

Holographic Reduced Representations for Working Memory Concept Encoding

by

 Grayson McKenzie Dubois

A thesis presented to the Honors College of Middle Tennessee State University in partial

fulfillment of the requirements for graduation from the University Honors College

Fall 2016

i

Holographic Reduced Representations for Working Memory Concept Encoding

by

Grayson McKenzie Dubois

APPROVED:

 Dr. Joshua L. Phillips

 Computer Science

 Dr. Chrisila Pettey

 Computer Science

Dr. Teresa Davis

Psychology

Honors Council Representative

Dr. John Vile

Dean, University Honors College

ii

Copyright © 2016 Grayson M. Dubois & Joshua L. Phillips.

Department of Computer Science

Middle Tennessee State University; Murfreesboro, Tennessee, USA.

I hereby grant to Middle Tennessee State University (MTSU) and its agents (including an

institutional repository) the non-exclusive right to archive, preserve, and make accessible my

thesis in whole or in part in all forms of media now and hereafter. I warrant that the thesis

and the abstract are my original work and do not infringe or violate any rights of others. I

agree to indemnify and hold MTSU harmless for any damage which may result from

copyright infringement or similar claims brought against MTSU by third parties. I retain all

ownership rights to the copyright of my thesis. I also retain the right to use in future works

(such as articles or books) all or part of this thesis.

The software described in this work is free software. You can redistribute it and/or modify it

under the terms of the GNU General Public License version 3 or later as published by the

Free Software Foundation. It is distributed in the hope that it will be useful but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more

details.

GNU General Public License:

https://www.gnu.org/licenses/gpl-3.0.en.html

The software is posted on GitHub under the following repositories:

Holographic Reduced Representation Engine:

https://github.com/G-Dubois/Holographic-Reduced-Representation-Engine

Working Memory Toolkit:

https://github.com/jlphillipsphd/wmtk

iii

For God,

through whom all work depicted herein is made possible.

For my family,

 who helped me to become the person I am today.

For Tressie,

my best friend and unwavering pillar of support.

For all of my brothers and sisters in Christ, especially those suffering from mental

illnesses and the afflictions of the brain.

iv

Acknowledgements

I would like to thank David C. Noelle, Ph.D. (Associate Professor, School of Social

Sciences, Humanities, and Arts, University of California, Merced) for introducing my mentor,

Joshua L. Phillips, to Tony Plate's work on HRRs. Without his contribution, my research would

not have been possible.

I am very grateful for the MTSU Honors College, for providing me and other students

a friendly and welcoming community of scholars and friends. Their opportunities help students

like me to grow in diversity, academia, and scholarship. As a student pursuing a STEM major,

I especially owe the Honors College for giving me a true appreciation of the liberal arts. The

influence and instruction of faculty and staff at the Honors College has taught me to love and

pursue wisdom, and because of them I am determined to be a philosopher first, and a computer

scientist second. After all, what use is any level of technical feat if one lacks the ability to think

critically and apply those feats to some practical use for the betterment of mankind?

I owe a lot to the MTSU department of Computer Science. I could not be the computer

scientist I am today without the instruction and guidance of the faculty and the support of my

fellow CS classmates. I especially thank those faculty members who had the greatest influence

on my growth during my time under their instruction.

To Dr. Chrisila Pettey, had I not taken your Computer Science I class, I may very well

still be studying Mechanical Engineering Technology. Had you not convinced me to change

my major, my life would have been very different indeed. Not only do I owe you for my last

three years of schooling, but the rest of my career as well. The work you do as department

chair to make MTSU’s CS program an exceptional learning experience for my fellow students

and me does not go unnoticed. Thank you for everything you do for us.

v

To Dr. Hyrum Carroll, you challenged me to be the very best software developer I can

be, to pay attention to detail, to present myself professionally and with confidence, and perhaps

most importantly, not to be afraid of approaching my betters with questions, concerns, and

even friendly conversation. Thank you for helping me to grow professionally and showing me

that you genuinely care about my fellow students and me, both academically and personally.

To Dr. Joshua Phillips, my advisor and mentor. Since the day I approached you asking

about the possibility of research, you have freely given me your full support. You have

provided me much more than just guidance and direction in my research; you have given me

personal and professional advice and have been patient and supportive through every step of

this research project. You have shown that you are not only interested in my success as a

computer scientist, but also in my growth as an individual as well. Thank you for your

mentorship throughout this research project. I truly believe that you have helped me to become

a better person, and the toolkit we built together is an accomplishment I shall always be proud

of.

I extend my thanks to all computer science faculty not named above. Every one of them

contributes to the success of MTSU’s CS program, and thus every one contributes to the

success of the students in it. I speak for all of us when I say thank you for all that you do.

vi

Abstract

Artificial neural networks (ANNs) utilize the biological principles of neural

computation to solve many engineering problems while also serving as formal, testable

hypotheses of brain function and learning. However, since ANNs often employ distributed

encoding (DE) methods they are underutilized in applications where symbolic encoding (SE)

is preferred. The Working Memory Toolkit was developed to aid the integration of an ANN-

based cognitive neuroscience model of working memory into symbolic systems by mitigating

the details of ANN design and providing a simple DE interface. However, DE/SE conversion

is still managed by the user and tuned specifically to each task. Here we utilize holographic

reduced representation (HRR) to overcome this limitation since HRRs provide a framework

for manipulating concepts using a hybrid DE/SE formalism that is compatible with ANNs. We

validate the performance of the new toolkit and show how it automates the process of DE/SE

conversion while providing additional cognitive capabilities.

vii

Table of Contents

Acknowledgements .. iv

Abstract .. vi

Introduction ... 1

The Prefrontal Cortex and Working Memory ... 4

Symbolic and Distributed Encoding Methods .. 8

Holographic Reduced Representations ... 14

Building the Holographic Reduced Representation Engine ... 18

Building the Holographic Working Memory Toolkit ... 21

Testing the Holographic Working Memory Toolkit ... 25

Results and Discussion ... 28

Bibliography ... 32

Table of Figures .. 33

Appendix ... 34

1

Introduction

The field of artificial intelligence (AI) is synergistic with a wide range of disciplines

but artificial neural networks is perhaps the most prolific subfield. Not only are biological

principles of neural computation and neuroanatomy adapted to solve engineering problems,

but ANNs also serve as formal, testable hypotheses of brain function and learning in the

cognitive sciences. Still, since ANN models often employ distributed encoding, most have

limited application in other areas of AI where symbolic encoding is the norm (e.g. planning,

reasoning, robotics).

There is extensive evidence that the brain contains a working memory (WM) system

that actively maintains a small amount of task-essential information that focuses attention on

the most task-relevant features, supports learning that transfers across tasks, limits the search

space for perceptual systems, provides a means to avoid the out-of-sight/out-of-mind problem

and more robust behavior in the face of irrelevant events (Baddeley, 1986; Waugh and

Norman, 1965) The prefrontal cortex and mesolimbic dopamine system have been implicated

as the functional components of WM in humans and animals, and biologically-based ANNs

for WM have been developed based on electrophysiological, neuroimaging, and

neuropsychological studies (O’Reilly et al, 2002; Kriete et al, 2013). A software library, the

working memory toolkit, was developed to aid the integration of ANN-based WM into robotic

systems by mitigating the details of ANN design and providing a simple DE interface (Phillips

and Noelle, 2005).

Despite the fact that the WMtk can solve common tests of working memory

performance such as the delayed saccade task (DST), the DE/SE distinction is problematic for

2

the WMtk since DE/SE conversion needs to be programmed directly by the user and tuned

specifically to each learning task. A technique called holographic reduced representation

(Plate, 1995) may provide the technical assistance needed to overcome this limitation. HRRs

provide a framework for creating and combining symbolic concepts using a distributed

formalism that is compatible with ANNs. Our aim for this project was to create a software

engine for encoding and manipulating concept representations using HRRs and integrate it into

the WMtk. The HRR Engine (HRRE) would greatly simplify the user interface by automating

the DE/SE conversion. We judge the performance of the new Holographic Working Memory

Toolkit (HWMtk) on two main criteria: 1) there must be a significant difference in the ease of

use of the toolkit with the simpler interface and automated DE/SE conversion, and 2) the toolkit

must still learn using HRRs in place of the old distributed representations.

An example of the capabilities of the WMtk can be seen in a robotic simulation written

using the toolkit based on the delayed saccade task (Phillips and Noelle, 2005). In the DST,

the robot is required to focus attention on a crosshair in the center of the screen. After a variable

time delay, a target object will appear in the periphery of the screen, but the robot must continue

to focus on the crosshair in the face of this distraction. After some time, the target object

disappears and the robot must continue to focus on the crosshair. Finally, the crosshair

disappears and the robot must then look at (or saccade to) the location where the target object

appeared during the task. Rather than programming the robot to solve the DST, the WMtk

allows the robot to learn how to solve the DST by repeatedly attempting the task as a series of

episodes. The robot's WM learns to both override automatic behaviors (such as immediate

saccades) and store task-relevant information (such as target locations) in order to guide future

actions. Importantly, the robot is given feedback (positive reward) only at the very end of

3

correctly performed episodes. Even under these conditions, the WMtk learned to correctly

manage items in WM and attain proficiency on the DST within just hundreds of episodes.

Even though the toolkit mitigates many challenges to the integration of a well-

established model of working memory function into other systems, such as development of the

neural network architecture and performing working memory updates, the toolkit does not aid

the user in developing reasonable representations of the environment or working memory

concepts themselves. Each component needs to be encoded using a sparse, distributed

formalism that is useful for the neural network to learn, but difficult to program and limited to

a single specific task. A more flexible encoding scheme is needed to make the toolkit more

accessible to end-users and potentially allow for more generalizable task knowledge and

working memory performance.

HRRs may provide the necessary tools to solve the SE/DE conversion problem. The

name HRR summarizes how many different concepts, each represented by separate, unique

vectors, can be combined and reduced to a single vector that represents the combined

knowledge of the concepts while still retaining information about each constituent concept

which is closely related to the concept of holographic storage. HRRs utilize a mathematical

framework that is compatible with the distributed representations expected by neural network

architectures, but is also complementary to symbolic representations used in other systems

(Plate). By replacing the DE interface of the WMtk with an HRR interface, DE/SE conversion

would be automated, concepts learned from one task would naturally carry over to new tasks,

and additional cognitive phenomena (e.g. chunking) may be investigated. Therefore, our

specific aim was to develop and test a holographic reduced representation engine, and integrate

it with the Working Memory Toolkit.

4

The Prefrontal Cortex and Working Memory

 Many people have tried to remember a phone number for a friend as they quickly

spouted it off. “1-1-2-3-5-8-1-3-2-1,” says the friend, and we struggle to remember it long

enough for them to pick up the phone and to dial it. Were we to attempt to remember it now,

we would probably be hard pressed to do so without some method of breaking it up. After all,

ten random digits is a lot of numbers to remember! If we tried to remember this number right

now, our brains would probably separate it into smaller groups of digits that are easier to

remember. This gives us the “112 – 358 – 1321” that we are so familiar with. Splitting it up

this way makes it easier for us to remember so that we can hold it in our mind long enough to

dial it, and then we forget it forever… or until we have to dial it again.

Why does splitting up these numbers make it easier for us to remember them? This is

because of a system in our brains called working memory whose sole purpose it is to retain a

few tidbits of information that are immediately useful for whatever task we are focusing on at

any given moment. There are three points to remember about working memory. First, working

memory can only hold small pieces of information long enough to be used, then immediately

discards them. Second, this information is often grouped together in chunks of information that

is similar in nature. Finally, there are only a few slots in WM in which task-relevant

information can be stored. This number varies for each individual but it is now most commonly

believed to be four slots for most people

(Cowan, 2004). Keeping these three things in

mind, then, it makes sense that when trying to

remember a ten-digit phone number, the Figure 1: An example of how working memory

stores task-relevant information.

5

working memory system splits it into three “chunks” of digits (figure 1). The working memory

system holds onto this information long enough to dial the number, and then forgets it.

There is evidence to show that the PFC maintains the representations of the chunks of

information we are holding in our working memory (Goldman-Rakic, 1987). The basal ganglia

(BG) also play a role the working memory system by regulating the information held by the

PFC through regulation of dopamine release. Dopamine is the neurotransmitter that acts as a

sort of reward chemical which the BG releases when exposed to rewarding stimuli (Shultz et

al, 1988). For example, a child being potty-trained who successfully uses the toilet receives an

M&M for doing a good job. This is called reinforcement learning, since positive actions are

“reinforced” with a reward. When the child eats the M&M, his or her PFC releases dopamine,

which tells the rest of the brain that whatever the child just did was good, and elicits reward

for imitating the same behavior in the future. Eventually, the PFC learns to release dopamine

immediately after a “good” action rather than after the reward, because it expects the reward

in the future. Moreover, when the child gets older and no longer receives M&Ms for using the

toilet, the dopamine is released because a reward is expected, but dopamine levels drop when

no reward is given (Shultz et al, 1988). This tells the brain that what we expected was a good

action, no longer elicits reward. Thankfully, most children do not go back to messing their

pants, despite this neurochemical punishment!

The facts that the BG regulates reinforcement learning through dopamine release while

the PFC maintains representations for task-relevant information in working memory provide a

solid foundation for a computational working memory model. The Working Memory toolkit

was developed as a data structure with a few memory slots that held representations of WM

chunks and utilized a technique called temporal difference (TD) learning to perform

6

reinforcement learning (Phillips and Noelle, 2005). The Critic and Adaptive networks in the

original toolkit would then perform the TD algorithm while the WM data structure was fed

information throughout the course of a cognitive task. The TD algorithm would then mimic

the dopamine release in the BG by rewarding the WM system when a task was completed

correctly. After enough successes, the working memory system has enough information to

know the most valuable chunks to retain in working memory relative to the information that is

given to it.

To use humans as an example, imagine a toddler in a high chair, frustrated and hungry.

The father is teasing the child – a little girl – with a spoonful of her favorite apple sauce with

sprinkles, repeating the word “dada” in baby-talk enough times to drive the mother out of the

room for sanity’s sake. The toddler reaches for the spoon, tries to escape the high chair, and

makes a fuss before trying a different tactic, but the father only feeds her when she echoes his

plead of “dada.” Let’s take an inside look at this toddler’s working memory. The child is

experiencing all sorts of input from the environment. Spoon with delicious food, high chair

prison, dad’s weird faces, and the word “dada” are all things that we know the child is gathering

from her senses. These are known as percepts. The child’s PFC now has to determine which

of these percepts are important to retain. Imagine that the child has a WM capacity of one.

Initially, she will be randomly selecting one of these percepts based on what her WM calculates

is the most valuable. If she were allowed to eat with a spoon prior to this encounter, this will

most likely be the concept “spoon.” After several trials reaching for the spoon and still not

finding success, her PFC tries something else, such as “high chair prison,” upon which she will

start fussing and trying to escape. But one time she thinks “dada,” and some sounds resembling

the word stumbles out of her. For this, she is rewarded with a spoonful of delicious apple sauce,

7

and her BG will release the dopamine that tells her PFC that something that it is holding onto

is good. After a variation of these steps occurs enough times, the girl’s PFC and BG have

gathered enough information to know that when dad is holding a spoonful of food hostage in

front of her, the most valuable piece of information to hold in working memory is the word

“dada.” When this happens, she will be much more successful at getting her food every time .

. . at least until the lesson turns from Names to Manners. Then her WM will have to retrain

itself from the old code word “dada” to the new “please.”

8

Symbolic and Distributed Encoding Methods

Before talking about holographic reduced representations and discussing the ways in

which they are well-suited for concept encoding in the working memory toolkit, it is worth

defining what we mean by symbolic and distributed representations. Here I will discuss how

to encode concepts in AI and cognitive tasks using both symbolic and distributed formalisms,

and I will conclude with a discussion on what DE/SE conversion may look like, especially in

the WMtk. This chapter is specifically devoted to beginning the discussion of constructing

concept representations for software use – a topic that is vital to understanding HRRs and how

they work – as well as why the original DE/SE interface was complicated and difficult to use.

Symbolic representation is the simplest to understand, since this is how our brains

represent concepts. A symbolic representation of a concept is exactly what it sounds like: a

symbol that describes that concept. To represent a concept symbolically in a cognitive task, we

would merely come up with some symbol and informally assign it the concept that we want it

to represent. For example, if we wanted to

represent the concept of a triangle, we could

draw a picture of a closed three-sided figure,

and our brains will interpret he image as the

symbol representing a triangle. We could just

as easily say that the word “triangle” itself is

a symbol that represents the concept of a triangle, or even just the letter “T” (figure 2).

In the delayed saccade task mentioned earlier, we can use some symbols to represent

the concepts used in the task. We will use words as our symbols to represent the concepts. We

need a symbol to represent the cross’ presence in the center of the screen, so we will use “center

Figure 2: Different symbols representing the

concept "triangle".

9

cross.” We also need a focus symbol to indicate where the agent is looking. This can be “center

focus”, “northeast focus”,

“northwest focus”, “southeast

focus”, or “southwest focus”.

Finally, we need a target

symbol to indicate where the

target is on the screen, such as

“northeast target”, “northwest

target”, “southeast target”, or

“southwest target”. Visual

examples of these symbols are shown in figure 3.

Distributed encoding is a method of encoding information about concepts in ways that

can be expressed in mathematical terms. Where symbolic representations are good in AI tasks

concerning logical decision making (in the presence of the symbol for the northeast target, do

X), distributed representations are used in artificial neural networks that perform mathematical

operations for decision making and learning. A distributed representation is any representation

of a concept or set of concepts that can be expressed as number values in a vector. Say we

wanted to represent a triangle using distributed representations, how we constructed our DE

vector would depend largely on the other parameters for the task. For example, if there were

four different shapes that we could represent, then we could construct a simple vector of four

values, where each index was a sort of binary switch for the different shapes. Let’s suppose

the indices were assigned as follows: 1 - square, 2 - triangle, 3 - circle, and 4 - cross. The vector

Figure 3: Visual examples of symbols used in the DST.

10

[0, 1, 0, 0] is a distributed representation indicating the presence of a triangle, because the

index representing triangle (index 2) contains a 1.

Suppose we have

four other concepts for

the colors red, green,

blue, and yellow. If we

wanted to create a distributed representation to represent the complex concepts of colored

shapes, we would extend the shape vector and assign colors to the other indices (figure 4).

Using this new encoding for colored shapes, we can use the vector [0, 1, 0, 0, 0, 1, 0, 0] to

represent the concept of a green triangle.

In the original working memory toolkit, the user developing a cognitive task not only

had to write logic to handle symbolic concepts in the task environment, but also had to write

functions and methods that would convert these symbolic concepts such as “red triangle” into

distributed vectors such as [0, 1, 0, 0, 0, 1, 0, 0] so that the ANN embedded within the toolkit

could properly learn using the TD algorithms. Unfortunately, this is not all that has to be taken

into account. The encoding for colored shapes described above makes disjunctive

representations, meaning that two vectors representing unique concepts can sometimes contain

similarities. This means that the concepts red triangle and blue triangle appear to be similar

because only one element is different in their vector representations, [0, 1, 0, 0, 1, 0, 0, 0] and

[0, 1, 0, 0, 0, 0, 1, 0], respectively. Mathematically speaking, these disjunctive representations

may not be orthogonal for orthogonal (or independently unique) concepts, since their dot

product is higher than it would be if the vectors were truly unique. The reason this is bad is

because TD learning generally only works on sparse conjunctive distributed representations.

Figure 4: Making distributed encodings by assigning symbols to each

index of a vector.

11

It is important to note that when I say sparse here, I am talking in terms of sparsity of dot

product. Orthogonal concepts must be represented by orthogonal vectors in order for TD

learning to occur.

It is not immediately apparent why sparse conjunctive distributed representations must

be used for neural nets to learn effectively using TD learning. The reason is related to how the

system draws relationships between the concepts represented in the task. Remember that the

vectors representing green ball and green triangle are very similar using disjunctive

representations, since they both share the “green” element in their vector representations, and

the only difference is the shape element that is activated in the vector. The reason we call these

vectors disjunctive is because their dot products show more similarity for vectors with common

features, even though the vectors may represent unique concepts themselves. Since the dot

product shows similarity between two vectors, this is like saying they can either both share the

same color or they can share the same shape or they can share nothing (a disjunction). Vectors

built from disjunctive encodings will appear to the neural network to be fairly similar to other

vectors which share common information, even though they represent independently unique

concepts, such as “green ball” and “green triangle.” Even though the two concepts both

describe something that is green, they are still unique concepts and must be considered

orthogonal. Justin Boyan and Andrew Moore from Carnegie Mellon University propose that

because of this, neural networks generally learn poorly using TD learning methods, but Richard

Sutton argues that this is not the case when using sparse conjunctive distributed

representations.

Conjunctive distributed representations are formed when the vectors representing

orthogonal concepts are orthogonal vectors themselves, even if they contain some similar

12

constituent pieces. For example, the vector for “green square”

should not be similar in any way to the vector for “green

circle”, even though they both have the constituent concept

“green”. A naïve way to encode conjunctive representations is

to create a matrix of n dimensions, where n is the number of

constituent pieces that make up a concept (i.e., 3 dimensions

for a conjunctive concept made up of a shape, a color, and a

size) and a single element of 1 for the location within that matrix that represents each of the

concepts on the axes that you wish. Figure 5 shows an example of a matrix that forms a

conjunctive representation for “green circle” where there are two dimensions of input – shape

and color – and two possible choices for each – square, circle, and red, green. We can also

rearrange this into a vector form by assigning each index a unique combination of each

constituent concept. From the previous example, we could assign the following indices: 1 - red

circle, 2 - red square, 3 - green circle, and 4 - green square. Using this encoding, the vector

[0, 0, 1, 0] represents a green circle and [0, 0, 0, 1] represents a green square. This encoding

is conjunctive because every possible combination of concepts has a vector representation that

is orthogonal to the others.

There are, of course, several complications and disadvantages to using conjunctive

vectors constructed in this way. Perhaps most obvious is that the conjunctive vectors described

above do not include individual concepts such as “green” or “circle,” and must therefore be

intentionally included in the manual construction of the representation. Also, if we wanted to

add a concept to our encoding scheme, we would have to take into account every possible

combination of concepts that can be constructed with that concept, and include those in our

Figure 5: Using a conjunctive

matrix to encode the concept for

"green circle".

13

manual encoding scheme. Because of this, every concept added to the encoding scheme

increases the number of possible elements in the conjunctive vectors exponentially, meaning

that this method of encoding is only really efficient for small conjunctive vectors.

These are only the basic factors one has to take into account when trying to develop

encoding methods for representing symbolic concepts using sparse conjunctive distributed

vectors. However, they are all necessary to know in order to write functions to encode symbolic

concepts for a simple learning task using the original WMtk. Unless the user has a strong

understanding of how representations need to be set up for learning with ANNs, they will meet

much difficulty in manually writing the DE/SE conversion for their learning task. Even for

those who do have the knowledge, it is a very tedious and intimidating job to have done before

they can even begin writing the main logic for their cognitive task.

I hope that by this point I have demonstrated that the original toolkit’s DE/SE interface

– where the conversion is manually written by the user – is very complicated and difficult to

use, especially to those with little knowledge of ANN-based systems using TD-learning

elements. Having explained the complications and difficulties of the original toolkit’s manual

DE/SE encoding requirements, I can talk about a powerful method of representation that

allowed me to automate the DE/SE conversion, and replace the original manual-encoding

interface with a simpler SE string passing interface that is much more user-friendly. This

method is called holographic reduced representation.

14

Holographic Reduced Representations

Holographic reduced representation is a robust method of representing symbolic

concepts in a distributed form that can be combined to make holographic representations for

complex concepts containing the information for each of the constituent concepts (Plate 1995).

With HRRs, it is possible to use symbolic concepts with ANNs. HRRs are mathematical

structures composed of vectors of Guassian values that, when specific operations are

performed on them, can very effectively be combined to form complex data structures from

many HRRs that are reduced into a single vector. What makes HRRs so powerful is that new

vectors formed from combinations of vectors are of the same size as the originals, and yet still

contain information from each of the constituent vectors. This means that a single vector can

hold multiple layers of information – making them holographic.

An HRR is formed by generating a

vector of real values typically drawn from a

Normal distribution with mean zero, and standard deviation 1/√𝑛 where n is the length of the

vectors (figure 6). This isn’t what makes HRRs so versatile, as the vectors are rather ordinary

in and of themselves. The power of HRRs comes from the operations can be performed on

them. In the paper Tony Plate published which first proposed the concept of Holographic

Reduced Representations, he described many incredible, powerful, and complex operations

that can be done with HRRs. For the purpose of my project, I focused on the two most basic

yet robust operations: circular convolution and circular correlation (also sometimes called

circular involution).

Figure 6: An example HRR of length 6.

15

Circular convolution is the operation used to combine

two vectors into a single vector of the same length. It is

achieved by first calculating the matrix representing the outer

product of the two vectors. Figure 7 shows an example of an

outer product matrix formed from two vectors containing the

values [2, -1, 1] and [1, 0, 2]. In this and other examples, I may

show integer values as the contents of the vectors for

simplification and ease of conceptualization. It is important to

note that in real applications the values will be small real

values drawn from a Gaussian distribution, as described

above. Once an outer product has been formed, the circular

convolution is calculated by summing each value across the

matrix’s trans-diagonals. This is best illustrated in figure 8.

Using circular convolution in this way, we can

combine the vectors [2, -1, 1] and [1, 0, 2] to form the vector [0, 1, 5], a vector of the same

size which contains information from both of the original vectors. To understand this

conceptually, we can say that the first vector represents the concept “red” while the second

represents the concept “ball,” and the resulting vector from the circular convolution represents

the complex concept “red ball” (figure 9). Note that the new vector does not appear to have

anything in common with the two constituent vectors. This is to our advantage, because a

complex concept that is represented by two

vectors is in fact, once combined, a new and

unique concept in and of itself. Take for
Figure 9: Convolving the concepts for "red" and

"ball" yields the complex concept "red ball".

Figure 7: Forming the outer

product matrix of two vectors of

length 3.

Figure 8: Summing across the

trans-diagonals to calculate the

circular convolution.

16

example the concept of the color red and the concept of ball. Individually, these concepts have

nothing in common, but each has one element in common with the complex concept of a red

ball. Nonetheless, a red ball is a unique concept in its own right. This is reflected in HRRs as

well as the three vectors given above. This is another reason HRRs are so well suited for

concept representation, because they mirror the distinctive nature of concepts, even when

combined.

One may ask the question: if the

HRR of complex concepts do not appear to

have anything in common with their

constituent HRRs, then how can they

contain the information of those original vectors? The answer is in circular correlation. Circular

correlation is the inverse operation of circular convolution. While convolving two vectors

combines them into a single vector, correlating a complex vector with one of its constituent

vectors will yield the other constituent vector. For example, if we have a vector representing

the complex concept “red ball” and we correlate it with the vector representing the concept

“red,” we get back the vector representing the concept “ball” (figure 10).

The circular correlation operation is actually very easy to perform once you understand

circular convolution. All that is required to achieve circular correlation is to convolve the

vector representing the complex concept “red ball” with the inverse of the vector representing

one of its constituent concepts, say, “red.” The approximate inverse of a vector is gained by

reversing the order of each of its elements after the first. For example, the approximate inverse

of the vector [1, 2, 3, 4] is [1, 4, 3, 2].

Figure 10: Correlating the complex concept "red ball"

with constituent concept "red" yields the other

constituent concept "ball".

17

Unfortunately, if we were to try to extract the one of the constituent vectors from our

convolution example from earlier using circular correlation, we would not get a vector that

looked quite like our original. This is because using the convolution and correlation operations

as described above with the approximate inverses of vectors will yield slightly distorted or

noisy results. The math gets answers that are generally very close, but inexact. This problem

decreases the larger your vector size. Had I used vectors of size 128 for my examples, my

answers would have been much more precise, however the exercise would have been

dreadfully long and tedious. Precise answers can also be found by performing the operations

in fourier space using fast fourier transforms, but that is an advanced method that Plate covers

in his paper and is beyond the scope of this project. For our purposes, using large vectors with

the operations as described above will suffice.

Another reason to use large vectors for the HRRs is related to the fact fewer elements

in the vectors increases the odds of randomly generating similar vectors for orthogonal

concepts. In this case, the two vectors may appear to have something mathematically in

common, when they might represent independent concepts. Using large vectors is a way to

reduce the probability of this happening.

18

Building the Holographic Reduced Representation Engine

The first step of incorporating HRRs into the WMtk was to build a software engine that

would automate and handle the generation and manipulation of concept representations. Thus,

I spent the spring semester of 2016 building the Holographic Reduced Representation Engine.

The base data structure for this engine is a dictionary called Concept Memory, where the string

name for the concept is the key, and the HRR representing that concept is the value (figure 11).

The engine’s concept memory keeps track of all concept-representation pairs that the engine

has encoded. From this point forward, the term

concept will be used to refer to the entity

composed of a symbolic string value and its

associated HRR. The term representation may be

used interchangeably with HRR, since HRRs are

the structure we use to form the digital

representation of the concepts we will use.

Developing a Conjunctive Encoding

Engine. After setting up the base dictionary for the engine’s concept memory and building the

functionality for HRR generation, we needed to add a conjunctive encoding function to the

engine for combining the HRRs to form complex concepts. We combine the representations

for the concepts into conjunctive representations using the circular convolution operation.

The main part of the HRRE’s conjunctive encoding functionality is the construct

function. This function takes a list of concept names, or a string containing the concatenation

of concept names, delimited by an asterisk (“*”), and combines all individual concepts into a

single complex concept. The construct function would first make sure that there is a

Figure 11: Concept Memory stores all "known"

concepts that have been encoded by the HRR

Engine.

19

representation in concept memory for each given concept name, reorder each concept in

lexicographic order, and then convolve each together to form the final representation. In this

way, the construction of the concept made from “big,” “red,” and “ball” would result in the

complex concept, “ball*big*red.” In addition to constructing the final combination of all

concepts, the engine also constructs representations for every combination of the constituent

concepts. For example, constructing a concept using the values “big,” “red,” and “ball,” would

not only create concepts for each of the previous and the combination “ball*big*red,” but also

the combinations “ball*big,” “ball*red,” and “big*red.”

It is worth noting that we ensured that the HRRE always sorts the concepts into

lexicographical order before working with them to ensure that there are no duplicate

representations made for the same concept. For example, we do not want the engine to see

“big*red*ball,” if “ball*red*big” exists. Otherwise, it could potentially perceive it as a new

concept and generate a new representation for it even though it already contains

“ball*red*big,” which is represented by the same HRR. There is an additional safeguard built

into the engine, however, that protects against this as well. Whenever a concept is requested

from the HRRE that it does not currently have in memory, it constructs it by splitting it apart

into its constituent concepts by name, and constructing each using the process described above.

In this way, the user can pass in “ball*big*red,” “red*ball*big,” or any other permutation of

these concepts, and the HRRE will always construct or perceive it as “ball*big*red.”

Developing a Conjunctive Decoding Engine. The final piece added to the HRRE was

the conjunctive decoding function. Whereas conjunctive encoding is the combination of two

representations through circular convolution, conjunctive decoding is the extraction of one

constituent concept from a complex concept using circular correlation.

20

Similar to the encoding part of the engine’s construct function, the decoding part of the

engine has an unpack function that separates a complex concept into all combinations of its

constituent parts. Whereas the construct function is merely encoding each combination to

ensure that they are all recognizable concepts for the HRRE, the unpack function serves to find

all combinations and return them as a list of concepts. This is useful to the WMtk, as it will be

the means by which a list of concepts in the environment will be assembled as candidates for

storing in WM.

When we finished the HRRE, it was capable of generating HRRs for new concepts,

storing concepts as key-value pairs of names and representations in the concept memory

dictionary, combining concepts through circular convolution, extracting concepts through

circular correlation, constructing and encoding all combinations of a list of concepts, and

unpacking all combinations of constituent concepts from a complex concept and returning the

resulting list to the user.

21

Building the Holographic Working Memory Toolkit

Once the HRR Engine was finished, my next step was to rebuild the WMtk with the

engine at its core. The three-part process for building the Holographic WMtk comprised of (a)

researching the specifications of the original WMtk and making a development plan for the

augmented toolkit, (b) rebuilding the WMtk around the HRRE, and (c) testing the augmented

toolkit to ensure that it still learns using the new HRR interface.

Researching WMtk Specifications and Making a Development Plan. The Working

Memory toolkit is composed of a single-layer neural network that utilizes a working memory

model inspired by the human pre-frontal cortex. This network works by passing the chunks of

information in working memory and the state representation to a value function, which

determines how valuable that particular set of working memory contents is in that state. All

states and combinations of WM contents are equally meaningless at first, but the critic network

employs temporal difference (TD) learning (Sutton, 1998, O’Reilly, 2007) to learn the value

of each WM-state combination by experiencing repeated episodes of the learning task. In this

way, the working memory learns what information is the most valuable to retain depending on

what state it is currently seeing. At this point, it is up to the user to design their learning task

in such a way that the agent decides to make an action according to what is currently held in

working memory.

We decided to start with a minimal design for our augmented toolkit. Since our aim for

the project was to improve ease of use for researchers using the toolkit, providing a simple

interface in addition to automating the concept encoding process was our best option,

especially since more utilities can be added to the toolkit in future projects. As such, we decided

22

to start the HWMtk with two main components: the Working Memory component, and the

Critic Network (CN).

Working Memory. The WM component is the workhorse of the toolkit. It houses the

HRR Engine, which serves as the store of known concepts, as well as the processor for the

representations of all concepts. WM receives a string representation of the current state, which

is set up as a string containing a concatenation of the concepts describing the state, delimited

by a cross (“+”). An example of a state containing a cross in the center of the environment and

a target in the north position of the environment could be denoted “center*cross+north*target.”

WM parses the state string for the list of concepts it contains, splitting each by the cross

delimiter, then passes these to the HRRE, which returns a list of all the unpacked combinations

of concepts. Following the cross-target example, the list of candidate chunks would be

“center,” “center*cross,” “cross,” “north,” “north*target,” and “target.” This list of concepts

becomes our list of candidate chunks, from which any are candidates for retention in WM. It

is important to note that the previous contents of WM are also candidates for retention. This is

what makes WM store task-relevant information in the long run, and thus what makes WM

behave as it should. WM then goes through every combination of all candidate chunks that can

fit in its WM slots, combining those with the representation of the state and feeding each

combination into the critic network to determine their value. The WM-state combination is

calculated by convolving the WM contents into a single WM representation, then adding the

representations for each concept in the state into a single state representation, and convolving

the resulting two HRRs into the final WM-state representation. When passed into the critic,

the set of WM that returns the highest value in the given state is chosen for retention, and the

23

control is returned to the user until WM is passed a new state on the next step of the simulation

run.

Critic Network. The CN component is the neural network that drives learning in the

WMtk. It is passed representations from WM that it then passes through a value function. The

value function for the CN is a dot product calculation of the WM-state combination with a

weight vector that is retained for the duration of the simulation. The weight vector is initialized

with very small random values, and thus values for each representation will begin quite low.

However, the CN employs TD-learning over many episodes of simulation, which will update

the values in the weight vector, and thus make the value function converge to the correct values

for each WM-state combination, according to their effectiveness at determining task outcomes.

 TD learning is implemented through 3 functions in the toolkit: Initialize Episode, Step, and

Absorb Reward. Each function is passed the string representation of the state and the reward

for that state. These functions are implemented and called through the WM object, but are

closely tied to the CN for TD calculations. Initialize episode resets all episodic variables, clears

and chooses the initial contents for WM, and stores reward and value information about the

initial state for later use. Step chooses the current contents of WM, calculates reward and value

information for the current state, and uses those values along with those stored from the

previous state to update the weight vector using the CN’s TD functions. Step then stores the

current state’s value and reward for use in the next step of the episode. Step is called on each

time step of the simulation to update working memory and drive learning. Finally, Absorb

Reward is called at the end of the episode, which takes the state string for the final state, and

does the TD update for the previous state as well as the final state. Typically, all scalar reward

of zero is provided throughout all steps of the task. On the final step, a reward value of 1 is

24

provided if the agent successfully completes the task and zero for task failure. When a new

episode begins, these functions are called again, in the same order: Initialize Episode, a

sequence of calls to Step, and finishing the episode with Absorb Reward. We do use eligibility

traces in our TD calculations, and our epsilon soft policy is implemented by generating random

WM contents, epsilon percent of the time.

A visual comparison of the basic architecture of the original and augmented toolkits is

shown in figure 12. The main difference between the two architectures is in the amount of code

the user needs to provide in the form of functions/methods. Many of these user-defined

functions are now completely performed within the HWMtk. Sensory information can now be

provided in a symbolic, English-like syntax and the symbols are automatically converted to

appropriate vectors by the HRRE for presentation to the CN so that it learns to select task-

relevant concepts that enable the agent to override pre-potent responses with task-relevant

Figure 12: Comparison of the original WMtk architecture (left) to the

 architecture of the HWMtk (right).

25

behaviors. Also, while the function calculating reward information still needs to be specified

by the user, the augmented toolkit does not need to call this function directly. This simplifies

the user's implementation since it no longer needs to be concerned with the inner-workings of

the toolkit to perform reward calculations.

Testing the Holographic Working Memory Toolkit

We developed a task for the HWMtk to determine if the user interface is indeed easier

for developing new tasks compared to the original toolkit. Additionally, the task tests the basic

components of working memory function: learning to store task-relevant information and

ignore task-irrelevant information (distractors). For this task, the agent is shown 7 colors in

random order, and is rewarded if it remembers the color “red” at the end of the simulation.

This task would be equivalent to shuffling 7 cards of different colors, and showing them all to

the agent, one at a time, and asking at the end which color we were thinking of. The task is

simple, but not trivial, as the toolkit can choose to remember nothing or any of the other colors

as well. Also, the presentation order is randomized, so the agent cannot anticipate when the

relevant color is being presented. The agent must decide to hold onto the color “red” and retain

this concept in working memory even while other colors (distractors) are being presented to

the agent until the end of the episode is reached. We repeat this process many times (each

repetition being a single episode). The agent must learn that it is only rewarded upon

remembering red, regardless of presentation order or the number of distractors encountered.

This ability to retain task-relevant information in the face of competing distractions is the core

mechanism of focused attention needed to perform all working memory tasks.

Learning parameters for the task were set to similar values as the defaults for the

standard WMtk: CN learning rate parameter, α = 0.1; future reward discounting factor, γ = 0.9;

26

past action eligibility factor, λ = 0.1; epsilon-soft random working memory selection

probability, ε = 0.01; number of working memory slots, s = 1; and HRR vector length, n = 64.

The HRR vector length n is the only new parameter on this list, and must be set to a value large

enough that the dot products between base HRR concept vectors remain close to zero. A value

of 64 was the minimum size needed to run 100 successful trials (described below), but larger

values did not show any noticeable difference in learning behavior. Considering the simplicity

and ease of setting up the task, the HWMtk meets our first and most important criterion for

success: simplification of interface and ease of use for the developer.

We additionally have developed a test in the statistical language R that serves as further

proof of concept for our research. This test uses the same constructs and processes as the

HWMtk, making it a valid proof of concept that we plan on implementing using the full toolkit

in the future. We chose to use the Wisconsin Card Sort task (WCST) – a task well suited for

testing cognitive models of PFC function (Rougier et al., 2005). In our version of the WCST,

a deck of cards containing objects is generated. These objects are described by 2 dimensions

each with three features. A dimension would be something like color or shape and a feature

would be something like green in the color dimension, and square in the shape dimension.

Thus sample cards might be something like a green square, a blue triangle, or a red circle, and

the deck would contain all permutations of these features per dimension. We chose a

dimension-feature design for our cards for scalability. It is easier to increase the number of

dimensions and features to create complex tasks than explicitly creating every permutation of

the cards to add another dimension – such as the number of each shape present on each card.

At the start of the task, a rule is selected. This rule would be a single feature from one

of the dimensions, e.g. blue or triangle. The agent is then shown a random card from the deck

27

and is required to place it on one of two piles. The “match” pile is where the agent should

choose to place the card if the card contains the feature specified by the rule, otherwise it should

place it on the “discard” pile. Since the rule is not part of the agent’s knowledge base, it makes

its decision based on the feature it decides to store in WM. A reward of 1 is given if the agent

chose correctly, otherwise a reward of 0. Either way, the task is repeated episodically for 1M

trials. Eventually, the agent’s WM will learn that the most valuable feature to remember is that

which matches the rule, and it will always choose the correct pile for any card that it is shown.

We know that the agent has correctly learned the rule if it has chosen the correct pile

for 100 contiguous cards, at which point we generate a new rule and record the number of trials

since the previous switch, which we call the switch time. We found that for 1M trials, the

median switch time was 3883.5 ± 327.1163, meaning it typically took the agent between 3500

and 4200 trials to correctly learn a new rule.

The parameters for the WCST are as follows: CN learning rate parameter, α = 0.9;

future reward discounting factor, γ = 0.5; past action eligibility factor, λ = 0.1; epsilon-soft

random working memory selection probability, ε = 0.05; number of working memory slots, s

= 1; and HRR vector length, n = 1024.

28

Results and Discussion

When testing the HWMtk with the colors task, we were looking to see if it held up to

the two main criteria for success mentioned in the introduction: 1) ease of use in setting up a

learning task using the new string-passing SE interface, and 2) successful learning using HRRs

in place of the old distributed encodings.

Ease of Use. Setting up the colors learning task proved simple compared to setting up

tasks using the original toolkit. Had we been using the original WMtk, we would have had to

write a function to create distributed representations of each color as a chunk of information

usable to WM, as well as a similar function for encoding the state, and a reward function to

check to provide a reward value according to the agent’s performance. We would have had to

write each of these before writing the logic for the task itself, but using the augmented toolkit,

none of this preparation was necessary. We simply set up an array of n color strings, shuffled

them at the beginning of each episode, initialized episode with the first color, called the Step

function with each subsequent color less than n, and called the Absorb Reward function with

the nth color string. The only logic for the reward was written in line with the rest of the task,

and it entailed a check to see if “red” was stored in the contents of WM. If it were, Absorb

Reward was provided a reward value of 1.0 for success, else a 0.0 for failure. Considering the

simplicity and ease of setting up the task, the HWMtk meets our first and most important

criterion for success: simplification of interface and ease of use for the developer.

Effective Learning Using HRRs. The final test to determine the outcome of our

project was to run the task for 100 trials and collect the data to determine whether or not the

agent was learning. We gathered information over every trial, keeping track of the number of

29

episodes the agent successfully completed the task and recording the number of successes per

every 1000 episodes. We considered a 98 percent success rate per thousand episodes an

indication that the agent had effectively learned the task. Over the 100 trials, we found that the

agent learned the task to a 100 percent success rate within an average of 8000 episodes.

Therefore, the HWMtk meets the requirement of being capable of learning using holographic

reduced representations for concepts.

Discussions. The HWMtk has several advantages over the WMtk by using HRRs for

SE/DE representation. HRRs are much more robust than the task specific, manually encoded

representations used in the original toolkit. New, complex concepts can be encoded

automatically without having to alter the topology of the CN since such concepts are

constructed via new HRRs or convolved representations of equivalent length. Thus, complex

concepts fit into the same WM slots as simple ones, allowing slots to encode increasingly more

complex concepts.

Tasks that were previously beyond the capabilities of the previous toolkit are now more

realizable. For example, since new concepts can be formed when needed, learning performance

on a simple task might transfer to a more complex task. More complex tasks might be more

learned in far fewer episodes by leveraging such previous knowledge rather than learning the

task from scratch. Also, since HRRs provide a natural method for encoding hierarchical

structure, tasks which require paying attention to hierarchical signals will be easier to program,

and possibly easier to learn.

The HWMtk antiquates the need for user-specified concept encoding mechanisms, thus

greatly reducing both the time and knowledge of ANNs needed to adequately set up those

functions before writing the simulation. Specifically, the user no longer needs background

30

knowledge on how to construct sparse, distributed, conjunctive codes, and does not need to

rewrite encoding function when new concepts need to be proposed to WM or encoding into

the state descriptions. We hope that this alone will increase the interest in the HWMtk, and

will make it a better resource for other researchers wishing to test WM-related tasks.

The development of the HWMtk has opened up several new avenues for future work.

First, we plan to utilize the HWMtk to create a new version of the delayed saccade task. This

task is no more complicated, in practice, than the colors task presented earlier, but it would

provide a more intuitive comparison of how the distributed encoding process is simplified by

the HRRE component of the HWMtk as shown in figure 13. Second, the ability to rehearse

Figure 13: Example of how task-specific, sparse, distributed encoding was performed in the original

WMtk. In the HWMtk, an appropriate distributed HRR representation can be built automatically

without the user’s aid from a symbolic description of the environment: “center*cross+northeast*target.”

31

and group items using convolution might be added to tackle tasks what require memorizing

long sequences of information quickly. Such functionality might be used to study how limits

on cognitive faculties arise from a small set of WM slots. Additionally, the TD learning

element of the toolkit is currently being used to learn internal actions (selecting working

memory contents), but has traditionally been used to learn external actions. It seems likely that

the toolkit could be provided with a list of symbolic actions to choose from and the TD learning

element could then learn to select appropriate actions given the current state and working

memory concepts. This avenue would further reduce the programming burden placed on the

user, but would also complicate the learning process by needing to learn both internal actions

and external actions simultaneously.

32

Bibliography

Baddeley, Alan. "Working Memory, Reading and Dyslexia." Advances in Psychology

(1986): 141-52. Web.

Baddeley, Alan D., and Graham J. Hitch. "Working Memory." Psychology of Learning and

Motivation (1974): 47-89. Web.

Boyan, Justin A., and Andrew W. Moore. "Generalization in Reinforcement Learning: Safely

Approximating the Value Function." Neural Information Processing Systems 7

(1995): n. pag. Web.

Braver, T. S., and J. D. Cohen. “On the control of control: The role of dopamine in regulating

prefrontal function and working memory.” Attention and Performance volume 18,

Control of Cognitive Processes (2000): 713-737. Web.

Cowan, Nelson. "The Magical Number 4 in Short-term Memory: A Reconsideration of

Mental Storage Capacity." Behavioral and Brain Sciences 24.1 (2001): 87-114. Web.

Goldman-Rakic. P. S. “Circuitry of the prefrontal cortex and the regulation of behavior by

representational knowledge.” Handbook of Physiology (1987): 373-417. Web.

Kriete, T., D. C. Noelle, J. D. Cohen, and R. C. O'reilly. "Indirection and Symbol-like

Processing in the Prefrontal Cortex and Basal Ganglia." Proceedings of the National

Academy of Sciences 110.41 (2013): 16390-6395. Web.

O'reilly, R. C., D. C. Noelle, T. S. Braver, and J. D. Cohen. "Prefrontal Cortex and Dynamic

Categorization Tasks: Representational Organization and Neuromodulatory Control."

Cerebral Cortex 12.3 (2002): 246-57. Web.

Phillips, Joshua L., and David C. Noelle. "A Biologically Inspired Working Memory

Framework for Robots." ROMAN 2005. IEEE International Workshop on Robot and

Human Interactive Communication, 2005. (2005): 599-604. Web.

Plate, Tony A. "Holographic Reduced Representations." IEEE Transactions on Neural

Networks 6.3 (1995): 623-41. Web.

Rougier, N. P., D. C. Noelle, T. S. Braver, J. D. Cohen, and R. C. O'reilly. "Prefrontal Cortex

and Flexible Cognitive Control: Rules without Symbols." Proceedings of the National

Academy of Sciences 102.20 (2005): 7338-343. Web.

Shultz, W., P. Dayan, and P. R. Montague. “Learning to predict by the methods of temporal

differences.” Machine Learning 3 (1988): 9-44. Web.

Sutton, Richard S. "Generalization in Reinforcement Learning: Successful Examples Using

Sparse Coarse Coding." Neural Information Processing Systems 8 (1996): n. pag.

Web.

Waugh, Nancy C., and Donald A. Norman. "Primary Memory." Psychological Review 72.2

(1965): 89-104. Web.

33

Table of Figures

Figure 1: An example of how working memory stores task-relevant information. 4

Figure 2: Different symbols representing the concept "triangle". .. 8

Figure 3: Visual examples of symbols used in the DST. .. 9

Figure 4: Making distributed encodings by assigning symbols to each index of a vector. 10

Figure 5: Using a conjunctive matrix to encode the concept for "green circle". 12

Figure 6: An example HRR of length 6. ... 14

Figure 7: Forming the outer product matrix of two vectors of length 3. 15

Figure 8: Summing across the trans-diagonals to calculate the circular convolution. 15

Figure 9: Convolving the concepts for "red" and "ball" yields the complex concept "red ball".

... 15

Figure 10: Correlating the complex concept "red ball" with constituent concept "red" yields

the other constituent concept "ball". ... 16

Figure 11: Concept Memory stores all "known" concepts that have been encoded by the HRR

Engine. .. 18

Figure 12: Comparison of the original WMtk architecture (left) to the 24

Figure 13: Example of how task-specific, sparse, distributed encoding was performed in the

original WMtk. In the HWMtk, an appropriate distributed HRR representation can be built

automatically without the user’s aid from a symbolic description of the environment:

“center*cross+northeast*target.” .. 30

file:///C:/Users/Grayson/Documents/Holographic-Reduced-Representations-for-Working-Memory-Concept-Encoding/HRRfWMCE_Honors-Thesis.docx%23_Toc468087239
file:///C:/Users/Grayson/Documents/Holographic-Reduced-Representations-for-Working-Memory-Concept-Encoding/HRRfWMCE_Honors-Thesis.docx%23_Toc468087240
file:///C:/Users/Grayson/Documents/Holographic-Reduced-Representations-for-Working-Memory-Concept-Encoding/HRRfWMCE_Honors-Thesis.docx%23_Toc468087241
file:///C:/Users/Grayson/Documents/Holographic-Reduced-Representations-for-Working-Memory-Concept-Encoding/HRRfWMCE_Honors-Thesis.docx%23_Toc468087242
file:///C:/Users/Grayson/Documents/Holographic-Reduced-Representations-for-Working-Memory-Concept-Encoding/HRRfWMCE_Honors-Thesis.docx%23_Toc468087243
file:///C:/Users/Grayson/Documents/Holographic-Reduced-Representations-for-Working-Memory-Concept-Encoding/HRRfWMCE_Honors-Thesis.docx%23_Toc468087244
file:///C:/Users/Grayson/Documents/Holographic-Reduced-Representations-for-Working-Memory-Concept-Encoding/HRRfWMCE_Honors-Thesis.docx%23_Toc468087245
file:///C:/Users/Grayson/Documents/Holographic-Reduced-Representations-for-Working-Memory-Concept-Encoding/HRRfWMCE_Honors-Thesis.docx%23_Toc468087246
file:///C:/Users/Grayson/Documents/Holographic-Reduced-Representations-for-Working-Memory-Concept-Encoding/HRRfWMCE_Honors-Thesis.docx%23_Toc468087247
file:///C:/Users/Grayson/Documents/Holographic-Reduced-Representations-for-Working-Memory-Concept-Encoding/HRRfWMCE_Honors-Thesis.docx%23_Toc468087247
file:///C:/Users/Grayson/Documents/Holographic-Reduced-Representations-for-Working-Memory-Concept-Encoding/HRRfWMCE_Honors-Thesis.docx%23_Toc468087248
file:///C:/Users/Grayson/Documents/Holographic-Reduced-Representations-for-Working-Memory-Concept-Encoding/HRRfWMCE_Honors-Thesis.docx%23_Toc468087248
file:///C:/Users/Grayson/Documents/Holographic-Reduced-Representations-for-Working-Memory-Concept-Encoding/HRRfWMCE_Honors-Thesis.docx%23_Toc468087249
file:///C:/Users/Grayson/Documents/Holographic-Reduced-Representations-for-Working-Memory-Concept-Encoding/HRRfWMCE_Honors-Thesis.docx%23_Toc468087249
file:///C:/Users/Grayson/Documents/Holographic-Reduced-Representations-for-Working-Memory-Concept-Encoding/HRRfWMCE_Honors-Thesis.docx%23_Toc468087250
file:///C:/Users/Grayson/Documents/Holographic-Reduced-Representations-for-Working-Memory-Concept-Encoding/HRRfWMCE_Honors-Thesis.docx%23_Toc468087251
file:///C:/Users/Grayson/Documents/Holographic-Reduced-Representations-for-Working-Memory-Concept-Encoding/HRRfWMCE_Honors-Thesis.docx%23_Toc468087251
file:///C:/Users/Grayson/Documents/Holographic-Reduced-Representations-for-Working-Memory-Concept-Encoding/HRRfWMCE_Honors-Thesis.docx%23_Toc468087251
file:///C:/Users/Grayson/Documents/Holographic-Reduced-Representations-for-Working-Memory-Concept-Encoding/HRRfWMCE_Honors-Thesis.docx%23_Toc468087251

34

Appendix

ANN – Artificial Neural Network

AI – Artificial Intelligence

CN – Critic Network

DE – Distributed Encoding

DST – Delayed Saccade Task

HRR – Holographic Reduced Representation

HRRE – Holographic Reduced Representation Engine

HWMtk – Holographic Working Memory toolkit

SE – Symbolic Encoding

TD – Temporal Difference

WCST – Wisconsin Card Sort Task

WM – Working Memory

WMtk – Working Memory toolkit

