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ABSTRACT 

 The majority of low-end sensors in wireless sensor networks (WSNs) operate on 

batteries, which either cannot be replaced or are not practical to replace. Therefore, it is 

important to measure the total energy consumption in WSNs, in order to minimize power 

consumption and maximize network lifespan. Many researchers have been devoting their 

efforts into this area, which shows that a heterogeneous network produces a better 

solution to prolonging the network lifespan. So far as we know, the algorithms for 

minimizing the energy consumption have all been implemented in serial algorithms.  In 

this work, we propose a parallel programming approach for optimizing the minimum 

energy consumption and maximizing the lifespan of WSNs. The results from an 

extensive set of experiments on a large number of simulated sensor networks illustrate 

the performance superiority of the proposed parallel approach over an existing serial 

algorithm and confirms a parallel solution will provide faster results.  
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CHAPTER I 

INTRODUCTION 

 

A wireless sensor network (WSN), is a collection of low-cost, low-power, 

multifunctional sensor nodes that are small in size and designed to communicate for short 

distances over low-power radio transmitters. Each sensor consists of at least some type of 

radio transceiver and microcontroller, which includes a radio frequency identification 

(RFID) type of sensor. Sensors range in size with some simple ones so small they have 

been attached to worker bees to track their flights [1]. 

However, the sensors typically include a battery to power the radio, 

microcontroller, etc. These types of sensors’ batteries are usually difficult, if not 

impossible, to replace. In the case of a device for monitoring a nuclear facility[2] due to 

the exposure to radiation, it would never be touched after the initial placement. With the 

batteries unchangeable, it is necessary to employ some techniques to optimize the battery 

life of each sensor by minimizing the amount of energy consumed, such as sharing the 

radio transmission load. 

These distributed sensor networks are used in diverse areas such as agriculture, 

industry, civil and the military, because they enable reliable and consistent monitoring of 

the environment. For example, in the agricultural environment, the sensors are used to 

relay soil data to decide when to use irrigation and fertilizers. Industry uses sensors to 

monitor items as diverse as machinery and nuclear facilities. Civil uses include forest fire 

detection and water quality. Military uses include troop movement and perimeter 

policing.	 
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Another example is a WSN network is set to monitor a volcano[3]. In many cases, 

the batteries in the wireless sensors either cannot be replaced, because they are soldered 

in place, or it is not practical to replace them because of the large quantity and random 

locations. For monitoring a volcano, even if the batteries could be replaced, once it 

begins to erupt there is a likelihood of poisonous gases, extreme heat, and rivers of 

magma. Therefore, the longer the lifespan of the network the longer it will produce useful 

data. 

As far as we know, the algorithms for minimizing energy consumption have all 

been implemented as serial algorithms. In this work, we will use parallel programming 

techniques to optimize energy consumption and maximize the lifespan of the wireless 

sensors and will achieve the results faster than a serial algorithm.  

  



3	

	

CHAPTER II 

BACKGROUND  

 

Wireless sensor networks are comprised of a large quantity of inexpensive 

wireless sensors, and there are different ways to organize the sensors. Some networks 

may also deploy a small quantity of expensive but more powerful sensors to partition the 

entire WSN into several clusters and form a hierarchical structure [4]. The three common 

approaches considered and proposed are (a) having all low-level sensors in the network 

and forming several clusters with fixed cluster heads [5], (b) having all low-level sensors 

in the network and forming several clusters with dynamically rotated cluster heads [4, 6], 

and (c) having a mixture of high-level and low-level sensors in the network with high-

level sensors being cluster heads [4, 7]. 

In paper [4] with a homogeneous network, where all sensors are the same, it is 

necessary and important to optimize the energy consumption in the network to prolong 

the battery life. The LEACH (Low-Energy Adaptive Clustering Hierarchy) algorithm is 

proposed to let the sensors take turns being the cluster heads to spread out and balance 

the energy cost of transmitting the data throughout the network. It further reduces the 

energy required by aggregating the data and compressing it before transmission. With 

this scheme, there is a factor of 8 energy reduction as compared to having the sensors 

directly transmit to the base station. 
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Figure 1: 100 Randomly Scattered Sensors 

 

As Figure 1 shows, there are 100 randomly scattered sensors within that square 

area. With the LEACH algorithm, all of these sensors are the same and take turns 

collecting the data from the other sensors. This strategy improves the lifespan of the 

entire network but does have some disadvantages as shown in Figure 2. 
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Figure 2: The radio ranges of 100 sensors 

 

In figure 2, the circles represent the radio ranges of the100 sensors. While most of 

the ranges overlap, and thus have good coverage, there are two problem areas. In the 

upper left, one sensor’s radio range does not overlap with others, so it will always have to 

transmit its data to the base station by itself and thus will not have the benefit of sharing 

the load. At the bottom of the sensor field, there is one sensor that only overlaps with one 
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other sensor. In this case, it will not be practical to have it share the load so the only other 

sensor it overlaps with will always have to gather data and transmit it. These types of 

situations will cause the sensor network to have a less than optimal lifespan.  

For this paper, the one-hop sensor network will be similar to the one in Figure 3.  

 

 

Figure 3: A one-hop wireless sensor network 
 

 In figure 3, the sensors are either leaf nodes or cluster heads. The sensors 

designated cluster heads collect data for themselves, receive the data from the LNs, 

aggregate the data, and then compress it before sending it on. This extends the battery life 

of the LNs because they only need to transmit a short distance. Since the LNs have a very 
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limited radius range, it is very important to determine the optimal placement of the 

cluster heads to cover the entire WSN. 

Many researchers have been looking into the advantage of using parallel 

processing in improving the performance of WSNs in various ways. For instance, parallel 

processing is implemented to ascertain the location of nodes within a WSN to minimize 

the need for GPS [8]. It is used within a WSN for pattern recognition [9] as well as data 

detection [10]. Parallel processing can also be incorporated into kNN queries in a 

simulator to determine energy efficiency [11] and into a GPU architecture to simulate 

energy consumption wireless networks [12]. However, so far as we know, parallel 

processing has not been applied to minimize total energy consumption in WSNs yet. 
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CHAPTER III 

METHODS 

 

Current approaches to optimizing energy consumption in wireless sensor 

networks use a serial approach[4], but we feel a parallel approach would be more scalable 

and lead to better optimization. The first step is to take an existing serial algorithm[13] 

and apply parallel techniques to it. Thus this preliminary research seeks to confirm that a 

parallel solution will produce the same result as the serial solution, in terms of the energy 

consumption, but in less time.  

Our WSN will be set up with all the sensors randomly placed, within a 200m x 

200m area (LxL) with full battery power and the base station is in place with no 

restrictions on energy consumption. Neither the sensors nor the base station will change 

locations. With those prerequisites[13], we will seek to determine which nodes will be 

designated as CH to minimize total energy consumption.  

Our serial algorithm[13] is a heuristic based on the distance from the LN to the 

CH and the number of sensor neighbors. Each sensor is examined for its nearest 

neighbors with the possibility of being a CH and the energy consumption is calculated for 

each cluster. Once all possible CH combinations have been calculated, the minimal 

energy consumption is determined.  
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This Distance-based Crowdedness Clustering (DCC) algorithm is shown in figure 

4. This serial algorithm is our starting point for a parallel optimization method. For this  

 

application, we chose to use MPI to implement parallel techniques.  To begin with, we  

will initialize our data arrays using parallel techniques, which occurs in line zero of the 

Algorithm 1. Distance-based Crowdedness Clustering 
 
Input: a sensor network G = (V,E) with n LNs randomly deployed in a  
L × L (m2) square region and one BS deployed inside or outside the 
region. 
Output: the optimal number k and location of CHs with minimum TEC. 
 
0:  Initialize adjacency matrices 
1:  Calculate all-pair distances di,j, for vi,vj ∈ V, in an array Ad; 
2:  Initialize minimum TEC TECmin = +∞; 
3:  for all distances di,j ∈ Ad do 
4:  Set cut-off distance dcut = di,j ; 
5:  Set vm as a neighbor of vn if dm,n  ≤ dcut  for all m,n ∈ V; 

6:  Sort all v ∈ V according to the number of neighbors in a 
decreasing order and place them in an array Av; 
7:   Insert all v ∈ V in an unclustered sensor queue Qu; 
8:   Initialize a clustered sensor queue Qc = 0; 
9:   Initialize the number of clusters nclusters = 0; 
10:   while Qu  != 0 do 
11:    Retrieve vk ∈ Qu from Av and designate it as a CH; 

12:    Form a cluster Ck of vk and its neighbors vl ∈ Qu; 

13:    Insert all v ∈ Ck in Qc; 

14:    Remove all v ∈ Ck from Qu; 
15:    nclusters ++; 
16:   end while 
17:   Calculate the TEC; 
18:   if TECmin > TEC then 
19:    TECmin =TEC; 
20:    k = nclusters; 
21:   endif 
22:  endfor 
23:  return k and location. 

Figure 4: DCC, the serial algorithm for parallelization[13] 
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listing in figure 4. In line 6, there is a sorting technique employed, which is an odd-even 

merge sort in parallel.  Lastly, in lines 17 - 21, for the total energy consumption the outer 

loop is performed in parallel.  

 

For the parallel initialization of the adjacency matrix, the rows are divided up 

amongst the available processes. Each row is initialized and then the rows are gathered to 

all the processes. Since the number of processes and number of rows are unknown, it is 

necessary to use a variable gather routine to distribute the adjacency matrix to all 

processes. See Figure 5. 

 

Figure 5: Parallel initialization 

 

The sorting routine for the serial algorithm is a heap sort, while an odd-even 

merge sort is used for the parallel implementation. The array of distances, a two 

dimensional adjacency array ranging in size from 10 x 10 to 900 x 900, see Table 1, is 

scattered to the processes, sorted and then gathered back.  

For each process: 

numRowsPerProcess = integer(numberOfRows / number of processes); 

extraRows = remainder(numberOfRows / number of processes); 

if LastProcess 

numRowsPerProcess =  numRowsPerProcess + extraRows; 

initAdjacencyMatrix(numRowsPerProcess); 

MPI_Allgatherv(gather all rows to the root); 

Root process then determines what nodes are connected. 
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Figures 6a-d show the odd-even merge sort broken down into functions. The 

function names are in bold face. 

 

Figure 6a: Odd-even merge 
 

pseudocode for odd-even merge sort 
 
// sort the distances in increasing order 
// this will run on each process 

 
oddEvenMergeSort 

MPI_Scatter(arrayOfDistances, 
       numberOfArrayElements/numberOfProcessors, localArrayOfDistances) 

merge_sort(localArrayOfDistances, 
          numberOfArrayElements/numberOfProcessors ) 
 

for 1 to numberOfProcessors Do 
if processorRank is even 

pairExchange (numberOfArrayElements/numberOfProcessors,       
localArrayOfDistances, processorRank, processorRank + 1) 

else 
pairExchange(numberOfArrayElements/numberOfProcessors, 
localArrayOfDistances, processorRank - 1, processorRank ) 
 

      MPI_Gather(localArrayOfDistances, 
      numberOfArrayElements/numberOfProcessors, arrayOfDistances ) 

 



12	

	

 
Figure 6b: Pair exchange 

 

 
Figure 6c: Split merge sort function 

 

 

split_mergeSort 
if (end - start) <= 1 

return 
midPoint = (end - start) / 2 
split_mergeSort(localArray, start, midPoint, workingArray) 
split_mergeSort(localArray, midPoint,   end, workingArray) 
merge( &(localArray[start]), midPoint-start, &(localArray[midPoint]), 
end-midPoint, &(workingArray[start])) 

copy workingArray into localArray 
 

pairExchange 
if processorRank == sendingRank 

MPI_Send(localArrayOfDistances, 
numberOfArrayElements/numberOfProcessors, receiveRank,  
mergeTag) 

MPI_Recv(localArrayOfDistances, 
numberOfArrayElements/numberOfProcessors, receiveRank,  
sortTag) 

else 
MPI_Recv(recvArrayOfDistances,numberOfElementsRecvArray, sendRank, 

mergeTag) 
merge(localArrayOfDistances, numberOfElementsLocalArray, 

recvArrayOfDistances, numberOfElementsRecvArray, mergedArray) 
if sendingRank > processorRank 

theOtherPairStart = numberOfElementsRecvArray 
thisPairStart = 0 

else 
theOtherPairStart = 0 
thisPairStart = numberOfElementsRecvArray 

MPI_Send(mergedArray[theOtherPairStart], numberOfElementsRecvArray, 
sendingRank, sortTag) 

for i = thisPairStart to (thisPairStart + 
numberOfElementsLocalArray) 
localArrayOfDistances[i - thisPairStart] = mergedArray[i] 
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Figure 6d: Merge function 

 

Last we used a parallel technique to calculate the total energy cost. The outer loop 

is used to distribute the calculation across all the processes. Then each process will 

calculate a minimum total energy consumption. The results are gathered and the smallest 

amount of energy consumed is considered the minimum. See Figure 7. 

  

merge 
for i from 0 to lenA 

while( (arrayB[j] < arrayA[i]) and (j < lenB)) 
mergedArray[k++] = arrayB[j++] 

mergedArray[k++] = arrayA[i] 
while(j < lenB) 

mergedArray[k++] = arrayA[j++] 
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Figure 7: Total energy cost 

 

If Root Process Then 
If  numberOfDistancePairsBetweenSensors > numberOfProcessors 

numDistPerProcess = integer(numberOfDistancePairsBetweenSensors / 
numberOfProcessors) 

numExtraDistForLastProcess = 
remainder(numberOfDistancePairsBetweenSensors / numberOfProcessors) 

 
For each process 

if theLastProcess 
numDistPerProcess += numExtraDistForLastProcess 

firstDist = numDistPerProcess * processNumber 
arrayNumDist[process][0] = firstDist 
lastDist  = firstDist + numDistPerProcess 
arrayNumDist[process][1] = numDistPerProcess * processNumber 

 
else 

// there are more processes than distance pairs 
// each process gets one pair 
For each process 

if processNumber < numberOfDistancePairsBetweenSensors 
arrayNumDist[process][0] = processNumber 
arrayNumDist[process][1] = processNumber + 1 

else 
// the extra processes get assigned 0 and max values 
arrayNumDist[process][0] = 0 
arrayNumDist[process][1] = 0 
arrayOfdMinTotalEC[process]  = MAXDOUBLE 
arrayOfdOptDist[process]     = MAXDOUBLE 
arrayOfiOptNumCHs[process]   = MAXINT 

 
MPI_Bcast(arrayNumDist) 
 
For arrayNumDist[process] != 0 

calculate: dMinTotalEC, dOptDist, iOptNumCHs 
 
MPI_Gather (arrayOfdMinTotalEC) 
MPI_Gather (arrayOfdOptDist) 
MPI_Gather (arrayOfiOptNumCHs) 
 
If Root Process Then 

find minimum value and index in arrayOfdMinTotalEC 
dMinTotalEC = minTotEC 
minimumIndex = index 
dOptDist = arrayOfdOptDist[minimumIndex] 

        iOptNumCHs = arrayOfiOptNumCHs[minimumIndex] 
 

group sensors into clusters based on current cut off distance 
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Since we are using a known algorithm with known results, we expect applying parallel 

processing techniques will yield the same energy consumption results but run faster.  
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CHAPTER IV 

RESULTS 

We have conducted an extensive set of experiments using various simulation 

datasets on the MTSU Beowulf cluster, which is comprised of 16 Dell PowerEdge R210 

with 8 cores and 32GB of RAM for a total 128 cores and 512 GB of RAM. 

The performance comparison of execution times, in seconds, for serial and 

parallel processes with ten different problem cases are shown in Figure 8. As expected, 

with a small dataset there is no advantage to using parallel processing. However, as the 

datasets grew larger, the execution time of parallel processing is noticeably improved.  

Table 1: Number of sensors per dataset 
 

Dataset Number of Sensors 

1 10 

2 100 

3 200 

4 300 

5 400 

6 500 

7 600 

8 700 

9 800 

10 900 
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The datasets are sets of sensors ranging from 10, in the first case, to 900 sensors, 

in the tenth case, see Table 1. The curves represent serial execution, parallel with 4 

nodes, and parallel with 8 nodes.  

 

Figure 8: Serial versus parallel execution time 
 

 In Figure 9, we further plot the performance comparison of total energy 

consumption, execution time and problem cases in a 3D figure to illustrate the time 

superiority of parallel implementation over the serial version while both of them are 

producing the same optimization results.   
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Figure 9: Total energy consumption, code execution time, number of sensors 

 
 

In Figure 10, the comparison of the total energy cost versus the case number is shown. 
The serial and parallel graphs overlap each other on the total energy consumption as they 
produce exactly the same results, which further verifies the correctness and accuracy of 
the proposed parallel approach.  
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Figure 10: Total energy consumption of networks proposed by serial and parallel 

programs 
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CHAPTER V 

DISCUSSION AND FUTURE WORK 

 

A wireless sensor network is extremely useful for monitoring a remote or harsh 

environment. Sensors can be randomly scattered over an area or deliberately placed. 

Once set up, sensors will collect environment data and forward it to the base station, 

reporting on the current status of its environment.  

Optimizing total energy consumption in WSNs greatly increases its lifespan. If all 

the nodes in the network are the same,  i.e. a homogenous network, it can be optimized 

by sharing the load of data gathering and data transmission. This will prolong the lifespan 

of a homogeneous network.  

The first step in adapting parallel processing to optimize a wireless sensor 

network, is to incorporate parallel programming techniques to an existing serial approach. 

As expected, the same results are produced in significantly less time using parallel 

techniques in MPI.  

The future work in this area is to use this technique to further develop 

optimization algorithms. Since there is some shared memory in multi-core systems, it 

would be good to compare the speed of this MPI version with a version using pthreads or 

OpenMP. Another interest could be to explore an embedded parallel optimization 

solution.  
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