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ABSTRACT 

The purpose of this study was to evaluate the strengths and weaknesses of 

psychometric models such as Classical Test Theory (CTT), Item Response Theory (IRT), 

and Testlet Response Theory (TRT) as well as test items of a fifth grade reading 

comprehension test with a large data set (N = 10,897).  The reading comprehension test 

contained 22 items with 7 passages along with 4 areas of reading standards of literature 

(RL), reading standards of informational text (RI), reading standards of foundation skills 

(RF), and language standards (L) of Common Core State Standards (CCSS).  The 22-item 

showed a good internal consistency reliability index with the Cronbach’s alpha of .79.  

The exploratory factor analysis (EFA) confirmed that the data could be analyzed with the 

traditional IRT analyses because the data showed a unidimensional solution.  The model 

comparison criteria (-2LL, AIC, and BIC) revealed that the 3PLM was the best-fitting 

model for the data when compared with 1PLM and 2PLM.  Comparisons of the results 

from CTT and 3PLM addressed the advantages of IRT over CTT with more item 

information (a, b, c-parameter estimates) along with detailed understandings of the item 

parameters for specific students’ ability levels.  The -2LL, AIC, BIC illustrated that local 

item dependence (LID) among test items was minimal in the 5th grade reading 

comprehension test so unidimensional IRT was more appropriate than the TRT models.  

However, several testlet variances from the generalized TRT model indicated that the 

testlet effects were not negligible (�����= 0.18, �����= 0.19, and �����= 0.06).  The 3PLM, 

constrained TRT, and generalized TRT models provided consistent ability estimations 

with a mean of 0.00 and standard deviation of 1.00.  Two item parameter estimates (a and 
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c-parameters) except the item difficulty parameter (bi) were highly correlated among 

3PLM and two TRT models.  The b-parameters were associated with the estimated testlet 

mean.  In this study, comparisons of psychometric models and test item parameters 

among CTT, IRT and TRTs on a reading comprehension test are meaningful for both 

researchers and practitioners to achieve the precise evaluation of a reading 

comprehension test. 

Keywords: Psychometric models, CTT, IRT, TRT, item discrimination, item difficulty, and 

pseudo-chance parameter 
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CHAPTER ONE:  INTRODUCTION 

According to reports of the National Assessment of Educational Progress (NAEP), 

a total of 32% of students in 4th grade and 22% in 8th grade read below the basic level 

(National Center for Education Statistics, 2013).  It is crucial that students read at their 

grade-level or better because without adequate reading comprehension skills, students 

may struggle in many subject areas including science, social studies, and math (Neufeld, 

2005).  Problems related to a lack of reading comprehension will not stop after 

graduating from high school; it will continue even in college.  College students are asked 

to comprehend what they read on scientific journals, textbooks, or magazines (Pritchard, 

Wilson, & Yamnitz, 2007).  However, various reports have confirmed that many college 

students rarely have the ability to comprehend increasing complexity in texts (Common 

Core State Standards, 2014; Heller & Greenleaf, 2007).  Lower reading proficiency may 

significantly impact students’ academic success, careers, and life in general.  

Reading comprehension has been a major research topic in literacy.  Durkin (1993) 

described that comprehension was the ultimate goal of all activities related to reading, 

which was an intentional manner in order to construct meaning of a text.  Researchers 

have used different definitions for reading comprehension to emphasize various skills and 

activities.  De Corte, Verschaffel, and Van De Ven (2001) defined reading 

comprehension as activities of understanding, interpreting, and constructing meaning 

through a variety of student-related, text-related, and  environmental factors.  

Comprehension may be considered as a complex process by consisting of various 

language skills and activities rather than by a single construct.  Phonological processes, 
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orthographic awareness, and oral language proficiency including vocabulary and 

grammatical knowledge have been considered to be main factors that affect reading 

comprehension. 

Hoover and Gough (1990) conceptualized the simple view of reading (SVR), a 

theory that focused on decoding and linguistic comprehension as the primary factors that 

comprised reading comprehension.  The skill of decoding is the ability to “read isolated 

words quickly, accurately, and silently” in terms of word recognition in alphabetic 

orthography (Gough & Tunmer, 1986, p.7).  Another constituent in SVR is linguistic 

comprehension which consists of discourse skills that construct meaning from texts and 

monitor comprehension (Oakhill & Cain, 2011).  Syntactic (grammatical structure) and 

semantic (meaning of vocabulary) skills are required to build linguistic comprehension 

(Mutter, Hulme, Snowling, & Stevenson, 2004).  The strength of the relationship between 

decoding and reading comprehension or between linguistic comprehension and reading 

comprehension changes over time.  For early grade school students, decoding is a more 

important skill for comprehension than linguistic comprehension.  However, linguistic 

comprehension becomes more important to reading comprehension than decoding later in 

development, when a student’s decoding ability is not significantly different among 

students (Adlof, Catts, & Little, 2006; Curtis, 1980). 

Theoretical models of reading comprehension 

There are other models in reading in addition to SVR that provide more details 

about the process of reading comprehension.  The construction-integration model 
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(Kintsch, 1998) and the sociocultural context theory are two additional major reading 

models.  The construction-integration (C-I) model highlights the importance of two 

cognitive processes to attain deeper understanding of the text: Construction and 

integration (Kintsch, 1998).  Construction is a stage of building several possible 

interpretations of text-based information.  Integration is a stage that selects the most 

plausible interpretations based on prior knowledge or the reader’s experience.  In order to 

build higher-order comprehension, three levels of processing are required.  The first one 

is the surface level known as decoding in SVR that recognizes words from the text.  The 

second is at a text-based level which allows for a reader to access possible meanings of 

the text using a linkage through propositions.  In this step, syntactic and semantic 

knowledge helps a reader form the coherent understanding of the sentence.  The last level 

is to build inferences based on prior knowledge or experience.  Prior knowledge plays a 

critical role in enhancing a deeper comprehension (Fisher & Frey, 2009; Stahl, Hare, 

Sinatra, & Gregory, 1991).  

While a cognitive perspective on reading comprehension highlights a process of 

constructing and integrating meaning, sociocultural theory emphasizes the importance of 

interactions among three dimensions (the reader, text, and activity) beyond the 

importance of internal cognitive process to build a meaning of text.  The RAND Reading 

Study Group (RRSG) also depicts the importance of interaction among these three 

elements for defining reading comprehension as the extracting and constructing processes 

(Snow & Sweet, 2003).  According to Vygotsky (1978), children learn through 

interactions with parents, siblings, teachers, and their environment. In sociocultural 
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theory, motivation for reading and discussion in the classroom plays a crucial role in 

reading comprehension. 

With many different models and theories of reading comprehension, it is difficult 

to unify reading comprehension skills and activities from these various models.  Only 

some shared reading comprehension skills can be presented.  Reading comprehension 

involves interpreting information from a written text using prior knowledge and 

constructing a coherent mental representation (Duke, 2005).  Skilled readers have an 

automatic process of interpreting written text without having to decode words, understand 

sentences, make inferences, draw connections between the text and prior knowledge, and 

identify themes (Kendeou, van den Broek, White, & Lynch, 2007).  

In order to describe the skills and knowledge for academic success as well as 

college and career readiness, Common Core State Standards (CCSS) as academic 

benchmarks have been established in 45 states (www. corestandards.org, 2013).  

Formative assessment may be a key component of the CCSS from Kindergarten through 

12th grade, which contains grade-level expectations of complex skills and knowledge in 

English language arts (ELA) and math.  The CCSS was developed in order to provide 

uniform standards across all states for students’ readiness in the areas for English 

language arts as well as other subjects such as history, social sciences, and science.  The 

ELA of CCSS focuses on text complexity and the developmental growth of reading 

comprehension.  In this framework, reading comprehension tests should contain factors 

such as: Understanding key ideas and details, integrating knowledge and ideas, and 

constructing an author's craft and structure (CCSS, 2014).  CCSS can help educators 



5 

 

 
 

develop instructional goals and objectives for students in each grade level.  Any reading 

comprehension tests developed to test students’ reading abilities can follow the structure 

and guidelines of CCSS. 

Assessment of reading comprehension 

Assessing reading comprehension based on different comprehension models 

offers many challenges due to the number of cognitive processes involved in the models, 

such as recognizing individual words, constructing meaning, activating prior knowledge, 

and generating inferences (Paris & Stahl, 2005).  The accurate assessment of a construct 

is a vital step in research, diagnosis, and prediction in any field of study.  Reading 

assessment is not an exception.  The appropriate assessment of reading comprehension 

plays a key role in a broad purpose of educational planning and evaluation.  In addition, 

assessment may help increase our understanding about the construct of reading 

comprehension and may provide resources for instructional decision-making for 

administrators, teachers, and parents.  However, it may not be possible to fully describe 

the construct of reading comprehension because the construct itself may not be 

unidimensional and cannot be measured with 100% accuracy.  Since some common skills 

of reading are shared by different types of comprehension tests, it is worth investigating 

conjoint aspects of reading comprehension with diverse assessment tools (Duke, 2005). 

Since Binet (Binet & Simon, 1916; cited in Johnston, 1984) used reading 

comprehension test items in 1895 as a part of his intelligence quotient (IQ) battery, many 

researchers have dedicated themselves to develop reading comprehension assessments 
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with sound psychometric indices such as reliability, validity, and efficacy (Johnson & 

Pearson, 1975) as well as consistent assessments of reading comprehension constructs 

(Keenon, Betjemann, & Olson, 2008).  However, there is still a lack of coherent and 

comprehensive research strategies investigating the shared skills of reading 

comprehension.  Kintsch and Kintsch (2005) criticized different reading comprehension 

tests for their lack of understanding about theoretical process of reading comprehension. 

The RRSG also addressed several complaints in assessing reading comprehension; most 

comprehension assessments failed to evaluate the complexity of the target construct, 

reflect developmental sensitivity in reading comprehension, and address minimal criteria 

for reliability and validity (Sweet, 2005).  

The demand for an accurate assessment of comprehension is high, especially due 

to various political and societal mandates such as the No Child Left Behind Act of 2001 

(NCLB) and Response to Intervention (RTI).  It is difficult to accurately and reliably 

measure students’ reading skills with high standards in the assessment of reading 

comprehension (Pearson & Hamm, 2005; Sweet, 2005) because reading comprehension 

is a complex process with multidimensional constructs.  Cuttting and Scarborough (2006) 

found that unique contributions of word recognition and language proficiency varied 

across three reading comprehension subtests from the Gates-MacGinitie Reading Test-

Revised (G-M; MacGinitie, MacGinitie, Maria, & Dreyer, 2000), the Gray Oral Reading 

Test-Third Edition (GORT-3; Wiederholt & Bryant, 1992), and Wechsler Individual 

Achievement Test (WIAT; Wechsler, 1992).  Keenan, Betjemann, and Olson (2008) also 

demonstrated that the contributions of decoding and linguistic comprehension differed for 
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different types of reading comprehension tests such as the GORT, Qualitative Reading 

Inventory (QRI), Woodcock-Johnson Passage Comprehension subtest (WJPC), and 

Peabody Individual Achievement Test (PIAT).  Various tests measure different aspects of 

reading comprehension skills even though most tests are developed to assess the same 

skill.  Duke (2005) suggested that researchers and educators should make priorities in 

assessing reading comprehension because all students cannot be assessed by all domains 

of comprehension in practice. 

Psychometric theories 

In order to scientifically evaluate diverse reading comprehension assessment tools 

and prioritize different domains of reading comprehension constructs, one must utilize 

psychometric methods and indices such as reliability, validity, and other item and test 

statistics which may provide criteria to evaluate various reading comprehension tests.  

Most standardized assessments are considered valid and reliable measures because items 

are selected to maximize reliability and criterion validity (Carpenter & Paris, 2005).  

Although numerous reliability and validity indices have been proposed by different 

statisticians in educational assessments, these indices are based on the measurement of 

whole test following the Classical Test Theory (CTT).  Thus, it is possible that a test with 

high reliability and validity index may contain several items with poor item 

characteristics.  Although CTT has a few item indices such as the p-value (item difficulty 

index) and d-value (item discrimination index), the main purpose of CTT is test-oriented 

indices (e.g., reliability and validity, Hambleton & van der Linden, 1982). 
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CTT, developed by Spearman (1904), has dominated psychometrics for more than 

half the 20th century. However, CTT has both theoretical and practical issues.  

Theoretically, observed scores are decomposed by two independent components, true-

score and error-score.  In this framework, the true-score component for an individual is 

defined simply in terms of the expected value of an individual’s scores on the assessment 

that can be estimated through repeated assessments on the same instrument under 

identical conditions, which is impossible in practice.  Thus, the CTT paradigm is a 

tautology which cannot be proved or disproved with empirical data (Hambleton & van 

der Linden, 1982).  In addition, there are several practical shortcomings with CTT. 

Person statistics (i.e., ability or observed scores) are test-dependent, and item statistics 

(i.e., item difficulty and item discrimination) are dependent on sample groups.  The 

parallel-test assumption and equal standard error of measurement assumption are other 

shortcomings of CTT, which are almost impossible to meet in practice (Lord, 1984).  The 

final shortcoming is that CTT is test-oriented rather than item-oriented. A true score from 

a test does not provide any information on how examinees answer a given item.  

Proposed by Lord (1952) and Birnbaum (1968) among others, item response 

theory (IRT) offered the possibility of resolving the shortcomings of CTT.  One 

theoretical advantage of IRT over CTT is that falsifiable mathematical models can be 

determined through empirical data for various situations.  IRT makes it possible to 

investigate the model-data fit with diverse stochastic distributions.  Once the model-data 

fit is evaluated and an appropriate mathematical model is selected, then estimations for 

person and item parameters can be obtained through different estimation methods.  The 
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IRT estimations will yield invariant person and item parameters across different tests and 

populations. IRT mainly focuses on the item-level estimation instead of test-level indices.  

According to Hambleton, Swaminathan, and Rogers (1991):  

IRT rests on two basic postulates: a) the performance of an examinee on a test 

item can be predicted (or explained) by a set of factors called traits, latent traits, 

or abilities; and b) the relationship between examinee’s item performance and the 

set of traits underlying item performance can be described by a monotonically 

increasing function called an item characteristic function or item characteristic 

curve. This function specifies that as the level of the trait increases, the 

probability of a correct response increases. (p. 7) 

There are two main streams in IRT models: Normal ogive models and logistic models. 

Lord (1952) proposed three normal ogive models with 1, 2, and 3 parameters.  Later, 

Birnbaum (1968) demonstrated that logistic models could compute very similar 

probabilities compared with normal ogive models.  The logistic model is simpler in 

mathematical forms than the normal ogive models, so it is often preferred.  The most 

general three-parameter logistic model (3PLM) can be expressed as, 

P (�	
 = 1) = �
 + (1 - �
) 
�

�
 ���.��� (��� ��),                      (1) 

where P (�	
 = 1) is the probability that an examinee (i) with ability (θ) answers item 

j correctly, �
is the lower-asymptote parameter known as the pseudo-chance 

parameter of item j, �
 is the item discrimination parameter, �
 is the item difficulty 

parameter, and 1.7 is a constant to make the 2- and 3-logistic models similar to the 

normal ogive models.  The lower-asymptote parameter allows for examinees with 

low ability (θ) to answer a correct response by guessing only.  The 2PLM can be said 
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to be a special case of 3PLM where the c-parameter is released, and the 1PLM is a 

special case of 2PLM where the a-parameter is fixed to 1.  The 2PLM can be used in 

a situation where guessing is minimized due to no alternatives in each item (short-

answer items).  The 1PLM may be appropriate for a set of items with the same item 

discrimination value.  

When estimating both person and item parameters, two groups of estimation 

methods can be utilized: Maximum Likelihood Estimation (MLE) and Bayesian 

Estimation.  The Maximum Likelihood method is employed to find the highest point of 

the likelihood function of the binomial distribution for both the person and item 

parameters (Kim & Nicewander, 1993).  The Bayesian methods can apply the prior 

distributions of the ability and item characteristics to the computation of the posterior 

probabilities of the estimated parameters (Bock & Aiken, 1981).  The Maximum-a-

Posteriori (MAP) and Expected-a-Posteriori (EAP) are some examples of the Bayesian 

methods (Bock & Mislevy, 1982, Samejima, 1969).   

In order to estimate item parameters using the IRT models, two major 

assumptions should be satisfied: Local independence and unidimensionality.  The 

unidimensionality assumption stipulates that the items in a test should measure only one 

dimension of a trait.  This assumption can be easily met if items are carefully constructed 

with one specific trait in mind.  The local independence assumption states that the 

probabilities of answering items correctly are independent of each other given the 

examinee’s ability.  However, most reading comprehension tests have items which are 

grouped with a common passage.  These items in a common passage may be locally 
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dependent.  Local item dependence (LID) may occur by “item interaction” (Tuerlinckx & 

De Boeck, 2001).  It may also occur by many other factors including learning, cheating, 

fatigue, carelessness, etc. (Hambleton, Swaminathan, & Rogers, 1991).  Tuerlinckx and 

De Boeck found that a positive correlation between items produced overestimated item 

parameters, and a negative correlation yielded underestimated item parameters.  

Generally, LID shows a propensity to provide an overestimate of the measurement’s 

precision (Bradlow, Wainer, & Wang, 1999) as well as inflated item discrimination and 

item difficulty parameter estimates (Yen, 1984).  However, LID affects test reliability in 

CTT to make it overestimated (DeMars, 2006).  The different strength of LID makes the 

differences in reliability estimates (Gessaroli & Folske, 2002). 

A set of test items grouped in a common passage is named as testlet by Wainer 

and Kiely (1987).  Items within a testlet have been a prevalent and useful element of 

reading comprehension tests even though the use of IRT estimation methods is limitedly 

applied due to the presence of LID (Wainer, Bradlow, & Wang, 2007).  In order to 

resolve the violation of the local independence assumption, several psychometricians 

have proposed diverse testlet response theory (TRT) models (e.g., Bradlow, Wainer, & 

Wang, 1999; Wainer, Bradlow, & Du, 2000).  In all of these models, the testlet effect 

parameter is inserted as an adjustment to the basic models of IRT.  The 3PL random-

effect TRT model which is constrained by item discrimination parameter (Bradlow, 

Wainer, & Wang; Demars, 2012; Wainer, Bradlow, & Wang) for dichotomous responses 

can be described as, 



12 

 

 
 

P (�	
 = 1) = �
 + (1 - �
) 
�

�
 ���.��� (��� ��� ���(�)),                          (2) 

where  �	 (
)represents the testlet effect of item j with examinee i within d(j) which 

indicates jth passage.  In this constrained TRT model, the testlet parameter (�	 (
)) 

contains the covariance effect among items within a testlet.  As one can see from 

Equation (2), a single item discrimination parameter (a-parameter) affects all of the item 

difficulty parameter, examinee ability, and testlet parameter.  In this model, item 

discrimination parameter cannot be interpreted independently from examinee ability, item 

difficulty, and testlet parameter (Li, Bolt, & Fu, 2006).  However, in reality, the effect of 

item discrimination parameter may not be constant to all other parameters.  For example, 

an item with high item discrimination parameter value on an examinee’s ability may 

show poor item discrimination parameter value on the testlet parameter in a reading 

passage.  In order to address this limitation, the generalized 3PL TRT model (Li, Bolt, & 

Fu) was proposed which formulated two separate item discrimination parameters on 

person and testlet parameter, respectively as,     

P (�	
 = 1) = �
 + (1 - �
) 
�

�
 ���.� (������ ��� �!� ���(�)),                                  (3) 

where ��
 is the item discrimination parameter for examinees’ abilities (θ	) and ��
 is the 

item discrimination for testlet effects (�	 (
)).  Notice that the b-parameter is not 

associated with any item discrimination parameter.  In order to fully utilize the 

advantages of IRT models over CTT, these two testlet models warrant further 

investigations for empirical data, especially with the reading comprehension assessment 
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where items stem from the same passage.  The advantages of TRT over the traditional 

IRT can be tested using a few criteria including the 
2χ -test with -2LL (Log-Likelihood), 

AIC (Akaike information criterion; Akaike, 1973), and BIC (Bayesian information 

criterion; Schwarz, 1978).  Estimated item parameters along with item and test 

information were also used to compare different IRT and TRT models. 

Purpose of the study 

The purpose of this study was to evaluate psychometric models such as CTT, 

traditional IRT, and TRT models on a reading comprehension test constructed on the 

basis of CCSS.  The test contained the items about key ideas, meaning of words, 

integration of knowledge, and comprehension of text complexity that was developed by a 

for-profit educational assessment company as a benchmark measurement.  For this 

research goal, firstly, the CTT model was applied to the data for both item and test 

indices including the p-value, item discrimination index, item-test correlation, 

Cronbach’s alpha, and a construct validity estimate utilizing exploratory factor analysis 

(EFA).  The traditional IRT models (1PL, 2PL, and 3PL) were applied to obtain item 

parameters such as item discrimination, item difficulty, and pseudo-chance parameters.  

Secondly, the model-data fit for each IRT model was investigated and compared among 

the three IRT models with the model comparison criteria (-2LL, AIC, BIC).  Once the 

best-fitting IRT model is selected, then two TRT models (constrained TRT and 

generalized TRT) would be employed for discerning efficiency of each TRT model.  The 

estimated item parameters and the testlet parameters along with item and test information 
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were computed and compared.  The similarities and dissimilarities between CTT and IRT, 

and between IRT and TRT were discussed in conjunction with previous findings. 
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CHAPTER TWO: REVIEW OF LITERATURE 

This chapter will review various theoretical reading comprehension models as a 

foundation for the current investigation of psychometric validation of a reading 

assessment in order to benchmark reading comprehension test among fifth graders.  

Reading comprehension models 

Diverse reading comprehension models contain different multidimensional 

cognitive and linguistic skills in readings based on different perspectives.  Reading 

comprehension models have been developed with the perceptual processing of “bottom-

up” or “top-down.”  The bottom-up process suggests reading comprehension to start with 

word recognition from a text and moves upward to comprehension.  On the other hand, 

the top-down method starts with prior knowledge and experience in reading and 

proceeding downward to word recognition.  Word identification and linguistic 

comprehension are two main reading processes.  

Gough and Tunmer (1986) proposed that reading comprehension is a product of 

decoding and linguistic comprehension.  Decoding, defined as word recognition from a 

written text, is measured by the accuracy of word and non-word reading.  The skill of 

decoding is central in reading.  If children have the ability to decode automatized, they 

are enabled to use higher level of cognitive resources without efforts to comprehend a 

text (Cain, Oakhill, & Bryant, 2004).  In other words, reading comprehension will be 

compromised by inefficient decoding skills when texts are longer or more complex.  At 

the primary level of learning to read, decoding is considered to be the foundation of 
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reading.  For later reading comprehension development, or periods of reading to learn, 

linguistic comprehension is more emphasized with a wide range of texts.  In the research 

by Gough and Tunmer (1986), decoding skill was described as the aspect of word 

recognition.  Word recognition is influenced by phonological and orthographical skills 

(Henderson, 1982; Plaut, 2005).  Phonological awareness refers to the ability to recognize, 

distinguish, and manipulate separate sounds.  Phonological skills are strongly associated 

with word-reading development (e.g., Bradely & Bryant, 1983; Wagner & Torgesen, 

1987).  Phonological processing deficits can impair the ability to retain verbal 

information in working memory (Shankweiler, 1989).  Siegel (1993) demonstrated that 

phonological knowledge would enable children to divide whole sounds into its smallest 

units.  The knowledge of phoneme and grapheme aids to associate those units of sound 

with a letter.  The orthographic knowledge helps to access or recognize a word directly in 

lexical memory (Cunningham, Perry, & Stanovich, 2001).  

Linguistic comprehension, defined as the ability to interpret phrases and texts 

from lexical information, is measured using comprehension questions administered after 

listening to or reading a printed text.  This definition is similar to reading comprehension 

which is measured by only printed texts.  According to the SVR, linguistic 

comprehension is measured with parallel methods with reading comprehension.  When 

assessments are not parallel, differences between written and oral texts, such as 

complexity of grammatical structures could produce differences in results of reading and 

linguistic comprehension (Kershaw & Schatschneider, 2012).  
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Curtis (1980) found that decoding and linguistic comprehension were significant 

predictors of reading comprehension.  Poor readers at kindergarten through 4th grade 

were struggling with both decoding skills and linguistic comprehension, or with one of 

these components (Catts, Hogan, & Fey, 2003).  Thus, it is evident that decoding and 

linguistic comprehension are strongly correlated to reading comprehension (e.g., Juel, 

Griffith, & Gough, 1986).  Decoding allows readers to access the meaning of words. This 

semantic knowledge is essential for comprehension.  Syntactic knowledge enables 

readers to assign a grammatical function to words within sentences.  Semantics have been 

found to be one of the best predictors of reading comprehension (e.g., Carroll, 1993, 

Thorndike, 1973).  Semantic skills include one’s knowledge of word meaning as well as 

the efficiency of retrieving the meaning of a word.  Comprehension of written and spoken 

language is dependent on an individual’s knowledge of vocabulary (McGregor, 2004).  

Thorndike (1973) found a strong relationship between comprehension and vocabulary 

knowledge.  Seigneuric and Ehrlich (2005) also revealed a reciprocal association between 

vocabulary and comprehension skills.  In their study, the reading comprehension of first-

grade students was found to be accounting for 10% of variability in second-grade 

vocabulary and 15% of the variability in third-grade vocabulary.  Syntactic knowledge 

helps children detect reading errors and enhance comprehension monitoring as well as aid 

in word recognition (Tunmer & Hoover, 1992).  Semantic and syntactic knowledge 

serves as cue for the construction of meaning with certain predictions about sentence 

structures, which will enhance children’s reading comprehension. 
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A number of other theories about reading comprehension exist in which different 

parts of the reading process are described. In the view point of cognitive theories, reading 

comprehension is the outcome in terms of mental representations.  One of the most 

influential cognitive theories is the C-I model by Kintsch (1998).  This model describes 

the reading process from recognizing words to constructing a representation of the 

meaning of the text.  Comprehension processes result in three levels of mental 

representation.  The first is the surface level of representation which is a word-for-word 

representation of the text.  The second is the proposition level of representation, in which 

the reader extracts the core ideas from the literal text.  In this level, the reader builds the 

text base by linking together the propositions.  The third is the situation model, also 

known as the mental model (Kintsch, 1998), which is the highest level of representation 

of the text’s meaning and represents the integrated situation described in a text.  Situation 

models describe the representation constructed when readers integrate and update what 

they already know about the topic into a more complex and holistic conceptualization of 

it.  Kintsch (1998) proposed that comprehension resulted from the process of construction 

and selection of meaning from a text.  The construction phase involves the formation of 

diverse meanings from a text followed by the selection (integration) of constructed 

meanings utilizing prior knowledge. 

Another influential model in reading comprehension is the sociocultural model. 

According to the model, reading comprehension process occurs between a reader, text, 

and the reading activity, within a range of sociocultural factors.  The RRSG (2002) 

emphasized that these elements are actively interrelated.  In the sociocultural context, 
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environmental factors include “economic resources, class membership, ethnicity, 

neighborhood, and school culture, can be seen in oral language practices, in students self-

concepts, in the types of literacy activities in which individuals engage, in instructional 

history, and of course in the likelihood of successful outcomes (p.7)” (RRSG, 2002).  The 

RRSG addressed three categories as the outcomes of reading comprehension: Knowledge, 

application, and engagement (Sweet, 2005).  Knowledge indicates the process of 

successful comprehension of a text with integration and evaluation using prior knowledge.  

Application is the act of applying practical tasks.  Engagement is the manner of reflecting 

with knowledge, experience, ideas, and information of a text.   

These various reading comprehension models have been proposed as an effort to 

enhance our understanding of the construct and process of reading comprehension.  In 

order to have a better understanding the constituents, well-developed test items which 

represent target domains of reading comprehension are necessary.  However, many 

current comprehension tests fail to reflect the nature and characteristics of reading 

comprehension due to the interaction of a variety of component processes and skills 

(Kintsch & Kintsch, 2005).  A practical guideline was developed by state leaders and the 

Council of Chief State School Officers (CCSSO) as CCSS to direct all grade level 

students in both ELA and mathematics (http://www.corestandards.org).  

Common Core State Standards 

The CCSS for ELA provides guidance and structure for reading curriculum for all 

grade levels.  The CCSS (2014) were established with a focus on defining general and 
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cross-disciplinary goals that students must meet in order to prepare for college and career 

readiness.  Each grade level has standards that are broken into specific areas of focus in 

order to achieve various goals.  Elementary school goals are anchor standards, 

foundational skills, informational text, writing, speaking, and listening (CCSS, 2014).  

Secondary school standards also include a focus on history and social studies, science and 

technical skills, and a deeper look at writing.  

Policymakers concluded that creating common educational standards and 

increasing rigor in schools to prepare all students for college or career readiness in the 

21st century were vital if the United States was to strive for and surpass educational 

excellence (http://www.corestandards.org, 2014).  Since the initial discussion for 

developing common standards in 2008, the Common Core has been adopted by forty-

three states and the District of Columbia, four territories, and the Department of Defense 

Education Activity (http://www.corestandards.org/about-the-standards/development-

process).  The effort to draft common standards was launched in 2009.  The National 

Governors Association (NGA) and the Council of Chief State Scholl Officers (CCSSO) 

led to the initiative with guidance from an advisory group to help states raise academic 

standards.  In 2010, NGA and CCSSO released the CCSS as an academic benchmark to 

define the knowledge and skills for college and career readiness.  The CCSS contains 

mainly two categories (www. corestandards.org).  The first is for college and career 

readiness that students are required to understand and know by their graduation from high 

school.  The second category comprises standards that K-12 students are expected to 

acquire literacy skills through high school.  
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The guideline by the CCSS for ELA highlights formative assessments on the 

continuum of developmental progress in reading.  The key endeavor of the CCSS is to 

provide reliable and consistent standards in literacy complexity for all grade levels. The 

CCSS for ELA and other subjects define the expectations by each grade level.  The 

standards for reading describe four key dimensions and ten sub-skills (CCSS, 2014):   

Key Ideas and Details  

1. Read closely to determine what the text says explicitly and to make logical 

inferences from it; cite specific textual evidence when writing or speaking to 

support conclusions drawn from the text.  

2. Determine central ideas or themes of a text and analyze their development; 

summarize the key supporting details and ideas. 

3. Analyze how and why individuals, events, and ideas develop and interact over 

the course of a text. 

Craft and Structure 

4. Interpret words and phrases as they are used in a text, including determining 

technical, connotative, and figurative meanings, and analyze how specific word 

choices shape meaning or tone. 

5. Analyze the structure of texts, including how specific sentences, paragraphs, 

and larger portions of the text (e.g., a section, chapter, scene, or stanza) relate to 

each other and the whole. 

6. Assess how point of view or purpose shapes the content and style of a text. 

Integration of Knowledge and Ideas 

7. Integrate and evaluate content presented in diverse media and formats, 

including visually and quantitatively, as well as in words. 

8. Delineate and evaluate the argument and specific claims in a text, including the 

validity of the reasoning as well as the relevance and sufficiency of the evidence. 

9. Analyze how two or more texts address similar themes or topics in order to 

build knowledge or to compare the approaches the authors take. 

Range of Reading and Level of Text Complexity 
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10. Read and comprehend complex literary and informational texts independently 

and proficiently (p. 10). 

According to Appendix A (http://www.corestandards.org/assets/Appendix_A.pdf, p. 5-6), 

the CCSS have multiple categories and steps in terms of structure, language 

conventionality, and diverse knowledge demands for both qualitative and quantitative 

measures.  The structure can develop from a simple structure to a complex one, from 

explicit to implicit, from conventional to unconventional, from chronological to non-

chronological, from common genre to particular discipline, from simple graphics to 

sophisticated graphics, and from supplementary to essential graphics.  Language 

conventionality can change from literal to figurative or ironic, from clear to ambiguous, 

from contemporary or familiar to archaic or unfamiliar, from conversational to academic 

and domain-specific.  Diverse knowledge demands also have different categories.  Life 

experiences can progress from simple to complex themes, single to multiple themes, from 

common to unique experiences, from single to multiple perspectives and from one’s own 

experience to another’s.  Cultural and literacy knowledge demands may grow from 

everyday knowledge to useful cultural and literacy knowledge and from low 

intertextuality to high intertextuality for both literal texts and informational texts.  These 

categories and steps can be used as assessment guidelines to gauge a students’ 

performance. 

Assessment of reading comprehension  

Researchers and educators are increasingly calling for reliable and valid 

assessments that reflect children’s progress towards reading comprehension benchmarks.   
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Large-scale assessments of reading comprehension have been used for monitoring large 

numbers of students and evaluating educational programs.  However, large-scale 

assessments are often criticized due to a lack of theoretical underpinnings (Snow, 2003).  

Snow addressed that it is hard to achieve construct validity because the target domain of 

reading comprehension is complex and multidimensional.  However, most 

comprehension assessments which are commonly used for research and diagnosis reflect 

a single dimension.  A unidimensional test does not fully represent the construct the test 

is trying to measure.  

In order to establish a clear understanding of reading comprehension, one must 

recognize the process and outcome of reading comprehension assessment because 

without accurate assessments of the process, other predictions and diagnoses will be 

inaccurate.  The assessment of reading comprehension should be understood through the 

theories of educational measurement.  The area of psychometrics describes both 

theoretical and practical principles and issues.  Thus, one must understand the basic test 

theories of psychometrics.  There are two main streams in psychometrics: Classical test 

theory (CTT) and item response theory (IRT).  The two theories of psychometrics 

warrant more detailed descriptions.  

Classical Test Theory (CTT) 

Measurement theory was originally developed in the early 20th century from the 

work of Spearman (1904).  Spearman measured individual differences in mental abilities. 

Since then, CTT has been widely used in many research areas.  The fundamental feature 
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of CTT is the formulation of an observed outcome (Xip) as a composite of two 

independent components, an underlying true-score component (Tip) and measurement 

error (Eip):  

Xip = Tip + Eip.                                        (4) 

In this framework, the true score (T) for item i and person p is defined as the expected 

value of an individual's observed scores (X) on the repeated assessments with the same 

instrument to the same examinee under an identical condition.  There are several 

assumptions in CTT (Allen & Yen, 2002).  First, the expected value of observed scores is 

the true score.  The expected value of error scores in the population is zero and the error 

scores are normally distributed.  Second, there is no correlation between the true and 

error scores.  Third, the error scores from two different tests are not correlated.  Fourth, 

there is no correlation between the true score from Test 1 and the error score from the 

Test 2 in the population.  The fifth assumption is that parallel tests exist.  The conditions 

for parallel tests are that the two tests have the same true scores (T1 = T2) and that the two 

error score variances are identical (�#�
�  = �#!

� ).  The last assumption of CTT is the 

existence of τ-equivalent tests.  The τ-equivalent tests assumption requires T1 = T2 + C 

(constant).  The equal error variance condition does not apply to the τ-equivalent tests 

assumption.  

As indicated in the introduction, CTT is a measurement model on the observed 

scores, which cannot be proved or disproved with actual data.  The true score (Tip) for 

item i and person p as the expected value of observed scores, E(Xip), for item i and person 
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p is impossible to define in practice and should administer the same test to the same 

person infinitely many times in order to compute the expected value from infinitely many 

observed scores of the person.  Thus, testing to see if whether the CTT model is true with 

data in practice is impossible.  If the same test is given to the same person for the second 

time, there will be numerous factors which may affect the observed scores other than 

measurement error (Embretson & Reise, 2000).  

In addition to this theoretical weakness, CTT also has several practical issues. The 

person’s true score (person parameter) is test-dependent.  For an easy test, the person’s 

true score is high; for a difficult test, the same person’s true score is low.  At the same 

time, item and test indices are sample-dependent.  For example, the item difficulty index 

(p-value) for item i will be high (easy item) if the item is given to a very high-ability 

group.  The same item’s p-value will be low (difficult item) if the item is given to a very 

low-ability group.  The assumption of parallel-test in CTT is extremely difficult, if not 

impossible, to meet in a real test construction setting.  Also, CTT is a test-oriented model 

instead of item-oriented.  Although some item indices are computed in the CTT analyses 

such as the p-value, d-value, and item-test correlation, the two main features of CTT are 

validity and reliability (Hambleton & van der Linden, 1982).  

There are several different types of validity: Content validity, criterion-related 

validity, and construct validity (Allen & Yen, 2002).  Content validity can be established 

through face validity and logical validity. Bollen (1989) defined content validity as “a 

qualitative type of validity where the domain of the concept is made clear and the analyst 

judges whether the measures fully represent the domain” (p.185).  Criterion-related 
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validity, including predictive validity and concurrent validity, is usually measured by the 

degree of relation between the test and the external criteria.  The Multitrait-Multimethod 

(MTMM) method and factor analysis are two types of construct validity estimation 

methods.  MTMM can provide the degree of convergent and discriminant validations 

(Campbell & Fiske, 1951).  Factor analysis is another often-used method for construct 

validity (Allen & Yen).  Construct validity is a validity of theoretical construct that can 

be established by psychometric methods such as exploratory factor analysis and MTMM. 

Different methods for defining and estimating reliability also exist.  Within CTT, 

reliability is defined as the ratio of the true score variance to the observed score variance.  

Test-retest, parallel-forms, alternate-forms, and internal-consistency (including the 

Spearman-Brown formula and Cronbach’s alpha) are ways to estimate reliability (Allen 

& Yen, 2002).  Test-retest reliability refers to the strength or weakness of correlation 

between two test results which are administered to the same examinees with the same test 

at different times.  Test-retest reliability estimate is affected by serious problems such as 

carry-over effect and the length of time interval between the two tests (Allen & Yen).  

Similar to the test-retest reliability, parallel-forms or alternate-forms reliability is 

measured by the correlation between two parallel tests or two τ -equivalent tests.  The 

criterion for parallel tests is that true scores and error variances of two tests should be 

identical, which is almost impossible to meet in practice.  The τ -equivalent tests require 

that the true score of one test should be a linear function of the true score of the other test 

and the error variances do not need to be identical.  Internal-consistency estimates are 

methods to test reliability with two divided parts of items from the same test.  Internal-
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consistency estimates have an advantage to avoid the problems with the repeated testing 

from the procedures of test-retest and parallel-forms reliability.  In the case of two 

subtests being parallel, the Spearman-Brown formula can be utilized to estimate internal 

consistency while Cronbach’s alpha can be used when two tests are τ-equivalent. 

There are several item indices in CTT including the p-value, d-value, and item-

test correlation (Allen & Yen, 2002).  The p-value, known as the item difficulty, can be 

computed by the proportion of the number of people who have the correct answer for 

item i and the total sample size.  The p-value ranges from 0 to 1. If an item has a p-value 

of either 1 or 0, this item is not very useful because these values indicate that all students 

got the item correct or incorrect.  It is desirable if the range of the p-value is between .30 

and .70.  The second item index in CTT is the d-value (item discrimination), which can 

be computed by:   

di = Ui/niU - Li/niL,                                  (5) 

where the Ui/niU represents the ratio of the proportion of examinees in the upper group 

who have the right answer for item i to the total number of examinees in the group.  The 

Li/niL is the proportion of examinees in the lower group who have the right answer for 

item i to the total number of examinees in the same group.  The sample size of the upper 

and lower group is the same or similar in many cases and ranges from 10% to 33% of the 

total sample.  The item-test correlation as an alternative method of item discrimination 

(d) can be computed as: 

$	% = 
%&'''( %'

)*  + ,�
�( ,�

 ,                                  (6) 
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where -./  is the mean of item i and  -' and 01 are the mean and standard deviation of the 

test. 2	 is the item difficulty index.  The point-biserial correlation ($	% ) provides the 

index of the association between each item and the test (Allen & Yen, 2002). 

Although CTT has several item-level indices, the main focus of CTT lies in test 

indices such as reliability and validity.  Theoretical and practical shortcomings and 

difficulties for interpreting item and test indices in CTT have been criticized in 

psychological and educational measurements (Hambleton & van der Linden, 1982).  Due 

to the issues and shortcomings of CTT, there was a call for a better psychometric theory.  

Item Response Theory (IRT) 

Unlike CTT, which has theoretical and practical problems with test-dependent 

person parameters, sample-dependent item parameters, and the parallel test assumption, a 

modern measurement theory known as IRT developed by Lord (1952) and Birnbaum 

(1968) offers many important advantages over CTT.  Embretson and Reise (2000) 

described benefits of utilizing IRT rather than CTT (p. 15);  

 

The old rules (CTT) 

Rule 1 
The standard error of measurement applies to all scores in a particular 

population. 

Rule 2 Longer tests are more reliable than shorter tests. 

Rule 3 
Comparing test scores across multiple forms is optimal when the forms 

are parallel. 

Rule 4 
Unbiased estimates of item properties depend on having representative 

samples. 

Rule 5 
Test scores obtain meaning by comparing their position in a norm 

group. 
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Rule 6 
Interval scale properties are achieved by obtaining normal score 

distributions. 

Rule 7 Mixed item formats leads to unbalanced impact on test total scores. 

Rule 8 
Change scores cannot be meaningfully compared when initial score 

levels differ. 

Rule 9 Factor analysis on binary items produces artifacts rather than factors. 

Rule 

10 

Item stimulus features are unimportant compared to psychometric 

properties. 

The new rules (IRT) 

Rule 1 
The standard error of measurement differs across scores (or response 

patterns), but generalizes across populations. 

Rule 2 Shorter tests can be more reliable than longer tests. 

Rule 3 
Comparing test scores across multiple forms is optimal when test 

difficulty levels vary between persons. 

Rule 4 
Unbiased estimates of item properties may be obtained from 

unrepresentative samples. 

Rule 5 
Test scores have meaning when they are compared for distance from 

items. 

Rule 6 
Interval scale properties are achieved by applying justifiable 

measurement models. 

Rule 7 Mixed item formats can yield optimal test scores. 

Rule 8 
Change scores can be meaningfully compared when initial score levels 

differ. 

Rule 9 
Factor analysis on raw item data yields a full information factor 

analysis. 

Rule 

10 

Item stimulus features can be directly related to psychometric 

properties. 

 

IRT focuses on the association between person parameter and item parameters in 

a test.  Lord (1980) also described IRT; 

We need to describe the items by item parameters and the examinees by examinee 

parameters in such a way that we can predict probabilistically the response of any 

examinee to any item. (p. 11)    

 

Traditional IRT models were developed with two underlying assumptions of 

unidimensionality and local independence.  These assumptions are required for test 

administrators and substantive educators to examine when using IRT.  The 

unnidimensionality assumption refers to a single latent trait (θ) which is observed by 
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items in a test.  The local independence states that observed responses to each item are 

uncorrelated.  Lord and Novick (1968) addressed the local independence assumption in 

their book, 

Local independence means that within any group of examinees all characterized 

by the same values θ1, θ2,…, θk, the (conditional) distribution of the item scores 

are all independent of each other. (p. 361) 

 

Two mathematical forms in IRT models have been developed: Normal ogive 

models and logistic models.  Both models yield similar stochastic results in IRT but the 

logistic models contribute to more simplified mathematical and computational forms than 

normal ogive models.  In normal ogive models, item characteristics curve (ICC) is 

derived from the cumulative density function of a normal distribution.  A mathematical 

form of the one parameter normal ogive model (Lord, 1952) is as follows: 

2	(θ) =3 �
√�5 6(7!

! 89:(;�
(< ,                              (7) 

where 2	(θ)  is the probability of answering item i correctly for a given ability level θ, 

and �	is the item difficulty parameter which ranges from -∞ to  +∞, theoretically, but is 

used from -3 to +3, practically.  The z is a standardized score (z = 
%( =

> ) of the examinee 

for item i.  

The mathematical expression of 1PLM is, 

P (�	
 = 1) = 
�

�
 ��?(�����) = 
�

�
 ��?@,                          (8) 

where the logistic deviate (L) is A	 − �
.  The A	 represents the ability level, �
is the 

difficulty parameter, e is the constant of 2.718, and D is a scaling factor and set 1 for the 

1PLM.  One parameter normal ogive and logistic models demonstrated the relationship 
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between only one item parameter (item difficulty) and the person parameter.  Using the 

1PLM of a given item, the difficulty parameter on the examinee’s latent trait (θ) 

dimension, for instance, ICCs can be drawn as in Figure 1.  The difficulty parameter is 

defined as the value with a 50% likelihood of a correct item response on the latent ability 

scale.  The vertical axis represents the probability of a correct response.  Figure 1 

illustrated three ICCs for the probabilities of correct item responses based on the 

examinee’s ability levels (moderately easier item (b = -1), medium (b = 0), and 

moderately harder item (b = 1)).  All items of the 1PLM share identically shaped ICC 

only with different location parameter values of �
. 

The 2PLM is a generalized model of the 1PLM by adding the item discrimination 

parameter (a-parameter). The 2PLM can be expressed as, 

P (�	
 = 1) = 
�

�
 ��?��(�����) = 
�

�
 ��?@,                                   (9) 

where �
 is the item discrimination parameter for item j and D is a scaling factor (D = 

1.7).  The D yields similarly equivalent models and interpretations between the normal 

ogive and logistic models.  The logistic deviate (L) for 2PLM is �
(A	 − �
).  Items with 

higher item discrimination parameter values provide more information about the 

examinee’s ability at a specific location in the ability distribution than other items with 

lower values of item discrimination parameter.  For example, in Figure 2, Item 3 (a = 1.5 

and b = 1.0) delivers more item information at the person ability level of 1.0 than others.  

The graphs represent ICCs for three items: Item 1 contains item difficulties (b) value of -

1 and item discrimination (a) value of 2.0.  Item 2 has the b-value of 0.0 and the a-value 

of 1.0.  Item 3 represents the b-value of 1 and the a-value of 1.5. 
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Figure 1. Item characteristic curve (ICC) for 1PLM 
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Figure 2. Item characteristic curve (ICC) for 2PLM 

The 3PLM allows an ICC with non-zero pseudo-chance factor. Birnbaum (1968) 

modified the 2PLM to include a pseudo-chance parameter to the probability of correct 

response.  The mathematical expression of the 3PLM can be expressed as, 

P (�	
 = 1) = �
 + (1 - �
) 
�

�
 ��?��(�����) = �	 +  
(� ( C�)

�
 ��?@,                       (10) 

where �
 represents the probability that examinees with extremely lower ability answer 

correctly for item j.  The logistic deviate (L) for 3PLM is the same as 2PLM (�
(A	 − �
)).  

In Figure 3, the ICC for the item with a = 0.5, b = -1, and c = 0.5 lost mathematical 

properties of the logistic function by a high value of the pseudo-chance parameter in 

some cases.  Note that a represents the item discrimination value, b is the item difficulty, 

and c is the pseudo-chance parameter. 
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The ultimate duty of psychometricians is to estimate both item and person 

parameters utilizing various estimation methods including Maximum Likelihood Method 

and diverse Bayesian methods.  The fundamental principle of MLE is to estimate the 

underlying proficiency of parameters with the likelihood function based on the pattern of 

item responses of a person.  The likelihood function has two components which are the 

probability of correct responses and the probability of incorrect responses.  The 

probability of correct response for item i was described in equations (8) through (10) 

depending on the number of parameters in the model. 

 

 

Figure 3. Item characteristic curve (ICC) for 3PLM 

The probability of incorrect responses for the item can be addressed as D
(A	) = 1 

- 2
(A	).  Then, the likelihood function of the item response is articulated as,  



35 

 

 
 

L ≡  L(u|θ ) = ∏
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j
jj QP

1

1
,                (11) 

where u’ is the row vector of obtained item response, ui is each item response, and Qj = 1 

– Pj.  The Log-Likelihood function of L (= l) and the first derivative of l (= l’) must be 

obtained for a given set of item responses (u).  Setting l’ to zero and solving the equation 

for θ will result in the MLE.  However, due to a few estimation issues, MLE may have 

severely biased estimates of parameters (Kim & Nicewander, 1993).  The Bayesian 

methods use various prior distributions to compute the posterior probability based on the 

Bayes’ principle in order to improve the accuracy of estimation through either maximum-

a-posteriori (MAP, Samejima, 1969) or expected-a-posteriori (EAP, Bock & Mislevy, 

1982).  Some other Bayesian methods are also available with minor modifications from 

MAP and EAP. Research has shown that the Bayesian methods outperforms MLE with 

less biased and more accurate estimations (Kim & Nicewander). 

Testlet Response Theory (TRT) 

Two basic assumptions in the traditional IRT are unidimensionality and local 

independence of items.  The unidimensionality assumption states that the items in a test 

should measure only one underlying dimension of the construct for ability or proficiency.  

Unidimensionality can be tested through factor analysis and other appropriate methods.  

Local independence is related to the correlation among items in a test.  Given the ability 

level, the probability of answering an item correct should be independent of the 

probability of answering other items correctly.  However, in the area of reading, a typical 

format of reading comprehension tests contains various passages followed by multiple 
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items stemmed from the same passage.  In this case, items for the same passage are 

correlated to each other due to the fact that items ask questions about the same passage, 

which is a clear violation of the local independence assumption of the unidimensional 

IRT.  Although bundled items may violate the local independence assumption of the 

unidimensional IRT, different IRT models have been used for the estimation of person 

ability and item parameters ignoring the violation of the assumption (de Ayala, 2009; 

Yen & Fitzpatrick, 2006).  

Many researchers reported that ignoring local item dependency (LID) caused 

several problems: (1) overestimation of the person ability estimates; (2) underestimation 

of the standard error of estimates; and (3) biased item parameter estimates such as item 

difficulties or item discriminations (e.g., Sireci, Thissen, & Wainer, 1991; Tuerlinckx & 

De Boeck, 2001; Wainer & Wang, 2000; Yen, 1984).  Thissen, Steinberg, and Mooney 

(1989) and Sireci, Thissen, and Wainer (1991) pointed out that LID would lead to an 

overestimate of reliability and test information, as well as an underestimate of the 

standard error of measurement.  However, if appropriately modeled, item bundles (e.g., 

Wilson & Adams, 1995), context-dependent item sets (e.g., Keller, Swaminathan, & 

Sireci, 2003), or testlets (Wainer & Kiely, 1987) could allow for the measurement of 

interrelated tasks and skills. 

To account for LID associated with items nested within a testlet, Bradlow, Wainer, 

and Wang (1999; Wainer, Bradlow, & Wang, 2007) proposed the 2PL testlet response 

theory (TRT) model.  The 2PL TRT model includes a random-effect parameter 

representing the interaction of person i with testlet d(j), which contains item j.  In this 
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model, the probability of a correct response to item j nested in testlet d(j) for a person 

ability θi is given by;  

P (�	
 = 1 ) = Φ aj(θi – bj – �	 (
)),                            (12) 

where aj(θi – bj – �	 (
)) is equivalent to 
�

�
 ���.��� (��� ��� ���(�)) with the testlet parameter of 

�	 (
).  This equation is similar to Equation 2 except the c-parameter.  One constraint of 

this model is that the item discrimination parameter (a-parameter) has a uniform effect on 

θi, bj, and �	 (
).  This testlet model is called the constrained testlet model.  This 

constrained testlet model may not fully represent a situation where the item 

discrimination parameter has differential effects on θi and �	 (
).  This model makes the 

interpretation of item discrimination parameter difficult.  

The generalized testlet model was proposed to provide different effects of the 

item discrimination parameter on the testlet factor (�	 (
)) and ability parameter (θi).  The 

form of the generalized testlet model is (Li, Bolt, & Fu, 2006); 

P (�	
 = 1) = Φ (aj1 θi – bj + aj2�	 (
)),                         (13) 

where �	 (
) and θi are uncorrelated and aj1 and aj2 indicate the item discrimination 

parameter with respect to �	 (
) and θi .  For Equation 13, aj1 is the discriminating power 

for only the person ability and aj2 is for the testlet effects (�	 (
)). 

 For a reading comprehension test with reading passages where items in a testlet 

are asking questions about the same passage, the traditional IRT models may raise issues 

related to an overestimation of item discrimination and item difficulty parameters along 

with an underestimation of standard error.  Comparing CTT and IRT will benefit 
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researchers and educators by providing them with more item-related indices for the 

evaluation of strength and weakness of each item along with item and test information 

from IRT.  An application of different TRT models to a reading comprehension test 

should offer valuable information about the utility of TRT models in comparison with the 

traditional IRT model. 

In order to compare TRT and IRT models, the criteria of the 2χ -test with -2LL 

(Log-Likelihood), AIC (Akaike, 1973), and BIC (Schwarz, 1978) are widely utilized.  

These criteria are the measures of the relative indices for statistical significance tests. The 

difference between two -2LL values from two comparing models is approximately 

distributed as a 2χ  distribution ( 2

2

2

1

2 χχχ −=∆ ) with the degrees of freedom of

)( 21 dfdfdf −=∆ .  The -2 Log-Likelihood function (-2LL) value increases with added 

number of parameters in estimation when comparing traditional IRT or TRT models.  

Lower values of -2LL indicate a better model-fit. 

Likelihood function ≡ L (u| θ, a, b, c) = ∏ 2	
F�G	H� D	

�(F�  ,                 (14) 

where L ( u| θ, a, b, c) represents conditional probability of u given θ, a, b, and c. The 

notation of I	 denotes item response, Pi is the probability of a correct answer, and Qi is 

the probability of an incorrect response (Qi = 1 – Pi).   

Let LL = Log-Likelihood function,  

LL = lnL = ∑[ILln2L +  (1 − IL)lnDL].                            (15) 

Then, -2LL will be distributed approximately as a 2χ  distribution.  One issue of the 

-2LL function is that it does not take into account the effect of sample size (N) and 

the number of parameters (p) in the model. 
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 In order to accommodate the issue of the number of parameters in the model, 

Akaike (1973) proposed a new criterion for model fit index (AIC).  The AIC is defined as;  

AIC = -2LL + 2p,                                   (16) 

where LL indicates the maximized log-likelihood estimate and p is the number of 

parameters in the model.  Lower values of the AIC also indicate a better model-fit.  

Unlike the AIC which does not take the sample size effect, BIC is the estimate from the 

Bayesian framework to compare models (Schwarz, 1978) as; 

BIC = -2LL + p(ln (N)),                                   (17) 

where, N is the sample size.  A higher BIC value indicates more complex model with 

lager sample sizes. 

Research questions 

The central goal of this study is to evaluate psychometric models such as CTT, 

traditional IRT, and TRT models using a fifth grade reading comprehension test with a 

large data set.  These model comparisons and item analyses will help both researchers 

and practitioners in the area of reading comprehension with the guidelines for 

construction and selection of tests and items, and for the decision making process related 

to literacy research and education.  In order to address best-fitting statistical model for a 

reading comprehension test and to provide precise items and test information which is 

constructed on the basis of CCSS, specific research questions of this present study are as 

follows: 

1. What are the similarities and dissimilarities between CTT and IRT?  The results from 

CTT would be compared to those of traditional IRT model. 
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2. Which IRT model shows the best-fit for a reading comprehension test?  The best-

fitting IRT model would be selected with three model comparison criteria (-2LL, AIC, 

and BIC). 

3. Do the reading passages show testlet effects?  IRT and TRT models would be 

compared with model comparison criteria (-2LL, AIC, and BIC). 

4. What are the differences between the item parameter estimates obtained using TRT 

and IRT models?  The estimated item parameters and the testlet parameters would be 

computed and compared. 
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CHAPTER THREE: METHODS 

Participants 

 The archival data contained a total of 10,897 participants for a 5th grade reading 

comprehension test across 15 states.  The data were collected during the 2012/2013 

academic year as the results for a benchmark assessment.  There were no missing data for 

each item and the total scores from the test.  Some demographic variables have missing 

data including gender, race, English as a Second Language (ESL), Special Education 

(SpEd), and free lunches.  These demographic variables will not be analyzed because the 

current study is mainly a psychometric validation project on test item levels.  There was 

no information in the data set which may lead to the identification of participants.  All 

data points were assigned by the subject ID numbers.  In order to provide basic 

information on several demographic variables, some descriptive statistics were computed 

from the available data points.  There were a total of 2,505 data points for the gender 

variable.  There were 1,223 (48.8 %) females and 1,282 (51.2%) males.  For the ethnicity 

variable, 1,858 students were responded.  A total of 425 (14.9%) students reported to be 

African American, 48 (1.7%) American Indian, 69 (2.4%) Asian, 1,316 (46.0%) White 

students. 

Measurement 

 The test items were developed by a for-profit testing company in the United 

States.  The test items are based on CCSS and have 33 items, 11 passages, and 4 

categories.  In this study, only 22 items with 7 passages in the categories of reading 
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standards of literature (RL), reading standards of informational text (RI), reading 

standards of foundation skills (RF), and language standards (L) will be analyzed.  The 

writing category (W) was excluded because it was not part of reading comprehension.  

CCSS (2014) addresses the RL code for 5th grade 

(http://www.corestandards.org/assets/CCSSI_ELA%20Standards.pdf, p. 12) as:  

RL.5.1. Quote accurately from a text when explaining what the text says 

explicitly and when drawing inferences from the text. 

RL.5.2. Determine a theme of a story, drama, or poem from details in the text, 

including how characters in a story or drama respond to challenges or how the 

speaker in a poem reflects upon a topic; summarize the text. 

RL.5.3. Compare and contrast two or more characters, settings, or events in a 

story or drama, drawing on specific details in the text (e.g., how characters 

interact). 

RL.5.4. Determine the meaning of words and phrases as they are used in a text, 

including figurative language such as metaphors and similes. 

RL.5.7. Analyze how visual and multimedia elements contribute to the meaning, 

tone, or beauty of a text (e.g., graphic novel, multimedia presentation of fiction, 

folktale, myth, poem). 

The RI skills for 5th grade are described as 

(http://www.corestandards.org/assets/CCSSI_ELA%20Standards.pdf, p. 14); 

RI.5.1. Quote accurately from a text when explaining what the text says explicitly 

and when drawing inferences from the text. 

RI.5.2. Determine two or more main ideas of a text and explain how they are 

supported by key details; summarize the text. 

RI.5.3. Explain the relationships or interactions between two or more individuals, 

events, ideas, or concepts in a historical, scientific, or technical text based on 

specific information in the text. 

RI.5.5. Compare and contrast the overall structure (e.g., chronology, comparison, 

cause/effect, problem/solution) of events, ideas, concepts, or information in two 

or more texts. 
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RI.5.6.Analyze multiple accounts of the same event or topic, noting important 

similarities and differences in the point of view they represent. 

RI.5.7. Draw on information from multiple print or digital sources, demonstrating 

the ability to locate an answer to a question quickly or to solve a problem 

efficiently. 

RI.5.9. Integrate information from several texts on the same topic in order to write 

or speak about the subject knowledgeably. 

The RF in CCSS is (http://www.corestandards.org/assets/CCSSI_ELA%20Standards.pdf, 

p. 17); 

RF.5.4 Read with sufficient accuracy and fluency to support comprehension. 

The Language standards (L) skills are 

(http://www.corestandards.org/assets/CCSSI_ELA%20Standards.pdf, p. 28-29); 

L.5.2. Demonstrate command of the conventions of standard English 

capitalization, punctuation, and spelling when writing. 

L.5.3. Use knowledge of language and its conventions when writing, speaking, 

reading, or listening. 

L.5.4. Determine or clarify the meaning of unknown and multiple-meaning words 

and phrases based on grade 5 reading and content, choosing flexibly from a range 

of strategies. 

L.5.5. Demonstrate understanding of figurative language, word relationships, and 

nuances in word meanings. 

 Passage 1 contains four items: Item 1 (Standard Code = RL.5.2), Item 2 (RL.5.1), Item 3 

(RL.5.3), and Item 4 (L.5.4).  Passage 2 has Item 5 (RL.5.4), Item 6 (RL.5.4), and Item 7 

(L.5.5).  In Passage 3, Item 8 (RL.5.1), Item 9 (RL.5.7), Item 10 (RL.5.2), and Item 11 

(L.5.3) are assigned.  Passage 4 contains Item 12 (RL.5.3), Item 13 (RL.5.3), and Item 14 

(L.5.7).  In Passage 5, Item 15 (RL.5.4), Item 16 (RL.5.1), and Item 17 (L.5.2) are 

involved.  Passage 6 has two items, (L.5.2) and (L.5.3).  Passage 7 has Item 20 (RL.5.5), 
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Item 21 (RL.5.9), and Item 22 (L.5.6).  All items were scored 1 and 0 where 1 represents 

a correctly answered item, and 0 represents a wrong item.  The total scores were 

computed as the sum of all correctly answered item scores.  

Procedure 

 The mean and standard deviation for each item and the total score were computed 

for CTT analyses.  The mean of each item was the proportion of students who correctly 

answered the item.  The mean value of each item is identical to the p-value in CTT. 

Cronbach’s α  along with item-test correlation was computed as part of CTT analyses.  

In order to apply any IRT analyses, an exploratory factor analysis (EFA) should be 

utilized to confirm the unidimensionality assumption.  Once unidimensionality was 

confirmed, three IRT models (1, 2, and 3PLM) were tested with the data.  The best-fitting 

model was selected, and the three comparison criteria (-2LL, AIC, and BIC) were 

recorded.  The final step of validation was the application of the constrained and general 

TRT models. The traditional IRT, constrained TRT, and general TRT were compared 

with three comparison criteria.  The estimated item parameters and the testlet parameters 

along with item and test information were also computed and compared.  The advantages 

and disadvantages of IRT over CTT, and TRT over IRT were discussed in conjunction 

with previous findings. 

The SAS (Statistical Analysis System) software was used to compute descriptive 

statistics, item-test correlation for each item, and EFA in CTT.  The WinBUGs software 

(Spiegelhalter, Thomas, & Best, 2003) was used to analyze the traditional IRT and two 
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TRT models with the Markov chain Monte Carlo (MCMC) algorithm.  The chain length 

was set to 10,000 with the burn-in of 5,000.  The estimated item and testlet parameters 

were posterior means and variances which were obtained by the only last 1,000 draws of 

MCMC chain.  The first 4,000 iterations were discarded.  In order to estimate item 

difficulty parameters, bi, and person ability, θ, of traditional IRTs and testlet effects, � 	, 

of TRT models, normal priors were used: bi ~ N (0, 1), θ ~ N (0, 1), and � 	 ~ N (0, 1).  

Truncated normal distribution priors were used for item discrimination parameters in the 

IRT and TRT models: ai ~ N (0, 1) I(0, ), where I(0, ) indicated that observations of the 

item discrimination parameters occur above zero.  For the pseudo-chance parameter, ci, 

the beta distribution priors were used: ci ~ beta (1, 1) which indicated the uniform 

distribution over the interval between 0 and 1.  Three comparison criteria (-2LL, AIC, 

and BIC) were applied to test significant differences among various IRT and TRT models 

through the WinBUGs program.  The WinBUGs codes for three IRT and two TRT 

models were presented in Appendix 1. 

Model comparison between any pair of models can be conducted by treating any 

of the comparison criteria (-2LL, AIC, and BIC) as an approximation of the R� 

distribution with a corresponding df .  The computational formula of df  = 2T – np – 1 for 

is commonly used with any approximation of the the R� distribution for the IRT models 

(Cai, Maydeu-Olivares, Coffman, & Thissen, 2006).  For this formula, n represents the 

degrees of freedom (df) for a given IRT model such as 1PLM (n = 1), 2PLM (n = 2), or 

3PLM (n = 3), and p represents the number of items in the test.  However, when test 

items (p), are greater than 20, the df formula by Cai, Maydeu-Olivares, Coffman, and 
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Thissen (2006) is not appropriate for any IRT models (Mair, Reise, & Bentler, 2008).  In 

this study, following Guyer and Thompson (2011), the degree of freedom for the 

goodness-of-fit test was computed with df = G – # of parameters, where G = 15 in each 

model. 

Once the comparison criterion and corresponding dfs are identified, a model 

comparison can be performed with the following procedure.  First, the ΔR� must be 

computed from any pair of the comparing models.  This ΔR� can be obtained by 

computing the difference value of any chosen comparison criterion from -2LL, AIC, or 

BIC for the two comparing models, either for any two IRT models or two TRT models.  

Then, the VR� would be divided by the Δdf which was the df difference between any 

comparing models.  For example, if one wants to compare 1PLM and 2PLM IRT models, 

the ΔR� can be computed by subtracting -2LL (or AIC, or BIC) of the 2PLM from that of 

the 1PLM.  Then, the Δdf can be obtained by subtracting the df of the 2PLM from the df 

of the 1PLM.  The final step is to divide the VR� by the Δdf, and to follow through the 

regular R� test.    
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CHAPTER FOUR: RESULTS 

CTT and IRT analysis results 

In this study, CTT, three different IRT and two TRT models were applied to a 

large data set (N = 10,897) for a 5th grade reading comprehension test based on CCSS.  

Of the total 33 items, 22 items from 7 reading passages were employed for analysis, 

excluding 11 items and 4 passages associated with writing items.  For the item and test 

analyses in CTT, the p-value and item-test correlation along with the Cronbach’s alpha 

were computed.  The p-value is identical to the mean of each item.  Table 1 showed the 

CTT analysis results.  The mean values of the test items were ranged from .35 (SD = .48) 

to .82 (SD = .38).  Easier items were Item 2 (M = .82, SD = .38) in Passage 1 and Item 7 

(M = .82, SD = .39) in Passage 2.  About 82% students (8,935) answered both items 

correctly.  Item 19 (M = .35, SD = .48) in Passage 6 and Item 12 (M = .38, SD = .49) in 

Passage 4 were two of the hardest items on the test.  Only 35% of 5th graders (3,813) 

answered Item 19 correctly.  The item-test correlation is similar to the item 

discrimination index in CTT.  It indicates the correlation between each item and the total 

test score excluding the comparing item. The higher the item-test correlation, the higher 

the relationship between the item and the total test score.  The item-test correlation values 

ranged from .17 (Item 12) to .50 (Item 17).  The correlations of Items 5 and 12 with the 

overall test were .21 and .17, while Item 7 and Item 17 correlated at .47 and .50, 

respectively.  The Cronbach’s alpha for the 22-item test was .79, which was a relatively 

good internal consistency reliability index. 
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Table 1 

Descriptive statistics of test items from CTT and estimated item parameters of 3PLM  

     CTT  3PLM 

Testlets Items  M (SD) 
Item-Total 

Correlation 
 a (SD) b (SD)  c (SD)  

1 1  0.57  (0.50)  .37   1.04  (0.04)  -0.27  (0.04)  0.02  (0.02)  

 2 
 

0.82  (0.38)  .43  
 

1.71  (0.08)  -1.24  (0.07)  0.06  (0.04)  

 3 
 

0.63  (0.48) .35  
 

1.03  (0.05)  -0.49  (0.09)  0.06  (0.04)  

 4 
 

0.69  (0.46) .35  
 

1.00  (0.04)  -0.90  (0.07)  0.04  (0.03)  

2 5 
 

0.63  (0.48)  .21  
 

0.52  (0.03)  -0.90  (0.17)  0.05  (0.04)  

 6 
 

0.73  (0.45)  .43  
 

1.49  (0.08)  -0.79  (0.08)  0.09  (0.04)  

 7 
 

0.82  (0.39)  .47  
 

2.12  (0.11)  -1.07  (0.08)  0.10  (0.05)  

3 8 
 

0.45  (0.50)  .24  
 

0.60  (0.03)  0.47  (0.08)  0.02  (0.02)  

 9 
 

0.62  (0.49)  .24  
 

0.65  (0.04)  -0.62  (0.18)  0.08  (0.05)  

 10 
 

0.76  (0.43)  .42  
 

1.37  (0.04)  -1.07  (0.05)  0.03  (0.03)  

 11 
 

0.58  (0.49)  .42  
 

1.77  (0.11)  0.06  (0.05)  0.18  (0.02)  

4 12 
 

0.38  (0.49)  .17  
 

1.74  (0.17)  1.56  (0.05)  0.28  (0.01)  

 13 
 

0.75  (0.43)  .43  
 

1.64  (0.08)  -0.75  (0.07)  0.16  (0.04)  

 14 
 

0.73  (0.45)  .36  
 

1.36  (0.09)  -0.52  (0.10)  0.26  (0.04)  

5 15 
 

0.48  (0.50)  .25  
 

0.68  (0.06)  0.38  (0.16)  0.07  (0.04)  

 16 
 

0.53  (0.50)  .36  
 

1.27  (0.06)  0.19  (0.05)  0.13  (0.02)  

 17 
 

0.73  (0.45)  .50  
 

2.55  (0.14)  -0.49  (0.04)  0.20  (0.02)  

6 18 
 

0.61  (0.49)  .30  
 

0.80  (0.04)  -0.50  (0.09)  0.06  (0.03)  

 
19 

 
0.35  (0.48)  .23  

 
0.78  (0.08)  1.41  (0.07)  0.10  (0.02)  

7 20 
 

0.54  (0.50)  .30  
 

1.13  (0.09)  0.37  (0.07)  0.20  (0.03)  

 21 
 

0.48  (0.50)  .27  
 

0.68  (0.03)  0.25  (0.07)  0.03  (0.02)  

 22  0.69  (0.46)  .36   1.08  (0.06)  -0.77  (0.10)  0.07  (0.04)  

Note. N = 10,897 
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Before conducting IRT analyses, an exploratory factor analysis was utilized to 

confirm the unidimimensionality assumption.  As shown in Table 2, the results 

demonstrated a relatively clear one-factor solution, explaining around 20% of the data 

variance by the first factor (eigenvalue = 4.27).  Figure 4 also showed that the slope of 

the curve was clearly reaching a steady rate from the second factor.  Based on the 

variance of eigenvalue and scree plot, we could conclude that the data met the 

unidimensionality assumption.  Therefore, the application of IRT models to the data was 

justified.  

As shown in Table 3, the model-fit indices of three IRT models indicated that 

3PLM fitted the given data best when 3PLM was compared with 1PLM and 2PLM.  The 

-2LL difference (= 264000 – 261700) test with Δdf (= 308 – 286) between 1PLM and 

2PLM was 2300 (p < .01).  The AIC difference was 2200 (p < .01) and the BIC 

difference was 2100 (p < .01) between 1PLM and 2PM.  The comparison between 1PLM 

and 2PLM revealed that 2PLM was a better fit for the 5th grade reading comprehension 

test.  The -2LL difference between 2PLM (= 261700) and 3PLM (= 261000) with Δdf (= 

286 – 264) was 700 (p < .01).  The AIC difference with Δdf (= 22) was 600 (p < .01) and 

the BIC difference was 500 (p < .01).   All three comparison criteria showed that the 

3PLM was the best-fitting model for the data. 
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Table 2 

Eigenvalues of the correlation matrix 

 
Eigenvalue Difference Proportion Cumulative 

1 4.27 3.21 0.19 0.19 

2 1.06 0.07 0.05 0.24 

3 0.99 0.02 0.05 0.29 

4 0.97 0.01 0.04 0.33 

5 0.96 0.03 0.04 0.38 

6 0.93 0.00 0.04 0.42 

7 0.92 0.01 0.04 0.46 

8 0.91 0.01 0.04 0.50 

9 0.90 0.02 0.04 0.54 

10 0.88 0.02 0.04 0.58 

11 0.87 0.02 0.04 0.62 

12 0.85 0.03 0.04 0.66 

13 0.82 0.01 0.04 0.70 

14 0.81 0.01 0.04 0.73 

15 0.80 0.02 0.04 0.77 

16 0.78 0.03 0.04 0.81 

17 0.75 0.01 0.03 0.84 

18 0.75 0.01 0.03 0.87 

19 0.74 0.04 0.03 0.91 

20 0.70 0.02 0.03 0.94 

21 0.68 0.04 0.03 0.97 

22 0.63 
 

0.03 1.00 
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Figure 4. Scree plot of eigenvalues 

Table 3 

Model-fit indices of three traditional IRT models. 

IRT models NP df -2LL AIC BIC -2LLdifference 

1PLM 22 308 264000 264000 264200 

2PLM 44 286 261700 261800 262100 R� (22) = 2300 

3PLM 66 264 261000 261200 261600 R� (22) = 700 

 

In accordance with the results of the item-test correlation in CTT, item 

discrimination parameters in 3PLM showed that Item 7 (aX = 2.12) and Item 17 (a�X = 

2.55) were the best items in terms of the item discrimination parameter estimates on the 

location of the person ability level of -1.07 and -0.49, respectively.  The item-test 

0.0

1.0

2.0

3.0

4.0

5.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22



52 

 

 
 

correlation for Item 7 was .47, and for Item 17 was .50 in CTT.  Both CTT and IRT 

analyses indicated that these two items were the best discriminating items.  There were 

several additional items with high a-parameter values.  In general, there was agreement 

between CTT and IRT results in terms of item discrimination indices.  For the middle of 

ability distribution (θ ≈ 0), Item 11 (a�� = 1.77) in Passage 3 yielded a better 

discrimination value than Item 21 (a�� = .68) in Passage 5.  

Item 12 in Passage 4 showed a higher item discrimination function (a�� = 1.74) 

for a relatively higher ability level (θ = 1.56) of 5th graders.  On the contrary, item-total 

correlation in CTT revealed that Item 12 (r = .17) was worst discriminating item in the 

test.  This item demonstrated an evident difference between CTT and IRT.  The IRT 

results showed that the following items were listed in an ascending order from the lowest 

to highest values in item discriminating parameter estimates: Item 5 (aY = 0.52), Item 8 

(aZ = 0.60), Item 9 (a[ = 0.65), Item 15 (a�Y = 0.68), and Item 21 (a�� = 0.68).  They 

functioned poorly to distinguish between examinees who had knowledge of the item and 

those who did not.  The results in CTT showed that Items 12 (r = 0.17), 5 (r = 0.21), 19 (r 

= 0.23), 8 (r = 0.24), and 9 (r = 0.24) were discriminating poorly.  There were minor 

discrepancies between CTT and IRT results.  On the other hand, The IRT results showed 

that the following items showed high item discriminating indices in a descending order: 

Items 17 (a�X = 2.58), 7 (aX = 2.09), 11 (a�� = 1.78), and 12 (a�� = 1.76).  They provided 

high item discrimination parameter estimates.  In CTT, Items 17 (r = 0.50), 7 (r = 0.47), 

13 (r = 0.43), 6 (r = 0.43), and 2 (r = 0.43) were all relatively highly correlated with the 

overall test.  The ICCs for the test items which had good item discrimination values 
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(Items 7, 11, 12, and 17) and poor item discrimination values (Items 5, 8, 9, and 15) were 

presented in Figure 5.  The ICCs of Items 7, 11, 12, and 17 had sharper slopes on their 

ability ranges than Items 5, 8, 9, and 15. 

 

 

Figure 5. Each four items for good and poor item discrimination parameters 

In order to specify positive values for item discrimination parameters, normal 

priors to item discrimination parameters with a mean of 0 and standard deviation of 1 

were given with a truncated threshold value of 0.  The MCMC algorithm in WinBUGs 

estimated the positive posterior means for item discrimination parameters.  Figure 6 

provided an illustration of the posterior probability density functions (PDFs) for four 

items with good item discrimination parameter estimates and four items with poor item 

discrimination parameters.   
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Figure 6. Illustration of posterior PDFs of item discrimination parameters 

For the posterior PDF distributions, the a-parameter estimates are placed along 

the horizontal abscissa, while the frequencies by the last 1,000 samples of MCMC chain 

are located along the vertical ordinate.  As shown in Figure 6, the mean of the estimated 

a-parameter values of the high discriminating items (Items 7, 11, 12, and 17) ranged 

between 1.74 (SD = .17) and 2.55 (SD = .14).  The mean of low item discriminating items 
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(Items 5, 8, 9, and 15) ranged between .52 (SD = .03) and .68 (SD = .06).  If the a-

parameter values were above 1.00, the items were considered as high discriminating 

items. 

According to item difficulty estimates in IRT, Items 12 and 19 were the most 

difficult items in the reading comprehension test, b�� = 1.56 and b�[ = 1.41, respectively.  

The p-values in CTT also indicated that Item 12 (M = .38) and Item 19 (M = .35) were 

the hardest items to answer correctly.  Interestingly, as commented above, Item 12 (a�� = 

1.74) discriminated well for examinees who were higher level of ability (θ = 1.56) while 

Item 19 (a�[ = 0.78) distinguished poorly for examinees who were at a similar level of 

ability (θ = 1.41).  Item 2 (b� = -1.24) in Passage 1, Item 7 (bX = -1.07) in Passage 2, and 

Item 10 (b�] = -1.07) in Passage 3 were easy items to answer.  Among these items, Item 

7 and Item 10 had the same level of item difficulty parameter values while, in CTT, Item 

7 (M = 0.82) was easier than Item 10 (M = 0.76).  The PDFs of item difficulty for two 

difficult items and two easy items were displayed in Figure 7. 

The c-parameter in 3PLM is the probability of answering an item correctly by 

only guessing.  Item 12 (c�� = .28) and Item 14 (c�_ = .26) in Passage 4 had the highest 

pseudo-chance parameter values.  Item 1 (c� = .02) in Passage 1, Item 8 (cZ = .02) in 

Passage 3, and Item 21 (c�� = .03) in Passage 7 showed the lowest probabilities for 

getting the correct answers by guessing.  The PDFs of item pseudo-chance parameter for 

these five items (12, 14, 1, 8, and 21) were displayed in Figure 8.  The probability density 

graphs of Items 1, 8, and 21 were positively skewed with mean values of 0.02 (SD = 

0.02), 0.02 (SD = 0.02), and 0.03 (SD = 0.02), respectively. 
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Figure 7. Probability density functions of item difficulty parameters  
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Figure 8. Probability density functions of the pseudo-chance parameters  

The convergence processes for the pseudo-chance parameters which were 

associated with MCMC algorithm experienced more computational complications than 

those with item discrimination and difficulty parameters.  Figure 9 illustrated examples of 

the item parameter estimation histories of Item 9.  Although 3PLM fitted best for a 

reading comprehension test (see Table 3), iteration histories with Markov chains provided 

the evidence of convergence problem when estimating pseudo-chance parameters.  

 



58 

 

 
 

eta[9]

iteration

1 2000 4000

    0.0

    0.1

    0.2

    0.3

[Pseudo-chance parameter] 

a[9]

iteration

1 2000 4000

    0.0

    0.5

    1.0

    1.5

 

[Item discrimination parameter] 

b[9]

iteration

1 2000 4000

   -1.0

    0.0

    1.0

    2.0

  

[Item difficulty parameter] 

Figure 9. Iteration histories of item parameter estimates of 3PLM 

In order to solve this convergence problem and provide stable estimates, the 

number of iterations in MCMC algorithm was set to 5,000 in this study.  The first 4,000 

iterations were discarded and only the last 1,000 draws of iteration was recorded for the 
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IRT estimates.  Figure 10 depicted the acceptance rates of 3PLM with 5,000 iterations.  

The rate was stabilized after approximately 1,500 iterations. 

 

 

Figure 10. Acceptance rates of MCMC iterations for 3PLM 

Model comparisons of 3PLM and TRT models 

Because the 3PLM unidimensional IRT model was selected as the best-fitting 

model for the data, two 3PL TRT models (constrained and generalized) were applied and 

compared to the 3PLM unidimensional IRT model in order to discern the effect of testlet 

parameters.  As shown in Table 4, no significant model fit difference was found with the 

-2LL statistics among the unidimensional 3PLM, constrained TRT, and generalized TRT 

model.  One issue with the -2LL statistics has been known as a test statistic which does 

not consider the sample size and the model complexity associated with the number of 

parameters in the model.  The AIC index also showed an identical value of 261,200 for 

all three models.  As one can see from the formula of AIC, it does not consider the 

complexity of the model associated with the number of parameters. The BIC takes into 

    0.0 2.00E+3 4.00E+3 6.00E+3

    0.0

    0.5
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account both sample size and complexity of the model.  It is somewhat puzzling that the 

BIC indices demonstrate a favorable result towards the unidimensional 3PLM IRT model.  

The testlet effect was not evidently revealed for this data set. 

 

Table 4 

Model-fit indices of 3PLM and two TRT models. 

IRT/ TRT models NP df -2LL AIC BIC 

Unidimensional 3PLM 66 264 261000 261200 261600 

Constrained 3PL TRT 73 257 261000 261200 261700 

Generalized 3PL TRT 95 264 261000 261200 261900 

 

Investigating other estimates including ability, item parameters, and testlet 

parameters may shed light to this phenomenon.  In order to compare person ability and 

item parameter estimates among unidimensional 3PLM, constrained TRT, and 

generalized TRT, correlation coefficients were computed for different parameter 

estimates and scatter plots were constructed.  Figure 11 presented the ability estimate 

scatter plots between unidimensional 3PLM and constrained TRT, and between 

unidimensional 3PLM and generalized TRT along with correlation coefficients.  As 

shown in Figure 11, the estimated person abilities from three different models were 

highly correlated to each other (r = .99, p < .01).  It was clearly shown that different IRT 

models, either the unidimensional IRT model or two different TRT models, yielded 
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consistent estimates for the person ability.  The invariance of parameter estimates has 

been known for IRT models, which is an obvious advantage of IRT over CTT. 

 

 

Figure 11. Comparison of the person ability estimates between 3PLM and TRT models 

The estimated ability from 3PLM ranged from -2.57 to 2.16 with a mean of .001 

and standard deviation of .895.  The constrained TRT model yielded the ability range of -

2.56 through 2.12 with a mean of .0002 and standard deviation of .895. The range of the 

person ability from the generalized TRT model was from -2.55 to 2.17 with a mean of -

.0005 and standard deviation of .892.  The histograms of the estimated ability parameters 

from the unidimensional IRT and two TRT models were displayed in Figure 12.  As it 

was expected, all three IRT models produced consistent ability estimations with a mean 

value around 0.00 and standard deviation of 1.00.  Along with a correlation among the 

three IRT-TRT models in Figure 11 and Figure 12, they demonstrated the invariant 

parameter estimates of IRT-TRT models. 
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The difference of estimates of a person’s abilities between 3PLM and constrained 

TRT model, between 3PLM and generalized TRT, and between constrained TRT and 

generalized TRT was normally distributed with a mean of 0.00 and standardized 

deviation of .05.  The histogram for the ability parameter estimate differences among the 

IRT-TRT models was presented in Figure 13.  These graphs illustrated a minimal 

difference among estimated ability values from unidimensional IRT and two TRT models.  

All three graphical displays of estimated ability distributions from Figures 11 through 13 

revealed an almost identical result for invariant estimates of students’ ability. 

 

Figure 12. Distribution of the person ability estimates from the IRT and TRT models 
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Figure 13. Difference score distributions of ability estimates from IRT and TRT models 

Testlet effects 

The item parameter estimates and their standard errors along with the testlet mean 

and variance are presented in Table 5.  As shown in Table 5 for the constrained TRT 

model and in Table 1 for the traditional 3PLM, item discrimination parameter estimates 

were not dramatically different between the two models.  The estimates of item 

discrimination parameters were ranged from 0.55 to 2.58 in constrained TRT model.  

These item discrimination parameter estimates of 22-item by the constrained TRT model 
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were associated with both θ and � 	.  However, item difficulty parameter estimates in 

Table 5 were quite different to those of 3PLM in Table 1.  For instance, the constrained 

TRT model yielded that item 17 (b�X = -1.57) and 18 (b�Z = -1.34) were easiest in the test 

while, in 3PLM, these two items were placed on the range of moderately easy with values 

of b�X = -0.48 and b�Z = -0.54, respectively.  Item 3 (b` = 0.48) was a moderately hard 

item in Table 5 (TRT), but was classified as a moderately easy item (b` = -0.59) in Table 

1 (3PLM).   

As described in Chapters 1 and 2, the testlet effects should be considered in order 

to properly interpret the difference between item difficulty parameter estimates of the 

constrained TRT model and that of the 3PLM.  The variance of testlet (��a) indicated the 

degree of LID as the strength of relationship among items in each passage (Wainer, 

Bradlow, & Wang, 2007).  Wang, Bradlow, and Wainer (2002) addressed that there was 

no indication of a testlet effect among items when the testlet variance was less than 0.04.  

In the current study, the variances of testlet effects were negligibly small (�a�
�b  = 0.01, �a!

�b  

= 0.00, �ac
�b  = 0.01, �a�

�b  = 0.00, �a�
�b  = 0.01, �a�

�b  = 0.01, and �a�
�b  = 0.01).   

However, in Table 5, the mean of the testlet parameter estimates were non-

negligible and were related to item difficulty estimates.  For example, the item difficulty 

estimates of Items 1, 2, 3, and 4 in the first testlet (de�� = -1.01) were relatively higher (b 

= 0.73, -0.24, 0.48, and 0.10) than the item difficulty estimates in 3PLM (b = -0.27, -1.24, 

-0.49, and -0.90), respectively.  Similar to the testlet 1, the items in the Testlet 2 (de�!  = -

0.06) and Testlet 4 (de�� = -0.14) from the constrained TRT model provided higher values 
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of item difficulties than those of 3PLM.  The lower the testlet mean, the higher the item 

difficulty parameter estimates in the constrained TRT model.  With high testlet means, 

the estimates of item difficulties were lower.  The item difficulty parameter estimates of 

Items 15, 16, and 17 (b = -0.72, -0.92, and -1.57) in Testlet 5 (de�� = 1.09) were relatively 

lower than the items in 3PLM (b = 0.38, 0.19, and -0.49), respectively. 

The generalized TRT model provided quite different results from the constrained 

TRT model as presented in Table 6.  The generalized TRT model provided two types of 

item discrimination parameter (��	 and ��	).  The first a-parameter (��	) estimates of the 

generalized TRT model ranged from 0.53 to 2.60 which were associated with only θ.   

The second a-parameter (��	) estimates for � 	 ranged from 0.12 to 2.19 which indicated 

small to large testlet effects.  The first a-parameter (��	) estimates in the generalized TRT 

model were very similar to the estimates of 3PLM and constrained TRT model while the 

second a-parameters did not have any similarity to the 3PLM and the constrained TRT 

models.   

In order to compare the b-parameters between 3PLM and generalized TRT model, 

the testlet mean should be considered as a comparison criterion between 3PLM and 

constrained TRT.  The b-parameter estimates of Items 15, 16, and 17 in Passage 5 (de��  = 

-1.84) and Items 20, 21, and 22 in Passage 6 (de�� = -1.45) in Table 6 were relatively 

higher (��Y = 0.77, ��f = 0.70, ��X = 0.37, ��] = 0.99, ��� = 0.88, and ��� = 0.05) than 

the estimates of 3PLM in Table 1 (��Y = 0.38, ��f = 0.19, ��X = -0.49, ��] = 0.37, ��� = 

0.25, and ��� = -0.77), respectively.  The mean value of the testlet effects and item 
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difficulty parameter estimates were negatively related.  A lower mean of the testlet effect 

yielded a higher item difficulty parameter estimates in generalized TRT. 

 

Table 5 

Estimated item parameters and testlet effects of constrained TRT model 

    Item parameter estimates   Testlet effects 

Testlets Items a (SD) b (SD) c (SD)   d�   ��� 

1 1 1.04 (0.04) 0.73 (0.11) 0.02 (0.02) 
 

-1.01  (0.01)  

 
2 1.71 (0.06) -0.24 (0.09) 0.05 (0.03) 

   

 
3 1.01 (0.04) 0.48 (0.12) 0.05 (0.03) 

   

 
4 1.00 (0.04) 0.10 (0.09) 0.04 (0.03) 

   
2 5 0.55 (0.04) -0.57 (0.22) 0.11 (0.06)   -0.06  (0.00)  

 
6 1.46 (0.05) -0.77 (0.06) 0.07 (0.03) 

   
  7 2.09 (0.09) -1.04 (0.06) 0.09 (0.04)       

3 8 0.61 (0.03) -0.04 (0.15) 0.03 (0.02) 
 

0.53  (0.01)  

 
9 0.67 (0.05) -1.01 (0.18) 0.11 (0.06) 

   

 
10 1.41 (0.06) -1.53 (0.10) 0.06 (0.04) 

   

 
11 1.78 (0.10) -0.46 (0.11) 0.19 (0.02) 

   
4 12 1.76 (0.19) 1.70 (0.07) 0.28 (0.01)   -0.14  (0.00)  

 
13 1.64 (0.10) -0.62 (0.09) 0.16 (0.05) 

   
  14 1.39 (0.08) -0.35 (0.09) 0.27 (0.04)       

5 15 0.68 (0.06) -0.72 (0.16) 0.07 (0.05) 
 

1.09 (0.01)  

 
16 1.25 (0.09) -0.92 (0.08) 0.13 (0.03) 

   

 
17 2.58 (0.14) -1.57 (0.07) 0.21 (0.02) 

   
6 18 0.81 (0.05) -1.34 (0.15) 0.08 (0.04)   0.90  (0.01)  

  19 0.76 (0.11) 0.47 (0.11) 0.09 (0.04)       

7 20 1.14 (0.09) -0.21 (0.11) 0.20 (0.03) 
 

0.58  (0.01)  

 
21 0.68 (0.03) -0.34 (0.11) 0.02 (0.02) 

   
  22 1.10 (0.07) -1.33 (0.16) 0.08 (0.05)       
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Table 6 

Estimated item parameters and testlet effects of generalized TRT model 

    Item parameter estimates   Testlet effects 

Testlets Items a1 (SD) a2 (SD) b (SD) c (SD)   d�   ��� 

1 1 1.05 (0.04) 0.55 (0.17) 0.18 (0.13) 0.02 (0.02) 
 

-0.81 (0.00)  

 
2 1.71 (0.07) 0.36 (0.27) -1.85 (0.21) 0.05 (0.04) 

   

 
3 1.00 (0.04) 0.23 (0.16) -0.36 (0.14) 0.04 (0.03) 

   

 
4 1.01 (0.04) 2.19 (0.20) 0.90 (0.17) 0.05 (0.03) 

   
2 5 0.53 (0.04) 0.76 (0.58) -0.46 (0.13) 0.07 (0.05)   0.06 (0.02)  

 
6 1.50 (0.08) 0.67 (0.55) -1.19 (0.11) 0.09 (0.04) 

   
  7 2.11 (0.10) 0.57 (0.49) -2.27 (0.09) 0.11 (0.04)       

3 8 0.60 (0.03) 0.12 (0.11) 0.35 (0.08) 0.02 (0.02) 
 

-0.72 (0.04) 

 
9 0.63 (0.03) 0.44 (0.32) -0.12 (0.26) 0.05 (0.04) 

   

 
10 1.40 (0.06) 0.61 (0.32) -1.04 (0.17) 0.04 (0.03) 

   

 
11 1.79 (0.10) 0.71 (0.33) 0.62 (0.26) 0.19 (0.02) 

   
4 12 1.72 (0.16) 0.56 (0.48) 2.71 (0.27) 0.28 (0.01)   -0.17 (0.18)  

 
13 1.67 (0.09) 0.79 (0.46) -1.06 (0.33) 0.17 (0.04) 

   
  14 1.35 (0.09) 0.52 (0.38) -0.59 (0.24) 0.25 (0.04)       

5 15 0.67 (0.05) 0.29 (0.13) 0.77 (0.24) 0.06 (0.04) 
 

-1.84 (0.19)  

 
16 1.25 (0.09) 0.30 (0.20) 0.70 (0.20) 0.12 (0.03) 

   

 
17 2.60 (0.14) 0.91 (0.26) 0.37 (0.33) 0.21 (0.02) 

   
6 18 0.81 (0.05) 0.81 (0.61) -0.30 (0.23) 0.07 (0.04)   -0.05 (0.06)  

  19 0.81 (0.08) 1.01 (0.65) 1.26 (0.29) 0.11 (0.03)       

7 20 1.14 (0.08) 0.38 (0.16) 0.99 (0.25) 0.20 (0.03)   -1.45 (0.04)  

 
21 0.68 (0.04) 0.49 (0.12) 0.88 (0.12) 0.03 (0.02) 

   
  22 1.10 (0.06) 0.59 (0.20) 0.05 (0.28) 0.09 (0.04)       

 

The testlet variances for Passages 1 and 2 were small, �a�
�b  = 0.00 and �a!

�b  = 0.02, 

respectively.  However, the variances of Testlets 3 through 7 were ranged from 0.04 to 

0.19.  The Testlets 4 and 5 caused moderate local dependence among items, �����= 0.18 

and �����= 0.19, respectively.  While all variances of the testlets in constrained TRT were 
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negligibly small, the variances of Testlets 4, 5, and 6 in the generalized TRT model were 

considerably high (�����= 0.18, �����= 0.19, and �����= 0.06). 

Comparisons of item parameters  

Item discrimination parameter estimates were highly correlated between 3PLM 

and constrained TRT model (r = .99, p < .01), and between constrained TRT and 

generalized TRT model (r = .99, p < .01).  However, the second slope parameter (��	) of 

the generalized TRT model, which was related only to the testlet effect estimates, was not 

significantly related with the estimates of both 3PLM (r = .08, p > .05) and constrained 

TRT (r = .08, p > .05).   

The scatter plots of correlation coefficients among the IRT-TRT item difficulty 

parameters in Figure 15 indicated that item difficulty estimates were moderately related 

between 3PLM and constrained TRT (r = .59, p < .05), between 3PLM and generalized 

TRT (r = .84, p < .05), and between constrained TRT and generalized TRT (r = .52, p 

< .05).  The correlation between 3PLM and constrained TRT was relatively low, which 

might indicate that the item difficult parameter estimates were influenced by the testlet 

effects.  

As one can see Equations 10 and 12, 3PLM (P = Φ aj(θi – bj)) is embedded in 

constrained TRT (P = Φ aj(θi – bj – �	 (
))).  Item difficulty parameter (bj) in 3PLM is 

separated into two parts of item difficulty (bj) and testlet effect (�	 (
)) in constrained 

TRT.  The testlet effects caused irregularity on the estimates of 3PLM and constrained 

TRT.  The generalized TRT model in Equation 13 (P = Φ (aj1 θi – bj + aj2�	 (
))) 
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estimated the b-parameter differently with the constrained model (P = Φ (aj θi – aj bj – 

aj�	 (
))).  The constrained TRT model (P = Φ (aj θi – aj bj – aj�	 (
))) and 3PLM (P = Φ 

(aj θi – aj bj) estimated the b-parameter with the portion of aj * bj in the formula while the 

generalized TRT model (P = Φ (aj1 θi – bj + aj2�	 (
))) in Equation 13 estimated the bj 

without the a-parameter (aj).  In the current study, these estimation processes caused the 

discrepancy among the b-parameter estimates of three different models. 

 

 

Figure 14. Comparisons of the item discrimination estimates (a1 and a2) between 3PLM 

and TRT models 
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Figure 15. Comparisons of the item difficulty estimates between 3PLM and TRT models 

In Figure 16, the estimated pseudo-chance parameters of 3PLM were highly 

correlated with those of the constrained TRT (r = .97, p < .01) and generalized TRT (r 

= .99, p < .01).  The pseudo-chance parameter between constrained TRT and generalized 

TRT was also highly related, r = .97, p < .01. These results indicated that the pseudo-

chance parameters were not affected by the testlet effect as one could infer from 

Equations 2 and 3.  
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Figure 16. Comparisons of the pseudo-chance parameter estimates between 3PLM and 

TRT models 
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CHAPTER FIVE: DISCUSSION 

This study was an endeavor to compare various psychometric models (CTT, three 

IRTs, and two TRTs) which have been commonly used to evaluate test or item 

information on a reading comprehension test constructed for 5th grade students based on 

CCSS.  Computation of item and test indices from CTT were done, and theses indices 

were used to compare the item and testlet characteristics from 3PLM, constrained TRT, 

and generalized TRT.  Before the IRT analysis, an exploratory factor analysis was 

performed to assure the unidimensional assumption for the IRT models.  Then, the best-

fitting IRT model was selected from the 1PLM, 2PLM, and 3PLM models utilizing three 

comparison statistics of -2LL, AIC, and BIC.  The 3PLM was proved as the best-fitting 

IRT model for the data.  A large sample size (N = 10,897) of the employed data set 

enabled to compare three different psychometric models, CTT, IRT, and TRT models 

because CTT required a large sample size in order to develop stabilized items and test 

indices.  The reading comprehension test (22 items with 7 passages) was composed with 

4 areas of RL, RI, RF, and L based on CCSS.  This chapter delivers an overview of the 

results, discussion along with previous findings, limitations, and recommendations for 

future research. 

In order to address the strength and weakness of test items of the benchmark 

reading comprehension test as well as benefits of IRT over CTT, and TRT over IRT, four 

specific research questions were set: 

1. What are the similarities and dissimilarities between CTT and IRT?   
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2. Which IRT model shows the best-fit for a reading comprehension test?   

3. Do the reading passages show testlet effects?   

4. What are the differences between the item parameter estimates obtained using TRT 

and IRT model?  

The results from CTT were compared to those of traditional IRT model for the 

first research question, “What are the similarities and dissimilarities between CTT and 

IRT?”  Due to a large sample size, one of shortcomings of CTT, the issue of “sample-

dependent item indices” could be partially overcome.  In general, item discriminations 

and item difficulties in CTT demonstrated similar characteristics to the estimates in IRT.  

In addition to a high Cronbach’s alpha of .79, difficult items from the CTT result were 

also considered difficult items from the IRT analysis and easy items from the CTT 

analysis were reported as easy items from the IRT analysis.  Specifically, Items 8, 12, and 

19 were regarded as hard items from both CTT and IRT analyses.  Items 2, 7, and 10 

were reported as easy items from both CTT and IRT. 

Item 17 was an exception.  According to CCSS, Item 17 is a question about 

“compare and contrast two or more characters, settings, or events in a story or drama, 

drawing on specific details in the text 

(http://www.corestandards.org/assets/CCSSI_ELA%20Standards.pdf, p. 12).”  In CTT, 

this item was very hard to answer and not good for 5th graders because it poorly 

discriminated students.  However, in IRT, Item 17 was hard but a good item for students 

who had high ability.  One weakness of this item was that the probability was relatively 
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high to answer correctly by guessing.  One of the advantages of IRT over CTT is that 

item discrimination is interpreted with the specific ability level as well as the probability 

of guessing.  Unlike CTT, IRT provides invariant item parameter estimates as well as 

information on specific ability levels where item discrimination parameter estimates 

reach their maximum values.  It may be recommended that Items 5, 8, 9, and 15 might be 

reconsidered for 5th graders in this bench marked reading comprehension test because of 

low item discrimination parameters.   Thus, the first research question is fully answered 

by both CTT and IRT analyses, demonstrating clear advantages of IRT over CTT with 

more in depth information for items (a, b, and c-parameter estimates) along with detailed 

interpretations of item parameters for specific ability levels.     

Exploratory factor analysis (EFA) is a prerequisite for any IRT analyses in order 

to assure that the unidimension assumption is satisfied.  The EFA results showed that the 

first factor explained 20% of variability of the data along with the eigenvalue of 4.27.  

The other factors explained trivial proportions of data variance which was less than 5%.  

For the second research question, “Which IRT model shows the best-fit for a 

reading comprehension test?”, the overall model-fit indices were employed to select best-

fit model for a reading comprehension test.  According to the three model comparison 

criteria (-2LL, AIC, and BIC), 3PLM fitted best for 5th grade reading comprehension test.  

Although 3PLM is good for a reading comprehension test, 2PLM is commonly used due 

to the computational efficacy (Min & He, 2014).  In their study, 6 items out of 30 items 

had poorly estimated in 3PLM even though 3PLM provided best model-data fit for a 

testlet based reading comprehension test.  In the current study, severe fluctuations in 
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estimation for the pseudo-chance parameters lasted during the iterations process as shown 

in Figure 9.  The a-parameter and b-parameter estimation demonstrated a relatively stable 

process during the estimation.  We experienced a difficulty in estimation of the pseudo-

chance parameters with 1,000 or 2,000 iterations with the Markov Chains Monte Carlo 

(MCMC) method.  In order to utilize 3PLM with MCMC algorithm on a reading 

comprehension test, the Markov chain length was set to 10,000 with the iterations of 

5,000.  The second research questions is also fully answered with the 3PLM as an evident 

winner for the model-data fit analysis although some cautions should be exercised when 

the 3PLM is applied due to computational issues in estimation iterations.  

For the third question, “Do the reading passages show testlet effects?”, 3PLM and 

two 3PL TRT models (constrained and generalized) were compared to determine the 

effects of testlet parameters.  As shown in Table 4, no significant model-fit differences 

among these three models were found with the -2LL and AIC statistics.  Only the BIC 

indices showed small difference among the models because the BIC considered the 

effects of both sample size and the estimated number of parameters.  The model 

comparison criteria demonstrated that unidimensional 3PLM was a better fit model than 

the TRT models for the data.  This result indicated that the data of 5th grade reading 

comprehension test did not contain significant testlet effects even though several testlet 

effect variances in the generalized TRT model were significantly higher (�����= 0.18, 

�����= 0.19, and �����= 0.06) than the reference variance of .04 which was suggested by 

Wang, Bradlow, and Wainer (2002).  It is speculated that this phenomenon occurred due 

to the computational problems in the 3PL TRT models.  As one can see in Equation 12 
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and 13, the testlet parameters (�	 (
)) are associated between examinee and testlets.  With 

the testlet parameter (�	 (
)), the WinBUGs program was stopped during iterations.  In 

order to solve this problem, the testlet parameter (� (
)) should be utilized instead of the 

�
· 	.  The third research question is partially answered.  Although the analysis results did 

not confirm the testlet effects from this particular data, some possible causes may be 

speculated.  The estimation issue for 3PLM could be a possible cause of this puzzling 

result of showing no testlet effect from the data.  Another possible interpretation of the 

result may be that the LID is not strong in the test.  Since it is impossible to discern the 

exact level of LID in this reading comprehension test, other alternative methods (e.g., 

simulation study) may be needed, stipulating all levels of each parameter. 

For the last question, “What are the differences between the item parameter 

estimates obtained using TRT and IRT model?”, we compared the estimates of 3PLM 

and two TRT models.  In both the constrained TRT and generalized TRT model, item 

difficulty parameters were associated with the testlet effect means.  Lower testlet means 

were related to higher item difficulty parameters.  The higher the testlet means, the lower 

the item difficulty parameters.  The graphs with correlation coefficients in Figure 11 

revealed that IRT and two TRT models yielded invariant estimates for the person ability 

(r = .99, p < .01).  The a-parameter estimates were highly correlated between 3PLM and 

constrained TRT model (r = .99, p < .01), and between constrained TRT and generalized 

TRT model (r = .99, p < .01).  The invariance of person and item parameter estimates 

proved the advantage of IRT over CTT.  However, item difficulty estimates did not show 

perfect linear relationship between 3PLM and constrained TRT (r = .59, p < .05), 



77 

 

 
 

between 3PLM and generalized TRT (r = .84, p < .05), and between constrained TRT and 

generalized TRT (r = .52, p < .05).  This phenomenon could be explained by the 

estimation formula in Equations 10, 12, and 13.  As interpreted in the result section, item 

difficulty parameters which were estimated by different psychometric models such as 

3PLM (P = Φ (aj θi – aj bj)), constrained TRT (P = Φ (aj θi – aj bj – aj�	 (
))), and 

generalized TRT (P = Φ (aj1 θi – bj – aj2�	 (
))) were not invariant.  The last research 

questions is also fully answered with the association of item difficulty parameters and the 

testlet mean as well as with the invariant estimates of item discrimination and pseudo-

chance parameters from 3PLM and two TRT models.  

Limitation and recommendations for future research 

No research project is without limitations, and this project is not an exception.  

The first limitation of this study is computational issues in WinBUGs which is associated 

with the testlet parameter (�	 (
)).  Using the �	 (
), the WinBUGs program failed to 

estimate item and testlet parameters.  The performance of MCMC algorithm is affected 

by the number of items per testlet (Wainer, Bradlow, & Wang, 2007).  In our study, 

passages contained from 2-item to 4-item.  The suggestion for future study is that the 

model comparisons may be conducted with various numbers of items per testlet.   

In order to confirm the association of a testlet mean and item difficulty parameters 

as well as to investigate testlet effects on a reading comprehension test, one may employ 

various reading data because, in the current study, only one reading comprehension test 

was used although it had a large sample size.  In addition, the factor structure of the data 



78 

 

 
 

which we used was not supporting both the 4 areas (RL, RI, RF, and L) of the CCSS 

criteria and the multiple underlying constructs which defined by various reading 

comprehension theories.  In our literature review, the unidimensionality may not fully 

represent a reading comprehension test due to various reading comprehension activities 

and process with the multidimensional constructs (Sweet, 2005).  In order to endorse the 

undimensionality or multidimensionality on a reading comprehension test, various 

reading comprehension test data should be used with various psychometric techniques. 

  In conclusion, the current study made a significant contribution to the field of 

reading comprehension by utilizing both the traditional CTT and more advanced and 

falsifiable IRT models in analyzing item level data for a reading comprehension test.  

Also, the finding of the association between testlet means and item difficulty parameters 

was meaningful to researchers and educators.  However, without true values of testlet 

effect and item parameters, it is impossible to determine which models provide precise 

testlet mean, testlet variance, and item parameters.  In future studies, simulation methods 

may give more information about appropriate testlet sizes along with computational 

issues in order to select best-fit model for a reading comprehension test and in order to 

interpret the relation between testlet effect and item parameters.   The results of the 

current study shed light to both researchers and practitioners that we are all in need of 

research which utilizes both actual data and simulated data in order to achieve the closest 

approximation to the truth.  
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APPENDIX A 

1PLM 

# n: the number of students 

# p: the number of items 

# a: item discrimination 

# b: item difficulty 

model { 

 

# Read in individual item responses 

            for ( i in 1:n ) { 

                               for ( j in 1:p) { 

                                             x[i , j ] <- response[i, j ] 

                                                     } 

                                   } 

# Identify one-parameter logistic (1PL) model 

            for (i in 1:n)  { 

                               for (j in 1 : p) { 

                                                    x[i , j ] ~ dbern(prob[i,j]) 

                                                   logit(prob[i,j]) <- a[j] *(theta[i] - b[j]) 

                                                        } 

                                    } 

# Specify prior for examinee parameters 

            for (i in 1:n)     {                                   

                    theta[i] ~ dnorm(0,1) 

                                     } 

#Specify priors for item parameters 

            for (j in 1:p)    { 

                                   b[j] ~ dnorm(0, 1) 

                                   a[j] <- 1.0 

                                   } 

#Log Likelihood 

             for ( i in 1:n ) { 

                               for ( j in 1:p) { 

                                      L[i, j ] <- log(prob[i , j ])* x[i, j ] + log(1-prob[i , j ])* (1- x[i , j ]) 

                                                     } 

                                     } 

             loglik <- sum(L[ 1: n, 1: p]) 

             LL <- -2*loglik 

             AIC <- -2*(loglik - np) 

             BIC <- -2*loglik + np*log(n) 

             } 
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APPENDIX B 

2PLM 

model { 

# Read in individual item responses 

            for ( i in 1:n ) { 

                               for ( j in 1:p) { 

                                             x[i , j ] <- response[i, j ] 

                                                     } 

                                   } 

# Identify two-parameter logistic (2PL) model 

            for (i in 1:n)  { 

                               for (j in 1 : p) { 

                                                    x[i , j ] ~ dbern(prob[i,j]) 

                                                   logit(prob[i,j]) <- a[j] *(theta[i] - b[j]) 

                                                        } 

                                    } 

# Specify prior for examinee parameters 

            for (i in 1:n)     {                                   

                    theta[i] ~ dnorm(0,1) 

                                     } 

#Specify priors for item parameters 

            for (j in 1:p)    { 

                                   b[j] ~ dnorm(0, 1) 

                                   a[j] ~ dnorm(0, 1)  I(0, ) 

                                   } 
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APPENDIX C 

3PLM 

model { 

# Read in individual item responses 

            for ( i in 1:n ) { 

                               for ( j in 1:p) { 

                                             x[i , j ] <- response[i, j ] 

                                                     } 

                                   } 

# Identify three-parameter logistic (3PL) model 

            for (i in 1:n)  { 

                               for (j in 1 : p) { 

                                                    x[i , j ] ~ dbern(prob[i,j]) 

                                                   logit(prob.star[i,j]) <- a[j] *(theta[i] - b[j]) 

                                                    prob[i, j] <- eta[j] + (1-eta[j]) * prob.star[i, j]  

                                                        } 

                                    } 

# Specify prior for examinee parameters 

            for (i in 1:n)     {                                   

                    theta[i] ~ dnorm(0,1) 

                                     } 

#Specify priors for item parameters 

            for (j in 1:p)    { 

                                   b[j] ~ dnorm(0, 1) 

                                   a[j] ~ dnorm(0,1) I(0,  ) 

                                   eta[j] ~ dbeta (1, 1) 

                                   } 
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APPENDIX D 

3PL CONSTRAINED TRT 

model { 

# Read in individual item responses 

            for ( i in 1:n ) { 

                               for ( j in 1:p) { 

                                             x[i , j ] <- response[i, j ] 

                                                     } 

                                   } 

# Identify constraint three-parameter logistic (3PL) TRT model 

            for (i in 1:n)  { 

                               for (j in 1 : p) { 

                                                    x[i , j ] ~ dbern(prob[i,j]) 

                                                   logit(prob.star[i,j]) <- a[j] *(theta[i] - b[j] - test[d[j]]) 

                                                    prob[i, j] <- eta[j] + (1-eta[j]) * prob.star[i, j]  

                                                        } 

                                    } 

# Specify prior for examinee parameters 

            for (i in 1:n)     {                                   

                    theta[i] ~ dnorm(0,1) 

                                     } 

# Specify prior for testlet parameter 

            for (k in 1:T) { 

                     test[k] ~ dnorm(0, 1)                     

                                  } 

#Specify priors for item parameters 

            for (j in 1:p)    { 

                                   b[j] ~ dnorm(0, 1) 

                                   a[j] ~ dnorm(0, 1)  I(0, ) 

                                   eta[j] ~ dbeta (1, 1) 

                                   } 

#Log Likelihood 

             for ( i in 1:n ) { 

                               for ( j in 1:p) { 

                                      L[i, j ] <- log(prob[i, j ])* x[i, j ] + log(1-prob[i, j ])* (1-x[i, j ]) 

                                                     } 

                                     } 

             loglik <- sum(L[1: n, 1: p]) 

             LL <- -2*loglik 

             AIC <- -2*(loglik - np) 

             BIC <- -2*loglik + np*log(n)  } 
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APPENDIX E 

3PL GENERALIZED TRT 

model { 

 

# Read in individual item responses 

            for ( i in 1:n ) { 

                               for ( j in 1:p) { 

                                             x[i , j ] <- response[i, j ] 

                                                     } 

                                   } 

# Identify genenalized three-parameter logistic (3PL) TRT model 

            for (i in 1:n)  { 

                               for (j in 1 : p) { 

                                                    x[i , j ] ~ dbern(prob[i,j]) 

                                                   logit(prob.star[i,j]) <- a1[j] *theta[i] - b[j] - a2[j] *test[d[j]] 

                                                    prob[i, j] <- eta[j] + (1-eta[j]) * prob.star[i, j]  

                                                        } 

                                    } 

 

# Specify prior for examinee parameters 

            for (i in 1:n)     {                                   

                    theta[i] ~ dnorm(0,1) 

                                     } 

# Specify prior for testlet parameter 

            for (k in 1:T) { 

                     test[k] ~ dnorm(0, 1)                     

                                  } 

                 

#Specify priors for item parameters 

            for (j in 1:p)    { 

                                   b[j] ~ dnorm(0, 1) 

                                   a1[j] ~ dnorm(0, 1)  I(0, ) 

                                   a2[j] ~ dnorm(0, 1)  I(0, ) 

                                   eta[j] ~ dbeta (1, 1) 

                                   } 
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APPENDIX F 

IRB APPROVAL 

 


