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ABSTRACT

The accumulating of big-data such as medical data and insurance data requires

more advanced computational statistical data analysis methods. As an interdisci-

plinary computational science research, we study mathematical methods of multi-

resolution analysis (MRA), statistical techniques of Bayes classifiers and Markov Ran-

dom Field (MRF), computing tools of pyramid imaging matching and Markov Chain

Monte Carlo (MCMC) and develop new statistical computing schemes in the appli-

cations of Imaging Mass Spectrometry (IMS) proteomic data analysis and insurance

solvency modeling.

IMS technique is an important and useful tool to discover biomarkers and detect

early cancer. However, the high-dimensionality of IMS data makes IMS data pro-

cessing a difficult task and the development of computational methods for IMS data

analysis is lagging behind its technological progress. To overcome high-dimensionality

difficulty in IMS data analysis, we propose the MRA method to reduce the dimen-

sionality of IMS data. By transforming IMS data onto wavelet coefficients space and

analyze it from low resolution scale to high resolution scale using the idea inspired by

pyramid imaging matching technique, the computational complexity can be reduced,

while important biomarkers are still selected. For better IMS classification results,

we select feature variables from wavelet coefficients and use Bayes classifier to clas-

sify IMS pixels based on its feature variables. To incorporate spatial information of

IMS data, we consider the Markovianity in cancer growth that the state (cancer or

non-cancer) of a sample point (pixel) is highly determined by the configuration of

its neighboring system and use MRF to incorporate spatial information of IMS data.

This algorithm is implemented using MCMC sampling and the result is probabilistic

which provides more information than a deterministic result. We also tested different
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neighborhood definitions.

As another application of statistical computing techniques, we study insurance

solvency modeling. Insurance solvency is one of the most important measurements of

insurance companies’ financial health. It is directly related to the financial security

of an insurance company and the benefits of insurance policyholders. The current

solvency prediction methods are more deterministic rather than probabilistic. How-

ever, the deterministic method can not provide information such as percentiles and

probabilities as a probabilistic method provides. In this application, we design an

innovating model to predict captive insurance solvency using a probabilistic method

with Monte Carlo simulation. Based on a pre-built financial report for captive insur-

ance, we simulate future losses according to loss distribution to predict solvency scores

in coming years. We score solvency from 0 to 1. This solvency score measures the

probability that any of the future Insurance Regulatory Information System (IRIS)

ratios breaks its upper and lower bounds. These bounds can be defined by users

according to their business situations.

The data experiment shows MRA methods in proteomic data analysis are able to

select important biomarkers and also achieve a higher classification accuracy with less

computation complexity. The data experiment for the MCMC-MRF method shows

that the MCMC-MRF method can improve classification accuracy significantly. Also,

the captive insurance solvency model designed in this research can be a useful tool for

captive managers to use and give more probabilistic information than the traditional

deterministic IRIS models.
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CHAPTER 1

INTRODUCTION

With the development of computer storage and data collecting techniques, the

amount of data we are accumulating in different areas, such as Proteomics, insurance

risk management and so on, is experiencing an explosive growth. In this big-data

time, we need more advanced mathematical, statistical, and computational data anal-

ysis techniques to process the data we have in order to discover new knowledge. As

an interdisciplinary computational science research project, we study Imaging Mass

Spectrometry proteomics data analysis and captive insurance solvency modeling by

using wavelet method, Multi-resolution analysis, Bayes classifier, Metropolis-Hasting

algorithm [29], Monte-Carlo Markov Chain (MCMC), Insurance regulation informa-

tion system (IRIS) ratios and Monte-Carlo Simulation.

1.1 Imaging Mass Spectrometry (IMS) data analysis

Imaging mass spectrometry (IMS) is a technique developed from mass spectrometry

to visualize the spatial distribution of moieties such as proteins, peptides, metabolites

and lipids ([30], [25]). Currently, IMS is one of the few biochemical technologies able

to establish the spatial biochemical composition of a sample in the full molecular

range [38]. It can be used to map biomolecules in biological tissues and has attracted

a great deal of attention in the analyses of drug effects, screening of drugs, and support

for medical diagnoses [35]. However, the development of computational methods for

IMS is lagging behind its technological progress [42].

IMS data set can be treated as a hyper-spectral imaging type data cube, see Figure

1. The value at each entry of the IMS data cube shows the abundance of corresponding
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molecule. For a fixed m/z value ( mass-to-charge ratio) in an IMS data cube, the

corresponding intensity values make up an image that shows the distribution of that

specific biochemical component in sample associated with this m/z value. Also, for

a fixed pixel in the image cube, there is a mass spectrum (MS) corresponding to this

pixel.

The main tasks for IMS data analysis are biomarker selection and classification.

A biomarker is a biological molecule found in blood, other body fluids, or tissues

that is a sign of normal or abnormal processes, or of a condition or disease [27]. In

IMS data analysis, one usually finds biomarkers in terms of m/z values associated

with proteins or peptides. Current popular analysis methods for IMS data include

Principle Component Analysis (PCA) ([40], [16]), Support Vector Machine (SVM)

[14] and Clustering methods [11]. With the development of IMS techniques, the

amount and resolution of IMS data has increased. This requires faster and more

accurate data analysis algorithms.

In chapter 2, our first concern is to reduce the high dimensionality of IMS data.

We use wavelet transform to achieve this goal. wavelet transform has multi-resolution

property and the combination of low and high resolution coefficients can greatly

reduce the high dimensionality of original data. When we search for biomarkers, we

use the idea inspired by pyramid image matching. At the low resolution level we

can detect the m/z intervals which contain potential biomarkers and at the higher

resolution level we only search in these m/z intervals with more details. In this way,

we can reduce IMS data dimensionality in searching biomarkers because at lower

resolution levels we only select those m/z data intervals contain potential biomarkers.

To do classification, we select feature variables from wavelet coefficients of IMS data.

These features representing IMS data at different resolution levels will be more robust
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Figure 1: An illustration of IMS data. (Top) For a fixed IMS pixel, there is a

corresponding mass spectrum (MS). (Bottom) If an m/z value (mass-to-charge ratio)

is fixed, the corresponding MS intensities for all pixels that make up an image shows

the spatial intensity of that protein.
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than feature variable selected as original m/z data points because wavelet coefficients

describe data at different resolution levels of data amplitudes. The feature variables

we selected are those wavelet coefficients that are significantly different between cancer

training data and non-cancer training data because they can classify cancer group

and non-cancer group apart. We use Bayes classifier to classify for each IMS pixel

according to its feature variables.

Chapter 3 is based on the fact that MRA method descriibed in chapter 2 without

incorporating spatial information for IMS data processing. However, IMS data not

only provide Mass Spectrum information but also image information, which is a type

of spatial information. To further utilize IMS data information, one needs to consider

the spatial relation between data pixels. Because the nature of tumor growth is

spatially continuous, the class (cancer or non-cancer) of an IMS data pixel is closely

related to its spatial neighboring pixels. We find Markov Random Field (MRF) is

an ideal tool to describe such spatial relations, because in MRF the value of a pixel

can be determined by the values of its neighboring pixels with a probability. The

framework of chapter 3 is as follows: First, based on the result of MRA method,

we consider the classification result from the MRA method presented in chapter 2

and denote it as an observation class y. Our goal is to estimate its true class θ using

observation class y. This is a posterior estimation problem. Then, we use Metropolis-

Hasting algorithm to implement this posterior estimation. Posterior is the product of

a prior and a likelihood. We use Ising model (binary format of MRF) as the prior to

incorporate spatial information and the posterior probability P (y|θ) in training data

as the likelihood. By examining different types of neighboring systems to describe

different spatial impact mechanisms in tumor growth, we found that in IMS data

classification, an 8-points neighboring system works better than 4-points neighboring
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system and the higher-order neighboring works better than the 1st order neighboring.

1.2 Captive insurance solvency prediction problem

Continuing with the stochastic simulation idea in MCMC-MRF in menthiond in previ-

ous subsection, we choose captive insurance solvency prediction as another application

topic, where stochastic Monte Carlo simulation and model design technique will be

applied. This research is motivated by my internship experience in SIGMA Actuarial

Consulting Group, where I got opportunity to know captive solvency rating problem

and its needs in insurance practice.

Solvency is the ability of a company to meet its long-term financial obligations.

Usually, we say an insurance is solvent if its financial situation is healthy enough to

be able to pay future claims. Captive insurance is an insurance that is wholly owned

and controlled by its insureds. Captive insurance is non-profit. Solvency is key for the

survival of captive insurance. In practice, a professional captive insurance manager

usually manage dozens of small size captive funds. They need a good tool to measure

their solvencies. In chapter 4, we apply Monte Carlo simulation based on captive

insurance company’s historical data distribution to develop a predictive model for

captive insurance solvency.

Existing popular methods that evaluate insurance solvency include Insurance Reg-

ulatory Information System (IRIS) [4], Financial Analysis Solvency Tools (FAST),

solvency II. These methods have shortcomings when it comes to captive insurance

solvency. First, they are not specially designed for captive insurance, therefore can

not predict captive insurance well. Second, current popular solvency evaluation meth-

ods are deterministic, for example, in IRIS method, a deterministic rating will be

given without probability distribution. Third, these popular methods focus on cur-
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rent stage solvency evaluation, not future prediction. Knowing future solvency trend

provides captive insurance manager confidence about decision makings. Last, IRIS

based method have been used since 1970s for solvency regulation, but its range from

the lower bound to the upper bound are fixed, which is not suitable for every situa-

tion. Based on these shortages, we aim to design a model that gives a probabilistic

result instead of deterministic one, dynamically predict future solvency scores instead

of current static solvency evaluation, and allows the user to define IRIS upper lower

bounds with flexibility instead of fixed IRIS upper and lower bounds.

Retention is the maximum risk an insurance organization is willing to take. The

loss above the retention cap will be covered by reinsurance companies. For captive

insurance managers, choosing the right retention level is important for future captive

insurance solvency. If the retention is too low, then captive insurance need to pay

high premiums to reinsurance, and future solvency score will be lower because captive

insurance may not have enough fund to pay claims. If the retention is too high, then

future solvency score can also be low because of long-tail effect in loss distribution.

Based on these discussions, when we design the model, we associate retention with

future solvency in consideration. In our model, we allow the user to select several

retention levels they are interested in. Under each retention level we use Monte Carlo

simulation to approximate future years’ solvency scores. The result will be a matrix

of solvency scores under different retention levels for different future years. With this

result, the user is able to not only estimate future years’ solvencies, but also compare

different retention levels when making retention selection decision.



7

CHAPTER 2

MULTI-RESOLUTION ANALYSIS METHOD FOR IMS PROTEOMIC

DATA BIOMARKER SELECTION AND CLASSIFICATION

Even though imaging mass spectrometry (IMS) technique is evolving rapidly, its

data analysis capability lags behind. Especially with the improving of IMS data res-

olution, faster and more accurate data analysis algorithms are required. To meet

such challenges in IMS data analysis, an effective and efficient algorithm for IMS

data biomarker selection and classification using multi-resolution (wavelet) analy-

sis method is proposed. We first applied wavelet transform [2] to IMS data de-

noising. The idea of wavelet pyramid method for image matching was then applied

for biomarker selection, in which Jaccard similarity is used to measure the similarity

of wavelet coefficients. Last, the Naive Bayes classifier [26] was used for classification

based on feature vectors in terms of wavelet coefficients. Performance of the algo-

rithm was evaluated in real data applications. Experimental results show that this

multi-resolution method has advantages of fast computing and accuracy.

2.1 Motivation of this study

To meet challenges and needs in IMS data analysis, we have developed a mathemat-

ical and statistical model using the wavelet method for IMS cancer data analysis in

biomarker selection and classification. The motivations for introducing the wavelet

method to IMS data analysis are based on the following. First, the multi-resolution

property of wavelets allows us to analyze IMS data on different resolution levels to

obtain accurate results with less computation. The low resolution analysis can de-

crease analysis time because we can represent the whole data set with less wavelet
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coefficients. Also, over-fitting can be reduced and noise can be lessened at low resolu-

tion analysis. The high resolution analysis can improve biomarker selection accuracy

by analyzing data without losing detailed information. The wavelet method combines

the aforementioned advantages of low and high resolution analysis together. Second,

wavelet pyramid method in image matching [49] can be applied to identify biomarkers

from low resolution to high resolution. Note that in cancer IMS studies, biomarkers

are identified by comparing cancer IMS data and non-cancer IMS data. This process

is similar to image matching. Hence, the wavelet method, which is essential in the

pyramid imaging matching process, can also be expected to be useful in IMS data

analysis. Third, wavelet transform can reduce the high dimensionality of IMS data.

By transforming IMS data to wavelet coefficient space, we can represent IMS data

sparsely at low resolution while still keeping the necessary detail information at high

resolution. Last, only few studies have applied the wavelet method to IMS data anal-

ysis, though there are some work in mass spectrometry (MS) applying the wavelet

method, for example work in [10]. We would like to apply the wavelet method to IMS

data to determine if this method has some advantages compares with other current

methods. Successful application in MS data analysis would show that the wavelet

method can also be promising in dealing with IMS data.

The main contributions of this research include: combining the advantages of

both low resolution and high resolution analysis in IMS data processing to achieve

fast and accurate biomarker selection algorithm; providing a new perspective of IMS

data by transforming the original IMS data to wavelet coefficient space and can find

those patterns not easy to see in original data; introducing probabilistic calcification

instead of traditional binary classification to obtain not only a classification result

but also a confidence level.
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The remaining of this chapter is organized in the following manner: Section 2.2, we

propose a wavelet based de-noise algorithm for IMS data; Section 2.3, a wavelet based

IMS biomarker selection algorithm using the idea of pyramid matching is proposed;

Section 2.4, we propose an IMS data classification algorithm using feature variables

selected from wavelet coefficients combined with Naive Bayes classifier.

2.2 Wavelet method for IMS data de-noising

Before we start biomarker selection, we need to pre-process IMS data by data de-

noising. Denoising is based on the wavelet method [9]. Figure 2 presents an example

of wavelet coefficients (discrete Haar wavelet coefficients) for a pixel in the IMS data,

with false color representation of the coefficient value. The coefficients on the top of

Figure 2 are low frequency wavelet coefficients, which describe the data on a large scale

and show the outline. The coefficients on the bottom of Figure 2 are high frequency

wavelet coefficients, which describe the data on a smaller scale and show the details.

In N -level decomposition, one signal is decomposed into N detailed components and

one approximation component. We can de-noise the signal by keeping the large

coefficients while setting the small coefficients to be 0 based on a threshold level. By

applying this method, we can remove the majority of the noise. Here are the basic

steps for de-noising,

• Step 1: Decompose the signal f . Compute the wavelet decomposition of the

signal f from resolution level 1 to N .

• Step 2: Threshold detail coefficients. For each level from 1 to N , set the detail

coefficients less than threshold to be 0. In illustrative Figure 3, the yellow

broken line is the threshold level.
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Figure 2: An example of wavelet coefficients of the mass spectrometry for one IMS

pixel. Those top coefficients cover wide intervals are low resolution coefficients which

describe data on large and rough scale. Those bottom coefficients cover narrow inter-

vals are high resolution coefficients which describe data on small and precise scale.
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Figure 3: Illustration of IMS data de-noising by using the wavelet method. (Left)

Apply wavelet transform to mass spectrum. For each resolution level, set a threshold

line, the yellow broken lines as shown in left figure. Only keep large coefficients,

greater than threshold, and set small coefficients smaller than threshold to zero. Then

apply wavelet inverse transform to the modified coefficients and the result is de-noised

data. (Right) The yellow data is de-noised. The red data is original data.
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• Step 3: Reconstruction of the signal. Compute wavelet reconstruction using

the modified coefficients to recover the de-noised signal.

We apply this process to all the original IMS data to obtain the de-noised IMS

data. All sequent analysis is based on the de-noised data. See [10] for more details

on MS data preprocessing.

2.3 Biomarker selection

2.3.1 Algorithm idea

Biomarkers in IMS cancer studies are proteins whose intensities differ between cancer

area tissue and non-cancer area tissue, therefore allowing them to be used as markers

to tell the cancer status of the specimen. The biomarker selection problem in IMS

data analysis is very similar to the image matching problem. In image matching,

people find objects that are similar between images using wavelet pyramid method

[48]. Here in IMS data analysis, we find those proteins whose intensities are different

between sample data. We just need to define a variable to measure the difference

instead of similarity, and biomarker selection problem can be handled in a similar

way as wavelet pyramid method applied in image matching.

The basic idea for image matching based on wavelet pyramid multi-resolution

analysis can be briefly described as following [49].

• Step 1: Compare sub-images at the low resolution level.

• Step 2: Amplify the matched area and compare images at higher resolution

level.
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• Step 3: Repeat step 2 until to full resolution to find out the matched object in

compared two images and purpose of image matching achieved.

We apply this idea to wavelet multi-resolution IMS cancer data analysis to select

biomarkers.

• Step 1: Compare cancer data and non-cancer data at low resolution level to

select the m/z ranges whose intensities are statistically significantly different

between cancer and non-cancer data. Those selected m/z ranges can be treated

as ”suspicious” m/z data ranges because their data difference in statistics may

be caused by the existence of cancer biomarkers.

• Step 2: Increase the resolution level of those suspicious m/z data ranges to

compare them between cancer and non-cancer data at a higher resolution and

select those smaller suspicious m/z data sub-ranges with intensity statistically

different between two data groups.

• Step 3: Repeat step 2 until to full resolution level. Those m/z values selected

at full resolution level are the biomarkers we selected from this algorithm.

2.3.2 Algorithm detail

In this study, we use two IMS data sets as shown in Figure 4. They are generated

from the Vanderbilt Mass Spectrometry Research Center using two different mouse

brains from same species implanted with the same type of cancer cells. Data set-1

has resolution 24*34, which contains 816 MS pixels. Data set-2 has resolution 64*44,

which contains 2816 MS pixels. We use one data set as training data and another as

test data. We illustrate this biomarker selection algorithm using the data experiment
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Figure 4: IMS data sets used in this study. (Top left) The brain tissue slice picture

where the IMS data set 1 is generated from. (Top right) IMS data set 1 snap for

a specific m/z channel. (Bottom left) The brain tissue slice picture where the IMS

data set 2 is generated from. (Bottom right) IMS data set 2 snap for a specific m/z

channel.
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Figure 5: Training data set. (Left) The left marked round area is the selected cancer

pixels and right marked round area is the selected non-cancer pixels; (Right) Slide

picture of the mouse brain with a tumor where the data in left was generated.

we did on data set-1. From data set-1 (Figure 4), we select two round IMS data areas

with radius of r = 6 (6 pixels distance) which are symmetrical to each other by the

symmetric line of the mouse brain slice. Because of their symmetrical positions, these

two areas contain the very same biological structure so that we can better emphasize

the differentiation of cancer and non-cancer in IMS intensities. The data in these two

selected areas are used as training data. Each round area contains 109 IMS pixels,

i.e. 109 mass spectra (MS).

For each selected training MS, compute its 12-level discrete wavelet decomposition.

Figure 6 shows wavelet coefficients space for a cancer training pixel MS and a non-

cancer training pixel MS. Applying wavelet transform [2]to each mass spectrum turns

a spectrum data cube into a wavelet coefficient data cube. Originally, each pixel is

associated with a mass spectrum, but after transformation, each pixel is associated
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Figure 6: Wavelet coefficients space for a cancer MS and a non-cancer MS. (Left)

Wavelet coefficients space for a cancer MS. (Right) Wavelet coefficients space for a

non-cancer MS. For each cancer IMS pixel, there is a corresponding wavelet coeffi-

cients space like left picture. For each non-cancer IMS pixel, there is a corresponding

wavelet coefficients space like right picture. The difference table as shown in Figure

10 is computed by comparing statistical difference of wavelet coefficients from cancer

MS group and non-cancer MS group.

with a wavelet coefficient vector space. Since the MS intensities of cancer biomarkers

vary dramatically from cancer pixels to non-cancer pixels and wavelet coefficient is

a description of MS on wavelet space, we can to locate biomarkers by measuring

the difference between cancer wavelet coefficients and non-cancer wavelet coefficients.

The difference of wavelet coefficients can indicate the difference between cancer MS

and non-cancer MS at different resolution levels. Analyzing it from low resolution to

high resolution, we can quickly locate the biomarkers. This idea was inspired by the

wavelet pyramid method in image matching [49].

We measure the difference using a method analogous to Jaccard similarity [36],
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[37]. It measures difference by measuring how much two groups data are overlapped

(Figure 7). Statistically, the more two group of data overlap, the more different they

are (Figure 8).

The following is the mathematical definition of the difference described above.

We denote the set of selected training cancer pixels as Sc, the set of selected training

non-cancer pixels as Sn. For a fixed wavelet resolution level j ∈ J (in our experi-

mental data we define J = {1, 2, ..., 12}) , a fixed wavelet window position k ∈ K

(in our experimental data we define K = {1, 2, ..., 2j+2} ) and a selected pixel i ∈ Sc

or i ∈ Sn, we denote the corresponding cancer wavelet coefficient as ccj,k,i and its

empirical distribution along the selected training cancer pixels set Sc as f cj,k, and the

corresponding non-cancer wavelet coefficients group as cnj,k,i and its empirical distri-

bution along the selected training non-cancer pixels set Sn as f cj,k. The similarity of

wavelet coefficients between cancer data group {ccj,k,i}i∈Sc and non-cancer data group

{cnj,k,i}i∈Sc is defined as

Sj,k =

∫ +∞

−∞
min{f cj,k(x), fnj,k(x)}dx (1)

The intuitional meaning of Sj,k is the overlapping area of the histogram of the

two groups to be compared. We can approximately calculate this integral using the

histogram of the empirical distribution. Finally, we define the difference between the

wavelet coefficients {ccj,k,i}i∈Sc and {cnj,k,i}i∈Sn as:

dj,k = 1− Sj,k (2)

An illustration of dj,k is given in Figure 9.

We define D = {dj,k}j∈J,k∈K , the difference table that describes the difference of

the corresponding wavelet coefficients between cancer group and non-cancer group at

different wavelet resolution level as the false-color map shown in Figure 10. These
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Figure 7: An example of Jaccard similarity. According to definition of Jaccard

similarity J(A,B) = |A∩B|
A∪B , the similarity between A1 and B1 are greater than the

difference between A2 and B2. Hence the difference between A1 and B1 is smaller

than the difference between A2 and B2.

large difference value areas contain potential biomarkers. ”Large difference” means

the corresponding dj,k greater than the threshold, i.e., there is statistically significant

difference exist here between two groups of data. Similar to the wavelet pyramid

method applied in image matching, we take advantage of the multi-resolution property

of wavelet analysis to locate the biomarkers from low resolution wavelet coefficients

to high resolution wavelet coefficients using the idea we described in Section 2.3.1.

We analyze difference table D from lower resolution level j = 8 to highest resolution

level j = 12. From level j = 8 to level j = 12, if dj,k is greater than the threshold (we

set it as 0.85 for the experiment data we use here), that means the contrast between

cancer MS and non-cancer MS on the corresponding chemical protein is noticeable

at the jth wavelet resolution level as well as the kth wavelet window position. Thus,

there is a good chance that biomarkers exist in the corresponding m/z intervals. We

then further analyze the wavelet coefficients on the next higher wavelet resolution (i.e.
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Figure 8: An illustration of statistical Jaccard similarity. Statistically, according to

definition of difference defined in formula (1) and (2), the difference between data1

and data2 (Top) are smaller than the difference between data3 and data4 (Bottom),

since data1 and data2 have more overlap values. f is the distribution of data.
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Figure 9: Illustration of the definition of difference dj,k, area of red shadow. Since

Jaccard distance measure similarity, the difference (un-similarity) should be the com-

plement value of Jaccard distance.
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Figure 10: Difference table D = {dj,k}j∈J,k∈K. The color represents value. It mea-

sures the difference between cancer data and non-cancer data. The MRA (multi-

resolution analysis) biomarkers selection from low resolution to high resolution is

done based on this table.

amplify it) level in the same wavelet window position. Otherwise if dj,k is not greater

than the threshold, we stop and shift our analysis to the adjacent wavelet window

position k+1. We repeat this process until we reach the highest resolution level, level

j = 12 in the data we used, and determine the specific m/z value whose intensities

difference are greater than the threshold. These m/z values selected at highest level

j = 12 are the m/z values of the biomarkers selected by this algorithm. The threshold

can be changed in order to select the corresponding number of biomarkers. Algorithm

1 shows this algorithm’s pseudo-code.

Table 1 is the list of the m/z values of the biomarkers selected by this multi-
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Algorithm 1 MRA biomarker selection for IMS data
Input: IMS selected data

Output: biomarkers

1: Compute difference table D . use formula (1), (2)

2: lowest resolution level = 8 . selected by user

3: highest resolution level = 12 . selected by user

4: desired biomarker number = 30 . selected by user

5: initial threshold = 0.7 . selected by user

6: decrement size = 0.01 . selected by user

7: threshold = initial threshold

8: biomarkers = [] . to record biomarkers

9: while length(biomarkers) > desired biomarker number do

10: for j = lowest resolution level→ highest resolution level do

11: for k = 1→ 2(j+1) do

12: if (2j+1 ∗ (k − 1) + 1, 2j+1 ∗ k) is in marked interval then

13: if Dj,k > threshold then

14: Mark (2j+1 ∗ (k − 1) + 1, 2j+1 ∗ k) to be marked interval

15: end if

16: if j == highest resolution level then

17: biomarkers = [biomarkers, 2j+1 ∗ (k − 1) + 1]

18: end if

19: end if

20: end for

21: end for

22: threshold = threshold−Decrement size

23: end while
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resolution analysis method (MRA) algorithm described above along with the lists of

biomarkers selected by some other popular methods for IMS data biomarker selection.

According to the biological study [23], the biomarkers whose m/z = 6700 and

m/z = 8380 are widely confirmed as the key cancer biomarkers for GL26 IMS data

sets that we used in this research. Compared with other methods, the MRA method

discovered both biomarkers while including a relatively shorter biomarkers list. Figure

11 is the intensity distributions of these two biomarkers (m/z = 6702.2, m/z =

8374.9). Its intensity differences between cancer and non-cancer area are significant

at this two m/z channels. These are biomarkers that have already been proven in

a previous cancer study [22]. Two such biomarkers include cytochrome c oxidase

copper chaperone and cytochrome c oxidase subunit 6c. They are related to the

growth, division, and expansion of tumor cells. These facts support the results of this

MRA algorithm.

Additionally, based on our computing experiment, we determined that the MRA

method for IMS data biomarker selection has high algorithm computing speed. We

tested the algorithm speed using MATLAB 7.0 installed on a DELL laptop to run

EN4IMS proposed by D. Hong and F. Zhang in 2010 [18] and the MRA method

discussed in this research with the same data set (data set-1). Here is the hardware

information of the computer used for this test: Intel(R) Core(TM)2 Duo CPU

T7250 @2.00GHZ 778 MHz, 2.00 GB. The test showed that the CPU time for

EN4IMS to select biomarkers is 49.265 seconds. The CPU time for MRA method

is only 26.562 seconds. The shorter running time of MRA method comes from the

advantage of multi-resolution. In MRA method, we saved computing time by avoiding

analyzing every m/z data point one by one. We exclude those m/z intervals whose

data difference is not as large as the threshold we set. The amount of m/z data points
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Table 1: A comparison of biomarker lists generated by the Multi-Resolution Analysis

Method (MRA) and by currently major methods [17] for IMS data analysis. MRA

method generates a shorter list while still contains major biomarkers (m/z = 6702,

m/z = 8375).

EN4IMS list SAM list EN list PCA list MRA list
4664 2791 3434 8337 4476 13562 4934 8567 4599
4667 3010 3764 8366 4664 14327 4936 10257 4607
4670 3056 4011 8380 4670 14336 4937 10259 4757
4812 3734 4076 8395 4812 14343 4938 10261 4759
5446 3800 4271 8492 4884 14781 4939 10263 4762
5753 3920 4538 8672 5425 14786 4960 14969 4767
5754 4206 4566 8945 5429 14805 4962 14971 4770
5756 4341 4665 8982 5446 4963 14974 4892
5757 4605 4676 9327 5753 4964 14976 4895
6165 4734 4899 9343 5754 4966 14979 4903
6702 4767 5106 9531 5756 5439 14981 5438
6706 4921 5120 9602 6165 5441 14983 5446
7799 4936 5428 9619 6702 5442 14986 5449
8019 4964 5444 10238 6706 5444 15603 5714
8024 4981 5707 10267 6794 5445 15606 6244
8384 5001 5753 10466 7799 5446 15608 6248
8386 5024 6166 10662 8019 5448 15611 6312
9344 5170 6186 12434 8024 5449 15613 6702
10172 6225 6251 13560 8028 5451 15616 6705
10261 7706 6310 14525 8384 6571 15618 8375
10263 8420 6574 8386 6572 15620 8400
10265 8603 6700 8495 6574 15623 8403
10267 8709 6719 8524 6575 15625 8572
10282 8747 6780 9344 6577 16780 8978
10366 9062 7099 9553 7749 16782 9332
10374 9736 7118 10172 7751 16785 9613
10825 9956 7297 10261 7752 16787 9616
10949 10167 7315 10263 7792 9624
13562 10952 7338 10267 7794 11632
14336 11388 7357 10282 7795
14343 11640 7751 10366 7797
14781 12203 7776 10374 8560
14786 14865 7795 10811 8562
14805 14927 8025 10825 8564

14978 8107 10949 8566
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Figure 11: Two important biomarkers selected. (Left) Intensity distribution for

biomarker of m/z = 6702.2 selected by MRA method. (Right) Intensity distribution

for biomarker of m/z = 8374.9 selected by MRA method. These two biomarkers have

been confirmed by biology study and also selected out by MRA method.

that still remain at higher resolution levels are much less than the total amount of

whole m/z data points. In this way, the amount of data we need to analyze is reduced.

Thus, MRA method can achieve high computing efficiency in IMS data analysis.

2.4 Classification

In this section, we will use the Naive Bayes classifier [12] to do classification on

wavelet coefficient space. Bayes classifier is an appropriate tool to deal with IMS

data classification problem. It classifies data based on its probabilities in each class

and chooses the class with the highest probability to be data’s class. Compared

with non-probability classification [28] method, Bayes classifier not only tells us a

classification result but also the probability to be classified in each class, so we can
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measure the confidence of results. This advantage is also helpful if we want know

the cancer stage or the degree of cancer for each pixel, because more serious degree

of cancer corresponds to higher probability to be classified as cancer class in Bayes

classifier.

As shown in Figure 12, we use data set-1 as training data and data set-2 as test

data for classification study. We train a model from data set-1 and test the trained

model using data set-2 to see its performance. Normalization is a necessary step

before we start classification, this is because the scale in training data and the scale

in test data are different. For normalization purposes, we divide each mass spectrum

with its average intensity. After normalization, the scale will be the same in all data

sets.

Classification is based on feature variables. We select 10 feature variables from

the wavelet coefficients of each pixel’s mass spectrum. These feature variables are se-

lected from training data’s wavelet coefficients whose values are significantly different

between cancer data group and non-cancer data group. We can identify them using

the difference table D as shown in Figure 10. Those large entries dj,k in the difference

table D correspond to the wavelet coefficients whose difference is large between the

cancer group and non-cancer group. Therefore, we chose those wavelet coefficients

with large dj,k in D as feature variables. For the data sets used in this study, we

chose wavelet coefficients from level 6 to level 12 whose difference is greater than the

difference threshold we set. We can ignore the detail coefficients from level 1 to level

5, since most of the noise exists in high frequency coefficients, if our data contains

too much detail, the amount of noise will influence the classification accuracy. With

the threshold we set, 10 feature variables are selected from wavelet coefficients space

for the mass spectrum of each pixel in cancer and non-cancer training data. These 10
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Figure 12: Training date set and test data set. We use two different IMS data

set to train and test model. (Top left) Picture of the mouse brain tissue slice from

which training IMS data were generated. The dark area is cancer area. (Top right) A

snapshot of training IMS data set. The round red areas in left side and right side are

cancer training data and non-cancer training data respectively. Resolution for this

IMS data set is 24 × 34 pixels. (Bottom left) Picture of the mouse brain tissue slice

where test IMS data was generated from. The dark areas on brain slice are cancer

areas. (Bottom right) A snapshot of test IMS data set. The round red areas in left side

and right side are cancer test data and non-cancer test data respectively. Resolution

for this data set is 44× 64 pixels.
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feature variables, as components, form a feature vector, denoted by e, corresponding

to a pixel MS. The classification process of each pixel is based on its feature vector

which made up by its selected feature variables.

In the next step, we use the Naive Bayes classifier to classify the cancer and

non-cancer pixels based on pixels feature vector. We denote the probability that an

unknown testing pixel i, which has a feature vector X, is a cancer pixel as

P (i ∈ C|e = X),

where i denotes the testing pixel, C denotes the set of cancer pixels, e denotes the

feature vector of this testing pixel,X denotes the value of its feature vector. Similarly,

the probability that an unknown testing pixel i, which has a feature vector X, is a

non-cancer pixel is defined as

P (i ∈ Nc|e = X),

where Nc denotes the set of non-cancer pixels. If

P (i ∈ C|e = X) > P (i ∈ Nc|e = X),

the chance of this testing pixel being in the cancer group is greater than its chance

in the non-cancer group. If this is the case, then we classify this pixel as a cancer

pixel. Otherwise, we classify it as a non-cancer pixel. We can calculate the above

conditional probabilities using Bayes formula:

P (i ∈ C|e = X) =
P (e = X|i ∈ C)P (i ∈ C)

P (e = X)
(3)

P (i ∈ Nc|e = X) =
P (e = X|i ∈ Nc)P (i ∈ Nc)

P (e = X)
(4)

Then we compare these two probabilities and P (e = X) can be canceled, thus leading

to:

P (i ∈ C|e = X)

P (i ∈ Nc|e = X)
=

P (e = X|i ∈ C)P (i ∈ C)

P (e = X|i ∈ Nc)P (i ∈ Nc)
(5)
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If P (i∈C|e=X)
P (i∈Nc|e=X)

> 1, that means P (i ∈ C|e = X) is greater than P (i ∈ Nc|e = X).

We then classify the testing pixel as cancer pixel, since the chance being cancer is

larger than the chance being non-cancer. Otherwise, we classify this testing pixel as

non-cancer pixel. Therefore, the classification criterion can be defined as:

P (e = X|i ∈ C)P (i ∈ C)

P (e = X|i ∈ Nc)P (i ∈ Nc)
> 1 ⇐⇒ i ∈ C (6)

P (e = X|i ∈ C)P (i ∈ C)

P (e = X|i ∈ Nc)P (i ∈ Nc)
< 1 ⇐⇒ i ∈ Nc (7)

To calculate values in formula (6) and formula (7), we need to determine the

likelihood probability P (e = X|i) and find prior probability P (i). Figure 13 shows

the distributions of cancer feature variables as well as non-cancer feature variables.

They are mostly in normal distributions. Since the feature vector is made up by these

10 feature variables, we can assume that the distribution of feature vector in cancer

or in non-cancer is a 10-dimensional normal distribution.

Thus the likelihood P (e = X|i ∈ C) and P (e = X|i ∈ Nc), which is a probability

density, can be calculated by a 10-dimensional normal distribution. The mean value

for the cancer data group can be obtained by computing the average value of the

feature vectors of all cancer pixels in training data. The standard deviation for the

cancer group can be obtained by computing the covariance matrix of the feature

vectors of all cancer pixels in the training data. The same idea applies for the non-

cancer group. Then, the likelihood for the testing feature vector X can be determined

by the remaining of the distributions,

(e|i ∈ C) v N10(µcancer,Σcancer) (8)

(e|i ∈ Nc) v N10(µnoncancer,Σnoncancer) (9)
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Figure 13: Likelihood estimation for Bayes classifier. (Top 10 subfigures) Distribu-

tion of 10 selected feature variables from cancer data group. (Bottom 10 subfigures)

Distribution 10 selected feature variables from non-cancer data group. They are mostly

approximately normal distributed. Hence it’s rational to use 10-dimensional normal

distribution to approximate the distribution of feature vector.
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Table 2: Classification algorithm performance of Multi-resolution Analysis Method

(MRA) and other popular methods for IMS data analysis, where accuracy represents

the rate of correct classification, sensitivity represents the rate that cancer is classified

correctly as cancer and specificity represents the rate that non-cancer is classified

correctly as non-cancer.

Accuracy Sensitivity Specificity
PCA+LDA 78.64% 100% 57.27%
PCA+SVM 71.82% 84.56% 59.09%
MRA 99.5% 99.08% 100%

where µ, Σ are mean and covariance of the 10-dimensional normal distributions.

To calculate the prior probability P (i ∈ C) and P (i ∈ Nc), we count the percent-

age of each type of pixels in training data,

P (i ∈ C) =
|C|

|C|+ |N |
(10)

P (i ∈ Nc) =
|N |

|C|+ |N |
(11)

Where |C|, |N | are the number of cancer pixels and number of non-cancer pixels in

training data respectively. With the above calculations, we can develop a classification

model from training data. After we have developed this model using the training data,

we test its performance using data set-2 (Figure 12). We select the two rounded

marked areas as shown in Figure 12 as test data. Each area contains 109 pixels. The

pixels in the left side rounded area are cancer pixels. Those in the right side rounded

area are non-cancer pixels.

Figure 14 is the classification result. This graph shows the exponent value of the

left side part of formula (6) and (7) for each pixel. Red points are results for cancer
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Figure 14: Classification result of MRA method. This figure shows the value of

log10
P (e=X|i∈C)P (i∈C)
P (e=X|i∈Nc)P (i∈Nc)

for each test data pixel. According to the classification criteria

defined in formula (6) and (7), 0 is classification boundary (the broken yellow line in

this figure). Red points are cancer pixels. Black points are non-cancer pixels. Accord-

ing to classification criteria, those above the yellow broken line should be classified as

cancer pixels and those bellow the yellow broken line should be classified as non-cancer

pixels.
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pixels and black points are for non-cancer pixels.

According to the classification criteria defined in formula (6) and (7), threshold

should be 0, since log10(1) = 0. Thus, those red points above the threshold and those

black points below threshold are classified correctly. According to the result in Figure

14, there is only one pixel in cancer data that is misclassified as non-cancer. Thus, the

performance for this classification algorithm is: 99.5% for accuracy, which represents

the rate of correct classification; 99.08% for sensitivity, which represents the rate that

cancer is classified correctly as cancer; and 100% for specificity, which represents the

rate that non-cancer is classified correctly as non-cancer. Table 2 is a comparison of

the performance of Multi-resolution Analysis Method with several other methods.

2.5 Conclusion

We proposed a multi-resolution analysis (MRA) method for IMS data analysis in

biomarker selection and classification. According to data experiment results in table 1

of Section 2.3 and table 2 of Section 2.4, MRA method has advantages in effectiveness

and accuracy in biomarker selection and classification comparing with other popular

methods. The multi-resolution property of wavelet space saves computation time in

finding biomarkers. The data experiment has shown that the CPU computing time

of MRA method took only 54% of the computing time using EN4IMS method ([18],

[17]). This work has been summarized in a paper [46] published recently.

Though it is challenge to incorporate spatial information for IMS data analysis

using MRA method, we will tackle this important problem and report corresponding

results in Chapter 3.
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CHAPTER 3

AN ALGORITHM FOR INCORPORATING SPATIAL

INFORMATION IN IMS DATA PROCESSING

To fully utilize IMS data, it is desirable to not only identify the peaks of the

mass spectrum within individual pixels but also to study relations between pixels

using the spatial information for the entire image cube. In fact, the state (cancer

or non-cancer) of a pixel is highly determined by the configuration of its neighboring

system. Because such locality and Markovianity property in space exists in IMS data,

Markov Random Field (MRF) is an ideal tool that can describe this fact well. In this

work, we will incorporate spatial information in IMS data analysis using MRF and

optimize classification accuracy with Markov chain Monte Carlo (MCMC) sampling

[7]. Firstly, we introduce the necessity of incorporating spatial information in IMS

data analysis. Secondly, we give a brief introduction to MRF. Then, we will discuss

the computation framework using MCMC sampling and Ising model, which is the

simplest MRF, as prior information to optimize IMS data classification accuracy.

The method to estimate parameters using training data is also discussed. Finally,

we use test data to test the performance of this developed model under different

assumptions of neighboring system definition. The experiment results show that this

model can improve IMS data classification accuracy at more than 6%, and the more

realistic the neighboring system is defined, the better classification result will be.

3.1 Motivation of this study

Even though IMS data provides us spatial information, when doing IMS data classifi-

cation, most of current IMS data analysis methods like Principle Component Analysis
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(PCA) [40], Support Vector Machine (SVM) [14], Multi-Resolution Analysis Method

(MRA) [47] and Wavelet-Based Procedures for Proteomic MS Data Processing [10]

do not consider the interactions between pixels depending on their spatial relations.

However, such spatial relations do exist. Hong and Zhang proposed Weighted Elastic

Net (WEN) model for IMS data processing [18], it’s based on elastic net model pro-

posed by Zou, et al [50] but a standard deviation weight is added to describe spatial

relation between IMS pixels. But still WEN has certain limitations in the robustness

of this method that the result accuracy may depend on data structure. We consider

the fact that the growth of tumor is a continuous process. A tumor usually starts

from one spot and spans to its neighboring area. If a cell is spatially surrounded by

cancer cells, then this cell should have a high probability to be cancer. In other words,

the class of a cell (cancer or non-cancer) is highly determined by the class configu-

ration of its neighboring cells. Such spatial property can be described as locality or

Markovianity in 2-D space. Markov random field (MRF) [31] is a mathematical tool

that describes such Markovianity in a 2-D space. Therefore, MRF is an ideal tool to

incorporate spatial information in IMS data. We can use MRF as the prior distri-

bution of pixel classes and use MCMC framework to estimate the true class label of

each pixel based on the initial classification result from current analysis methods [47]

that do not consider spatial information. The classification accuracy can be expected

to be improved in this way since we fully utilized spatial information of IMS data

with MRF to describe pixels classes’ spatial relations.

The following part of this chapter is organized as follows. In Section 3.2, we

will give a brief introduction to MRF and Ising model, which is a specific type of

MRF. In Section 3.3 and 3.4, we will talk about the MCMC computation framework

for IMS data classification and the parameters estimation methods. In Section 3.5,
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we will implement a data experiment using one data set to train parameters and

another different data set to test the model. We will also discuss how the way the

neighborhood system is defined matters the classification result.

3.2 Introduction to Markov Random Field

3.2.1 Definition of Markov Random Field

Markov random field (MRF) is n-dimensional random process defined on a discrete

lattice. Usually the lattice is a regular 2-dimensional grid in the plane, finite or

infinite. In the 2−D setting, assume that S = {1, 2, ..., N}×{1, 2, ...,M} is the set of

N×M points [6], called sites. For a fixed site s define a neighborhood ∂s. For example

for site (i, j) the neighborhood could be ∂(i, j) = {(i−1, j), (i+1, j), (i, j−1), (i, j+1)}.

Markov Property (Markovianity) of X(S) is defined via local conditions,

P (xs|xr, r 6= s) = P (xs|x∂r) (12)

where S is defined as set of lattice points, s is a lattice point, (s ∈ S ) , Xs is the value

of X at s, ∂s are the neighboring points of s. The random field X which has Markov

property defined in formula (12) is called Markov random field (MRF). Formula (12)

shows that in MRF, the probability of the value at any point is only determined by

the values configuration of its neighboring points. For example, in the MRF shows in

Figure 15, the value of X2,2 is only determined by values of its neighborhood (green

pixels).
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Figure 15: In MRF, the value of a pixel is only determined by values of its neighbor-

hood (green pixels). Such Markov property fits the reality of cancer tissue classification

problem. In a tissue with cancer and non-cancer area, if a position is surrounded by

cancer areas, then this position has a high probability to be cancer. The same rule

applies for non-cancer area. Therefore, MRF can be an ideal tool to deal with the

cancer tissue classification problem.

3.2.2 A simplest MRF - Ising Model

Ising Model is the simplest type of MRF where there are only two possible values at

any site: +1 and -1. It was proposed by a German physicist named Ernst Ising from

his magnetic substance research. Originally in magnetic substance research context,

+1 represents the north polarity of a particle is up and -1 represents the north polarity

of a particle is down, while the polarity direction of particles are interacted with each

other [21]. Such interaction is similar to the interaction of cancer and non-cancer

cells depending on the spatial position. Here in IMS data analysis, we can represent
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a cancer pixel by -1 site, and a non-cancer pixel by +1 site. Figure 16 is an example

of Ising model.

The density function of Ising model is

P (X = x) ∝ 1

Z
exp(β

∑
i∼j

xixj) ∝
1

Z
exp(−2Jdx) (13)

where J is a constant parameter needs to be estimated using training data, dx is the

number of disagree edges (see Figure 17), i ∼ j means pixel Xi and Xj are neighboring

to each other, Z is scale constant which will be cancelled in Ising prior ratio.

3.3 MCMC computation framework for IMS data classifica-

tion

We denote θ as true classification which is our goal to approximate, y as observed

classification which we already obtained from a previous existing classification algo-

rithm [47] without incorporating spatial information. Our task is to estimate true

classification θ while the observed classification y is given. Here we accomplish this

task in a probabilistic way. We first obtain the distribution of true classification θ in

condition that the observed classification y is given, and then we estimate θ by its

posterior distribution probability in each class. Therefore, we can not only get a clas-

sification result, but also a probability value being classified to each class. According

to Metropolis-Hasting theorem [29], the key theory of MCMC sampling, if we use

Metropolis-Hasting algorithm to simulate θ|y, the simulated data will finally have a

distribution that converges to f(θ|y), the true distribution of θ|y. In this way, we can

estimate the true classification according to its probability distribution when only the

observed classification is available. Here is the sampling rule of Metropolis-Hasting
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Figure 16: Ising model is originally proposed from the research of magnetic substance

to describe the macroscopic change of particle spin direction configuration with the

microcosmic interaction of individual particle existing. +1 represents spin up and

-1 represents spin down. We can use this model to describe the interaction between

cancer and non-cancer pixels, with -1 representing cancer and +1 representing non-

cancer.

algorithm [29]:

α[(θ′|y)|(θ|y)] = min

(
1,
f(θ′|y)

f(θ|y)

)
= min

(
1,
L(y|θ′)P (θ′)

L(y|θ)P (θ)

)
(14)

where θ|y is the original value θ given observed classification y, θ′|y is the new pro-

posed value θ′ during MCMC sampling given observed classification y. The specific

expressions for likelihood ratio L(y|θ′)
L(y|θ) and prior ratio P (θ′)

P (θ)
in this formula will be given

later in formula (15) and (16). Here are the steps of MCMC sampling algorithm:
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Figure 17: Illustration of disagree edges number. The edge between two pixels with

different values is a disagree edge, which is marked as a bold black line here. In this

figure, the number of disagree edges is 6.

Algorithm 1 [41]

Start with the space of all configuration C in which each configuration θ|y is

represented as a vector:

θ|y = (θ1, θ2, ..., θn−1, θn, θn+1, ..., θM×N)

with the indexing (i, j) 7→ n = (i− 1)×N + j. The MCMC sampling algorithm

would have following steps:

Step 1 Start with θ|y ∈ C. Usually, initially assign θ0 = y.

Step 2 Randomly select a pixel from θ|y, for example θn.

Step 3 Propose new value θ′|y as θ′|y = (θ1, θ2, ..., θn−1,−θn, θn+1, ..., θM×N) by

changing the sign of the selected pixel’s value.

Step 4 Generate a uniform random number u ∼ U(0, 1). If u < α[(θ′|y)|(θ|y)],

then accept (θ′|y) as new configuration. Otherwise, keep (θ|y) as current config-

uration.
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Iterate above process until converges.

Then we will discuss the specific expressions for likelihood ratio and prior ratio in

formula (14). Since at each site, the conditional variable is independent to each other

(this is because at each site, the observed class is completely determined by its true

class and observation noise), then likelihood ratio can be written as:

L(y|θ′)
L(y|θ)

=

∏
m,n

L(ym,n|θ′m,n)∏
m,n

L(ym,n|θm,n)
(15)

The prior is an Ising MRF. Then the prior ratio can be obtained using the distri-

bution formula of Ising model in formula (13)

P (θ′)

P (θ)
=

1
Z

exp(−2Jdθ′)
1
Z

exp(−2Jdθ)
= exp[−2J(dθ′ − dθ)] (16)

The parameter J in the above formula can be estimated by training data. We will

discuss the details about how to estimate parameter J in next section. dθ′ and dθ are

numbers of disagree adages for estimation θ′ and θ respectively. The definition of dθ

was introduced in Section 3.2.2.

3.4 Parameter estimation of MRF prior and likelihood

3.4.1 Ising MRF prior parameter estimation using Maximum Pseudo

Likelihood (MPL)

In 1986, Geman and Graffigne [13] proved that the following pseudo likelihood method

can be used to approximate the likelihood of Gibbs distribution, which is the general

format of the distribution of MRF. This method converges to Gibbs distribution with
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probability 1. Here is how the pseudo likelihood defined:

PL(X) ,
∏
i∈S

P (xi|xNi
) =

∏
i∈S

P (xi, xNi
)

P (xNi
)

=
∏
i∈S

P (xi, xNi
)∑

xj∈LS

P (xj, xNj
)

(17)

where LS is labeling space (or class space). For instance, the label space for Ising

model, a binary system, is LS = {−1, 1}. i is pixel index, S is the set of all pixels,

xNi
are neighboring pixels of xi.

For the Ising model, pluging in its distribution from formula (13) to formula (17),

we can obtain its pseudo likelihood:

PL(X) =
∏
i∈S

1
Z

exp(−2Jdxi)∑
xj∈LS

1
Z

exp(−2Jdxj)
(18)

To find its maximum, we take its natural log. Then

ln[PL(X)] =
∑
i∈S

{−2Jdxi − ln[
∑
xj∈LS

exp(−2Jdxj)]} (19)

Therefore, the MPL estimation of J is:

Ĵ = arg max
J
{ln[PL(X)]} (20)

Using one dimensional optimization method, we can find the specific value of J

that maximizes the pseudo likelihood in formula (19). This value is the estimated

value for parameter J .

3.4.2 Likelihood estimation

Using the training data whose observed classification and true classification are both

known, we can estimate the likelihood. Here, we are doing binary classification.
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Therefore, there are only 4 types of likelihoods. They are

L(y = −1|θ = −1)

L(y = 1|θ = −1)

L(y = −1|θ = 1)

L(y = 1|θ = 1)

For example, L(y = 1|θ = −1) denotes the probability that a cancer pixel is observed

as a non-cancer pixel. We count the frequency for each instance in the training data.

Then we divided these frequencies with the total sample size to obtain the estimation

of the above 4 likelihoods. For example, if the case y = 1|θ = −1, which means the

case that a cancer pixel is observed as a non-cancer pixel by an initial algorithm that

does not incorporate spatial information, happens 30 times, and the total number of

computed pixel is 200, then the likelihood probability L(y = 1|θ = −1) = 30
200

= 0.15.

3.5 Data experiment

3.5.1 Data introduction

We have two IMS data sets. They are from two different mouse brains from the

same species implanted with the same type of tumor. These two IMS data sets are

produced from Vanderbilt Mass Spectrometry Research Center. One IMS data set

has 24× 34 pixels resolution; another has 44× 64 pixels resolution. We use one data

set to train model parameters and test the model performance on another data set.

To reduce the mistakes made by the boundary pixels, we select only the central part

of cancer and non-cancer area as training and test data so that the selected pixel class
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is easy to see to judge performance of tested model. The red round areas shown in

Figure 12 are selected training and test data.

3.5.2 Model parameter estimations using training data

First, we use MPL method discussed in Section 3.4.1 to estimate the parameter J in

Ising MRF model using formula (20). To compute this, we take consideration of the

class label configuration for all the pixels and their neighboring relations. Figure 18

shows the true configuration of training data class label. The blue pixels are cancer

pixels (Xi = −1). Red pixels are non-cancer pixels (Xi = +1). Green pixels are

margin blank space. There are 634 valid pixels for training data shown in Figure 18.

We plug in values for training data into formula (19), (20) and use one dimensional

optimization method, we obtained that when J = 1.0266 the PL(X) is maximized.

Therefore, the Maximum Pseudo Likelihood estimation value for J is 1.0266. Hence,

for the experiment IMS data we use here, the prior ratio in acceptance probability

for MCMC sampling in formula (14) can be written as:

P (θ′)

P (θ)
= exp[−2J(dθ′ − dθ)] = exp[−2× 1.0266(dθ′ − dθ)] (21)

Second, we use the idea discussed in Section 3.4.2 to estimate likelihood. We count

the frequencies of 4 cases happening in selected training data computed by initial

algorithm: the case that cancer pixel is classified as cancer pixel (corresponding to

L(y = −1|θ = −1)); the case that cancer pixel is classified as non-cancer pixel

(corresponding to L(y = 1|θ = −1)); the case that non-cancer pixel is classified as

cancer pixel (corresponding to L(y = −1|θ = 1)); the case that non-cancer pixel

classified as non-cancer pixel (corresponding to L(y = 1|θ = 1)). For example, we

selected two round areas in training data, totally 323 IMS data pixels. According
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Figure 18: True configuration of training data class label. The blue pixels are cancer

pixels. Red pixels are non-cancer pixels. Green pixels are margin blank space. This

configuration can be used to estimate parameter J in Ising MRF model using MPL

method discussed in Section 3.4.1.

to the classification result by initial algorithm [47] which did not incorporate spatial

information, 122 cancer pixels are classified as non-cancer pixel, then likelihood for

this case is L(y = 1|θ = −1) = 37
323

= 0.1146. Here are the likelihoods we computed

from training data using the initial algorithm before optimization:



L(y = −1|θ = −1) = 122
323

= 0.3777

L(y = 1|θ = −1) = 37
323

= 0.1146

L(y = −1|θ = 1) = 130
323

= 0.4025

L(y = 1|θ = 1) = 34
323

= 0.1053

(22)



46

Figure 19: Ising prior paramter estimation. When J = 1.0266, formula (19) for

training data is a maximum. Therefore, J = 1.0266 is the estimated value for corre-

sponding parameter of Ising MRF prior ratio in formula (16).

3.5.3 Computation and result on test data

We already estimated prior and likelihood for acceptance probability in formula (14).

Now we can start MCMC simulation discussed in Section 3.3 for test data to estimate

its true classification θ with its observed classification y, which is firstly computed by

initial algorithm that did not consider spatial information for IMS data. The initial

algorithm we use here is modified from MRA (Multi-resolution Analysis) method for

IMS discussed in Chapter 2, which did not incorporate IMS data spatial information.

Usually, for MRA method getting good classification accuracy, there should be 10

feature variables selected. But here, to leave some potential for optimization, we only

select 3 feature variables so that the classification accuracy turns out to be 86%. We

take this classification result as observed classification y as shown in Figure 20. The
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acceptance probability in MCMC simulation for test data is

α[(θ′|y)|(θ|y)] = min(1,
f(θ′|y)

f(θ|y)
) = min(1,

L(y|θ′)P (θ′)

L(y|θ)P (θ)
)

= min{1,

∏
m,n

L(y|θ′)∏
m,n

L(y|θ)
exp[−2× 1.0266(dθ′ − dθ)]}

(23)

The value of likelihood L(ym,n|θ′m,n) is estimated in formula (22).

Then we follow MCMC simulation steps described in Algorithm 1. We start

with initial estimation θ0 = y. Then propose a change of one pixel’s class estimation;

generate a uniform random number and compare it with acceptance probability in

formula (23) to determine whether accept this proposal or not. Iterate this process for

a certain amount of times until it converges. Then gather statistics of the simulated

data to compute the posterior probability f(θm,n = −1|ym,n) for each pixel. Then

set 0.5 as probability threshold. If f(θm,n = −1|ym,n) > 0.5, this means pixel Xm,n

has more chance to be cancer and we classify it as a cancer pixel. Otherwise, we

classify Xm,n as non-cancer pixel. Figure 20 shows the result before and after applying

Algorithm 1. We can see the classification accuracy is improved from 86.2385% to

92.6606%.

In the above computation process, the neighborhood system in Ising MRF prior

is defined as 4-points neighborhood system. That is, for site (i, j) the neighborhood

is

∂(i, j) = {(i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1)} (24)

Only the up, down, left, right adjacent pixels are considered as neighboring pixels

in 4-points neighborhood system. However, it is more reasonable to also consider

diagonal adjacent pixels as neighboring pixels because they also have impacts on

pixel at site (i, j). Therefore, we can define the neighborhood for site (i, j) in 8-
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Figure 20: Result after optimization with the 1st order 4-points neighborhood Ising

prior. (Top left) Classification result using an algorithm without incorporating spa-

tial information. The black pixels (-1 in Ising MRF) are classified as cancer pixels

and white pixels (+1 in Ising MRF) are classified as non-cancer pixels. (Top right)

Classification result of optimized algorithm using MCMC-MRF to incorporate spa-

tial information. Lots of misclassifications (noise) have disappeared. (Bottom left)

The classification accuracy for selected test area using an initial algorithm without

incorporating spatial information is only 86.2385%. (Bottom right) The optimized

classification accuracy for selected test area using MCMC-MRF to incorporate spatial

information is improved to 92.6606%.
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Figure 21: 4-points neighborhood system and 8-points neighborhood system in Ising

MRF. As left figure shows, in 4-points neighborhood system, only up, down, left, right

adjacent green pixels are considered to be neighboring to pixel X. But in 8-points

neighborhood system as shown in the right figure, the diagonal adjacent pixels are also

considered as neighboring to X.

points neighborhood system as

∂(i, j) = {(i−1, j), (i+1, j), (i, j−1), (i, j+1), (i−1, j−1), (i−1, j+1), (i+1, j−1), (i+1, j+1)}

(25)

After we modified the definition of neighborhood system in Ising MRF prior from

4-points neighborhood to 8-points neighborhood, we apply MCMC simulation de-

scribed in Algorithm 1 to test the performance again. The result shows the perfor-

mance under 8-points neighborhood assumption is better than 4-points neighborhood

assumption. The classification accuracy is improved to 94.9541%. This shows that a

more realistic definition of neighborhood system which describes the spatial impacts
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between cancer cells leads to a better classification result.

To take one step further, we can define even higher order neighborhood system

for Ising MRF prior. Because in the reality, not only the directly adjacent cells

have impacts on the surrounded central cell, but the cells close while not directly

adjacent also have impacts on the central cell even though the impacts can be weaker.

Therefore, it is more reasonable to consider neighborhood like Figure 23 shows: the

closest points are the 1st order neighboring points; the second closest points are the

2nd order neighboring points, etc. Then the Ising MRF prior probability for nth

order neighborhood system is:

P (x) ∝ 1

Z
exp(β

∑
i∼j

xixj) ∝
1

Z
exp(c1

∑
i1∼j1

xi1xj1 + ...+ cn
∑
in∼jn

xinxjn)

∝ 1

Z
exp[−2J(c1dx,l=1 + ...+ cndx,l=n)]

(26)

where dx,l=i is number of disagree edges between the ith order neighboring pixels

and the central pixel, cn is the impact coefficient from nth neighboring pixels. It is

reasonable to assume that further pixels have less impact. Therefore Cn is defined as

inverse proportional to Euclidean distance:

cn ∝
1

D(xin , xjn)
(27)

Here we define 5-orders neighborhood system as shown in Figure 23. Then we

plug formula (26), formula (27) to acceptance probability in formula (14) to update

the corresponding computation in Algorithm 1 and retest the model on test data.

It turns out that the result is even better than 8-points neighborhood assumption.

As Figure 24 shows, the classification accuracy is improved to 95.4128%, better than

the 1st order 4-points, 8-points neighborhood system. This shows again that the
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Figure 22: Result after optimization with the 1st order 8-points neighborhood Ising

prior. Classification result of 8-points Neighborhood. (Top left) The initial classi-

fication result before optimization using an algorithm without incorporating spatial

information. The black pixels (-1 in Ising MRF) are classified as cancer pixels and

white pixels (+1 in Ising MRF) are classified as non-cancer pixels. (Top right) Classi-

fication result of optimized algorithm using MRF-MCMC to incorporate spatial infor-

mation with 8-points neighborhood system. (Bottom left) The classification accuracy

for selected test area before optimization is only 86.2385%. (Bottom right) The opti-

mized classification accuracy for selected test area using 8-points neighborhood MRF

is improved to 94.9541%, better than the accuracy under 4-points neighborhood as-

sumption.
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Figure 23: Higher orders neighborhood system. (Left) 5-orders neighborhood system.

The closest pixels to X in the figure are 1st order pixels. The furthest pixels of X in

this figure are 5th order pixels. (Right) The impact between neighboring pixels is

defined in formula (15), inverse proportional to their Euclidean distance. In other

words, the closer pixel has stronger impact, while further pixel has weaker impact to

the central pixel.

more realistic neighborhood system definition which describe the spatial interactions

between different areas in cancer tissue more precisely, leads to better classification

result.

3.6 Conclusion and future work

The main idea of this work is using MRF as a prior knowledge to describe the spatial

relationships between different parts of cancer tissue and using MCMC to estimate
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Figure 24: Comparison of classification result of 5-orders neighborhood system before

and after MRF-MCMC optimization. (Top left) The initial classification result before

optimization. (Top right) Classification result after MRF-MCMC optimization to

incorporate spatial information with 5-orders neighborhood system. (Bottom left) The

classification accuracy for selected test area before optimization is only 86.2385%.

(Bottom right) The optimized classification accuracy for selected test area using 5-

orders neighborhood MRF is improved to 95.4128%, better than the accuracy under

1st order neighborhood system of 4-points or 8-points neighborhood.



54

the true classification based on the observed classification (initial classification be-

fore optimization) by approximating the probability distribution of true classification

using MCMC sampling. We estimated the MCMC-MRF model parameters using

training data and tested the model using another test data set. The data experiment

shows that this method can improve the classification accuracy at more than 6%

compared with traditional IMS data algorithm like PCA, SVM, MRA method that

have not incorporate spatial information. Also, the test result shows that the more

realistic we define the neighborhood which precisely describes the interactions mech-

anism between different parts in cancer tissue, the better classification result we can

obtain. This work was summarized in a manuscript [46] submitted for consideration

of publication in a statistical computing journal.

The future work can be considered in three aspects. Firstly, we need to consider

faster computing method, either coding wise or mathematical algorithm wise, since

we experienced the time consuming of this MCMC-MRF simulation during test, es-

pecially when the neighborhood system is defined as high order. Secondly, we can

apply some statistical analysis to the simulation result to obtain variables such as

confidence interval, standard deviation so that we will have a better evaluation of the

simulation. Instead of getting just one class label for each pixel, we can obtain more

information using statistical analysis to the simulated data. Finally, we can consider

defining a more complicated and more precise neighborhood system with impacts

coefficients estimated using more training data so that the model can describe the

reality even better.
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CHAPTER 4

USING MONTE CARLO SIMULATION TO PREDICT CAPTIVE

INSURANCE SOLVENCY

Computational statistics has very broad applications. In this Chapter, I would like

to present a very recent research project based on my internship at SIGMA Actuarial

Consulting Group regarding solvency of captive insurance.

The solvency [32] of captive insurance [34] fund is a main thing captive manager

cares. The challenges of captive insurance rating come from the following aspects.

First, the high-dimensionality of factor space. For example, for work compensation

captive insurance, there are factors such as age, gender, education level of partic-

ipants, policy retention (deductible), premiums, investment income, asset, liability

of captive insurance company, etc. All these factors influence solvency of captive

insurance companies and make captive solvency rating a complex high-dimensional

modeling problem. Which factors to choose for rating solvency? How to integrate

them together? These questions need to be answered well. The second challenge

comes from the definition of solvency itself. There are different standards to say an

insurance company is solvent or not, for example, whether its asset is greater than

its liability, or whether it can pay claims in time, etc. Which standard should we use

for captive insurance solvency rating? This is another difficult question. However,

nowadays the research for captive insurance solvency rating is few. In the summer of

2014, I got a chance to intern at SIGMA Actuarial Consulting Group and got to know

this problem. The company pre-designed a spreadsheet describing the important fi-

nancial ratios and their relations for captive insurance. It needs to develop a robust

solvency rating model for captive insurance based on this spreadsheet. I have spent 2
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months for checking the accuracy of the pre-designed financial spreadsheet, then built

a solvency prediction model for captive insurance fund using Monte Carlo simulation

[15] with the fund’s current financial data and setups. This model can tell captive

managers the solvency score of the current fund using the fund survival probability

in the next several years as a measurement of solvency. Standard financial reports

will also be generated in each year including the income statement, the balance sheet

and the summary of financial ratios. Based on this captive financial model, we de-

sign a captive solvency rating model by generating random numbers following the

distribution of historical loss to simulate future losses. If the solvency ratios break

the upper and lower bounds in a simulated case, we count it as an insolvent case;

otherwise, it is a survival (or solvent) case. After large sampling, we can approximate

the future survival probability of the current captive fund. We use a heat-map to

visualize the solvency score of each setup choice so that it will be easier for captive

insurance managers to compare their decision choices.

The preliminary results of this work was presented on the 49th Actuarial Research

Conference (ARC) in the poster session on July 14th, 2014 [45].

4.1 Introduction

4.1.1 Captive insurance

Captive insurance was initially created because people could not find a good enough

insurance provider in the traditional public commercial insurance market, either the

price is too high, or the specific type of risk cannot be covered. Then people think

about creating their own insurance company as a subsidiary company to manage

their risks instead of buying traditional commercial insurance. This type of insurance

company established with the specific objective of insuring risks emanating from their
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parent group or groups is called captive insurance company [43]. Captive insurance,

as an alternative risk financing program, has several advantages over traditional in-

surance. First, parent group is very familiar with the risks they have and can estimate

potential future loss very accurately according to their experience. Second, the data

of some specific type of risks in the parent group(s) are confidential, therefore captive

insurance, which is owned by the parent group(s), is a better choice than public insur-

ance providers. Third, a captive insurance company can be used as a tax shelter [24].

Fourth, captive insurance can avoid the boom and bust cycle [19] of the insurance

industry. When insurance industry is in a hard market, it is difficult to find an insur-

ance provider offering the risk protection at an expected price, but captive insurance

can be independent of the market cycle since it is not open to public market. Fifth,

captive insurance can offer insurance protection at a lower cost. Because in traditional

commercial insurance, 40% of premiums are additional fees, including advertisement

fees, management fees and profit; however, captive insurance, a company owned by

the parent group to insure the parent group, does not have these fees. Sixth, captive

insurance company and its parent group(s) have a coincidence of interests, therefore

there is no risk of indirect selecting and moral risk. Also, captive insurance can im-

prove cash flow stability of its parent group(s), because the premiums can be paid

in a more flexible way. Because of these advantages, captive insurance market have

been continuously growing in the last 20 years (see figure 25) [8].

4.1.2 Solvency of captive insurance

Solvency is the ability of a company to meet its long-term financial obligations. It

can be viewed from different angles. For example, solvency can be viewed as a ”ruin

theory” that if assets are greater than liabilities then it is considered to be solvent.
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Figure 25: Captive growth continues worldwide [8].

Also solvency can be viewed as a ”liquidity theory”, if a insurance company can meet

its current liabilities then it is considered to be solvent [44]. Solvency is not measured

by just one ratio, it is a systematic measurement of a insurance company’s financial

health.

The current popular solvency rating methods include Insurance Regulatory In-

formation System (IRIS), Financial Analysis and Solvency Tracking (FAST) and sol-

vency II. IRIS was developed by the National Association of Insurance Commissioners

(NAIC) in 1970s based on the Early Warning System. Usually, there are 11 IRIS ratios

for property\casualty insurance and 12 IRIS ratios for life insurance. These ratios,

combined with their normal range, are used to rate insurance companies’ solvencies

to prevent solvency crises. Based on IRIS, since 1995 NAIC applied an additional

analysis to large insurance companies (the company that has annual premium greater

than $50 million for life\health insurance and $30 million for property\casualty insur-
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ance), the so called Financial Analysis and Solvency Tracking (FAST) system. The

purpose of the FAST system is to prevent large insurance companies from having

a solvency crisis. The FAST system is more complex than IRIS. FAST is working

together with IRIS, not replacing it. In 2002, the European Commission passed Sol-

vency 1. However, with the financial integration development within the European

Union and the change in the insurance industry, the existing regulation framework

cannot work well any more. since Solvency 1 was passed, the European Commission

started the Solvency II project, aiming to develop a new solveny regulation system

which works closely to the risk management of insurance companies.

Solvency rating is especially important to captive insurance because captive insur-

ance does not receive strict regulations as traditional commercial insurance companies

do and is easy to have solvency problem if solvency situation is not evaluated often

or well. The solvency problem will lead a captive insurance company to collapse

and affect the benefits of its insureds. But current popular solvency rating methods

are not specially designed for captive insurance, therefore they do not work best for

captive insurance solvency rating.

4.2 Motivation of this study

The motivation of this study is to overcome the shortages of current popular IRIS-

based solvency prediction methods.

First, current popular solvency evaluation methods using IRIS ratios are deter-

ministic, where a deterministic rating will be given without probability distribution.

For example, in [4], 1 point is given for each of 12 IRIS ratios going outside the

usual range and solvency is scored from 0 to 12 points. However, future solvency is a

random variable since future losses and other business variables are not determinis-



60

tic. Therefore, it makes more sense to use a probabilistic method to measure future

solvency to figure out the probability of solvency and insolvency in future years.

Second, current popular methods using IRIS ratios focus on the current solvency

evaluation [39], not future prediction. But knowing the future solvency trend gives

captive insurance managers more confidence about decision makings. We use Monte

Carlo simulation to simulate future losses according to experienced loss distribution

to simulate future IRIS ratios to predict future years’ solvencies.

Third, instead of fixed lower bound and upper bound of IRIS ratios used in most

current deterministic solvency prediction methods, we modify it to allow users define

the IRIS lower and upper bound according to their business situations while referring

to the recommended IRIS ”usual range” so that this model will have more flexibility

compared with the traditional model to describe different business situations.

We also visualize the results using a heat-map matrix to make users compare

results easily when they make retention decisions.

4.3 Methodology

We use Monte Carlo simulation to simulate future losses according to the experience

loss distribution as shown in Table 3. Once any of the IRIS ratios hit the red lines set

by user (see Figure 26), we count it as a failure case. Otherwise, it is a survival case.

For example, in the simulation illustrated in Figure 27, the 7th simulated IRIS ratio

breaks normal bounds. Therefore, this simulation will be counted as an insolvency

case.

Solvency is measured by fund survival probability which can be approximated by

as:
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P (S) ≈ |S|
|F|+ |S|

(28)

where F is the set of failures in Monte Carlo simulation, S is the set of fund survival

(solvent) cases, |F| is the size of the set.

Future losses are simulated based on experience loss distribution as shown in Table

3. The distribution data that users input are discrete data points (see table 3). To

get a continuous distribution function so that the simulated loss can be continuously

sampled from, we use log-normal distribution to fit the discrete data we have. The

reason we choose log-normal distribution is that it is positive skewed and widely used

within the insurance industry. Formula (30) is the cumulative distribution function

(CDF) of log-normal distribution. The future loss is simulated using inverse method

as formula (29). In inverse method,

xi = F−1(ui), (29)

where ui ∼ U [0, 1] is generated random number which has a uniform distribution from

0 to 1. Therefore, using inverse method, we can map each uniform random number ui

to simulated future loss xi that has a log-normal distribution. If discrete distribution

is used, for example the input discrete distribution in Table 3, then xi = Ḟ (ui) is a

piecewise inverse function.

In formula (30), there are 2 parameters, µ and σ, that we need estimate from

fitted data points. We use least squared error as the measurement to find the values

of µ and σ which can minimize the squared error between fitting CDF and fitted data

points. Therefore, µ and σ can be estimated using formula (31).
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Figure 26: IRIS ratios industry recommended usual range [4]. Users can modify

the values of red lines according to their situations. For example, if user think only

Combined Ratio matters when predict solvency, then user can set other ratios’ usual

ranges as (−∞,+∞), so that those ratios will not affect the solvency prediction result.
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Figure 27: One run of simulation. In a simulation, each of IRIS ratios will be

compared with upper bound (the blue line if this figure) and lower bound (the red line

in this figure) defined by user. Any of IRIS ratios break its bounds defined by user will

be counted as an insolvency case, otherwise counted as a solvency case. This figure

shows an insolvency case since the 7th, 10th and 12th simulated IRIS ratios break

their bounds.
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Figure 28: Log-normal distribution is used to fit the experience loss distribution data

points input by user. Then random number ui ∈ [0, 1] will be generated to simulate

future loss xi using inverse method xi = F−1(ui).

F (x;µ, σ) =
1

σ
√

2π

∫ x

0

exp[−(ln(t)−µ)2

2σ2 ]

t
dt (30)

(µ̂, σ̂) = arg min
µ,σ

∑
i

[(F (xi;µ, σ)− Ḟ (xi)]
2 (31)

To implement the computing of formula (31), we use grid search method to find

best µ and σ. Grid searching is a global search method. In grid search method, we

divide searching area into fine grid and compute squared error between fitting CDF

and fitted data at each grid. In other word, for each value of µ and σ on grids, we

compute corresponding squared error |F (xi) − Ḟ (xi)|2 to find the µ, σ which can

minimize this squared error.

To reduce the size of searching area, before we start grid searching, we do an initial
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estimation of µ and σ using the moment formula of log-nomal distribution. We can

use data mean Xi to approximate the first moment E(x) and mean of sqaured data

X2
i approximate the second moment E(x2). Therefore we obtain equations system

32.

{
E(x) = exp(µ+ σ2/2) ≈ Xi

E(x2) = exp(2µ+ 2σ2) ≈ X2
i

(32)

Therefore, we can solve µ and σ in above system as an initial estimation. The

solution for this questions system is

{
σ2 ≈ ln(X2

i )− 2 ln(Xi)

µ ≈ [4 ln(Xi)− ln(X2
i )]/2

(33)

Using the data points input by user in Table 3, the initial estimate of log-normal

parameters is µ = 12.3419, σ = 0.4134. The searching area should be around this

initial estimation. For example, the searching boundary can be 30% above and below

the initial estimation. To find the minimum, we need make sure the searching area

contains the local minimum point (we believe
∑
i

|F (xi;µ, σ)− Ḟ (xi)|2 is a 2D convex

function for µ and σ, therefore a local minimum is a global minimum). We can try

and adjust the different searching boundaries until a local minimum point is included

and the convex shape is shown. since we are searching for 2 parameters, the searching

area is a 2D squared area. In figure 31, the area is µ ∈ [12, 13], σ ∈ [0, 1]. The squared

fitting error is minimized to 7.067 × 10−4 when µ = 12.36 (see Figure 29), σ = 0.45

and this is the best estimation of log-normal parameters using least squared fitting

error as fitting measurement.

Since our model only ask user to input experience loss distribution under one

specific retention level, we need obtain other loss distributions if retention level is

different. According to experience, we assume there exists a linear relation between
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Figure 29: Parameters estimation of log-normal distribution. When µ = 12.36,

σ = 0.45, sqaured fiiting error is minimized. Therefore, µ = 12.36, σ = 0.45 is the

best estimation of log-normal parameters.
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Table 3: Experience loss distribution data points input by user (at retention

$100,000), where Ḟ (x) is cumulative probability.

Ḟ (x) Loss X
0.25 $169101.40
0.40 $206320.40
0.50 $232551.80
0.55 $246773.80
0.59336 $260000.00
0.60 $262116.40
0.65 $278977.40
0.70 $297921.00
0.75 $319810.40
0.80 $346080.80
0.85 $379441.40
0.90 $426020.40
0.95 $505783.20

the loss xi and retention Rj selected as shown in table 4. For example, if loss is xi

when retention Rj = $100000, then when retention Rj = $250000 the loss will be

1.4
1.0
xi. This relation is summarized in formula (34), where Rm is mth retention and

xm is loss under this retention Rm.

Rm

Rn

=
xm
xn

(34)

Based on above assumptions and equstion, we propose Algorithm 3.1 to predict

future solvencies.
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Table 4: The relation between retention and expected loss (data from insurance

experience). We assume there exists a linear relation between the loss xi and retention

Rj selected. This linear relation is summarized in formula (34).

Retention (Rj) Increased Limits Factor (Lj) Expected loss (Xj)
$25,000 0.65 $169,000
$50,000 0.80 $208,000
$100,000 1.00 $260,000
$250,000 1.40 $364,000
$500,000 1.75 $455,000
$1,000,000 2.20 $572,000
$Unlimited 3.00 $780,000
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Algorithm 3.1

Step 1 User inputs recent 2-years’ financial report (Income Statement and Bal-

ance Sheet), additional information, additional data required and define n, the

number of future years to simulate, Bu and Bl, the upper bound and lower bound

of IRIS ratios.

Step 2 Initialize |F|, the number of insolvency cases, to be 0, and |S|, the number

of solvency cases, to be 0. Based on user’s input, for each retention level Rj, gen-

erate a random number u1 and use inverse method to experience loss distribution

to map u1 to x1, the coming first year’s simulated loss and calculate first year’s

simulated financial report Fin1 and IRIS ratios I1.

Step 3 Based on previous year’s simulated financial report Fini−1, generate a

random number ui−1 and use inverse method to experience loss distribution to

map ui−1 to xi−1, the coming ith year’s simulated loss and calculate ith year’s

simulated financial report Fini and IRIS ratios Ii using simulated loss and previ-

ous year’s simulated financials.

Step 4 Repeat Step 3 until Finn and In is simulated.

Step 5 For each retention level Rj, compare each year’s simulated IRIS Ii with

interval [Bu,Bl]. If any value in vector Ii is outside [Bu,Bl], we count it as a

insolvency case and add 1 to |F|; otherwise, add 1 to |S|;

Step 6 For each retention level Rj and year future year i, its solvency score

P (S) = |S|
|F|+|S| .
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4.4 Results and discussion

The survival probability P (S) is approximated using formula (28), by dividing the

number of survival cases to the total number of simulated cases. There is a survival

probability computed for each future year under each retention level. It measures the

probability of solvency in a specific future year under specific retention level. We use

the most recent 2 years’ historical data as the input to simulate its future solvency

using Algorithm 3.1. We visualize the result (see Figure 30) using a heat map. These

results are generated using a discrete loss distribution input by the user.The darker

color corresponds to the lower survival probability of the fund and the lower solvency

score, indicating a higher chance of insolvency. The lighter color corresponds to

higher survival probability of fund and higher solvency score, indicating lower chance

of insolvency. Higher solvency score is better. The number in each cell is fund

survival probability (or solvency score) approximated using Monte Carlo simulation

we discussed before. For example, the number in row 1, column 5 is 0.36, which

means the solvency score (from 0 to 1 measured by fund survival probability) 5 years

later with $25,000 retention is 0.36, and solvency problem is more serious than its

previous year (since it is 0.424 solvency score for the 4th year). This result gives each

year’s solvency score from 0 to 1 at each retention level. it is nice to see a result like

this which changes continuously from one to another. it is interesting to find that at

$25000 retention for example, even though solvency score is high in the beginning, it

decreases in future. Maybe it is because too less profit they make since they take so

less risk. However, the unlimited risk is too risky and the solveny score turns to be

low in this case. Retention $250,000 for example, makes solvency score increasing in

future and keep in a related high solvency level, can be a good choice.
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Figure 30: A heat map style visualized result.
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CHAPTER 5

CONCLUSIONS

We proposed a Multi-Resolution Analysis (MRA) method using wavelet transform

for IMS data biomarker selection and classification. By transforming IMS data onto

wavelet coefficients, we reduced the high dimensionality of IMS data and by analyzing

IMS data taking advantage of the multi-resolution property of wavelet coefficients,

we saved computing time to achieve a faster algorithm speed than other popular

methods. The biomarkers list selected by MRA method is shorter than other popu-

lar methods while the important biomarker are selected but less noise are selected.

The two biomarkers has already been confirmed by cancer study. Based on wavelet

transformed IMS data, we select its wavelet coefficients as feature variable and use

Bayes classifier to classify each IMS pixel. Data experiment shows this algorithm can

get higher classification accuracy than other popular methods.

To incorporate spatial information of IMS data, we consider the local property

(Markovianity) in 2D space of tumor growth and use Markov Rand Field (MRF)

to describe this spatial relation. We use Ising model (a binary format of MRF)

as prior and training data as likelihood to estimate the posterior probability using

Metropolis-Hasting algorithm. In this posterior estimation, the result generated by

any algorithm that not consider spatial information is the conditional variable. We use

this as simulation staring point to estimate the true classification. Data experiment

shows this MCMC-MRF algorithm can improve the IMS data classification accuracy

at least 6% from other method not consider spatial information. We also test different

neighboring rules, and data experiment show 8 points neighboring works better than

4 points neighboring, higher-order neighborhood system works better than first-order
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neighborhood for IMS pixel classification. We can deduce that a good definition of

neighboring in MRF for IMS data must describe the biology mechanism of spatial

impact in tumor growth.

Continued with the stochastic simulation idea in MCMC-MRF mentioned in pre-

vious subsection, we applied stochastic Monte Carlo simulation to captive insurance

solvency prediction. We combined a pre-build financial model for captive insurance,

IRIS ratios and Monte Carlo simulation to design a flexible, robust and easy to use

solvency prediction model specially for captive insurance to meet its solvency pre-

diction and retention selection need. This model shows some advantage compared

with other similar models: First, this is specially designed of captive insurance while

open research for captive insurance solvency is few; second, the solvency score has an

obvious probabilistic meaning that it ranges from 0 to 1 measure the probability that

it breaks IRIS bounds, while other IRIS based methods is deterministic without prob-

ability meaning. Third, this model allows the user modified the IRIS bounds values

according to their business situation and this gives them more flexibility to build a

model fit their unique solvency prediction problem compared with classic fixed IRIS

industry bounds.
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