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ABSTRACT

Considering the importance of 2-Amino-3-cyano-4H-pyran derivatives and the
need for the development of new environmental friendly synthetic methodologies, the
combination of Multicomponent Coupling reactions (MCR) and Deep Eutectic solvents
(DES) was the goal of our study in order to make the reaction more environmentally, as
well as economically, viable. Moreover, a simple work up procedure was developed via
recrystallization from ethanol or ethanol-water to avoid the use of expensive silica gel
chromatography and exclude the massive use of organic chromatography eluents. Finally,

this work avoids the use of toxic and expensive catalyst or solvents.

Interestingly, increasing the reaction scale from 1 mmol to 3 mmol improved the
reaction isolated yield. A variety of substituted aromatic as well as heteroaromatic
aldehydes were explored using the larger 3 mmol scale. Generally, electron withdrawing
groups (EWG) on the aldehyde produced lower yields comparing with the electron
donating groups (EDG). Lastly, an evaluation of the sequence addition off the reaction
components was performed. The study shows that by mixing benzaldehyde,
malononitrile, and adding dimedone after five minutes, in accordance with the

Mantelingu procedure, the yield increases dramatically and the side reactions are limited.
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CHAPTER I

INTRODUCTION

While there are many interesting structural families that have been reported and
targeted over the years, polyfunctionalized 2-amino-3-cyano-4H-pyran derivatives
certainly have occupied a place as an important class of heterocyclic organic compounds
due to their biological and pharmacological behavior (Figure 1). 1 This class of
compounds are used as anticancer,* spasmolytics, anti-anaphylactics, cytotoxic, anti-HIV,
anti-inflammatory, antimalarial, antimicrobial ? antihyperglycemic, antidyslipidemic, and
for Alzheimer treatment. ® The following sections summarize some of these biological

applications and will set the stage for the synthetic studies that will be discussed later.

CN

) NH,

Figure 1: General structure for 2-amino-4H-chromene-3-carbonitrile derivatives.

Biological activities
Antitumor activities

Al-Omran et al. studied the effects of the two synthesized products 1 and 2
(Figure 2) on the in vitro growth of human tumor cell lines. * Three human tumor cell
lines and three normal cell lines were selected. The effectiveness of 1 and 2 were

evaluated after exposing three human tumor cell lines and three normal cell lines to



different concentrations of 1 or 2 and comparing this result with the result of exposing

three human tumor cell lines to doxorubicin (Figure 2).

1

Doxorubicin
Figure 2: Illustration of the structure of the pyran compounds 1 and 2 and doxorubicin

Both 1 and 2 were able to inhibit growth of the human tumor cell lines.
Compound 1 shows very interesting inhibitory effects toward the three tumor cell lines.

The I1Cso value of compound 1 showed that it has higher inhibitory effect towards the

three cancer cell lines. On the other hand, both compounds inhibit the growth of normal

cell lines, more than doxorubicin.

Antibacterial activities
Kumar and co-worker reported the antibacterial activity of 2-amino-4H-

chromene-3-carbonitrile derivatives as determined by screening against three bacterial

strains.? The bacterial strains used were Escherichia coli (MTCC 41), Staphylococcus

aureus (MTCC 1144) and Pseudomonasputida (MTCC 1072) (Figure 3).



Figure 3: General structure of compounds used by Kumar and co-worker.

In general, compounds in which R is p-methoxy, m-nitro, p-nitro, p-chloro and m-
hydroxy showed complete inhibition at 128 mg/mL or less, while compounds in which R
is H or methyl showed incomplete inhibition. Specifically, the p-nitro containing
compound shows a notable overall potency, while the p-methoxy and m-hydroxy
containing compounds showed selective inhibition towards Escherichia coli and

Pseudomonasputida respectively.
Antitubercular activities

In their study, Kamdar et al. assessed the biological activities of the three groups
of compounds represented in (Figure 4).2 The most interesting results came from the
antitubercular screening. In this test, they used Mycobacterium tuberculosis H37Rv strain
and the results were compared with that of the standard drug Rifampicin. Among the
three groups of compounds, group 1 (the group of compounds represented in this study)
shows the best inhibition strength against tubercular stain. Particularly, the compounds
possessing the following substitutions showed the greatest inhibition (72-92 %): p-fluoro,

p-hydroxy, m-chloro and m-methoxy.



NH,

Group 1 Group 3

Figure 4: Kamdar et al. studied the antitubercular activities of these three groups.®

Treatment of neurodegenerative diseases

Neurodegenerative diseases include, but are not limited to, Alzheimer, Parkinson,
Schizophrenia and Amyotrophic Lateral Sclerosis (ALS). AMPA (a-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid) receptors usually contribute to the processes of
synaptic plasticity, which affect learning, memory, excitotoxicity, and neuroprotection.*
Modifications in AMPA receptors at the postsynaptic membrane affect the synaptic
plasticity strength.® The direct modulating of AMPA receptors proved to have a positive
effect on neurodegenerative conditions, but raises the risk of a condition referred to as
“overstimulation.” On the other hand, indirect modulation of the AMPA receptor has
been raised as another approach to treat neurodegenerative diseases by enhancing
neuroplasticity. 2-Amino-3-cyano-4H-pyran derivatives proved to be positive modulators

of AMPA receptors.



Synthesis of 4H-chromenes

Based upon such a wide spectrum of applications, this class of heterocyclic
compounds has drawn synthetic chemists’ interest to develop more efficient synthetic
routes. Thus, there have been many reported methods to synthesize these compounds.**°
A common way to synthesize these compounds is via the reaction between
arylidenemalononitriles and activated methylene compounds either under thermal
conditions, with the aid of organic bases,®’ or under microwave irradiation (Scheme 1).8
Since the arylidenemalononitriles themselves have to be synthesized in a separate step

from aldehydes and malononitrile, an obvious disadvantage of this approach is that it

requires at least two separate reactions and thus two separate isolation/purification

sequences.
|
0 Ph
NC CN
(o] (0] CN
Microwave Irradiation
+ »-
TH 1.5-4 min ‘
F’|h o) NH,
R

Scheme 1: Synthesis of 2-Amino-3-cyano-4H-pyran derivatives under microwave

irradiation.®

One of the traditional ways to prepare 2-amino-4H-chromene-3-carbonitrile

derivatives uses arylidenemalononitriles and a nucleophile as starting material (Scheme



2). There have been a good number of old and recent publications that used this
approach. For instance, Quintela et al. reported a method where they added ethyl
acetoacetate to arylidenemalononitriles under reflux conditions.® Starting from
arylidenemalononitriles requires a previous step for its preparation, which means more
labor and purification steps, and makes this approach more costly for large scale
application. Thus, the importance of these compounds in both pharmaceutical and
industrial application required a new approach that use cheap and readily available

starting materials.

R1
R, CN
CN
/:< + R,——CH,CHO — | |
R
! CN o) NH,

Scheme 2: General scheme for the reaction of arylidenemalononitriles with nucleophile.

Another approach was reported by Z. Zhou et al. using 2-(E)-2-nitrovinylphenol
and malononitrile as starting materials (Scheme 3).° They used different chiral
bifunctional squaramides as an organocatalyst. Following their work, Du and Gao were
able to use a similar approach to synthesize these products with high enantioselectivity. 1
In their study, they provided a single example of an asymmetric nucleophile, which raises

questions regarding the generality of this method.



R\\ X No: CN

Squaramide ( 10 mol%)
‘ _ T CHCls, 20 °C :

OH CN

Scheme 3: Michael addition and intramolecular cyclization by reacting using 2-(E)-2-

nitrovinylphenol with malononitrile.

Multicomponent coupling reactions (MCRS)

The rapid discovery of new biological targets has increased the demand on
synthetic chemists to introduce new synthetic methods capable of providing easy access
to a library of compounds. One way to serve this purpose has been the development of
new Multicomponent coupling reactions (MCRs), one of the most useful synthetic
methodologies to produce compound libraries.'>® MCRs are defined as those reactions in
which three or more compounds react together in one pot to form a new product.® MCRs
give the opportunity for reaching diversity via families of different reactants, and not
being limited to bifunctional reactants. MCRs also allow for easy access to a library of
important and structurally complex molecules in a one pot fashion by simply varying the
starting materials. With MCRs, reaction time and labor effort, such as purification and
isolation of intermediates, are minimized. In contrast, to get the same structure in a linear
synthesis fashion, multiple steps with multiple workup and/or purification processes are

required. In addition, a linear synthesis may produce considerable amounts of



environmentally hazardous wastes after each step in different ways: as reaction media,

catalyst waste, and work up solvents.!?

More related to the work reported in this thesis, Das et al. reported a synthesis of
of 2-amino-4H-chromene-3-carbonitrile derivatives following an MCR approach. ** The
reaction was catalyzed by ZnO nanoparticles in 1:1 ethanol/water media (Scheme 4).
They found that the yield was increased by increasing the catalyst load, until they reached
10% mol. At this point, no change was observed up to 25% mol, and beyond that point

the yield dropped significantly.

O
o N cN
nano ZnO 10 mol %
s oo - »
R H CN Ethanol: H,O (1:1) o NH
o] RT ‘

Scheme 4: Three component reaction for the synthesis of of 2-amino-4H-chromene-3-

carbonitrile derivatives by Das.

Table 1: Summary of Das et al. work showing: R substrates, reaction time and the yield.

R Time (h) Yield
Ph 3.5 86
4-NO2-C6H4- 3 91
3-NO2-C6H4- 3.5 88
4-F-C6H4- 3.0 90
4-OCH3-C6H4- 4.0 81
4-CH3-C6H4- 3.5 83
4-N(CH3)2-C6H4- 4.0 79
2-Furan 3.0 84

4-Pyran 4.0 81




Above all, the Das method uses a readily available starting material, and follows
MCR strategies, which would save considerable time and effort. In addition, the reaction
time reported is short and the yield is excellent. However, the preparation and the cost of

the ZnO nanoparticles catalyst can be considered as a significant limitation.

Sheikhhosseini et al. reported a three-component condensation synthesis of 2-
amino-4H-chromene-3-carbonitrile derivatives, in a green media (Scheme 5).14 They
have used p-dodecylbenzenesulfonic acid (DBSA) (Figure 5) as surfactant and catalyst in
water. The reaction conditions are mild, but the yield and catalyst amount required is not
practical. For example, a 10 mol% loading of DBSA affords a 35% yield after 10 hours at
reflux. They had to increase the loading of catalyst up to 25 mol% to achieve high yield.

The cost and acidity of DBSA make it impractical for large scale production.

0
o R
o oN DBSA oN
s | >
R H CN H,0 | |
(o) Reflux o NH,

Scheme 5: Reaction using DBSA in aqueous media.

] OH
\

N\

o]

HaC(H,C)1oH2C

Figure 5: p-dodecylbenzenesulfonic acid (DBSA).
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Using Lipase from Porcine pancreas (PPL), Zhang et al. reported the synthesis of
2-amino-4H-chromene-3-carbonitrile derivatives (Scheme 6). 1> The advantages of their
work were not only limited to the use of the environmental friendly media, but also
extended to the shorter reaction time and the excellent yield. Interestingly, they have
studied the effect of the water upon the reaction. The best yield was with ethanol and

water 4:1, and the yield dropped sharply with increasing the percent of water.

R .
o CN Lipase PPL (30mg)
1 O ¢
R H Ethanol:H,0 (4:1)
CN 2
CHO 35 OC
1 Hour

NH;

Scheme 6: Reaction using PPL.

Later in 2013, Zhang employed Meglumine, which is a biodegradable catalyst (Scheme
7). 18 Meglumine is sorbitol derivative that is biodegradable and physiological inert,

which makes it suitable for pharmaceutical applications (Figure 6).
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R
o CN meglumine
ISk .
R H o Ly Ethanol:H,0O

Scheme 7: Reaction Using Meglumine as organic catalyst.

NH,

OH OH

ZT

OH

OH
OH

Figure 6: Meglumine.

In 2009, Kumar and co-worker reported a two-step, one-pot, solvent-free
approach to synthesis of 2-amino-4H-chromene-3-carbonitrile derivatives (Scheme 8).2
Aldehyde, malononitrile and MgO were ground at room temperature for 10 min. Then
5,5-dimethyl-cyclohexane-1,3-dione (dimedone) and 3 drops of water were added to the
mixture with continued grinding for another 15 min. The drawback of their work would

be in the use of metal oxide and the vigorous mechanical mixing.



12

o N N 7@
MgO o
R G G A
R H Ly RT R N MgO

Grinding RT
Grinding

NH,

Scheme 8: Kumar two steps, one pot synthesis.

Mechanism of the three component coupling of 4H-pyran

The mechanism of the formation of 4H-pyran via a three-component coupling
strategy is generally accepted to begin with a Knoevenagel condensation between the
active methylene compound and the aldehyde, followed by Michael addition with the less
reactive active methylene compound, and finally an intramolecular ring closure (Scheme

9).7,2,11
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Vi
CN
< R-CHO
cN Knoevenagel condensation R CN
1
2
Michael addition
HN CN

() N

Intramolecular ring closure

Scheme 9: Mechanism of the three component coupling.

This mechanism is highly probable in the case of the traditional approach for
synthesizing those compounds where malononitrile and aldehyde are combined first to
form arylidenemalononitriles, followed by the addition of the nucleophile, but less clear
for simultaneous addition. In addition, a reduction in yields have been observed in this
study when combining the three components simultaneous in comparison with combining
the malononirtile and aldehyde, then adding the nucleophile after five minutes. With two

active methylene compounds present along with the aldehyde, the initial condensation
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reaction could occur first with malononitrile or dimedone, each would afford different
intermediate. Malononitrile is the more reactive active methylene compound and thus the
arylidenemalononitriles intermediate should dominate. With these intermediates formed,
condensations can then result in at least 4 products. However, the reactions reported by
Azizi and co-workers could be the major route that is competing with the desired
reaction.!” According to their work, two equivalent of dimedone can react with aromatic
aldehyde at room temperature or at 90°C to produce excellent yield in short reaction time.
This evidence explains the reduction on yields occur when mixing the three component

simultaneous.
Deep eutectic solvents (DESSs)

Deep eutectic solvents (DESs) are an emerging class of solvents that are
considered as ionic liquid analogues.'® They show ability to dissolve a wide range of
solutes, including inorganic salts and metal oxides, due to their ionic nature and
polarity.'®2° They are moisture and chemically stable with suitable physical properties
such low vapor pressure and high boiling point.!® These advantages make DESs good
reaction media and favor them over ionic liquids in large scale application. In addition,
the ease of preparation, recyclability, biodegradability, and the relatively low cost of its

components, make DESs a suitable choice for green chemistry applications.

The first reported work on DESs was on 2001 by Abbott et al.*8 In this work, they
were trying to introduce a new class of lonic Liquids (IL) that are less expensive and
moisture stable. The initial choices were the combination of imidazolium halides and

aluminum trichloride to form chloroaluminates. The main drawback of chloroaluminates
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IS their moisture sensitivity, even though both the imidazolium and chloroaluminate
components are relatively expensive. These two disadvantages would limit the large scale
applications of these solvents and made it necessary to investigate other choices to
produce cheaper and moisture stable media. Abbot et al. used metal chlorides and
quaternary ammonium salts instead of the imidazolium-based IL. Among the investigated
ammonium salts, they found that choline chloride (ChCl, 2-hydroxyethyl-
trimethylammonium chloride) gave the lowest melting points among the other quaternary
ammoniums (Figure 7). Thus, choline chloride was the focus in their following work in
2004, where they introduced the term DES for the first time to distinguish between the

DESs and traditional 1Ls.%°
cl

~

N+
HO N
Figure 7: Choline chloride (ChClI, 2-hydroxyethyl-trimethylammonium chloride)

DES is a eutectic mixture of a Lewis or Bronsted acid and a base. In contrast to
ILs, DESs are non-reactive with water and biodegradable. They can be formed by mixing
a quaternary ammonium salt with a hydrogen bond donor or a metal salt. The hydrogen
donor plays a major role in the physical properties of the liquid, hence, it can be
manipulated to target a specific application. A wide range of hydrogen bond donors have

been employed to form deep eutectic solvents, which possess groups like amides,
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sulfonates, carboxylic acids, and alcohols (Figure 8). Also, a number of inexpensive and

safe quaternary ammonium salts have been used (Figure 9).

Urea

0

NN

N NH
H 2

1-methyl urea

@]

NN

N N
H H
1,3-dimethyl urea

\\S/OH

\

0

p-Toluenesulfonic acid

S

A

H,N NH,

Thiourea

(o]

\T)k

NH,

1,1-dimethyl urea

A

Acetamide

2

OH

HO\)\/OH

Glycerol

Figure 8: Structures of common hydrogen bond donors used in DES.
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Choline chloride

N/\
HO/\/ N

Cl
N-ethyl-2-hydroxy-N,N-

dimethylethanaminium chloride
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N/
cl
N-benzyl-2-hydroxy-N,N-

dimethylethanaminium chloeide
(o]
M K
cl 0/\/"\
cl

2-(chlorocarbonyloxy)-N,N,N-

trimethylethanaminium chloride

Figure 9: Structures of common quaternary ammonium salt used in DES.

ChCl is the most common quaternary ammonium salt used with DES. It is a low

cost, nontoxic compound. In addition, it is classified as a provitamin in Europe and

produced on large scale as an animal feed supplement.® When mixing ChCl with a

hydrogen-donor such as urea, the hydrogen bonding between ChCl and urea is

responsible for reaching the eutectic point (Figure 10). At the eutectic point, the melting

point of the forming mixture is significantly lower than the melting points of the

individual components. The sharp reduction in melting points is believed to be caused by

the charge delocalization due to the hydrogen bonding between the complex components,

which results in lower lattice energy.'®2° For example, the melting point of choline

chloride is 303 °C and for urea is 134 °C, while the melting point of the choline

chloride:urea mixture is 12 °C (in 1:2 molar ratio).?
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Cl

(0]
|+/ ’ )L
Ho” T N N

H,N NH,
Choline Chloride Urea

Figure 10: Choline Chloride:Urea.

Employing DES in MCR

Recently, DES have begun to be employed in MCR, particularly in the reactions
initiated by a Knoevenagel condensation followed by Michael addition. For instance,
Azizi et al. reported the MCR of aromatic aldehydes, malononitrile, and dimedone at 80
°C in CC/U.?! The reaction produced tetrasubstituted 4H-pyran derivatives in good

yields (Scheme 10).

Iz

Scheme 10: MCR of aromatic aldehydes, malononitrile, and dimedone by Azizi et al.



19

Similar work has been reported by Mantelingu and co-workers at room
temperature with high yields after 30 min (Scheme 11).%2 It is noteworthy to mention that
the addition of the active methlylene in Mantelingu’s work was 5 min after the reaction

of other component had begun.

0 o] Ar
o) CN CN
J < DES
L= 1]
RT
Ar CN o o NH,

Scheme 11: MCR by Mantelingu and co-workers.

The classical Ugi reaction has also been reported in CC/U (Scheme 12).% This
paper compared the yield when using CC/U as a solvent with the outcomes from several
organic solvents (ethanol, methylene chloride, acetonitrile, water, and solvent-free
conditions). The use of a DES afforded much higher yields than did the other organic

solvents, water, or solvent-free conditions.

NG COH ’
R,NH, §
N R,CHO . T
DES R, O
RT
2-5h

Scheme 12: The classical Ugi reaction in CC/U solvent.
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One of the important papers on MCR in DES studied the condensation of
aldehydes with dimedone or cyclohexane-1,3-dione (Scheme 13).1” This study shows that
the choice of DES directs the reaction and determines the major product. In CC/U media,
a very high yield of the ring-open product was formed. Alternatively, the use of choline
chloride/ZnCl, (CC/ZnCl>) produced only the closed ring form in good yield, while the
use of choline chloride/SnCl, (CC/SnClz) produced only the open ring form in good
yield. In addition, choline chloride/glycerol (CC/G) and Choline chloride/p-toluene
sulfonic acid (CC/PTSA) afforded a mixture of the two products. The reported study
shows the importance of the choice of DES and an interesting opportunity to tune

selectivity based upon selection of solvent.
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_ CC/malonicacid _ _ _______ ¢ 60%. . ...
Lo CCZnCly L 88% ...
° o O  or CC/ZnCly/SnCl, 835%
Q)LH + 2X N O Ph O
2h
(o]
LSOl 92% ...
o or: CC/SnCl, 85 %
(o] (0] oh HO
S Q; -
OH ©
LSO 60% ... 30% .
i o o ..OnCCPTSA """ 20% ... 60%___
H or: CC/glycerol 75 % 10 %
+2X o > HO O Ph O
o) Ph +
||
(0]
on©

Scheme 13: The selectivity of some MCR depending upon DES.

Another paper reported on MCR in CC/U starts with condensation of
malononitrile with salicylaldehyde, then followed by Michael addition (Scheme 14).24

This work has many advantages such the good yield, short reaction time, and easy work-

up procedure.
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R
s
@)
CN CN
DES
+ R—SH + —
RT
CN 15-80 min o NH
OH

Scheme 14: The MCR reaction of malononitrile, salicylaldehyde and thiols in CC/U

Current project

Although most of the reported work offers distinct advantages, they also suffer
from certain drawbacks, such as longer reaction times, high costs, and the use of high
amounts of environmentally toxic or expensive catalysts. Thus, considering the above
importance of 2-amino-3-cyano-4H-pyran derivatives and the need for the development
of new environmentally friendly synthetic methodologies, the combination of MCR and
DES was the goal of our study in order to make the reaction more environmentally, as

well as economically, viable.
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CHAPTER Il

EXPERIMENTAL

All *H NMR spectra were collected using a JEOL 500 MHz or JEOL 300 MHz
spectrometer using DMSO-d6 as solvent and the chemical shifts values reported in &
(ppm). Reagents used in the experiments were purchased from Alfa Aesar, Sigma
Aldrich, or Eastman Organic Chemical. All reactions were carried out in a 20 mL capsule

style glass vial.
Preparation of choline chloride/urea (CC/U)

Choline chloride (7 g, 50 mmol) and urea (6 g, 100 mmol) were mixed in a 20 mL
capsule style glass vial to form a 1:2 molar mixture. The vial was placed on MaxQ™
2000 Benchtop Orbital Shaker equipped with a J-Kem 3300 thermocouple. The shaker
was allowed to run overnight at 70.8°C. Eventually, the mixture formed a clear liquid,

which was kept at the same temperature and used as reaction media when needed.
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2-Amino-4-phenyl-7,7-dimethyl-5-0x0-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile 2

To a reaction vessel was added 0.318 g (3.00 mmol) benzaldehyde, 0.198 g (3.00
mmol) malononitrile, 0.420 g (3.00 mmol) dimedone, and 5.0 mL of a 1:2 molar mixture
of CC/U as solvent. The vial placed on a sand bath and stirred overnight at 90 °C. After
completion of the reaction, the vial was brought to room temperature, water was added and
the precipitated solid was filtered. The crude product was recrystallized from hot ethanol
to afford 0.385 g (43.7%) of the desired product as a white solid (mp 228-230 °C). *H NMR
(500 MHz, DMSO-d6): & 7.25 (t, 2H), 7.17 (t, 1H), 7.11 (d, J = 6.8 Hz, 2H), 6.98 (s, 2H),
4.14 (s, 1H), 2.49 (s, 2H), 2.24 (d, J = 16.0 Hz, 1H), 2.08 (d, J = 16.0 Hz, 1H), 1.02 (s, 3H),

0.94 (s, 3H).
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2-Amino-4-(4-chlorophenyl)-7,7-dimethyl-5-0x0-5,6,7,8-tetrahydro-4H-chromene-3-
carbonitrile 2°

Cl

CN

o) NH,

To a reaction vessel was added 0.337 g (3.00 mmol) 4-chlorobenzaldehyde, 0.198
g (3.00 mmol) malononitrile, 0.420 g (3.00 mmol) dimedone, and 5.0 mL of a 1:2 molar
mixture of CC/U as solvent. The vial placed on a hot plate and stirred overnight at 90 °C.
After completion of the reaction, the vial was brought to room temperature, water was
added and the precipitated solid was filtered. The crude product was recrystallized from
hot ethanol to afford 0.449 g (45.7%) of the desired product as a yellow solid (mp 208-210
°C). 'H NMR (500 MHz, DMSO-d6): § 7.33 (d, J = 8.6 Hz, 2H), 7.15 (d, J = 8.6 Hz, 2H),
7.05 (s, 2H), 4.17 (s, 1H), 2.49 (s, 2H), 2.23 (d, J = 16 Hz, 1H), 2.08 (d, J = 16 Hz, 1H),

1.02 (s, 3H), 0.93 (s, 3H).
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2-Amino-4-(4-fluorophenyl)-7,7-dimethyl-5-0x0-5,6,7,8-tetrahydro-4H-chromene-3-

carbonitrile %

CN

o) NH,

To a reaction vessel was added 0.372 g (3.00 mmol) 4-fluorobenzaldehyde, 0.198
g (3.00 mmol) malononitrile, 0.420 g (3.00 mmol) dimedone, and 5.0 mL of a 1:2 molar
mixture of CC/U as solvent. The vial placed on a hot plate and stirred overnight at 90 °C.
After completion of the reaction, the vial was brought to room temperature, water was
added and the precipitated solid was filtered. The crude product was recrystallized from
hot ethanol to afford 0.557 g (59.6%) of the desired product as a white solid (mp = 210-
212 °C). *H NMR (500 MHz, DMSO-d6): 5 7.38 (d, J = 6.8 Hz, 2H), 7.28-7.25 (m, 2H),
7.14 (d, J =7 Hz, 2H), 7.09 (s, 2H), 4.18 (s, 1H), 2.49 (s, 2H), 2.24 (d, J = 16 Hz, 1H), 2.11

(d, J = 16 Hz, 1H), 1.02 (s, 3H), 0.94 (s, 3H).
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2-Amino-4-(2-bromophenyl)-7,7-dimethyl-5-o0x0-5,6,7,8-tetrahydro-4H-chromene-3-

carbonitrile

CN

o) NH,

To a reaction vessel was added 0.555 g (3.00 mmol) 2-bromobenzaldehyde, 0.198
g (3.00 mmol) malononitrile, 0.420 g (3.00 mmol) dimedone, and 5.0 mL of a 1:2 molar
mixture of CC/U as solvent. The vial placed on a hot plate and stirred overnight at 90 °C.
After completion of the reaction, the vial was brought to room temperature, water was
added and the precipitated solid was filtered. The crude product was recrystallized from
hot ethanol to afford 0.217 g (19.4%) of the desired product as a white solid (mp = 202-
204 °C). 'H NMR (500 MHz, DMSO-d6): & 7.46 (d, J = 8.59, 2H), 7.09 (d, J = 8.02, 1H),
7.05 (s, 1H), 4.36 (d, J = 5.15, 1H), 4.16 (s, 1H), 2.49 (br s, 2H), 2.25-2.21 (d, J = 16 Hz,

1H), 2.10-2.07 (d, J = 16 Hz, 1H), 1.02 (s, 3H), 0.93 (s, 3H).
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2-Amino-4-(3-bromophenyl)-7,7-dimethyl-5-o0x0-5,6,7,8-tetrahydro-4H-chromene-3-

carbonitrile %

Br

CN

o) NH,

To a reaction vessel was added 0.555 g (3.00 mmol) 3-bromobenzaldehyde, 0.198
g (3.00 mmol) malononitrile, 0.420 g (3.00 mmol) dimedone, and 5.0 mL of a 1:2 molar
mixture of CC/U as solvent. The vial placed on a hot plate and stirred overnight at 90 °C.
After completion of the reaction, the vial was brought to room temperature, water was
added and the precipitated solid was filtered. The crude product was recrystallized from
hot ethanol to afford 0.655 g (58.6%) of the desired product as an off-white solid (mp =
210-216 °C). 'H NMR (500 MHz, DMSO-d6): § 7.17-7.07 (m, 4H), 7.01 (s, 2H), 4.18 (s,
1H), 2.48 (s, 2H), 2.23 (d, J = 16 Hz, 1H), 2.09 (d, J = 16 Hz, 1H), 1.02 (s, 1H), 0.93 (s,

1H).
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2-Amino-4-(4-bromophenyl)-7,7-dimethyl-5-o0x0-5,6,7,8-tetrahydro-4H-chromene-3-

carbonitrile %

Br

CN

o) NH,

To a reaction vessel was added 0.555 g (3.00 mmol) 4-bromobenzaldehyde, 0.198
g (3.00 mmol) malononitrile, 0.420 g (3.00 mmol) dimedone, and 5.0 mL of a 1:2 molar
mixture of CC/U as solvent. The vial placed on a hot plate and stirred overnight at 90 °C.
After completion of the reaction, the vial was brought to room temperature, water was
added and the precipitated solid was filtered. The crude product was recrystallized from
hot ethanol to afford 0.605 g (54.1%) of the desired product as a yellow solid (mp = 200-
204 °C). 'H NMR (300 MHz, DMSO-d6): § 7.44 (d, J = 8.0 Hz, 2H), 7.07 (d, J = 7.9 Hz,
2H), 7.04 (s, 2H), 4.14 (s, 1H), 2.47 (s, 2H), 2.21 (d, J = 16 Hz, 1H), 2.06 (d, J = 16 Hz,

1H), 1.00 (s, 3H), 0.91 (s, 3H).
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2-Amino-4-(4-cyanophenyl)-7,7-dimethyl-5-oxo0-5,6,7,8-tetrahydro-4H-chromene-3-

carbonitrile %

CN

CN

o) NH,

To a reaction vessel was added 0.393 g (3.00 mmol) 4-formylbenzonitrile, 0.198 g
(3.00 mmol) malononitrile, 0.420 g (3.00 mmol) dimedone, and 5.0 mL of a 1:2 molar
mixture of CC/U as solvent. The vial placed on a hot plate and stirred overnight at 90 °C.
After completion of the reaction, the vial was brought to room temperature, water was
added and the precipitated solid was filtered. The crude product was recrystallized from
hot ethanol to afford 0.277 g (29%) of the desired product as a white solid (mp = 224-226
°C). 'H NMR (500 MHz, DMSO-d6): § 7.73 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H),
7.11 (s, 2H), 4.25 (s, 1H), 2.46 (s, 2H), 2.21 (d, J = 16 Hz, 1H), 2.07 (d, J = 16 Hz, 1H),

1.00 (s, 3H), 0.91 (s, 3H).



31

2-Amino-4-(4-(dimethylamino)phenyl)-7,7-dimethyl-5-oxo0-5,6,7,8-tetrahydro-4H-

chromene-3-carbonitrile

N

CN

o) NH,

To a reaction vessel was added 0.447 g (3.00 mmol) 4-
(Dimethylamino)benzaldehyde, 0.198 g (3.00 mmol) malononitrile, 0.420 g (3.00 mmol)
dimedone, and 5.0 mL of a 1:2 molar mixture of CC/U as solvent. The vial placed on a
hot plate and stirred overnight at 90 °C. After completion of the reaction, the vial was
brought to room temperature, water was added and the precipitated solid was filtered.
The crude product was recrystallized from hot ethanol to afford 0.697 g (69%) of the
desired product as a turmeric yellow solid (mp = 218-220 °C). *H NMR (500 MHz,
DMSO-d6): & 6.90 (d, J = 9.1 Hz, 2H), 6.85 (s, 2H), 6.59 (d, J = 8 Hz, 2H), 4.00 (s, 1H),
2.80 (s, 6H), 2.46 (br s, 2H), 2.20 (d, 1H, J = 16.6 Hz), 2.04 (d, 1H, J = 16 Hz), 0.99 (s,

3H), 0.91 (s, 3H).
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2-Amino-4-(4-carboxymethylphenyl)-7,7-dimethyl-5-oxo0-5,6,7,8-tetrahydro-4H-

chromene-3-carbonitrile 2’

COOMe

CN

o) NH,

To a reaction vessel was added 0.492 g (3.00 mmol) methyl 4-formylbenzoate,
0.198 g (3.00 mmol) malononitrile, 0.420 g (3.00 mmol) dimedone, and 5.0 mL of a 1:2
molar mixture of CC/U as solvent. The vial placed on a hot plate and stirred overnight at
90 °C. After completion of the reaction, the vial was brought to room temperature, water
was added and the precipitated solid was filtered. The crude product was recrystallized
from hot ethanol to afford 0.683 g (64.7%) of the desired product as an off-white solid (mp
= 256-260 °C). *H NMR (500 MHz, DMSO-d6): & 7.85 (d, J = 8 Hz, 2H), 7.26 (d, J = 8
Hz, 2H), 7.07 (s, 2H), 4.22 (s, 1H), 3.79 (s, 3H), 2.45 (br s, 2H), 2.22 (d, J = 16 Hz, 1H),

2.06 (d, J = 15.4 Hz, 1H), 0.9 (s, 3H), 0.89 (s, 3H).
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2-Amino-4-(4-methoxyphenyl)-7,7-dimethyl-5-0xo0-5,6,7,8-tetrahydro-4H-chromene-3-

carbonitrile %

OMe

CN

o) NH,

To a reaction vessel was added 0.408 g (3.00 mmol) 4-methoxybenzaldehyde,
0.198 g (3.00 mmol) malononitrile, 0.420 g (3.00 mmol) dimedone, and 5.0 mL of a 1:2
molar mixture of CC/U as solvent. The vial placed on a hot plate and stirred overnight at
90 °C. After completion of the reaction, the vial was brought to room temperature, water
was added and the precipitated solid was filtered. The crude product was recrystallized
from hot ethanol to afford 0.469 g (48.3%) of the desired product as a yellow solid (mp =
194-196 °C). 'H NMR (500 MHz, DMSO-d6): & 7.03 (d, J = 7.6 Hz, 2H), 6.94 (s, 2H),
6.82 (d, J = 7.6 Hz, 2H), 4.09 (s, 1H), 3.69 (s, 3H), 2.48 (s, 2H), 2.22 (d, J = 16 Hz, 1H),

2.07 (d, J = 16 Hz, 1H), 1.01 (s, 3H), 0.92 (s, 3H).
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2-Amino-4-(3,4-dimethoxyphenyl)-7,7-dimethyl-5-0x0-5,6,7,8-tetrahydro-4H-chromene-

3-carbonitrile ¥

OMe
OMe
@)
CN
O NH,

To a reaction vessel was added 0.498 g (3.00 mmol) 3,4-dimethoxybenzaldehyde,
0.198 g (3.00 mmol) malononitrile, 0.420 g (3.00 mmol) dimedone, and 5.0 mL of a 1:2
molar mixture of CC/U as solvent. The vial placed on a hot plate and stirred overnight at
90 °C. After completion of the reaction, the vial was brought to room temperature, water
was added and the precipitated solid was filtered. The crude product was recrystallized
from hot ethanol to afford 0.641 g (60.4%) of the desired product as a yellow solid (mp =
164-168 °C). 'H NMR (500 MHz, DMSO-d6): § 6.94 (s, 2H), 6.85 (d, J = 8.0 Hz, 1H),
6.66 (d, J = 2.3 Hz, 1H), 6.63 (dd, J = 2.2, 6.3 Hz, 1H), 4.03 (s, 1H), 3.69 (s, 3H), 3.38 (s,
3H), 2.49 (s, 2H), 2.25 (d, J = 16 Hz, 1H), 2.12 (d, J = 16 Hz, 1H), 1.02 (s, 3H), 0.96 (5,

3H).
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2-Amino-4-(3,4,5-trimethoxyphenyl)-7,7-dimethyl-5-oxo0-5,6,7,8-tetrahydro-4H-

chromene-3-carbonitrile 2°

OMe
MeO OMe
@)
CN
O NH,

To a reaction vessel was added 0.588 g (3.00 mmol) 3,4-dimethoxybenzaldehyde,
0.198 g (3.00 mmol) malononitrile, 0.420 g (3.00 mmol) dimedone, and 5.0 mL of a 1:2
molar mixture of CC/U as solvent. The vial placed on a hot plate and stirred overnight at
90 °C. After completion of the reaction, the vial was brought to room temperature, water
was added and the precipitated solid was filtered. The crude product was recrystallized
from hot ethanol to afford 0.843 g (73.2%) of the desired product as a white solid (mp =
164-168 °C). 'H NMR (500 MHz, DMSO-d6):6.94 (s, 2H), 6.35 (s, 2H), 4.10 (s, 1H),
3.68 (s, 6H), 3.59 (s, 3H), 2.47 (s, 2H), 2.26 (d, J = 16 Hz, 1H), 2.11 (d, J = 16 Hz, 1H),

1.2 (s, 3H), 1.00 (s, 3H).
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2-Amino-4-(benzo[d][1,3]dioxol-5-yl)-7,7-dimethyl-5-0x0-5,6,7,8-tetrahydro-4H-

chromene-3-carbonitrile 2

To areaction vessel was added 0.450 g (3.00 mmol) piperonal, 0.198 g (3.00 mmol)
malononitrile, 0.420 g (3.00 mmol) dimedone, and 5.0 mL of a 1:2 molar mixture of CC/U
as solvent. The vial placed on a hot plate and stirred overnight at 90 °C. After completion
of the reaction, the vial was brought to room temperature, water was added and the
precipitated solid was filtered. The crude product was recrystallized from hot ethanol to
afford 0.612 g (60.4%) of the desired product as an off-white solid (mp = 204-210 °C). *H
NMR (500 MHz, DMSO-d6): & 6.95 (s, 2H), 6.77 (dd, J = 8.02 Hz, 1H), 6.61 (s, 1H), 6.57
(d, J = 8.02 Hz, 1H), 5.93 (s, 2H), 4.07 (s, 1H), 2.46 (s, 2H), 2.20 (d, J = 16 Hz, 1H), 2.08

(d, J = 16 Hz, 1H), 0.99 (s, 3H), 0.92 (s, 3H).
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2-Amino-4-(2-phenylethenyl)-7,7-dimethyl-5-0x0-5,6,7,8-tetrahydro-4H-chromene-3-

carbonitrile 28

To areaction vessel was added 0.396 g (3.00 mmol) cinnamaldehyde, 0.198 g (3.00
mmol) malononitrile, 0.420 g (3.00 mmol) dimedone, and 5.0 mL of a 1:2 molar mixture
of CC/U as solvent. The vial placed on a hot plate and stirred overnight at 90 °C. After
completion of the reaction, the vial was brought to room temperature, water was added and
the precipitated solid was filtered. The crude product was recrystallized from hot ethanol
to afford 0.198 g (20.7%) of the desired product as a yellow solid (mp = 194-196 °C). H
NMR (500 MHz, DMSO-d6): & 7.37-7.2 (m, 6H), 7.05 (s, 2H), 6.34 (d, J = 15 Hz, 1H),
6.06 (d, J = 15 Hz, 1H), 4.02 (s, 1H), 2.83 (s, 6H), 2.49 (g, 2H), 2.28-2.25 (d, J = 16 Hz,

1H), 2.09-2.04 (d, J = 16 Hz, 1H), 1.01 (s, 1H), 0.93 (s, 1H).
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2-Amino-4-(furan-2-yl)-7,7-dimethyl-5-oxo0-5,6,7,8-tetrahydro-4H-chromene-3-

carbonitrile %

To a reaction vessel was added 0.288 g (3.00 mmol) 2-furaldehyde, 0.198 g (3.00
mmol) malononitrile, 0.420 g (3.00 mmol) dimedone, and 5.0 mL of a 1:2 molar mixture
of CC/U as solvent. The vial placed on a hot plate and stirred overnight at 90 °C. After
completion of the reaction, the vial was brought to room temperature, water was added and
the precipitated solid was filtered. The crude product was recrystallized from hot ethanol
to afford 0.214 g (25.13%) of the desired product as a black solid (mp = 210-212 °C). H
NMR (300 MHz, DMSO-d6): § 7.46 (br s, 1H), 7.07 (s, 2H), 6.31 (br s, 1H), 6.03 (br s,
1H), 4.31 (s, 1H), 2.49 (br s, 2H), 2.26 (d, J = 16 Hz, 1H), 2.15 (d, J = 16 Hz, 1H), 1.02 (s,

3H), 0.97 (s, 3H).
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2-Amino-7,7-dimethyl-5-oxo-4-(thiophen-2-yl)-5,6,7,8-tetrahydro-4H-chromene-3-

carbonitrile 26

To a reaction vessel was added 0.336 g (3.00 mmol) 2-thiophenecarboxaldehyde,
0.198 g (3.00 mmol) malononitrile, 0.420 g (3.00 mmol) dimedone, and 5.0 mL of a 1:2
molar mixture of CC/U as solvent. The vial placed on a hot plate and stirred overnight at
90 °C. After completion of the reaction, the vial was brought to room temperature, water
was added and the precipitated solid was filtered. The crude product was recrystallized
from hot ethanol to afford 0.368 g (40.9%) of the desired product as a dark brown solid
(mp = 220-222 °C). *H NMR (500 MHz, DMSO-d6): & 7.46 (d, J = 0.85 Hz, 2H), 7.07 (s,
2H), 6.31 (dd, J = 1.7, 3.45 Hz, 1H), 6.04 (d, J = 3.45, 1H), 4.30 (s, 1H), 2.48 (m, 2H),

2.27 (d, J = 16 Hz, 1H), 2.15 (d, J = 16 Hz, 1H), 1.03 (s, 3H), 0.97 (s, 3H).
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2-Amino-7,7-dimethyl-5-oxo-4-(4-bromothiophen-2-yl)-5,6,7,8-tetrahydro-4H-

chromene-3-carbonitrile

To a reaction vessel was added 0.336 g (3.00 mmol) 4-bromo-2-
thiophenecarboxaldehyde, 0.198 g (3.00 mmol) malononitrile, 0.420 g (3.00 mmol)
dimedone, and 5.0 mL of a 1:2 molar mixture of CC/U as solvent. The vial placed on a
hot plate and stirred overnight at 90 °C. After completion of the reaction, the vial was
brought to room temperature, water was added and the precipitated solid was filtered.
The crude product was recrystallized from hot ethanol to afford 0.352 g (31.1%) of the
desired product as a dark brown solid (mp = 202-204 °C) *H NMR (500 MHz, DMSO-
d6): 5 7.46 (s, 1H), 7.21 (s, 2H), 6.85 (s, 1H), 4.53 (s, 1H), 2.48 (s, 2H), 2.28 (d, J = 16
Hz, 1H), 2.15 (d, J = 16 Hz, 1H), 1.02 (s, 3H), 0.96 (s, 3H). 1*C NMR (500 MHz,
DMSO0-d6) 6 195.5, 162.9, 158.7, 150.9, 126.1, 122.2, 119.0, 112.0, 107.7, 56.8, 49.7,
31.7, 30.2, 28.5, 26.4. IR : v cm™ 3447, 3388, 3328, 3192, 3104, 2958, 2186, 1659, 1597,

1372, 1207, 1137, 1032, 739, 720.
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CHAPTER Il
RESULTS AND DISCUSSION

Due to the previously mentioned importance of polyfunctionalized 2-amino-3-
cyano-4H-pyran derivatives in biological and pharmacological applications, there is a
need for developing new synthetic methods capable of providing easy access to a library
of compounds and yet also reasonable for larger scale application. As discussed before,
the combination of MCR and DES could lead to a more efficient method. Therefore, we
studied this catalyst free one-pot multicomponent coupling reaction using CC/U as the

reaction media.

The synthesis of 2-amino-3-cyano-4H-pyran derivatives were achieved using an
MCR approach and employing CC/U as an environmentally friendly solvent. The
reactions were carried out at 90 °C without the need for base or catalyst, and the yields
were good. A wide range of functionalized aromatic aldehydes have been studied in this
work to determine the effectiveness of this procedure compared with what has been

reported in the literature.

One of the first challenges encountered was the lack of careful evaluation for the
reaction conditions of the synthesis of 2-amino-3-cyano-4H-pyran derivatives as well as
poorly documented and inconsistent physical and spectral properties. Further, even
though there are many papers reporting a synthesis of this class of compounds, there is
little discussion of the mechanism and even less evidence. One general observation has
been with respect to the reaction temperature.?>? It is generally believed that the

temperature plays important role in the yields and reaction time. For instance, both Aziz
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et al. and Pawar et al. reported that the yields increase with increasing temperature up to
80 °C. These results provide confirmatory evidence that the reaction will give the best
yield when the temperature is at least 80 °C. On the basis of this evidence, we ran our
first reaction overnight at 90 °C and continued on with the same conditions to normalize

our outcome.

At the beginning, a one mmol scale was executed. The yield was lower than
expected (35.7% in the case of the reaction with benzaldehyde, entry 1, Table 2), even
though the proton NMR of the crude reaction mixture following extraction looked
relatively clean. Based on our evaluation of the NMR spectra of the crude, there was a
concern about the role of the purification method in the isolated yield. Recrystallization at
1 mmol scale is a challenge, which could be the reason for the low yield. Moreover, in
case of the electron withdrawing groups (EWG) on the aldehyde, we had to use a binary
solvent system (ethanol:water) in the recrystallization to obtain a crystalline precipitate.
From there, we carried out a couple of reactions on a 3 mmol scale to determine if the
isolated yield is being reduced because of the purification method and the scale of the
reaction. On the 3 mmol scale, there was a considerable increase in yield as seen in Table
2. One other interesting observation of this increase in scale was that at the 3 mmol scale,
all purification was done successfully using ethanol without the need for water as a co-

solvent.



Table 2: Comparison of the yield when increasing the reaction scale.
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Isolated
Isolated Yield | Yield 3
Entry Aldehyde Product 1 mmol (%) mmol
(%)
CHO
1 35.7 43.7
CN
0 NH,
Cl
CHO
2 22 45.7
CN
Cl
o} NH,
\N/
CHO
3 48.7 69
CN
/N\

o NH,
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Based on those results (Table 2), we started exploring a variety of substituted
aromatic as well as heteroaromatic aldehydes using the larger 3 mmol scale (Table 3).
Generally, electron withdrawing groups (EWG) on the aldehyde produced lower yields
comparing with the electron donating groups (EDG) (Table 3, compare entries 7 and 8).
In the case of a mild EWG such 4-fluorobenzaldehyde or 4-bromobenzaldehyde the
yields ranged around 54-59% (Table 2, entries 3 and 4). The yields dropped further when
using aldehydes with stronger EWG such as 4-formylbenzonitrile (Table 2, entry 7), and
the reactions of 2-nitrobenzaldehyde and 3-nitrobenzaldehyde failed completely. On the
other hand, there is a clear increase in yield when employing aldehydes with EDG.
Several examples of EDG have been used including 4-(dimethylamino)benzaldehyde,
piperonal, and 3,4,5-trimethoxybenzaldehyde (Table 2, entries 8, 13, and 12). In
addition, an interesting trend appears with the methoxy substitutes. The yields increase
steadily with increasing numbers of methoxy groups present. The yield of the 4-
methoxybenzaldehyde is 48.3%, it goes up with 3,4-dimethoxybenzaldehyde to 60.4%,
and it reaches 73.2% with 3,4,5-trimethoxybenzaldehyde. This trend supports the idea

that the EDG positively influences the yields of this reaction.
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Table 3: Multicomponent coupling reactions of 2-Amino-3-cyano-4H-pyran derivatives.

Isolated Yield | Melting
Entry Aldehyde Product (%) Point °C
CHO
1 43.7 228-230
CN
o) NH,
Cl
CHO
2 45.7 208-210
CN
Cl
o) NH,
CHO
3 59.6 210-212
CN

o NH,




Table 3 (cont.): Multicomponent coupling reactions of 2-Amino-3-cyano-4H-pyran
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derivatives.
Isolated Yield | Melting
Entry Aldehyde Product (%) Point °C
Br
CHO
4 54.1 200-204
CN
Br
o) NH,
Br
CHO
5 @\ 58.6 210-216
CN
Br
o) NH,
CHO
Br Br
6 19.4 202-204
CN
o) NH,
CHO
7 29 224-226
CN
CN NH,




Table 3 (cont.): Multicomponent coupling reactions of 2-Amino-3-cyano-4H-pyran
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derivatives.
Isolated Yield | Melting
Entry Aldehyde Product (%) Point °C
\N/
CHO
8 69 218-220
CN
N
PN
o) NH,
COOMe
CHO
9 Q 64.7 256-260
CN
COOMe
o) NH,
OMe
CHO
10 e 48.3 194-196
CN
OMe
o) NH,




Table 3 (cont.): Multicomponent coupling reactions of 2-Amino-3-cyano-4H-pyran
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derivatives.
Isolated Yield | Melting
Entry Aldehyde Product (%) Point °C
OMe
CHO OMe
11 e 60.4 164-168
OMe CN
OMe
o NH,
OMe
CHO MeO OMe
12 2 73.2 164-168
MeO OMe CN
OMe ‘
0 NH,
-——’_\O
CHO
13 60.4 204-210
0
b/

NH,
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Table 3 (cont.): Multicomponent coupling reactions of 2-Amino-3-cyano-4H-pyran

derivatives.
Entry Aldehyde Product Isola’zﬁz)Weld F',\gfr'ft'[]g
CHO
/
14 20.7 194-196
(@]
CHO
15 @/ oN 25.13 210-212
NH,
S
CHO
16 @/ oN 40.9 220-222
NH,




Table 3 (cont.): Multicomponent coupling reactions of 2-Amino-3-cyano-4H-pyran
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derivatives.
Isolated Yield | Melting
Entry Aldehyde Product (%) Point °C
s CHO
17 \ | 31.1 202-204
Br

There were concerns regarding the yields even of the 3 mmol scale when

compared with similar work reported in literature. The work reported by Mantelingu and

co-workers is similar to our work and at room temperature with higher yields (Scheme

11). Mantelingu used cyclohexane-1,3-dione while we used dimedone. The very modest

structural difference between these two diketones would not be expected to make a major

difference in the isolated yields and efficiency of the reactions. One other difference was

that the addition of the active methylene in Mantelingu’s work was 5 min after the

reaction of other component was initiated, while we added all three components

simultaneously. This led us to consider that perhaps this difference in order of addition

was significant and worthy of investigation.
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Ar CN o o NH,

Scheme 11: MCR by Mantelingu and co-workers.

To compare the procedure reported Mantelingu with our procedure we performed
two trials (Table 4). In the first trial, we mixed benzaldehyde, malononitrile, and after
five minutes, dimedone was added in accord with the Mantelingu procedure (Table 4,
Entry 1). The second trial follows our standard method by adding benzaldehyde,
malononitrile, and dimedone simultaneously (Table 4, Entry 2). Both reactions were run

for 30 min at room temperature.
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Table 4: Comparison of the procedure reported by Mantelingu with our procedure.

Entry Product Isolated Yield (%6) Comments

Benzaldehyde,
malononitrile, mixed
together, and after

1 89% cther,
CN five minutes,
dimedone was
added.
NH,
All three
2 67% components were
CN ° mixed

simultaneously.

NH,

The first trial gave a bright white crude product and colorless aqueous layer. After

recrystallization in ethanol, the yield was 89% (Table 4, Entry 1).

The second trial gave an orange crude product and the aqueous wash was orange.
The yield was 67% after recrystallization in ethanol (Table 4, Entry 2). The reduction in
yield and the color of the crude product both indicated that side reactions were competing
with the desired reaction. A number of possible side reactions can be imagined, many of
which are outlined in Scheme 15. With two active methylene compounds present along
with the aldehyde, the initial condensation reaction could occur with malononitrile to

afford intermediate 1, or with dimedone to afford intermediate 2. Malononitrile is the
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more reactive active methylene compound and thus the route to 1 should dominate, but
reaction with dimedone is also known, so 2 is possible as well.Z With the intermediates
formed, condensations can then result in at least 4 products. In point of fact, the number
is likely larger as Azizi and co-workers have previously noted that condensation of
dimedone with aldehydes in CC/U affords mixtures of the ring-open and ring-closed
products (Scheme 16).2 This competing reactivity is expected to be even worse at higher
temperatures, which can be seen in the increase in yield of the desired product by going
from 90 °C (44%, Table 2, entry 1) to room temperature (67%, Table 3, entry 2). Thus,
application of the delay in addition and a decrease in reaction temperatures is expected to
increase the yields of all of the reactions performed to date. This same modification

would be expected to be beneficial to future multicomponent coupling reactions.



+ CN 07 “NH,

o}
o | o
A 2
r o o) SO
7@ §
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| |
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Scheme 15: Possible side reactions.
o) Ph OH
(@]
o) o)
CC/U
+
2X oh
80 °C

Scheme 16: Azizi MCR reaction.
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CHAPTER IV

CONCLUSION

Polyfunctionalized 2-amino-3-cyano-4H-pyran derivatives have wide application
in pharmacological field. Therefore, there is a need for developing new synthetic methods
reasonable for larger scale application and environmentally benign. The procedure
represented by this study uses a MCR approach and employs CC/U as an
environmentally friendly solvent to produce 2-amino-3-cyano-4H-pyran derivatives.
Therefore, we studied this catalyst free one-pot multicomponent coupling reaction using
CC/U as the reaction media. Moreover, a simple work up procedure was developed via
recrystallization from ethanol or ethanol-water to avoid the use of expensive silica gel
chromatography and exclude the massive use of organic chromatography eluents. Finally,

this work avoids the use of toxic and expensive catalyst or solvents.

Interestingly, increasing the reaction scale from 1 mmol to 3 mmol improved the
reaction isolated yield. That increase in yield is believed to be due the effectiveness of
recrystallization in 3 mmol scale, in order to purifying the product. On the 3 mmol scale,
all purification was done successfully using ethanol without the need for water as a co-

solvent, as some 1 mmol reactions required.

A variety of substituted aromatic as well as heteroaromatic aldehydes were
explored using the larger 3 mmol scale. Generally, electron withdrawing groups (EWG)
on the aldehyde produced lower yields comparing with the electron donating groups

(EDG). In the case of a mild EWG such 4-fluorobenzaldehyde or 4-bromobenzaldehyde
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the yields ranging around 54-59%. The yields dropped further when using aldehydes with
stronger EWG such as 4-formylbenzonitrile. On the other hand, there is a clear increase
in yield when employing aldehydes with EDG. Several examples of EDG have been used
including 4-(Dimethylamino)benzaldehyde, piperonal, and 3,4,5-
trimethoxybenzaldehyde. We can conclude that aromatic aldehydes that bearing EDG

positively influences the yields of this reaction.

We ran a comparison between Mantelingu’s method and our procedure. We have
found that by mixing benzaldehyde, malononitrile, and adding dimedone after five
minutes, in accordance with the Mantelingu procedure, produces a better yield. Also we
have found that running the reaction at room temperature is suitable for CC/U, and
produces better yield, thus providing clear evidence that CC/U is acting as a catalyst for

these reactions, likely via hydrogen-bonding activiation.

In conclusion, the effectiveness of combining the aldehyde, active methylene, and
adding nucleophile after five minutes has been proven. In other words, the delay in
addition and a decrease in reaction temperatures are expected to increase the yields and
limits any side-reactions that would compete with the desire reaction. This same
modification would be expected to be beneficial to future multicomponent coupling
reactions. In addition, employing different DES that produced only the closed ring form
in high yield such as CC/ZnCl, and CC/SnCl are worth investigating, although their

greater water sensitivity may render them less satisfactory compared to CC/U.
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APPENDIX A
Spectroscopy Data

2-Amino-4-phenyl-7,7-dimethyl-5-0xo0-5,6,7,8-tetrahydro-4H-chromene-3-
carbonitrile

NMR
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2-Amino-4-(4-chlorophenyl)-7,7-dimethyl-5-ox0-5,6,7,8-tetrahydro-4H-chromene-3-
carbonitrile

Cl

CN

NMR
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'H NMR
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2-Amino-4-(4-fluorophenyl)-7,7-dimethyl-5-0x0-5,6,7,8-tetrahydro-4H-chromene-3-
carbonitrile

CN

NMR
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'H NMR

[oplt-zz
[s)vo6L8S¥L"S
[sly

0S

[slt

asTvd

330

330

[snls60°L
laply

[69p] sy
[s]v06L8SVL"T
[snletT %1

9T

9T

T

STV

[wdd]o* 5
[ZHH]TZST66ST 005

HT
[wdd]o*g
[2HH]TZST66ST 005
HT

[zHA]8EV8EVBE "6
[zHlLELLLTLS O
T

v8E9T
[wdd]o*s

[ZHN] TZST66ST 00
H

1
(slvo6LssyL T
ma}00s) [L16LSELYL TT

WAN ZVITEQ
00S w0

X
[wdd]
HT

LOTET
X3TdW0D dT

¥:0Z STOZ-INC-6Z
0€:LP:0Z STOZ-INC-6Z
SZTILTTT STOZ-NOC-T
—__9a-0sWa

O0ETZ ST ¥ 9 WY
zxo-osTnd o1buts
Apuey

NOLO¥d 0€1Z ST ¥ 9 WY

LI I B B R B I ]

LU T B )

306 dwog,
outy_uot3Tiadey
Xerop uotjexRTSy
uteb xad0y

ITeM T[RTITUL
jesoad ojueq
opow TIL

opow xII

osTnd X

uje x

orbue ¥

owty boe X
YIPTM 06 X

sueos” Te30%
sueog
uan3ox PoW
poddTTd
3083J0_TAL
boxz Ty
uTRWOP” TAL
398330 aII
Ucuuuuuu

uotT3InTOs9I X
sueosoxd x
avnn.o&H X
308330 X
box3y"x
urewop X
uotjeInp boe X
Y3buoa3s proTd

a93owox3oeds
231S
suotsuawWIq
s3Tun_wrq
°T3T3_WIQ
°zTs wra
jemIoy e3Rd

w3 3uLIIND
oWT} UOTSTADY
QWT3 UWOTIRDID
3jueATOS

PT ordues
FuowtIodxy
Toy3any
owRuLTTd

HI : uonpipy J1od syred : g

rv

gs ReRYERER &
S oh S8 Z %
] EEEE P g
| ] ] v
| g | |
nmw
01 0z o€ oy 0's 09
1 1 1 1 1 1 Rl
i g
,._ <
o = |
el 2 I I
3| | g [
29 ’ |
m =
= [
8 L
ﬁ.
=
“ | F
| | [
M | b
[ u |ﬂ
|
L
| [
; e
m [
|
W i
o
4/
L -
wm
,,_,. ,.ﬁ Iﬁ. f 10
- 25 PE-E
8/ g2 as

2durpunge




67

2-Amino-4-(2-bromophenyl)-7,7-dimethyl-5-ox0-5,6,7,8-tetrahydro-4H-chromene-3-
carbonitrile

CN

NMR
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'H NMR
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2-Amino-4-(3-bromophenyl)-7,7-dimethyl-5-ox0-5,6,7,8-tetrahydro-4H-chromene-3-
carbonitrile

Br

CN

NMR
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'H NMR

[oplz 12
[s]vo6L8SVL"S
[sly

s
[slt

[slvoe6L8s¥L T
[snl6T 91

[ 9T
9T

T

ST

[wdd]o'g

[ZHW] TZST66ST " 00S
HT

[wdd]o-s
[zEH] TZST66ST 005
HT

[zHX]8E98EPBE" 6
[zr]LeLLLzLs o
T

[ZHW] TZST66ST 005
HT

[s1v06L8SVL"T
HW1006) [T16LSELVL TT

WHN Z¥L13a
00S ¥ox

X
[wdd]

HT
LOTET
XdTdW0D dT

SZ:9T:6T STOZ-INC-ST
ZT:9T:6T STOZ-TINCr-ST
TZ:L0:0Z STOZ-VWW-ZT
_ _90-0SWa

0STZ ST ZZ € WY
zxo*osTnd o7burs

wn s e ApUNY
0LO¥d 0STIZ ST ZZ € WY

LI BB )

306  dwog,
owr3_uotT3Tiodey
Aerep uoTjeXERTON
uteb xadoy

3ITeM TRTITUL
udmﬂu&low.unn

IPTM 06 X

suens” Te30%
sueos

uIn3ox pPoN
poddTTd
30S330_TIL

boaxz Tay
uyewop TIL
398330 axI

box3z axr
utewop Il
dooms”x
uorynTosaa” X
sueosoxd X
sjurod X
398330 X

baxzy x
urewop X
uotjeanp boe X
y3buox3s proTd

xo3owox3oeds
93TS
suotTsuowtq
s3tun_wig
°T3T3_Wrd
°ZTS wWrd
jewxo3” e3ed

ewty 3ueIIND
QWT3 WOTSTADY
oWT} WOTIVDID
JUSATOS

Py ordures
JuowrIodxy
xoy3ny
sueusTTJ

HI : uonp od spaed : X

S NN & =
Yo [ A - -
& fei¥3] ® n
2B ECEEH] é £
Vo |
, I ’ - . < ;
ol 07 e oy os 09 08 0’6
1 1 1 1 1 1 1 1
[
) i {
|
|
|
| | z
7 - A &/ |
|
|
, |
, =
| | Wl
, ; g)
m..,
in|

in

$

999°'T

6061

0T

L R LS L s L) R R e

T T T T T T T T T T T T T T T T T T T T T

oL 0€l oL 0TI oot 06 08 oL 09 0§ oy 0e 0T

0'sT |

Jduepunqe




71

2-Amino-4-(4-bromophenyl)-7,7-dimethyl-5-ox0-5,6,7,8-tetrahydro-4H-chromene-3-
carbonitrile

Br

CN

NMR
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'H NMR
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2-Amino-4-(4-cyanophenyl)-7,7-dimethyl-5-0x0-5,6,7,8-tetrahydro-4H-chromene-3-
carbonitrile

CN

CN

NMR
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2-Amino-4-(4-(dimethylamino)phenyl)-7,7-dimethyl-5-oxo0-5,6,7,8-tetrahydro-4H-
chromene-3-carbonitrile

CN

NMR
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'H NMR
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2-Amino-4-(4-carboxymethylphenyl)-7,7-dimethyl-5-0x0-5,6,7,8-tetrahydro-4H-
chromene-3-carbonitrile

COOMe

CN

NMR
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'H NMR
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2-Amino-4-(4-methoxyphenyl)-7,7-dimethyl-5-oxo0-5,6,7,8-tetrahydro-4H-chromene-
3-carbonitrile

OMe

CN

NMR
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'H NMR
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2-Amino-4-(3,4-dimethoxyphenyl)-7,7-dimethyl-5-0x0-5,6,7,8-tetrahydro-4H-
chromene-3-carbonitrile

OMe
OMe
@)
CN
@] NH,

NMR
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'H NMR
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2-Amino-4-(3,4,5-trimethoxyphenyl)-7,7-dimethyl-5-oxo0-5,6,7,8-tetrahydro-4H-
chromene-3-carbonitrile

OMe
MeO OMe
@)
CN
@] NH,

NMR
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'H NMR
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2-Amino-4-(benzo[d][1,3]dioxol-5-yI)-7,7-dimethyl-5-0x0-5,6,7,8-tetrahydro-4H-
chromene-3-carbonitrile

NMR

85



86

'H NMR
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2-Amino-4-(2-phenylethenyl)-7,7-dimethyl-5-oxo0-5,6,7,8-tetrahydro-4H-chromene-
3-carbonitrile

NMR
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'H NMR
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2-Amino-4-(furan-2-yl)-7,7-dimethyl-5-0x0-5,6,7,8-tetrahydro-4H-chromene-3-
carbonitrile

NMR
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'H NMR
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2-Amino-7,7-dimethyl-5-oxo0-4-(thiophen-2-yl)-5,6,7,8-tetrahydro-4H-chromene-3-
carbonitrile

NMR
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IH NMR
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2-Amino-7,7-dimethyl-5-0x0-4-(4-bromothiophen-2-yl)-5,6,7,8-tetrahydro-4H-
chromene-3-carbonitrile

NMR
IH NMR
13C NMR

FTIR
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'H NMR
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13C NMR
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