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ABSTRACT

We construct a model for collective behavior phenomena by undermining the

assumption that the rate of change of position equals velocity in the particle Cucker-

Smale model for flocking. Conditions for collective behavior are proven and three

continuous models for segregation are presented with simulations for two of them.

Future avenues of research and a variety of applications such as social science, engi-

neering, and business trends are discussed in the conclusion.
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CHAPTER 1

Introduction

Models of flocking find their origins in Reynold’s Birdoids, or Boids, created in

the 1980’s that run off of three rules: Boids align their velocities according to the

average velocity of their neighbors, avoid colliding with one another, and attract into

groups [1]. In 1995, Vicsek et al. introduced a computational model of ”biologically

motivated interactions” that exhibited a kinetic phase transition through the

spontaneous breaking of rotational symmetry [2]. In 2007, Cucker and Smale

reformulated the model found in Vicsek et al. as a system of differential equations and

offered rigorous criteria for flocking that verified the speculated phase transition found

in Vicsek et al. [3]. Not long after, the particle description of flocking was extended

to kinetic and hydrodynamic descriptions to deal with systems with large populations

and densities [4]. These systems are currently active areas of mathematical research

with new advances in the modern understanding of swarming behavior. For example,

the well-posedness of the kinetic description was shown in the weak sense in 2013

[5] and a recent paper proved flocking criteria in the particle and hydrodynamic

descriptions for interactions with a limited range [6].

The historical progression from Reynold’s and Vicsek’s simulations to the mathe-

matical formulas of Cucker and Smale suggests a similar line of reasoning may apply

for developing continuous models from a corresponding algorithmic agent-based

simulations. As new models become available, more descriptions and analyses arise

and the language about the phenomena becomes clearer. Fields such as biology,

economics, sociology, politics, and business have relied on agent-based models exten-

sively to develop theories, aid in decision-making, and make predictions [7]. For
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example, Schelling’s famous model describes how people may segregate by desiring

that a percentage of their neighbors are of the same race or characteristic as themselves

and by moving around until they satisfy that desire [8]. Hypothetically, segregation

may then occur between two groups without people actively avoiding those who are

different from themselves. Perhaps some continuous analog to the model exists that

offers new perspectives and qualitative information about segregation.

This thesis has two goals: to explore a variation of the Cucker-Smale Model that

loosens the geometric restriction of its agents to their group psychology and to show

how the velocity alignment equation can afford easily accessible intuition in other

collective behavior phenomena by constructing three continuous segregation models.

Chapter two explores the Cucker-Smale Model variant and proves theoretical results

for collective behavior as well as computational examples. Chapter three shows the

creation and simulation of a system of partial differential equations relying on the

gradient and of two systems of ordinary differential equations inspired by velocity

alignment. The paper concludes with a reflection on its themes and a discussion on

future avenues of research theoretical and applied.
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CHAPTER 2

Extending The Cucker-Smale Model

For N agents1 in d spatial dimensions, the Particle Cucker-Smale Model is often

written as: 
ẋi = vi

v̇i =
K

N

N∑
j=1

ψ(|xi − xj|)(vj − vi)
(1)

for initial conditions xi(0) = xi0 ∈ Rd and vi(0) = vi0 ∈ Rd where K > 0 is the

coupling constant, | · | represents the Euclidean norm, ψ : [0,∞) → [0,∞) is a

nonincreasing, continuous function, and xi : R → Rd and vi : R → Rd are functions

of time representing the position and velocity of the ith agent respectively. A number

of comments are worth mentioning:

1. The first equation says that the rate of change of an agent’s position equals its

velocity.

2. The second equation says that each particle attempts to align its velocity

towards a weighted average of the velocities of its neighbors. Note if the coupling

constant K is instead negative, the agents will steer away from the weighted

average of the velocities of their neighbors. This causes each agent’s weighted

average of velocities to deviant significantly and the agents to repel.

3. The function ψ together with the input of |xi − xj| represents the tendency of

particles to take more influence from nearer neighbors than farther ones. The

function ψ is called the ”influence function.”

1The word ”agent” has been used to replace the more common term ”particle” to reflect the

context of the models studied in this paper.
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4. External forces are negligible.

The first three comments reflect on indispensable assumptions for modeling

flocking. The first comment expresses how the geometric and physical aspects of the

particles depend on the sociological aspects as perceived through velocity. The second

and third comments determine how the sociological and psychological aspects of the

individuals depend on the group and how they rely on the geometric and physical

aspects of the agents. We refer to v̇i =
K

N

N∑
j=1

ψ(|xi − xj|)(vj − vi) as the ”velocity

alignment equation.”

Velocity alignment states a relationship amongst the agents of the system that

manifests as a cooperative activity where every agent eventually achieves the same

goal, nearly equal velocities. So, velocity alignment may act as a basic ingredient

for modeling a broad variety of social behavior. Introducing a nonconforming agent

into the group of conforming ones may then extend the model to a larger class of

phenomena. For now, we consider only an extension of the Cucker-Smale model

that undermines the first assumption by defining the spatial movement of each agent

by ẋi = fi(x, v). The extension or variant system loosens the restriction of group

orientation and geometry on its sociology, allowing for more abstract models of group

behavior.
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2.1 The Model

The model proposed in this paper for N agents in d spatial dimensions is stated as

follows: 
ẋi = fi(x, v)

v̇i =
K

N

N∑
j=1

ψ(|xi − xj|)(vj − vj)
(2)

for initial conditions xi(0) = xi0 ∈ Rd and vi(0) = vi0 ∈ Rd where K > 0, | · |, ψ,

xi, vi are defined as in (1) and fi, called the ”movement function,” is a function of

x and v for each i. We refer to (2) as the ”Cucker-Smale Variant.” If fi(x, v) = vi

for each i, the system reduces to the Particle Cucker-Smale Model. The system (2)

undermines the first assumption of the Cucker-Smale Model by allowing ẋi to equal

functions other than vi, or by letting the movement of each agent be governed by

more than direction and speed. The second and third assumptions remain unaffected

and the fourth assumption may not necessarily hold. The structure of fi allows one

to include external forces on the agents. For example, defining fi = vi − w(x) where

w(x) represents the affect of wind could model a flock of birds attempting to travel

in a windy environment.

2.2 Collective Behavior Conditions

With the Cucker-Smale Variant now defined, conditions in which the agents will align

their velocity are now proven. Define the following functions:

X(t) = max
1≤i,j≤N

|xi(t)− xj(t)| (3)

V (t) = max
1≤i,j≤N

|vi(t)− vj(t)| (4)

F (t) = max
1≤i,j≤N

|fi(t)− fj(t)| (5)
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Lemma 2.1 Let fi be Lipschitz and (x, v) be any solution to the system (2). Then,

d

dt
X(t) ≤ F (t) (6)

d

dt
V (t) ≤ −Kψ(X(t))V (t) (7)

where X(t), V (t), and F (t) are defined in (3), (4), and (5) respectively.

Proof: Let t ≥ 0 and 1 ≤ i, j ≤ N . Since X(t) and F (t) are Lipschitz, we have:

1

2

d

dt
|xi − xj|2 = (xi − xj) · (ẋi − ẋj) ≤ X(t)F (t)

Integrating from t0 to t and rearranging terms gives∫ t

t0

1

2

d

ds
|xi(s)− xj(s)|2 ds ≤

∫ t

t0

X(s)F (s)ds = I

1

2

[
|xi(t)− xj(t)|2 − |xi(t0)− xj(t0)|2

]
≤ I

1

2
|xi(t)− xj(t)|2 ≤

1

2
|xi(t0)− xj(t0)|2 + I

≤ 1

2
X2(t0) + I

Since this last inequality holds for all t ≥ 0 and 1 ≤ i, j ≤ N , we have

1

2
X2(t) ≤ 1

2
X2(t0) + I

Subtracting and rewriting the integral gives us:

1

2

(
X2(t)−X2(t0)

)
≤
∫ t

t0

X(s)F (s)ds

∫ t

t0

d

ds

(
1

2
X2(s)

)
ds ≤

∫ t

t0

X(s)F (s)ds∫ t

t0

X(s)

(
d

ds
X(s)

)
ds ≤

∫ t

t0

X(s)F (s)ds
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t0

X(s)

[
d

dt
X(s)− F (s)

]
ds ≤ 0

Since X(s) ≥ 0 for all s ≥ 0, The above inequality holds true only when

d

ds
X(s) ≤ F (s) for all s ≥ 0.

The inequality (7) has been proven in other works and the proof remains

unchanged for the Cucker-Smale Variant. Ha and Lie prove the inequality for example

[10]. See Appendix A for a proof. �
d

dt
V (t) < −Kψ(X(t))V (t) does not guarantee the convergence of V (t) to 0

unless the product ψ(X(t))V (t) grows sufficiently fast compared to the dispersion

of agents. If X(t) ≤ r for some constant r ∈ R, then
d

dt
V (t) ≤ −Kψ(r)V (t) and

a special case of Grönwall’s Inequality in differential form, found in Appendix A,

applies so that flocking occurs. The following theorem offers a criteria reminiscent of

other works:

Theorem 2.2 If (x, v) is a solution the system of equations in (2) where fi is

Lipschitz that also satisfies:

V (0) <
K

C

∫ ∞
X(0)

ψ(s)ds

and

F (t) ≤ CV (t)

for t ≥ 0 and for some C > 0, then

V (t) ≤ V (0)e−Kψ(r)t ∀t ≥ 0

where r is implicitly defined by V (0) =
K

C

∫ r

X(0)

ψ(s)ds and K and ψ and defined as

in Equation (2).
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Proof: Define ε = V (t) +
K

C

∫ X(t)

X(0)

ψ(s)ds. Taking the derivative with respect to t

and using Lemma 2.1 yields

d

dt
ε(t) =

d

dt
V (t) +

K

C
ψ (X(t))

d

dt
X(t)

≤ −Kψ(X(t))V (t) +
K

C
ψ(X(t))F (t)

≤ −Kψ(X(t))V (t) +Kψ(X(t))V (t) = 0

So, ε(t) is a decreasing function over [0,∞), i.e. V (t) +
K

C

∫ X(t)

X(0)

ψ(s)ds ≤ V (0).

By the assumption of the first inequality, there exists some r > X(0) such that

V (0) =
K

C

∫ r

X(0)

ψ(s)ds. So,

0 < V (t) ≤ K

C

∫ r

X(0)

ψ(s)ds− K

C

∫ X(t)

X(0)

ψ(s)ds =
K

C

∫ r

X(t)

ψ(s)ds

Thus, X(t) ≤ r, which means that X(t) is bounded above by some constant. By the

second part of Lemma 2.1, we have:

d

dt
V (t) ≤ −Kψ(X(t))V (t) ≤ −Kψ(r)V (t) (8)

The result follows from applying the special case of Grönwall’s Inequality in

differential form found in Appendix A. �

If the system of equations (2) achieves collective behavior for ψ for a solution with

initial conditions satisfying Theorem 2.2, then the system obtained by replacing ψ(x)

with φ(x) also achieves collective behavior for any function φ : [0,∞) → [0,∞)

such that 0 < φ(x) ≤ ψ(x) ∀x > 0. This follows from observing in (8) that

−Kψ(r)V (t) ≤ −Kφ(r)V (t). Thus, V (t) ≤ V (0)e−Kφ(r)t if the prior conditions are

met. The argument implies that an upper bound on X(t) almost suffices to guarantee

flocking by itself.
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2.3 Further Results About The Variant Model

With the following lemmas and theorems, mechanisms for analyzing the orientation

of a group of particles satisfying the Cucker-Smale Variant, (2), are proven. The first

lemma concerns representing (2) by centering it at the origin. Define the ”Centered

Cucker-Smale Variant” as


ẋi = fi − f̄

v̇i =
K

N

N∑
j=1

ψ(|xi − xj|)(vj − vi)
(9)

Lemma 2.3 If (x, v) solves the Centered Cucker-Smale Variant, (9), then the center

of position, x̄(t) =
1

N

N∑
j=1

xi(t), remains constant through time.

Proof: Since the derivative of a function equals 0 if and only if that function is

constant, it suffices to show that
d

dt
x̄(t) = ˙̄x(t) = 0.

d

dt
x̄(t) =

d

dt

1

N

N∑
j=1

xj(t)

=
1

N

N∑
j=1

d

dt
xj(t)

=
1

N

(
N∑
j=1

fj(t)− f̄

)

=
1

N

N∑
j=1

fj(t)−
1

N

N∑
j=1

f̄

= f̄ − f̄ = 0

Thus, x̄ is constant. �
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For an alternative proof, note that f̄ =
1

N

N∑
j=1

fj =
N∑
j=1

(f̄ + ẋi) = f̄ + ˙̄x. So,

f̄ = f̄ + ˙̄x and hence ˙̄x = 0. The next lemma proves that the orientation of positions

for the solutions to (2) and (9) are equal assuming the initial conditions are equal.

Lemma 2.4 If (u,w) is a solution to the system (9), and (x, v) is a solution to the

system (2) where both have the same initial conditions u(0) = x(0) = x0 = u0 and

w(0) = v(0) = v0 = w0, then xi − x̄ = ui − ū for all i.

Proof: Let t ≥ 0. Let (x, v) solve the system (2). The relative position of particle i

within the flock at time t is given by xi(t)− x̄(t). Likewise, if (u, v) solves the system

(6), the relative position of particle i equals ui(t) − ū(t). We begin by showing that

the derivatives of relative positions are equal. In other words, we show

d

dt
(xi(t)− x̄(t)) =

d

dt
(ui(t)− ū(t)). By the Lemma 2.3, ū(t) is constant throughout

time. So,

d

dt
(xi(t)− x̄(t)− ui(t)− ū(t))

= (ẋi(t)− ˙̄x(t)− u̇i(t)− ˙̄u(t))

= fi(t)− f̄(t)− (fi(t)− f̄(t)) = 0

Note that, since (x, v) and (u,w) satisfy their respective systems over the same initial

conditions, that x̄(0) = ū(0). Rearranging terms and integrating from 0 to t gives∫ t

0

ẋi(s)− x̄(s)ds =

∫ t

0

u̇i(s)− ˙̄u(s)ds

xi(t)− x̄(t)− (xi(0)− x̄(0)) = ui(t)− ū(t)− (ui(0)− ū(0))

xi(t)− x̄(t) = ui(t)− ū(t)− (ui(0)− ū(0)) + (xi(0)− x̄(0))

xi(t)− x̄(t) = ui(t)− ū(t)− (u0 − ū0) + (x0 − x̄0)
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xi(t)− x̄(t) = ui(t)− ū(t) (10)

Equation (10) gives several fruitful equalities.

Corollary 2.5 If (u,w) is a solution to the system (9), and (x, v) is a solution to

the system (2) where both have the same initial conditions u(0) = x(0) = x0 = u0 and

w(0) = v(0) = v0 = w0, then the following identities hold for all t ≥ 0 and for all i.

1. xi(t)− ui(t) = x̄(t)− ū(t)

2. xi(t) + ū(t) = ui(t) + x̄(t)

3. xi(t) = ui(t) + x̄(t)− ū(t) = ui(t) +

∫ t

0

˙̄x(s)ds

4. xi(t) = ui(t) +

∫ t

0

f̄(s)ds

5. ui(t) = xi(t)−
∫ t

0

f̄(s)ds

Remark: Identities 4 and 5 yield explicit solutions to (2) or (9). For example, if

(u,w) solves (9), then (u+

∫ t

0

f̄(s)ds, w) will solve (2). Likewise, if (x, v) solves (2),

then x −
∫ t

0

f̄(s)ds. Since fi is often explicitly defined, Corollary 2.5 gives an easy

method of constructing explicit solutions to (2) given a solution to (9) and vice versa.

The next theorem shows a result for a specific definition of fi.

Theorem 2.6 Let fi(t) = α(di(t)−xi(t)) for α > 0 be a differentiable function where

di(t) = c(t) + x̄(t).

1. If (x, y) solves (9) with fi = α(di − xi).

2. d̄ = x̄

3. lim
t→∞

d′ij(t) = 0
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4. If lim
t→∞

α

∫ t

0

eαsd′ij(s)ds exists or tends to positive or negative infinity.

then xi(t)→ di(t) as t→∞.

Proof. Note that f̄ = α(d̄ − x̄) = 0 by assumption and if x̄i = 0 if and only if

di = xi. If ẋi is a nonzero function, then we must show that limt→∞ ẋi(t) = 0. This

is sufficient to show that xi(t)→ di(t) as t→∞. Consider xij(t), the jth component

of agent i. The differential equation

x′ij(t) = α(dij(t)− xij(t))− f̄ = α(dij(t)− xij(t))

has a known solution. Using integration by parts on the solution and simplifying

gives

xij(t) = αe−αt
∫ t

0

eαsdij(s)ds+ Ce−αt

= αe−αt(
eαt

α
dij(t)−

∫ t

0

eαsd′ij(s)ds) + Ce−αt

= dij(t)− αe−αt
∫ t

0

eαsd′ij(s)ds+ Ce−αt

Since lim
t→∞

Ce−αt = 0, if lim
t→∞

e−αtα

∫ t

0

eαsd′ij(s)ds = 0, then lim
t→∞

xij(t) = lim
t→∞

dij(t).

Consider the limit

L = lim
t→∞

e−αtα

∫ t

0

eαsd′ij(s)ds = lim
t→∞

α

∫ t

0

eαsd′ij(s)ds

eαt
(11)

If α

∫ t

0

eαsd′ij(s)ds is bounded or tends to 0, then L = 0 since limt→∞ e
−αt = 0. If

α

∫ t

0

eαsd′ij(s)ds tends to positive or negative infinity, we may use L’Hôpital’s rule to

obtain

lim
t→∞

α

∫ t

0

eαsd′ij(s)ds

eαt
= lim

t→∞

αeαsd′ij(s)

αeαt
= lim

t→∞
d′ij(t)
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Since limt→∞ d
′
ij(t) = 0 by assumption, the limit equals 0. Thus, xij(t) → dij(t) as

t→∞. Since convergence holds for an arbitrary component of xi(t), xi(t) converges

component-wise to di(t) in the Euclidean norm for any arbitrary agent i.

�

Since (x, y) solves (9), then if we define u by letting ui(t) = xi(t)−
∫ t

0

f̄(s)ds for

all i, we have a solution to the corresponding system (2).

Theorem 2.7 If the following conditions hold

1. (x,v) solves (2) with fi = α(di − xi) defined as in Theorem 2.6.

2. lim
t→∞

α

∫ t

0

d′ij(s)ds exists or tends to positive or negative infinity.

3. lim
t→∞

d′ij(t) = 0 where dij is the jth component of agent i.

then xi(t)→ di(t) as t→∞.

Proof. Note that f̄ = α(d̄ − x̄) = 0 by assumption and if x̄i = 0 if and only if

di = xi. If ẋi is a nonzero function, then we must show that limt→∞ ẋi(t) = 0, thereby

showing that xi(t)→ di(t) as t→∞. Consider the jth component of agent i, xij(t).

We have

x′ij(t) = α(dij(t)− xij(t))− f̄ = α(dij(t)− xij(t))

which has a known solution. Using integration by parts on that solution and

simplifying gives

xij(t) = αe−αt
∫ t

0

eαsdij(s)ds+ Ce−αt

= αe−αt(
eαt

α
dij(t)−

∫ t

0

eαsd′ij(s)ds) + Ce−αt

= dij(t)− αe−αt
∫ t

0

eαsd′ij(s)ds+ Ce−αt



14

Since lim
t→∞

Ce−αt = 0, if e−αtα

∫ t

0

eαsd′ij(s)ds tends to 0, then xij(t) tends to dij(t).

Consider the limit

L = lim
t→∞

e−αtα

∫ t

0

eαsd′ij(s)ds = lim
t→∞

α

∫ t

0

eαsd′ij(s)ds

eαt
(12)

If α

∫ t

0

eαsd′ij(s)ds is bounded or tends to 0, then L = 0 since limt→∞ e
−αt = 0. If

α

∫ t

0

eαsd′ij(s)ds tends to positive or negative infinity, we may use L’Hôpital’s rule to

obtain

lim
t→∞

α

∫ t

0

eαsd′ij(s)ds

eαt
= lim

t→∞

αeαsd′ij(s)

αeαt
= lim

t→∞
d′ij(t)

Since limt→∞ d
′
ij(t) = 0 by assumption, the limit equals 0. Thus, xij(t) → dij(t) as

t→∞. Since convergence holds for an arbitrary component of xi(t), xi(t) converges

component-wise to di(t) in the Euclidean norm for any arbitrary agent i. �

2.3.1 A Simulation

Theorem 2.6 has also been verified computationally for 15 agents with initial

conditions xi0 and vi0 randomly uniformly dispersed over the square

[−5, 5] × [−5, 5] with ψ(r) =
1

(1 + r2)β
with β = 0.25. di was chosen so that each

agent assumed a point on a circle of radius 5 centered at the center of position of the

initial distribution of agents. Each agent was represented by an arrow pointing in

the direction of its velocity and positioned at the agent’s position. The system was

solved using a fourth-order Runge-Kutta method with a time step of h = 0.01 for

2000 iterations, which corresponds to the stop time T = 20.
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Figure 1: On the left, agents are distributed facing random directions at T = 0. On

the right, a flock of agents at T = 20 positioned in a circle of radius 5, facing towards

the bottom left, and centered near the origin.
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CHAPTER 3

A Model for Segregation

3.1 Motivation: Schelling’s Segregation Model

In 1971, Schelling created an agent-based model for self-segregation based on simple

rules [8]. N agents are attributed one of two qualities and are then randomly

distributed on a line or two-dimensional grid. Each agent desires that a percentage of

its nearest k neighbors are the same quality as itself. Given this preference, each agent

then moves with some predetermined rule until satisfied. Explicitly, the assumptions

may be stated as follows:

1. Each agent has a quality that falls into one of two categories.

2. Each agent is satisfied only when some percentage of its neighbors are of the

same quality as itself.

3. Each agent attempts to find the nearest location, whether by random movement

or not, that satisfies the requirement in assumption 2 with a limitation on the

particle’s movement speed. Once the agent finds a suitable location, it stops

moving.

The remainder of this chapter aims to construct models reminiscent of Schelling’s

segregation. Three are constructed: one relies on gradient flow as a system of PDE;

the others resemble the Cucker-Smale model.
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3.2 The Method of Construction

The goal is to extend the model above to a spatial and temporal continuum. One

of the main difficulties in the construction of this continuous model lies in how the

discrete model uses natural, definitive algorithms to induce intended activity.

Translating the assumptions and algorithms of Schelling’s model rests in the

construction of several functions that replace those algorithms. Our construction

begins with defining the following:

1. Assign each i agent a nonzero constant, predetermined quality qi ∈ [−1, 1] and

a position xi ∈ Rd. For simplicity, assume that |qi| corresponds to the threshold

of satisfaction for agent i. The parity of qi determines the agent’s quality. So,

we say the agent i has positive parity if qi > 0 and that an agent j has negative

parity if qj < 0.

2. Assign each agent a non-increasing, non-negative real-valued influence function,

ψi governing its perception of neighbors by placing preference on its nearest

neighbors to farther ones. 2

3. Assign each agent a function that determines its sense of similarity, φi, that

2The influence function represents a few distinct phenomena. For example, the influence function

ψ in the Cucker-Smale model represents agent i’s perception of agent j based on the position of j

relative to i. An alternative interpretation could be that ψ represents how the presence of agent

j affects agent i. Both scenarios are important in modeling group dynamics: the particle i can be

completely receptive or non-receptive of the presence of agent j and vice versa. Such an asymmetry

suggests that each agent should have two influence functions governing perception and presence,

however, we often assume perfect perception for simplicity. If every agent has the same perception

function, we may write ψi = ψ without any ambiguity.
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allows it to identify others as similar. An intuition choice of φi would be a

characteristic function.

4. Construct the cost function C : Rd × R → [0, 1] that takes the position and

quality of agent i to the ratio of total influence on i from particles similar to i

to the total influence on i from all agents. Mathematically, this corresponds to

C(xi, qi) =
Similar Influence

Total Influence
=

∑N
j=1 ψ(|xi − xj|)φ(|qi − qj|)∑N

j=1 ψ(|xi − xj|)

5. Construct a function that determines action or movement for the ith agent

according to its satisfaction. In the discrete case, we let χ|qi| signify the

characteristic function on R that equals 1 over [0, |qi|] and 0 elsewhere. For

smoothness, we replace this function with a suitable compactly supported

infinitely differentiable function Λ|qi| that is approximately 1 over [0, |qi|] and 0

elsewhere.

6. Finally, construct the movement function ẋi = fi.

With these functions replacing the algorithms of the Schelling model, we proceed in

a straight forward way to produce three new segregation models. A natural procedure

for movement arises from recognizing the gradient operator in Rd points each agent in

the direction of greatest ascent. Another natural sense of movement arises from using

the Cucker-Smale velocity alignment term to move similar agents together according

to the cost function.

3.3 A Model Using The Gradient

Let xi ∈ Rd and qi ∈ [−1, 1] where qi 6= 0 be the quality of agent i. Since each

agent has an assigned nonzero quality qi between −1 and 1, let the indices 1 < i < k
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represent the positive agents and k + 1 ≤ j ≤ n represent the negative ones. Define

the influence function ψi : Rd → R+ for each i agent by

ψi(x) =
1

(1 + |x− xi|2)β

Define the similarity function φ : R→ R as

φ(r) = χ[0,1](r) =


1 r ∈ [0, 1]

0 r /∈ [0, 1]

Note that φ(qiqj) = 1 if qiqj > 0 and φ(qiqj) = 0 if qiqj < 0. This corresponds to

the notion that two particles are of the same quality if their signs agree. For any

agent with positive parity, the influence on particle i from agents of similar parity

would simplify to P (xi) =
∑k

j=1 ψ(|xi − xj|)φj(xi). We may rewrite P for any agent

of positive parity located at x as P (x) =
∑k

j=1 ψ(|xi − xj|)φj(x). Likewise,

N(x) =
∑n

j=k+1 ψ(|x − xj|)φj(x) represents negative influence at location x and

P (x) + N(x) represents the total influence on location x. We have the following

cost functions:

Cp(x) =
P (x)

P (x) +N(x)
; CN(x) =

N(x)

P (x) +N(x)

Finally, let Λ|qi|(r) = e
−1

c(|qi|2−r2)χ|qi|(r), a smooth approximation to the

characteristic function χ|qi|(r) for r ∈ [0,∞) according to the parameter c, be the

movement function described in step 5.

We want each agent to move in the direction of greatest ascent on its cost function

until it finds the closest location of highest satisfaction or until the agent satisfies its
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threshold. A feasible system for this scenario would be

∂

∂t
xi = αi∇xCP (xi)Λ|qi|(CP (xi)) 1 ≤ i ≤ k

∂

∂t
xj = αj∇xCN(xj)Λ|qj |(CN(xj)) k + 1 ≤ j ≤ N

(13)

For αi, αj > 0 determining the speed at which the agents settle. Equivalently, since

CP + CN = 1, we can substitute CN = 1− CP to obtain

∂

∂t
xi = αi∇xCP (xi)Λ|qi|(CP (xi)) 1 ≤ i ≤ k

∂

∂t
xj = −αj∇xCP (xj)Λ|qj |(1− CP (xj)) k + 1 ≤ j ≤ N

(14)

The system (14) will be called the ””PDE Model” or ”Gradient Model.” The PDE

Model will be simulated in future work, but a few facts are known about the PDE

Model due to the nature of gradient flow.

1. Since the gradient finds local max and min values, agents of one parity can

become stuck between agents of another parity causing certain agents to become

stuck and dissatisfied.

2. In the cost function, each agent takes its own presence into consideration. Thus,

if the agents are not place in an enclosure, ones along the outside of the initial

distribution of agents will disperse until satisfied. The positions of the agents

then stay bounded in time since the influence of any agent j on agent i decreases

as the distance between i and j increases while the influence of i on itself stays

constant.

3. If the boundaries are closed off so that no agent can leave an enclosed region

and if the agents have a sufficiently high threshold, then some agents will tend

toward the outskirts of the enclosure.
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3.4 A Segregation Model Derived From Velocity Alignment

When specific conditions are met for solutions of the Particle Cucker-Smale Model,

the velocity alignment equation causes V (t) = max1≤i,j≤N |vi(t) − vj(t)| to tend to

0 as t increases, resulting in every agent’s velocity to tend to the same vector v.

Also note that if the coupling constant K is negative, the velocities will tend away

from each other and the agents repel. With these two observations in mind, we can

construct another model of self-segregation. Assume again that each agent has the

quality qi ∈ [−1, 1] with qi 6= 0. Define the influence function, similarity function,

cost function, and movement functions as found in the gradient model. The weighted

sum of the differences, xj − xi, will determine the direction that agent i should

tend toward given the influence of agent j. Each difference would have a weight

attributed to it based on the influence, similarity, and movement functions. Since the

velocity alignment term in the Cucker-Smale model forces V (t) to tend towards 0 as

t approaches infinity when flocking occurs, we recognize that the model just stated

will result in all agents collapsing into a single point. To remedy this, introduce the

factor µ such that µ(r) = r1/(2l−1) ≈ 1 for r > 0, µ(r) = r1/(2l−1) ≈ 0 for r = 0, and

µ(r) = r1/(2l−1) ≈ −1 for r < 0 for sufficiently large value of l ∈ Z+. The factor

µ(C(xi) − C(xj)) introduces the assumption that each agent moves towards agents

with a lower satisfaction than themselves in an attempt to fill in low-cost space.

For N agents, we have the following system:

ẋi = αi

(
N∑
j=1

ψ(|xi − xj|)µ(C(xi)− C(xj))(xj − xi)

)
Λ|qi|(C(xi))

For the initial conditions xi(0) = xi0 ∈ Rd and qi(0) = qi0 ∈ R. For f nonnegative

and decreasing.
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3.4.1 Simulations Of The First ODE Model

For an example of the ODE model applying velocity alignment, we ran a 1-dimensional

simulation in Matlab using a Fourth-Order Runge-Kutta method. 60 agents were

assigned the same threshold value and k agents were assigned positive parity. Positive

parity agents are represented as blue circles and negative parity agents are likewise

represented by red circles. The positions were randomly uniformly distributed over

the interval [−5, 5]. For an arbitrary particle (x, q), we defined the following:

ψ(x) =
1

(1 + |x|2)β

S(x, q) =
n∑
j=1

ψ(|x− xj|)χ[0,∞)(qqj); T (x) =
n∑
j=1

ψ(|x− xj|);

C(x, q) =
S

T
x ∈ Rd, q ∈ R

χ|qi|(r) ≈ Λ|qi|(r) =


e
− 1

c(|qi|2−r2) 0 < r < |qi|

0 r > |qi|

c > 0

µ(r) = r1/(2l−1);

We assume that αi = aj for all i, j. Denote the thresholds for positive parity agents by

|qP | and the thresholds for negative parity agents by |qN |. The following parameters

were chosen: N = 60 agents with k = 30 positive and negative agents, time T = 20,

step size for time of h = 0.01, α = 1, t = 2, β = 2, l = 1000, and c = 1000000.

Two dimensional simulations were run using the same parameters where the agents

were initially randomly uniformly distributed over the square [−5, 5]× [−5, 5]. Only

the thresholds, |qP | = |qN |, were varied and the initial distribution of particles was

randomized each simulation as before.
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Figure 2: On the left, the initial distribution of agents for |qP | = |qN | = 0.5 in the

first ODE model in one dimension. 9 agents were dissatisfied. On the right, the end

distribution of agents at T = 20 for |qP | = |qN | = 0.5. 0 agents were dissatisfied.

Figure 3: On the left, the initial Distribution of agents for |qP | = |qN | = 0.6 in the

first ODE model in one dimension. 46 agents were dissatisfied. On the right, the end

distribution of agents at T = 20 for |qP | = |qN | = 0.6. 17 agents were dissatisfied.
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Figure 4: On the left, the initial distribution of agents for |qP | = |qN | = 0.7 in the

first ODE model in one dimension. 57 agents were dissatisfied. On the right, the end

distribution of agents at T = 20 for |qP | = |qN | = 0.7. 4 agents were dissatisfied.

Figure 5: On the left, the initial distribution of agents for |qP | = |qN | = 0.8 in the

first ODE model in one dimension. 60 agents were dissatisfied. On the right, the end

distribution of agents at T = 20 for |qP | = |qN | = 0.8. 18 agents were dissatisfied.
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Figure 6: On the left, the initial distribution of agents for |qP | = |qN | = 0.9 in the

first ODE model in one dimension. 58 agents were dissatisfied. On the right, the end

distribution of Particles at T = 20 for |qP | = |qN | = 0.9. 39 agents were dissatisfied.

Figure 7: On the left, the initial distribution of agents for |qP | = |qN | = 0.5 in the

first ODE model in two dimensions. 8 agents were dissatisfied. On the right, the end

distribution of agents at T = 20 for |qP | = |qN | = 0.5. 0 agents were dissatisfied.
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Figure 8: On the left, the initial distribution of agents for |qP | = |qN | = 0.6 in the

first ODE model in two dimensions. 18 agents were dissatisfied. On the right, the

end distribution of agents at T = 20 for |qP | = |qN | = 0.6. 0 agents were dissatisfied.

Figure 9: On the left, the initial distribution of agents for |qP | = |qN | = 0.7 in the

first ODE model in two dimensions. 26 agents were dissatisfied. On the right, the

end distribution of agents at T = 20 for |qP | = |qN | = 0.7. 9 agents were dissatisfied.
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Figure 10: On the left, the initial distribution of agents for |qP | = |qN | = 0.8 in the

first ODE model in two dimensions. 41 agents were dissatisfied. On the right, the

end distribution of agents at T = 20 for |qP | = |qN | = 0.8. 15 agents were dissatisfied.

Figure 11: On the left, the initial distribution of agents for |qP | = |qN | = 0.9 in the

first ODE model in two dimensions. 53 agents were dissatisfied. On the right, the

end distribution of agents at T = 20 for |qP | = |qN | = 0.9. 30 agents were dissatisfied.
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3.5 A Second ODE Model

A different model for segregation may be constructed by introducing the similarity

function, χ|qj |(qi), as a weight on the sums in the movement function, ẋi = fi. The

weight corresponds to the assumption that agents only pay attention to agents of the

same similarity. Along with the weights, the order of subtraction is reversed in the

function µ, representing the scenario where agents move towards agents that are more

satisfied than themselves. The movement function is given by

ẋi = αi

(
N∑
j=1

ψ(|xi − xj|)χ|qj |(qi)µ(C(xj)− C(xi))(xj − xi)

)
Λ|qi|(C(xi)) (15)

3.5.1 Simulations Of The Second ODE Model

A fourth-order Runge-Kutta method was used to solve the second ODE Model, (15),

where agents were randomly uniformly dispersed over the interval [−3, 3] for the one

dimensional case and over [−3, 3]× [03, 3] in the two dimensional case. The following

parameters were chosen: N = 120 agents with k = 60 positive and negative agents,

time T = 10, step size for time of h = 0.01, α = 1, t = 2, β = 2, l = 1000, and

c = 1000000. Unlike the first ODE Model, almost every simulation reached a stopping

point before T = 10, the segregation amongst the agents is more definitive, and the

area over which the agents move tends to stay much closer to the initial area. As

the threshold increases, the clusters become more defined. The number of clusters of

agents at the end time in the second ODE Model tend to be lower than in the first.
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Figure 12: On the left, the initial distribution of agents with |qP | = |qN | = 0.5 in the

second ODE model in one dimension. 49 agents were dissatisfied. On the right, the

end distribution of agents with T = 10. 0 agents were dissatisfied.

Figure 13: On the left, the initial distribution of agents with |qP | = |qN | = 0.6 in the

second ODE model in one dimension. 105 agents were dissatisfied. On the right, the

end distribution of agents with T = 10. 0 agents were dissatisfied.
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Figure 14: On the left, the initial distribution of agents with |qP | = |qN | = 0.7 in the

second ODE model in one dimension. 120 agents were dissatisfied. On the right, the

end distribution of agents with T = 10. 0 agents were dissatisfied.

Figure 15: On the left, the initial distribution of agents with |qP | = |qN | = 0.8 in the

second ODE model in one dimension. 120 agents were dissatisfied. On the right, the

end distribution of agents with T = 10. 0 agents were dissatisfied.



31

Figure 16: On the left, the initial distribution of agents with |qP | = |qN | = 0.9 in the

second ODE model in one dimension. 120 agents were dissatisfied. On the right, the

end distribution of agents with T = 10. 0 agents were dissatisfied.

Figure 17: On the left, the initial distribution of agents with |qP | = |qN | = 0.5 in the

second ODE model in two dimensions. 34 agents were dissatisfied. On the right, the

end distribution of agents with T = 10. 0 agents were dissatisfied.
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Figure 18: On the left, the initial distribution of agents with |qP | = |qN | = 0.6 in the

second ODE model in two dimensions. 70 agents were dissatisfied. On the right, the

end distribution of agents with T = 10. 0 agents were dissatisfied.

Figure 19: On the left, the initial distribution of agents with |qP | = |qN | = 0.7 in the

second ODE model in two dimensions. 111 agents were dissatisfied. On the right,

the end distribution of agents with T = 10. 0 agents were dissatisfied.
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Figure 20: On the left, the initial distribution of agents with |qP | = |qN | = 0.8 in the

second ODE model in two dimensions. 120 agents were dissatisfied. On the right,

the end distribution of agents with T = 10. 0 agents were dissatisfied.

Figure 21: On the left, the initial distribution of agents with |qP | = |qN | = 0.9 in the

second ODE model in two dimensions. 120 agents were dissatisfied. On the right,

the end distribution of agents with T = 10. 0 agents were dissatisfied.
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CHAPTER 4

Concluding Remarks

The concept of velocity alignment in flocking can provide a simple, powerful tool

in the construction of new continuous models for social dynamics. It exhibits an

ideal scenario where every agent cooperates through the same actions to achieve one

unified goal. Since mathematical modeling often prefers simplicity, especially in the

advent of new phenomena, one can view velocity alignment then as a starting point

for model making in some areas in the social sciences. To adjust the functionality

of velocity alignment equations with the intent of modeling a new phenomena only

requires variations of the behavior in subpopulations of the larger conforming group.

If the behavior of an agent relies on the population, then its behavior depends, directly

or indirectly, on the cooperation of the masses. Otherwise, no social behavior occurs

in the agent, yielding a distinct phenomena.

The Cucker-Smale Variant, (2), offers a way of departing the social aspects of a

group from its geometry. The loosened adherence to the velocity alignment equation

provides stronger control over the agents’ configuration, allowing for a wider variety

of applications in engineering, biology, and the social sciences. For example, the

velocity alignment equation has been used to create the first and second ODE Models

for segregation presented in Chapter 3. One can then define a differential equation

that governs the change of the quality qi over time, which would allow the system to

model belief dynamics, politics, or business trends that take location into

consideration. Introducing an additional function describing a distribution of

resources could produce an economic or game-theoretic model. The theorems proven

in Chapter 2 offer criteria for the occurrence of collective behavior as well as a tool
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for modeling and machinery for analyzing the orientations of flocks, exhibited

theoretically and in simulation by Theorem 2.6.

Finally, a number of fruitful propositions about the Particle Cucker-Smale Model,

the Cucker-Smale Variant, and the Centered Cucker-Smale Variant may hold that

have yet to be proven. Theorem 2.6 suggests that the introduction of a controller

could form a new system in which xi(t) converges to di(t) in finite time instead of

asymptotically. This would allow us to replace the assumption that limt→∞ d
′
ij(t) = 0

with a stronger condition allowing for agents to take on a configuration in constant

non-converging motion. Such an insight could lead to applications in engineering

that requires, for example, a swarm to assume an orientation with a time limit. The

three systems may have a certain equivalence up to their influence functions given

limitations on the spans of their spaces and by imposing a linear structure on ẋi, v̇i,

and fi. The physical intuition comes from realizing that drones cannot assume an

orientation in a spatial dimension higher than three. Explicitly, no one can conceive of

movement in 4-space and such a limitation suggests no one can try without aid. Such

an equivalence could offer natural ways of crafting influence functions for maintaining

desirable properties about the movement and orientation of the agents.
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APPENDIX A

THEOREMS

Theorem 1.8 (A Special Case of Grönwall’s Inequality (Differential form))

Let I = [t0, t1]. Suppose a : I → R and b : I → R are continuous, and suppose

u : I → R is in C1(I) and satisfies

u′(t) ≤ a(t)u(t) for t ∈ I, and u(t0) = u0.

Then

u(t) ≤ u0e

∫ t

t0

a(s)ds

Various book present Grönwall’s Inequality in its integral form, e.g. Perko [11]. Here,

we prove a special case of Grönwall’s Inequality in differential form.

Proof. Since e

∫ t1

t0

a(s)ds
> 0, we multiply both sides of the inequality to obtain

u(t)e
−

∫ t

t0

a(s)ds
≤ a(t)u(t)e

−

∫ t

t0

a(s)ds

u(t)e
−

∫ t

t0

a(s)ds
− a(t)u(t)e

−

∫ t

t0

a(s)ds
≤ 0

d

dt

u(t)e
−

∫ t

t0

a(s)ds

 ≤ 0

Integrating from t0 to t then gives

u(t)e
−

∫ t

t0

a(s)ds
− u(t0)e

−
∫ t0
t0
a(s)ds ≤ 0

u(t)e
−

∫ t

t0

a(s)ds
≤ u0
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u(t) ≤ u0e

∫ t

t0

a(s)ds

�

Here is a special case of Lemma (2.2), followed by a proof of the second inequality

as discussed in Chapter 2.

Lemma 1.9 Let fi be Lipschitz and (x, v) be any solution to the system (1). Then,

d

dt
X(t) ≤ V (t) (A.16)

d

dt
V (t) ≤ −Kψ(X(t))V (t) (A.17)

where X(t) = max
1≤i,j≤N

|xi(t)− xj(t)| and V (t) = max
1≤i,j≤N

|vi(t)− vj(t)|

The proof of the first inequality, (1.9), was proven in Chapter 1 in a more general

setting. This section offers a proof of the second inequality, (1.9), based off of the

proof found in Perez [9].

Proof. Assume i and j are so that |vi − vj| = V (t). If ψ(0) = 0, then ψ = 0 over

[0,∞) and the result is trivial. Let ψ(0) > 0. Since ψ is decreasing over [0,∞), let

φ(r) =
ψ(r)

ψ(0)
and note that 0 ≤ φ(r) ≤ 1 for r ∈ [0,∞). Then

1

2

d

dt
|vi − vj|2 = (vi − vj) ·

(
d

dt
vi −

d

dt
vj

)

= ψ(0)(vi − vj) ·

(
K

N

N∑
k=1

φ(|xi − xk|)(vk − vi)−
K

N

N∑
k=1

φ(|xj − xk|)(vk − vj)

)
Then note

(vi − vj) · (vk − vi) = (vi − vj) · ((vk − vj) + (vj − vi))

= (vi − vj) · (vk − vj) + (vi − vj) · (vj − vi)
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= (vi − vj) · (vk − vj)− |vi − vj|2 ≤ 0

by choice of i and j. Since 0 < φ ≤ 1 and φ(|xk − xi|) ≥ φ(X(t)),

φ(|xk − xi|)(vi − vj) · (vk − vi) ≤ φ(X(t))(vi − vj) · (vk − vi) ≤ 0

Multiplying by K
N
ψ(0) and summing over k gives us that

K

N

N∑
k=1

ψ(|xk − xi|)(vi − vj) · (vk − vi) ≤
K

N

N∑
k=1

ψ(X(t))(vi − vj) · (vk − vi) ≤ 0

In a similar way, we obtain

−K
N

N∑
k=1

ψ(|xk − xj|)(vi − vj) · (vk − vj) ≤ −
K

N

N∑
k=1

ψ(X(t))(vi − vj) · (vk − vj) ≤ 0

Thus,

d

dt

1

2
|vi − vj|2 = (vi − vj) ·

(
d

dt
vi −

d

dt
vj

)
= (vi − vj) ·

(
K

N

N∑
k=1

ψ(|xk − xi|)(vk − vi)−
K

N

N∑
k=1

ψ(|xk − xj|)(vk − vj)

)

≤ (vi − vj) ·

(
K

N

N∑
k=1

ψ(X(t))(vk − vi)−
K

N

N∑
k=1

ψ(X(t))(vk − vj)

)

= ψ(X(t))
K

N
(vi − vj) ·

(
N∑
k=1

(vk − vi)−
N∑
k=1

(vk − vj)

)

= ψ(X(t))
K

N
(vi − vj) ·

(
N∑
k=1

(vj − vi)

)

= ψ(X(t))
K

N
(vi − vj) · (N(vj − vi))

= ψ(X(t))K(vi − vj) · (vj − vi)

= −Kψ(X(t))[V (t)]2

by choice of i and j. However,
d

dt

1

2
|vi − vj|2 =

d

dt
[V (t)]2 = V (t)

d

dt
V (t). So,

d

dt
V (t) ≤ −Kψ(X(t))V (t)

�
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APPENDIX B

NOTATION

|v| := A norm of vector v in Rd.

r := An arbitrary number in R or a subset of R.

x := An arbitrary vector in Rd or subset of Rd.

xi := Position vector of agent i in Rd.

vi := Velocity vector of agent i in Rd.

qi := Quality or qualities of agent i.

pi := The particle i.

χr := The characteristic function over the interval [0, r] for r > 0.

Λr := A corresponding bump function to χr whose support is the interval [0, r].

x̄ := Arithmetic average of x over 1 ≤ i ≤ N . Note: This is a vector.

r̄ := Arithmetic average of r over 1 ≤ i ≤ N .

ẋ := Component-wise derivative of the vector function x : R → Rd with respect to

time.

x′ := Derivative of the scalar function x : R→ R with respect to time.

∇x := The gradient operator in components of x. e.g. for a vector xi ∈ Rd,

∇xxi = ( ∂
∂xi1

xi,
∂

∂xi2
xi, · · · , ∂

∂xid
xi)

C∞c := The set of functions f : R→ R that have compact support and are infinitely

differentiable.


