
A COMPARISON OF SERIAL VERSUS PARALLEL ALGORITHMS FOR ENERGY
CONSUMPTION IN WIRELESS SENSOR NETWORKS

By

Gregg Reavis

A thesis submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE In Computer Science

Middle Tennessee State University

May 2016

Thesis Committee:

Dr. Dr. Yi Gu, Chair

Dr. Chrisila Pettey

Dr. Sung Yoo

	
	

ii	

ACKNOWLEDGEMENTS

 Dr. Yi Gu has kindly guided me through this work and first introduced me

to parallel processing. Dr. Chrisila Pettey and Dr. Sung Yoo have been kind enough to

serve as my committee. I am also grateful to all my committee members for their

valuable comments and suggestions.

	
	

iii	

ABSTRACT

 The majority of low-end sensors in wireless sensor networks (WSNs) operate on

batteries, which either cannot be replaced or are not practical to replace. Therefore, it is

important to measure the total energy consumption in WSNs, in order to minimize power

consumption and maximize network lifespan. Many researchers have been devoting their

efforts into this area, which shows that a heterogeneous network produces a better

solution to prolonging the network lifespan. So far as we know, the algorithms for

minimizing the energy consumption have all been implemented in serial algorithms. In

this work, we propose a parallel programming approach for optimizing the minimum

energy consumption and maximizing the lifespan of WSNs. The results from an

extensive set of experiments on a large number of simulated sensor networks illustrate

the performance superiority of the proposed parallel approach over an existing serial

algorithm and confirms a parallel solution will provide faster results.

	
	

iv	

TABLE OF CONTENTS

LIST OF TABLES .. v

LIST OF FIGURES ... vi

LIST OF SYMBOLS AND ABBREVIATIONS ... vii

Chapter

I. INTRODUCTION ... 1

II. BACKGROUND ... 3

III. METHODS ... 8

IV. RESULTS ... 16

V. DISCUSSION AND FUTURE WORK .. 20

BIBLIOGRAPHY ... 21

	
	

v	

LIST OF TABLES

Table 1 – Number of sensors per dataset .. 16

	
	

vi	

LIST OF FIGURES

Figure 1 – 100 Randomly Scattered Sensors .. 4

Figure 2 – The radio ranges of 100 sensors .. 5

Figure 3 – A one-hop wireless sensor network ... 6

Figure 4 – DCC, the serial algorithm for parallelization .. 9

Figure 5 – Parallel initialization .. 10

Figure 6a – Odd-even merge ... 11

Figure 6b – Pair exchange ... 12

Figure 6c – Split merge sort function ... 12

Figure 6d – Merge function .. 13

Figure 7 – Total energy cost ... 14

Figure 8 – Serial versus parallel execution time ... 17

Figure 9 – Total energy consumption, code execution time, number of sensors 18

Figure 10 – Total energy consumption of networks proposed by serial and parallel
programs ... 19

	
	

vii	

LIST OF SYMBOLS AND ABBREVIATIONS

BS – Base Station

CH – Cluster Head. A sensor that gathers data from LN

DCC – Distance Distance-based Crowdedness Clustering

LN – Leaf Node, the low-end sensors within a cluster, usually battery-supported

RFID – Radio Frequency Identification

TEC – Total Energy Cost

WSN – Wireless Sensor Network

1	

	

CHAPTER I

INTRODUCTION

A wireless sensor network (WSN), is a collection of low-cost, low-power,

multifunctional sensor nodes that are small in size and designed to communicate for short

distances over low-power radio transmitters. Each sensor consists of at least some type of

radio transceiver and microcontroller, which includes a radio frequency identification

(RFID) type of sensor. Sensors range in size with some simple ones so small they have

been attached to worker bees to track their flights [1].

However, the sensors typically include a battery to power the radio,

microcontroller, etc. These types of sensors’ batteries are usually difficult, if not

impossible, to replace. In the case of a device for monitoring a nuclear facility[2] due to

the exposure to radiation, it would never be touched after the initial placement. With the

batteries unchangeable, it is necessary to employ some techniques to optimize the battery

life of each sensor by minimizing the amount of energy consumed, such as sharing the

radio transmission load.

These distributed sensor networks are used in diverse areas such as agriculture,

industry, civil and the military, because they enable reliable and consistent monitoring of

the environment. For example, in the agricultural environment, the sensors are used to

relay soil data to decide when to use irrigation and fertilizers. Industry uses sensors to

monitor items as diverse as machinery and nuclear facilities. Civil uses include forest fire

detection and water quality. Military uses include troop movement and perimeter

policing.	

2	

	

Another example is a WSN network is set to monitor a volcano[3]. In many cases,

the batteries in the wireless sensors either cannot be replaced, because they are soldered

in place, or it is not practical to replace them because of the large quantity and random

locations. For monitoring a volcano, even if the batteries could be replaced, once it

begins to erupt there is a likelihood of poisonous gases, extreme heat, and rivers of

magma. Therefore, the longer the lifespan of the network the longer it will produce useful

data.

As far as we know, the algorithms for minimizing energy consumption have all

been implemented as serial algorithms. In this work, we will use parallel programming

techniques to optimize energy consumption and maximize the lifespan of the wireless

sensors and will achieve the results faster than a serial algorithm.

3	

	

CHAPTER II

BACKGROUND

Wireless sensor networks are comprised of a large quantity of inexpensive

wireless sensors, and there are different ways to organize the sensors. Some networks

may also deploy a small quantity of expensive but more powerful sensors to partition the

entire WSN into several clusters and form a hierarchical structure [4]. The three common

approaches considered and proposed are (a) having all low-level sensors in the network

and forming several clusters with fixed cluster heads [5], (b) having all low-level sensors

in the network and forming several clusters with dynamically rotated cluster heads [4, 6],

and (c) having a mixture of high-level and low-level sensors in the network with high-

level sensors being cluster heads [4, 7].

In paper [4] with a homogeneous network, where all sensors are the same, it is

necessary and important to optimize the energy consumption in the network to prolong

the battery life. The LEACH (Low-Energy Adaptive Clustering Hierarchy) algorithm is

proposed to let the sensors take turns being the cluster heads to spread out and balance

the energy cost of transmitting the data throughout the network. It further reduces the

energy required by aggregating the data and compressing it before transmission. With

this scheme, there is a factor of 8 energy reduction as compared to having the sensors

directly transmit to the base station.

4	

	

Figure 1: 100 Randomly Scattered Sensors

As Figure 1 shows, there are 100 randomly scattered sensors within that square

area. With the LEACH algorithm, all of these sensors are the same and take turns

collecting the data from the other sensors. This strategy improves the lifespan of the

entire network but does have some disadvantages as shown in Figure 2.

5	

	

Figure 2: The radio ranges of 100 sensors

In figure 2, the circles represent the radio ranges of the100 sensors. While most of

the ranges overlap, and thus have good coverage, there are two problem areas. In the

upper left, one sensor’s radio range does not overlap with others, so it will always have to

transmit its data to the base station by itself and thus will not have the benefit of sharing

the load. At the bottom of the sensor field, there is one sensor that only overlaps with one

6	

	

other sensor. In this case, it will not be practical to have it share the load so the only other

sensor it overlaps with will always have to gather data and transmit it. These types of

situations will cause the sensor network to have a less than optimal lifespan.

For this paper, the one-hop sensor network will be similar to the one in Figure 3.

Figure 3: A one-hop wireless sensor network

 In figure 3, the sensors are either leaf nodes or cluster heads. The sensors

designated cluster heads collect data for themselves, receive the data from the LNs,

aggregate the data, and then compress it before sending it on. This extends the battery life

of the LNs because they only need to transmit a short distance. Since the LNs have a very

7	

	

limited radius range, it is very important to determine the optimal placement of the

cluster heads to cover the entire WSN.

Many researchers have been looking into the advantage of using parallel

processing in improving the performance of WSNs in various ways. For instance, parallel

processing is implemented to ascertain the location of nodes within a WSN to minimize

the need for GPS [8]. It is used within a WSN for pattern recognition [9] as well as data

detection [10]. Parallel processing can also be incorporated into kNN queries in a

simulator to determine energy efficiency [11] and into a GPU architecture to simulate

energy consumption wireless networks [12]. However, so far as we know, parallel

processing has not been applied to minimize total energy consumption in WSNs yet.

8	

	

CHAPTER III

METHODS

Current approaches to optimizing energy consumption in wireless sensor

networks use a serial approach[4], but we feel a parallel approach would be more scalable

and lead to better optimization. The first step is to take an existing serial algorithm[13]

and apply parallel techniques to it. Thus this preliminary research seeks to confirm that a

parallel solution will produce the same result as the serial solution, in terms of the energy

consumption, but in less time.

Our WSN will be set up with all the sensors randomly placed, within a 200m x

200m area (LxL) with full battery power and the base station is in place with no

restrictions on energy consumption. Neither the sensors nor the base station will change

locations. With those prerequisites[13], we will seek to determine which nodes will be

designated as CH to minimize total energy consumption.

Our serial algorithm[13] is a heuristic based on the distance from the LN to the

CH and the number of sensor neighbors. Each sensor is examined for its nearest

neighbors with the possibility of being a CH and the energy consumption is calculated for

each cluster. Once all possible CH combinations have been calculated, the minimal

energy consumption is determined.

9	

	

This Distance-based Crowdedness Clustering (DCC) algorithm is shown in figure

4. This serial algorithm is our starting point for a parallel optimization method. For this

application, we chose to use MPI to implement parallel techniques. To begin with, we

will initialize our data arrays using parallel techniques, which occurs in line zero of the

Algorithm 1. Distance-based Crowdedness Clustering

Input: a sensor network G = (V,E) with n LNs randomly deployed in a
L × L (m2) square region and one BS deployed inside or outside the
region.
Output: the optimal number k and location of CHs with minimum TEC.

0: Initialize adjacency matrices
1: Calculate all-pair distances di,j, for vi,vj ∈ V, in an array Ad;
2: Initialize minimum TEC TECmin = +∞;
3: for all distances di,j ∈ Ad do
4: Set cut-off distance dcut = di,j ;
5: Set vm as a neighbor of vn if dm,n ≤ dcut for all m,n ∈ V;

6: Sort all v ∈ V according to the number of neighbors in a
decreasing order and place them in an array Av;
7: Insert all v ∈ V in an unclustered sensor queue Qu;
8: Initialize a clustered sensor queue Qc = 0;
9: Initialize the number of clusters nclusters = 0;
10: while Qu != 0 do
11: Retrieve vk ∈ Qu from Av and designate it as a CH;

12: Form a cluster Ck of vk and its neighbors vl ∈ Qu;

13: Insert all v ∈ Ck in Qc;

14: Remove all v ∈ Ck from Qu;
15: nclusters ++;
16: end while
17: Calculate the TEC;
18: if TECmin > TEC then
19: TECmin =TEC;
20: k = nclusters;
21: endif
22: endfor
23: return k and location.

Figure 4: DCC, the serial algorithm for parallelization[13]

10	

	

listing in figure 4. In line 6, there is a sorting technique employed, which is an odd-even

merge sort in parallel. Lastly, in lines 17 - 21, for the total energy consumption the outer

loop is performed in parallel.

For the parallel initialization of the adjacency matrix, the rows are divided up

amongst the available processes. Each row is initialized and then the rows are gathered to

all the processes. Since the number of processes and number of rows are unknown, it is

necessary to use a variable gather routine to distribute the adjacency matrix to all

processes. See Figure 5.

Figure 5: Parallel initialization

The sorting routine for the serial algorithm is a heap sort, while an odd-even

merge sort is used for the parallel implementation. The array of distances, a two

dimensional adjacency array ranging in size from 10 x 10 to 900 x 900, see Table 1, is

scattered to the processes, sorted and then gathered back.

For each process:

numRowsPerProcess = integer(numberOfRows / number of processes);

extraRows = remainder(numberOfRows / number of processes);

if LastProcess

numRowsPerProcess = numRowsPerProcess + extraRows;

initAdjacencyMatrix(numRowsPerProcess);

MPI_Allgatherv(gather all rows to the root);

Root process then determines what nodes are connected.

11	

	

Figures 6a-d show the odd-even merge sort broken down into functions. The

function names are in bold face.

Figure 6a: Odd-even merge

pseudocode for odd-even merge sort

// sort the distances in increasing order
// this will run on each process

oddEvenMergeSort

MPI_Scatter(arrayOfDistances,
 numberOfArrayElements/numberOfProcessors, localArrayOfDistances)

merge_sort(localArrayOfDistances,
 numberOfArrayElements/numberOfProcessors)

for 1 to numberOfProcessors Do
if processorRank is even

pairExchange (numberOfArrayElements/numberOfProcessors,
localArrayOfDistances, processorRank, processorRank + 1)

else
pairExchange(numberOfArrayElements/numberOfProcessors,
localArrayOfDistances, processorRank - 1, processorRank)

 MPI_Gather(localArrayOfDistances,
 numberOfArrayElements/numberOfProcessors, arrayOfDistances)

12	

	

Figure 6b: Pair exchange

Figure 6c: Split merge sort function

split_mergeSort
if (end - start) <= 1

return
midPoint = (end - start) / 2
split_mergeSort(localArray, start, midPoint, workingArray)
split_mergeSort(localArray, midPoint, end, workingArray)
merge(&(localArray[start]), midPoint-start, &(localArray[midPoint]),
end-midPoint, &(workingArray[start]))

copy workingArray into localArray

pairExchange
if processorRank == sendingRank

MPI_Send(localArrayOfDistances,
numberOfArrayElements/numberOfProcessors, receiveRank,
mergeTag)

MPI_Recv(localArrayOfDistances,
numberOfArrayElements/numberOfProcessors, receiveRank,
sortTag)

else
MPI_Recv(recvArrayOfDistances,numberOfElementsRecvArray, sendRank,

mergeTag)
merge(localArrayOfDistances, numberOfElementsLocalArray,

recvArrayOfDistances, numberOfElementsRecvArray, mergedArray)
if sendingRank > processorRank

theOtherPairStart = numberOfElementsRecvArray
thisPairStart = 0

else
theOtherPairStart = 0
thisPairStart = numberOfElementsRecvArray

MPI_Send(mergedArray[theOtherPairStart], numberOfElementsRecvArray,
sendingRank, sortTag)

for i = thisPairStart to (thisPairStart +
numberOfElementsLocalArray)
localArrayOfDistances[i - thisPairStart] = mergedArray[i]

13	

	

Figure 6d: Merge function

Last we used a parallel technique to calculate the total energy cost. The outer loop

is used to distribute the calculation across all the processes. Then each process will

calculate a minimum total energy consumption. The results are gathered and the smallest

amount of energy consumed is considered the minimum. See Figure 7.

merge
for i from 0 to lenA

while((arrayB[j] < arrayA[i]) and (j < lenB))
mergedArray[k++] = arrayB[j++]

mergedArray[k++] = arrayA[i]
while(j < lenB)

mergedArray[k++] = arrayA[j++]

14	

	

Figure 7: Total energy cost

If Root Process Then
If numberOfDistancePairsBetweenSensors > numberOfProcessors

numDistPerProcess = integer(numberOfDistancePairsBetweenSensors /
numberOfProcessors)

numExtraDistForLastProcess =
remainder(numberOfDistancePairsBetweenSensors / numberOfProcessors)

For each process

if theLastProcess
numDistPerProcess += numExtraDistForLastProcess

firstDist = numDistPerProcess * processNumber
arrayNumDist[process][0] = firstDist
lastDist = firstDist + numDistPerProcess
arrayNumDist[process][1] = numDistPerProcess * processNumber

else

// there are more processes than distance pairs
// each process gets one pair
For each process

if processNumber < numberOfDistancePairsBetweenSensors
arrayNumDist[process][0] = processNumber
arrayNumDist[process][1] = processNumber + 1

else
// the extra processes get assigned 0 and max values
arrayNumDist[process][0] = 0
arrayNumDist[process][1] = 0
arrayOfdMinTotalEC[process] = MAXDOUBLE
arrayOfdOptDist[process] = MAXDOUBLE
arrayOfiOptNumCHs[process] = MAXINT

MPI_Bcast(arrayNumDist)

For arrayNumDist[process] != 0

calculate: dMinTotalEC, dOptDist, iOptNumCHs

MPI_Gather (arrayOfdMinTotalEC)
MPI_Gather (arrayOfdOptDist)
MPI_Gather (arrayOfiOptNumCHs)

If Root Process Then

find minimum value and index in arrayOfdMinTotalEC
dMinTotalEC = minTotEC
minimumIndex = index
dOptDist = arrayOfdOptDist[minimumIndex]

 iOptNumCHs = arrayOfiOptNumCHs[minimumIndex]

group sensors into clusters based on current cut off distance

15	

	

Since we are using a known algorithm with known results, we expect applying parallel

processing techniques will yield the same energy consumption results but run faster.

16	

	

CHAPTER IV

RESULTS

We have conducted an extensive set of experiments using various simulation

datasets on the MTSU Beowulf cluster, which is comprised of 16 Dell PowerEdge R210

with 8 cores and 32GB of RAM for a total 128 cores and 512 GB of RAM.

The performance comparison of execution times, in seconds, for serial and

parallel processes with ten different problem cases are shown in Figure 8. As expected,

with a small dataset there is no advantage to using parallel processing. However, as the

datasets grew larger, the execution time of parallel processing is noticeably improved.

Table 1: Number of sensors per dataset

Dataset Number of Sensors

1 10

2 100

3 200

4 300

5 400

6 500

7 600

8 700

9 800

10 900

17	

	

The datasets are sets of sensors ranging from 10, in the first case, to 900 sensors,

in the tenth case, see Table 1. The curves represent serial execution, parallel with 4

nodes, and parallel with 8 nodes.

Figure 8: Serial versus parallel execution time

 In Figure 9, we further plot the performance comparison of total energy

consumption, execution time and problem cases in a 3D figure to illustrate the time

superiority of parallel implementation over the serial version while both of them are

producing the same optimization results.

18	

	

Figure 9: Total energy consumption, code execution time, number of sensors

In Figure 10, the comparison of the total energy cost versus the case number is shown.
The serial and parallel graphs overlap each other on the total energy consumption as they
produce exactly the same results, which further verifies the correctness and accuracy of
the proposed parallel approach.

19	

	

Figure 10: Total energy consumption of networks proposed by serial and parallel

programs

20	

	

CHAPTER V

DISCUSSION AND FUTURE WORK

A wireless sensor network is extremely useful for monitoring a remote or harsh

environment. Sensors can be randomly scattered over an area or deliberately placed.

Once set up, sensors will collect environment data and forward it to the base station,

reporting on the current status of its environment.

Optimizing total energy consumption in WSNs greatly increases its lifespan. If all

the nodes in the network are the same, i.e. a homogenous network, it can be optimized

by sharing the load of data gathering and data transmission. This will prolong the lifespan

of a homogeneous network.

The first step in adapting parallel processing to optimize a wireless sensor

network, is to incorporate parallel programming techniques to an existing serial approach.

As expected, the same results are produced in significantly less time using parallel

techniques in MPI.

The future work in this area is to use this technique to further develop

optimization algorithms. Since there is some shared memory in multi-core systems, it

would be good to compare the speed of this MPI version with a version using pthreads or

OpenMP. Another interest could be to explore an embedded parallel optimization

solution.

21	

	

BIBLIOGRAPHY

[1] Z. Kleinman, “Bee behaviour mapped by tiny trackers,”
http://www.bbc.com/news/technology-32033766.

[2] Libelium, “Wireless sensor networks to control radiation levels,”
http://www.libelium.com/wireless_sensor_networks_to_control_radiation_levels_g
eiger_counters/.

[3] H. S. N. Lab, “Volcano monitoring,” http://www.cs.harvard.edu/~mdw/talks/fiji-
buffalo-oct07.pdf

[4] A. A. Abbasi and M. Younis, “A survey on clustering algorithms for wireless
sensor networks,” Comput. Commun., vol. 30, pp. 2826–2841, 2007.

[5] S. Soro and W. B. Heinzelman, “Prolonging the lifetime of wireless sensor
networks via prolonging the lifetime of wireless sensor networks via,” 19th IEEE
Int. Parallel Distrib. Process. Symp., 2005.

[6] W. B. Heinzelman, a. P. Chandrakasan, and H. Balakrishnan, “An application-
specific protocol architecture for wireless microsensor networks,” IEEE Trans.
Wirel. Commun., vol. 1, no. 4, pp. 660–670, 2002.

[7] M. Kowshalya, “Clustering algorithms for heterogeneous wireless sensor networks
- a brief survey,” Int. J. Ad hoc, Sens. Ubiquitous Comput., vol. 2, no. 3, pp. 57–
69, 2011.

[8] V.-O. Sai, C.-S. Shieh, T.-T. Nguyen, Y.-C. Lin, M.-F. Horng, and Q.-D. Le,
“Parallel firefly algorithm for localization algorithm in wireless sensor network,”
2015 Third Int. Conf. Robot. Vis. Signal Process., pp. 300–305, 2015.

[9] A. I. Khan, M. Isreb, and R. S. Spindler, “A parallel distributed application of the
wireless sensor network,” 2004. Proceedings. Seventh Int. Conf. High Perform.
Comput. Grid Asia Pacific Reg., pp. 81–88, 2004.

[10] I. Bahceci, G. Al-Regib, and Y. Altunbasak, “Parallel distributed detection for
wireless sensor networks: performance analysis and design,” GLOBECOM 05
IEEE Glob. Telecommun. Conf. 2005, vol. 4, p. 5 pp.–2424, 2005.

[11] J. Chempavathy and V. Vijayaraja, “Optimizing parallel concentric circle itinerary
based KNN query processing in wireless sensor networks,” Proc. 2nd Int. Conf.
Trendz Inf. Sci. Comput. TISC-2010, pp. 226–229, 2010.

22	

	

[12] M. Lounis, A. Laga, and B. Pottier, “GPU-based parallel computing of energy
consumption in wireless sensor networks,” Eur. Conf. Networks Commun., pp.
295–300, 2015.

[13] Y. Gu and Q. Wu, “Optimization of cluster heads for energy efficiency in large-
scale wireless sensor networks,” Lect. Notes Inst. Comput. Sci. Soc. Telecommun.
Eng., vol. 28 LNICST, pp. 33–48, 2010.

[14] Y. Gu, Q. Wu, X. Cai, and J. Bond, “On efficient deployment of high-end sensors
in large-scale heterogeneous WSNs,” 2009 IEEE 6th Int. Conf. Mob. Adhoc Sens.
Syst. MASS ’09, pp. 912–917, 2009.

