available Data at 0.05 and

0.10 Intervals of s = (sin ©)/A

s ,
Cubic
Spline S t i neman

POLYNOMIALS 
3 n = 4 nn = 2 n = = 5 n = 6

0.00 _ _ _
0.10 49 -120 206 16 -28 56 -109
0.20 -56 28 49 -32 -57 72 - 6 6
0.30 -73 -38 -119 - 6 4 -107 77 -100
0.40 -10 1 -19 -4 -10 -5 -19
0.50 -2 -2 -5 -2 1 0 0
0.60 -3 0 2 -1 0 0 -1
0.70 -2 8 19 5 8 3 1
0.80 4 11 10 7 2 2 -1
0.90 1 9 -4 3 -2 0 -1
1.00 -1 -8 -2 -1 -2 -2 -1
1.10 0 8 -17 0 -1 0 0
1.20 0 6 -17 1 0 0 0
1.30 -1 4 -9 -1 0 0 0
1.40 -1 3 -13 -2 0 0 0
1.50 0 1 0 -2 1 0 2
1.60 0 1 -7 -1 0 0 0
1.70 0 1 -5 -1 0 0 0
1.80 0 0 -3 -1 0 0 0
1.90 0 3 -2 1 0 0 0
2.00

Mean
Error 11 13 27 8 12 11 16
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Table 7

Scattering Factor Differences (X 10^) Interpolated
for Bromine from Available Data at 0.02, 0.05,

and 0.10 Intervals of s = (sin 9)/A.

s , A ^
Cubic
Spline Stineman n = 2

---- POLYNOMIALS ----
n = 3 n = 4 n = 5 n = 6

0.00 _

0.10 0 0 14 0 0 0 0
0 . 20 0 1 3 0 -1 -1 -1
0 .30 0 0 -2 0 -1 0 0
0.40 0 0 0 0 0 0 0
0.50 0 0 0 0 0 0 0
0.60 0 0 2 -1 0 0 0
0.70 0 2 4 1 0 0 0
0.80 3 1 7 5 1 1 0
0.90 1 9 -4 4 -2 -1 0
1.00 1 10 -5 3 -4 -3 -2
1.10 0 8 -17 0 -1 0 0
1.20 0 6 -17 0 0 0
1.30 -1 4 -15 0 0 0
1.40 -1 3 -13 0 0 0
1.50 -1 1 -10 0 0 0
1.60 0 1 -7 0 0 0
1.70 0 1 -5 0 0 0
1.80 0 0 -3 0 0 0
1.90 0 3 -2 1 0 0 0
2.00

Mean
Error <1 3 6 1 1 <1 <1
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Table 8

Scattering Factor Differences Interpolated for Hydrogen
from the Available Data at 0.02, 0.05, and 0.10

Intervals of s = (sin 9)/A

s , f (S)
Cubic
Spline S t i neman

-POLYNOMIALS- 
n = 3 n = 4

4-Point 
Lag range

0.00 1.000 - - - - -
0 .10 0.811 -0 .001 -0.001 -0.001 0 .000 0 .000
0.20 0.481 -0.001 0 .000 0.000 -0.001 0.000
0 .30 0.251 0 . 000 0 .000 0.000 0.000 0 .000
0.40 0.13 0 .000 0.000 0 .000 0 . 000 0.000
0 . 50 0 .071 -0.001 -0.001 -0.001 0 . 000 -0 .001
0.60 0.040 0 .000 0.000 0.000 -0.001 0 .000
0.70 0.024 0 .000 0 . 000 0.000 0.000 0.000
0.80 0.015 0 .000 0 .000 0.000 0 . 000 0 .000
0.90 0.010 0 .000 0.000 0.000 0 .000 0 .000
1.00 0 . 007 0 .000 0 . 000 0.000 0.000 0 .000
1.10 0 . 005 -0.001 0.000 0 . 000 0 .000 -0.001
1.20 0.003 0 .001 0.001 0.001 0.001 0.001
1.30 0 . 003 -0 .001 -0.001 -0.001 0 .000 -0.001
1.40 0.002 0.000 0.000 0.001 0.000 0.000
1.50 0.001 - - - - -
1.60 none - - - - -
1.70 none - - - - -
1.80 none - - - - -
1.90 none - - - - -
2.00 none - - - - -
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Table 9

Scattering Factor Differences Interpolated for Nitrogen
from the Available Data at 0.02, 0.05, and 0.10

Intervals of s = (sin 0)/A

Cubic -POLYNOMIALS- 4-Point
f (s) Spline Stineman n = 3 n = 4 Lag range

0.00 7 .000 _ _ _ _
0.10 6 .180 0.000 -0.001 0.000 0.000 0 .000
0.20 4.563 0 .000 0.001 0 .000 0.000 0.000
0 .30 3.219 0 .000 0 .000 0.000 0 .000 0 . 000
0 .40 2.393 0 .000 0 .000 -0.001 0 .000 -0.001
0 . 50 1.942 0.000 0 .000 0.000 0 .000 0.000
0.60 1.697 0 . 000 0.001 -0.001 0.000 -0.001
0 .70 1.551 -0.001 0 .001 -0.001 0 . 000 -0.001
0.80 1.445 -0.001 0.001 -0.001 0 . 000 -0.002
0.90 1.353 0 . 000 0.001 -0.001 -0.001 -0.001
1.00 1.265 -0.001 -0.001 -0.001 0.000 -0.001
1.10 1.177 0 . 000 0.000 0.000 0.001 0 .000
1.20 1.090 0 . 000 0.000 0.000 0.000 0.000
1.30 1. 004 0 . 000 0.000 0.000 0.000 0 .000
1.40 0.921 0 . 000 0.001 0.001 0.000 0 . 001
1.50 0.843 0 .000 0 .000 0.000 0.000 0 .000
1.60 0.769 0 . 000 0.000 0.000 0.000 0.000
1.70 0.700 0 . 000 0.000 0 . 000 0.000 0 . 000
1.80 0.636 0 .000 0 .000 0.000 0.000 0 .000
1.90 0.578 0.001 0 .002 0.000 -0.001 0.000
2.00 0.525 - - - - -
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Table 10

Scattering Factor Differences Interpolated for Iron(II)
from the Available Data at 0.02, 0.05, and 0.10

Intervals of s = (sin 9)/^

s , f (S)
Cubic
Spline Stineman

-POLYNOMIALS- 
n = 3 n = 4

4-Point 
Lag range

0.00 24.000 - - - - -

0.10 22.889 0 . 000 -0.001 0 .000 0 . 000 0 .000
0.20 20.140 -0.001 -0 . 002 -0 .001 -0.001 -0.001
0 . 30 16.871 0.000 0 .000 0 . 000 0 .000 0 .000
0.40 13,881 0.001 0.001 0.001 0.001 0.001
0.50 11.494 0 .000 0.001 0 . 000 0 . 000 0 .000
0.60 9.737 0.000 0 .003 0.001 0.000 0.000
0.70 8.501 0.000 0 . 006 -0.001 0 .000 -0.001
0.80 7.640 -0.001 0 .007 -0.003 0.000 -0 .003
0.90 7.023 -0.003 0.007 -0 .00 5 -0.001 -0.004
1.00 6 . 546 -0.001 0 . 005 -0.004 0.002 -0.005
1.10 6 .144 -0.002 0.002 -0.004 0 . 000 -0.004
1.20 5.775 -0.001 0.001 -0.002 0.001 -0.002
1.30 5.419 -0.001 -0.001 -0.001 0 . 000 -0.001
1.40 5.068 0.000 0.000 0 .000 0.000 -0.001
1.50 4.722 0.000 0 .000 0 . 000 0 .000 0 .000
1.60 4 .384 0.000 0.000 0.000 0.000 0.000
1.70 4.058 0.001 0.001 0.000 0 . 000 0.000
1.80 3.749 -0.001 0.000 0.000 0.000 0.000
1.90 3.459 0.004 0.012 0.001 0.001 -0 .001
2.00 3.192 - - - - -
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Table 11

Scattering Factor Differences Interpolated for Bromine
from the Available Data at 0.02, 0.05, and 0.10

Intervals of s = (sin 0)/A

, f (s;
Cubic
Spline St ineman

-POLYNOMIALS- 
n = 3 n = 4

4-Point 
Lag range

0.00 35.000 - - - - -

0.10 32.450 0 . 0 0 0 0.000 0 . 000 0 .000 0 .000
0.20 27.749 0 . 0 0 0 0.001 0.000 -0.001 0.000
0.30 23.857 0 . 0 0 0 0 .000 0 .000 0 .000 0 .000
0.40 20.874 0.000 0 . 000 0.000 0.000 0 .000
0.50 18.307 0 . 0 0 0 0 . 000 0.000 0 . 000 0 .000
0.60 15.958 0 . 0 0 0 0.000 -0.001 0.000 -0.001
0.70 13.837 0 . 0 0 0 0.002 0.001 0.000 0 .001
0.80 12.001 0.003 0.001 0.005 0.001 0.005
0.90 10.480 0.001 0.009 0.004 -0.002 0 . 004
1.00 9.262 0.001 0.010 0.003 -0.004 0 .002
1.10 8.312 0.000 0.008 0 .000 -0.001 0.000
1.20 7.580 0.000 0.006 -0 .001 0 .000 -0.001
1.30 7.016 -0.001 0.004 -0.001 0 . 000 -0.001
1.40 6.574 -0.001 0.003 -0.001 0.000 -0.002
1.50 6 .216 -0.001 0.001 -0.001 0 .000 -0.001
1.60 5.913 0.000 0.001 - 0 .001 0.000 -0.001
1.70 5.645 0 .000 0.001 -0.001 0 .000 -0.001
1.80 5.398 0 .000 0.000 -0.001 0.000 -0.001
1.90 5.162 0.000 0.003 0.001 0 .000 -0 .002
2 . 0 0 4.932 - - - - -
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Table 12

Scattering Factor Differences Interpolated for Cesium(I)
from the Available Data at 0.02, 0.05, and 0.10

Intervals of s = (sin 9)/A

s , f (S)
Cub i c 
Spline St ineman

-POLYNOMIALS- 
n = 3 n = 4

4-Point 
Lag range

0.00 54 .000 - - - - -

0.10 50.635 -0.001 -0.005 -0.001 0.000 -0.001
0.20 43.897 0.001 0 .003 0.002 0.000 0.002
0.30 37.893 0.000 0 .001 0 .001 0 .000 0 .000
0.40 33.240 0.000 0 .000 0.000 0 .000 0 .000
0 .50 29.385 0 .000 0 .000 0.000 0 .001 0.000
0.60 26.074 0.001 0.001 0 .001 0.001 0.001
0.70 23.303 0.002 0.006 0.004 0.001 0 .003
0.80 21.071 0.003 0.007 0.004 -0.002 0.005
0.90 19.309 0.000 0.016 0.001 -0.002 0.002
1.00 17.900 -0.001 0.009 -0.004 -0.003 -0.004
1.10 16.721 -0.002 0.005 -0.00 5 0 .000 -0 .005
1.20 15.676 -0.002 0.003 -0.005 0.000 -0 .005
1.30 14.701 -0.002 -0.002 -0.004 0.000 -0.005
1.40 13.760 -0.001 -0.002 -0.002 0.001 -0.002
1.50 12.844 0.000 -0.001 -0.001 0.001 -0.001
1.60 11.956 -0.001 0.000 -0.001 0.000 -0.001
1.70 11.104 0.001 0.002 0.001 0.001 0.001
1.80 10.302 -0.002 0 .001 0.000 0.000 0.000
1.90 9.559 0.012 0.033 0.000 0.001 0.002
2.00 8.882 - - - - -
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Table 13

Sixth Degree Fit by Polft of Atomic Scattering
Factors for Each Neutral Atom from Hydrogen

(Z = 1) to Neon (Z = 10)

Element

H

He

Li

Be

B

C

N

0
F

Ne

Atomic
Number

Z

1

2

3

4

5

6
7

8 

9

10

B,
1.743

1.032

1.614

2.123

2.392 

2.213 

1.824

1.392 

1.013 

0.714

Standa rd 
Error of 
Estimate

0.019 

0.022 
0.052 

0.091 

0.128 

0 .142 

0.136 

0 .119 

0.098 

0 . 076

Index of 
Determination

0.9976 

0.9992 

0.9969 

0.9944 

0.9933 

0.9946 

0.9966 

0.9981 

0.9990 

0.9995
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Table 14

Seventh Degree Fit by Polft of Atomic Scattering 
Factors for Each Neutral Atom from Hydrogen

(Z = 1) to Neon (Z = 10)

Element

Atomic
Number

Z E, %

Standard 
Error of 
Estimate

Index of 
Déterminât ion

H 1 0.737 0.008 0.9996

He 2 0.336 0 .007 0.9999

Li 3 1,357 0.044 0.9978

Be 4 2.062 0.089 0.9948

B 5 1.892 0.102 0.9958

C 6 1.401 0.091 0.9979

N 7 0.920 0 . 070 0.9991

0 8 0 . 559 0.048 0.9997

F 9 0.322 0.031 0.9999

Ne 10 0.185 0.020 0.9999
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Table 15

Eighth Degree Fit by Polft of Atomic Scattering
Factors for Each Neutral Atom from Hydrogen

(Z = 1) to Neon (Z = 10)

Element

H

He

Li

Be

B

C

N

0
F

Ne

Atomic
Number

Z

1

2

3

4

5

6

7

8 

9

10

E,

0 .232 

0.143 

1.354 

1.678 

1.187 

0.679 

0.334 

0 .166 

0.123 

0 .120

Standard 
Error of 
Est imate

0.003 

0.003 

0.044 

0 . 073 

0.065 

0.044 

0 .026 

0.015 

0.012 
0 .013

Index of 
Determination

0.9999 

0 ,9999 

0.9978 

0.9965 

0.9984 

0.9995 

0 .9999 

0.9999 

0.9999 

0 .9999

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



67

Table 16

Ninth Degree Fit by Polft of Atomic Scattering
Factors for Each Neutral Atom from Hydrogen

(Z = 1) to Neon (Z = 10)

Element

H

He

Li

Be

B

C

N

0
F

Ne

Atomic
Number

Z

1

2
3

4

5

6

7

8 

9

10

E, %

0.185

0.142

1.270

1.107

0.568

0.240

0.139

0.134

0.123

0.103

S tanda rd 
Error of 
Estimate

0.002 

0 .003 

0.042 

0 .049 

0.031 

0.016 

0.011 
0.012 
0.012 
0.011

Index of 
Determination

0.9999 

0.9999 

0.9981 

0.9985 

0.9996 

0.9999 

0.9999 

0.9999 

0.9999

0.9999
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Table 17

Orthogonal Polynomial Fit of f(s) versus s 
for Bonded Hydrogen

----Full
K =

Data Set ----
46 Data

-- Evenly 
K =

Spaced Data -- 
41 Data

Order

Standard 
Error of 
Estimate 
for f (s )

Index of 
Déterminât ion

S tanda rd 
Error of 
Estimate 
for f ( s)

Index of 
Determination

1 0.2059 0.6503447 0.1907 0.5782925

2 0.0921 0.9316453 0.0913 0 .9059052

3 0.0350 0.9903303 0.0342 0 . 9871070

4 0.0313 0.9924806 0.0284 0.9913723

5 0.0272 0.9944525 0.0257 0.9931082

6 0.0168 0.9979269 0.0165 0.9972487

7 0.0075 0.9995971 0.0075 0.9994444
8 0.0024 0.9999618 0.0024 0.9999473

9 0.001 0 . 9999845 0.0013 0.9999843

10 0.0014 0 .9999865 0.0013 0.9999854

11 0.0010 0.9999937 0.0009 0.9999928
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Table 18

Orthogonal Polynomial Fit of f(s) versus exp(-s^) 
for Bonded Hydrogen

----Full
K =

Da ta S e t ----
45 Data

-- Evenly 
K =

Spaced Data -- 
41 Data

Order

S tanda rd 
Error of 
Est imate 
for f(s)

Index of 
Determination

S tandard 
Error of 
Estimate 
for f(s)

Index of 
Determination

1 0.2117 0.6303771 0.1939 0.5641825

2 0.1262 0.8717222 0.1203 0.8363969

3 0.0742 0.9567019 0.0713 0.9440936

4 0.0430 0.9857708 0.0408 0.9821542

5 0.0246 0.9954810 0.0229 0.9945454

6 0.0139 0.9985967 0.0128 0.9983344

7 0.0077 0.9995808 0.0072 0.9994970

8 0.0042 0.9998781 0.0040 0.9998499

9 0.0023 0.9999652 0.0022 0 . 9999564

10 0.0012 0.9999901 0.0012 0.9999877

11 0.0007 0.9999971 0.0006 0.9999964
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Table 19

Orthogonal Polynomial Fit 
for Bonded

of f(s) versus 
Hydrogen

exp(-S)

----Full
K =

Data S e t -----
46 Data

-- Evenly 
K =

Spaced Data -- 
41 Data

Order

Standard 
Error of 
Estimate 
for f(s)

Index of 
Déterminât ion

S tandard 
Error of 
Estimate 
for f (s)

Index of 
Déterminât ion

1 0.1479 0.8195917 0.1420 0 .7651639

2 0.0386 0 . 9880030 0.0373 0 . 9842798

3 0.0370 0.9892208 0.0339 0 . 9873841

4 0.0216 0.9964183 0.0210 0.9952695

5 0.0058 0.9997510 0.0058 0.9996440

6 0.0025 0.9999553 0.0021 0 .9999538

7 0.0019 0 . 9999749 0.0017 0 . 9999711

8 0.0007 0.9999965 0.0007 0.9999956

9 0.0002 0.9999997 0.0002 0.9999996

10 0.0002 0.9999998 0.0001 0.9999999

11 0 .0001 0.9999999 0.0001 0.9999999
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CHAPTER 4 

Educational Implications

It is important for a dissertation of this type to be 

relevant to the teaching of undergraduates. The purpose of 

the present chapter is to document how numerical analysis 

with computers applies to the undergraduate chemistry 

curriculum. A historical approach has been chosen to show 

how trends in science education have led to the current, 

ubiquitous use of computers as educational tools. Analog 

computers have been employed in engineering schools for 

several decades; however, the emphasis here is on technical 

developments in computer science and related mathematics 

since the early 1960's, and the topic is limited to more 

modern digital computers.

In 1939, John V. Atanasoff, a mathematics professor at 

Iowa State University, along with his assistant, Clifford 

Berry, designed and built the first electronic digital 

computer. The Atanasoff-Berry-Computer or "ABC" was given 

birth out of a need for rapid mathematical calculations by 

some twenty masters and doctoral candidates and their 

professor. Dr. Atanasoff. This invention set the stage for 

a revolution in the fields of business, science, technology, 

and education (143, 144, 160-162) and has become a subject 

of popular interest (163, 164).
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The first UNIVersal Automatic Computer, UNIVAC I, was 

delivered to the United States Bureau of Census for use in 

the 1950 census. This event marked the first time that a 

stored-program computer dedicated to business was employed. 

Previous applications had been for scientific, military, or 

engineering data processing.

During the period 1958-1964, a myriad of machines by 

IBM, RCA, Sperry-Rand, and others, sometimes referred to as 

the "second-generation" of computers, were introduced into 

the market. A shortcoming of these second-generation 

computers was their mutually incompatible programming, being 

roughly classified as either scientific or business. For 

example, FORmula TRANslation or FORTRAN was developed in 

1947 as a problem-oriented language for mathematical and 

scientific calculations, and COmmon Business-Oriented 

Language or COBOL was released for business applications in 

1960.

The significance of these unprecedented developments 

was appreciated by the Mathematical Association of America, 

MAA, whose main objective is to promote an interest in 

mathematics, especially at the college level, and it began 

to up-date college libraries for the forthcoming computer 

revolution. In 1960, a series of grants from the National 

Science Foundation, NSF, enabled the MAA and its specially 

appointed Committee on the Undergraduate Programs in 

Mathematics, CUPM, to initiate a sustained effort of
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providing critical information concerning the content of 

undergraduate mathematics textbooks (165).

During the post-Sputnik era, science educators of all 

areas were evaluating their individual subject matter and 

methods also, and the National Science Foundation was 

providing grants to improve the teaching of these subjects 

at the high school as well as the college level. In the 

summer of 1960, the NSF began funding of the Chemical 

Education Materials Study, CHEM Study, with Nobel Laureate 

Glenn T. Seaborg as its head. The first through third 

drafts of the CHEM Study textbook (166, 167) were tested in 

several high schools and junior colleges from 1960-1965.

Both the Physical Science Study Committee (168), PSSC 

Physics, and the Earth Science Curriculum Project (169),

ESCP Earth Science, released their textbooks at about the 

same time. These "new approaches" placed special emphasis 

on the relationship of unifying principles to the laboratory 

work associated with each science.

From 1963-1968, I worked with other science educators 

in the development and testing of laboratory modules for 

these courses. Our emphasis was upon the traditional values 

of the scientific method, and we sought to develop simple, 

inexpensive, and meaningful experiences for high school and 

first-year college students. These lab experiments were 

designed so that much data was collected, but data analysis 

was conducted by graphical methods because computers were
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then unavailable for classroom use. Still, the widespread 

acceptance of this more analytical approach to the student 

laboratory was, in my opinion, an important factor in the 

readiness with which the academic community adopted the 

microcomputer upon its later arrival.

In Europe, the computer revolution was having an effect 

on the teaching of mathematics in British high schools and 

universities. In 1965, the Institute of Mathematics and its 

Applications sponsored a symposium entitled "The State of 

the Art in Numerical Analysis" held at Birmingham, England, 

at which specialists gave introductory lectures for novice 

users. These lectures were later edited by Joan Walsh, also 

one of the contributors, and published as a general survey 

of recent developments in numerical analysis, a chapter of 

which was devoted entirely to the increasing importance of 

numerical work in teaching at all levels (170). One of the 

speakers at this conference expressed the opinion that 

"desk-calculating machines" had now become so commonplace in 

British schools that some numerical analysis was actually 

being taught, but not in an organized or even recognizable 

manner. Accordingly, a study group of the Committee for 

Mathematics in Education and Industry presented a syllabus 

for pre-university students suggesting that numerical 

analysis be included as an integral part of the mathematics 

curriculum and be applied with calculating machines whenever 

possible. Several other contributors proposed syllabi for
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undergraduate courses in computing and numerical methods, 

some in pure mathematics and some for science and 

engineering students. It was recommended that computer 

programming be taught at the university level as a college 

major, since prospective employers would have neither the 

time nor the inclination to teach it on the job. As late as 

1975, however, twenty-one British chemical educators, in a 

discussion of curricular changes and new techniques in 

teaching chemistry, made an assessment of the state of 

chemical education in the British Isles without a single 

reference to computers (171). Thus, a large gap must have 

existed between classroom lectures and the state of the art 

in computational chemistry.

The third generation of computers, those using chips 

rather than transistors or diodes, was ushered into the 

world in April of 1964 with the announcement of the 

System/360 computer by IBM. The "360" notation indicates 

that this computer system can be used for all types of 

processing, encircling both business and science. Familiar 

terms like "batch-processing" and "time-sharing" came into 

existence during this period. In 1964, John Kemeny 

developed Beginners All-purpose Symbolic Instructional Code, 

BASIC, so that students at Dartmouth College could use the 

time-sharing terminals. The software libraries of most 

university computer centers, including that of Middle 

Tennessee State University, contain the Dartmouth
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Time-Sharing-System Programs Library that are written in 

BASIC and encompass a whole series of mathematical, 

statistical, and business procedures designed mostly for 

small sets of data, as well as for both demonstrations and 

tutor ials (142).

This new emphasis in science and mathematics courses, 

coupled with the simultaneous growth of a computer industry, 

brought on a deluge of books in many different areas of 

applied mathematics, which caused CUPM's Basic Library List 

of 1965 to become outdated (165). In 1974, the NSF provided 

funds for an updated list, which was published in 1976 and 

increased from 300 titles to approximately 700 separate 

titles (172). Many of the books on the original list were 

either out of print or outdated and were replaced. New 

headings entitled "numerical analysis," "computation," and 

"mathematical programming" were created to include prominent 

new books (69, 70, 79, 118, 126, 127, 173) on approximation, 

computer programming, interpolation, and the application of 

these areas to many disciplines including the physical 

sc iences.

The gradual introduction of the computer into research 

and education closely parallels the development and 

marketing of an inexpensive, user-friendly microcomputer. 

Early use of the computer during the 1950's and 1960's was 

limited because of the initial cost of the hardware and 

unfamiliarity on the part of potential users; however, the
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period 1964-1974 saw the birth of a software industry and 

the emergence of the microcomputer.

In 1974, Commodore startled the world by presenting the 

Personal Electronic Transactor, PET, for about six hundred 

dollars including the chip for BASIC. Two years later,

Steve Wozniak and Steven Jobs, working for Hewlett-Packard 

and Atari, respectively, assembled the original Apple I 

computer in Wozniak's parents' garage, and Apple Computer, 

Inc. delivered its first Apple II computer in May of 1977.

By the end of the year, Apple, Commodore, and Radio Shack 

had a complete line of computers on the market. In 1981,

IBM introduced the IBM PC, which is regarded by many as the 

best general usage computer. This was followed by several 

IBM "clones," including the Kaypro-PC discussed in Chapter 

2. It was now apparent that the microcomputer was having a 

great and lasting impact on homes, schools, business, and 

research.

The need for routine treatment of data, especially in 

the physical chemistry laboratory (129, 174), has been 

recognized for many years; however, the introduction of 

digital computers to undergraduate chemistry majors would 

seem to require some knowledge of either FORTRAN compiler 

language (175-178) for mainframe computers or BASIC 

Interpreter language (129, 143, 144, 174) for microcomputers 

as a prerequisite. The most common example of curve fitting 

in laboratory courses is drawing the best straight line

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



78

through data points when a linear relationship between two 

variables is suspected, and least-squares fitting applied as 

a simple linear regression is an obvious choice (139, 177, 

179, 180). The method of least squares may be extended by 

multiple regression to data having more than two variables 

(76, 181) and also to functional relationships between two 

or more variables that are not linear. In the latter case, 

a linear regression can sometimes be used to find the 

coefficients of a polynomial, logarithmic, or other linear 

transformation of the original equation; however, an 

iterative least-squares method may be more appropriate if 

the equation is nonlinear in the coefficients and cannot be 

recast into a linear form (129, 174, 176, 182). Owing to 

the frequent occurrence of nonlinear equations in chemistry, 

much emphasis has been placed on their least-square fitting 

in the recent literature of chemical education (183-189).

The Clausius-Clapeyron equation provides an interesting 

example involving a nonlinear least-squares analysis of 

data. Physical chemistry textbooks and laboratory manuals 

usually include an experiment in which the vapor pressure of 

a pure liquid is measured as a function of temperature.

From this measurement, the heat of vaporization, is

calculated. In cases where the heat of vaporization does 

not change with temperature, the Clausius-Clapeyron equation 

may be written in a linear form;
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log P = A - 0.4342 AH^gp/RT

This equation is linear with respect to log P and 1/T, where 

A is the y-intercept, -0.4342 AH^gp/R is the slope of the 

line, R is the ideal gas constant, ? is the vapor pressure 

in atmospheres, and T is the absolute temperature (190) .

It has been suggested by Pollnow (191, 192) that the 

observed values of the vapor pressure, rather than log P, 

should give a more accurate least-squares fit against the 

reciprocal of the temperature since P is the quantity that 

is measured directly; however, this form of the equation is 

not linear with respect to the y-intercept and the slope, 

Pollnow suggests that a Taylor series be used to approximate 

the y-intercept and the slope, which are then refined using 

an iterative least-squares technique until neither of the 

coefficients show any significant change. In a recent 

supplementary textbook designed to apply microcomputer 

methods in the physical chemistry laboratory, Noggle (129) 

proposes that a four-point Lagrange or other interpolation 

method involving cubic polynomials would be simpler, faster, 

and more accurate when applied to the Clausius-Clapeyron 

equation. Interpolation should give good results with 

fairly precise data, but spurious interpolated values would 

be expected when the data contains large, random errors. In 

the latter case, the iterative least-squares fitting method 

is preferred.
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Many other examples of the curve fitting of empirical 

data may be found in the literature of chemical education 

(193-195), including applications for specific brands of 

computers (185, 196-198). The impact of the microcomputer 

on all areas of chemical education is the subject of a 

recent review (199). Computers have affected science and 

education in many obvious ways; however, the effects are 

often hidden. The Chemical Abstracts Service data base, CAS 

ONLINE, and other similar information retrieval systems are 

good examples where little computer knowledge is needed, and 

many modern instruments require no knowledge of programming, 

even though they are completely computer operated. Other 

instruments, such as the Varian 3600 gas chromatograph and 

the Perkin-Elmer 983 infrared spectrophotometer, require 

only a bare minimum of programming ability in a simple 

language, usually BASIC or some version of BASIC.

Computer technology has become so commonplace that 

chemical educators have been forced to produce a new 

generation of students who are not only chemists, but are 

also literate in the area of computers. Many schools are 

now requiring computer programming as a prerequisite to 

physical chemistry, usually in the junior or senior year of 

a chemistry major. This ranges from a one-hour laboratory 

briefing on FORTRAN at the University of Missouri (200) to a 

full course entitled "Computer Applications in Chemistry" at 

Penn State University (201).
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The course at Penn State University, which has been 

offered for over ten years, is divided into three major 

topic areas: an introduction, which uses 15% of the course 

time; numerical topics, 50% of the course; and nonnumerical 

topics, 35% of the time.

The course begins with several books and magazine 

articles being assigned as optional reading. These deal 

mainly with the impact of the computer on society, the 

integral organization of the computer system, and the 

specification of hardware capability. Discussion of these 

topics is followed by an overview of scientific computer 

usage to include number crunching, time-limited problems, 

computer optimization, storage and retrieval of information, 

experiment management and control, intelligent problem 

solving, and modeling and simulation. The remaining topics 

in the introduction involve the basics of writing computer 

programs and statistical analysis.

The numerical methods section of the course consumes 

the largest block of time. Its purpose is to cover as many 

topics as possible, in just enough detail, to enable the 

student to pursue areas of interest on his own. The first 

block of material deals with algorithms and their goodness 

of fit. The requirements of iterative methods are also 

discussed: how to make a good first guess, how to improve on 

previous guesses, and when to stop the iteration after 

sufficient accuracy is reached. This is followed by a
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discussion of the various kinds of approximating functions 

available. The main point here is that applied numerical 

analysis can be based upon many different functional forms.

A homework assignment is given that develops a potential 

energy surface for atom-transfer reactions. The largest 

amount of time is devoted to curve fitting, starting with a 

simple linear fit without weighting and proceeding to one 

where the points are weighted. This introduction to curve 

fitting is followed by higher order polynomial fits using 

matrix notation. A second homework problem involves the 

fitting of kinetic data from an enzyme reaction to derive 

its Michaelis-Menten constants. Also covered are iterative 

least-squares fitting, interpolation methods including 

spline fitting, Fourier transform, integration, differential 

equations, and the literature of research applications.

Nonnumerical topics are covered in the concluding 

section of the course. These include information handling 

capabilities, molecular mechanics and modeling, and 

artificial intelligence. The course is constantly updated, 

and reading lists are provided and revised periodically 

since no single textbook is considered adequate. About 

25-30 students in the fields of chemistry, biochemistry, and 

computer science enroll each semester, and their response 

has been positive. In fact, the course is often recommended 

to others by students who have taken it.
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The previous discussion concerns a specific course 

offered at Penn State University; however, other similar 

courses are taught at Purdue University (202, 203), Trinity 

University (204), Loyola College (205), Creighton University 

(206), Case Western Reserve University (132), and elsewhere 

(123, 207, 208). Numerous other references, besides those 

previously cited, are available on such subjects as data 

handling, statistics, mathematical and computational 

methods, and computer and electronic calculator programming, 

all of which would be relevant for a chemistry course of 

this type (114, 123, 209-218).
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CHAPTER 5 

Conclus ions

A review of the literature involving previous use of 

analytical approximations for describing the shapes of 

atomic scattering curves of X-ray diffraction was given in 

Chapter 1. This was to document that a finite set of X-ray

scattering factors taken from the scattering curve of any

particular atomic species are, indeed, related by the 

coefficients of either a Gaussian expansion or a polynomial 

series, and we have explored the less studied application of 

polynomials for both curve fitting and interpolating such 

data in Chapter 3. The following conclusions of this study

will be of general interest to practicing X-ray

crysta 1lographers and may contribute to an improvement in 

methods for the refinement of X-ray crysta1-structure 

determinations.

1. Interpolation of X-ray scattering factors 
equally spaced at 0.10 intervals of s is 
accurate within ^0.002 only for values of 
f(s) above 0.6 or 0.7 in the x-argument.
Inclusion of 0.05 intervals in the 
x-argument range of 0.00 _< s  _< 0.70 affords 
little improvement in the interpolation of 
X-ray scattering factors.

2. The grid spacing in the x-argument range of 
0.50 < s _< 1.50 commonly employed in standard 
tabulations of X-ray scattering factors is 
too coarse for interpolation of f(s) within 
+0.002 near s = 1.00 unless an interpolating 
polynomial of sixth or higher degree is employed.

84
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3. A third-degree polynomial would accurately 
interpolate values of f(s) if a grid spacing of 
0.05 (or 0.02) intervals of s were extended to 
about 1.50 in the x-argument.

4. Cubic spline interpolation of X-ray scattering 
factors is generally superior to interpolating 
polynomials of the third degree,

5. Interpolation of X-ray scattering factors by
the Stineman method is generally inferior to
interpolating polynomials of the third degree.

6. As expected, the interpolating polynomial of
third degree and the four-point Lagrange
perform identically within roundoff error.

7. An orthogonal polynomial series provides a slightly 
better linear least-squares fit than does a non- 
orthogonal one, but the fitted X-ray scattering 
curve is still too nonlinear in the coefficients
to permit true orthogonality. A nonlinear norm 
is required for the accurate analytical approx­
imation of an X-ray scattering curve with either 
a Gaussian expansion or a polynomial series alone.

8. The best analytical approximation of an X-ray 
scattering curve involves a combination of 
Gaussian and polynomial terms that maximizes 
the best features of both and minimizes the 
worst. One is suggested that gives an accurate 
linear least-squares fit for the X-ray scattering 
factors of bonded hydrogen.

9. Numerical analysis has the potential for providing 
a unique methodology to uncover mathematical rela­
tionships both within and between sets of X-ray 
scattering factors that could be applied as 
practical criteria to test their individual 
accuracy. It would be especially important if 
these criteria were absolute, being based upon 
self-evident principles that presuppose no assumpt­
ions and are not subject to empirical uncertainty. 
Such criteria, if simple and absolute, could serve 
as reliable and efficient guides to check the 
accuracy of existing tables of scattering factors, 
to test new ones for improvement, and to provide 
similiar comparisons between the different types
of wave functions from which the X-ray scattering 
factors are ultimately derived.
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The final conclusion needs some further elaboration.

The a priori calculation of X-ray scattering factors is an 

application of advanced mathematics to complex physical 

theory, but the values obtained from different levels of 

theory and mathematical approximation are not subject to any 

straightforward testing of their absolute accuracy. 

Nevertheless, indirect evidence supports the growing 

awareness that improper treatment of valence electrons by 

the scattering factors can introduce significant systematic 

error into an otherwise highly refined crystal-structure 

determination. This is certainly true for ionic crystal 

structures, where the current practice of using scattering 

factors calculated from the wave functions of isolated ions 

is seriously flawed because this completely ignores the 

influence of counter ions on the distribution of electron 

density (219-221). In the present dissertation, we have 

sought to lay a basis for our continuing work (223) in this 

area by establishing some of the boundaries within which 

these various methods of numerical analysis may be applied 

with appropriateness and validity.

The current project made use of a Honeywell DPS 8/49 

mainframe computer, a Perkin-Elmer 3600 Data Station, and 

the Apple II+, the IBM PC, and the Kaypro-PC microcomputer. 

Several simple programs were written in BASIC, and other 

commercial and public domain programs were employed. The 

appropriateness of these computer programs for use by

Reproduced w ith permission o f the copyright owner. Further reproduction prohibited w ithout permission.



87

students was demonstrated by the fact that virtually all of 

the various calculations of this project have involved the 

supervised participation of undergraduates at both Middle 

Tennessee State University and CampbelIsvi1 le College. In 

fact, most of our calculations during the summer of 1986 

were actually conducted by a high school student having no 

previous computer experience. One of the undergraduates, a 

college senior, presented a group paper at a regional 

student meeting (222). The same slides and much of the 

content of the student talk were equally appropriate for 

presentations given at professional meetings (223-225).

This is because the nature of crystals and the electronic 

structure of atomic species are not only sophisticated 

topics at the frontiers of chemical research, but are also 

basic subjects pursued with interest and understanding by 

even young science students at elementary levels (225).

Most areas of the physical sciences are like that, being 

understandable at different levels while always bearing a 

relationship to a few fundamental concepts.

The application of this research project to teaching 

chemistry was addressed in the proceeding chapter, devoted 

entirely to the relevance of numerical analysis as a topic 

in the undergraduate chemistry curriculum. The recent 

evolution of the low cost microcomputer has been one of the 

most significant innovations for chemical education since 

the introduction of the Bunsen burner; and it has required
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that chemical educators now produce a new breed of graduates 

that are computer literate. The main areas of computer use 

in education today include not only those of instruction and 

demonstrations, but also the collection and analysis of 

student laboratory data as well. Data-hand1ing programs, 

including curve fitting, allow a quicker and more detailed 

analysis of undergraduate laboratory assignments by both 

students and professors. Other software permits the 

chemistry department with a small budget to have simulated 

instrumentât ion.

I have recently purchased and employed such programs 

for a new course in instrumental analysis offered at 

Campbellsvilie College. In the Spring of 1984, I designed 

and wrote the syllabus (Appendix III) for this course. 

Chemistry 350 entitled "Instrumental Analysis," as an upper 

division course for both the minor and major in chemistry. 

The course uses Skoog's Principles of Instrumental Analysis 

as the textbook (227) together with the supplementary 

Explorations in Chemistry by Allendoerfer (228) including 

its accompanying disc, whose interactive programs contain 

fourteen different types of chemistry problems. The student 

also has the option of printing a set of problems, along 

with the answers, for homework. In one experiment, data 

taken from a Perkin-Elmer UV-vis spectrophotometer is fitted 

using Curve Fitter-PC (150). Permanent plots are then made 

and incorporated into the laboratory write-up.
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Another topic of Chemistry 350 is NMR spectroscopy. In 

the small college, it is unrealistic to purchase expensive 

instrumentation; however, in January of 1985, I purchased 

the program NMR Simulator (229), which was written by Paul 

F. Schatz, to acquaint students with the use of the Varian 

EM-360A nuclear magnetic resonance spectrometer without my 

actually owning such an instrument. The simulated computer 

controls and adjustments closely mimic those on the actual 

instrument, as does the appearance of the spectrum obtained 

from these settings. The program allows me to present 

samples as unknowns, randomly vary the sample concentration, 

or vary the amount of "background noise" to enhance the 

realism of the simulation. The spectrum can be printed 

along with the selected instrument settings on any one of 

several printers compatible with the program. The program 

is versatile in that new data discs can be purchased at a 

low cost once the initial program package is bought. The 

response of students has been favorable to this course, as 

well as to the associated tutorials, the study aids, and the 

simulated instrumentation.

My involvement in the research area of the present 

dissertation has given me, a chemical educator at a small 

liberal arts college, a new outlook on the future of 

chemical education. Instrumentation once too expensive, 

interactive study supplements for both the gifted and the 

poorly prepared student once unavailable, and data analysis
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techniques once too time consuming are now plentiful in the 

form of computer programs. Consequently, my participation 

in this project has provided a key that unlocks the door to 

these opportunities.
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APPENDIX I

Tenth Degree, a Program in BASIC for the Calculation 
of f(x) = y at any x from the Coefficients of an 

Algebraic Polynomial up to the Tenth Degree

100 REM THIS PROGRAM WILL CALC Y FROM THE COEF OF A 10TH
105 REM DEGREE POLYNOMIAL
110 PRINT "WHAT IS THE VALUE OF X?"
120 INPUT "X"; X
122 INPUT "PLACE A VALUE FOR COM TO COMPARE"; Cl
130 LPRINT "THE VALUE OF SIN THETA/LAMBDA TO BE CALCULATED
131 LPRINT "IS ; X
133 IF Cl = 1 THEN 360
140 INPUT "A"; A
150 LPRINT "A ; A
160 INPUT "B"; B
170 LPRINT "B B
180 INPUT "C"; C
190 LPRINT "C c
200 INPUT "D"; D
210 LPRINT "D D
220 INPUT "E"; E
230 LPRINT "E E
240 INPUT "F"; F
250 LPRINT "F F
260 INPUT "G"; G
270 LPRINT "G G
280 INPUT "H"; H
290 LPRINT "H H
300 INPUT "I"; I
310 LPRINT "I I
320 INPUT "J"; J
330 LPRINT "J J
340 INPUT "K"; K
350 LPRINT "K K
360 LET Q = A + B* X + C*X"2 + D*X"3
370 LET R = E* X"4 + F*X"5 + G*X"6
380 LET Z = H* X'7 + I*X"8 + J*X"9 + K*X"10
390 LET Y = Q + R + Z
400 LPRINT "Y = Y
405 GOTO 110
410 END
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APPENDIX II

Lagi, a Program in BASIC for Lagrange Interpolation^

10 REM PROGRAM TO CALCULATE THE LAGRANGE POLYNOMIAL 
20 DIM X T (25), F T (25)
50 INPUT "ENTER THE DEGREE OF THE POLYNOMIAL"; N
51 LPRINT "THE DEGREE OF THE POLYNOMIAL IS"; N 
60 N1 = N
70 LPRINT " XT(I) FT(I) "
80 FOR I = 1 TO N1 
90 READ XT(I), FT(I)
100 NEXT I
120 INPUT "ENTER A VALUE FOR X"; X
130 FX = 0
140 FOR I = 1 TO N1
150 P = 1
155 FOR J = 1 TO N1
160 IF J O I  THEN P=P* ( (X-XT (J) )/(XT (I)-XT ( J) ) )
180 NEXT J
190 FX = FX + P*FT(I)
200 NEXT I
210 LPRINT "X IS "; X; T A B (20); "F(X) = "; FX
211 LPRINT " "
212 FOR I = 1 TO N1
213 LPRINT XT(I); " "; FT(I)
214 NEXT I 
220 GOTO 120
230 DATA 60,156,50,135,80,204
231 FOR I = 1 TO N1
232 LPRINT X T (I); " "; FT(I)
233 NEXT I 
240 END

^Sample data from Daniels (146) has been included 
in line 230 in the form ,y^ , X2 , Y 2 r 5̂ 3 f Yg •
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APPENDIX III

Syllabus for Chemistry 350, Instrumental Analysis, at 
Campbellsvi1 le College, Campbellsvilie, Kentucky

CAMPBELLSVILLE COLLEGE 

Natural Science Division 

Course Syllabus

I. TITLE; Chemistry 350, Instrumental Analysis,
Three Semester Hours Credit

II. DESCRIPTION: Instrumental Analysis is a study of the 
modern chemistry laboratory involving sophisticated 
instrumentation and includes spectroscopy, gas 
chromatography, atomic absorption, and other methods.

I I I .  TEXT: Skoog, D. A. Principles of Instrumental
Analysis, 3rd e d . ; Saunders College Publishing: 
Philadelphia, PA, 1985.

IV. PURPOSE: The purpose of this course is to provide the 
minor and major in chemistry with an introduction to 
instrumental methods.

V. COURSE OUTLINE: Chemistry 350, Instrumental Analysis

1. Introduction to Chemical Instrumentation
A. Electroanalytical Methods
B. Spectroscopic Methods
C. Chromatographic Methods

2. Gas Chromatography
A. Theoretical Plate Calculation

1. Temperature Effects
2. Flow Rate Effects
3. Qualitative Analysis
4. Quantitative Analysis

B. Computer-Simulated Instruction 
(When Available)

3. Infrared Spectroscopy
A. Theory
B. Quantitative Analysis--The determination of 

the percentage composition of xylenes
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C. Qualitative Analysis
D. Sample Preparation

4. UV-Vis Spectroscopy
A. Theory
B. Basic Instrumentation
C. Using CURVE FITTER to construct a calibration 

curve

5. Miscellaneous Methods
A. Atomic Absorption
B . Nuclear Magnetic Resonance
C. Polarography
D. Others as time permits

VI. COMPETENCIES:

1. Students will demonstrate a knowledge of the 
theory of modern instrumentation.

2. The student will demonstrate the use of modern 
instrumentât ion.

3. The student will learn the techniques of good 
precision and accuracy in their measurements.

4. Students will demonstrate interpretation of
infrared, UV-vis, and NMR spectra and the
analysis of a chromatogram.

VII. METHODS: The lecture method will be used, as well 
as hands-on laboratory experiences in instrumental 
methods. Computer simulation will be used 
extensively.

VIII. EVALUATION: Four regular exams will be given on the 
theory and methods. The final examination will be 
comprehensive. Laboratory analysis and write-ups 
will count one-third of the final grade.

IX. READINGS AND SUPPLEMENTARY MATERIALS:

Silverstein, R. M .; Bassler, G. C .; Morrill, T. C. 
Spectrometric Identification of Organic Compounds,
3rd ed.; John Wiley: New York, 1974.

Williams, D. H .; Fleming, I. Spectroscopic Methods 
in Organic Chemistry, 2nd ed.; McGraw-Hill: London, 
1973.
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Shapiro, R. H.; Depuy, C. H, Exercises in Organic 
Spectroscopy, 2nd éd.; Holt, Rinehart and Winston: 
New York, 1977.

Yost, R. W.; Ettre, L. S.; Conlon, R, D. Practical 
Liquid Chromatography: An Introduction; 
Perkin-Elmer Corporation, Chromatography Division: 
Norwalk, C T , 1980.

Allendoerfer, R. D. Explorations in Chemistry; 
Prentice-Hal1 : Englewood Cliffs, N J , 1 985 .

Schatz, P. F. NMR Simulator for the IBM PC; City 
Software: Milwaukee, W I , 1985.
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