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ABSTRACT

In his 2005 dissertation, Antoine Vella[6] introduced a new topology on graphs and

hypergraphs known as the ”classical” topology. In his 2015 thesis, Brian Frazier[7]

characterized the prime spectrum for certain graphs’ open set lattice under the clas-

sical topology and demonstrated how the graph may be recaptured from the prime

spectrum. In this paper, we further explore the classical topology on simple, social

graphs by characterizing the classical topology for simple, social graphs order theoret-

ically, discussing graph posets and their connection with the classical topology, and

characterizing the lattices which the classical topology yields, namely cone lattices.
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CHAPTER 1

INTRODUCTION

In a 2005 dissertation, Antoine Vella[6] described the classical topology on graphs

and identified a number of properties. In his 2015 thesis, Brian Frazier[7] charac-

terized the prime spectrum for certain graph’s open set lattice under the classical

topology and demonstrated how the graph may be recaptured from the prime spec-

trum.

The goal of this paper will be to characterize the lattices the classical topology

yields, namely cone lattices. This is accomplished by studying the meet-prime and

join-prime elements of the topology, by identifying graph posets within the classical

topology, and concludes with defining cone lattices and relating them to the topolo-

gies generated from simple, social graphs by the classical topology.

This paper makes free use of standard concepts and notation from the realms of

order theory, point-set topology, and graph theory. Readers desiring clarification are

encouraged to consult Diestel [3] for more details on graph theory, Munkres [5] for

more details about topology, and Birkhoff [1] or Davey and Priestley [2] for more

details on order theory.

In the first section, we define terminology required in order to read the later sec-

tions. Key definitions from this section include Boolean lattices, atoms and co-atoms,

and order isomorphism. These definitions are important in the understanding of the

structures presented in the later chapters, as atomic, Boolean sublattices are key fea-

tures of cone lattices and order isomorphism is an essential tool in proving theorems.

In the second section, we define the classical topology and proceed to show key

order theoretic features of the classical topology. Some important features therein

include the characterization of completely meet-prime elements of the classical topol-

ogy and showing that completely join-prime elements of the classical topology are the

join-prime elements of the classical topology and the completely meet-prime elements
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of the classical topology are the meet-prime elements of the classical topology.

In the third section, we describe graph posets and show how they relate to the

classical topology. Namely, the meet-prime elements of the classical topology formed

by a simple, social graph G form a graph poset which is associated with a graph which

is graph-isomorphic to G. Another result in section 3 is that the classical topology

generated by a simple, social graph G is the set of all lowersets generated by the graph

poset associated with G.

In the fourth section, we define cone lattices and show that they are the lattices

formed by the classical topology. In particular, we show that if given a cone lattice L

whose meet-prime elements form a graph poset, then there is a simple, social graph

G whose classical topology is order isomorphic to L and whose meet-prime elements

of its classical topology are order isomorphic to the meet-prime elements of L. This

theorem concludes the results portion of the paper.

In the final section, a review of what has been said and suggestions for further

research can be found.

1.1 Basic Definitions

Let G be a nonempty set, and let E ⊆ (G×G) satisfy the following properties:

• xy ∈ E where xy = {(x, y), (y, x)}.

• xx 6∈ E for any x ∈ G.

The pair G = (G,E) is called a simple graph. The elements of G are called the vertices

of G, and the elements of E are called the edges of G. Two vertices x and y are said

to be adjacent provided x = y or (x, y) ∈ E. (In visual representations of a graph,

vertices are denoted by points, and the adjacency edge between x and y is represented

as a line segment connecting the point for x and the point for y.)

Note that every member of E must be the unique adjacency edge for two distinct

vertices x and y. We will say that this edge is incident to the vertices x and y. It is
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worth noting that the ordered pairs (x, x) can be interpreted as loops connecting a

vertex to itself. Simple graphs do not contain loops.

Definition 1.1. Let G = (G,E) be a simple graph. We say that G is social provided

every vertex is adjacent to an edge.

Throughout this paper, we will restrict our attention to graphs that are simple

and social. We let SimSoc denote the set of all simple, social graphs.

If X is any set, we will let Su[X] denote the powerset of X, and we will let Fin[X]

denote the finite subsets of X.

Definition 1.2. Let X be a set. We say the set τ ⊆ Su(X) is a topology provided:

1. ∅, X ∈ τ

2. For all X, Y ∈ τ , X ∩ Y ∈ τ .

3. For all F ⊆ τ , ∪F ∈ τ .

Definition 1.3. A partially ordered set, or poset, is a system P = (P,≤) consisting

of a set P and a binary relation ≤ as a subset of P × P satisfying the following

conditions:

1. For all x ∈ P , we have x ≤ x (reflexivity)

2. If x ≤ y and y ≤ x, then x = y (antisymmetry)

3. If x ≤ y and y ≤ z, then x ≤ z (transitivity)

Definition 1.4. Let P = (P ,≤) be any poset. The order dual of P is defined to be

the system Pop = (P ,≤op) where x ≤op y ⇐⇒ y ≤ x. We usually denote the order

dual of a poset P by simply writing P op.

Definition 1.5. Let P be a poset and let X ⊆ P . We say that X is bounded below

(or has a lower bound) in P provided
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⋂
{↓ x : x ∈ X} 6= ∅

We say that X is upper-bounded in P provided it is lower-bounded in P op. We let

m(X) and j(X) denote the set of all lower-bounds and upper-bounds, respectively, for

X.

Definition 1.6. Let P be a poset. We say P has a least element provided P has

exactly one minimal element. We say that P has a greatest element provided P op

has a least element. We use ⊥ and > to denote the least and greatest elements,

respectively, of P (when they exist).

A poset which has a least element is said to be lower-bounded. A poset which has

a greatest element is said to be upper-bounded. A bounded poset has both a least

and a greatest element.

Definition 1.7. Let P be a poset and let X ⊆ P . We say that X has an infimum

(or greatest lower-bound) in P provided m(X) has a greatest element. This element

is known as the meet of X in P and is denoted by
∧
X. Likewise, we say that X

has a supremum (or least upper bound) in P provided j(X) has a least element. This

element is known as the join of X in P and is denoted by
∨
X.

When X = {x1, ..., xn} has a meet in a poset P , we often denote it by

∧
X = x1 ∧ ... ∧ xn

and likewise denote the join of X in P by

∨
X = x1 ∨ ... ∨ xn

Definition 1.8. A poset J is called a join semilattice provided every pair of elements

in J has a join in J . We say that P is a meet semilattice provided P op is a join

semilattice.
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Definition 1.9. A poset L is said to be a lattice provided it is both a join and a meet

semilattice.

Definition 1.10. A lattice L is said to be complete provided for all X ⊆ L,
∨
X ∈ L.

Definition 1.11. Let L be a lattice. We say that L is distributive provided joins

distribute over meets and vice-versa. That is, for all x, y, z ∈ L, we have

• x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

• x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

Let P be a poset and let a, b ∈ P . We will let [a, b] = (↑ a) ∩ (↓ b). This subset

of P is called an interval in P ; and, of course, is nonempty if and only if a ≤ b.

Definition 1.12. Let L be a lattice and let [a, b] ⊆ L. An element x ∈ [a, b] has a

relative complement in [a, b] provided there exist y ∈ [a, b] such that x ∧ y = a and

x ∨ y = b. We say that [a, b] is relatively complemented provided every element in

[a, b] has a relative complement in [a, b]. A lattice in which every interval is relatively

complemented is called a relatively complemented lattice.

If L is a bounded lattice, then relatively complemented elements in [⊥,>] = L are

said to be complemented. A complemented, distributive lattice is called a Boolean

lattice in honor of George Boole, a prominent nineteenth century mathematician.

(Notice that Boolean lattices are necessarily bounded.) Motivated by this classi-

cal definition, relatively complemented, distributive lattices are called generalized

Boolean lattices. A generalized Boolean lattice is a Boolean lattice if and only if it is

bounded.

Definition 1.13. Let P be a lower-bounded poset. We say that an element a ∈ P is

an atom of P provided ⊥ ≺ a. Likewise, an element c of an upper-bounded poset P

is a co-atom of P provided c is an atom of P op. We say that a lower-bounded poset

P is atomic provided ↓ x contains an atom for all ⊥ < x ∈ P .
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We let the sets Co(L) and At(L) denote the set of co-atoms and atoms respectively

of a poset L.

Definition 1.14. Let L and Q be lattices. A function f : L −→ Q is said to be an

order isomorphism provided the following:

1. f is bijective.

2. For all x, y ∈ L, if x ≤ y, then f(x) ≤ f(y).

3. For all x, y ∈ L, if f(x) ≤ f(y), then x ≤ y.

If there exists an order isomorphism f : L −→ Q, then we say that L and Q are

order isomorphic.



7

CHAPTER 2

CLASSICAL TOPOLOGY CHARACTERIZATION

2.1 Classical Topology

Let G = (G,E) be a simple, social graph. For any vertex x, let E(x) denote the set

of all edges incident to x. We will call this set the edge neighborhood for x. We will

let B(x) = E(x) ∪ {x} represent the edge-ball of the vertex x.

Definition 2.15. Let G = (G,E) be a simple, social graph. A subset X of G ∪ E is

graph-open provided one of the following conditions is met.

• We have X ⊆ E.

• If x ∈ X ∩G, then E(x) ⊆ X.

It is easy to see that the collection Ω(G) of graph-open sets forms a topology on

G ∪ E. This topology is called the graph or classical topology on G. As such, the

collection Ω(G) forms a complete, distributive lattice under subset inclusion. The join

of any family from Ω(G) is simply the union of that family, while the meet of any

family from Ω(G) will be the topological interior of the intersection of the family.

It is worth noting that the family

B(G) = {{e} : e ∈ E} ∪ {B(x) : x ∈ G}

forms a basis for the graph-topology.

Lemma 2.16. Let G = (G,E) be a simple, social graph. An element U ∈ Ω(G) is

compact if and only if one of the following statements is true:

1. We have U ∈ Fin[E].
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2. There exists a finite F ⊆ B(G) so that U = ∪F .

Proof. Let G = (V,E). Let U ∈ Ω(G). Suppose U is compact. Then, for all F ⊆

Ω(G), if U ⊆ ∪F , then there exists a finite F ⊆ F so that U ⊆ ∪F . Since U ∈ Ω(G),

then either U ⊆ E or, if x ∈ U ∩G, then E(x) ⊆ U .

Suppose U ⊆ E. Then U ⊆
⋃
e∈E

{e}. Then, since U is compact, there exists a

finite E ⊆ E so that U ⊆ ∪E . Thus, U ∈ Fin[E].

Suppose U * E. Let x ∈ U . If x ∈ G, then B(x) ⊆ U . Let β = {B(x) : x ∈ U∩G}

and E = {{e} : e ∈ U−∪β}. Then, since U is compact, there exists a finite F ⊆ β∪E

so that U ⊆ ∪F . Note, F ⊆ B(Ω(G)). Indeed, it must be that ∪F ⊆ U as well, since

for all x ∈ G ∩ U , B(x) ⊆ U and for all e ∈ U ∩E, {e} ⊆ U . Thus, U = ∪F . Hence,

U satisfies (2). Thus, if U ∈ Ω(G) is compact, then U satisfies (1) or (2).

On the other hand, let U ∈ Ω(G). Suppose U satisfies (1). Let F ⊆ Ω(G) such

that U ⊆ ∪F . Since U is finite, there must exist a finite F ⊆ F so that U ⊆ ∪F .

Hence, U is compact in this case.

Suppose U satisfies (2). Let F ⊆ Ω(G) such that U ⊆ ∪F . There exists a finite

K ⊆ B(Ω(G)) so that U = ∪K. Then it must be that there is a finite family F ⊆ F

so that for all X ∈ K, there exists a Y ∈ F so that X ⊆ Y . Thus, U ⊆ ∪F . Hence,

U is compact in this case.

Therefore, by the above cases, if U satisfies one of (1) or (2), then U is compact.

Hence, U is compact in Ω(G) if and only if U satisfies (1) or (2).

If G is any simple, social graph, the previous lemma tells us that Ω(G) is an

algebraic lattice; that is, every member of Ω(G) is the union of a directed family of

compact graph-open sets.

Definition 2.17. Let L = (L,≤) be any lattice. An element a ∈ L is join-prime (or

coprime) provided, whenever X ∈ Fin[L] is such that a ≤
∨
X, then a ≤ x for some

x ∈ X.
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Notice that the least element of a lattice (when it exists) cannot be join-prime.

An element p of a lattice L is said to be meet-prime (or simply prime) provided p is

join-prime in the order-dual of L.

If G is any simple, social graph, then it is easy to see that every member of B(G) is

join-prime. Since every member of Ω(G) is the union of a directed family of compact,

join-prime graph-open sets, we know that Ω(G) is bialgebraic. That is, both Ω(G) and

its order-dual are algebraic lattices.

Theorem 2.18. Let G = (G,E) be a simple, social graph. A member U ∈ Ω(G) is

join-prime if and only if U ∈ B(G).

Proof. Let G = (G,E) be a simple, social graph. Let U ∈ Ω(G) so that U is join-

prime. Then, whenever F ∈ Fin[Ω(G)] is such that U ⊆
⋃
F , then there exists

an X ∈ F so that U ⊆ X. Suppose, by way of contradiction, U /∈ B(G). Since

B(G) is a basis for Ω(G), there exists a F ⊆ B(G) so that U = ∪F . Choose an

X ∈ F . Let F = {X,∪(F − {X})}. Then U = ∪F = ∪F. Observe, F ∈ Fin[Ω(G)].

Hence, since U = ∪F = ∪F, F ∈ Fin[Ω(G)], and U is join-prime, either U ⊆ X or

U ⊆ ∪(F − {X}), a contradiction to U being join-prime. Therefore, it must be that

U ∈ B(G).

On the other hand, suppose U ∈ B(G). Let F ∈ Fin[Ω(G)] so that U ⊆ ∪F .

Suppose U = {e}. Then, since U ⊆ ∪F , there exists an X ∈ F so that U ⊆ X.

Suppose, then, that U = B(v) for some v ∈ G. Since U ⊆ ∪F , v ∈ ∪F . Then, there

exists a K ∈ F so that v ∈ K. Since v ∈ K, B(v) ⊆ K. Therefore, there exists a

K ∈ F so that U ⊆ K. Hence, by the above cases, if U ∈ B(G), then U is join-prime.

Hence, U ∈ Ω(G) is join-prime if and only if U ∈ B(G).

Let L = (L,≤) be a complete lattice. It is easy to show that the following

statements are equivalent for any j ∈ L:

1. The element j is compact and join-prime in L.
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2. Whenever X ⊆ L is such that j ≤
∨
X, then j ≤ x for some x ∈ X.

Compact, join-prime elements of a complete lattice are often called completely join-

prime for this reason. We define completely meet-prime elements to be the completely

join-prime elements of Lop. For any complete lattice L, we will let CJP(L) and CMP(L)

denote its subposets of completely join-prime and completely meet-prime elements,

respectively.

It is well-known that CJP(L) and CMP(L) are order-isomorphic for any complete

lattice L. The isomorphism is accomplished via the mappings φ : CMP(L) −→ CJP(L)

and γ : CJP(L) −→ CMP(L) defined by

φ(j) =
∧
{x ∈ L : x 6≤ j} γ(m) =

∨
{y ∈ L : m 6≤ y}

Theorem 2.19. Let G = (G,E) be a simple, social graph. A member P of Ω(G) is

completely meet-prime if and only if one of the following conditions holds.

1. The set P is missing exactly one vertex.

2. The set P is missing exactly two vertices and the edge incident to these vertices.

Proof. Let P ∈ CMP(Ω(G)). This is true if and only if φ(P ) ∈ CJP(Ω(G)), which is true

if and only if φ(P ) = {e} for some e = (v0, v1) ∈ E or φ(P ) = B(v) for some v ∈ G.

This is true if and only if

P = γ(φ(P ))

= γ({e})

=
∨
{X ∈ Ω(G) : {e} * X}

= G ∪ E − {e, v0, v1}
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or

P = γ(φ(P ))

= γ(B(v))

=
∨
{X ∈ Ω(G) : B(v) * X}

= G ∪ E − {v},

which is true if and only if P satisfies (1) or (2). Hence, P ∈ CMP(Ω(G)) if and

only if P satisfies (1) or (2).

Lemma 2.20. Let G = (G,E) be a simple, social graph containing at least three

vertices. If P ∈ Ω(G) is completely meet-prime, then P /∈ Fin[E].

Proof. Let P ∈ Ω(G) be completely meet-prime. Then φ(P ) ∈ CJP(Ω(G)). Then

φ(P ) is join prime. Then φ(P ) ∈ B(G), so φ(P ) = {e} for some e = (v0, v1) ∈ E or

φ(P ) = B(v) for some v ∈ G.

If φ(P ) = {e}, then P = γ(φ(P )) = γ({e}) = G∪E−{e, v1, v2} /∈ Fin[E]. Hence,

P /∈ Fin[E] in this case.

If φ(P ) = B(v), then P = γ(φ(P )) = γ(B(v)) = G ∪ E − {v} /∈ Fin[E]. Hence,

P /∈ Fin[E] in this case.

Thus, by the above cases, if P is completely meet-prime in Ω(G), then P /∈ Fin[E].

It is well known that every prime ideal of a Boolean lattice is maximal. A result

due to Frazier[7] is that in Ω(G), ↑ E and ↓ E are complete, atomic Boolean lattices.

Lemma 2.21. Let L be a distributive lattice. Suppose I =↓ x is principal. Then ↓ x

is meet-prime in Idl(L) if and only if x is meet-prime in L.

Proof. Let F ⊆ L be finite so that
∧
F ≤ x. Since ↓ x is meet-prime in Idl(L), ↓ x is

prime in Idl(L). Since ↓ x is prime, F is finite, and
∧
F ≤ x, there exists an f ∈ F
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so that f ∈↓ x. Thus, there exists an f ∈ F so that f ≤ x. Hence, x is meet-prime

in L.

On the other hand, let ↓ x be principal. Suppose ↓ x is not meet-prime in Idl(L).

Then ↓ x is not a prime ideal in L. Since ↓ x is not a prime ideal and ↓ x is proper,

it must be that there exists a ∧ b ∈↓ x so that a, b ∈ L − (↓ x). Then x ≥ a ∧ b and

a > x and b > x. Therefore, x is not meet-prime in L. Thus, by contraposition, if

x ∈ L is meet-prime, then ↓ x is meet-prime in Idl(L).

Hence, ↓ x is meet-prime in Idl(L) if and only if x is meet-prime in L.

Lemma 2.22. Let G = (G,E) be a simple, social graph, and suppose U ∈ Ω(G)

contains E. If U is not maximal in Ω(G), then U is not meet-prime.

Proof. Let U ∈ Ω(G) so that E ⊆ U and suppose U is not maximal. Consider ↑ E in

Ω(G). Then U ∈↑ E. Note, U is not maximal. Then, since ↑ E is a complete, atomic

Boolean lattice, ↓ U is not maximal in Idl(↑ E), so ↓ U is not prime in ↑ E. Then

↓ U is not meet-prime in Idl(↑ E). Then, by Lemma 2.21, U is not meet-prime in

↑ E. Then there exists a finite F ⊆↑ E so that ∩F ⊆ U and for all K ∈ F , U ⊂ K.

Then U is not meet-prime in Ω(G), since F ⊆ Ω(G). Hence, if U is not maximal in

Ω(G), then U is not meet-prime in Ω(G).

Lemma 2.23. Let G = (G,E) be a simple, social graph. If P ∈ Ω(G) is meet-prime,

then P ∩ E = E, or P ∩ E is meet-prime in the sublattice Su[E].

Proof. Let G = (G,E) be a simple, social graph. Let P ∈ Ω(G) be meet-prime.

Suppose E ⊆ P . Then P ∩ E = E. Suppose, then, that E * P . Let F ∈ Fin[Su[E]]

so that
⋂
F ⊆ P ∩ E. Observe, for all F ∈ F , F ⊆ E. Since P is meet-prime and⋂

F ⊆ P , there exists an F ∈ F so that F ⊆ P . Therefore F ⊆ P ∩E. Hence, P ∩E

is meet-prime. Thus, since F ∈ Fin[Su[E]] was arbitrary, if P ∈ Ω(G) is meet-prime

and E * P , then P ∩ E is meet-prime in Su[E].
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Thus, by the above, if P ∈ Ω(G) is meet-prime, then P ∩ E = E or P ∩ E is

meet-prime in the sublattice Su[E].

Theorem 2.24. Let G = (G,E) be a simple, social graph. If P ∈ Ω(G) is meet-prime

but not maximal, then P = γ({e}) for some e ∈ E. In particular, P is completely

meet-prime.

Proof. Let G = (G,E) be a simple, social graph. Let P ∈ Ω(G) be meet-prime but

not maximal. Then P does not contain E by Lemma 2.21. Thus, there exists an

e ∈ E so that e /∈ P . Observe, e = (v0, v1). It must be that v0, v1 /∈ P , otherwise

e ∈ P . Since P does not contain E, P ∩ E is meet-prime in the sublattice Su[E] by

Lemma 2.22. It must be that P ∩E is maximal in Su[E], otherwise P ∩E = A∩B for

some A,B ∈ Su[E] such that P ∩ E ⊆ A,B, contradicting P ∩ E being meet-prime.

Thus, P ∩E ≺ E, so P ∩E is missing exactly one edge, e. Thus, P is missing exactly

one edge, e.

Suppose P is missing more vertices than v0 and v1. Let F = {v ∈ G − P : v0 6=

v 6= v1}. Then F 6= ∅. Let K = (G ∪ E)− {e, v0, v1} and F = (G ∪ E)− ({e} ∪ F ).

Then F = K ∩ F and F ⊆ K and F ⊆ F , a contradiction to P being meet-prime.

Thus, P is missing exactly the vertices v0, v1. Hence, P = G ∪ E − {e, v0, v1}.

Let Q = {Y ∈ Ω(G) : {e} * Y }. Observe,
∨
Q = P . Thus, γ({e}) =

∨
Q = P ,

so γ({e}) = P . Hence, since {e} is completely join-prime and γ : CJP(Ω(G)) −→

CMP(Ω(G)), γ({e}) = P is completely meet-prime. Thus, if P ∈ Ω(G) is meet-prime

but not maximal, then P = γ({e}) for some e ∈ E and P is completely meet-prime.

Theorem 2.25. Let G be a simple, social graph. Let U ∈ Ω(G). The following

statements are true:

1. U is completely join-prime if and only if U is join-prime in Ω(G).

2. U is completely meet-prime if and only if U is meet-prime in Ω(G).
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Proof. Clearly, if U ∈ Ω(G) is completely join-prime, then U is join-prime. Suppose,

then, that U is join-prime. Then U ∈ B(G). Then U ∈ Fin[E] or there exists a finite

F ⊆ B(G) so that U = ∪F . Then U is compact by 2.2. Then, since U is join-prime

and compact, U is completely join-prime. Thus, if U is join-prime in Ω(G), then U

is completely join-prime in Ω(G). Hence, U is completely join-prime in Ω(G) if and

only if U is join-prime in Ω(G).

Clearly, if U ∈ Ω(G) is completely meet-prime, then U is meet-prime. Suppose,

then, that U is meet-prime in Ω(G). Then U ∩ E = E or U ∩ E is meet-prime in

Su[E] by Theorem 2.23.

Suppose U ∩ E = E. Then, since U is meet-prime, U is maximal in Ω(G) by

Lemma 2.22. Then U is missing exactly one vertex. Then U is completely meet-

prime by 2.5. Thus, if U is meet-prime, then U is completely meet-prime in this case.

Suppose U ∩E is meet-prime in Su[E]. Then U is completely meet-prime by 2.10,

since U is not maximal in Ω(G). Hence, if U is meet-prime, then U is completely

meet-prime in this case. Thus, if U is meet-prime, then U is completely meet-prime.

Hence, U ∈ Ω(G) is completely meet-prime if and only if U is meet-prime in Ω(G).
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CHAPTER 3

GRAPH POSETS

3.1 Graph Posets

Definition 3.26. A poset P is called a graph poset provided the following conditions

are met.

1. There exist disjoint, nonempty antichains G and E such that P = G ∪ E.

2. Every member of E is covered by exactly two members of G.

3. If e, f ∈ E are distinct, then at least one cover for e is not a cover for f .

Let G = (G,E) be a simple, social graph with vertex set G and edge set E. Define

a binary relation ≤⊆ (V ∪ E)× (V ∪ E) as follows:

• The pair (α, β) ∈≤ if and only if one of the following statements is true:

1. We have α = β.

2. We have β ∈ V , and α ∈ E(β).

It is easy to see that (G∪E,≤) is a graph poset. Indeed, distinct elements of G and

distinct elements of E must be incomparable by Assumption 1; hence, G and E are

disjoint antichains. Furthermore, since an edge in a graph must be incident to exactly

two vertices, it follows that every member of E is covered by exactly two members

of G — namely the two vertices that are adjacent via the edge e. Since the graph G

is simple, it contains no loops. Therefore, it is not possible for two vertices u and v

to be adjacent via distinct edges e and f . Therefore, if e and f are distinct edges, at

least one of the covers for e is not a cover for f .

We will let PG represent the graph poset associated with a simple, social graph G.



16

On the other hand, suppose that P = (G ∪ E,≤) is a graph poset. The set

GP = (G,E) can be made into a simple, social graph in a straightforward way: Two

members x and y of G are adjacent if and only if x = y or they cover the same

member of E.

We will let GP represent the graph associated with a graph poset P .

Definition 3.27. Let P = (G ∪ E,≤) be a graph poset. We say that P is social

provided the principal lowerset ↓ x = {x} if and only if x ∈ E.

Definition 3.28. Let G = (G,E) and H = (H,F ) be graphs. A function

f : G −→ H

is said to be a graph isomorphism provided the following are true:

1. f is a bijection between G and H.

2. v, u ∈ G are adjacent if and only if f(v), f(u) ∈ H are adjacent.

3. If (1), then f((v, u)) = (f(u), f(v)).

Lemma 3.29. Let G = (G,E) and H = (H,F ) be graphs. Then G is graph isomor-

phic to H if and only if PG is order isomorphic PH.

Proof. Suppose G is graph isomorphic to H. Then there exists a function f : G −→ H

so that v, u ∈ G are adjacent if and only if f(v), f(u) ∈ H are adjacent. Define

g : PG −→ PH by g(x) = f(x). Then g is a bijection.

Let x, y ∈ PG so that x ≤ y. If x = y, then g(x) = g(y). Suppose, then, that

x < y. Then x ∈ E and y ∈ G and there exists a k ∈ G so that x = (y, k). Then

f(y) is adjacent to f(k) in PH nd (f(y), f(k)) = f((y, k)) = f(x). Hence, f(x) ∈ F

and f(y) ∈ H. Thus, g(x) ≤ g(y). Hence, g is an order isomorphism.

Let a, b ∈ PH be so that a ≤ b. Then there exists x, y ∈ PG so that g(x) = a

and g(y) = b. Then f(x) ≤ f(y). If f(x) = f(y), then x = y since f is an injection.
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Suppose, then, that f(x) < f(y). Then f(x) ∈ F and f(y) ∈ H. Then there exists a

k ∈ G so that f(k) ∈ H and f(x) = (f(y), f(k)). Then (y, k) ∈ E since f is a graph

isomorphism.

Let e = (y, k). Then e < y and e < k. Then f(e) < f(y) and f(e) < f(k). Then

f(e) = (f(y), f(k)). Then f(e) = f(x). Then x = e = (y, k), since f is injective.

Then x ≤ y. Thus, if g(x) ≤ g(y), then x ≤ y. Hence, since g is a bijection, g is

an order homomorphism, and if g(x) ≤ g(y), then x ≤ y, g is an order isomorphism.

Thus, if G and H are graph isomorphic, then PG and PH are order isomorphic.

On the other hand, suppose PG and PH are order isomorphic. Then there exists

an order isomorphism g : PG −→ PH. Define f : G −→ H by f(x) = g(x). Then f is

a bijection, since g is a bijection.

Let x, y ∈ G so that e = (x, y) ∈ E. Then e < x and e < y in PG. Then g(e) <

g(x) and g(e) < g(y) since g is an order isomorphism. Thus, g(e) = (g(x), g(y)).

Hence, f(e) = (f(x), f(y)). Thus, if (x, y) ∈ E, then (f(x), f(y)) ∈ F .

Let a, b ∈ H so that (a, b) ∈ F . Then, since g is a bijection, there exists x, y ∈ G

and e ∈ E so that g(x) = a , g(y) = b, and g(e) = (a, b). Then g(e) < g(x) and

g(e) < g(y). Then, since g is an order isomorphism, e < x and e < y. Then,

e = (x, y). Then (x, y) ∈ E. Hence, if (f(x), f(y)) ∈ F , then (x, y) ∈ E.

Therefore, (x, y) ∈ E if and only if (f(x), f(y)) ∈ F . Furthermore, we have shown

that f(e) = (f(x), f(y)). Hence, f is a graph isomorphism. Therefore, if PG is order

isomorphic to PH, then G is graph isomorphic to H.

Therefore, G and H are graph isomorphic if and only if PG and PH are order

isomorphic.

Theorem 3.30. Let G be a simple, social graph. Then MP(Ω(G)) is a graph poset that

is order isomorphic to PG.

Proof. Observe, MP(Ω(G)) = CMP(Ω(G)) by Theorem 2.25. Then,

MP(Ω(G)) = Max(MP(Ω(G))) ∪ Min(MP(Ω(G))).
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Note, Max(MP(Ω(G))) and Min(MP(Ω(G))) are disjoint antichains. Thus, MP(Ω(G)) is

the union of two disjoint antichains.

Let X ∈ Min(MP(Ω(G))). Then X is missing two vertices u, v and the edge e

incident to it by Theorem 2.19. For all Y ∈ Max(MP(Ω(G))), Y is missing exactly

one vertex. Thus, there are exactly two members of Max(MP(Ω(G))) covering X,

namely the two members A,B ∈ Max(MP(Ω(G))) so that A = G ∪ E − {u} and

B = G ∪ E − {v}. Hence, for any member e ∈ Min(MP(Ω(G))), there are exactly two

members of Max(MP(Ω(G))) covering e.

Let P,Q ∈ Min(MP(Ω(G))) so that P 6= Q. Then, since exactly two vertices and the

edge incident to those two vertices are missing from P and exactly two vertices and

the edge incident to those two vertices are missing from Q, and since P 6= Q, at least

one of the vertices missing from P must be different from one of the vertices missing

from Q. Thus, since P and Q are covered by exactly two members of Max(MP(Ω(G)))

each and those covering members correspond to the missing vertices of P and Q, it

must be that at least one of the covers of P is different from one of the covers of Q.

Thus, for all e, f ∈ Min(MP(Ω(G))), at least one cover of e is not a cover for f .

Hence, by the above, MP(Ω(G)) is a graph poset.

Observe, PG = G ∪ E as in Definition 3.26. Define f : PG −→ MP(Ω(G)) by

f(x) :=


(G ∪ E)− {x} , if x ∈ G

(G ∪ E)− {x, a, b} , if x = (a, b) ∈ E

Let Y ∈ MP(Ω(G)). Then Y = G ∪ E − {x} or Y = G ∪ E{x, a, b} for some x ∈ G or

for some x = (a, b) ∈ E respectively. Thus, in either case there exists an x ∈ PG so

that f(x) = y. Hence, f is surjective.

Let x, y ∈ PG so that f(x) = f(y). Then G∪E−{x} = f(x) = f(y) = G∪E−{y}

where x, y ∈ G or G ∪ E − {x, ax, bx} = f(x) = f(y) = G ∪ E − {y, ay, by} where

x = (ax, bx) ∈ E and y = (ay, by) ∈ E. Thus, {x} = {y} or {x, ax, bx} = {y, ay, by}.

Hence, in either case, x = y. Therefore, if x, y ∈ PG so that f(x) = f(y), then x = y.
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Thus, f is injective. Hence, since f is surjective and injective, f is bijective.

Let x, y ∈ PG so that x ≤ y. Then x = y or x < y. If x = y, then f(x) = f(y).

Thus, if x ≤ y, then f(x) ⊆ f(y) in this case. Suppose, then, that x < y. Then x ∈ E

and y ∈ G. Then f(x) = G ∪ E − {x, y, z} ⊆ G ∪ E − {y} = f(y). Thus, if x ≤ y,

then f(x) ⊆ f(y) in this case. Hence, by the above cases, if x ≤ y, then f(x) ⊆ f(y).

Let x, y ∈ PG so that f(x) ⊆ f(y). If f(x) = f(y), then x = y since f is bijective.

Thus, in this case, if f(x) ⊆ f(y), then x ≤ y. Suppose, then, that f(x) ⊂ f(y). Then

it must be that f(x) = G∪E−{x, y, z} ⊂ G∪E−{y} = f(y) where x = (y, z) ∈ E.

Hence, x ≤ y in PG. Thus, if f(x) ⊆ f(y), then x ≤ y in this case. Hence, by the

above cases, for all x, y ∈ PG, if f(x) ⊆ f(y), then x ≤ y.

Hence, since f is a bijection, for all x, y ∈ PG if x ≤ y, then f(x) ⊆ f(y), and for

all x, y ∈ PG, if f(x) ⊆ f(y), then x ≤ y, f is an order isomorphism. Therefore, PG
is order isomorphic to PG.

Hence, if G is a simple, social graph, then MP(Ω(G)) is a graph poset that is order

isomorphic to PG.

Let P = (P,≤) be any poset and let X ⊆ P . We say that X is a lowerset of P

provided a ∈ X, y ∈ P , and y ≤ a together imply that y ∈ X. We will let Low(P)

represent the poset of lowerset of P , partially ordered by subset inclusion. Note that

Low(P) is a complete, distributive lattice. The join and meet of any family from

Low(P) is the union and intersection, respectively, of that family.

Theorem 3.31. Let G = (G,E) be a simple, social graph, and let PG represent its

graph poset. For X ⊆ G ∪ E, the following statements are equivalent.

1. We have X ∈ Ω(G).

2. We have X ∈ Low(PG).

Proof. Let G = (G,E) be a simple, social graph and let PG represent its graph poset.

Let X ⊆ G∪E. Suppose X ∈ Ω(G). Observe, for all v ∈ X ∩G, E(v) ⊆ X. Written
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another way, B(v) ⊆ X for all v ∈ X ∩G. Thus, for all v ∈ X ⊆ PG so that v ∈ G,

↓ v ⊆ X. Also, for all e ∈ X ⊆ PG so that e ∈ E, ↓ e ⊆ X, since E ⊆ PG is

an antichain. Hence, for all x ∈ X, ↓ x ⊆ X. Thus, X ∈ Low(PG). Therefore, if

X ∈ Ω(G), then X ∈ Low(PG).

On the other hand, suppose X ∈ Low(PG). Then, for all x ∈ X, ↓ x ⊆ X.

In particular, if v ∈ X ∩ G, then ↓ v ⊆ X. Note, ↓ v = B(v). Thus, for all

v ∈ X ∩ G, B(v) ⊆ X. Let F =
⋃

v∈X∩G

B(v). Then, X = (F ) ∪ (
⋃

e∈X−F

{e}). Thus,

X ∈ Ω(G). Hence, if X ∈ Low(PG), then X ∈ Ω(G). Therefore, X ∈ Ω(G) if and only

if X ∈ Low(PG).

Let P = (P,≤) be a poset, and let D ⊆ P . We say that D is directed provided

every finite subset of D has an upper bound in D. Note that directed sets cannot be

empty.

Lemma 3.32. Let G = (G,E) be a simple, social graph, and let PG represent its

graph poset. A nonempty D ⊆ G ∪ E is directed if and only if one of the following

conditions is met:

1. The set D is a singleton.

2. We have D ∩G = {x} and D ∩ E ⊆ E(x).

Proof. Let G = (G,E) be a simple, social graph and let PG represent its graph poset.

Let D ⊆ G ∪ E be directed. Then every finite subset of D has an upper bound in

D. It is clear that D could be a singleton, since all singletons are directed. Suppose,

then, that D is not a singleton.

Suppose D ∩ G 6= {x}. Then D contains more than one vertex or D ∩ G = ∅.

Suppose D contains more than one vertex. Consider F ⊆ D ∩ G where F is finite.

Then F has no upper bound in D since G is an antichain, a contradiction to D being

directed. Thus, it must be that D ∩ G = ∅. Then D ⊆ E. Again, for any finite



21

subset of D there will be no upper bound in D since E is an antichain, contradicting

D being directed. Hence, it cannot be that D ∩G 6= {x}. Thus, D ∩G = {x}.

Note, D ∩ E 6= ∅, since D is not a singleton. Suppose there exists an e ∈ D ∩ E

so that e /∈ E(x). Then {e, x} ⊆ D has no upper bound in D, a contradiction to D

being directed. Therefore, for all e ∈ D ∩ E, e ∈ E(x). Thus, D ∩ E ⊆ E(x). Thus,

in this case, D ∩ G = {x} and D ∩ E ⊆ E(x). Therefore, if D ⊆ G ∪ E and D is

directed, then D satisfies (1) or (2).

On the other hand, suppose D ⊆ G ∪ E is a singleton. Then D = {x}. Then

every finite subset of D has an upper bound in D, x. Thus, D is directed in this case.

Suppose D ⊆ G ∪ E satisfies (2). Then D ∩ G = {x}. Let F ⊆ D be finite. For

all f ∈ F , f ≤ x. Thus, F has an upper bound in D, x. Hence, since F was an

arbitrary finite subset of D, D is directed in this case. Hence, by the previous two

cases, if D ⊆ G ∪ E satisfies (1) or (2), then D is directed.

Hence, D ⊆ G ∪ E is directed if and only if (1) or (2).
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CHAPTER 4

CONE LATTICES

4.1 Cone Lattices

An element m of a complete lattice L is completely meet-irreducible provided, when-

ever X ⊆ L is such that m =
∧
X, then m = x for some x ∈ X. It is easy to see that

every completely meet-prime member of L is also completely meet-irreducible. It it

well-known that the converse is true precisely when L is biaglebraic and distributive.

If L is an algebraic lattice, it is well-known that every member of L is the meet

of a family of completely meet-irreducible elements. (This famous fact due to G.

Birkhoff is often called Birkhoff’s subdirect product theorem.) Combining these facts

with the following Lemma gives us the following Theorem.

Lemma 4.33. Let L be a bialgebraic, distributive lattice in which MP(L) is a graph

poset. Then MP(L) = CMP(L).

Proof. Let L be a L be a bialgebraic, distributive lattice in which MP(L) is a graph

poset. Let x ∈ MP(L). Let F ⊆ L so that x ≥
∧
F . If F is finite, then, since x is

meet prime, there exists an f ∈ F so that x ≥ f . Suppose, then, that F is not finite.

Since L is bialgebraic, x =
∧
F , where F is a family of completely meet prime

elements. Hence,
∧
F = x ≥

∧
F . Therefore, for all y ∈ F , y ≥

∧
F .

Suppose x is a vertex in MP(L). Then x is maximal in MP(L). Then for all y ∈ F ,

since each y is completely meet prime and so is meet prime, y = x. Then, since each

y is completely meet prime, x is completely meet prime.

Suppose x is not a vertex in MP(L). Then x is not maximal in MP(L). Then,

since x ∈ MP(L), x is covered by exactly two vertices a, b ∈ MP(L). Note, since L is

bialgebraic and distributive, x =
∧
F for some F ⊆ CMI(L) = CMP(L). However, since

x is covered by exactly two members a, b of Max(CMP(L)) and x 6=
∧
{a, b}, we know
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F ∩ Min(CMP(L)) 6= ∅. Thus, since Min(CMP(L)) is an antichain, x ∈ Min(CMP(L)).

Hence, if x ∈ MP(L), then x ∈ CMP(L). Therefore MP(L) ⊆ CMP(L). Thus, since

CMP(L) ⊆ MP(L) and MP(L) ⊆ CMP(L), MP(L) = CMP(L).

Theorem 4.34. Suppose that L is a biaglebraic, distributive lattice. The following

statements are equivalent.

1. The poset MP(L) is a graph poset.

2. The poset CJP(L) is a graph poset that is order isomorphic to MP(L).

Proof. Suppose (1). Then MP(L) = CMP(L) by Lemma 3.32. Note, since L is complete,

CMP(L) is order-isomorphic to CJP(L). Thus, MP(L) is order-isomorphic to CJP(L).

Therefore there exists an order-isomorphism f : MP(L) −→ CJP(L). Since MP(L) is a

graph poset and f is an order-isomorphism and therefore preserves all order structure

of MP(L) in CJP(L), CJP(L) is a graph poset. Hence, (1) =⇒ (2).

Suppose (2). Then there exists an order-isomorphism f : CJP(L) −→ MP(L) Since

CJP(L) is a graph poset and f is an order-isomorphism and therefore preserves all

order structure of CJP(L) in MP(L), MP(L) is a graph poset. Therefore (2) =⇒ (1).

Hence, since (1) =⇒ (2) and (2) =⇒ (1), (1) ⇐⇒ (2).

Recall that a complete lattice L = (L,≤) is join-continuous provided for all X ⊆ L

and a ∈ L, we have

a ∧
∨

X =
∨
{a ∧ x : x ∈ X}

We say that L is meet-continuous provided the order-dual of L is join-continuous.

Note that join or meet continuous lattices are automatically distributive. A join-

continuous lattice is not, however, automatically meet-continuous. This will be true

for bialgebraic, distributive lattices.
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Lemma 4.35. Let L = [⊥,>] be a complete, meet-continuous, co-atomic lattice. Let

Co(L) denote the set of co-atoms of L. Let Z ⊆ Co(L) so that Co(L) 6= Z 6= ∅ and let

K = Co(L)− Z. Then
∧
Z ∨

∧
K = >.

Proof. Suppose, by way of contradiction, that
∧
Z∨

∧
K < >. Suppose

∧
Z∨

∧
K ∈

Co(L). Then
∧
Z ∨

∧
K ∈ Z or

∧
Z ∨

∧
K ∈ K. Suppose, without loss of generality,

that
∧
Z ∨

∧
K ∈ Z. Then

∧
Z ∨

∧
K = z for some z ∈ Z. Then z ≥

∧
K.

Then z = z ∨
∧
K =

∧
{z ∨ k : k ∈ K} = >, since L is meet continuous. This

is a contradiction, since p is a co-atom, so p < >. Therefore it cannot be that∧
Z ∨

∧
K ∈ Co(L).

Suppose, then, that
∧
Z ∨

∧
K ∈ L − (Co(L) ∪ {>}). Then, since L is co-

atomic, there exists a co-atom p ∈↑ (
∧
Z ∨

∧
K). Then p = p ∨ (

∧
Z ∨

∧
K) =

(p ∨
∧
Z) ∨

∧
K =

∧
{p ∨ z : z ∈ Z} ∨

∧
K = > ∨

∧
K = >, since L is meet-

continuous. This is a contradiction, since p is a co-atom, so p < >. Therefore, it

cannot be that
∧
Z ∨

∧
K ∈ L − (Co(L) ∪ {>}).

Hence, since
∧
Z ∨

∧
K 6< >, it must be that

∧
Z ∨

∧
K = >.

Lemma 4.36. Suppose that L is a co-atomic, complete, meet-continuous lattice. If,

for all x ∈ L there exists a set Z of co-atoms such that x =
∧
Z, then L is an atomic

Boolean lattice.

Proof. Let L be a co-atomic, complete, meet-continuous lattice. Suppose for all

x ∈ L, there exists a Z of co-atoms such that x =
∧
Z. Observe,

∧
∅ = >. It

must be that ⊥ =
∧
Co(L), since if there were a Z ( Co(L) so that

∧
Z = ⊥, then∧

Co(L) <
∧
Z = ⊥, a contradiction. Therefore L = [⊥,>] = [

∧
Co(L),

∧
∅]. Since

L is meet-continuous, L is distributive.

Let x ∈ L. Then there exists a Z ⊆ Co(L) so that x =
∧
Z. Let K = Co(L)− Z
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and y =
∧
K. Then:

x ∧ y =
∧

Z ∧
∧

K

=
∧

(Z ∪ (Co(L)− Z))

=
∧

Co(L)

= ⊥.

Also,

x ∨ y = (
∧

Z) ∨ (
∧

K)

= > by Lemma 4.34

Hence y is the complement of x. Therefore, since x ∈ L was arbitrary, L is

relatively complemented. Therefore, since L is bounded, L is distributive, and L

is relatively complemented, L is Boolean. Since L is Boolean and co-atomic, L is

atomic. Hence, L is an atomic Boolean lattice, as desired.

Lemma 4.37. Suppose that L = (L,≤) is a bialgebraic, distributive lattice that

satisfies the equivalent conditions of Theorem 4.34. If MP(L) = G ∪ E as specified in

Definition 3.26, then the following statements are true.

1. The elements of G are coatoms of L.

2. We have
∧
G 6≤ e for any e ∈ E; and if G contains at least three elements,

∧
G

is incomparable to e.

3. If
∧
G ≤ y, then there exist Y ⊆ G such that y =

∧
X.

4. If G contains at least three members, then e ∨
∧
G is the smallest member of

↑
∧
G that exceeds e.
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5. If e, f ∈ E so that e 6= f , then e ∨ f ≥
∧
G.

Proof. Let x ∈ G. Then x ∈ MP(L). Suppose x 6≺ >. Then there exists a y ∈ L so

that x < y < >. Then, since L is bialgebraic and distributive, y =
∧
K for some

K ⊆ MP(L). Then there exists a k ∈ K so that x ≤ k. This is a contradiction, since

x is maximal in MP(L) and G is an antichain. Thus, x ≺ >, so x ∈ Co(L). Thus,

elements of G are coatoms of L.

Suppose there exists an e ∈ E so that
∧
G ≤ e. Then there exists a g ∈ G so that

e = g, since e ∈ MP(L) = CMP(L). This is a contradiction, since E and G are disjoint.

Hence, for all e ∈ E,
∧
G � e.

Let e ∈ E. Suppose |G| ≥ 3. Suppose e ≤
∧
G. Then e ≤ g for all g ∈ G. This is

a contradiction since e is covered by exactly two members of G and |G| ≥ 3. Hence,

e||
∧
G for all e ∈ E. Thus, if |G| ≥ 3, then

∧
G||e.

Let y ∈ L so that
∧
G ≤ y. Then, since L is bialgebraic and distributive, y =

∧
K

for some K ⊆ MP(L). Thus,
∧
G ≤

∧
K. It must be that K ⊆ G, since if K ∩E 6= ∅,

then there exists an e ∈ E so that
∧
G ≤ e, a contradiction. Hence, there exists a

K ⊆ G so that y =
∧
K. Therefore, if y ∈ L so that

∧
G ≤ y, then there exists a

Y ⊆ G such that y =
∧
Y .

Suppose |G| ≥ 3. Let e ∈ E. Suppose, by way of contradiction, that there exists

a y ∈↑
∧
G so that e < y < e ∨

∧
G. Then

∧
G ≤ y and e ≤ y. Then y = e ∨

∧
G,

a contradiction, since y < e ∨
∧
G. Therefore, for all y ∈↑

∧
G, e < e ∨

∧
G ≤ y.

Hence, if |G| ≥ 3, then e ∨
∧
G is the smallest member of ↑

∧
G that exceeds e.

Let e, f ∈ E so that e 6= f . Suppose, by way of contradiction, that e ∨ f <
∧
G.

Then e, f <
∧
G. Then e, f < v for all v ∈ G. Since MP(L) is a graph poset and so

every edge is covered by exactly two vertices and e, f < v for all v ∈ G, it must be

that G = {a, b}. Thus e = (a, b) and f = (a, b). Then e = f , a contradiction. Hence,

e ∨ f ≥
∧
G. Thus, if e, f ∈ E so that e 6= f , then e ∨ f ≥

∧
G.

Lemma 4.38. Suppose that L is a bialgebraic, distributive lattice that satisfies the

equivalent conditions of Theorem 4.34. If MP(L) = G∪E as specified in Definition 3.26
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and Bd = {
∧
G∧

∧
Z : Z ⊆ E}, then Bd is coatomic and Co(Bd) = {e∧

∧
G : e ∈ E}.

Proof. Let e ∈ E. Observe, e ∧
∧
G <

∧
G. Suppose, by way of contradiction, that

there exists an f ∈ E so that
∧
G ∧ e ≤

∧
G ∧ f . Then

∧
G ∧ f = (

∧
G ∧ e) ∨ (

∧
G ∧ f)

=
∧

G ∧ (e ∨ f)

=
∧

G by Lemma 4.37(5).

Then f ≥
∧
G, a contradiction since

∧
G � x for all x ∈ E. Hence, for all

e, f ∈ E, e ∧
∧
G||f ∧

∧
G.

Suppose there exists a nonempty Z ⊆ E so that e ∧
∧
G <

∧
Z ∧

∧
G. Then

∧
Z ∧

∧
G = (

∧
Z ∧

∧
G) ∨ (e ∧

∧
G)

=
∧

G ∧ (e ∨
∧

Z).

Observe, by meet continuity, e ∨
∧
Z =

∧
{e ∨ z : z ∈ Z} ≥

∧
G by Lemma 4.37(5).

Then
∧
Z ∧

∧
G =

∧
G ∧ (e ∨

∧
Z) =

∧
G, a contradiction. Therefore, for all

nonempty Z ⊆ E,
∧
Z ∧

∧
G ≤ e ∧

∧
G. Also, it must be that for all e ∈ E,

e ∧
∧
G ≺

∧
G. Hence, Bd is coatomic and Co(Bd) = {e ∧

∧
G : e ∈ E}.

Theorem 4.39. Suppose that L is a bialgebraic, distributive lattice that satisfies the

equivalent conditions of Theorem 4.34. If MP(L) = G ∪ E as specified in Definition

3.26, then the subposets

Bu = {
∧

Z : Z ⊆ G} and Bd = {
∧

G ∧
∧

Z : Z ⊆ E}

are complete, atomic Boolean lattices.
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Proof. Since L is complete,
∧
Bu and

∨
Bu exist, where

∧
Bu =

∧
∅ and

∧
Bu =

∧
G.

Thus, Bu is bounded,
∨
Bu = >u, and

∧
Bu = ⊥u.

Let x ∈ [⊥u,>u]. If x = >u =
∧
∅ or x = ⊥u =

∧
G, then there exists a Z ⊆ G

so that x =
∧
Z. Suppose, then, that x 6= >u and x 6= ⊥u. Since L is bialgebraic

and distributive, x =
∧
K, where K ⊆ MP(L).

Suppose there exists a k ∈ K so that k /∈ G. Then k ∈ E. Then k ≥
∧
G, so

there exists a v ∈ G so that k ≥ v, since k is completely meet prime. Then, since

E ∩G = ∅, this is a contradiction, since k = v since v ∈ G are maximal in MP(L), but

k ∈ E. Hence, it must be that K ⊆ G. Therefore, since x ∈ [⊥u,>u] was arbitrary,

for all x ∈ [⊥u,>u], there exists a Z ⊆ G so that x =
∧
G. Therefore [⊥u,>u] ⊆ Bu.

Let Z ⊆ G. Then
∧
G ∈ Bu and ⊥u =

∧
G ≤

∧
Z ≤

∧
∅ = >u. Hence,∧

Z ∈ [⊥u,>u]. Therefore, since Z ⊆ G was arbitrary, for all Z ⊆ G,
∧
Z ∈ [⊥u,>u].

Therefore Bu ⊆ [⊥u,>u].

Hence, since [⊥u,>u] ⊆ Bu and Bu ⊆ [⊥u,>u], Bu = [⊥u,>u].

Let x ∈ Bu so that x < >u. Then x =
∧
Z for some Z ⊆ G. Then there exists a

k ∈ G so that k ∈ Z. Then
∧
{k} = k ∈↑ x. Observe, >u = >L, so by Lemma 4.37,

since k ∈ Co(L), k ≺ >L = >u. Therefore k is a coatom of Bu. Hence, since x was

arbitrary, for all x ∈ Bu, ↑ x contains a coatom. Therefore Bu is coatomic. Note, for

all x ∈ G,
∧
{x} will be a coatom in G.

Therefore, since Bu is a coatomic, complete, meet-continuous lattice such that for

all x ∈ Bu, there exists a set Z ⊆ G of coatoms of Bu such that x =
∧
Z, by Lemma

4.36, Bu is an atomic Boolean lattice. Hence, Bu is a complete, atomic Boolean

lattice.

Since L is complete,
∧
Bd and

∨
Bd exist, where

∧
Bd =

∧
G ∧

∧
E and

∨
Bd =∧

G ∧
∧
∅ =

∧
G. Hence, Bd is bounded where ⊥d =

∧
G ∧

∧
E and >d =

∧
G.

Let x ∈ [⊥d,>d]. If x = ⊥d or x = >d, then there exists a Z ⊆ E so that

x =
∧
G ∧

∧
Z. Suppose, then, that x 6= ⊥d and x 6= >d. Then x <

∧
G. Since L is

bialgebraic and distributive, x =
∧
K where K ⊆ MP(L). Then

∧
K <

∧
G, so since
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K ⊆ MP(L), it must be that K ∩ E 6= ∅. Let KE = K ∩ E and KG = K ∩G. Then

x =
∧

K

=
∧

K ∧
∧

G

=
∧

KE ∧
∧

KG ∧
∧

G

=
∧

KE ∧
∧

G.

Hence, there exists a Z ⊆ E so that x =
∧
G∧

∧
Z. Therefore [⊥d,>d] ⊆ Bd. Further,

note that
∧
G∧

∧
KE =

∧
{
∧
G∧e : e ∈ KE}. Observe, {

∧
G∧e : e ∈ KE} ⊆ Co(Bd)

by Lemma 4.38. Hence, there exists a Z ⊆ Co(Bd) so that x =
∧
Z.

Let Z ⊆ E. Then ⊥d =
∧
G ∧

∧
E ≤

∧
G ∧

∧
Z ≤

∧
G = >d. Therefore∧

G ∧
∧
Z ∈ [⊥d,>d]. Hence, Bd ⊆ [⊥d,>d].

Thus, since [⊥d,>d] ⊆ Bd and Bd ⊆ [⊥d,>d], Bd = [⊥d,>d].

By Lemma 4.37, Bd is coatomic and Co(Bd) = {e∧
∧
G : e ∈ E}. Therefore, since

Bd is a coatomic, complete, meet-continuous lattice such that for all x ∈ Bd there

exists a set Z of coatoms of Bd so that x =
∧
Z, Bd is an atomic Boolean lattice by

Lemma 4.35. Hence, Bd is a complete, atomic Boolean lattice.

Therefore, if L is a bialgebraic, distributive lattice that satisfies the equivalent

conditions of Theorem 4.34 and if MP(L) = G∪E as specified in Definition 3.26, then

Bu = {
∧
Z : Z ⊆ G} and Bd = {

∧
G ∧

∧
Z : Z ⊆ E} are complete, atomic Boolean

lattices.

Definition 4.40. Let L = (L,≤) be a complete lattice. We say that L is a cone

lattice provided there exists an element ⊥ < η < > such that

1. The posets ↑ η and ↓ η are complete atomic Boolean lattices.

2. If x ∈ L− (↑ η∪ ↓ η), then ↓ η∩ ↓ x has a maximal member, and ↑ η∩ ↑ x has

a minimal member.
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We let Cone(L) =↓ η∪ ↑ η and call this poset the Boolean cone of L. We will say

that a cone lattice is proper provided L− Cone(L) is nonempty. We let Cloud(L) =

L − Cone(L).

A social graph has no isolated vertices. Note that a simple, social graph G is social

if and only if its corresponding graph poset PG is social.

Corollary 4.41. Suppose that L is a bialgebraic, distributive lattice that satisfies the

equivalent conditions of Theorem 4.34. If MP(L) = G ∪ E as specified in Definition

3.26 and MP(L) is social and has at least three maximal members, then L is a proper

cone lattice.

Proof. Suppose that L is a bialgebraic, distributive lattice that satisfies the equivalent

conditions of Theorem 4.34, MP(L) = G ∪ E as specified in Definition 3.26, MP(L) is

social and has at least three maximal members.

By Theorem 4.33, Bu = [⊥u,>u] and Bd = [⊥d,>d] are complete, atomic Boolean

lattices where ⊥L < >d =
∧
G = ⊥u < >L. Thus, ↑

∧
G and ↓

∧
G are complete,

atomic Boolean lattices. Therefore L satisfies Definition 4.40(1).

If L − Cone(L) = ∅, then for all e ∈ E, e ≤
∧
G. This is a contradiction by

Lemma 4.37(2) since |G| ≥ 3. Hence, L − Cone(L) 6= ∅.

Let x ∈ Cloud(L). Since L is complete, k =
∨

(↓ x∩ ↓
∧
G) exists. Then, for all

y ∈↓ x∩ ↓
∧
G, y ≤ k. Note, for all y ∈↓ x∩ ↓

∧
G, y ≤ x and y ≤

∧
G. Thus, since

k is the least upper bound of ↓ x∩ ↓
∧
G, it must be that for all y ∈↓ x∩ ↓

∧
G,

y ≤ k ≤ x and y ≤ k ≤
∧
G. Thus, k ∈↓ x and k ∈↓

∧
G. Hence, k ∈↓ x∩ ↓

∧
G.

Thus, ↓ x∩ ↓
∧
G has a maximal member for all x ∈ Cloud(L).

Let x ∈ Cloud(L). Since L is complete, l =
∧

(↑ x∩ ↑
∧
G) exists. Then, for

all y ∈↑ x∩ ↑
∧
G, y ≤ l. Note, for all y ∈↑ x∩ ↑

∧
G, it must be that x ≤ y and∧

G ≤ y. Thus, since l is the greatest lower bound of ↑ x∩ ↑
∧
G, it must be that for

all y ∈↑ x∩ ↑
∧
G, x ≤ l ≤ y and

∧
G ≤ l ≤ y. Thus, l ∈↑ x and l ∈↑

∧
G. Hence,

l ∈↑ x∩ ↑
∧
G. Thus, ↑ x∩ ↑

∧
G has a minimal member for all x ∈ Cloud(L).
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Hence, if x ∈ Cloud(L), then ↓ x∩ ↓
∧
G has a maximal member and ↑ x∩ ↑

∧
G

has a minimal member. Therefore, L satisfies Definition 4.40(2). Therefore, since L

satisfies Definition 4.40(1), Definition 4.40(2), and Cloud(L) 6= ∅, L is a proper cone

lattice. Hence, if L is a bialgebraic, distributive lattice that satisfies the equivalent

conditions of Theorem 4.34, MP(L) = G∪E as specified in Definition 3.26, and MP(L)

is social and has at least three maximal members, then L is a proper cone lattice.

Lemma 4.42. Suppose L andM are algebraic lattices. If CMI(L) is order-isomorphic

to CMI(M), then L is order isomorphic to M.

Proof. Suppose L and M are algebraic lattices. Suppose CMI(L) is order-isomorphic

to CMI(M). Then there exists an order isomorphism f : CMI(L) −→ CMI(M). Note,

since L is an algebraic lattice, by Birkhoff’s Theorem, for all x ∈ L, there exists an

X ⊆ CMI(L) so that x =
∧
X. Similarly, since M is an algebraic lattice, for all

y ∈M, there exists a Y ⊆ CMI(M) so that y =
∧
Y . Define g : CMI(L) −→ CMI(M)

and m : CMI(M) −→ CMI(L) by

g(x) = g(
∧

X) =
∧
{f(z) : z ∈ X}

and

m(y) = m(
∧

Y ) =
∧
{f−1(z) : z ∈ Y }

where X ⊆ CMI(L) and x =
∧
X and Y ⊆ CMI(M) and y =

∧
Y .
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Let x ∈ L. Then there exists an X ⊆ CMI(L) so that x =
∧
X. Consider,

m(g(x)) = m(g(
∧

X))

= m(
∧
{f(z) : z ∈ X})

= m(
∧

f(X))

=
∧
{f−1(f(z)) : f(z) ∈ f(X)}

=
∧
{z : z ∈ X}

=
∧

X

= x.

Thus, since x ∈ L was arbitrary, for all x ∈ L, m(g(x)) = x.

Let y ∈M. Then there exists a Y ⊆ CMI(M) so that y =
∧
Y . Consider,

g(m(y)) = g(m(
∧

Y ))

= g(
∧
{f−1(z) : z ∈ Y })

= g(
∧

f−1(Y ))

=
∧
{f(f−1(z)) : f−1(z) ∈ f−1(Y )}

=
∧
{z : z ∈ Y }

=
∧

Y

= y.

Thus, since y ∈M was arbitrary, for all y ∈M, g(m(y)) = y.

Hence, since for all x ∈ L, m(g(x)) = x and for all y ∈ M, g(m(y)) = y, g is a

bijection and m = g−1.
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Let x, y ∈ L so that x ≤ y. Note, x =
∧
X and y =

∧
Y for some X, Y ⊆ CMI(L).

Then
∧
X ≤

∧
Y . Then ↑ y ⊆↑ x. Then Y ⊆ X. Then f(Y ) ⊆ f(X), since f is

a bijection. Then
∧
f(X) ≤

∧
f(Y ). Then g(x) ≤ g(y). Hence, for all x, y ∈ L, if

x ≤ y, then g(x) ≤ g(y). That is, g is an order homomorphism.

Let p, q ∈ M so that p ≤ q. Then there exists x, y ∈ L so that g(x) = p

and g(y) = q. Then g(x) ≤ g(y). Observe, there exists P,Q ⊆ CMI(M) so that∧
P = p and

∧
Q = q. Then

∧
P ≤

∧
Q. Then ↑ q ⊆↑ p. Then Q ⊆ P . Then

f−1(Q) ⊆ f−1(P ) since f is a bijection. Then
∧
f−1(P ) ≤

∧
f−1(Q). Observe,

g(
∧

f−1(P )) =
∧
{f(f−1(k)) : k ∈ P}

=
∧
{k : k ∈ P}

=
∧

P

= p

= g(x).

Hence, since g is injective, x =
∧
f−1(P ). Similarly, y =

∧
f−1(Q). Thus, x ≤ y.

Hence, for all p, q ∈M, if g(x) = p ≤ q = g(y), then x ≤ y.

Thus, since g is bijective, g is an order homomorphism, and for all p, q ∈ M, if

g(x) = p ≤ q = g(y), then x ≤ y, g is an order isomorphism. Therefore L is order

isomorphic to M.

Hence, if L and M are algebraic lattices so that CMI(L) is order isomorphic to

CMI(M), then L is order isomorphic to M.

Theorem 4.43. If L is a bialgebraic cone lattice such that MP(L) is a graph poset,

then there exists a simple, social graph G so that PG is order isomorphic to MP(L) and

Ω(G) is order isomorphic to L.

Proof. Let L be a bialgebraic cone lattice such that MP(L) is a graph poset. Since

MP(L) is a graph poset, there exists a simple, social graph G so that PG is order iso-
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morphic to MP(L). Observe, MP(Ω(G)) is order isomorphic to PG by Theorem 4.38,

and so is order isomorphic to MP(L).

Note, since L and Ω(G) are bialgebraic, CMP(L) = CMI(L) and CMP(Ω(G)) =

CMI(Ω(G)). In particular, since MP(L) = CMP(L) and MP(Ω(G)) = CMP(Ω(G)), MP(L) =

CMI(L) and MP(Ω(G)) = CMI(Ω(G)). Thus, MP(L) is order isomorphic to MP(Ω(G)).

Then, since Ω(G) and L are algebraic lattices such that MP(L) and MP(Ω(G)) are

order isomorphic, Ω(G) is order isomorphic to L. Hence, if L is a cone lattice such

that MP(L) is a graph poset, then there exists a simple, social graph G so that Ω(G)

is order isomorphic to L.

Theorem 4.44. Let G be a simple, social graph and Ω(G) be its associated classical

topology. Then there is a simple, social graph GΩ(G) associated with Ω(G) so that GΩ(G)

is graph isomorphic to G.

Proof. Let G be a simple, social graph and Ω(G) be its associated cone lattice. Then

MP(Ω(G)) is a graph poset. Observe, PG is the graph poset associated with G. Observe,

PG is order isomorphic to MP(Ω(G)) by Theorem 3.27. Since MP(Ω(G)) is a graph poset,

there exists a graph GΩ(G) so that PGΩ(G)
is order isomorphic to MP(Ω(G)). Then PG

is order isomorphic to PGΩ(G)
. Therefore, since PG and PGΩ(G)

are graph posets which

are order isomorphic, GΩ(G) is graph isomorphic to G.

Hence, if G is a simple, social graph and Ω(G) is its associated cone lattice, then

there is a simple, social graph GΩ(G) associated with Ω(G) so that GΩ(G) is graph

isomorphic to G.

Theorem 4.45. Let L be a bialgebraic cone lattice such that MP(L) is a graph poset.

Then there is a simple, social graph G so that Ω(GΩ(G)) is order isomorphic to L.

Proof. Let L be a cone lattice. Then MP(L) is a graph poset. Then there is a simple,

social graph G so that PG is order isomorphic to MP(L) and Ω(G) is order isomorphic
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to L by Theorem 4.43. Then there is a simple, social graph GΩ(G) associated with Ω(G)

so that GΩ(G) is graph isomorphic to G by Theorem 4.44. Since G and GΩ(G) are graph

isomorphic, it must be that Ω(G) and Ω(GΩ(G)) are order isomorphic. Therefore, since

L is order isomorphic to Ω(G) and Ω(G) is order isomorphic to Ω(GΩ(G)), it must be

that L is order isomorphic to Ω(GΩ(G)).

Hence, if L is a bialgebraic cone lattice such that MP(L) is a graph poset, then

there is a simple, social graph G so that Ω(GΩ(G)) is order isomorphic to L.
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CHAPTER 5

CONCLUSION

5.1 Conclusion

In this thesis, several things have been shown. In section 2, we identified important

order theoretic properties of the classical topology. In particular, we showed that

the meet-prime elements are the completely meet-prime elements in Ω(G) and the

join-prime elements are the completely join-prime elements in Ω(G).

In section 3, we defined graph posets and showed that for every simple, social

graph G, MP(Ω(G)) is a graph poset whose associated graph is graph isomorphic to G.

We also showed that given a simple, social graph G, Low(PG) = Ω(G).

In section 4, we defined cone lattices and showed that if we are given a cone lattice

L whose meet-prime elements form a graph poset, then there is a simple, social graph

G so that Ω(G) is order isomorphic to L and so that MP(L) is order isomorphic to

MP(Ω(G)).

Summarized diagrammatically in Figure 1, we have shown that if we are consid-

ering any object of the diagram, we are able to equivalently consider any other object

of the diagram, where G is a simple, social graph and L is a bialgebraic cone lattice

whose meet-prime elements form a graph poset.

G Ω(G)

MP(L) L

Figure 1: Diagram

5.2 Further Research

There are many topics for further research related to this thesis. In particular,
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1. Generalize cone lattices to hypergraphs.

2. Show how graph homomorphisms between graphs G and H can be described in

the context of the cone lattices Ω(G) and Ω(H).

3. Show that if L is a cone lattice so that MP(L) is a graph poset, then L is a

bialgebraic, distributive lattice.

4. If L is a cone lattice, what happens if MP(L) is not a graph poset? What other

kinds of posets can MP(L) be?

5. Given a simple, social graph G with n vertices,

|Ω(G)| ≤ |Ω(Kn)| = 2n + 2
n(n−1)

2 − 1 + f(n),

where f(n) = |Cloud(Ω(G))|. What is f(n) for all n?

6. If G is a weighted graph, what is a good way to, if at all, to translate the notion

of weights to Ω(G)?

7. Can we view Ω(G) from the context of spectral graph theory?

8. The structure of a cone lattice L can be described by taking two atomic Boolean

lattices B1 and B2 and identifying the bottom element of B2 with the top

element of B1, called Cone(L), with Cloud(L) = L − Cone(L).

If we consider a lattice L for which we can consider a sequence of atomic Boolean

lattices {Bn}∞k=1 so that we identify >k = ⊥k+1 for all 1 ≤ k ≤ n − 1 and call

this Cone(L), and take Cloud(L) = L − Cloud(L) to have a similar structure

as the case where L is a cone lattice, what is the description of such an object?
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