PART I. SYNTHESIS AND CHARACTERIZATION OF DONOR-π-ACCEPTOR COMPOUNDS WITH PENTADIENYL-BRIDGED

INDOLINE AND TETRAHYDROQUINOLINE DONORS AND ALDEHYDE AND

THIOBARBITURIC ACID ACCEPTORS

PART II. LONGITUDINAL STUDY COMPARING ONLINE VERSUS FACE-TO-

FACE COURSE DELIVERY IN INTRODUCTORY CHEMISTRY

by

Patrick F. Greco

Approved: Dr. Amy J. P

Dr. Andrienne C. Friedli, Reader

Dr. Michael J. Sanger, Reader

Dr. Donald Snead, Reader

Dr Preston J. MacDougal, Assistant Chair, Department of Chemistry

Dr. GregWar Patten, Chair, Department of Chemistry

Last A Gela

Dr. Michael D. Allen, Dean, College of Graduate Studies

PART I. SYNTHESIS AND CHARACTERIZATION OF DONOR-π-ACCEPTOR COMPOUNDS WITH PENTADIENYL-BRIDGED

INDOLINE AND TETRAHYDROQUINOLINE DONORS AND ALDEHYDE AND THIOBARBITURIC ACID ACCEPTORS

PART II. LONGITUDINAL STUDY COMPARING ONLINE VERSUS FACE-TO-FACE COURSE DELIVERY IN INTRODUCTORY CHEMISTRY

by

Patrick F. Greco

A dissertation presented to the Graduate Faculty of Middle Tennessee State University in partial fulfillment of the requirements for the degree of Doctor of Arts

December 2012

UMI Number: 3537116

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI 3537116 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346

ACKNOWLEDGEMENTS

I wish to thank the following: Dr. Amy Phelps for all her guidance over the years, her fighting for me at every turn and making sure I was able to complete this degree; Dr. Andrienne Friedli for her extreme patience and encouragement during my venture into organic chemistry; Dr. Michael Sanger for his excellent advice and diligent care to detail when editing my dissertation. I additionally want to thank Mandy Burns who was always helpful in managing any aspect of the logistics of MTSU, whether it was enrolling me in a class, making sure my stipend was taken care of, or just showing me where to find a building. I want to also thank Llana Combs at Sinclair Community College, for editing and format assistance. I want to thank my family for all their support over the years. Furthermore, I want to thank my wonderful wife Natasha, who put up with me being away for a whole year so that I could finish what I started. I would not have been able to finish without her love and support. Lastly, I want to thank my little girl, Aleksandra who behaved so wonderfully during her first year of her life so that papa could become a Doctor.

ABSTRACT

PART I. SYNTHESIS AND CHARACTERIZATION OF DONOR-π-ACCEPTOR COMPOUNDS WITH PENTADIENYL-BRIDGED

INDOLINE AND TETRAHYDROQUINOLINE DONORS AND ALDEHYDE AND THIOBARBITURIC ACID ACCEPTORS

PART II. LONGITUDINAL STUDY COMPARING ONLINE VERSUS FACE-TO-FACE COURSE DELIVERY IN INTRODUCTORY CHEMISTRY

Patrick F. Greco

Part I. The design and development of organic second-order nonlinear optical (NLO) materials have attracted much interest due to their applications in optoelectronic devices and modern communications technology. Donor- π -acceptor compounds, D-(CH=CH)_n-A, often exhibit hyperpolarizability that results in laser frequency doubling (second harmonic generation) and spectroscopic solvatochromism. To study the effect of donor amine geometry upon properties associated with second-order NLO behavior in simple donor- π -acceptor compounds, equilibrium geometries and hyperpolarizabilities (β) for donor-acceptor polyenes with amine donors were calculated at several levels of computational theory. Two new molecules with donors that only differ by one methylene group were chosen for comparison. Thus, 5-(N-methylindolin-5-yl)-2, 4-pentadienal (**1a**) and 5-(N-methyl-2, 3, 4-trihyrdroquinolin-6-yl)-2, 4-pentadienal

iii

(2a) were synthesized in two steps from starting materials described in the literature. These aldehydes were converted into stronger acceptors in one step to give diethylthiobarbituric acid derivatives 1c and 2c, as well as tricyanofuran derivatives 1d and 2d. Positive UV solvatochromism was observed in all three derivatives. NMR solvatochromism was most pronounced in 1c and 2c vs. 1a and 2a as measured by changes in chemical shifts. Additionally, coupling constants showed more conjugation in 1c and 2c, where 1a and 2a showed less conjugation. Finally, differential scanning calorimetry and thermal gravimetric analysis were used to compare decomposition and melting temperatures of these compounds to determine their stability. Aldehydes, 1a and 2a had distinct melting points, while the 1c, 2c, 1d, and 2d derivatives decomposed at temperatures above 150 °C.

Part II. This longitudinal study focused on an introductory chemistry course taught using two different modes of delivery: online and face-to-face (FtF). The sections of the course using the different delivery modes covered the same material at the same level, used the same textbook, and were taught by the same instructor. Student success was tracked over a period of nine consecutive years along with other important dependent variables including the number of developmental courses taken, student age, math and reading placement scores, overall GPA and full time status. Surprisingly, student success correlated negatively to their placement scores.

iv

The students who chose the online course had higher overall GPA's and better placement test scores than the FtF students. Despite these advantages, online students were less successful than their FtF counterparts. This result suggests that FtF instruction was more effective, even with better students. These findings have important implications for institutions evaluating the role online instruction will play at their institutions.

.

TABLE OF CONTENTS

	Page
LIST OF FIGURES – PART I	ix
LIST OF FIGURES – PART II	x
LIST OF TABLES-PART I	xi

CHAPTER

1. INTRODUCTION
2. MATERIALS AND METHODS4
Instruments, Materials and Reagents7
Thermal Analysis7
UV Spectroscopy7
NMR Spectroscopy
Calculations8
Synthetic Methods
3. RESULTS AND DISCUSSION
Properties
Solvatochromism
UV-VIS Spectrometry and Solvatochromism

NMR Spectrometry and Solvatochromism	
Physical Properties	34
4. CONCLUSIONS	
LITERATURE CITED	37
PART II. LONGITUDINAL STUDY COMPARING ONLINE VERSUS FA COURSE DELIVERY IN INTRODUCTORY CHEMISTRY	
1. INTRODUCTION	42
2. REVIEW OF EXISTING LITERATURE	45
Delivery Had No Impact	45
Online Learning Was Better	47
Face-to-Face Instruction Was Better	49
Literature Reviewing Online Science Courses	51
Research Questions	53
3. METHODOLOGY	54
Design	54
Face-to-Face Course	55
Online Course	55
Participants	56
Study	58
4. RESULTS	
Comparing Face-to-Face Students with Online Students	62
5. CONCLUSIONS	

6. IMPLICATIONS)
LITERATURE CITED		l
APPENDICES		1
APPENDIX A: UV and I	NMR Solvent Dependence Data7	5
APPENDIX B: IRB App	proval8	3
APPENDIX C: Part II St	atistical Data84	4
APPENDIX D: Institutio	nal Approval for Part II Data14	2

LIST OF FIGURES-PART I

FIGURE	PAGE
1. Structures of synthesized compounds 1a, 2a, 3a, and 4a	4
2. Three step synthesis of 1a and 2a	5
3. Synthesis of donor-acceptor Polyenes	6
4. Structure of derivatives 1a-10a and 1b-10b	17
5. Dihedral angle description	18
6. Dihedral angle and bond length plot	19
7. Resonance structures for 2a	21
8. Molecular orbital maps of 2a a) HOMO b)LUMO	21-22
9. Delocalized structure of 18	23
10. Solvent polarity plotted against calculated λ_{max} values for 1.	24
11. Solvent polarity plotted against experimental λ_{max} values f	25
12. Experimental λ_{max} and Calculated λ_{max} vs. E_T^N for 1a and 2a	26
13. Solvent polarity versus experimental λ_{max} values for 1c and	2c 27
14. Solvent polarity versus experimental λ_{max} values for $3c_{1}$	27
15. Proton assignments for 1a , 2a , and 2c	29
16. NMR chemical shifts for 1a	30
17. NMR chemical shifts for 2a	31
18. NMR chemical shifts for 2c	32
19. Resonance structures for 3c (n=1)	32
20. Solvent parameter vs. ΔJ for 1a , 2a , 1c , and 2c	

LIST OF FIGURES-PART II

FIGU	RE	PAGE
1.	Enrollment in the online CHE 120 from 2003 to 2011	56
2.	Academic divisions of chemistry students	56
3.	Demographic data	57
4.	Success rates for students in the FtF and online courses	59
5.	Success rates for students in developmental courses	60
6.	Students needing DEV 085, Basic Mathematics II	61
7.	Students needing DEV 108, Introduction to Algebra	61
8.	Statistical data of face to face students	63
9.	Statistical data of online students	64

LIST OF TABLES-PART I

.

TABL	E]	PAGE
1.	Spectroscopic properties of pentadienals	20
2.	ΔJ values for compounds 1-4c	34
3.	Transition temperatures for 1a, 2a, 1c, 2c, 1d, and 2d	35

.

.

.

.

PART I. SYNTHESIS AND CHARACTERIZATION OF DONOR-π-ACCEPTOR COMPOUNDS WITH PENTADIENYL-BRIDGED INDOLINE AND TETRAHYDROQUINOLINE DONORS AND ALDEHYDE AND THIOBARBITURIC ACID ACCEPTORS

CHAPTER 1

INTRODUCTION

For the last several decades, non-linear optical (NLO) materials have generated considerable interest and study due to their applications in telecommunications, electronic switching and laser frequency doubling (Prasad, 1991). Materials that exhibit NLO properties are based on experimental molecules designed to change according to the intensity of the light passing through the material. These materials have great potential for overcoming problems with current fiber optic networks, mostly through eliminating current electric networks and enabling networks which are solely fiber optic (Ma, 2003). Different orders of nonlinear optical properties refer to the amount light can affect a response from the material. Due to their chemical flexibility organic materials have emerged with increasing interest. In addition, organic NLO materials possess a high degree of optical non-linearity in comparison to their inorganic counterparts. Organic donor-acceptor polyenes with amine donors and acceptors coupled through conjugated systems are of special interest in the study of second-order structure-property relationships and nonlinear optical behavior (Kwon, 2005). Moreover, these compounds are of interest for dye sensitized solar cells (Chen, 2007).

Hyperpolarizability can be measured in solution using e-FISH calculations based on the Taylor series, $\mu = \mu^{\circ} + \alpha E + \beta E^2 + \gamma E^3 + \dots$, where μ° is the static dipole, E is the applied electric field, α is the linear polarization, and β is the second order polarization or hyperpolarization. Large β values indicate strong NLO behavior in molecules. Classic molecules with large β are composed of π electron donors and π electron acceptors separated by a conjugated π system (D- π -A), usually a polyene. Effective interaction between the donor and acceptor regions results in a number of measurable properties. One such property is bond length alternation (BLA), or the average difference between single and double bond lengths in the molecule. The maximum value of BLA (0.11 Å) is obtained for fully alternating single (1.45 Å) and double (1.34 Å) bonds. BLA values can be determined from x-ray crystallographic data (Marder, 1994), or estimated from the difference in NMR coupling constants (Δ J) for protons interacting on double and single bonds (Blanchard-Desce, 1997).

Other measurements of electronic interactions in D- π -A compounds include solvatochromism of the intermolecular charge transfer (ICT) band. A bathochromic shift (positive solvatochromism) of the intramolecular charge transfer (ICT) transition is observed and correlates with a large hyperpolarizability β (Blanchard-Desce, 1997). In general, longer π systems have larger values of β (Marder, 1994). In this study we limit the polyene length to a diene (n=2). The advantages of this bond length are ease of synthesis, and the absence of molecular twisting due to steric interactions between the donor and acceptor that decreases conjugation in shorter polyenes.

CHAPTER II

MATERIALS AND METHODS

To study the effect of the donor group on the stability and conjugation in donoracceptor polyene dyes, two new molecules have been synthesized: 5-(N-methylindolin-5yl)-2, 4-pentadienal (1a), and 5-(N-methyl-2, 3, 4-trihyrdroquinolin-6-yl)-2, 4pentadienal (2a). Due to their similar structure and properties, 3a and 4a were used for comparison with the synthesized compounds.

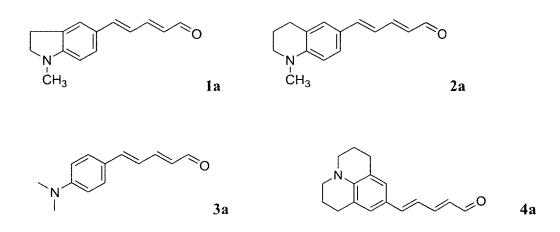


Figure 1. Structures of synthesized compounds 1a, 2a, and known compounds 3a and 4a.

The same three-step procedure was used to make both compounds, based on a modification of literature procedures for individual steps (Figure 2). Following the method of (Mohri, 1995), indoline (**11a**) and tetrahydroquinoline (**12a**) were first methylated using potassium hydride and iodomethane to form **11b** and **12b**. Next, a selective electrophilic aromatic bromination method using N-bromosuccinimide

(Katayama, 1984) was performed to give primarily para-brominated products **13** and **14**, which were purified by column chromatography using silica gel and 10% ethyl acetate in hexanes as eluent. Finally, lithium-halogen exchange was performed on **13** and **14**, followed by nucleophilic addition to N, N-diethylaminopentadienal (**17**), resulting in dark red solids **1a** and **2a**, respectively. The final products were purified with column chromatography using 20% ethyl acetate in hexanes to give 54% of **1a** and 52% of **2a**. The final products were purified by recrystallization and characterized by NMR, IR, HRMS, and melting point.

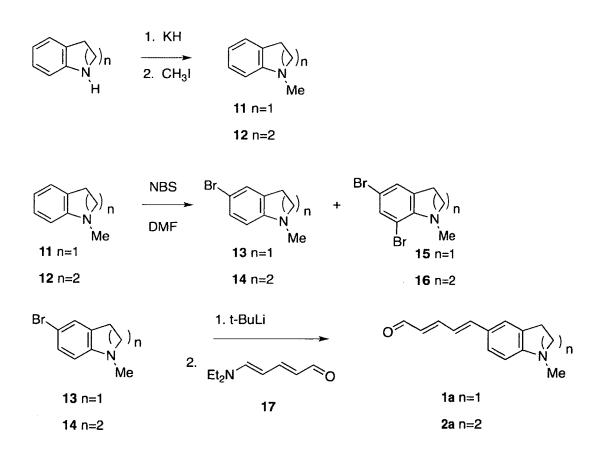


Figure 2. Three step synthesis of indoline and tetrahydroquinoline donors.

In order to compare the electronic structures of tetrahydroquinolinyl and indolinyl polyenes, **1a**, **2a**, and **3a** (available commercially) were converted into donor-acceptor polyenes using two strong acceptors, 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) and N, N-diethyl thiobarbituric acid (TB) via Knoevenagel condensations (Figure 3). The condensations with TB were particularly convenient. Donors 1a - 3a, as well as TB, were readily soluble in warm ethanol, yet products 1c-3c were barely soluble. Catalytic piperidine was used to obtain a nearly quantitative yield of 1c - 3c after heating for 15 min, but the reaction also worked without added catalyst. Derivatives of 1a - 3a with TCF formed more slowly, were less soluble in ethanol than TB derivatives, and piperdine catalyst was required. Precipitates 1c, 2c, 3c, 1d, 2d, and **3d** were easily isolated by filtration and air drying.

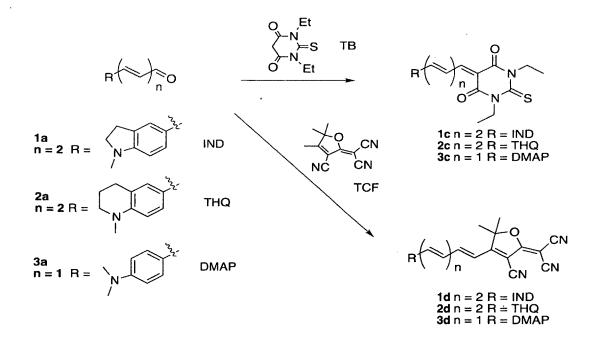


Figure 3. Synthesis of TB and TCF derivatives, 1c-3c, and 1d-3d.

Instruments, Materials and Reagents

Potassium hydride, methyl iodide, N-bromosuccinimide (NBS), dimethylsulfoxide (DMF), *t*-butyl lithium, tetrahydrofuran (THF), and N, Ndiethylthiobarbituric acid were purchased from Sigma-Aldrich Chemical (Milwaukee, WI) and used as received. Additional solvents anhydrous diethyl ether, anhydrous ethanol, ethyl acetate, chloroform, and hexanes were purchased from Fisher Scientific, (Pittsburg, PA).

2-Dicyanomethylene-3-cyano-4, 5,5-trimethyl-2,5-dihydrofuran (TCF) (Gopalan, 2004) and N, N-dimethylaminopentadienal (Becher, 1980) were synthesized according to literature procedures. Solvents used for solvatochromic studies were anhydrous HPLC grade and purchased from Sigma-Aldrich or Fischer.

Thermal Analysis

Melting and decomposition temperatures were obtained using differential scanning calorimetry (DSC) Differential scanning calorimetry was run on a TA Instruments DSC 2920 ramping between 25 °C and 250 °C at a rate of 10°C per minute. DSC temperatures were chosen based on melting point observation using a Mel-Temp capillary melting point apparatus purchased through Cole Palmer (Dubuque, IA)..

UV Spectroscopy

Ultraviolet-visible spectra were run on an Agilent Technologies Diode Array Spectrophotometer from 400 nm to 800 nm at absorbance of 0.4 - 0.8 using acetone, acetonitrile, cyclohexane, carbon tetrachloride, diethyl ether, 1,4-dioxane, DMF, DMSO, ethyl acetate, ethanol, methylene chloride (CH₂Cl₂), nitromethane, pyridine, toluene, and trifluoroethanol. Beer's Law plots to obtain ε for new compounds were made using solutions in CHCl₃ at three concentrations in the absorbance range of 0.30-0.70.

NMR Spectroscopy

Nuclear magnetic resonance spectra were either run on a JEOL EMX 500 MHz or JEOL EM 300 MHz NMR in DMSO- d_6 , acetone- d_6 , chloroform-d, and acetonitrile- d_3 . Deuterated solvents were 99.9% pure and purchased from Cambridge Isotopes (Andover, MD) or Sigma-Aldrich (Milwaukee, WI).

Calculations

All semi-empirical calculations using the AM1 method and quantum-mechanical calculations using Hartree Fock 6-31G(d) and B3LYP/6-31G(d,p) methods were carried out within the Spartan 4.1 program (Wavefunction, Inc, Irvine, CA). Geometry optimizations were undertaken using extended convergence limits using keyword OPTICYCLE=300 and MAXCYCLE=300. Equilibrium geometries were calculated using B3LYP/6-31G(d,p) and solvent-dependent values for λ_{max} and hyperpolarizability β were calculated using ZINDO in the Cerius 2 (Version 3.5) program (Molecular Sciences, Inc., City of Industry, CA). Default conditions were used except that the refractive indices and dielectric constants were entered for each solvent.

Synthetic Methods

General Procedure for N-Methylation. According to the method of Mohri (Mohri, 1995), a dispersion of potassium hydride (35% in mineral oil, 1.1 eq) was suspended in dimethyl ether (40 mL/mmol indoline) and cooled to 0 °C. the heterocyclic amine (1.0 eq) and triethylamine (10.0 eq) were added dropwise via addition funnel over 15 min and stirred for 30 min. Iodomethane (1.1 eq) was then added dropwise, the reaction mixture was warmed to room temperature, and stirring was continued overnight. Saturated NH₄Cl was added and the mixture was made basic using a 5% NaOH solution. The product was extracted with CH₂Cl₂ and dried over MgSO₄. Solvents were removed under reduced pressure, and vacuum distillation afforded pure N-methyl amine.

N-Methyl indoline (11). Yield: 95%, bp 55 °C, 0.25 torr; ¹H NMR δ 2.73 (s, 3H), 2.91 (t, J=8.1 Hz, 2H), 3.26 (t, J=8.1 Hz, 2H), 6.51 (d, J= 8.3 Hz, 1H), 6.66 (t, J=7.3 Hz, 1H), 7.05-7.11 (m, center at 7.07, 2H); ¹³C NMR δ 28.7, 36.1, 56.0, 107.1, 117.7, 124.2, 127.2, 130.2, 153.3; MS *m/z* 133 (M, 77), 132 (M-1, 100), 117 (8), 91 (16), 77 (10).

N-Methyl tetrahydroquinoline (12). Yield: 79%, bp 86 °C (0.25 torr). ¹H NMR δ 1.95-2.00 (m, center at 1.98, 2H), 2.76 (t, J=6.6 Hz, 2H), 2.88 (s, 3H), 3.21 (t, J=5.7 Hz, 2H), 6.59 (d, J= 8.0 Hz, 1H), 6.60 (td, J= 7.7, 1.1 Hz, 1H), 6.95 (dd, J=7.4, 1.2 Hz, 1H), 7.07 (td, J=7.8, 1.8 Hz, 1H); ¹³C NMR δ 22.4, 27.7, 39.0, 51.2, 110.9, 116.1, 122.8, 126.9, 128.7, 146.6; IR cm⁻¹ 2935, 1602, 1503, 740; MS *m/z* 147 (M, 76), 146 (M-1, 100), 131 (30), 130, (25), 118 (22), 117 (20), 91 (18), 77 (18).

General Bromination Method for N-Methylated Aromatic Amines Using N-Bromosuccinimide (NBS) (Katayama, 1984). The heterocyclic amine (1.0 molar eq) was dissolved in dry DMF (1.0 mL / mmol) and NBS (1.1 eq in 1.0 mL / mmol) was added over 1 h via an addition funnel. The reaction was allowed to stir for 2 h at 0 °C or until TLC showed that the starting material was absent. The reaction mixture was poured into four volumes of water and made basic with Na₂CO₃. The organic layer was extracted with ether three times, washed with water, then washed with brine. The ether layer was dried over Na₂SO₄, then the solvent was removed using vacuum to give a brown oil. The oil was purified by filtration down a short silica plug using 20% ethyl acetate in hexanes to give a clear oil.

5-Bromo-1-methylindoline (13). N-Methylindoline (11, 1.20 g, 9.0 mmol) was dissolved in DMF (10 mL) in a 50 mL round bottom flask under argon. NBS (1.70 g, 9.5 mmol) in DMF (10 mL) was added dropwise over 2 h via a pressure-equalizing addition funnel. The reaction was stirred for 2 h at 0 °C, worked up following the procedure in the general method above, then the solvent was removed under vacuum to give a brownish oil (with $R_f = 0.70$ and 0.75). After purification through a silica plug using 20% ethyl acetate in hexanes eluent, a clear oil (1.01 g) was obtained. Yield: 53%. The primary component had: ¹H NMR δ 2.75 (s, 3H), 2.94 (t, J=8.6 Hz, 2H), 3.28 (t, J=8.6 Hz, 2H), 6.42 (d, J= 8.5 Hz, 1H), 6.67 (s, 1H), 7.08-7.06 (m, max at 7.08, 1H); ¹³C NMR δ 27.6, 39.0, 51.0, 107.6, 112.3, 124.8, 129.5, 131.0,145.6; MS *m/z* 213 (M+2, 42), 211 (M, 48), 131 (100), 130 (25), 117 (8), 89 (10), 77 (10).

6-Bromo-1-methyl-1,2,3,4-tetrahydroquinoline (14). A solution of NBS (1.54 g, 8.65 mmol) in DMF (10 mL) was added to a solution of N-methyltetrahydroquinoline (1.08 g, 7.35 mmol) in DMF (13 mL) over 2 h via a pressure-equalizing addition funnel attached to a 50 mL flask. The reaction was stirred for 2 h at 0 °C, worked up following the procedure in the general method above, then the solvent was removed under vacuum to give a brownish oil (1.94 g, 86%). The oil was purified by filtration down a short silica plug using 20% ethyl acetate in hexanes (R_f = 0.57) to give a clear oil (1.09 g). Yield: 48.4%; ¹H NMR δ 1.92-1.96 (m, max at 1.94, 2H), 2.72 (t, J=6.6 Hz, 2H), 2.85 (s, 3H), 3.20 (t, J=5.8 Hz, 2H), 6.41 (d, J=8.6 Hz, 1H), 7.08 (d J=2.3 Hz, 1H), 7.12 (dd, J=8.9, 2.6)

Hz, 1H); ¹³C NMR δ 22.1, 27.6, 39.0, 51.0, 107.6, 112.3, 124.8, 129.5, 131.0, 145.6; IR cm⁻¹ 2942, 1593, 1501, 1323, 1207, 797; MS *m/z* 227(M+2 96), 226(M+1, 87), 225(M, 100), 224(M-1, 83), 146(10), 145(26), 144(65), 131(32), 130(33), 117(7), 103(9), 89(9), 77(11).

6,8-Dibromo-1-methyl-1,2,3,4-tetrahydroquinoline (16). ¹H NMR δ 1.92-1.96 (m, max at 1.94, 2H), 2.77 (t, J=6.6 Hz, 2H), 2.84 (s, 3H), 3.18 (t, J=5.5 Hz, 2H), 7.34 (d, J=2.3 Hz, 1H) 7.50 (d, J=2.3 Hz, 1H); MS *m/z* 307 (M+4), 306 (M+3), 305 (M+2, 100), 304 (M+1), 303 (M), 302 (M-1), 211 (M-Br-Me), 209 (M-Br-Me), 144 (M-2Br), 144(M-Br-1), 130, 117, 89.

General Procedure for Synthesis of Aromatic Pentadienals (Friedli, 1997). The aromatic bromide (1.1 eq) was dissolved in dry THF and cooled to -78 °C. *t*-Butyllithium (2.2 mol eq, 1.7 M in hexanes) was added dropwise under argon and the solution was allowed to warm to room temperature for 1 h, then recooled to -78 °C. N,N-Diethyl penta-2,4-dienal (17, 1 mol eq) was dissolved in THF and added dropwise. The mixture was stirred for 1 h and was allowed to warm to room temperature for 30 min or until TLC with 20% ethyl acetate in hexanes showed the reaction was complete. The solution was poured into 1M HCl, shaken, and the resulting red solution was brought to a pH of 10 with 10% NaOH. The product was extracted with ethyl ether and dried over sodium sulfate. The product was purified using flash chromatography TLC with 20% ethyl acetate in hexanes.

5-(4-N-Methyl indolinyl)-penta-2,4-dienal (1a). Compound **13** (400 mg, 1.9 mmol) was dissolved in *t*-butyl methyl ether (15 mL) under argon and cooled to -78 °C. *t*-

Butyllithium (2.5 mL, 4.18 mmol, 1.7 M in hexanes) was added dropwise under argon and the solution was allowed to warm to room temperature for 1 h, then recooled to -78 °C. N,N-Diethyl penta-2,4-dienal (262 mg, 1.7 mmol) was dissolved in *t*-butyl methyl ether (10 mL) and added dropwise. The mixture was stirred for 1 h and allowed to warm to room temperature for 30 min. The reaction was worked up as described in the general procedure above. After a flash column using 20% ethyl acetate in hexanes, 128 mg of a red crystalline product ($R_f = 0.3$) was obtained. Yield: 56%; mp. 91.53 °C (with dec.).; ¹H NMR δ CDCl₃ 2.88 (t, J=6.6 Hz, 2H), 3.07 (s, 3H), 3.44 (t, J=5.8 Hz, 2H), 6.14 (dd, J=14.9, 8.0 Hz), 6.51 (d, J= 8.6 Hz, 1H), 6.77 (dd, J=15.5, 10.9 Hz, 1H), 6.88 (d, J=15.4 Hz, 1H), 7.29 (s, 1H), 7.38 (d, 2.3 Hz, 1H), 7.39 (dd, J=14.7, 11.2 Hz, 1H), 9.52 (d, J=8.6 Hz, 1H); ¹³C NMR CDCl₃ δ 28.6, 35.2, 56.0, 106.9, 122.1, 123.9, 126.1, 129.6, 130.5, 132.2, 144.8, 154.9, 156.0, 194.3; IR 1661 (C=O), 1589 (C=C) cm⁻¹; λ_{max} = 418 nm (log ϵ = 4.41); HRMS Calculated for C₁₅H₁₇NO: 213.1154

N-Methyl tetrahydroquinolinyl 6-penta-2,4-dienal (2a). Compound 14 (226 mg, 1.00 mmol,) was dissolved in *t*-butyl methyl ether (10 mL) under argon and cooled to -78 °C. *t*-Butyllithium (1.3 mL, 2.2 mol eq, 1.7 M in hexanes) was added dropwise under argon and the solution was allowed to warm to room temperature for 1 h, then recooled to -78 °C. N,N-Diethyl penta-2,4-dienal (154 g, 1.0 mol) was dissolved in *t*-butyl methyl ether (10 mL) and added dropwise. The solution worked up as described in the general procedure. After a flash column using 20% ethyl acetate in hexanes, a red crystalline product (101 mg) with R_f = 0.38 was obtained. Yield: 53%; mp. 78.05 °C (with dec.); ¹H NMR δ CDCl₃ 1.94-1.99 (m, max at 1.96, 2H), 2.82 (s, 3H), 2.99 (t, J=8.3 Hz, 2H), 3.44

(t, J=8.4 Hz, 2H), 6.16 (dd, J=15.0, 8.1 Hz), 6.38 (d, J= 7.9 Hz, 1H), 6.79 (dd, J=15.4, 10.9 Hz, 1H); 6.93 (d, J= 15.1 Hz, 1H), 7.22 (dd, J=14.7, 11.2 Hz, 1H), 7.20 (d, J=2.3 Hz, 1H), 9.52 (d, J=8.6 Hz, 1H); ¹³C NMR CDCl₃ δ 21.9, 27.7, 38.8, 56.0, 110.3, 121.0, 122.7, 123.4, 128.0, 128.5, 143.9, 147.9, 154.1, 193.6; IR cm⁻¹ 2931, 2837, 1665 (C=O), 1583, 1519, 1321, 1148, 1122, 983; λ_{max} = 430 nm (log ε = 4.55); HRMS Calculated for C₁₅H₁₇NO: 227.1310; Observed: 227.1363.

General Procedure for Knoevenagel Condensation of Aldehydes with N,N-Diethyl thiobarbituric acid (Friedli, 1997). The aldehyde (1.0 mol eq), and N,Ndiethylthiobarbituric acid (18, 1.0 mol eq) were dissolved separately in anhydrous ethanol (total of 3 mL) and heated to a gentle boil in an Erlenmeyer flask. The mixture was stirred for 30 min until no aldehyde remained by TLC (20% ethyl acetate in hexanes). The solution was cooled to room temperature, vacuum filtered using a Hirsch funnel, and air-dried.

(2*E*, 4*E*)-(5-(4-N-Methyl indolinyl)-penta-2,4,6-trienyl)-thiobarbituric acid (1c). Yield: 62 %; ¹H NMR δ 1.29, 1.30 (t, J=7.3 Hz, 3H), 1.99, 1.97 (q, J= 5.7 Hz, 2H), 2.76 (t, J=6.3 Hz, 2H), 2.87 (s, 3H), 3.53 (t, J=8.3 Hz, 2H), 3.03 (t, J=8.3 Hz, 2H), 4.54, 4.55 (q, J=6.9 Hz, 4H), 6.37 (d, J=8.6 Hz, 1H), 6.94 (dd, J=11.5, 14.9 Hz, 1H), 7.05 (d, J=8.6 Hz, 1H), 7.23 (d, J=11.4 Hz, 1H), 7.28 (s, 1H), 8.02 (app t, J=13.2 Hz, 1H), 8.11 (d, J=12.6 Hz, 1H); ¹³CNMR δ 12.4, 12.5, 27.7, 34.3, 43.1, 43.6, 54.9, 105.8, 155.7, 147.9, 131.8, 131.2, 127.1, 125.2, 123.7, 123.5, 111.1, 158.4, 159.0, 160.1,161.1, 178.8; λ_{max} (CHCl₃) 630 nm; HRMS calculated for: C₂₂H₂₆N₃O₂S, 396.1740; Observed: 396.1755. (2E, 4E)-5-(1-Methyl-1,2,3,4-tetrahydroquinolin-6-yl)penta-2,4-dienyl thiobarbituric acid (2c) Yield: 55%; ¹H NMR (CDCl₃) δ 1.28, 1.30 (t, 7.4, 3H), 1.99, 1.97 (q, J= 5.7 Hz, 2H), 2.76 (t, J=6.3 Hz, 2H), 3.00 (s, 3H), 3.37 (t, J=5.7 Hz, 2H), 4.56 (q, J=6.9 Hz, 2H), 6.53 (d, J=8.6 Hz, 1H), 6.94 (dd, J=14.9, 11.5 Hz, 1H), 7.03 (d, J=14.9 Hz, 1H), 7.16 (s, 1H), 7.27 (dd, J= 8.6, 2.3 Hz, 1H), 7.33 (dd, J=13.7, 10.9 Hz, 1 H), 8.02 (app t, J=13.2, 1H), 8.11 (d, J=12.6 Hz, 1H); ¹³C NMR (CDCl₃) δ 12.4, 12.5, 21.7, 27.7, 38.8, 43.0, 43.5, 51.3, 110.5, 111.0, 122.9, 123.5, 127.1, 129.1, 129.6, 147.8, 149.0, 158.3, 159.0, 160.0, 178.8; λ_{max} (CHCl₃) 654 nm; HRMS Calculated for: C₂₃H₂₇N₃O₂S, 409.1824; Observed: 409.2023.

General Procedure for Knoevenagel Condensation of Aldehydes with 2dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (Gopalan, 2004). The aldehyde (1.0 mol eq), 2-cyano-3-dicyanomethylene-5,5-dimethyl-furan (19, 1.0 mol eq) and 4-methylpiperidine in ethanol (13 μ L of a 1M solution) were combined in 10 mL of boiling ethanol. The solution was heated at reflux overnight, or until TLC demonstrated the disappearance of the aldehyde. The solution was allowed to cool, filtered under vacuum with a Hirsch funnel, and air-dried. The solution was then cooled to room temperature, vacuum filtered using a Hirsch funnel, and air-dried.

(1-(4-N-Methyl indolinyl)-hexa-2,4,6-trienyl)-2-cyano-3-dicyanomethylene-5,5-dimethyl-furan (1d). Yield: 66.5%; ¹H NMR (DMSO-d₆) δ 1.70 (s, 6H), 2.81 (s, 3H), 2.95 (t, J=8.3 Hz, 2H), 3.44 (t, J=8.6 Hz, 2H), 6.46 (d, J=8.1 Hz, 1H), 6.51 (d, J=14.9 Hz, 1H), 6.64 (dd, J=14.3, 11.5 Hz, 1 H), 7.00-6.94 (m, 2H), 7.30-7.25 (m, 2H), 7.36 (s, 1H), 7.70 (dd, J=15.2, 11.8 Hz, 1H); IR cm⁻¹ 2223; λ_{max} (CHCl₃) 570 nm; HRMS Calculated for: C₂₂H₂₁N₄O, 357.1715; Observed: 357.1717. (2*E*, 4*E*)-5-(1-Methyl-1,2,3,4-tetrahydroquinolin-6-yl)penta-2,4-dienyl (2d). Yield: 72%; ¹H NMR (CDCl₃) δ 1.67 (s, 6H), 1.98 (t, J=6.0 Hz, 2H), 2.76 (t, J=6.3 Hz, 2H), 3.02 (s, 3H), 3.36 (t, J=5.8 Hz, 2H), 6.31 (d, J=14.9 Hz, 1H), 6.45 (dd, J=14.1, 11.8 Hz, 1H), 6.53 (d, J=8.6 Hz, 1H), 6.78 (dd, J=14.9, 10.9 Hz, 1H), 6.86 (d, J= 8.7 Hz, 1H), 7.03 (dd, J=13.8, 10.9 Hz, 1 H), 7.14 (s, 1H), 7.23-7.28 (m, max at 7.23, 2H), 7.51 (dd, J=15.5, 11.5 Hz, 1H); λ_{max} (CHCl₃) 680 nm; HRMS Calculated for: C₂₆H₂₅N₄O, 409.2023. Observed: 409.2041.

1-(4-N,N-Dimethylaminophenylpenta-2,4-dienyl)-2-dicyanomethylene-2cyano-5,5-dimethyldihydrofuran (3d). 4-(N, N-dimethylaminophenyl) cinnamaldehyde (175 mg, 1.0 mmol), and 4-methylpiperidine in ethanol (50 µL of a 1 M solution) were combined in 100 mL of boiling ethanol. Small ethanol rinses were used to rinse the flasks, and the solutions were boiled and stirred for ~15 min. The solution was allowed to cool, filtered under vacuum with a Hirsch funnel, and air-dried. Yield: 66.5%; ¹H NMR (DMSO-d₆) δ 6.55 (d, J=14.9 Hz, 1H), 6.75 (d, J=8.6 Hz, 2H), 7.19 (dd, J=14.9, 11.5 Hz, 1H), 7.40 (d, J=15.5 Hz, 1H), 7.52 (d, J=9.1 Hz, 2H), 7.77 (dd, J=14.9, 10.9 Hz, 1H); IR cm⁻¹ 2224 (CN); λ_{max} (CHCl₃) 606 nm; HRMS Calculated for: C₂₅H₂₃N₄O, 395.1872; Observed: 395.1874.

CHAPTER 3

RESULTS AND DISCUSSION

Equilibrium geometry calculations were performed for the pentadienals (1a-10a) and their dicyanovinyl derivatives (1b-10b) shown in Figure 4 using the AM1 basis set in PC Spartan. Comparisons of different computational levels have been studied and it was found that the DFT/B3LYP method was more reliable than others and had a high predictive power for the spectroscopic data (Isborn, 2007). Furthermore these methods have been used in previous studies of aromatic aminal and nitriles using DFT/B3LYP (Bredas, 2007). Serponitsky found that HF6-31G* was a good lower level predictor of spectroscopic data (Serponitsky, 2009). Previous studies found that AM1 is still a very good predictor of equilibrium geometries for planar molecules.(Bredas, 2007).

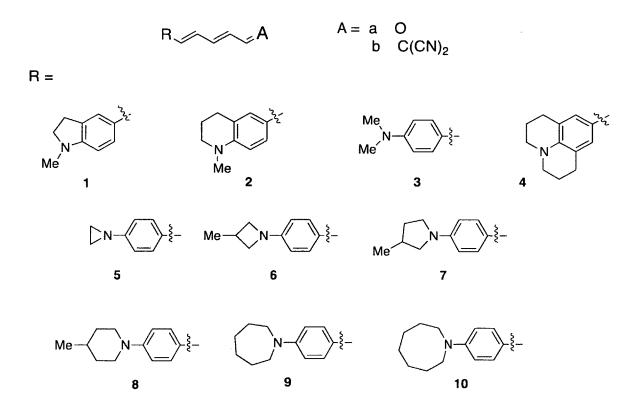


Figure 4. Donors (D) and acceptors (A) for compounds used in the calculated comparisons of C-N bond lengths and dihedral angles in pentadienals **1a-10a** and dicyanovinyl derivatives **1b-10b**.

After attempting various correlations of calculated physical properties, the structures were compared by plotting their calculated Csp^2 -N bond lengths and dihedral angles. The dihedral angles were defined by the planes Csp^3 -N- Csp^2 and Csp^3 -N- Csp^3 . The dihedral angles and Csp^2 values were intended as measures of conjugation in the π system, and pyramidalization at N, respectively. Pyramidalization is a deformation of a trigonal planar species into a tetrahedral molecular geometry.

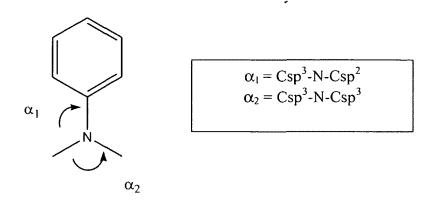


Figure 5. The α_1 plane describes the Csp³-N-Csp²angle, while the α_2 plane describes the Csp³-N-Csp³ angle. The dihedral angle is the planes between angle α_1 and angle α_2 .

Pyramidalization is decreased by ring strain in the azacycloalkyl group, and data points for the more highly strained compounds are shown by compounds 5-7 in Figure 6. Pyramidalization is increased by *n*-alkyl groups that have higher rotational freedom, as in compounds 3, 9, and 10. Compounds 2 appear in a cluster with compounds with high experimental β values, whereas compound 1 lies closer to piperidine 8 and azacycloheptane 9. Compound 1a was chosen as a synthetic target due to the similarity in structure and synthetic pathway to compound 2a and expected contrast in properties.

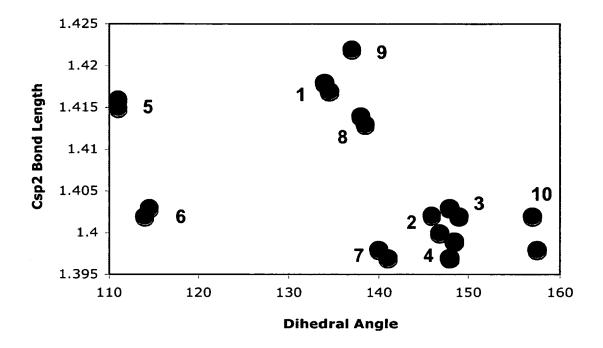


Figure 6. Data points for compounds containing exocyclic azacycloalkanes are shown in blue, those with heterocyclic rings shown in green, and known compounds **3a,b** and **4a,b** are shown in red.

Properties

Spectroscopic properties of the pentadienals 1a-4a are shown in Table 1.

Table 1. Calculated and experimental spectroscopic properties of pentadienals ^aCalculated using AM1 in PC Spartan with no solvent. ^b Calculated using B3LYP geometry and ZINDO in CHCl₃; ^c Experimental data from (Cheng, 1991).

Compound	Calcd β (x10 ⁻³⁰ esu) (exptl) ^{<i>a</i>}	Calcd ^a µ (D) (exptl)	Calcd λ_{max} (nm) (log ε) ^b	Exptl λ _{max} (nm) (log ε)	Exptl IR C=O (cm ⁻¹)
1a	23.8, 3475 au ^b	5.58	388 (4.81)	418 (4.41)	1661
2a	32.2, 4651 au ^b	6.20	400 (4.81) ^b	430 (4.55)	1665
3 a	30.4 (52)	5.96 (6.0)			
4a	34.5 ()	6.11		446 (4.51)	1660

Solvatochromism

It is widely known that D- π -A dyes exhibit interesting and potentially useful properties including solvatochromism and nonlinear optical behavior (Marder, 1994). All compound studied exhibit positive solvatochromism, which is defined as a shift in λ_{max} to longer wavelengths with increased solvent polarity. A correlation between intramolecular charge transfer band in the UV/visible region and solvent polarity is a good indication of the contributions of a charge separated resonance structure to the excited state from molecules with a strong $n-\pi^*$ and $\pi-\pi^*$ transitions. The neutral and quinoidal charge-separated resonance structures for **2a** are shown in Figure 7.

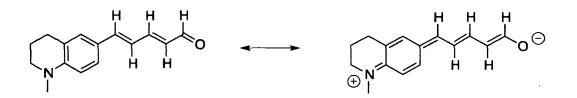
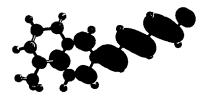



Figure 7. Resonance structures for 2a.

The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) shown in Figure 8 illustrate calculated electron density in the ground and first excited states for 2a, respectively. Although the calculations used for these frontier molecular orbitals did not take solvent effects into account, it is clear that both the donor and acceptor are delocalized throughout the π system.

b

Figure 8. Molecular Orbital Maps of **2a** maps calculated using the HF321G* basis set in Spartan 4.1 for the HOMO (a) and the LUMO (b).

UV-VIS Spectrometry and Solvatochromism

Solvatochromic studies on donor-acceptor polyenes were performed with UV/vis spectroscopy using a wide variety of solvents (Appendix A). The calculated and experimental λ_{max} values were then plotted against solvent polarity parameters to look for trends. Since UV data for donor- π -acceptor aryl(heteroaryl)-azo dyes were found to correlate well with solvent parameters from both the π^* and E_T^N scales (Raposa, Sousa, 2005), these solvent polarity scales were applied. The most widely-used solvent polarity scale is the normalized $E_T(30)$ scale, (E_T^N). The polarity scale is based on solvent effects in a highly delocalized, but negatively solvatochromic, betaine, **18**. (Reichardt, 1994).

Figure 9. Delocalized structure of 18.

The π^* polarity scale, (Kamlet, 1977), which derives its name from its correlation with solvatochromic effects on $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ electronic spectral transitions in at least seven indicator solutes, is also effective for explaining the effects of other solvent properties such as polarity/polarizability, and the acidity and the basicity of the solvents.

Figure 10 shows the calculated λ_{max} for compound **1a** and the E_T^N polarity scale. This graph suggests that for calculated λ_{max} values, the E_T^N solvent parameter scale produces a linear plot. The linear relationship between E_T^N and calculated λ_{max} has a R^2 = 0.83264. The R^2 value indicates that calculated λ_{max} values are somewhat linear. Chlorinated solvents and hydrogen bonding solvents typically give skewed results.

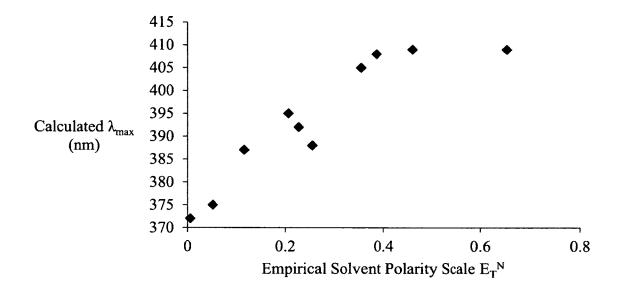


Figure 10. Solvent polarity parameter E_T^N plotted against calculated λ_{max} values for 1a. Solvents from left to right on the polarity scale are C_6H_{12} , CCl_4 , ethyl ether, THF, ethyl acetate, CHCl₃, C_3H_6O , DMF, CH₃CN, and ethanol.

Figure 10 also shows a positive solvatochromic shift for 1a. Positive solvatochromism refers to a shift to longer wavelengths with increased solvent polarity. The correlation of λ_{max} with the solvent polarity parameter is a good measure of the contribution of a charge separated resonance structure to the excited state for molecules with strong n- π and π - π * transitions. Calculated wavelengths (λ_{max}) were plotted against the π * solvent polarity scale and no discernible correlations were seen. However, the E_T^N solvent parameter correlates nearly linear with calculated λ_{max} for 1a and also 2a better than the π * parameter.

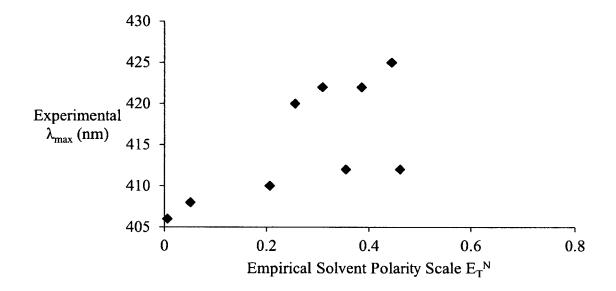


Figure 11. Solvent polarity parameter E_T^N plotted against experimental λ_{max} values for **1a**. Solvents from left to right on the polarity scale are C₆H₁₂, CCl₄, THF, CHCl₃, CHCl₂, C₃H₆O, DMF, DMSO, and CH₃CN. R² = 0.454.

As seen by the R^2 value, experimental λ_{max} values do not produce a linear correlation when plotted against the empirical solvent polarity scale of E_T^N .

For comparison, 1a and 2a experimental values of λ_{max} were plotted against the

 π^* solvent polarity scale as shown in Figure 12.

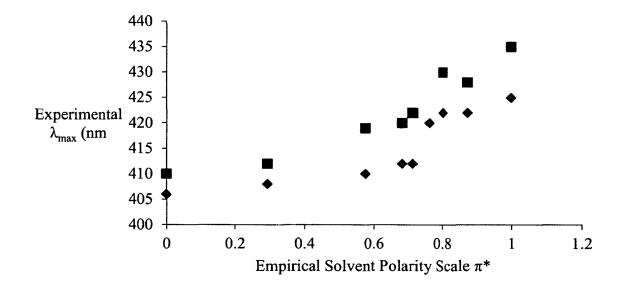


Figure 12. Experimental λ_{max} versus π^* for 1a (blue) and 2a (red).

Solvents from left to right on the polarity scale are C_6H_{12} , CCl_4 , THF, $CHCl_2$, C_3H_6O , DMF, DMSO, and CH_3CN . $R^2 = 0.454$ (1a), $R^2 = 0.5155$ (2a)

The π^* polarity scale shows a more linear correlation of experimental data for both compounds **1a** and **2a**. Chlorinated solvents represent anomalous points deviating from the linear relationship. For example, the point for chloroform (CHCl₃) for **2a** was left off of Figure 12. It can also be seen that λ_{max} values for tetrahydroquinoline (**2a**) are generally larger than λ_{max} values for **1a**.

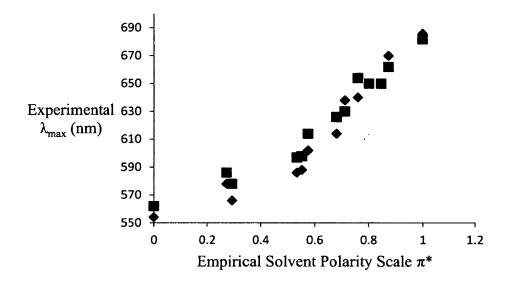


Figure 13. Experimental λ_{max} for 1c (blue) and 2c (red) vs. π^* solvent polarity scale. Solvents from left to right on the polarity scale are C₆H₁₂, CCl₄, THF, CHCl₂, C₃H₆O, DMF, DMSO, and CH₃CN. R² = 0.824 (1a), R² = 0.9198 (2a).

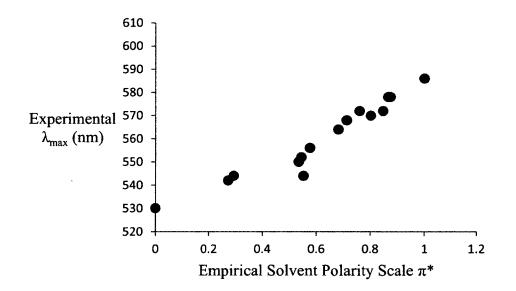
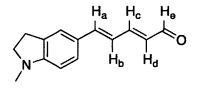


Figure 14. Experimental λ_{max} for **3c** vs. π^* solvent polarity scale. Solvents from left to right on the polarity scale are C₆H₁₂, ether, CCl₄, toluene, ethyl acetate, dioxane, THF, C₃H₆O, CH₃CN, CHCl₃, CHCl₂, pyridine, DMF, and DMSO. R² = 0.8984.

The π^* parameter was found to correlate linearly with the solvatochromism of the TB derivatives 1c, 2c (Figure 13) and 3c (Figure 14). ΔS is defined as the differences between the λ_{max} in the most polar (DMSO) and the least polar (dioxane). In TB derivatives, the ΔS was measured as 104 nm for 1c, 120 nm for 2c, and 42 nm for 3c.


The good solubility of the TB derivatives allowed a wider range of solvents to be used. Therefore, the π^* parameter was used to compare trends in 1c, 2c (Figure 13) and 3c (Figure 14). Although hydrogen bonding can produce anomalous data points, most of the solvents used in this study are hydrogen bonding acceptors or non-hydrogen bonding solvents, which do not interact strongly with the dyes in this study. Other solvents with both donating and acceptor properties (ethanol, chloroform, and nitromethane) exhibited solvatochromism consistent with trends.

 Δ S for TCF derivatives are lower than TB derivatives because TCF derivatives are less soluble. Δ S values are 40 nm for 1d, 44 nm for 2d, and 60 nm for 3d. Finally, aldehydes are much weaker acceptors: a Δ S value of 22 nm was observed for 1a but Δ S was only 12 nm for 2a.

NMR Spectrometry and Solvatochromism

NMR solvatochromism is expected in the dyes studied due to the effect of the ground state electronic structure on the bond length alternation in the molecules. Unless steric effects complicate the relationship (Kwon, 2005), ¹³C NMR shifts were observed to correlate well with DFT charge densities and therefore have the potential to be used as an experimental probe of pi donor strengths. However, compounds in the study were much

more soluble in CDCl₃ than other common NMR solvents, so it was not possible to study solvent effects in ¹³C NMR. Here we examine the solvatochromic effect on proton chemical shifts for aldehydes **1a** and **2a** in CDCl₃, DMSO-d₆, and acetone- d₆. Figure 16 illustrates that the solvent dependence upon chemical shift in **1a** is minimal and the same trend is observed for **2a** (Figure 17).

1a

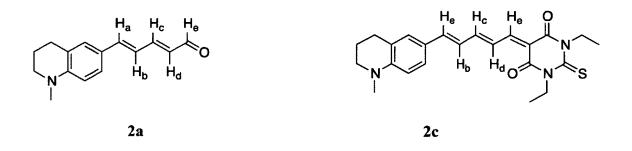
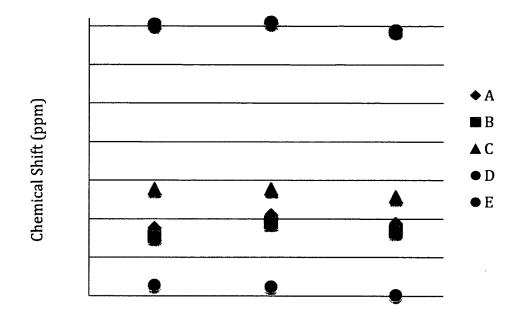



Figure 15. Proton assignments for 1a, 2a, and 2c.

For NMR studies it was found that NMR shifts correlate better using the E_T^N solvent polarity scale.

Solvent Polarity Parameter E_T^N Scale

Figure 16. Chemical shifts vs. E_T^N polarity scale for **1a**. A=blue, B=red, C=green, D=purple, E=orange.

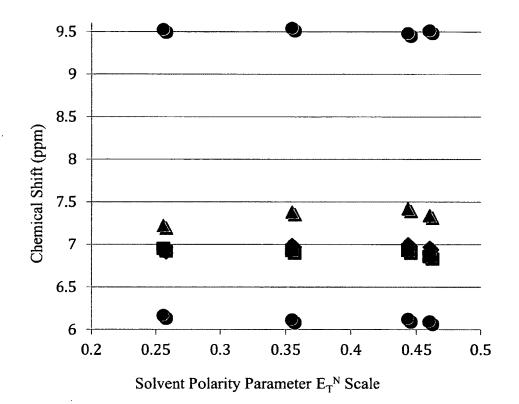


Figure 17. Chemical shifts vs. E_T^N polarity scale for **2a**. A=blue, B=red, C=green, D=purple, E=orange.

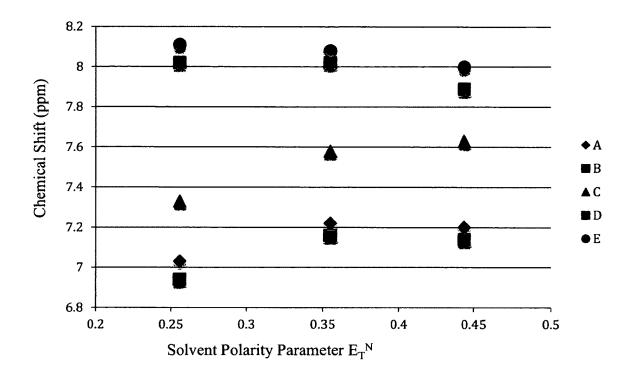


Figure 18. Chemical shifts vs. E_T^N polarity scale for **2c.** A=blue, B=red, C=green, D=black, E=orange.

The difference in solvatochromism for 2a and 2c can be explained by the larger contribution of the charge-separated resonance structures in the TB derivatives to the ground state, as shown in Figure 19 for 3c. The delocalized structures have been observed in polar solvents for 3c as a photoinduced ICT.

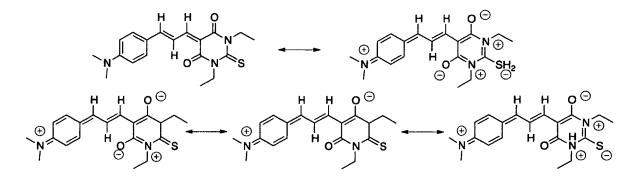


Figure 19. Resonance structures for charge separated forms of 3c (n=1).

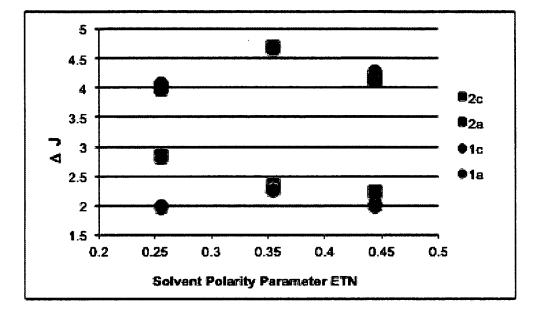


Figure 20. Plot of solvent polarity parameter E_T^N vs. ΔJ for **1a**, **2a**, **1c** and **2c**.

Figure 20 illustrates the correlation between bond length alternation (BLA) and solvent polarity in aldehydes 1a and 2a and TB derivatives 1c and 2c. Coupling constants J are larger for protons on the double bonds than those between double bonds. For example, in 1a in CDCl₃, $J_{ab} = 15.4$ and $J_{bc} = 11.0$. (Appendix B). The ΔJ is defined as the difference between the average of J values for each type of coupling. The larger the ΔJ , the more BLA. Figure 18 illustrates that aldehydes 1a and 2a are dienes whereas the p electrons in the TB derivatives 1c and 2c are more delocalized. The ΔJ values for 1c-4c are shown in Table 3. The order of increasing DJ 1c < 3c < 4c < 2c indicates that the new molecules are potentially the most (1c) and least (2c) delocalized of the series.

Compound	1c	2c	3c ^{<i>a, b</i>}	4c ^a
ΔJ	2.00	2.85	2.25	2.50

Table 2. ΔJ values Calculated from NMR Coupling Constants. Spectra were taken in CDCl₃ for Compounds 1-4c.

^a Blanchard-Desce, M. et. al. European J. Chem. **1997**, ^b This compound is a variation of **3c** with N-butyl groups instead of N-methyl.

Physical Properties

Stability. Due to the strong blue green color of the product powders 1c, 1d, 2c, and 2d, melting points were measured using differential scanning calorimetry. Table 4 collects the melting points for 1a and 2a, and the decomposition points for the derivatives 1c, 2c, 1d and 2d. Unexpectedly, the melting point for 2a is smaller than that of 1a, and the trend continues with lower decomposition points for 2c and 2d. The solubility of the TCF derivatives increased from the indolinyl derivative (1d) to tetrahydroquinolinyl derivative (2d) to the dimethylaminophenyl derivative (3d, n=1).

Table 3. Transition temperatures (°C) and enthalpies (in italics, J/g) of **1a**, **2a**, **1c**, **2c**, **1d**, and **2d**. Values were determined by DSC (heating rate 5 °C/min).

Compounds	Melting points (°C)	Decomposition	
	Enthalpies (J/g)	Temperature (°C)	
1a	91.5 (63.7)		
2a	76.5 (60.9)		
1c		206	
2c		193	
1d		221	
2d		189	

CHAPTER IV

CONCLUSIONS

In this study, computational and spectroscopic methods were used to investigate the effect of geometry of the donor group in D- π -A compounds. New compounds **1a** and **2a** were synthesized in 28 percent and 20 percent overall yield, respectively, using established methods. In addition, derivatives of these aldehydes, **1c** and **2c** were synthesized in good yield. Compounds **1d** and **2d** were also made, but were impure, so limited analysis was performed.

Calculations using ZINDO/S on B3LYP geometries predicted larger expected UV solvatochromism and high hyperpolarizabilities for 2a than for 1a. Calculations at the AM1 and ZINDO levels predict that 2a β values will correlate closely with compounds having high experimental β values such as 3a and 4a. Additionally, calculations using AM1, predicted that the geometries of 2a and 2b resembled those of 3a, 3b, 4a, and 4b more closely than those of 1a and 1b. All compounds in this study exhibited positive solvatochromism of the visible ICT band. The largest Δ S (120 nm) was observed for compound 2c. Chemical shift solvatochromism was observed for 1c and 2c in ¹H NMR. Coupling constant analysis revealed strong bond length alternation for aldehydes for 1a, 2a, 3a (Δ J 4.1-4.7 Hz) and more delocalization for 1c, 2c, and 3c (Δ J 2.0-2.8 Hz). The aldehydes were unstable in solution and thermal analysis showed a melting point of 93.1 °C for 1a and 76.5 °C for 2a with decomposition over 200 °C. Derivatives (TB and TCF) were stable in solution and melted with rapid decomposition between 175 °C and 400 °C.

LITERATURE CITED

Blanchard-Desce, M.; Alain, V.; Bedworth, P. V.; Marder, S. R.; Fort, A.; Runser, C.; Barzoukas, M.; Lebus, S; Wortmann, R. Large Quadratic Hyperpolarizabilities with Donor-Acceptor Polyenes Exhibiting Optimum Bond Length Alternation: Correlation Between Structure and Hyperpolarizability. *Eur. Chem. J.* **1997**, 1091-1104

Breda, J. Molecular Geometry and Nonlinear Optics. Science. 1994, 263, 487-488.

Becher, J. Synthesis 1980, 8, 589-612

Chen, R.; Yang, X.; Tian, H.; Sun, L. Tetrahydroquinoline Dyes with Different Spacers for Organic Dye-Sensitized Solar Cells. *Journal of Photochemistry and Photobiology A*. **2007**, *189*, 295-300.

Chen, R.; Yang, X.; Tian, H.; Wang, X.; Hagfeldt, A.; Sun, L. Effect of Tetrahydroquinoline Dyes Structure on the Performance of Organic Dye-Sensitized Solar Cells. *Chem. Mater.* **2007**, *19*, 4007-4015.

Cheng, L.; Tam, W.; Marder, S.; Stiegman, A.; Rikken, G.; Spangler, C. Experimental Investigations of Organic Molecular Nonlinear Optial Polarizabilities. 2. A Study of Conjugation Dependences. J. Phys. Chem. **1991**, 95, 10643-10652.

Eroglu, E., Palaz, S., Oltulu, O., Turkmen, H., Ozaydin, C. Comparitive QSTR study using semi-empirical and first principle methods based descriptors for acute toxicity of diverse organic compounds to the fathead minnow. *International Journal of Molecular Sciences*. 2007, 8, 1265-1283.

Friedli, A. C.; Yang, E.; Marder, S. R. A Convenient Synthetic Entry into Aldehydes with Extended Conjugation. *Tetrahedron* **1997**, *53*, 2717-2730. Corrigendum. *Tetrahedron* 1997, *53*, 6233-6234.

Gopalan, P.; Katz, H. E.; McGee, D. J.; Erben, C.; Zielinski, T.; Bousquet, D.; Muller, D.; Grazul, J.; Olsson, Y. Star-shaped Azo-Base Dipolar Chromophores: Design, Synthesis, Matrix Compatibility, and Electro-optic Activity. *J. Am. Chem. Soc.* **2004**, *126*, 1741-1747.

Isborn, C.; Leclercq, A.; Villa, F.; Dalton, L.; Bredas, J.; Eichinger, B.; Robinson, B. Comparison of Static First Hyperpolarizabilities Calculated with Various Quantum Mechanical Methods. *J. Phys. Chem.* **2007**, *111*, 1319-1327.

Kamlet, M. J.; Abboud, J. L; Taft, R. W. The Solvatochromic Comparison Method. 6. The π^* Scale of Solvent Polarities. J. Am. Chem. Soc. **1977**, 99, 6027-6038.

Katayama, H.; Ohkoshi, M.; Kaneko, K. Amino-Claisen Rearrangement. IV. Quaternary Amino-Claisen Rerrangement of N-Allyljulolidium Derivatives. *Chem. Pharm. Bull.* **1984**, *32*, 1770-1778.

Kwon, O; Barlow, S.; Odom, S. A.; Beverina, L.; Thompson, N. J.; Zojer, E.; Brédas, J. -L.; Marder, S. R. Aromatic Amines: A Comparison of Electron Donor Strengths. *J. Phys. Chem.* A. **2005**, *109*, 9346-935.

Ma, H.; Jen, A.; Dalton, L.; Polymer-Based Optical Waveguides: Materials, Processing, and Devices. *Adv. Mater.* **2002**, *14*, 1339-1365.

Marder, S.; Cheng, L.; Tiemann, B.; Friedli, A.; Blanchard-Desce, M.; Perry, J.; Skindhoj, J. Large First Hyperpolarizabilities in Push-Pull Polyenes by Tuning of the Bond Length Alternation and Aromaticity. *Science*. **1994**, *263*, 511-514.

Mohri, K.; Suzuki, K.; Usuri, M.; Isobe, K.; Tsuda, Y. A Convenient Synthesis of Tertiary Amines Through Alkylation of Secondary Amines with Alkyl Halides in the Presence of Potassium Hydride and Triethylamine. *Chem. Pharm. Bull.* **1995**, *43*, 159-161.

Prasad, P. N.; Williams, D. J. Introduction to Nonlinear Optical Effects in Molecules and Polymers; Wiley: New York, 1991.

Raposo, M.; Sousa, A.; Fonseca, A.; Kirsch, G. Theinylpyrrole Azo Dyes: Synthesis, Solvatochromic and Electrochemical Properties. *Tetrahedron* **2005**, *61*, 8249-8256.

Reichardt, C. A. Solvatochromic Dyes as Solvent Polarity Indicators. *Chem. Rev.* 1994, 94, 2319-2358.

Schmidt, K.; Barlow, S.; Leclercq, A.; Zojer, E.; Jang, S.; Marder, S.; Jen, A.; Bredas, J. Efficient Acceptor Groups for NLO Chromophores: Competing Inductive and Resonance Contributions in Heterocyclic Acceptors Derived from 2-dicyanomethylidene-3-cyano-4,5,5-trimethyl-2,5-dyhydrofuran. *J. Mater. Chem.* **2007**, *17*, 2944-2949.

Serponitsky, K.Y. J PHYS Chem A, 2009, 113, 10994-11001.

Spangler, C.; McCoy, R. Preparation of Conjugated Aromatic Polyenals by Wittig Oxopropenylation. *Synthetic Communications.* **1988**, *18*, 51-59.

Staub, K.; Levina, G.; Barlow, S.; Kowalczyk, T.; Lackritz, H.; Barzoukas, M.; Fort, A.; Marder, S. Synthesis and Stability Studies of Conformationally Locked 4-(diarylamino)aryl- and 4-(dialkylamino)phenyl-Substituted Second-Order Nonlinear Optical Polyene Chromophores. J. Mater. Chem. **2003**, 13, 825-833.

Straub, K.; Levina, G. A.; Barlow, S.; Kowalczyk, T. C.; Lackritz, H. S.; Barzoukas, M.; Fort, A.; Marder, S. R. J. Mater. Chem. 2003, 13, 825.

Tiemann, B. G.; Cheng, L.-T.; Marder, S. R. The Effect of Varying Ground State Aromaticity on the First Molecular Electronic Hyperpolarizabilities of Organic Donor-Acceptor Molecules. J. Chem. Soc., Chem. Commun. 1993, 735-737.

PART II. LONGITUDINAL STUDY COMPARING ONLINE VERSUS FACE-TO-FACE COURSE DELIVERY IN INTRODUCTORY CHEMISTRY

CHAPTER 1

INTRODUCTION

It is difficult to find an institution of higher learning that does not offer some sort of online coursework. According to Krakovsky (2010), the growth of online only colleges and degree programs is testament to the attractiveness and convenience of taking courses via the internet. The pressure for colleges to provide more courses online in order to stay competitive is increasing and yet little is known about how effective these courses are, especially in the field of chemistry.

Distance education did not begin with the advent of the internet. According to Moore and Kearsley (2012), distance learning had its beginnings during the agrarian era in the mid-1800's precipitated by the need to offer educational opportunities for a geographically dispersed population. Correspondence courses filled this need nicely; later, radio and television provided even more opportunities for distance learning. Simonson, Smaldino, Albright, and Zvacek (2012) argue that with the development of the internet and the speed and affordability of home computers, distance learning is booming at all levels from kindergarten through college all around the world.

Educators, administrators, and politicians alike have taken an interest in distance learning. In Kirtman's article *Online versus In-Class Courses* (2001), she estimates at the time of her study, nearly three million students were enrolled in online courses of some type. In 2000-2001, 56% of two- and four-year degree-granting institutions offered some form of distance learning. Of those institutions, 90% delivered at least some of their courses online (D'Orsie & Day, 2006). It is estimated that four million students participated in at least one online course in the fall of 2007 (Allen & Seaman, 2008). At

42

some universities, most or all instruction occurs online. For example, the University of Phoenix, where all degrees are accomplished via an online program, is ranked fourth in terms of degree production for minority baccalaureates (Borden, 2009).

Many universities and colleges do not want to be left behind in the race to provide online courses. Regardless of the type of institution of higher learning, there is a competitive need to provide the flexibility and convenience of learning online. Online courses provide a way for institutions to offer anytime, anywhere education to accommodate students in disadvantaged locations and to attract students to their programs. In addition, the modern college student is seeking pathways to education other than the face-to-face attendance at traditional colleges. These students are "interested in [qualifications from] small modules and short programs... and in learning that can be done at home and fitted around work, family, and social obligations" (Bates, 200,. p. 5).

A publication by the Alfred P. Sloan Foundation (2008) indicated that in the fall of 2007, community colleges were particularly active in online education because so many of their students are non-traditional. They define non-traditional as older, full- and part-time working students with children. Many community college students balance work and family obligations, and there is a strong appeal among these students for taking classes whenever time permits. While community colleges historically enroll a larger percentage of non-traditional students than four-year colleges and universities, the nontraditional student population is increasing at all institutions which makes the need to consider this type of learner more universal (Christie, 2007).

This trend can be seen at Sinclair Community College, where this study took place. Sinclair is a comprehensive college that is authorized to grant associate degrees in the sciences, applied sciences, arts, and individualized and technical study. According to Nancy Thibeault, Sinclair's director of distance learning, Sinclair had an enrollment of 25,000 students in 2009, making it the largest community college at a single location in the state of Ohio. The Fall 2009 quarter marked the 30th year that Sinclair Community College offered online learning. Approximately 6,000 online students are enrolled each quarter and Sinclair has seen up to a 30% annual growth rate in online students. Between 2003 and 2010, the online enrollment at Sinclair tripled, from 3,191 to 11,850. Sinclair's distance learning division has become the largest online learning provider in southwest Ohio (Thibeault, 2011).

Although there have been extensive studies in online learning, there is very limited information about success rates when compared to students in traditional face-toface (FtF) class formats. When one focuses on college chemistry courses there is virtually no data about the effectiveness of online college chemistry courses.

CHAPTER II

REVIEW OF EXISTING LITERATURE

A search of the literature to understand more about how the method of content delivery impacts learning indicates there is no universal agreement as to what type of course delivery is most effective. This review of literature is organized into three sections: studies that found no difference in student performance based on method of delivery, studies concluding that online delivery was superior to face-to-face delivery, and studies concluding that online delivery was less effective than other delivery methods.

Delivery Method Had No Impact

Many studies across a number of disciplines suggesting that the delivery method used during instruction has no impact on student success. The Institute for Higher Education Policy reviewed the effectiveness of distance learning in higher education and indicated that "regardless of the technology used, distance courses compare favorably with classroom-based (FtF) instruction and enjoy high student satisfaction." (Phipps & Merisotis, 1999, p 4). Most of these studies focused on student satisfaction with, and attitudes about, distance learning and not necessarily on student achievement in the course. This finding could be explained by the fact that students value the convenience of the online course delivery more than what they may have actually learned in the course. However, attitude and individual learning style has been shown to affect student success (Phipps & Merisotis, 1999). Sankaran, Sankaran, and Bui (2000) found that learning performance was directly related to student attitudes and learning strategies. When offered a choice of delivery modes, students sought out instructional methods where they have succeeded in the past, or where they have felt most comfortable. Although a student's attitude toward a course is valuable information, educators would be more interested if this positive attitude could be connected to greater mastery of the content and better grades. One such study performed by Caywood and Duckett (2003) compared graduate students in a teacher education program who chose to be online learners to those attending traditional face-to-face courses. Students were allowed to choose between an online or FtF setting in a behavioral management course. The performance of these students was evaluated using quizzes during the course and a follow up observational evaluation conducted by a master teacher, based on the students' ability to apply the content from the course in their own teaching. Their findings indicate that neither assessment showed any significant difference in the two populations of students (Caywood & Duckett, 2003, p. 103).

Hiltz (1992) reported no significant difference in grades earned by students in a face-to-face learning environment versus a virtual classroom. This was based on the results from five different courses in computer science, math, management, introductory sociology, and statistics. All five undergraduate courses used the same teacher, textbook, and tests for both modes of instruction.

Many of the studies cited by the Institute for Higher Education Policy found no statistically significant differences between sections of courses offered online and those same courses offered in a more traditional FtF format (Phipps & Merisotis, 1999). One such study by Carey (2001) found that student outcomes were comparable when considering nearly identical sections of junior-level courses in business management information systems at a small urban university. The sections were identical except for the method of delivery. The data collected by Carey included differences between preand post-tests, score grades, and student satisfaction. In the field of education, there were examples where no significant difference in achievement was found, but most of the studies where no statistically significant difference was found across various disciplines focused their analysis on student attitudes or other affective components of learning rather than content mastery.

Online Learning Was Better

The US Department of Education performed an exhaustive meta-analysis of online learning in 2009 (Means et al., 2009). They indicated that there was a vast amount of research done on the subject of online learning, including 1000 empirical studies from 1996 through 2008. Many of these studies indicated that there was a significant difference in student success based on the mode of delivery and there was evidence to suggest that online learners performed better than their face-to-face counterparts. This analysis covered a wide range of disciplines and learning environments including K-12 education, career technical education, medical education, corporate and military training, and higher education (Means et al, 2009). Proponents of online learning argue that the online format requires students to take more individual responsibility for their learning. In addition, many online courses have daily or weekly discussion posts, quizzes, and content assessments, which represent more assessment opportunities than traditionally seen in FtF courses especially as enrollments continue to increase. Hannay and Newvine found that "Students who chose DL [distance learning] classes may be more selfdisciplined and more self-motivated than those who choose traditional lecture classes, as they recognize that they will be expected to work more independently in these classes"

(Hanney & Newvine, 2006, p. 1). This suggests that students who choose online formats are typically more motivated and better prepared for learning in the virtual setting. The US Department of Education study found that "on average, students in online learning conditions performed modestly better than those receiving face-to-face instruction" (USDE,2010, p. ix). This study analyzed both K-12 and adult learning environments, including higher education and military training across a wide range of disciplines. This study found that these positive results applied primarily to adults. Additionally, these results may be misleading because the study defined online instruction to include blended courses that incorporated online supplements with face-to-face interaction. The researchers of this study indicated that the blended courses often provided more frequent learning opportunities along with pedagogical methods not afforded to the strictly faceto-face, or the strictly online courses. Moreover, these frequent learning opportunities were not afforded to the solely online students. Since it is unclear how the blending of delivery methods impacts either side, it makes drawing definitive conclusions about the relative effectiveness of online offerings versus face-to-face offerings difficult.

In 2000, Maki, Maki, Patterson, and Whittaker (2000) compared two sections of the same college psychology course. One section was taught in a traditional face-to-face format, while the other section was taught entirely online. These two sections were taught by the same instructor, used the same textbook, and used the same in class examinations. They concluded that the online students performed better on both in-class examinations and content knowledge assessed by a third party source based on questions pulled from a psychology GRE practice test booklet. Students in both formats were assessed four times during the semester using in-class examinations.

Face-to-Face Instruction was better

Community colleges and two-year institutions have historically focused on the needs of non-traditional students. Many of these students have full time jobs, family obligations, and other responsibilities. During a slow economy, like that currently experienced by the United States and Europe, enrollments in community colleges are high. This is due to the fact that people may be out of a job or exploring second careers. Community colleges are working to explore different strategies and distance learning is one such option for encouraging people to go back to school or to start back after an extended absence. Lorenzo indicated that in 2000, online education had doubled from the previous decade. He further stated that "No previous form of distance education has grown so rapidly or as consistently, and community colleges have been at the vanguard of that transition" (Lorenzo, 2010, p. 97). Community colleges have been pioneers in the development of online learning yet many of them have guaranteed admission policies, and their students on average are typically not as prepared for post-secondary education as the students enrolled at universities. Compared to four-year institutions, community colleges enroll more students with work and family responsibilities and typically have very few students living on campus. As a result, community colleges promote their online courses more and have higher online enrollment. Large comprehensive and Research I institutions have historically been more resistant to the use of distance education of any kind, due in part to their size and the resistance of their faculty members to instructional methods other than chalk and talk lectures. Marshall argues that "... university culture and existing capability constrain such innovation and to a large extent determine the nature and extent of organizational change" (Marshal, 2011, p. 22).

There appears to be evidence that there are additional educational risks for students who take online classes, due in part to the lack of contact with the professor and the fact that motivation of the learning falls entirely on the student in the online course. Students enrolled in distance education courses have a higher failure and dropout rate than students taking face-to-face courses according to a study by the Community College Research Center at the Teachers College at Columbia University. This study used statistics of over 50,000 community college students enrolled in both online and face-toface colleges over a five year period. Brown (2011) refers to this same study, citing that online students were 9 percent less likely to complete courses than their FtF counterparts. Online students who required remedial work did worse still and were 13 percent less likely to complete their course than students who took face-to-face courses. (Brown, 2001, p.1). Although community colleges are paving the way for innovations in online learning, there is evidence that community college students are more at risk for failure in online settings.

Brown and Lidehom (2002) evaluated three identical courses offered in microeconomics: face-to-face, hybrid, and entirely online. The face-to-face course served a large population of students that met three times a week for one hour. The hybrid course only met for two hours a week and supplemented the missing hour with online materials. The online course was developed by online web designers along with departmental instructors of the course and this study's authors. The online course had access to the streaming lecture offered for the face-to-face students along with online materials. Their results indicated that students in the online course performed significantly worse in examinations than students in the live course offering. These students performed worse despite having higher ACT scores and had accumulated more credits toward graduation than students in the hybrid or face to face sections. There were no significant differences seen between the hybrid course and either the face-to-face or online courses. In addition, online students underperformed in specific content areas of microeconomics and in applying abstract material in the course. They stated that "Choosing a completely online course carries a penalty that would need to be offset by significant advantages in convenience or other factors important to the student" (Brown, 2002, p. 447).

Literature Reviewing Online Science Courses

An extensive literature search was conducted to locate studies done in the field of chemistry comparing student success in online versus face-to-face courses. All available library searches were performed using the Education Full-text database, Education Research Complete database, EBSCO, ERIC Data base, SciFinder Scholar Web, Chemistry Central, Web of Science, including *The Journal of Chemical Education*, the *American Journal of Distance Learning. The Journal of Chemical Education* contained studies done on such topics as virtual laboratories, and online chemistry discussions. There were no findings directly comparing face-to-face with online formats in chemistry courses. The search was expanded to other sciences including physics and biology, and similar results were obtained.

Thomas Russell wrote a book in 2001 titled *The No Significant Difference Phenomenon,* which took a comprehensive look at 355 research papers and reports that looked at online and distance education courses compared to traditional classroom courses, and how these were related to student outcomes. Since the release of the book, Russell developed a web site, No Significant Difference,

http://www.nosignificantdifference.org/about.asp. The web site, which was developed in 2005, serves as database for all the papers and reports from Russell's book. It additionally updates its archives by adding any studies that continue to research the topic of online versus facet-to-face courses and student success. The search engine embedded in the web site allows for researchers to search articles using all years, or specific years, and allowing for key words to assist in the search. Furthermore, searches can be performed selecting the following choices: no significant difference, better in the classroom, better with technology, and mixed results.

Colloquially, hard sciences are considered to be physics, chemistry, biology, geology and astronomy. Searches were conducted on Russell's web site using the keyword, "chemistry" for all four of the choices. Only one study was found, *Inter-institutional Teaching by Television in the Oregon State Systems of Higher Education: Report 1.* This article was published in 1960, and it found that from 1957-1959, there were no differences found in final examinations of chemistry students. Location of this article was not possible. When the search was expanded to physics, three articles were retrieved, two citing no significant difference, and one citing a significant difference. In biology, five articles were retrieved, four citing no significant difference, and one citing and geology.

Research Questions

This study was designed to answer the following research questions.

.

- 1. Is there any difference in the performance of students enrolled in online versus face-to-face learning environments?
- 2. What differences exist between the students taking the online vs. face-to-face course?
- 3. What effect do overall GPA, full-time status, placement scores, success in other online courses, and remediation course enrollments have on student success?

CHAPTER III

METHODOLOGY

Design

This study was carried out in Introductory Chemistry (CHE 120), the first course of a three-quarter sequence designed primarily for allied health students at Sinclair Community College, a large urban community college in southwest Ohio. The study participants were grouped according to the method of delivery used in the section in which they were enrolled. Data was collected from all sections of the Introductory Chemistry course taught from 2003 to 2011. The two methods of instructional delivery were developed and taught by the same instructor at the same institution. All exams and quizzes were graded by the same instructor to avoid consistency and reliability issues. For all nine years studied, students in both formats used the same textbooks and laboratory experiments and took the same cumulative final. The instructor used the same lecture notes for the online course and the face-to-face courses. These notes were posted in the course management system in PowerPoint format. In 2009, audio was added to the PowerPoint notes to simulate the lecture received by face-to-face students. There was a laboratory component for both courses which was carried out in parallel laboratory sessions held on campus. The content and instruction in both types of delivery was synchronized in every possible way with the exception of the additional assessments in the online course.

Face-to-Face Course

The FtF class met for two 75-minutes lectures per week, for 10 weeks. The material was covered at an average pace of one chapter per week. Every week there was a quiz covering the material from the previous week and there was a cumulative exam. The co-requisite lab course counted for 20% of the overall grade. There were no other assessments besides the ten quizzes, the cumulative final, and the laboratory experiments. Over the course of the nine years, the FtF course was limited to 32 students per section.

Online Course

The online course was designed by the instructor of the FtF introductory chemistry course, along with web designers and course developers employed by the institution. The course originally used WEBCT® as the course management system platform. Later, Blackboard and most recently Angel was used to manage the course. The course delivered in the online format consisted of ten online quizzes, ten discussion posts, and three exams. The three exams were taken on campus in a supervised testing center on campus for security reasons. The online students took the same cumulative final as the FtF class. The online students were also required to attend the same laboratory course on campus as the FtF students which also counted for 20% of the grade for the online students. During the nine years data was collected, the online sections of the course saw a steady increase in enrollment plateauing in 2008 as seen by Figure 1.

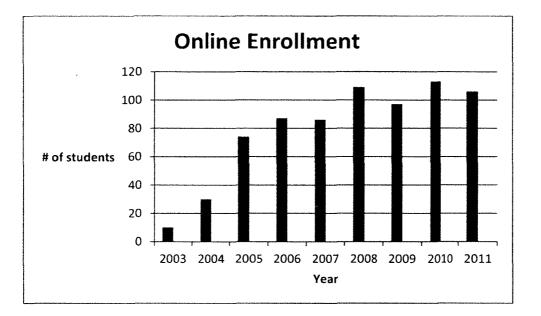


Figure 1: Enrollment in online CHE 120, from 2003 to 2011.

Participants

The majority of students enrolled in the chemistry course majored in courses in the life and health division, with over half of all those students consisting of nursing majors. Student fields of study are represented in Table 2.

	FtF	Online
Business and Public Services	81	101
Liberal Arts & Sciences	128	123
Life & Health	526	306
STEM	40	29
Personal Interest & Undeclared	113	153
Total	888	712

Figure 2. Academic divisions of all enrolled chemistry students.

Demographic data were collected to see if there were any differences in the students who enrolled in online sections of the course versus those enrolled in the traditional format. The data consisted of gender and age. 78 % of all participants were female for both formats. This is understandable given that this course was predominately populated by students seeking allied health degrees, which are primarily females at the institution where the data was collected. There were significantly more females enrolled in the course regardless of the format, but the difference between genders in the two modes of delivery was not statistically different. There was a slight difference in ethnic status, with 73.5% of online students being non-minorities and 67% of FtF students being nonminorities. This difference was statistically significant ($X^2 = 22, p = 0.0001$). The median age of the online students was 30, whereas the median age of the face-to-face students was 26.8. This age difference was statistically significant (F = 1.15, p = .0505). The demographic data are summarized in Figure 3 below.

·····	FACE-TO-FACE	ONLINE	OVERALL
GENDER			
Male	22.44%	20.90%	21.75%
Female	77.56%	79.10%	78.25%
ETHNIC STATUS			
Minority	19.31%	10.98%	15.57%
Non-minority	66.77%	73.54%	69.82%
Unknown	13.92%	15.48%	14.62%
AGE			
Minimum	15	15	15
Maximum	62	60	62
Average	26.8	30.0	28.2

Figure 3. Demographic data for the students in the face-to-face and the online course.

Many students attending community college are not as prepared as they should be for post-secondary education. One of the benefits of a community college education is that it can help students fill those educational gaps with developmental courses. Since this study took place at a community college, additional data was collected on the number of developmental studies courses taken by each student as a measure of their preparedness. These data included the following information: student success in other online courses, course load in the quarter the chemistry course was taken, overall GPA, and enrollment in developmental courses.

Study

The goal of this study was to compare student success in chemistry. Several methods of statistical analysis were employed to analyze the data. X^2 and student *t*-tests were carried out to look for significant differences for the following comparisons:

- 1. Success rates of FtF versus online students.
- 2. Success rates of students who needed remediation versus those who did not need remediation.
- 3. Success rates of students who passed developmental math versus those who did not pass developmental math.
- 4. Success rates of students who have had success in other web courses.
- Correlations between math, reading, and writing placement scores and success in Chemistry 120.
- 6. Correlations between cumulative GPA and a student's full time status.

CHAPTER IV

RESULTS

Student success in the course was defined as earning an A, B, or C as the final grade at the end of the term. Students who scored a D, F, or W (withdrawal) were labeled as non-successful. The grading scale used was 90-100% for an A, 80-90% for a B, 70-80% for a C, 60-70% for a D, and below 60% for an F.

The data showed that the overall success rate for the online students was significantly lower than for face-to-face students. These results showed that 66 percent of students in the face-to-face course were successful while only 54 percent of the students in the online course were successful. ($X^2 = 25.572$, p < .001). The results are summarized in Figure 4.

	Face-to-Face (# of students)	Online (# of students)
Not successful	311	345
Successful	616	411

Figure 4. Success Rates for students in the FtF and online courses.

Not surprisingly, a significantly higher success rate was found among better prepared students. Students not taking developmental courses were assumed to be the better prepared group and students taking developmental courses were considered to be less prepared. Most developmental courses address reading, writing and math skills not obtained in a student's previous coursework, either in high school or in their college preparation for certain educational tracks. This suggests that students in developmental courses are not as prepared as students who do not need to take these classes. This corresponds to numerous studies stating that students with better high school preparation do better in college chemistry. This correlation is especially strong when it comes to the relationship with chemistry success and mathematics. Many concepts in chemistry have a mathematical component. The introduction to Chemistry course in this study used mathematics in concepts including stoichiometry, unit conversions, balancing chemical equations, and applying gas law equations. According to Wagner, Sasser, and DiBiase (2002), a strong background in mathematics is a significant predictor of success in college chemistry courses and this study bears that out as well.

The overall success rate for students who did not require developmental studies (70%) was significantly higher than for those students who needed remediation (54%), $X^2 = 44.9466$, p < .001. These results can be found in Figure 5.

	# of student not taking	# of students who took
	developmental courses	developmental courses
Failed Chemistry 120	223	433
Passed Chemistry 120	520	507

Figure 5. Success rates for students who did or did not take developmental courses.

Given the importance of mathematics in the study of chemistry, particular focus was given to student enrollment in developmental mathematics courses. The courses in developmental mathematics available to students were Basic Mathematics I, Basic Mathematics II, and Introduction to Algebra. For students without solid mathematical skills, chemistry can prove to be an even greater challenge. Students who failed a developmental math courses were also likely to fail chemistry as well. This was true for both developmental math courses, whether basic mathematics (DEV 085, Figure 6) or algebra skills (DEV 108, Figure 7). The overall pass rates for Chemistry 120 students who passed DEV 085 (93%) was significantly higher than the rate for Chemistry 120 students who did not pass DEV 085 (64%), $X^2 = 636.032$, p < .001.

	Failed DEV 085	Passed DEV 085	
Not Successful	219	52	
Successful	15	653	

Figure 6. Students needing DEV 085, Basic Mathematics II (prerequisite: placement test score or equivalent).

	Failed DEV 108	Passed DEV 108
Not Successful	298	54
Successful	45	679

Figure 7. Students needing DEV 108 Introduction to Algebra (prerequisite: DEV 085 or equivalent).

The overall pass rate for Chemistry 120 students who passed DEV 108 (90%) was significantly higher than the pass rate for Chemistry 120 students that did not pass DEV 108 (7%), $X^2 = 671.1362$, p < .001.

As a measure of the student's level of comfort with online class offerings in general, the number of online courses the student has taken can be evaluated. A report by Harrell and Bower (2011) found that experience with web based courses was a strong factor in success, especially in community colleges. They state, "An examination of community college students in online courses found that lack of experience in taking online courses had a negative impact on success" (Harrell & Brown, 2011,p. 180).

Independent sample *t*-tests were run to determine whether there was a significant difference in each variable in the online and FtF sections of CHE 120. These tests work for variables that can be treated as if they were continuous. The results of this study showed that there was a significant effect of other web course success on the success rate for students taking Introductory Chemistry online (t = 23.19, p < .0001).

Comparing Face-to-Face students with online students

Additionally, another goal of this study was to determine how online students were different from the students that enrolled in the FtF section of CHE 120. It was found that the incoming online students were older, took fewer developmental courses, and had a higher overall grade point average (GPA). An analysis of these data also showed that online students had higher placement test scores in arithmetic, reading and writing. However, the online students did not have higher significantly different scores in college mathematics, which typically involves higher-level math concepts, including algebra.

Face-to-Face					
Analysis of Varia	nce				
Source	Deg F.	Sum of	Mean	F	Pr > F
		Squares	Square	Value	
Model	6	2.84179	0.47363	16.45	<.0001
Error	18	0.51821	0.02879		
Corrected Total	24	3.36			
Variable	Parameter	Standard	Type II SS	F	Pr > F
	Estimate	Error		Value	
Intercept	0.97142	0.29221	0.31817	11.05	0.0038
Math score	-0.00664	0.00145	0.60048	20.86	0.0002
College math score	-0.00301	0.00161	0.10034	3.49	0.0783
Reading score	-0.009	0.00263	0.33775	11.73	0.003
Writing score	0.00652	0.00248	0.19941	6.93	0.0169
Cumulative GPA	0.17046	0.0378	0.58538	20.33	0.0003
Full Time status	0.33158	0.07506	0.56178	19.51	0.0003

Figure 8. Statistical data of face-to-face students.

A stepwise regression performed for the face-to-face data provided a statistically significant model. (p < .0001). Based on the p values the data show that for FtF, the variables of mathematics, reading and writing scores are significant. It also shows a significant contribution for cumulative GPA and full-time status of students. The parameter values of placement scores in mathematics, college mathematics and reading indicate a negative correlation, indicating that higher scores actually led to lower levels of student success. The parameter values for writing, cumulative GPA, and full time status have a positive correlation.

Web	AMMA in the Article Property and a first second				
Analysis of Variand	ce				
Source	DF	Sum of	Mean	F value	Pr > F
		Squares	Square		
Model	6	4.60868	0.76811	8.48	0.0002
Error	18	1.63132	0.09063		
Corrected Total	24	6.24			
Variable	Parameter	Standard	Type II SS	F Value	Pr > F
	Estimate	Error			
Intercept	0.3723	0.53447	0.04397	0.49	0.495
Math score	0.00445	0.0027	0.24568	2.71	0.117
Col. math score	-0.00337	0.00438	0.05379	0.59	0.451
Reading score	-0.00747	0.00462	0.23758	2.62	0.1228
Writing score	-0.000755	0.00437	0.00271	0.03	0.8647
FT	0.334	0.13139	0.58569	6.46	0.0204
Success other web	0.74466	0.15642	2.05394	22.66	0.0002

Figure 9 . Statistical data of online students.

The stepwise regression also showed a significant model for the online data. The regression analysis indicated that full time status and success in other web based classes were significant. Success in other web courses has been shown to contribute to higher success in online courses (Harrell, 2011), but this study also shows that students enrolled full time did do better in the online chemistry course.

CHAPTER V

CONCLUSIONS

In general the online students were better prepared but not as successful as the FtF students. Online students had better placement scores and higher GPAs, suggesting stronger students than those in the FtF on average. Surprisingly, the results indicate that students enrolled in face-to-face sections of introductory chemistry are significantly more successful than their online counterparts. The review of the data indicated that the students in the online course had significantly higher cumulative GPAs than students in the face-to-face delivery method. Using cumulative grade point is only one method of measuring student quality. In this study it was also shown that these same online students also did better on their placement scores in reading and writing indicating that on the average they were better prepared students. Online courses require more reading and writing than FtF courses because of the absence of direct contact with professors. One might have predicted their higher performance in reading and writing would have led to higher performance in their chemistry courses.

Taking developmental courses are another indicator of student preparedness. It was found that students who did not need developmental studies had a significantly higher overall success rate in taking chemistry. This may suggest that the developmental classes were not successful in preparing the students for their general education requirements. The data here shows a very strong correlation between not having to take developmental courses and succeeding in introduction to chemistry, which would create another advantage for the online students. As mentioned earlier, mathematics plays a very strong role in the first semester of an introduction to chemistry course. Historically, mathematics has always been a challenge for a large part of the student population. This is especially true at community colleges where the admission policy is far less strict than at public or private universities. Many community college students depend on these developmental classes to prepare them for the courses required for their chosen field of study. At Sinclair Community College, a significant portion (90 percent) of first-time-at-college students who enroll in a given academic year need to take non college-level course work in mathematics. Nearly one third of these students require developmental courses in English and reading (Jolly, 2012).

It was also found that a student's comfort level, and their success and completion of other online or distance courses had a positive influence on their success in introduction to chemistry. This result should be of particular interest to academic advisors at institutions that offer online courses. As a benchmark when placing students in online courses, their past success in online courses should be carefully examined. Online courses not only involve the understanding and application of the content, but also they require significant skills in organization, reading comprehension, and independent study. Additionally, online courses require computer and internet proficiency. In this study, the online course used Angel software as its course management system platform. A certain amount of proficiency in navigating these course management systems is required for students. Certain applications for online courses in these course management systems include: drop boxes, discussion forums, online quizzes, online homework, web links, and online lectures. Students not familiar with these systems will typically find the course more challenging based on these applications.

When comparing the types of students that takes online courses versus those choosing FtF, it was found that students who took the online course were typically older. Traditional students are considered those that enroll directly after high school and those that consider college their full time job. In addition to being older these students had higher test scores in arithmetic, reading and writing.

While this study did not set out to explain why the face to face students performed better, other studies have looked at the advantages of the face to face environment (Brown, 2011). One might speculate that online learning does not engage the students in the way that the face-to-face instruction accomplishes. Moreover, in a face-to-face environment, a professor in the classroom and can more easily hold a student's attention and recognize when a student may not be grasping a critical concept. Furthermore, professors can hold their students more accountable due to the personal interaction between student and instructor. In conclusion, if online learning is to succeed as an alternative to the traditional classroom, it must address the issues found in this study.

68

CHAPTER VI IMPLICATIONS

There seems to be a tradeoff for students that if they want the convenience of online courses, there must be a reduction in quality. It has been shown in this study that face-to-face instruction has significantly more successful students in chemistry versus students in online courses. Literature is mixed, some studies reported no difference, some argued that online instruction develops more successful students, and others argued still that face-to-face instruction was better, but no studies that were reviewed looked at the issue of relative success of students based on data drawn specifically from chemistry courses.

No matter your opinion of online courses, the presence of online courses and online institutions cannot be ignored. The popularity of online learning exists because it helps students by providing flexibility of time and convenience. It provides the opportunity for students to take classes that under ordinary circumstances they would be unable to attend. In this study, while the FtF students were deemed more successful the data indicated that a percentage of students enrolled in the online sections did in fact learn. 54% of online students in this study were deemed successful. These students may not be able to obtain a degree if it were not for these online courses. If online learning was abandoned, we would be telling these students that a degree is unobtainable for them based on logistics.

Dedicated educators must not dismiss online learning but must use it wisely and in full appreciation for its strengths and weaknesses. This proposes a problem since all of the strengths and weaknesses are not entirely understood. Even if this was studied thoroughly, there still exists the fact that over half of the students are successful. For now, educators and advisors should caution students before they take an online course. Students should consider that they may not learn chemistry as well as they would in a face to face setting. If a student is interested in certain fields like pharmacy, medical school or engineering they might be better served to enroll in a face-to-face course. On the other hand, if a student is pursuing an arts degree or wants to be an English teacher, they might want to take the online course for convenience, earn their credit and place more of their efforts in courses more closely related to their field. If a student has been successful in other internet courses, an online chemistry course may satisfy their goals for the course. This study also gives advisors a baseline on how to steer students to or away from online courses.

Educators need to better understand the strengths and weaknesses of online learning. More studies need to be done to determine what makes online work better, what factors make it work less well, and improve upon its effectiveness. More precisely, more studies need to be done to determine where online is especially a disservice to learners.

LITERATURE CITED

Allen, I., Seaman, J. (2008). *Staying the Course, Online Education in the United States* 6th ed. The Sloan Consortium.

Bates, T. (2000) Distance education in dual mode higher education institutions: Challenges and changes.

Borden, V. M. H. (2009, June 25). Top 100 degree producers: Undergraduate. *Diverse Issues in Higher Education*, 26, 13-20.

Brown, B. W., Liedholm, C. E., (2002) Can Web Courses Replace the Classroom in Principles of Microeconomics. *Teaching Microeconomic Principles*. Volume 92, No 2. 444-448.

Brown, R. (July, 2011) Community-College Students Perform Worse Online Than Face to Face. *The Chronicle of Higher Education*. Retrieved from http://chronicle.com/article/Community-College-Students/128281/

Carey, J.M, (2001). Effective student outcomes: A comparison of online and face-to face-delivery modes. Retrieved April 30, 2003, from http://teleeducation.nb.ca/content/pdf/english/DEOSNEWS_11.9_effective-studentoutcomes.pdf

Caywood, K., Duckett, J. (2003) Online vs. On-Campus Learning in Teacher Education. *Teacher Education and Special Education*, 26 (2). 98-105.

Christie, H. (2007) Higher Education and spatial (im)mobility: nontraditional students and living at home. *Environment and Planning*, *39*, 2445-2463.

D'Orsie, S., & Day, K. (2006). Ten tips for teaching a web course. *Tech Directions*, 65(7), 18-20.

Hannay, M., Newvine, T. Perceptions of Distance Learning: A Comparison of Online and Traditional Learning. Retrieved from <u>http://jolt.merlot.org/05011.htm</u>

Harrell, I. L., Bower, B. L., (2011)Student Characteristics That Predict Persistence in Community College Online Courses. *American Journal of Distance Education*. Vol 25, Issue 3, 178-191

Hiltz, S.R. (1993) Correlates of learning in a virtual classroom. *Int. J. Man-Machine Studies*. 39, 71-98.

Kirtman, L. (2009) Online Versus In-Class Courses: An Examination of Differences in Learning Outcomes. *Issues in Teacher Education*. Vol 18(2) 103-116.

Jolly, (2012, December 7). Email interview.

Krakovsky, M. (2010). Degrees, Distance, and Dollars. *Communications of the ACM*, 53(9), 18-19. <u>http://cacm.acm.org/</u>

Lorenzo, A. L., (2010). Teaching the world to sing: Planning for the future of online learning. *New Directions for Community Colleges. (150).* 95-102

Maki, R. H., Maki, W. S., Patterson, M., Whittaker, P. D.(2000), Evaluation of a Web-based introductory psychology course: I. Learning and satisfaction in on-line versus lecture courses. *Behavior Research Methods, Instruments, & Computers 32(2).* 230-239.

Marshal, S. (2011). Change, Technology and Higher Education: Are Universities Capable of Organizational Change? Journal of Asynchronous Learning Networks, Volume 15, Issue 4. 22-34

Moore, K., Kearsley, G. (2012). *Distance Education: A Systems View of Online Learning*. California: Wadsworth Cengage Learning

Online: http://bates.cstudies.ubc.ca/papers/challengesandchanges.html

Phipps, R., Merisotis, J. (1999). Whats the Difference? A review of Contemporary Research on the effectiveness of distance learning in higher education. Washington DC. The Institute For Higher Education Policy.

Sankaran, S., Sankaran, D., Bui T. (2000) Effect of Student Attitude to Course Format on Learning Performance: An Empirical Study in Web vs. Lecture Instruction. *Journal of Instructional Psychology*. Vol 27, 66.

Simonson, M., Smaldino, S., Albright, M., Zvacek, S. (2012). *Teaching and Learning at a Distance: Foundations of Distance Education*. Boston: Pearson.

Thibeault, N. (2012, October, 28). Email interview.

U.S. Department of Education (2010). Evaluation of Evidence-Based Practices in Online Learning: A Meta-Analysis and Review of Online Learning Studies. Washington D.C.

APPENDICES

74

Appendix A: UV and NMR Solvent Dependent Data

.

.

Table A.1: Solvent Dependent UV Data for Aldehydes

	1a	2a
Solvent	λ _{max} (nm)	λ_{max} (nm)
Cyclohexane	406	410
CCl ₄	408	412
THF	410	419
C ₃ H ₆ O	412	420
CH ₃ CN	412	422
CHCl ₃	420	434
CH ₂ Cl ₂	422	430
DMF	422	428
DMSO	425	435

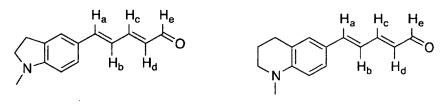
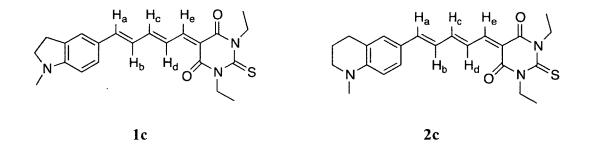

C a harant	1c	2c	3c
Solvent	λ _{max} (nm)	λ_{max} (nm)	λ_{max} (nm)
Cyclohexane	554	562	530
Ether	578	586	542
CCl ₄	566	578	544
Toluene	586	597	550
CH ₃ CH ₂ OH	-	654	574
Ethyl acetate	-	-	- 552
dioxane	588	598	544
THF	602	614	556
C ₃ H ₆ O	614	626	564
CH ₃ CN	638	630	568
CHCl ₃	640	654	572
CH ₂ Cl ₂	610	650	570
CH ₃ NO ₂	decomp	650	572
Pyridine			578
DMF	. 670	662	578
DMSO	686	682	586
CF ₃ CH ₂ OH			600

Table A.2 Solvent Dependent UV Data for TB Derivatives

	1d	2d	3d
Solvent	λ _{max} (nm)	λ_{max} (nm)	λ _{max} (nm)
Toluene	-	636	
Ethanol	646	668	602
Dioxane	602	630	578
THF	614	638	590
C ₃ H ₆ O	614	636	594
CH ₃ CN	612	654	594
CHCl ₃	670	680	606
CH ₂ Cl ₂	656	678	611
CH ₃ NO ₂	-	650	-
DMF	642	656	610
DMSO	642	674	638
CF ₃ CH ₂ OH	_	-	658

Table A.3 Solvent Dependent UV Data for TCF Derivatives

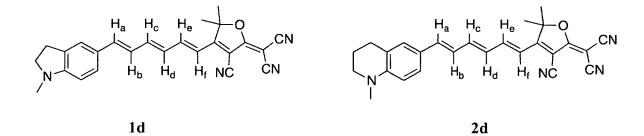
Table A.4 Solvent-Dependent Chemical Shift and Coupling Constant Data for **1a** and **2a**.


1a

2a

1a	δ	(ppm)							
Solvent	Α	В	С	D	E				
CDCl ₃	6.88	6.77	7.39	6.14	9.52				
C ₃ D ₆ O	7.05	6.95	7.39	6.12	9.55				
CD ₃ CN	6.94	6.84	7.29	6.01	9.44				
CDCl ₃	6.88	6.77	7.39	6.14	9.52				
	J (Hz)							<u></u>	
Solvent	AB	BA	BC	СВ	CD	DC	DE	ED	ΔJ
CDCl ₃	15.4	15.5	10.9	11.2	14.7	14.9	8	8	4.08
C ₃ D ₆ O	15.4	15.4	10.9	10.9	14.9	15	8	8.1	4.28
CD ₃ CN	15.4	15.5	10.4	10.9	14.9	15.5	8	8	4.7

δ	(ppm)							
Α	В	С	D	Е				
6.93	6.95	7.22	6.16	9.52				
7	6.93	7.38	6.11	9.54				
6.97	6.86	7.34	6.09	9.51				
6.93	6.95	7.22	6.16	9.52				
7.01	6.93	7.42	6.12	9.48				
J (Hz)								
AB	BA	BC	СВ	CD	DC	DE	ED	ΔJ
15.5	15.5	10.9	10.6	15.2	15.5	8.1	8	4.7
15.5	15.1	10.7	10.9	15.5	14.9	8.1	8.1	4.45
15.1	15.4	10.9	11.2	14.7	15	8.1	8.6	4
15.5	14.9	10.9	10.9	14.9	14.9	8.1	8	4.15
	A 6.93 7 6.97 6.93 7.01 J (Hz) AB 15.5 15.5 15.1	A B 6.93 6.95 7 6.93 6.97 6.86 6.93 6.95 7.01 6.93 J (Hz)	A B C 6.93 6.95 7.22 7 6.93 7.38 6.97 6.86 7.34 6.93 6.95 7.22 7 6.93 7.38 6.97 6.86 7.34 6.93 6.95 7.22 7.01 6.93 7.42 J (Hz) Image: Comparison of the second	A B C D 6.93 6.95 7.22 6.16 7 6.93 7.38 6.11 6.97 6.86 7.34 6.09 6.93 6.95 7.22 6.16 7 6.86 7.34 6.09 6.93 6.95 7.22 6.16 7.01 6.93 7.42 6.12 J (Hz) AB BA BC CB 15.5 15.5 10.9 10.6 15.5 15.1 10.7 10.9 15.1 15.4 10.9 11.2	A B C D E 6.93 6.95 7.22 6.16 9.52 7 6.93 7.38 6.11 9.54 6.97 6.86 7.34 6.09 9.51 6.93 6.95 7.22 6.16 9.52 7 6.93 7.38 6.11 9.54 6.97 6.86 7.34 6.09 9.51 6.93 6.95 7.22 6.16 9.52 7.01 6.93 7.42 6.12 9.48 J (Hz) AB BA BC CB CD 15.5 15.5 10.9 10.6 15.2 15.5 15.1 10.7 10.9 15.5 15.1 15.4 10.9 11.2 14.7	A B C D E 6.93 6.95 7.22 6.16 9.52 7 6.93 7.38 6.11 9.54 6.97 6.86 7.34 6.09 9.51 6.93 6.95 7.22 6.16 9.52 7 6.93 7.38 6.11 9.54 6.97 6.86 7.34 6.09 9.51 6.93 6.95 7.22 6.16 9.52 7.01 6.93 7.42 6.12 9.48 J (Hz) Image: CB CD DC AB BA BC CB CD DC 15.5 15.5 10.9 10.6 15.2 15.5 15.5 15.1 10.7 10.9 15.5 14.9 15.1 15.4 10.9 11.2 14.7 15	A B C D E Image: Constraint of the stress of the	A B C D E I I 6.93 6.95 7.22 6.16 9.52 I I 7 6.93 7.38 6.11 9.54 I I 6.97 6.86 7.34 6.09 9.51 I I 6.93 6.95 7.22 6.16 9.52 I I 6.97 6.86 7.34 6.09 9.51 I I 6.93 6.95 7.22 6.16 9.52 I I 7.01 6.93 7.42 6.12 9.48 I I J (Hz) I I I I I I AB BA BC CB CD DC DE ED 15.5 15.5 10.9 10.6 15.2 15.5 8.1 8.1 15.5 15.1 10.7 10.9 15.5 14.9 8.1 8.6


Table A.5 Solvent-Dependent Chemical Shift and Coupling Constant Data for TB Derivatives

1c	δ	(ppm)							
Solvent	Α	В	С	D	E				
CDCl ₃	7.05	6.94	7.33	8.02	8.13				
C ₃ D ₆ O	7.25	7.16	7.58	8.02	8.07				
DMSO	7.26	7.17	7.66	7.91	8.03				
CD ₃ CN	7.12	7.06	7.46	7.95	8.04				
	J (Hz)								
	AB	BA	BC	СВ	CD	DC	DE	ED	ΔJ
CDCl ₃	14.9	14.9	11.5	11.5	13.7	13.2	13.2	12.6	1.98
C ₃ D ₆ O	14.9	14.9	10.9	10.9	13.2	13.2	12.6	12.6	2.3
DMSO	14.9	14.9	11.5	11.45	13.75	13.2	13.1	12.6	2.03
CD ₃ CN	14.9	14.1	10.55	10.3		13.8	13.8	12.6	2.19

2c	δ	(ppm)							
Solvent	Α	B	С	D	Е				
CDCl ₃	7.03	6.94	7.33	8.02	8.11	5 			
C ₃ D ₆ O	7.22	7.16	7.58	8.02	8.08				
DMSO	7.2	7.14	7.63	7.89	8				
CD ₃ CN	-	-	7.5	7.98	8.07				•
1999 - 1996 - 1 ₉₉₆	J (Hz)								
Solvent	AB	BA	BC	СВ	CD	DC	DE	ED	ΔJ
CDCl ₃	14.9	14.9	11.5	10.9	13.7	13.2	13.2	12.6	2.85
C ₃ D ₆ O	14.9	14.9	10.3	10.9	13.2	12.9	12.9	12.4	2.35
DMSO	14.9	14.9	10.6	10.9	13.8	13.2	13.2	13.1	2.25
CD ₃ CN	-		-	10.9	13.7	13.7	12.7	13.1	-

Table A.6 Solvent-Dependent Chemical Shift and Coupling Constant Data for TCF Derivatives

1d	δ	(ppm)				
Solvent	A	В	С	D	E	F
CDCl ₃	6.36	6.85	7.61	7.14	7.44	6.69
DMSO	6.55	7.19	7.77	7.4	7.52	6.75
CD ₃ CN	6.51	7.04	7.62	7.25	7.48	6.73

Appendix B: IRB Approval

December 13, 2012 Patrick Greco, Dr. Amy Phelps Department of Chemistry Protocol Title: "Longitudinal study comparing online versus face to face course delivery in introductory chemistry" Protocol Number: 13-160

Dear Investigator(s),

The exemption is pursuant to 45 CFR 46.101(b) (4). This is because the research that was conducted involved the study or collection of existing data that was de-identified. You will need to submit an end-of-project report to the Office of Compliance upon completion of your research. Complete research means that you have finished collecting data and you are ready to submit your thesis and/or publish your findings. Should you not finish your research within the three (3) year period, you must submit a Progress Report and request a continuation prior to the expiration

date. Please allow time for review and requested revisions. Your study expires on December 13,2015.

Any change to the protocol must be submitted to the IRB before implementing this change. According to MTSU Policy, a researcher is defined as anyone who works with data or has contact with participants. Anyone meeting this definition needs to be listed on the protocol and needs to provide a certificate of training to the Office of Compliance. If you add researchers to an approved project, please forward an updated list of researchers and their certificates of training to the Office of Compliance before they begin to work on the project. Once your research is completed, please send us a copy of the final report questionnaire to the Office of Compliance. This form can be located at www.mtsu.edu/irb on the forms page. Also, all research materials must be retained by the PI or faculty advisor (if the PI is a student) for at least three (3) years after study completion.

Should you have any questions or need additional information, please do not hesitate to contact me. Sincerely, Andrew W. Jones Andrew W. Jones Graduate Assistant Compliance Office 615-494

web	overall	DEV	ftf	web	overall
2.75	2.67	took a DEV class	64.62%	45.11%	55.85%

Appendix C: Part II Statistical Data

1				
average placement test	ftf	web	overall	
scores				······
reading	76.99	80.55	78.38	
	(740)	(476)	(1216)	
writing	73.54	80.28	76.19	
	(740)	(479)	(1219)	
arithmetic	58.76	67.72	62.47	
	(818)	(579)	(1397)	
math	50.28	49.84	50.07 (950)	
	(501)	(449)		
college math	29.94 (34)	23.93 (46)		
			26.48 (80)	
Note that the math scores a	re tiered:			Table is in
to take the college math pl	acement			score
				(number)
you must pass a threshold	l on the			format
math placement test. To	take the			
math placement test, you m				<u></u>
above the threshold on the a				
placement test. That explain				
drop in the number of stud				
took each respective math	test (the			
number				
in parens).				

Chemistry Grades

Grade	Frequency	Percent	Cumul	ative Free	quency	Cumulative Percent
A	247	26.65	247			26.65
B	203	21.9	450			48.54
С	166	17.91	616			66.45
D	53	5.72	669		dit	72.17
F	95	10.25	764			82.42
I	4	0.43	768			82.85
W	159	17.15	927			100
non- success	311	33.55	311			33.55
success	616	66.45	927			100
Web Gra	de_Cd			· .		
Grade	Frequency	Percent	Cumul	ative Free	luency	Cumulative Percent
Α	159	21.03	159		<u></u>	21.03
B	149	19.71	308			40.74
С	103	13.62	411			54.37
D	47	6.22	458			60.58
F	112	14.81	570	Anda		75.4
I	4	0.53	574			75.93
W	182	24.07	756			100
non- success	345	45.63	345			45.63
success	411	54.37	756			100
			chem	120 course success	ework	
success i courses	n other interne		FTF	Web	Overall	•
success	ess		63.19% 36.81%	65.15% 34.85%	64.07% 35.93%	

.

.

DEV Grades FTF

for all FTF classe	S	1	r	
DEV064_grade	Frequency	Percent	Cumulative	Cumulative
	······		Frequency	Percent
P	13	25.49	13	25.49
S	38	74.51	51	100
success	51			
non-success	0			
	T	Deveent	Constation	Currentediare
DEV065_grade	Frequency	Percent		Cumulative
		20.42	Frequency	Percent
A	80	30.42	80	30.42
B	109	41.44	189	71.86
C	43	16.35	232	88.21
F	2	0.76	234	88.97
N	2	0.76	236	89.73
P	20	7.6	256	97.34
W	7	2.66	263	100
success	252			
non-success	11			
DEV075_grade	Frequency	Percent	Cumulative	Cumulative
			Frequency	Percent
Ν	1	0.7	1	0.7
Р	66	46.15	67	46.85
S	74	51.75	141	98.6
W	2	1.4	143	100
success	140			
non-success	3			
DEV084 grade	Frequency	Percent	Cumulative	Cumulative
JE VOT glade	ricquency	I CICCHI	Frequency	Percent
N	6	6.74	6	6.74
P	17	19.1	23	25.84
	64	71.91	87	97.75
S	04	/1.91	0/	71.13

W	2	2.25	89	100
success	81			
non-success	8			
DEV085_grade	Frequency	Percent	Cumulative	Cumulative
			Frequency	Percent
Α	106	29.61	106	29.61
В	121	33.8	227	63.41
С	85	23.74	312	87.15
F	10	2.79	322	89.94
N	6	1.68	328	91.62
Р	25	6.98	353	98.6
W	5	1.4	358	100
success	337			
non-success	21			
DEV108_grade	Frequency	Percent	Cumulative	Cumulative
			Frequency	Percent
A	112	22.76	112	22.76
В	155	31.5	267	54.27
С	131	26.63	398	80.89
F	18	3.66	416	84.55
N	19	3.86	435	88.41
Р	22	4.47	457	92.89
W	31	6.3	488	99.19
Z	4	0.81	492	100
success	420			
non-success	72			
DEV110_grade	Frequency	Percent	Cumulative	Cumulative
			Frequency	Percent
Α	102	29.82	102	29.82
В	112	32.75	214	62.57
С	67	19.59	281	82.16
F	7	2.05	288	84.21
Ι	1	0.29	289	84.5
<u> </u>				

Р	26	7.6	324	94.74
W	16	4.68	340	99.42
Z	2	0.58	342	100
success	307			
non-success	35			
······································				
DEV130_grade	Frequency	Percent	Cumulative	Cumulative
			Frequency	Percent
С	1	50	1	50
W	1	50	2	100
success	1			
non-success	1			
* $A B C P S = such a $	ccess			
other = non-succe	ess			

DEV Grades Web

for all online clas	ses	,		r
DEV064_grade	Frequency	Percent	Cumulative	Cumulative
	······································		Frequency	Percent
Р	4	28.57	4	28.57
S	9	64.29	13	92.86
U	1	7.14	14	100
success	13			
non-success	1			
DEV065_grade	Frequency	Percent	Cumulative	Cumulative
DE TOD_gruue	requency	1 creent	Frequency	Percent
Α	28	34.57	28	34.57
В	32	39.51	60	74.07
С	11	13.58	71	87.65
F	3	3.7	74	91.36
N	1	1.23	75	92.59
Р	5	6.17	80	98.77
Z	1	1.23	81	100
success	76			-
non-success	5			
DEV075 grade	Frequency	Percent	Cumulative	Cumulative
			Frequency	Percent
F	2	5.26	2	5.26
N	2	5.26	4	10.53
Р	12	31.58	16	42.11
S	22	57.89	38	100
success	34			
non-success	4			
DEV084_grade	Frequency	Percent	Cumulative	Cumulative
			Frequency	Percent
P	5	19.23	5	19.23
S	19	73.08	24	92.31

U	1	3.85	25	96.15
W	1	3.85	26	100
success	24			
non-success	2			
DEV085 grade	Frequency	Percent	Cumulative	Cumulative
			Frequency	Percent
Α	48	29.63	48	29.63
В	70	43.21	118	72.84
С	28	17.28	146	90.12
F	3	1.85	149	91.98
N	2	1.23	151	93.21
Р	6	3.7	157	96.91
W	3	1.85	160	98.77
Z	2	1.23	162	100
success	152		***************************************	
non-success	10			
DEV108_grade	Frequency	Percent	Cumulative	Cumulative
DEV108_grade	Frequency	Percent	Cumulative Frequency	Cumulative Percent
DEV108_grade	Frequency 82	Percent 29.39		
			Frequency	Percent
A	82	29.39 32.26 20.43	Frequency 82 172 229	Percent 29.39 61.65 82.08
A B	82 90	29.39 32.26	Frequency 82 172	Percent 29.39 61.65
A B C	82 90 57	29.39 32.26 20.43 3.23 0.36	Frequency 82 172 229 238 239	Percent 29.39 61.65 82.08
A B C F	82 90 57 9	29.39 32.26 20.43 3.23	Frequency 82 172 229 238 239 253	Percent 29.39 61.65 82.08 85.3 85.66 90.68
A B C F I	82 90 57 9 1	29.39 32.26 20.43 3.23 0.36	Frequency 82 172 229 238 239	Percent 29.39 61.65 82.08 85.3 85.66
A B C F I N	82 90 57 9 1 14 12 12	29.39 32.26 20.43 3.23 0.36 5.02 4.3 4.3	Frequency 82 172 229 238 239 253 265 277	Percent 29.39 61.65 82.08 85.3 85.66 90.68 94.98 99.28
A B C F I N P	82 90 57 9 1 14 12 12 2	29.39 32.26 20.43 3.23 0.36 5.02 4.3	Frequency 82 172 229 238 239 253 265	Percent 29.39 61.65 82.08 85.3 85.66 90.68 94.98
A B C F I N P W	82 90 57 9 1 14 12 12 2 241	29.39 32.26 20.43 3.23 0.36 5.02 4.3 4.3	Frequency 82 172 229 238 239 253 265 277	Percent 29.39 61.65 82.08 85.3 85.66 90.68 94.98 99.28
A B C F I N P W Z	82 90 57 9 1 14 12 12 2	29.39 32.26 20.43 3.23 0.36 5.02 4.3 4.3	Frequency 82 172 229 238 239 253 265 277	Percent 29.39 61.65 82.08 85.3 85.66 90.68 94.98 99.28
A B C F I N P W Z success	82 90 57 9 1 14 12 12 2 241	29.39 32.26 20.43 3.23 0.36 5.02 4.3 4.3	Frequency 82 172 229 238 239 253 265 277	Percent 29.39 61.65 82.08 85.3 85.66 90.68 94.98 99.28
A B C F I N P W Z success	82 90 57 9 1 14 12 12 2 241	29.39 32.26 20.43 3.23 0.36 5.02 4.3 4.3	Frequency 82 172 229 238 239 253 265 277	Percent 29.39 61.65 82.08 85.3 85.66 90.68 94.98 99.28 100
A B C F I N P W Z success	82 90 57 9 1 14 12 12 2 241 38	29.39 32.26 20.43 3.23 0.36 5.02 4.3 4.3	Frequency 82 172 229 238 239 253 265 277 279	Percent 29.39 61.65 82.08 85.3 85.66 90.68 94.98 99.28
A B C F I N P W Z success non-success	82 90 57 9 1 14 12 12 2 241 38 Frequency	29.39 32.26 20.43 3.23 0.36 5.02 4.3 4.3 0.72 Percent	Frequency 82 172 229 238 239 253 265 277 279 Cumulative Frequency	Percent 29.39 61.65 82.08 85.3 85.66 90.68 94.98 99.28 100 Cumulative Percent
A B C F I N P W Z success non-success	82 90 57 9 1 14 12 12 2 241 38 Frequency 53	29.39 32.26 20.43 3.23 0.36 5.02 4.3 4.3 0.72	Frequency 82 172 229 238 239 253 265 277 279 279 Cumulative	Percent 29.39 61.65 82.08 85.3 85.66 90.68 94.98 99.28 100 Cumulative Percent 43.44
A B C F I N P W Z success non-success DEV110_grade	82 90 57 9 1 14 12 12 2 241 38 Frequency	29.39 32.26 20.43 3.23 0.36 5.02 4.3 4.3 0.72 Percent	Frequency 82 172 229 238 239 253 265 277 279 Cumulative Frequency	Percent 29.39 61.65 82.08 85.3 85.66 90.68 94.98 99.28 100 Cumulative Percent

no online student	s in CHE-120	took DEV	/ 130	
			Frequency	Percent
DEV130_grade	Frequency	Percent	Cumulative	Cumulative
non-success	7			
success	115			
W	3	2.46	122	100
Р	5	4.1	119	97.54
N	2	1.64	114	93.44
F	2	1.64	112	91.8

CHE 120 Success Rates

	Chem 120 Success R	lates:					1
	FTF	web					
fail 120	311		-	the obs	served		
		345	K	numbe	ers		
succeed 120	616	411		are in i cell	in each		
· · · · · · · · · · · · · · · · · · ·	chi-square = 25.572						
	p<.001		the over signific		rate for on	line stud	ents is
			lower th		for face to	face	
				•			
	Here are the detailed	statistical res	ults				
	Table of success by	web					
			web		Total		
			0	1			
	success		311	345	656		1
	0	Frequenc y					
		Percent	18.48	20.5	38.98		
		Row Pct	47.41	52.59			
		Col Pct	33.55	45.63	-		
	1	Frequenc y	616	411	1027		
		Percent	36.6	24.42	61.02		-
		Row Pct	59.98	40.02		-	
·		Col Pct	66.45	54.37			
			927	756	1683		<u> </u>
	Total	Frequenc y	-				
		Percent	55.08	44.92	100		
	Statistia	DE	Value	Duch			
	Statistic	DF	Value	Prob		<u> </u>	L

	Chi-Square	1	25.572	<.000		T	
		1	25.555	1			
	Likelihood Ratio Chi-Square	1	25.555	<.000			
	Continuity Adj.	1	25.066	<.000			
	Chi-Square	1	4	1			
	Mantel-Haenszel	1	25.556	<.000		<u> </u>	
	Chi-Square		8	1			
	Phi Coefficient		-				
			0.1233				
	Contingency Coefficient		0.1223				
	Cramer's V	1	-	· · · · ·			
			0.1233				
	Fisher's Exact Test						
	Cell (1,1)	311					
	Frequency (F)						
	Left-sided Pr <= F	2.79E-07					
	Right-sided Pr >= F	1					
					<u> </u>		
	Table Probability(P)	1.14E-07					
	Two-sided Pr <= P	4.91E-07					
	Chem 120 Success Rates:						
	no DEV needed	needed DEV					
fail 120	223	433	~	the observed numbers			
<u>_</u>			2				
succeed 120	520 507		×	are in in each cell			
	chi-square = 44.9466						
	I	L	L	1		1	L

 p<.001									
 	the overall require	d not							
 	DEV instruction (70%) is significantly higher than the pass								
 	rate for thos								
	(53.9%)								
		1	1	ſ					
 Table of success by	Table of success by took_dev								
	took_dev Total								
		0	1	-					
 success		223	433	656					
 0	Frequenc	-			 				
	y								
 	Percent	13.25	25.73	38.98					
 	Row Pct	33.99	66.01						
 	Col Pct	30.01	46.06						
 1	Frequenc	520	507	1027					
	y								
	Percent	30.9	30.12	61.02					
	Row Pct	50.63	49.37						
	Col Pct	69.99	53.94		†				
		743	940	1683					
 Total	Frequenc								
 	y Percent	44.15	55.85	100					
		1.1.5	1 33.05	100					
 Statistic	DF	Value	Prob						
 Chi-Square	1	44.946	<.000		+				
om oquare		6	1						
Likelihood Ratio	1	45.475	<.000						
Chi-Square		8	1						
 Continuity Adj.	1	44.274	<.000			•••			
 Chi-Square		3	1						
Mantel-Haenszel	1	44.919	<.000						
 Chi-Square		9	1						
Phi Coefficient		-							
		0.1634			<u> </u>				
Contingency		0.1613							
 Coefficient	1	L.,							

	Cramer's V		-				
			0.1634				
	Fisher's Exact Test	<u></u>					
	Cell (1,1) Frequency (F)	223	· · · · · · · · · · · · · · · · · · ·				
	Left-sided Pr <= F	1.10E-11					
	Right-sided Pr >= F	1					
,,,	Table Probability (P)	5.57E-12					
	Two-sided Pr <= P	1.94E-11					
		·····					
	Chem 120 Success R	ates:					
	fail 085	succeed 085					
fail 120	219	52	K	the obs			
succeed 120	15	653		are in i cell	n each		
	chi-square = 636.032						
	p<.001						
		the overall p passed					
		DEV 085 (9 the pass	-	-			
		rate for CHI (6.4%)	E-120 stuc	lents tha	t did not p	ass 085	
	Table of success by	DEV085 suc	cess	1		+	

алтан <mark></mark>		DEV08	5 succ	Total	
		ess	-		
		0	1		
success		219	52	271	
0	Frequenc	1			
	y				
	Percent	23.32	5.54	28.86	
	Row Pct	80.81	19.19		
	Col Pct	93.59	7.38		
1	Frequenc y	15	653	668	
	Percent	1.6	69.54	71.14	
	Row Pct	2.25	97.75		
	Col Pct	6.41	92.62		
		234	705	939	+
Total	Frequenc	- 234	105	157	
lotai	v				
	Percent	24.92	75.08	100	
Frequency Missing		<u></u>	1		 <u> </u>
	· · · ·				
Statistic	DF	Value	Prob		
Chi-Square	1	636.03	<.000		
		2	1		
Likelihood Ratio	1	645.86	<.000		
Chi-Square		09	1		
Continuity Adj.	1	631.83	<.000		
Chi-Square		98	1		
Mantel-Haenszel	1	635.35	<.000		
Chi-Square		46	1		 ļ
Phi Coefficient		0.823			
Contingency		0.6355			
Coefficient					
Cramer's V		0.823			
Fisher's Exact Test					
Cell (1,1)	219				
Frequency (F)					
Left-sided Pr <= F	1				
Right-sided Pr >=	1.21E-141				

		Row Pct	84.66	15.34			
		Percent	27.7	5.02	32.71		
		у					
	0	Frequenc	1				
	success		298	54	352		
			0	1			
			ess				
			DEV10	8 succ	Total		
	Table of success by	DEV108 suc	cess	<u>I</u>	I		
			<u> </u>				
					T		
		rate for CHI (7.4%)	2-120 Stud	uents tha	ii did not p	ass 108	
		the pass	E 120 at-	donte the	+ did+	000 100	
		DEV 108 (8	9.9%) is :	significa	ntly highe	r than	
		passed					
	<u> </u>	the overall p	bass rate f	or CHE-	120 studer	nts who	
	p<.001						
	A						
	chi-square = 671.136	2					
120				cell	n caell		
succeed	45	679		are in i	n each		
		54	K	numbe	rs		
fail 120	298		*	the obs	served	-	
	fail 108	succeed 108					
-	foil 109						
	Chem 120 Success R	ates:				-	
	01 126 7						
			†				
	(P) Two-sided Pr <= P	1.21E-141					
	Table Probability	2.02E-139					
	Table Drehahilit	2 02E 120			1	+	1

	Col Pct	86.88	7.37			
1	Frequenc	45	679	724		
	у					
	Percent	4.18	63.1	67.29		
	Row Pct	6.22	93.78			
	Col Pct	13.12	92.63			
		343	733	1076		
Total	Frequenc					
	y -					
	Percent	31.88	68.12	100		
Frequency Missing	= 607			<u></u>	·····	
Statistic	DF	Value	Prob			
Chi-Square	1	671.13	<.000			
		62	1			
Likelihood Ratio	1	708.13	<.000			
Chi-Square		25	1			
Continuity Adj.	1	667.52	<.000			
Chi-Square	1	88	1			
Mantel-Haenszel	1	670.51 25	<.000			
Chi-Square Phi Coefficient		0.7898	1			
		0.7898				
Contingency Coefficient		0.0198				
Cramer's V		0.7898				
		0090				
Fisher's Exact Test	I				- <u> </u>	
	298					
Frequency (F)						
Left-sided Pr <= F	1					
Right-sided Pr >=	2.38E-155					
F						
Table Probability	1.88E-153					
(P)						
Two-sided Pr <= P	2.38E-155					

.

ANOVA

FTF						[
Classes								
:								
	parameter	estim ate	SE	T	p- value			
	intercept	0.108 264	0.012 851	8.42	<.000 1	F		
	success_other_web	0.880 334	0.016 357	53.8 2	<.000 1			
							signifi result	cant
Web Classes :								
	parameter	estim ate	SE	T	p- value	6		
	intercept	0.041 903	0.025 689	1.63	0.1033			
	success_other_web	0.770 195	0.033 205	23.1 9	<.000 1			
	So there is a significat success rate in CHE-1		f other w	l veb cour	rse succes	s on the	<u> </u>	
			<u> </u>					

Correlations

Pearso	n Correl	ation Coef	ficients	!	L	L	I	1	J	1	i
arith _scor e	math _scor e	colmat h_score	read_ score	write _scor e	Cumulati ve_GPA	FT	success_o ther_web	DEV085 _success	DEV108 _success	gra de8 5	gra e10
0.158	0.174 65	- 0.12692	0.091 49	0.065 62	0.48766	0.17 782	0.7436	0.81274	0.78156	0.26 941	0.27
<.00 01	<.000	0.2619	0.001 4	0.021 9	<.0001	<.00 01	<.0001	<.0001	<.0001	<.00 01	<.00
1397	950	80	1216	1219	1601	160 1	1601	889	1018	436	611
			r	·			r	1			
arith _sco re	math _scor e	colmat h_score	read_ score	write _scor e	Cumulati ve_GPA	FT	success_o ther_web	DEV085	DEV108 _ ^{success}	gra de8 5	gra e10
0.13 604	0.166 38	- 0.15134	0.135 26	0.101 27	0.52676	0.23 361	0.86333	0.81077	0.79144	0.31 275	0.30
<.00 01	2		2	8		<.00 01				01	<.00 01
818	501	34	740	740	889	889	889	538	609	300	393
Pearso	n Correl	ation Coef	ficients]	1	1	
arith _sco re	math _scor e	colmat h_score	read_ score	write _scor e	Cumulati ve_GPA	FT	success_o ther_web	DEV085 _success	DEV108 _success	gra de8 5	gra e10
0.24	0.192	0.2110	0.060	0.067	0.47041	0.06	0.61202	0.82006	0.77662	0.22	0.23
485	82		11	31		931				832	937
01	1		2	3		45				75	<.00
579	449	46	476	479	712	712	712	351	409	136	218
	arith scor e 0.158 51 <.00 01 1397 Pearso arith Pearso 0.13 604 <.00 01 818 Pearso arith 818 Pearso 0.1 0.1 0.1 0.1 Pearso 0.1 0.1 Pearso 0.1 Pearso 0.1 Pearso 0.1 Pearso 0.1 Pearso 0.1 Pearso 0.1 Pearso 0.1 Pearso 0.1 Pearso 0.1 Pearso 0.1 Pearso 0.1 Pearso 0.1 Pearso 0.1 00.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	arith math _scor _e 0.158 0.174 51 65 <.00	arith math colmat _scor _scor _e 0.158 0.174 - 51 65 0.12692 <.00	scor score score score 0.158 0.174 - 0.091 51 65 0.12692 49 <.00	arith math colmat read_score write scor e $score$ scor e scor e 0.158 0.174 - 0.091 0.065 62 <.00	arith scor e math score colmat score read score write score Cumulati ve_GPA 0.158 0.174 - 0.091 0.065 0.48766 51 65 0.12692 49 62 -0001 0.1 1 - 0.091 0.065 0.48766 51 65 0.12692 49 62 -0001 01 1 - 0.001 0.021 <.0001	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	arith math colmat read_score write Cumulati FT success_o 0.158 0.174 - 0.091 0.065 0.48766 0.17 0.7436 ≤ 0.00 ≤ 0.00 0.2619 0.001 0.021 < 0001 0.01 < 0.00 < 0.001 0.021 < 0001 0.01 0.01 1397 950 80 1216 1219 1601 160 1397 950 80 1216 1219 1601 160 1397 950 80 1216 1219 1601 160 1397 950 80 1216 1219 1601 160 1307 950 80 1216 1219 1601 160 1301 60 160 1216 1219 1601 1601 130 60 0.1513 0.165 0.23 0.86333 604 36	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	arith scor e math scor e colmat scor e read scor e write scor e Cumulati ve_GPA FT success ther_web DEV085 success DEV108 success 0.158 0.174 - 0.091 0.065 0.48766 0.17 0.7436 0.81274 0.78156 51 65 0.12692 49 62 0.001 0.001 <0001	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

.

PART II Statistical Data Using T-Tests

Variable: Age web students are significantly older

	web	N	Mean	Std	Dev	Std E	rrN	1inim	um	Maxim	um
	0	8892	26.718	88.68	321	0.2912	2 1	5.000	0 (52.0000)
	1	7122	29.931	28.09	957	0.3034	4 1	5.000	0 (50.0000) .
	Diff (1-2)) -	3.2124	18.42	264	0.423	3				
web	Meth	od	Mea	ın 19	5%	CL M	ean	Std 1	Devg	95% C	L Std Dev
0			26.7	1882	6.14	7327.2	2903	38.682	21 8	3.2964	9.1056
1			29.9	3122	9.33	5530.5	5268	38.09	57 7	.6960	8.5396
Diff (1-2)Pooled	t	-3.2	124 -	4.043	36 -2.3	812	8.420	54 8	3.1442	8.7290
Diff (1-2)Satter	thwa	ite-3.2	124 -	4.03´	72 -2.3	875				
	M	etho	d	Vari	ance	sDF	t	Value	Pr >	> t	
	Po	ooled		Equa	1	1599	-7	.58	<.00	001	
	Sa	attert	hwaite	Unec	ual	1562	.6-7	.64	<.00	001	

Equality of Variances										
Method	Num	DF	Den	DF	F	Value	Pr	> F		
Folded F	888		711		1.	15	0.0	505		

Variable: Cumulative_GPA (Cumulative_GPA_Ct) web students have a significantly higher GPA

	web	N	Mean	Si	td Dev	Std 1	Err	Mini	mum	Maxii	mum	
	0	889	2.6281	0.	9160	0.030)7 ()		4.0000)	
	1	712	2.7679	0.	8851	0.033	32 ()		4.0000) :	
	Diff (1-2	2)	-0.1397	7 0.	9024	0.045	54				:	
web	Met	hod	Me	an	95%	CL N	lear	nStd	Dev	95% C	L St	d Dev
0			2.62	281	2.567	8 2.6	884	0.91	60 ().8753	0.9	607
1			2.76	579	2.702	8 2.8	330	0.88	51 ().8413	0.9	336
Diff	(1-2)Pool	ed	-0.1	397	7-0.228	38 -0.0	0507	70.90	24 ().8722	0.9	348
Diff	(1-2)Satte	erthwa	aite-0.1	397	7-0.228	34 -0.0	0511	l				
Diff		erthwa Metho			7-0.228 riance				ePr	> t		*****
Diff	<u>,</u>		od	Va	riance		t	Valu	e Pr 0.0	, ji i i i i i i i i i i i i i i i i i i		
Diff	, F	Metho Poolec	od	Va Equ	riance 1al	s DF 159	t 9 -:	Valu 3.08	0.0	021		
Diff	, F	Metho Poolec Sattert	o d d	Va Equ Une	riance 1al equal	s DF 1599 1544	t 9 -:	Valu 3.08	0.0	021		
Diff	, F	Metho Poolec Sattert Equ	o d 1 thwaite	Va Equ Und	riance lal equal arianc	sDF 1599 1544 es	t 9 -: 4.2-:	Valu 3.08 3.09	0.0	021		

Variable: Term_GPA (Term_GPA_Ct)

	web	N	Mean	Std De	vStd	Err	Minimu	mMaxim	um
	0	889	2.4689	1.2196	0.04	409	0	4.0000	
	1	712	22.4370	1.2749	0.04	478 (0	4.0000	
	Diff (1-	-2)	0.0318	1.2444	0.0	626			-
veb	Met	hod	Me	an 95%	6 CL	Mea	nStd D	ev 95% Cl	L Std De
			2.46	5892.38	86 2	2.549	1 1.2196	5 1.1654	1.2790
			2.43	3702.34	32 2	2.530	8 1.2749	1.2119	1.3448
) iff ((1-2)Poo	led	0.03	818-0.09	909 ().154	6 1.2444	1.2028	1.2891
)iff ((1-2)Satt	erthw	aite0.03	318-0.09	915 ().1552	2		

Method	Varian	esDF	t Va	luePr >
Pooled	Equal	1599	0.51	0.6110
Satterthw	aiteUnequa	1493	0.51	0.6128
Equality	of Varian	ces	1063E.0'8568 F .e.	
Method	Num DFD	en DFF	Val	uePr > F
Folded F	711 89	1 88	09	0 2112

Variable: success_other_web

	web	N	Mean	Std De	vStd Er	'r Mii	nimum	Maxim	um
	0	88	90.6386	0.4646	0.0156	0		1.0000	
	1	71	20.6791	0.4025	0.0151	0		1.0000	
	Diff (1-	-2)	-0.0405	50.4380	0.0220				
web	Me	thod	Mea	n 95%	6 CL M	eanS	td Dev	95% CI	L Std De
0			0.63	86 0.60	80 0.66	92 0.	4646	0.4439	0.4872
1			0.67	91 0.64	95 0.70	87 0.	4025	0.3826	0.4245
Diff (1-2)Poo	led	-0.04	405-0.0	8370.00	2760.	4380	0.4234	0.4538
	1 0 0	41		105 0 0	8300.00	200			

Method	Variances	DF	t Value	$ \mathbf{Pr} > \mathbf{t} $
Pooled	Equal	1599	-1.84	0.0665
Satterthwaite	eUnequal	1589.2	2-1.87	0.0623

Equality of Variances											
Method	Num	DF	Den	DF	F	Value	Pr	> F			
Folded F	888		711		1.	33	<.0	001			

Variable: minority

	web	NN	/lean Std	Dev S	td Eri	Min	imum	Maxin	num
	0	8890	.46010.72	.04 0.	0242	0		2.0000	
	1	7120	.42280.74	61 0.	0280	0		2.0000	
	Diff (1-2) 0	.03730.73	19 0.	0368				
web	M	ethod	Mean 9	5% C	L Me	anSto	l Dev	95% C	L Std Dev
0			0.46010	.4126	0.501	75 0.7	204	0.6884	0.7555
1			0.42280	.3679	0.473	76 0.7	461	0.7092	0.7870
Diff (1-2)Po	oled	0.0373-0).0349	0.109	95 0.7	319	0.7074	0.7582
Diff (1-2)Sa	tterthwai	te0.0373-().0352	0.109	98			
		Method	Vari	ances	DF	t Va	luePi	r > t	
		Pooled	Equa	ıl ,	1599	1.01	0.	3109	
		Satterth	waiteUned	qual	1499.′	71.01	0.	3128	
		Equal	ity of Var	iance	S		AMIN'S . WIT & 124	***.T	
		Metho	od Num I	FDen	DFF	' Valu	ePr	> F	
		Folded	1 F711	888	1	.07	0.32	233	

Variable: took_dev web students are significantly less likely to have taken a DEV course

	web	NM	lean S	Std De	vStd	Err	Minin	num	Maxim	um
	0	8890.	64000).4803	0.01	61 (0		1.0000	
	1	7120.	4424().4970	0.01	86 (0		1.0000	
	Diff (l - 2) 0.	19760	0.4878	0.02	.45				
web	Me	ethod	Mea	n 95%	CL	Mea	nStd	Dev	95% CI	L Std D
0		********	0.64	000.60	84 0.	6717	0.48	03	0.4589	0.5037
1			0.442	240.40	58 0.	4790	0.49	70	0.4725	0.5243
Diff (1-2)Poo	oled	0.19	760.14	95 0.	2457	0.48	78	0.4714	0.5053
Diff (1-2)Sat	terthwait	e0.19′	760.14	93 0.	2459)			
		Method	V	⁷ ariano	cesD	F	t Valu	e Pr	> t	
		Pooled	E	qual	15	99 8	8.06	<.(0001	
		Satterthv	vaiteU	Inequal	l 15	00.28	8.03	<.(0001	
		Equali	ty of	Variar	ices					
		Metho				FF	Value	Pr >	> F	
		Folded	F711	8	88	1.0)7	0.33	32	

Variable: arith_score (Score_Ct) web students have a significantly higher arithmetic score

	web	N	Mean	Std I	Dev Std H	ErrN	linimu	mMaxin	num
	0	819	958.258	927.61	79 0.965	50 1	.0000	120.0	*
	1	579	966.2919	929.26	92 1.216	54 9	.0000	120.0	t -
	Diff (1-2	2)	-8.0330	28.31	33 1.537	'3			-
veb	Meth	od	Mea	n 95°	% CL M	lean	Std D	ev95% (CL Std D
)			58.25	58956.	3646 60	.153	127.617	9 26.342	1 29.024
			66.29	91963.	9028 68	.681	029.269	2 27.674	9 31.059
hiff (1-2)Poole	d	-8.03	30 - 11	.0487-5	0177	28.313	3 27 301	0 29.404
ן אור	1 2/1 0010		0.05			0110			

Method	Varianc	esDF	t Vah	ıePr > t
Pooled	Equal	1396	-5.23	<.0001
Satterthwa	iteUnequal	1199	-5.17	<.0001
Equality	of Varianc	es	19. 196 men 19. 199	nah sarahan karangan karangan K
Method P	Num DFDe	n DF F	' Valu	ePr > F
Folded F5	78 81	8 1	.12	0.1286

Variable: math_score (Score_Ct)

	web	NN	/Iean	Std Dev	Std Er	rMin	ıimun	Maxim	um
	0	5025	0.23512	26.2355	1.1709	0	ht annun von alt tra	119.0	!
	1	4494	8.83522	26.7657	1.2632	0		119.0	
	Diff(1	-2) 1	.3999 2	26.4871	1.7205				•
web	Me	thod	Mean	95%	CL Me	anS	td Dev	95% CI	Std De
0		******	50.23	5147.93	4552.5	35620	5.2355	24.7068	27.9673
1			48.83	5246.35	2851.3	17620	5.7657	25.1221	28.6412
Diff (1-2)Poo	oled	1.399	9 -1.97	654.776	63 26	5.4871	25.3473	27.7350
Diff (1-2)Satt	terthwait	te1.399	9 -1.98	044.780	01			
		Metho	ı v	ariance	SDF	t Va	luePr	> t	

Method	Varia	ncesI)F	t Valu	$ \mathbf{e} \mathbf{Pr} > \mathbf{f} $							
Pooled	Equal	9	49	0.81	0.4160							
Satterthwa	iteUneq	ual 9	32	.820.81	0.4166							
Equality	Equality of Variances											
Method	Num D	FDen	DF	F Value	Pr > F							
Folded F	448	501		1.04	0.6623							

Variable: read_score (Score_Ct) web students have a significantly higher reading score

	web	N	Mean	Std Dev	Std Er	rMinin	num Maxi	mum	
	0	739	76.534	519.5502	0.7192	0	120.0		
	1	476	80.6134	420.6938	0.9485	0	120.0		
	Diff (1-	2)	-4.0789	20.0058	8 1.1758				
web	Met	hod	Mea	n 95%	CL Me	an Std	Dev 95%	CL St	d Dev
0		****	76.5	34575.12	22777.94	46419.5	502 18.60	18 20.	6013
1			80.6	13478.74	19782.47	77220.6	938 19.45	75 22.	0992
Diff (1-2)Pool	ed	-4.07	789 -6.38	57 -1.77	22 20.0	058 19.240	05 20.	8350
Diff (1-2)Satte	rthwa	ite-4.07	789 -6.41	48 -1.74	31			
*	Ĩ	Metho	d l	Varianco	esDF	t Valu	$e \mathbf{Pr} > \mathbf{t} $		

Variance	esiDF	it Valı	1e Pr >
Equal	1213	-3.47	0.0005
iteUnequal	971.4	8-3.43	0.0006
Num DFD	en DFF	Value	$\Pr > F$
1	1		6 1
	Equal iteUnequal of Variand	iteUnequal 971.4 of Variances	Equal 1213 -3.47 iteUnequal 971.48-3.43

Variable: write_score (Score_Ct) web students have a significantly higher writing score

	web	N	Mea	n S	td D	ev'S	td E	rrN	linii	mum	Max	imu	m	
	0	74	072.5	55426	5.69	540	981	3 0			120.	0		
	1	47	979.8	18424	1.71	191	129	1 0			120.	0		
	Diff (1	-2)	-7.2	63025	5.93	44 1	520	9					، بر	
web	Me	thod	M	lean	95%	∕₀ C	LM	ean	Std	Dev	95%	6 CI	_ St	d De
0			72	2.5554	70.0	6289	74.	4820	026.	6954	25.4	011	28.	1296
1			79	9.8184	77.	5997	82.	0370	024.	7119	23.2	399	26.	3846
Diff ((1-2)Poo	led	-7	.2630	-10	.246	8-4.2	2791	25.	9344	24.9	439	27.	0075
Diff ((1-2)Satt	erthw	aite-7	.2630	-10	.198	3-4.:	3276	, ,		_			
		Meth	od	Va	rian	ices	DF	t '	Valu	ıe P r	> t			
		Poole	ed	Eq	ual	······································	1217	-4	.78	<.0	001			
		Satte	rthwa	iteUn	equa	al	075	5.8-4	.86	<.0	001			
		Eq	uality	of V	aria	nces		******						
		Me	thod	Num	DF	Den	DF	FV	alue	Pr >	F			

478

1.17

0.0654

Folded F739

Variable: colmath_score (Score_Ct)

.

	web	NM	ean	Std De	vStd 1	ErrM	linim	umMa	kimun	ז
	0	3630.	2778	22.775	4 3.79	59 6.	0000	80.0	000	-
	1	4624.	8478	318.711	8 2.758	39 3.	0000	88.0	000	
	Diff (1-2) 5.4	300	20.588	6 4.58	15				
web	Me	thod	Mea	n 95%	6 CL	Mean	Std	Dev 95%	6 CL S	Std Dev
0			30.2	77822.5	571737	.9839	922.7	754 18.4	727 2	9.7091
1			24.8	47819.2	291130).404:	518.7	118 15.5	203 2	3.5680
Diff (1-2)Poo	led	5.43	00 -3.6	87414	1.5473	320.5	886 17.8	334 2	4.3585
Diff (1-2)Satt	erthwaite	5.43	00 -3.9	361 14	.7960)			
		Method		Varian	cesDF	t	Valu	$e \mathbf{Pr} > t $]	
		Pooled		Equal	80	1.	.19	0.2394	1	
		Satterthy	vaite	Unequa	l 67.	1671.	.16	0.2513	:	
		Equal	ity of	Varia	nces	********				
		Metho	d Nı	ım DF	Den D	FF V	alue	Pr > F		
		Folded	F35	ر د	45	1.48	3 (0.2132		

Grades are non-constant across web, FTF:

Kruskal-Wallis Test		
Chi-Square	6.5722	
DF	1	
Pr > Chi-Square0.0104		

Kolmogorov-Smirnov Two-Sample Test			
(Asymptotic)			
KS	0.043400	D	0.088415
KSa	1.472405	Pr > KSa	0.0262

Full-Time Part-Time status is also non constant

.

Kruskal-Wallis Test	
Chi-Square	32.0580
DF	1
Pr > Chi-Square<.0001	

Kolmogorov-Smirnov Two-Sample Test			
(Asymptotic)			
KS	0.069888	D	0.141282
KSa	2.666772	Pr > KSa	<.0001

Age is detected in these tests as well:

Kruskal-Wallis Test		
Chi-Square	94.9567	
DF	1	
Pr > Chi-Square<.0001		

Kolmogorov-Smirnov Two-Sample Test			
(Asy	mptotic)		
KS	0.129135	D	0.261052
KSa	4.927469	Pr > KSa	<.0001

Cumulative GPA:

Kruskal-Wallis Test	
Chi-Square	12.9638
DF	1
Pr > Chi-Square0.0003	

Kolmogorov-Smirnov Two-Sample Test			
(Asy	mptotic)		
KS	0.057848	D	0.116943
KSa	2.207355	Pr > KSa	0.0001

Took DEV course

Kruskal-Wallis Test		
Chi-Square	48.4353	
DF	1	
Pr > Chi-Square<.0001		

Kolmogorov-Smirnov Two-Sample Test			
(Asy	mptotic)		
KS	0.089805	D	0.181545
KSa	3.426741	Pr > KSa	<.0001

Arithmetic test scores

Kruskal-Wallis Test		
Chi-Square	23.0878	
DF	1	
Pr > Chi-Square<.0001		

Kolmogorov-Smirnov Two-Sample Test			
(Asy	mptotic)		
KS	0.058769	D	0.119612
KSa	2.127909	Pr > KSa	0.0002

Reading Scores:

.

Kruskal-Wallis Test							
Chi-Square	16.9922						
DF	1						
Pr > Chi-Squa	are<.0001						

Kolmogorov-Smirnov Two-Sample Test								
(Asymptotic)								
KS	0.065133	D	0.133746					
KSa	2.202047	Pr > KSa	0.0001					

.....

Writing Scores:

Kruskal-Wal	llis Test
Chi-Square	23.4187
DF	1
Pr > Chi-Squa	are<.0001

Kolmogorov-Smirnov Two-Sample Test								
(Asymptotic)								
KS	0.063939	D	0.131182					
KSa	2.166401	Pr > KSa	0.0002					

Stepwise regression

FTF						T			T	
Analysis of V	Variance					1				
Source .	DF	Sum of Squa res	Mean Squar e	F Val ue	Pr > F					
Model	6	2.841 79	0.4736	16.4 5	<.000 1	Ł	mode signif		F class	ses is
Error	18	0.518 21	0.0287 9		<u> </u>					
Corrected Total	24	3.36								
Variable	Param eter Estim ate	Stan dard Erro r	Type II SS	F Val ue	Pr > F					
Intercept	0.9714 2	0.292	0.3181 7	11.0 5	0.003	R				
math_scor e	- 0.0066 4	0.001 45	0.6004 8	20.8 6	0.000 2					
colmath_sc ore	- 0.0030 1	0.001 61	0.1003 4	3.49	0.078 3					
read_score	-0.009	0.002 63	0.3377 5	11.7 3	0.003		signif			
write_scor e	0.0065 2	0.002 48	0.1994	6.93	0.016 9	€	math, reading, and writing scores,			
Cumulativ e_GPA FT	0.1704 6 0.3315	0.037 8 0.075	0.5853 8 0.5617	20.3 3 19.5	0.000 3 0.000		cumulative GPA and Full Time status			
	8	06	8	1	3					

	1	1	T	r	Γ	1		1	1	r
Web		· · · · ·		•	••••••••••••••••••••••••••••••••••••••					
Analysis of V	T	r	·····	.	·····					
Source	DF	Sum of	Mean	F Val	Pr> F					
		Squa res	Squar e	ue						
Model	6	4.608 68	0.7681 1	8.48	0.000 2	Ł	mode signif		eb class	ses is
Error	18	1.631 32	0.0906							
Corrected Total	24	6.24								
×7* - 1 +		<u></u>			D					
Variable	Param	Stan	Type	F	Pr>					
	eter	dard	II SS	Val	F			ļ		
	Estim	Erro		ue						
T 4 4	ate 0.3723	r 0.534	0.0439	0.40	0.495					
Intercept		47	7	0.49						
math_scor e	0.0044	0.002	0.2456 8	2.71	0.117					
colmath_sc ore	- 0.0033 7	0.004 38	0.0537 9	0.59	0.451					
read_score	- 0.0074 7	0.004 62	0.2375 8	2.62	0.122 8					
write_scor e	- 0.0007 5562	0.004 37	0.0027 1	0.03	0.864 7					
FT	0.334	0.131 39	0.5856 9	6.46	0.020 4	K	These variables are significant:			
success_ot	0.7446	0.156	2.0539	22.6	0.000	<u> </u>	Full T	ime St	atus an	d
her web	6	42	4	6	2		succes			
								web ba	sed	
							(prop		of other s	1

			where student succeeded).			

MTSU Educational Data

Demogrpahics

gender	ftf	web	overall
male	22.44%	20.90%	21.75%
female	77.56%	79.10%	78.25%
ethnic			
status	ftf	web	overall
minority	19.31%	10.98%	15.57%
non-			
minority	66.77%	73.54%	69.82%
unknown	0.1392	0.1548	14.62%
Age	ftf	web	overall
min	15	15	15
max	62	60	62
average	26.8	30.0	28.2

DEV Grades FTF

Por all FTE classes									
DEV064_grade	Frequency	Percent	Cumulative	Cumulative					
			Frequency	Percent					
Р	13	25.49	13	25.49					
S	38	74.51	51	100					
success	51	<u> </u>							
non-success	. 0								

DEV065_grade	Frequency	Percent	Cumulative	Cumulative	
			Frequency	Percent	
Α	80	30.42	80	30.42	
В	109	41.44	189	71.86	
С	43	16.35	232	88.21	
F	2	0.76	234	88.97	
Ν	2	0.76	236	89.73	
Р	20	7.6	256	97.34	
W	7	2.66	263	100	
success	252	<u>, , , , , , , , , , , , , , , , , , , </u>			
non-success	11				

DEV075_grade	Frequency	Percent	Cumulative	Cumulative
			Frequency	Percent
N	1	0.7	1	0.7
Р	66	46.15	67	46.85
S	74	51.75	141	98.6
W	2	1.4	143	100
success	140			<u>,</u>
non-success	3			

DEV084_grade	Frequency	Percent	Cumulative	Cumulative
			Frequency	Percent
Ν	6	6.74	6	6.74
Р	17	19.1	23	25.84
S	64	71.91	87	97.75
w	2	2.25	89	100

success	81
non-success	8

DEV085_grade	Frequency	Percent	Cumulative	Cumulative
			Frequency	Percent
A	106	29.61	106	29.61
В	121	33.8	227	63.41
С	85	23.74	312	87.15
F	10	2.79	322	89.94
N	6	1.68	328	91.62
Р	25	6.98	353	98.6
W	5	1.4	358	100
success	337		<u></u>	
non-success	21			

DEV108_grade	Frequency	Percent	Cumulative	Cumulative
			Frequency	Percent
Α	112	22.76	112	22.76
В	155	31.5	267	54.27
С	131	26.63	398	80.89
F	18	3.66	416	84.55
N	19	3.86	435	88.41
Р	22	4.47	457	92.89
W	31	6.3	488	99.19
Z	4	0.81	492	100
success	420	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		····
non-success	72			

DEV110_grade	Frequency	Percent	Cumulative	Cumulative
			Frequency	Percent
Α	102	29.82	102	29.82
В	112	32.75	214	62.57
С	67	19.59	281	82.16
F	7	2.05	288	84.21
I	1	0.29	289	84.5
N	9	2.63	298	87.13
P	26	7.6	324	94.74
W	16	4.68	340	99.42

Ζ :	2	0.58	342	100
success	307			
non-success	35			

DEV130_grade	Frequency	Percent	Cumulative	Cumulative
			Frequency	Percent
С	1	50	1	50
w	1	50	2	100
success	1			
non-success	1			

* A B C P S = success other = non-success

.

DEV Grades WEB

for all online classes						
DEV064_grade	Frequency	Percent	Cumulative	Cumulative		
Frequency P						
Р	4	28.57	4	28.57		
S	9	64.29	13	92.86		
U	1	7.14	14	100		
success	13	-				
non-success	1		•			

DEV065_grade	Frequency	Percent	Cumulative	Cumulative
			Frequency	Percent
Α	28	34.57	28	34.57
В	32	39.51	60	74.07
С	11	13.58	71	87.65
F	3	3.7	74	91.36
N	1	1.23	75	92.59
Р	5	6.17	80	98.77
Z	1	1.23	81	100
success	76			
non-success	5			

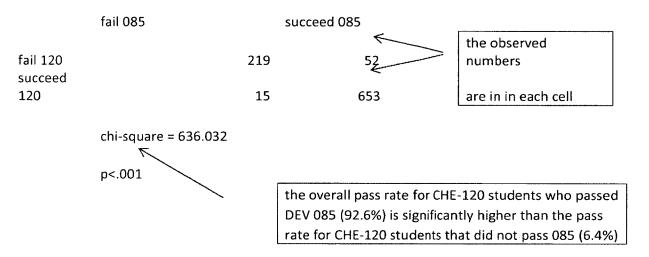
DEV075_grade	Frequency	Percent	Cumulative	Cumulative
			Frequency	Percent
F	2	5.26	2	5.26
N	2	5.26	4	10.53
Р	12	31.58	16	42.11
S	22	57.89	38	100
success	34			
non-success	4			

DEV084_grade	Frequency	Percent	Cumulative	Cumulative
			Frequency	Percent
Р	5	19.23	5	19.23
S	19	73.08	24	92.31
U	1	3.85	25	96.15
W	1	3.85	26	100
success	24			
non-success	2			

DEV085_grade	Frequency	Percent	Cumulative	Cumulative
			Frequency	Percent
Α	48	29.63	48	29.63
В	70	43.21	118	72.84
С	28	17.28	146	90.12

F	3	1.85	149	91.98
Ν	2	1.23	151	93.21
Р	6	3.7	157	96.91
w	3	1.85	160	98.77
Z	2	1.23	162	100
success	152		<u></u>	
non-success	10			

DEV108_grade	Frequency	Percent		
A	82	29.39	Frequency 82	Percent 29.39
В	90	32.26	172	61.65
С	57	20.43	229	82.08
F	9	3.23	238	85.3
I	1	0.36	239	85.66
N	14	5.02	253	90.68
Р	12	4.3	265	94.98
W	12	4.3	277	99.28
Z	2	0.72	279	100
success	241		<u> </u>	
non-success	38			

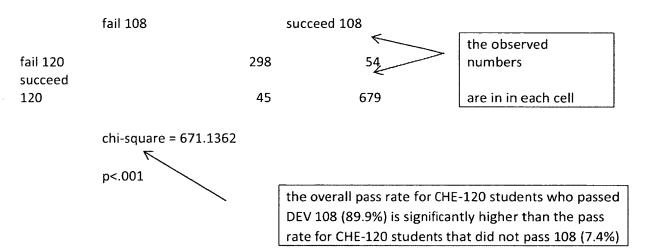

DEV110_grade	Frequency	Percent	Cumulative	Cumulative
			Frequency	Percent
Α	53	43.44	53	43.44
В	47	38.52	100	81.97
С	10	8.2	110	90.16
F	2	1.64	112	91.8
N	2	1.64	114	93.44
Р	5	4.1	119	97.54
W	3	2.46	122	100
success	115			
non-success	7			

Fisher's Exact Test		
Cell (1,1) Frequency (F)	223	
Left-sided Pr <= F	1.10E-11	

•

Right-sided Pr >= F	1
an a	••••••••••••••••••••••••••••••••••••••
Table Probability (P)	5.57E-12
Two-sided Pr <= P	1.94E-11

Chem 120 Success Rates:



и – у 11. ал и и при ст. 30. на цила у полосупи, половит дину учини, не нали с цели с реконсиниет це	an a	DEV085_s	uccess	Provinsion Proteining and an
		0	1	Total
success				
0	Frequency	219	52	271
	Percent	23.32	5.54	28.86
	Row Pct	80.81	19.19	
	Col Pct	93.59	7.38	
1	Frequency] 15	653	668
	Percent] 1.6	69.54	71.14
	Row Pct	2.25	97.75	
	Col Pct	6.41	92.62	
Total	Frequency	234	705	939

Percent	24.92	75.08	100
Frequency Mis	= 744		

Statistic	DF	Value	Prob
Chi-Square	1	636.032	<.0001
Likelihood Ratio Chi- Square	1	645.8609	<.0001
Continuity Adj. Chi- Square	1	631.8398	<.0001
Mantel-Haenszel Chi- Square	1	635.3546	<.0001
Phi Coefficient	,	0.823	aurian genu nggaaaddarud in raar va na
Contingency Coefficient	желектикаларын каларын каларын тараларын калары жана жана жана жана жана жана жана жан	0.6355	lan nya ara-dari
Cramer's V		0.823	

Fisher's Exact Test			
Cell (1,1) Frequency (F)	219		
' Left-sided Pr <= F	1		
Right-sided Pr >= F	1.21E-141		
Table Probability (P)	2.02E-139		
Two-sided Pr <= P	1.21E-141		

Та	able of success by D	DEV108_succes	S	
		DEV108_s	uccess	
		0	1	Total
success				
0	Frequency	298	54	352
	Percent	27.7	5.02	32.71
	Row Pct	84.66	15.34	
	Col Pct	86.88	7.37	
1	Frequency	45	679	724
	Percent	4.18	63.1	67.29
	Row Pct	6.22	93.78	
	Col Pct	13.12	92.63	
Total	Frequency		733	1076
	Percent	31.88	68.12	100
	Frequency Miss	sing = 607		

Statistic	DF	Value	Prob
Chi-Square	1	671.1362	<.0001
Likelihood Ratio Chi- Square	1	708.1325	<.0001
Continuity Adj. Chi- Square	1	667.5288	<.0001

Mantel-Haenszel Chi- Square	1 670.5125	<.0001
Phi Coefficient	0.7898	م ع انة الأخلى المراجع الم
Contingency Coefficient	0.6198	,
Cramer's V	0.7898	dan dan saka sa mana sa

Fisher's Exact Test		
Cell (1,1) Frequency (F)	298	
Left-sided Pr <= F	1	
Right-sided Pr >= F	2.38E-155	
Table Probability (P)	1.88E-153	
Two-sided Pr <= P	2.38E-155	

ANOVA

FTF				ſ				
Classe								
s:								
	parameter	estimat e	SE	T	p-value			
	intercept	0.1082 64	0.0128 51	8.42	<.0001			
	success_other_web	0.8803 34	0.0163 57	53.8 2	<.0001			
							signifi result	cant
							V	
Web								
Classe								
s:								
	parameter	estimat	SE	T	p-value	F		
ļ		e						
	intercept	0.0419	0.0256	1.63	0.1033			
··		03	89	L				
	success_other_web	0.7701	0.0332	23.1	<.0001	L	L	

	95	05	9			I	
So there is a s success rate in	ignificant effec n CHE-120	t of other	web cou	Irse success	on the		

Correlations

read_ score	write_ score	Cumulati ve_GPA	FT	success_ot her_web	DEV085 _success	DEV108 _success	gra de8 5	grad e108
0.091 49	0.0656 2	0.48766	0.17 782	0.7436	0.81274	0.78156	0.26 941	0.270 92
0.001 4	0.0219	<.0001	<.00 01	<.0001	<.0001	<.0001	<.00 01	<.00 01
1216	1219	1601	160 1	1601	889	1018	436	611
							·	
read_ score	write_ score	Cumulati ve_GPA	FT	success_ot her_web	DEV085 _success	DEV108 _success	gra de8 5	grad e108
0.135 26	0.1012 7	0.52676	0.23 361	0.86333	0.81077	0.79144	0.31 275	0.303 86
0.000 2	0.0058	<.0001	<.00 01	<.0001	<.0001	<.0001	<.00 01	<.00 01
740	740	889	889	889	538	609	300	393
read_ score	write_ score	Cumulati ve_GPA	FT	success_ot her_web	DEV085 _success	DEV108 _success	gra de8 5	grad e108

1		931				832	37
0.1413	<.0001	0.06	<.0001	<.0001	<.0001	0.00	<.00
		45	·			75	01
479	712	712	712	351	409	136	218
			0.1413 <.0001 0.06 45	0.1413 <.0001 0.06 <.0001 45	0.1413 <.0001 0.06 <.0001 <.0001 45 <	0.1413 <.0001 0.06 <.0001 <.0001 <.0001 <.0001	0.1413 <.0001 0.06 <.0001 <.0001 <.0001 0.00 45 75

Stepwise Regression

FTF									
Analysis of V	Variance								
Source	DF	DF Sum of	Mean	F Val	Pr > F				
		Squa res	Squar e	ue					
Model	6	2.841 79	0.4736 3	16.4 5	<.000	4	mode signif	F class	ses is
Error	18	0.518 21	0.0287 9						
Corrected Total	24	3.36							
Variable	Param eter	Stan dard	Type II SS	F Val	Pr > F				
	Estim ate	Erro r		ue					
Intercept	0.9714 2	0.292 21	0.3181 7	11.0 5	0.003 8				
math_scor e	- 0.0066 4	0.001 45	0.6004 8	20.8 6	0.000 2				
colmath_sc ore	- 0.0030	0.001 61	0.1003 4	3.49	0.078 3				

	1	I		Ţ	1	1	T			
read_score	-0.009	0.002	0.3377	11.7 3	0.003		These	variab	les are	L
write_scor	0.0065	0.002	0.1994	6.93		\leq		readin	g and	
e	2	48	1	0.75	0.016			g score		
C	-				9			5 50010		
Cumulativ	0.1704	0.037	0.5853	20.3	0.000	<u> </u>	cumu	lative (GPA an	d Full
e GPA	6	8	8	3	3			status		
FT	0.3315	0.075	0.5617	19.5	0.000					
	8	06	8	1	3					
Web					1					<u>.</u>
Analysis of V	Variance								<u> </u>	
Source	DF	Sum of	Mean	F Val	Pr > F					
		Squa	Squar	ue	L,		1		<u> </u>	<u> </u>
		res	e	ut						
Model	6	4.608	0.7681	8.48			mode	l for we	eb class	es is
1, 10, 00, 00, 00, 00, 00, 00, 00, 00, 0	ľ	68	1		0.000	4	signif			
·					2					
					_					
Error	18	1.631	0.0906							
Connected	24	32 6.24	3							
Corrected Total	24	0.24				ļ				
10(4)							+		<u> </u>	
Variable	Param	Stan	Туре	F	Pr >					
v arrabic	eter	dard	II SS	Val	F					
	Estim	Erro	1.00	ue						
	ate	r								
Intercept	0.3723	0.534	0.0439	0.49	0.495					
×		47	7							
math_scor	0.0044	0.002	0.2456	2.71	0.117					
e	5	7	8	.						
colmath_sc	-	0.004	0.0537	0.59	0.451					
ore	0.0033	38	9							
	7					ļ			ļ	
read_score	-	0.004	0.2375	2.62	0.122					
	0.0074	62	8		8					
	7	0.004	0.0007	0.02	0.064	<u> </u>				
write_scor	-	0.004	0.0027	0.03	0.864					

e	0.0007 5562	37	1		7					
FT	0.334	0.131 39	0.5856 9	6.46	0.020 4	K	These signif	variab icant:	les are	
success_ot her web	0.7446 6	0.156 42	2.0539 4	22.6 6	0.000 2		Full Time Status and success in			d
							other classe	web ba s	sed	
							(proportion of other online classes			
							where succe	studen eded).	ıt	

.

Major Breakdown for Part II Study

At a Glance

	FTF	Web
Business and Public Services	8	1 101
Liberal Arts & Sciences	12	8 123
Life & Health	520	6 306
STEM	40	0 29
Personal Interest & Undeclared	113	3 153
Total	888	8 712

FTF Web

Business and Public Services

-

	Accounting (ACC)	7	7
	Business Information Systems (BIS)	35	30
	Computer Information Systems (CIS)	8	16
	Criminal Justice Science (CJS)	9	9
	Emergency Medical Services (EMS)	6	12
	Fire Science Technology (FST)	2	4
	Hospitality Management & Tourism (HMT)	3	6
	Management, Business (MAN)	5	7
	Paralegal (PAR)	0	1
	Real Estate (RES)	· 2	2
	Unknown BPS	4	7
Total		81	101
Libera	l Arts & Sciences		
	Africana Studies (AFR)	0	0
	American Sign Language (ASL)	0	1
	Art (ART)	3	4
	Communication (COM)	6	1
	Early Childhood Education (ECE)	10	· 12
	English (ENG)	0	1
	Geography (GEO)	0	0
	History (HIS)	0	2
	Interior Design (IND)	0	1
	Humanities (HUM)	1	2
	Liberal Arts (LSC)	94	88
	Music (MUS)	0	0
	Political Science (PLS)	2	2
	Psychology (PSY)	6	4
	Social Work (SWK)	0	2
	Theatre (THE)	0	0
	Visual Communications (VIS)	6	3
Total		128	123
Life &	Health		
	Allied Health (ALH)	68	49
	Dental Health Sciences (DEH)	53	22
	Dietetics Tech (DIT)	8	6
	Exercise, Nutrition and Sport Sciences (ENS)	4	2
	Health Information Management (HIM)	4	6
	Medical Asst Tech (MAS)	7	5
		,	5

	Mental Health Tech (MHT)	9	6
	Nursing (NSG)	256	155
	Occupational Therapy Assistant (OTA)	6	5
	Physical Therapist Assistant (PTA)	43	8
	Radiologic Technology (RAT)	27	15
	Respiratory Care (RET)	30	13
	Surgical Technology (SUT)	7	9
	Unknown L&H	4	4
Total		526	306
STEM			
	Automotive Tech (AUT)	5	6
	Aviation Technology (AVT)	0	2
	Biology (BIO)	14	4
	Computer Aided Manufacturing (CAM)	0	0
	Civil Architectural Technology (CAT)	7	5
	Chemistry (CHE)	0	0
	Electronics Engineering Tech (EET)	2	4
	Automation and Control Technology (EGR)	0	0
	Engineering Technology Design (ETD)	3	2
	Environmental Tech (EVT)	3	3
	Heating Ventilation and Air Conditioning (HVA)	0	0
	Mathematics (MAT)	0	0
	Mechanical Engineering Tech (MET)	0	0
	Operations Technology (OPT)	2	. 2
	Science, Mathematics and Engineering Division		
	(SME)	3	0
	Unknown STEM	1	1
Total		40	29
Person	al Interest & Undeclared		
		113	153

Total

General Name	Program ID	Program Name	FT F	We b
Accounting (ACC)			7	7
(.100)	ACC.92.AAS	ACCOUNTING-AAS		
	ACC.94.AAS	ACCOUNTING-AAS	-	
	ACC.97.AAS	ACCOUNTING-AAS		
	ACC.AAS	ACCOUNTING-AAS	1	
	ACC.AS	ACCOUNTING AS - OBSOLETE - DO NOT USE		
	ACC.S.AAS	ACCOUNTING-AAS	-	
	TAXP.S.STC	TAX PRACTITIONER - SHORT TERM CERTIFICATE		-
	TAXP.STC	TAX PRACTITIONER - SHORT TERM CERTIFICATE		
	Subtotal		7	7
Business Information Systems (BIS)			1	1
	AS	BUSINESS ADMINISTRATION/UNIV PARALLEL-AS		
	BIAO.AAS	BUSINESS INFORMATION SYS/ACCOUNTING OFFICE OPTION-AAS	1	
	BICPA.AAS	BUSINESS INFORMATION SYSTEMS/PERSONAL COMPUTER APP AAS		
	BILO.AAS	BUSINESS INFORMATION SYS/LEGAL OFFICE OPTION- AAS		
	BIMO.AAS	BUSINESS INFORMATION SYS/MEDICAL OFFICE OPTION-AAS	1	3
	BIMO.S.AAS	BUSINESS INFORMATION SYS/MEDICAL OFFICE OPTION-AAS		
	BIPCA.AAS	BUSINESS INFO SYS/PERSONAL COMPUTER APPLICATIONS-AAS		

.

	BIPCA.S.AAS	BUSINESS INFO	[T
	DII 011.0.1110	SYS/PERSONAL COMPUTER		
		APPLICATIONS-AAS	1	
	BIS.AAS	BUSINESS INFORMATION		
		SYSTEMS-AAS		
	BIS.S.AAS	BUSINESS INFORMATION		
		SYSTEMS-AAS		
	BM.CRT	BUSINESS MANAGEMENT	<u> </u>	
		CERTIFICATE		
	BM.S.CRT	BUSINESS MANAGEMENT		
		CERTIFICATE		
	BOSS.S.STC	BUSINESS OPERATIONS		
		SYSTEM SUPPORT I-STC		
	BOSS.STC	BUSINESS OPERATIONS		
		SYSTEM SUPPORT I-STC		
	BOSS2.STC	BUSINESS OPERATIONS		
		SYSTEM SUPPORT II - STC		
	BPS.ND	BUSINESS & PUBLIC	1	1
		SERVICES - NO DEGREE		
		AWARDED		
	BU.ND	BUSINESS-NO DEGREE	10	3
		AWARDED		
	BUIP.CRT	BUSINESS INFO		
		SYS/INFORMATION		
		PROCESSING CERTIFICATE		
	BUIP.S.CRT	BUSINESS INFO		
		SYS/INFORMATION		
		PROCESSING CERTIFICATE		
	BUMS.CRT	BUSINESS INFO SYS/MEDICAL		1
		OFFICE SPECIALIST		
		CERTIFICATE		
	BUMS.S.CRT	BUSINESS INFO SYS/MEDICAL		
		OFFICE SPECIALIST		
		CERTIFICATE		
4	BUS.AAS	BUSINESS ADMINISTRATION -	20	19
		AAS - OBSOLETE - DO NOT		
		USE		
	BUS.ABA	BUSINESS ADMINISTRATION -		
		ABA -OBSOLETE - DO NOT		
		USE		
	BUS.AS	BUSINESS ADMINISTRATION -		
		AS		
	BUS.BBA	BUSINESS ADMINISTRATION -		
		BBA - OBSOLETE -DO NOT		

		USE
	BUS.BUD.02.AS	BUSINESS ADMINISTRATION -
	D05.D0D.02.A5	UD - AS
	BUS.BUD.AS	BUSINESS
	DUS.DUD.AS	ADMINISTRATION/UNIVERSIT
		Y OF DAYTON-AS
	BUS.BWCSE.02.A	BUSINESS ADMINISTRATION -
	S S S S S S S S S S S S S S S S S S S	CSE - WSU - AS
	BUS.BWCSE.AS	BUSINESS
	DOD.D WODLIND	ADMINISTRATION/WRIGHT
		STATE UNIV/CSE-AS
	BUS.BWSU.02.AS	BUSINESS ADMINISTRATION -
	000.000002.000	WSU - AS
	BUS.BWSU.03.AS	BUSINESS ADMINISTRATION -
	200121100100110	WSU -AS
	BUS.BWSU.AS	BUSINESS
		ADMINISTRATION/WRIGHT
		STATE UNIVERSITY-AS
	BUS.CSU.92.AS	BUSINESS ADMINISTRATION -
		CSU - AS
	BUS.CSU.AAS	BUSINESS ADMINISTRATION -
		CSU - AS
	BUS.CSU.AS	BUSINESS
		ADMINISTRATION/CENTRAL
		STATE UNIVERSITY-AS
	BUS.MSU.AS	BUSINESS
		ADMINISTRATION/MOREHEA
		D STATE UNIV - AS
	BUS.S.AS	BUSINESS ADMINISTRATION-
		AS
	BUS.UC.AS	BUSINESS
		ADMINISTRATION/UNIVERSIT
		Y OF CINCINNATI-AS
	BUS.UC.IS.AS	BUS ADM/UC/INFORMATION
		SYSTEMS/PRE-BUSINESS-AS
	BUS.UD.02.MIS.A	BUSINESS ADMINISTRATION -
	S	UD - AS
	BUS.UD.AS	BUSINESS
		ADMINISTRATION/UNIVERSIT
		Y OF DAYTON-AS
	BUS.UD.MIS.AS	BUSINESS ADMINISTRATION -
		MIS - UD - AS
	BUS.UU.AS	BUSINESS
L		ADMINISTRATION/URBANA

		UNIVERSITY-AS	1	
	BUS.UU.CIS.AS	BUS ADM/URBANA		
		UNIV/COMPUTER		
		INFORMATION SYSTEMS-AS		
	BUS.WCSE.AS	BUSINESS ADMINISTRATION -	1	
		CS - WSU - AS		
	BUS.WCSE.CRT	BUSINESS ADMINISTRATION	1	
		- CSE - WSU - AS		
	BUS.WIL.AS	BUSINESS	1	
		ADMINISTRATION/WILBERFO		
		RCE UNIVERSITY-AS		
	BUS.WSU.AS	BUSINESS ADMINISTRATION -	1	
		WSU - AS		
	BUS.WSU.CSE.AS	BUSINESS ADMINISTRATION -]	
		CSE - WSU - AS		
	BUS.WSU.IBE	BUS ADMIN - INTEGRATED]	
		BUSINESS EDU - WSU - AS		
	BUS.WSU.IBE.AS	BUS ADM - INTEGRATED		
		BUSINESS EDUCATION - WSU		
		- AS		
	BUS.WSU.MIS.02.	BUSINESS ADMINISTRATIOIN		
	AS	- MIS - WSU - AS		
	BUS.WSU.MIS.AS	BUSINESS ADMINISTRATIOIN		
		- MIS - WSU - AS		
	BUS.XAV.AS	BUSINESS		
		ADMINISTRATION/XAVIER		
		UNIVERSITY - AS		
	IP.CRT	INFORMATION PROCESSING -		
		CRT		
	IPO.AAS	OIS/INFORMATION		
		PROCESSING OPTION-AAS		
	PCB.92.CRT		1	2
		BUSINESS CERTIFICATE		
	PCB.CRT	PERSONAL COMPUTERS IN		
		BUSINESS CERTIFICATE		
	PCB.S.CRT	PERSONAL COMPUTERS IN		
	NUD OD T	BUSINESS CERTIFICATE		
	WP.CRT	WORD PROCESSING - CRT		
	WPO.AAS	OFFICE INFORMATIONS SYS -		
		INFORMATION PROCESSING		
	<u> </u>	OP- AAS		
	SA.S.STC	SOFTWARE APPLICATION FOR		
		PROFESSIONAL		
L		CERTIFICATION-STC		

.

	SA.STC	SOFTWARE APPLICATION FOR	1	1
	SA.SIC	PROFESSIONAL		
		CERTIFICATION-STC		
	SAC.ND	SOFTWARE APPLICATIONS		+
	BAC.IND	FOR PROFESSIONALS -ND		
	SAP.CRT	SOFTWARE APPLICATIONS		-
		FOR PROFESSIONALS - CRT		
	Subtotal		35	30
			1	
Computer Information Systems (CIS)			3	10
· · · · · · · · · · · · · · · · · · ·	CIS.AAS	COMPUTER INFORMATION		
		SYSTEMS-AAS		
	CSS.AAS	A.A.S COMPUTER		_
		INFORMATION		
		SYSTEMS/COMPUTER		
		SUPPORT SERV		
	CSSO.AAS	COMPUTER INFO SYS -		
		COMPUTER SUPPORT SERV		
		OP - AAS	ļ	
	CYIT.AAS	CYBER INVESTIGATION		
		TECHNOLOGY - AAS		
	CYIT.S.AAS	CYBER INVESTIGATION		
		TECHNOLOGY - AAS		_
	CYSE.ATS	CYBER SECURITY &		
		COMPUTER FORENSICS - ATS		
	CYSEC.CRT	CYBER INVESTIGATION		
		CERTIFICATE		
	CYSEC.S.CRT	CYBER INVESTIGATION		
		CERTIFICATE		
	DA.S.CRT	DATA ANALYTICS		
- 1. ···	DA.S.STC	DATA ANALYTICS		
	DA.STC	DATA ANALYTICS		ļ
	ISSC.S.STC	INFORMATION SYSTEMS		
		SECURITY CERTIFICATE - STC	L	
	ISSC.STC	INFORMATION SYSTEMS		
·····		SECURITY CERTIFICATE - STC		ļ
	LSNE.S.STC	LINUX SECURITY &		
		NETWORK ESSENTIALS - STC		
	LSNE.STC	LINUX SECURITY &		
		NETWORK ESSENTIALS - STC		
	MCCS.S.AAS	MICROSOFT SECURITY		
		SPECIALIST - AAS		<u> </u>

	MSSC.AAS	MICROSOFT SECURITY		
		SPECIALIST - AAS		
	MSSC.S.AAS	MICROSOFT SECURITY		
		SPECIALIST - AAS		
~~~~ <u>~</u>	NEA.S.STC	NETWORK ENGINEERING	2	
		ASSOCIATE-STC		
	NEA.STC	NETWORK ENGINEERING	1	
		ASSOCIATE-STC		
	NEEN.AAS	COMPUTER INFORMATION	1	
		SYSTEM/NETWORK		
		ENGINEER-AAS		
	NEEN.S.AAS	COMPUTER INFORMATION		
		SYSTEM/NETWORK		
		ENGINEER-AAS		
	NEMA.AAS	COMPUTER INFORMATION		2
		SYSTEM/NETWORK		
		MANAGER-AAS		
	NEMA.S.AAS	COMPUTER INFORMATION		_
		SYSTEM/NETWORK		
		MANAGER-AAS		
	OST	OFFICE SYSTEMS		
		TECHNOLOGY - AAS		
	USSU.AAS	COMPUTER INFORMATION		1
		SYSTEMS/USER SUPPORT -		
		AAS		
	USSU.S.AAS	COMPUTER INFORMATION		
		SYSTEMS/USER SUPPORT -		
		AAS		
	WA.STC	WEB AUTHORING		
		CERTIFICATE		
	WEDE.AAS	CIS/WEB DEVELOPMENT-AAS	1	
	WEDE.S.AAS	CIS/WEB DEVELOPMENT-AAS		
	SNP.STC	SECURITY FOR THE		
		NETWORKING PROFESSIONAL		
		- STC		
	SODE.AAS	COMPUTER INFORMATION	2	3
		SYSTEMS/SOFTWARE		
		DEVELOPMENT-AAS		
	SODE.S.AAS	COMPUTER INFORMATION		
		SYSTEMS/SOFTWARE		
		DEVELOPMENT-AAS		
	SOHO.STC	SMALL OFFICE HOME OFFICE		
		COMP USE AND SECURITY-		
		STC		

[	WW.STC	WEB PROGRAMMING	·	1
	W W.51C	CERTIFICATE - STC		
	WW1.S.STC	WEB PROGRAMMING		
	W W1.5.51C	CERTIFICATE		
	WW1.STC	WEB PROGRAMMING		
	W W 1.51C	CERTIFICATE		
	WW2.STC	WEB PROGRAMMING	+	
	W W 2.51C	CERTIFICATE-JAVA TRACK		
	Subtotal	CERTIFICATE-JAVATRACK	8	16
	Subiolal		0	10
Criminal				
Justice Science				
(CJS)				
· · · · · · · · · · · · · · · · · · ·	CCBO.AAS	CORRECTIONS: COMMUNITY	1	1
		BASED OPTION		
	CJCM.S.STC	CRIME MAPPING - STC	-	
	CJCM.STC	CRIME MAPPING - STC		
a na an	CJCO.AAS	CRIMINAL JUSTICE SCIENCE:	2	
		CORRECTIONS OPTION - AAS		
	CJCO.S.AAS	CRIMINAL JUSTICE SCIENCE:	1	
		<b>CORRECTIONS OPTION - AAS</b>		
	CJHS.S.STC	CRIMINAL JUSTICE SCIENCE:		-
		HOMELAND SECURITY - STC		
	CJHS.STC	CRIMINAL JUSTICE SCIENCE:		
		HOMELAND SECURITY - STC		
	CJLE.AAS	CRIMINAL JUSTICE SCIENCE:	1	3
		LAW ENFORCEMENT OPTION		
		- AAS		
	CJLE.S.AAS	CRIMINAL JUSTICE SCIENCE:	1	
		LAW ENFORCEMENT OPTION		
		- AAS		
	CJLES.S.STC	CRIMINAL JUSTICE SCIENCE:		
		LAW ENFORCEMENT - STC		
	CJLES.STC	CRIMINAL JUSTICE SCIENCE:		
		LAW ENFORCEMENT - STC	<b> </b>	
······································	COR.AAS	CORRECTIONS - AAS	<b>_</b>	
	COR.S.STC	CORRECTIONS - SHORT TERM		
		CERTIFICATE		
	COR.STC	CORRECTIONS - SHORT TERM		
		CERTIFICATE		
	CORI.AAS	CORRECTIONS:		
		INSTITUTIONAL OPTION	ļ	
	IRSO.AAS	LAW ENFORCEMENT:		
		INDUSTRIAL/RETAIL	<u> </u>	

		SECURITY OPTION		
	LEP.AAS	LAW ENFORCEMENT - AAS		3
	POLO.AAS	LAW ENFORCEMENT: POLICE	5	2
		SCIENCE OPTION		
	POLO.ACADEMY.	LAW ENFORCEMENT/POLICE	1	
	AAS	SCIENCE OPTION - AAS		
	Subtotal		9	9
Emergency Medical Services				
(EMS)				<b>_</b>
	EBST.S.STC	EMT-BASIC CERTIFICATION	2	1
	EBST.STC	EMT-BASIC CERTIFICATION		
	EMR.S.STC	EMERGENCY MEDICAL RESPONDER - STC		
	EMS	EMERGENCY MEDICAL SERVICES 1 + 1 - AAS		
	EMSFO.AAS	EMERGENCY MEDICAL SERVICES FIRE SCIENCE OPTION - AAS		
	EMSFO.S.AAS	EMERGENCY MEDICAL SERVICES FIRE SCIENCE OPTION - AAS		
	EMST.STC	EMERGENCY MEDICAL SERVICES/PARAMEDIC CERTIFICATION-STC		1
	EMSVS.AAS	EMERGENCY MEDICAL SERVICES		1
MIRANINAR (I.,	EMSVS.S.AAS	EMERGENCY MEDICAL SERVICES		
	EPST.CRT	EMT-PARAMEDIC CERTIFICATION	1	5
	EPST.S.CRT	EMT-PARAMEDIC CERTIFICATION		
	EPST.STC	EMT-PARAMEDIC CERTIFICATION		
	P-EMS.ND	PRE-EMERGENCY MEDICAL SERVICES-NO DEGREE AWARDED	3	4
	RT.STC	RESCUE TECHNICIAN CERTIFICATION-STC		
	Subtotal		6	12

<u>v.</u>				+
Fire Science Technology (FST)			1	1
	FAO.AAS	FST/FIRE ADMINISTRATION OPTION-AAS	1	2
	FAO.CRT	CERTIFICATE (CRT) - FIRE ADMINISTRATION OPTION CERTIFICATE	-	
	FAO.S.AAS	FST/FIRE ADMINISTRATION OPTION-AAS		
	FCO.S.STC	FIRE DEPARTMENT COMPANY OFFICER - STC		
	FCO.STC	FIRE DEPARTMENT COMPANY OFFICER - STC		-
	FEO.S.STC	FIRE DEPARTMENT EXECUTIVE OFFICER - STC		
	FEO.STC	FIRE DEPARTMENT EXECUTIVE OFFICER - STC		
	FST.AAS	FIRE SCIENCE TECHNOLOGY- AAS		
	FST.CRT	FIRE SCIENCE TECHNOLOGY CERTIFICATE		
	FST.S.AAS	FIRE SCIENCE TECHNOLOGY- AAS		_
	FT.STC	FIREFIGHTER TECHNICIAN CERTIFICATION-STC		
	PFC.S.STC	PROFESSIONAL FIREFIGHTER CERTIFICATION - STC		1
	PFC.STC	PROFESSIONAL FIREFIGHTER CERTIFICATION - STC		
	Subtotal		2	4
Hospitality Ma (HMT)	nagement & Tourism		1	1
	BAN.CRT	BANKING CERTIFICATE - CRT		
	BPSE.S.STC	BAKING SPECIALIST- STC		
	BPSE.STC	BAKING SPECIALIST- STC		
	CAO.93.AAS	HOSPITALITY MANAGEMENT TECH/CULINARY ARTS OPTION-AAS		1
	CAO.AAS	HOSPITALITY MANAGEMENT- CULINARY ARTS OPT AAS		
·	CAO.S.AAS	HOSPITALITY MANAGEMENT-		

.

HMT.AAS       HOSPITALITY MANAGEMENT- AAS         HMT.CRT       HOSPITALITY MANAGEMENT - CRT         HMT.AAS       HOSPITALITY MANGEMENT & TOURISM - AAS         HMTT.S.AAS       HOSPITALITY MANGEMENT & TOURISM - AAS         HMTT.S.AAS       HOSPITALITY MANGEMENT & TOURISM - AAS         HMTTL.S.AAS       HOSP MGMT & TOURISM/HOTEL LODGING CONCENTRATION - AAS         HMTTL.S.AAS       HOSP MGMT & TOURISM/HOTEL LODGING CONCENTRATION - AAS         HMTTM.S.AAS       HOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AAS         HMTTM.S.AAS       HOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AAS         HMTTT.AAS       HOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AAS         HMTTT.AAS       HOSP MGMT & TOURISM/TOURISM CONCENTRATION - AAS         HMTTT.S.AAS       HOSP MGMT & TOURISM/TOURISM CONCENTRATION - AAS         HMTTT.S.AAS       HOSP MGMT & TOURISM/TOURISM CONCENTRATION - AAS         HMTTT.S.AAS       HOSP MGMT & TOURISM/TOURISM CONCENTRATION - AAS         HOS.AAS       HOSP MGMT & TOURISM/TOURISM CONCENTRATION - AAS         HOS.AAS       HOSP MGMT & TOURISM/TOURISM CONCENTRATION - AAS         HOS.AAS       RAVEL & TOURISMAS         CONCENTRA - AAS       I         HOSP MGMT & TOURISM/TOURISM CONCENTRATION - AAS       I         GOURISMANTOURISM CONCENTRATION - CONCENTRATION - CONCENTRATION - CONCENTRATION - CONCENTR			CULINARY ARTS OPT AAS		
AAS     HMT.CRT     HOSPITALITY MANAGEMENT       - CRT     - CRT       HMTT.AAS     HOSPITALITY MANAGEMENT & TOURISM - AAS       HMTT.S.AAS     HOSPITALITY MANGEMENT & TOURISM - AAS       HMTTL.AAS     HOSP MGMT & TOURISM - AAS       HMTTL.S.AAS     HOSP MGMT & TOURISM/HOTEL LODGING CONCENTRATION - AAS       HMTTL.S.AAS     HOSP MGMT & TOURISM/HOTEL LODGING CONCENTRATION - AAS       HMTTM.AAS     HOSP MGMT & TOURISM/       HMTTM.S.AAS     HOSP MGMT & TOURISM/       HMTTM.S.AAS     HOSP MGMT & TOURISM/       HMTTM.S.AAS     HOSP MGMT & TOURISM/       MEET AND EVENT PLAN     CONCENTRA- AAS       HMTTT.S.AAS     HOSP MGMT & TOURISM/       MEET AND EVENT PLAN     CONCENTRA- AAS       HMTTT.S.AAS     HOSP MGMT & TOURISM/       MEET AND EVENT PLAN     CONCENTRA- AAS       HMTTT.S.AAS     HOSP MGMT & TOURISM/       CONCENTRATION - AAS     CONCENTRATION - AAS       HMTTT.S.AAS     HOSP MGMT & TOURISM/       CONCENTRATION - AAS     CONCENTRATION - AAS       HMTTT.S.AAS     HOSP MGMT & TOURISM       CONCENTRATION - AAS     IMANAGEMENT.AAS       HMTT.S.AAS     HOSP MGMT & TOURISM-       CONCENTRATION - AAS     IMANAGEMENT.AAS       TOT.AAS     TRAVEL & TOURISM-AAS       INT.AAS     HOSP MGMT & SO       CSE		HMT.AAS			
HMT.CRT     HOSPITALITY MANAGEMENT       - CRT     HOSPITALITY MANGEMENT & TOURISM - AAS       HMTT.AAS     HOSPITALITY MANGEMENT & TOURISM - AAS       HMTT.S.AAS     HOSPITALITY MANGEMENT & TOURISM - AAS       HMTTL.AAS     HOSP MGMT & TOURISM/HOTEL LODGING CONCENTRATION - AAS       HMTTL.S.AAS     HOSP MGMT & TOURISM/HOTEL LODGING CONCENTRATION - AAS       HMTTM.AAS     HOSP MGMT & TOURISM/HOTEL LODGING CONCENTRATION - AAS       HMTTM.S.AAS     HOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AAS       HMTTM.S.AAS     HOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AAS       HMTTT.S.AAS     HOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AAS       HMTTT.S.AAS     HOSP MGMT & TOURISM/TOURISM CONCENTRA- AAS       HMTTT.S.AAS     HOSP MGMT & TOURISM/TOURISM CONCENTRATION - AAS       HMTTT.S.AAS     TRAVEL & TOURISM- CONCENTRATION - AAS       HMTT.AAS     TRAVEL & TOURISM- CONCENTRATION - COMPUTER SCIENCE EMPHASIS - AS       CSO.AAS     BUSINESS ADMINISTRATION - COMPUTER SCIENCE EMPHASIS - AS       CSO.AAS     BUSINESS ADMINISTRATION/COMPUTER SCIENCE OPTION-AS       ENT.CRT     ENTREPRENEURSHIP - CRT					
- CRT       -         HMTT.AAS       HOSPITALITY MANGEMENT & TOURISM - AAS         HMTT.S.AAS       HOSPITALITY MANGEMENT & TOURISM - AAS         HMTTL.AAS       HOSP MGMT & TOURISM - AAS         HMTTL.AAS       HOSP MGMT & TOURISM/HOTEL LODGING CONCENTRATION - AAS         HMTTL.S.AAS       HOSP MGMT & TOURISM/HOTEL LODGING CONCENTRATION - AAS         HMTTL.S.AAS       HOSP MGMT & TOURISM/         HMTTM.S.AAS       HOSP MGMT & TOURSIM/         MEET AND EVENT PLAN CONCENTRATION - AAS       -         CONCENTRA - AAS       -         HMTTT.AAS       HOSP MGMT & TOURSIM/         MEET AND EVENT PLAN CONCENTRA - AAS       -         CONCENTRA - AAS       -         HMTTT.AAS       HOSP MGMT & TOURSIM/         MEET AND EVENT PLAN CONCENTRA - AAS       -         CONCENTRA - AAS       -         HMTTT.AAS       HOSP MGMT & TOURISM CONCENTRATION - AAS         CONCENTRATION - AAS       -         HMTTT.S.AAS       HOSP MGMT & -         HMTTT.S.AAS       HOSP MGMT & -         HMTTT.S.AAS       HOSP MGMT & -         HMTT.S.AAS       HOSP MGMT & -         HMTT.S.AAS       HOSP MGMT & -         HMTT.S.AAS       HOSP MGMT & -         MANAGEMENT.AAS       - <td></td> <td>HMT.CRT</td> <td></td> <td>1</td> <td></td>		HMT.CRT		1	
TOURISM - AASHMTT.S.AASHOSPITALITY MANGEMENT & TOURISM - AASHMTTL.AASHOSP MGMT & TOURISM/HOTEL LODGING CONCENTRATION - AASHMTTL.S.AASHOSP MGMT & TOURISM/HOTEL LODGING CONCENTRATION - AASHMTTL.S.AASHOSP MGMT & TOURISM/ MEET AND EVENT PLAN CONCENTRA- AASHMTTM.S.AASHOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AASHMTTM.S.AASHOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AASHMTTT.AASHOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AASHMTTT.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHMTTT.S.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHMTTT.S.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHMTTT.S.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHMTTT.S.AASHOSP MGMT AS TOURISM/TOURISM CONCENTRATION - AASHOS.AASHOSP MGMT AS TOURISM/TOURISM CONCENTRATION - AASHOS.AASTRAVEL & TOURISM-AASManagement, Business (MAN)SEE AS CSO.AASCSO.AASBUSINESS ADMINISTRATION - COMPUTER SCIENCE EMPHASIS - ASCSO.AASBUSINESS ADMINISTRATION/COMPUTER SCIENCE OPTION-ASENT.CRTENTREPRENEURSHIP - CRTENT.S.CRTENTREPRENEURSHIP - CRT					
HMTT.S.AAS       HOSPITALITY MANGEMENT & TOURISM - AAS         HMTTL.AAS       HOSP MGMT & TOURISM/HOTEL LODGING CONCENTRATION - AAS         HMTTL.S.AAS       HOSP MGMT & TOURISM/HOTEL LODGING CONCENTRATION - AAS         HMTTM.AAS       HOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AAS         HMTTM.S.AAS       HOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AAS         HMTTT.S.AAS       HOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AAS         HMTTT.S.AAS       HOSP MGMT & TOURISM/TOURISM CONCENTRATION - AAS         HOS.AAS       TRAVEL & TOURISM-AAS         TNT.AAS       TRAVEL & TOURISM-AAS         KMAN       CSE.AS         BUSINESS ADMINISTRATION - AAS         CSE.AS       BUSINESS ADMINISTRATION - AAS         CSO.AAS       BUSINESS ADMINISTRATION/COMPUTER SCIENCE OPTION-AS         ENT.CRT       ENTREPRENEURSHIP - CRT		HMTT.AAS	HOSPITALITY MANGEMENT &	1	
TOURISM - AASHMTTL.AASHOSP MGMT & TOURISM/HOTEL LODGING CONCENTRATION - AASHMTTL.S.AASHOSP MGMT & TOURISM/HOTEL LODGING CONCENTRATION - AASHMTTL.S.AASHOSP MGMT & TOURISM/HOTEL LODGING CONCENTRATION - AASHMTTM.AASHOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA - AASHMTTM.S.AASHOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA - AASHMTTM.S.AASHOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA - AASHMTTT.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHMTTT.S.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHMTTT.S.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHMTTT.S.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHMTTT.S.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHMTTT.S.AASHOSPITALITY MANAGEMENT.AASHOS.AASTRAVEL & TOURISM-AASSManagement, Business (MAN)3CSE.ASBUSINESS ADMINISTRATION - COMPUTER SCIENCE EMPHASIS - ASCSO.AASBUSINESS ADMINISTRATION/COMPUTER SCIENCE OPTION-ASENT.CRTENTREPRENEURSHIP - CRTENT.CRTENTREPRENEURSHIP - CRT			TOURISM - AAS		
HMTTL.AASHOSP MGMT & TOURISM/HOTEL LODGING CONCENTRATION - AASHMTTL.S.AASHOSP MGMT & TOURISM/HOTEL LODGING CONCENTRATION - AASHMTTM.AASHOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AASHMTTM.S.AASHOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AASHMTTM.S.AASHOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AASHMTTT.S.AASHOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AASHMTTT.S.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHMTTT.S.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHMTTT.S.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHMTTT.S.AASHOSPITALITY MANAGEMENT.AASHOS.AASHOSPITALITY MANAGEMENT.AASManagement, Business (MAN)SELASCSE.ASBUSINESS ADMINISTRATION - COMPUTER SCIENCE EMPHASIS - ASCSO.AASBUSINESS ADMINISTRATION/COMPUTER SCIENCE OPTION-ASENT.CRTENTREPRENEURSHIP - CRT		HMTT.S.AAS	HOSPITALITY MANGEMENT &	1	
TOURISM/HOTEL LODGING CONCENTRATION - AASImage of the second sec			TOURISM - AAS		
CONCENTRATION - AASHMTTL.S.AASHOSP MGMT & TOURISM/HOTEL LODGING CONCENTRATION - AASHMTTM.AASHOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AASHMTTM.S.AASHOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AASHMTTM.S.AASHOSP MGMT & TOURSIM/ 		HMTTL.AAS	HOSP MGMT &		
HMTTL.S.AASHOSP MGMT & TOURISM/HOTEL LODGING CONCENTRATION - AASHMTTM.AASHOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AASHMTTM.S.AASHOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AASHMTTT.AASHOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AASHMTTT.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHMTTT.S.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHMTTT.S.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHOS.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHOS.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHOS.AASHOSP MGMT & TOURISM-AASHOS.AASTNT.AASTNT.AASTRAVEL & TOURISM-AASSubtotal3CSE.ASBUSINESS ADMINISTRATION - COMPUTER SCIENCE EMPHASIS - ASCSO.AASBUSINESS ADMINISTRATION/COMPUTER SCIENCE OPTION-ASENT.CRTENTREPRENEURSHIP - CRT			TOURISM/HOTEL LODGING		
TOURISM/HOTEL LODGING CONCENTRATION - AASImage: Concentration - AasHMTTM.AASHOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AASImage: Concentration - AasHMTTM.S.AASHOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AASImage: Concentration - AasHMTTT.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASImage: Concentration - AasHMTTT.S.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASImage: Concentration - AasHMTTT.S.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASImage: Concentration - AasHOS.AASHOSPITALITY MANAGEMENT.AASImage: Concentration - AasTNT.AASTRAVEL & TOURISM-AAS2Management, Business (MAN)CSE.ASBUSINESS ADMINISTRATION - COMPUTER SCIENCE EMPHASIS - ASImage: Concentration - Computer Science EMPHASIS - ASCSO.AASBUSINESS ADMINISTRATION/COMPUTER SCIENCE OPTION-ASImage: Concentration - Computer Science EMPHASIS - ASImage: Concentration - Computer Science EMPHASIS - ASENT.CRTENTREPRENEURSHIP - CRTImage: Concentration - COMPUTER Science EMPHASIS - ASImage: Concentration - Computer Science EM			CONCENTRATION - AAS		
Image: concentration - AASImage: concentration - AASImage: concentration - AASHMTTM.AASHOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AASImage: concentration - AASHMTTM.S.AASHOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AASImage: concentration - AASHMTTT.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASImage: concentration - AASHMTTT.S.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASImage: concentration - AASHMTTT.S.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASImage: concentration - AASHOS.AASHOSPITALITY MANAGEMENT.AASImage: concentration - AASTNT.AASTRAVEL & TOURISM-AASImage: concentration - AASImage: concentration - AASImage: concentration - AASImage: concentration - AASMANAGEMENT.AASImage: concentration - AASImage: con		HMTTL.S.AAS	HOSP MGMT &		
HMTTM.AASHOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AASHMTTM.S.AASHOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AASHMTTT.AASHOSP MGMT & COURSIM/ OCNCENTRA- AASHMTTT.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHMTTT.S.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHMTTT.S.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHOS.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHOS.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHOS.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHOS.AASHOSP MGMT & TOURISM-AASHOS.AASHOSP MGMT & TOURISM-AASManagement, Business (MAN)SubtotalCSE.ASBUSINESS ADMINISTRATION - COMPUTER SCIENCE EMPHASIS - ASCSO.AASBUSINESS ADMINISTRATION/COMPUTER SCIENCE OPTION-ASENT.CRTENTREPRENEURSHIP - CRTENT.S.CRTENTREPRENEURSHIP - CRT			TOURISM/HOTEL LODGING		
MEET AND EVENT PLAN CONCENTRA- AASImage: Concentral and concentration - and concentrati				ļ	
CONCENTRA- AASImage of the second		HMTTM.AAS	HOSP MGMT & TOURSIM/		
HMTTM.S.AASHOSP MGMT & TOURSIM/ MEET AND EVENT PLAN CONCENTRA- AASImage: Concentral concen					
MEET AND EVENT PLAN CONCENTRA- AASHMTTT.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHMTTT.S.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHMTTT.S.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHOS.AASHOSPITALITY MANAGEMENT.AASHOS.AASTRAVEL & TOURISM-AASSubtotal3CSE.ASBUSINESS ADMINISTRATION - COMPUTER SCIENCE EMPHASIS - ASCSO.AASBUSINESS ADMINISTRATION/COMPUTER SCIENCE OPTION-ASENT.CRTENTREPRENEURSHIP - CRTENT.S.CRTENTREPRENEURSHIP - CRT				L	
CONCENTRA- AASImage: constant of the second sec		HMTTM.S.AAS			
HMTTT.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHMTTT.S.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASHOS.AASHOSPITALITY MANAGEMENT.AASTNT.AASTRAVEL & TOURISM-AASSubtotal3Management, Business (MAN)SUSINESS ADMINISTRATION - COMPUTER SCIENCE EMPHASIS - ASCSO.AASBUSINESS ADMINISTRATION/COMPUTER SCIENCE OPTION-ASENT.CRTENT.CRTENT.S.CRTENTREPRENEURSHIP - CRT					
TOURISM/TOURISM CONCENTRATION - AASTOURISM/TOURISM CONCENTRATION - AASHMTTT.S.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASIHOS.AASHOSPITALITY MANAGEMENT.AASITNT.AASTRAVEL & TOURISM-AAS24Subtotal36Management, Business (MAN)IICSE.ASBUSINESS ADMINISTRATION - COMPUTER SCIENCE EMPHASIS - ASICSO.AASBUSINESSICSO.AASBUSINESSIENT.CRTENTREPRENEURSHIP - CRTIENT.S.CRTENTREPRENEURSHIP - CRTI					
Image: constract of constrac		HMTTT.AAS			
HMTTT.S.AASHOSP MGMT & TOURISM/TOURISM CONCENTRATION - AASImage: constant of the second secon					
TOURISM/TOURISM CONCENTRATION - AASImage: constant of the second			1.4.4	ļ	
CONCENTRATION - AASImage: Concentration - AASHOS.AASHOSPITALITY MANAGEMENT.AASImage: Concentration - AASTNT.AASTRAVEL & TOURISM-AAS2Subtotal36Management, Business (MAN)Image: Concentration - Concentration - Computer Science EMPHASIS - ASImage: Concentration - Computer Science Science OPTION-ASImage: Concentration - Computer Science EMPHASIS - ASImage: Concentration - Computer Science Science OPTION-ASImage: Concentration - Concentration - Computer Science Science OPTION-ASImage: Concentration - Concentration - Computer Science Science OPTION-ASImage: Concentration -		HMTTT.S.AAS			
HOS.AASHOSPITALITY MANAGEMENT.AAS4TNT.AASTRAVEL & TOURISM-AAS24Subtotal36Management, Business (MAN)36CSE.ASBUSINESS ADMINISTRATION - COMPUTER SCIENCE EMPHASIS - AS4CSO.AASBUSINESS ADMINISTRATION/COMPUTER SCIENCE OPTION-AS4ENT.CRTENTREPRENEURSHIP - CRT4					
MANAGEMENT.AASImage: Management, Business (MAN)TRAVEL & TOURISM-AAS24Management, Business (MAN)Imagement, Business (MAN)Imagement, Business ADMINISTRATION - Imagement, Business (MAN)Imagement, Imagement, Im				ļ	
TNT.AASTRAVEL & TOURISM-AAS24Subtotal36Management, Business (MAN)CSE.ASBUSINESS ADMINISTRATION - COMPUTER SCIENCE EMPHASIS - ASCSO.AASBUSINESS ADMINISTRATION/COMPUTER SCIENCE OPTION-ASENT.CRTENTREPRENEURSHIP - CRTENT.S.CRTENTREPRENEURSHIP - CRT		HOS.AAS			
Subtotal3Management, Business (MAN)					
Management, Business (MAN)Image: CSE.ASBUSINESS ADMINISTRATION - COMPUTER SCIENCE EMPHASIS - ASImage: CSE.ASCSE.ASBUSINESS ADMINISTRATION - COMPUTER SCIENCE EMPHASIS - ASImage: CSE.ASImage: CSE.ASCSO.AASBUSINESS ADMINISTRATION/COMPUTER SCIENCE OPTION-ASImage: CSE.ASImage: CSE.ASENT.CRTENTREPRENEURSHIP - CRTImage: CSE.ASImage: CSE.ASENT.S.CRTENTREPRENEURSHIP - CRTImage: CSE.ASImage: CSE.AS			TRAVEL & TOURISM-AAS		
Business (MAN)       CSE.AS       BUSINESS ADMINISTRATION - COMPUTER SCIENCE         CSE.AS       BUSINESS ADMINISTRATION - COMPUTER SCIENCE         EMPHASIS - AS       EMPHASIS - AS         CSO.AAS       BUSINESS ADMINISTRATION/COMPUTER SCIENCE OPTION-AS         ENT.CRT       ENTREPRENEURSHIP - CRT         ENT.S.CRT       ENTREPRENEURSHIP - CRT		Subtotal		3	6
(MAN)CSE.ASBUSINESS ADMINISTRATION - COMPUTER SCIENCE EMPHASIS - ASICSO.AASBUSINESS ADMINISTRATION/COMPUTER SCIENCE OPTION-ASIENT.CRTENTREPRENEURSHIP - CRTIENT.S.CRTENTREPRENEURSHIP - CRTI	Management,				_
CSE.AS       BUSINESS ADMINISTRATION - COMPUTER SCIENCE EMPHASIS - AS         CSO.AAS       BUSINESS ADMINISTRATION/COMPUTER 	U .				
COMPUTER SCIENCE         EMPHASIS - AS         CSO.AAS       BUSINESS         ADMINISTRATION/COMPUTER         SCIENCE OPTION-AS         ENT.CRT       ENTREPRENEURSHIP - CRT         ENT.S.CRT       ENTREPRENEURSHIP - CRT	(MAN)				
EMPHASIS - ASCSO.AASBUSINESS ADMINISTRATION/COMPUTER SCIENCE OPTION-ASENT.CRTENTREPRENEURSHIP - CRTENT.S.CRTENTREPRENEURSHIP - CRT		CSE.AS	BUSINESS ADMINISTRATION -		
CSO.AAS       BUSINESS         ADMINISTRATION/COMPUTER         SCIENCE OPTION-AS         ENT.CRT         ENT.S.CRT         ENTREPRENEURSHIP - CRT         ENT.S.CRT			COMPUTER SCIENCE		
ADMINISTRATION/COMPUTER         SCIENCE OPTION-AS         ENT.CRT         ENT.S.CRT         ENTREPRENEURSHIP - CRT         ENT.S.CRT			EMPHASIS - AS		
SCIENCE OPTION-AS       ENT.CRT     ENTREPRENEURSHIP - CRT       ENT.S.CRT     ENTREPRENEURSHIP - CRT		CSO.AAS			
ENT.CRTENTREPRENEURSHIP - CRTENT.S.CRTENTREPRENEURSHIP - CRT			ADMINISTRATION/COMPUTER		
ENT.S.CRT ENTREPRENEURSHIP - CRT			SCIENCE OPTION-AS		
		ENT.CRT	ENTREPRENEURSHIP - CRT		
ENTR AAS BUSINESS MGMT-	and an	ENT.S.CRT	ENTREPRENEURSHIP - CRT		
		ENTR.AAS	BUSINESS MGMT-		

		ENTREPRENEURSHIP		
		CONCENTRATION- AAS		
	ENTR.S.AAS	BUSINESS MGMT-		
		ENTREPRENEURSHIP		
		CONCENTRATION- AAS		
	GBM.AAS	BUSINESS MANAGEMENT-	4	6
		AAS		
	GBM.AS	BUSINESS MANAGEMENT-AS	]	
	GBM.S.AAS	BUSINESS MANAGEMENT-	1	
		AAS		
	HR.STC	HUMAN RESOURCE		
		MANAGEMENT CERTIFICATE		
		(DEPARTMENTAL)		
	HRMT.S.STC	HUMAN RESOURCE		
		MANAGEMENT CERTIFICATE-		
		STC		
· · · · ·	HRMT.STC	HUMAN RESOURCE		
		MANAGEMENT CERTIFICATE-		
		STC		
	HUMS.CRT	HUMAN SERVICES		
		CERTIFICATE		
	MAN.AAS	MANAGEMENT-AAS		
*************	MRK.AAS	MARKETING MANAGEMENT-		
		AAS		
	MIO.AAS	MANAGEMENT +		
		INDUSTRICAL		
		ORGANIZATION - ATS		
	MISE.AS	BUS ADM - MANAGEMENT		
		<b>INFORMATION SYSTEM EMP -</b>		
		AS		
	MMR.AAS	MID-MANAGEMENT	1	1
		RETAILING-AAS		
	SCM.AAS	<b>BUSINESS MANAGEMENT-</b>		
		SUPPLY CHAIN		
		MANAGEMENT - AAS		
	SCM.S.AAS	BUSINESS MANAGEMENT-		
		SUPPLY CHAIN		
		MANAGEMENT - AAS		
	SCMC.CRT	SUPPLY CHAIN MANAGMENT		
	······································	CERTIFICATE - CRT		
	SCMC.S.CRT	SUPPLY CHAIN MANAGMENT		
		CERTIFICATE - CRT		
	SCMS.STC	SUPPLY CHAIN		
		MANAGEMENT - STC		

	Subtotal		5	7
Paralegal (PAR)				1
	PAR.AAS	PARALEGAL-AAS		1
	PAR.S.AAS	PARALEGAL-AAS		1
	Subtotal		0	1
Real Estate (RES)			2	2
	RES.00.AAS	REAL ESTATE/PROPERTY MANAGEMENT-AAS		
	RES.92.AAS	REAL ESTATE/PROPERTY MANAGEMENT-AAS		
	RES.94.AAS	REAL ESTATE/PROPERTY MANAGEMENT - AAS		
	RES.AAS	REAL ESTATE/PROPERTY MANAGEMENT-AAS		
	RES.S.AAS	REAL ESTATE/PROPERTY MANAGEMENT-AAS		
	RESB.STC	OHIO REAL ESTATE BROKER- STC		
	RESS.S.STC	OHIO REAL ESTATE SALES ASSOCIATE-STC		
	RESS.STC	OHIO REAL ESTATE SALES ASSOCIATE-STC		
	Subtotal		2	2
Not sure where these fall				
	CC.STC	CALL CENTER CERTIFICATION-STC		
	CO.ATS	Catering Ownership - Ats		
	CO.CRT	COMPUTER OPERATIONS - CRT		
	CR.STC	COURT REPORTING - ATS		
	CT.CRT	CLERK TYPIST -CRT		
	DP.STC	DESKTOP PUBLISHING CERTIFICATION-STC		
	EXS.AAS	EXECUTIVE SECRETARIAL- AAS		
······································	EXS.AS	EXECUTIVE SECRETARIAL-AS		

FMT.AAS	FINANCIAL MANAGEMENT-		2
	AAS		
FMT.STC	FINANCIAL MANAGEMENT-		
	STC		
FSM.AAS	FOOD SERVICE		
	MANAGEMENT-AAS		
FSM.CRT	FOOD SERVICE		
	MANAGEMENT CERTIFICATE		
FSM.S.CRT	FOOD SERVICE		
	MANAGEMENT CERTIFICATE		
FTE.STC	FAST TRACK ENTREPRENEUR		
	- STC		
FTPA.CRT	FAST TRACK PROGRAM		
	ANALYST CERTIFICATION-		
	STC-DO NOT USE		
FTPA.STC	FAST TRACK PROGRAM		
	ANALYST -STC		
FTPA1.S.STC	FAST TRACK/PROGRAMMER		
	ANALYST - ENTERPRISE		
	OPTION		
FTPA1.STC	FAST TRACK/PROGRAMMER		
	ANALYST - ENTERPRISE		
	OPTION		
FTPA2.STC	FAST TRACK/PROGRAMMER		
	ANALYST - WEB		
	DEVELOPMENT-STC		
HD.STC	HELP DESK ANALYST		
	CERTIFICATE		
 HHSO.AA	PUBLIC SERVICES: HUMAN		
	SERVICES OPTION		
JEDI.STC	JAVA ENTERPRISE		
	DEVLPMNT IMPLEMENTN		
	CERTIFICATION STC		
JEDIC	JAVA ENTERPRISE		
	DEVLPMNT IMPLEMENTN		
	CERTIFICATION-STC		
 LAP.AAS	LEGAL ASSISTING-AAS	1	2
 LSO.AAS	OIS/LEGAL OFFICE		1
 PAO.AA			-
	1		
 PSA AA		<u> </u>	1
1 ~ ~~ * * * * *		1	1
	- AA		
 PAO.AA PSA.AA	SPECIALIST OPTION-AAS PUBLIC SERVICES: PUBLIC ADMINISTRATION OPTION PUBLIC SERVICES ASSOCIATE		

		DEGREE AWARDED		
	P-PAR.ND	PRE-PARALEGAL-NO DEGREE		1
		AWARDED		
	SAO.AAS	OIS/SECRETARIAL		
		ACCOUNTING OPTION=AAS		
	SAV.CRT	SAVINGS AND LOAN		
		ADMINSTRATION - CRT		
	SEC.AAS	EXECUTIVE SECRETARIAL-		
		AAS		
	SECC	SECRETARIAL SCIENCE - CRT		
	subtotal		4	7
Total			81	101

## **Appendix D: Institutional Approval for Part II Data**



December 14, 2012

Patrick Greco Chemistry Sinclair Community College 444 West Third Street Dayton, OH 45402-1460

RE: Confirmation of authorization to use institutional data

Dear Patrick:

This letter serves as confirmation that you have permission to use the data you were provided via your work with Sinclair's Research, Analytics and Reporting Office for program evaluation and your research/dissertation. As the information is non-identifying and is routinely used in program evaluation, your work with it was determined to be exempt from IRB review.

If you have any questions or concerns, please feel free to contact me. Good luck with your venture.

Sincerely,

LN

Laura A. Mercer Director, Research, Analytics and Reporting Chair, Sinclair Institutional Review Board Phone: 937-512-4571 laura.mercer@sinclair.edu