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Abstract 

Artificial neural networks (ANNs) utilize the biological principles of neural 

computation to solve many engineering problems while also serving as formal, testable 

hypotheses of brain function and learning. However, since ANNs often employ distributed 

encoding (DE) methods they are underutilized in applications where symbolic encoding (SE) 

is preferred. The Working Memory Toolkit was developed to aid the integration of an ANN-

based cognitive neuroscience model of working memory into symbolic systems by mitigating 

the details of ANN design and providing a simple DE interface. However, DE/SE conversion 

is still managed by the user and tuned specifically to each task. Here we utilize holographic 

reduced representation (HRR) to overcome this limitation since HRRs provide a framework 

for manipulating concepts using a hybrid DE/SE formalism that is compatible with ANNs. We 

validate the performance of the new toolkit and show how it automates the process of DE/SE 

conversion while providing additional cognitive capabilities. 
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Introduction 

The field of artificial intelligence (AI) is synergistic with a wide range of disciplines 

but artificial neural networks is perhaps the most prolific subfield. Not only are biological 

principles of neural computation and neuroanatomy adapted to solve engineering problems, 

but ANNs also serve as formal, testable hypotheses of brain function and learning in the 

cognitive sciences. Still, since ANN models often employ distributed encoding, most have 

limited application in other areas of AI where symbolic encoding is the norm (e.g. planning, 

reasoning, robotics). 

There is extensive evidence that the brain contains a working memory (WM) system 

that actively maintains a small amount of task-essential information that focuses attention on 

the most task-relevant features, supports learning that transfers across tasks, limits the search 

space for perceptual systems, provides a means to avoid the out-of-sight/out-of-mind problem 

and more robust behavior in the face of irrelevant events (Baddeley, 1986; Waugh and 

Norman, 1965) The prefrontal cortex and mesolimbic dopamine system have been implicated 

as the functional components of WM in humans and animals, and biologically-based ANNs 

for WM have been developed based on electrophysiological, neuroimaging, and 

neuropsychological studies (O’Reilly et al, 2002; Kriete et al, 2013). A software library, the 

working memory toolkit, was developed to aid the integration of ANN-based WM into robotic 

systems by mitigating the details of ANN design and providing a simple DE interface (Phillips 

and Noelle, 2005). 

Despite the fact that the WMtk can solve common tests of working memory 

performance such as the delayed saccade task (DST), the DE/SE distinction is problematic for 
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the WMtk since DE/SE conversion needs to be programmed directly by the user and tuned 

specifically to each learning task. A technique called holographic reduced representation 

(Plate, 1995) may provide the technical assistance needed to overcome this limitation. HRRs 

provide a framework for creating and combining symbolic concepts using a distributed 

formalism that is compatible with ANNs. Our aim for this project was to create a software 

engine for encoding and manipulating concept representations using HRRs and integrate it into 

the WMtk. The HRR Engine (HRRE) would greatly simplify the user interface by automating 

the DE/SE conversion. We judge the performance of the new Holographic Working Memory 

Toolkit (HWMtk) on two main criteria: 1) there must be a significant difference in the ease of 

use of the toolkit with the simpler interface and automated DE/SE conversion, and 2) the toolkit 

must still learn using HRRs in place of the old distributed representations. 

An example of the capabilities of the WMtk can be seen in a robotic simulation written 

using the toolkit based on the delayed saccade task (Phillips and Noelle, 2005).  In the DST, 

the robot is required to focus attention on a crosshair in the center of the screen. After a variable 

time delay, a target object will appear in the periphery of the screen, but the robot must continue 

to focus on the crosshair in the face of this distraction. After some time, the target object 

disappears and the robot must continue to focus on the crosshair. Finally, the crosshair 

disappears and the robot must then look at (or saccade to) the location where the target object 

appeared during the task. Rather than programming the robot to solve the DST, the WMtk 

allows the robot to learn how to solve the DST by repeatedly attempting the task as a series of 

episodes. The robot's WM learns to both override automatic behaviors (such as immediate 

saccades) and store task-relevant information (such as target locations) in order to guide future 

actions. Importantly, the robot is given feedback (positive reward) only at the very end of 
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correctly performed episodes. Even under these conditions, the WMtk learned to correctly 

manage items in WM and attain proficiency on the DST within just hundreds of episodes. 

Even though the toolkit mitigates many challenges to the integration of a well-

established model of working memory function into other systems, such as development of the 

neural network architecture and performing working memory updates, the toolkit does not aid 

the user in developing reasonable representations of the environment or working memory 

concepts themselves. Each component needs to be encoded using a sparse, distributed 

formalism that is useful for the neural network to learn, but difficult to program and limited to 

a single specific task. A more flexible encoding scheme is needed to make the toolkit more 

accessible to end-users and potentially allow for more generalizable task knowledge and 

working memory performance. 

HRRs may provide the necessary tools to solve the SE/DE conversion problem.  The 

name HRR summarizes how many different concepts, each represented by separate, unique 

vectors, can be combined and reduced to a single vector that represents the combined 

knowledge of the concepts while still retaining information about each constituent concept 

which is closely related to the concept of holographic storage. HRRs utilize a mathematical 

framework that is compatible with the distributed representations expected by neural network 

architectures, but is also complementary to symbolic representations used in other systems 

(Plate). By replacing the DE interface of the WMtk with an HRR interface, DE/SE conversion 

would be automated, concepts learned from one task would naturally carry over to new tasks, 

and additional cognitive phenomena (e.g. chunking) may be investigated. Therefore, our 

specific aim was to develop and test a holographic reduced representation engine, and integrate 

it with the Working Memory Toolkit. 
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The Prefrontal Cortex and Working Memory 

 Many people have tried to remember a phone number for a friend as they quickly 

spouted it off. “1-1-2-3-5-8-1-3-2-1,” says the friend, and we struggle to remember it long 

enough for them to pick up the phone and to dial it. Were we to attempt to remember it now, 

we would probably be hard pressed to do so without some method of breaking it up. After all, 

ten random digits is a lot of numbers to remember! If we tried to remember this number right 

now, our brains would probably separate it into smaller groups of digits that are easier to 

remember. This gives us the “112 – 358 – 1321” that we are so familiar with. Splitting it up 

this way makes it easier for us to remember so that we can hold it in our mind long enough to 

dial it, and then we forget it forever… or until we have to dial it again.  

Why does splitting up these numbers make it easier for us to remember them? This is 

because of a system in our brains called working memory whose sole purpose it is to retain a 

few tidbits of information that are immediately useful for whatever task we are focusing on at 

any given moment. There are three points to remember about working memory. First, working 

memory can only hold small pieces of information long enough to be used, then immediately 

discards them. Second, this information is often grouped together in chunks of information that 

is similar in nature. Finally, there are only a few slots in WM in which task-relevant 

information can be stored. This number varies for each individual but it is now most commonly 

believed to be four slots for most people 

(Cowan, 2004). Keeping these three things in 

mind, then, it makes sense that when trying to 

remember a ten-digit phone number, the Figure 1: An example of how working memory 

stores task-relevant information. 
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working memory system splits it into three “chunks” of digits (figure 1). The working memory 

system holds onto this information long enough to dial the number, and then forgets it. 

There is evidence to show that the PFC maintains the representations of the chunks of 

information we are holding in our working memory (Goldman-Rakic, 1987). The basal ganglia 

(BG) also play a role the working memory system by regulating the information held by the 

PFC through regulation of dopamine release. Dopamine is the neurotransmitter that acts as a 

sort of reward chemical which the BG releases when exposed to rewarding stimuli (Shultz et 

al, 1988). For example, a child being potty-trained who successfully uses the toilet receives an 

M&M for doing a good job. This is called reinforcement learning, since positive actions are 

“reinforced” with a reward. When the child eats the M&M, his or her PFC releases dopamine, 

which tells the rest of the brain that whatever the child just did was good, and elicits reward 

for imitating the same behavior in the future. Eventually, the PFC learns to release dopamine 

immediately after a “good” action rather than after the reward, because it expects the reward 

in the future. Moreover, when the child gets older and no longer receives M&Ms for using the 

toilet, the dopamine is released because a reward is expected, but dopamine levels drop when 

no reward is given (Shultz et al, 1988). This tells the brain that what we expected was a good 

action, no longer elicits reward. Thankfully, most children do not go back to messing their 

pants, despite this neurochemical punishment! 

The facts that the BG regulates reinforcement learning through dopamine release while 

the PFC maintains representations for task-relevant information in working memory provide a 

solid foundation for a computational working memory model. The Working Memory toolkit 

was developed as a data structure with a few memory slots that held representations of WM 

chunks and utilized a technique called temporal difference (TD) learning to perform 
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reinforcement learning (Phillips and Noelle, 2005). The Critic and Adaptive networks in the 

original toolkit would then perform the TD algorithm while the WM data structure was fed 

information throughout the course of a cognitive task. The TD algorithm would then mimic 

the dopamine release in the BG by rewarding the WM system when a task was completed 

correctly. After enough successes, the working memory system has enough information to 

know the most valuable chunks to retain in working memory relative to the information that is 

given to it. 

To use humans as an example, imagine a toddler in a high chair, frustrated and hungry. 

The father is teasing the child – a little girl – with a spoonful of her favorite apple sauce with 

sprinkles, repeating the word “dada” in baby-talk enough times to drive the mother out of the 

room for sanity’s sake. The toddler reaches for the spoon, tries to escape the high chair, and 

makes a fuss before trying a different tactic, but the father only feeds her when she echoes his 

plead of “dada.” Let’s take an inside look at this toddler’s working memory. The child is 

experiencing all sorts of input from the environment. Spoon with delicious food, high chair 

prison, dad’s weird faces, and the word “dada” are all things that we know the child is gathering 

from her senses. These are known as percepts. The child’s PFC now has to determine which 

of these percepts are important to retain. Imagine that the child has a WM capacity of one. 

Initially, she will be randomly selecting one of these percepts based on what her WM calculates 

is the most valuable. If she were allowed to eat with a spoon prior to this encounter, this will 

most likely be the concept “spoon.” After several trials reaching for the spoon and still not 

finding success, her PFC tries something else, such as “high chair prison,” upon which she will 

start fussing and trying to escape. But one time she thinks “dada,” and some sounds resembling 

the word stumbles out of her. For this, she is rewarded with a spoonful of delicious apple sauce, 
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and her BG will release the dopamine that tells her PFC that something that it is holding onto 

is good. After a variation of these steps occurs enough times, the girl’s PFC and BG have 

gathered enough information to know that when dad is holding a spoonful of food hostage in 

front of her, the most valuable piece of information to hold in working memory is the word 

“dada.” When this happens, she will be much more successful at getting her food every time . 

. . at least until the lesson turns from Names to Manners. Then her WM will have to retrain 

itself from the old code word “dada” to the new “please.”  
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Symbolic and Distributed Encoding Methods 

Before talking about holographic reduced representations and discussing the ways in 

which they are well-suited for concept encoding in the working memory toolkit, it is worth 

defining what we mean by symbolic and distributed representations. Here I will discuss how 

to encode concepts in AI and cognitive tasks using both symbolic and distributed formalisms, 

and I will conclude with a discussion on what DE/SE conversion may look like, especially in 

the WMtk. This chapter is specifically devoted to beginning the discussion of constructing 

concept representations for software use – a topic that is vital to understanding HRRs and how 

they work – as well as why the original DE/SE interface was complicated and difficult to use. 

Symbolic representation is the simplest to understand, since this is how our brains 

represent concepts. A symbolic representation of a concept is exactly what it sounds like: a 

symbol that describes that concept. To represent a concept symbolically in a cognitive task, we 

would merely come up with some symbol and informally assign it the concept that we want it 

to represent. For example, if we wanted to 

represent the concept of a triangle, we could 

draw a picture of a closed three-sided figure, 

and our brains will interpret he image as the 

symbol representing a triangle. We could just 

as easily say that the word “triangle” itself is 

a symbol that represents the concept of a triangle, or even just the letter “T” (figure 2). 

In the delayed saccade task mentioned earlier, we can use some symbols to represent 

the concepts used in the task. We will use words as our symbols to represent the concepts. We 

need a symbol to represent the cross’ presence in the center of the screen, so we will use “center 

Figure 2: Different symbols representing the 

concept "triangle". 
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cross.” We also need a focus symbol to indicate where the agent is looking. This can be “center 

focus”, “northeast focus”, 

“northwest focus”, “southeast 

focus”, or “southwest focus”. 

Finally, we need a target 

symbol to indicate where the 

target is on the screen, such as 

“northeast target”, “northwest 

target”, “southeast target”, or 

“southwest target”. Visual 

examples of these symbols are shown in figure 3. 

Distributed encoding is a method of encoding information about concepts in ways that 

can be expressed in mathematical terms. Where symbolic representations are good in AI tasks 

concerning logical decision making (in the presence of the symbol for the northeast target, do 

X), distributed representations are used in artificial neural networks that perform mathematical 

operations for decision making and learning. A distributed representation is any representation 

of a concept or set of concepts that can be expressed as number values in a vector. Say we 

wanted to represent a triangle using distributed representations, how we constructed our DE 

vector would depend largely on the other parameters for the task. For example, if there were 

four different shapes that we could represent, then we could construct a simple vector of four 

values, where each index was a sort of binary switch for the different shapes. Let’s suppose 

the indices were assigned as follows: 1 - square, 2 - triangle, 3 - circle, and 4 - cross. The vector 

Figure 3: Visual examples of symbols used in the DST. 
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[ 0, 1, 0, 0] is a distributed representation indicating the presence of a triangle, because the 

index representing triangle (index 2) contains a 1.  

Suppose we have 

four other concepts for 

the colors red, green, 

blue, and yellow. If we 

wanted to create a distributed representation to represent the complex concepts of colored 

shapes, we would extend the shape vector and assign colors to the other indices (figure 4). 

Using this new encoding for colored shapes, we can use the vector [ 0, 1, 0, 0, 0, 1, 0, 0] to 

represent the concept of a green triangle. 

In the original working memory toolkit, the user developing a cognitive task not only 

had to write logic to handle symbolic concepts in the task environment, but also had to write 

functions and methods that would convert these symbolic concepts such as “red triangle” into 

distributed vectors such as [ 0, 1, 0, 0, 0, 1, 0, 0] so that the ANN embedded within the toolkit 

could properly learn using the TD algorithms. Unfortunately, this is not all that has to be taken 

into account. The encoding for colored shapes described above makes disjunctive 

representations, meaning that two vectors representing unique concepts can sometimes contain 

similarities. This means that the concepts red triangle and blue triangle appear to be similar 

because only one element is different in their vector representations, [ 0, 1, 0, 0, 1, 0, 0, 0] and 

[ 0, 1, 0, 0, 0, 0, 1, 0], respectively. Mathematically speaking, these disjunctive representations 

may not be orthogonal for orthogonal (or independently unique) concepts, since their dot 

product is higher than it would be if the vectors were truly unique. The reason this is bad is 

because TD learning generally only works on sparse conjunctive distributed representations. 

Figure 4: Making distributed encodings by assigning symbols to each 

index of a vector. 
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It is important to note that when I say sparse here, I am talking in terms of sparsity of dot 

product. Orthogonal concepts must be represented by orthogonal vectors in order for TD 

learning to occur. 

It is not immediately apparent why sparse conjunctive distributed representations must 

be used for neural nets to learn effectively using TD learning. The reason is related to how the 

system draws relationships between the concepts represented in the task. Remember that the 

vectors representing green ball and green triangle are very similar using disjunctive 

representations, since they both share the “green” element in their vector representations, and 

the only difference is the shape element that is activated in the vector. The reason we call these 

vectors disjunctive is because their dot products show more similarity for vectors with common 

features, even though the vectors may represent unique concepts themselves. Since the dot 

product shows similarity between two vectors, this is like saying they can either both share the 

same color or they can share the same shape or they can share nothing (a disjunction). Vectors 

built from disjunctive encodings will appear to the neural network to be fairly similar to other 

vectors which share common information, even though they represent independently unique 

concepts, such as “green ball” and “green triangle.” Even though the two concepts both 

describe something that is green, they are still unique concepts and must be considered 

orthogonal. Justin Boyan and Andrew Moore from Carnegie Mellon University propose that 

because of this, neural networks generally learn poorly using TD learning methods, but Richard 

Sutton argues that this is not the case when using sparse conjunctive distributed 

representations.  

Conjunctive distributed representations are formed when the vectors representing 

orthogonal concepts are orthogonal vectors themselves, even if they contain some similar 
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constituent pieces. For example, the vector for “green square” 

should not be similar in any way to the vector for “green 

circle”, even though they both have the constituent concept 

“green”. A naïve way to encode conjunctive representations is 

to create a matrix of n dimensions, where n is the number of 

constituent pieces that make up a concept (i.e., 3 dimensions 

for a conjunctive concept made up of a shape, a color, and a 

size) and a single element of 1 for the location within that matrix that represents each of the 

concepts on the axes that you wish. Figure 5 shows an example of a matrix that forms a 

conjunctive representation for “green circle” where there are two dimensions of input – shape 

and color – and two possible choices for each – square, circle, and red, green. We can also 

rearrange this into a vector form by assigning each index a unique combination of each 

constituent concept. From the previous example, we could assign the following indices: 1 - red 

circle, 2 - red square, 3 - green circle, and 4 - green square. Using this encoding, the vector  

[ 0, 0, 1, 0] represents a green circle and [ 0, 0, 0, 1] represents a green square. This encoding 

is conjunctive because every possible combination of concepts has a vector representation that 

is orthogonal to the others. 

There are, of course, several complications and disadvantages to using conjunctive 

vectors constructed in this way. Perhaps most obvious is that the conjunctive vectors described 

above do not include individual concepts such as “green” or “circle,” and must therefore be 

intentionally included in the manual construction of the representation. Also, if we wanted to 

add a concept to our encoding scheme, we would have to take into account every possible 

combination of concepts that can be constructed with that concept, and include those in our 

Figure 5: Using a conjunctive 

matrix to encode the concept for 

"green circle". 



13 

 

manual encoding scheme. Because of this, every concept added to the encoding scheme 

increases the number of possible elements in the conjunctive vectors exponentially, meaning 

that this method of encoding is only really efficient for small conjunctive vectors. 

These are only the basic factors one has to take into account when trying to develop 

encoding methods for representing symbolic concepts using sparse conjunctive distributed 

vectors. However, they are all necessary to know in order to write functions to encode symbolic 

concepts for a simple learning task using the original WMtk. Unless the user has a strong 

understanding of how representations need to be set up for learning with ANNs, they will meet 

much difficulty in manually writing the DE/SE conversion for their learning task. Even for 

those who do have the knowledge, it is a very tedious and intimidating job to have done before 

they can even begin writing the main logic for their cognitive task. 

I hope that by this point I have demonstrated that the original toolkit’s DE/SE interface 

– where the conversion is manually written by the user – is very complicated and difficult to 

use, especially to those with little knowledge of ANN-based systems using TD-learning 

elements. Having explained the complications and difficulties of the original toolkit’s manual 

DE/SE encoding requirements, I can talk about a powerful method of representation that 

allowed me to automate the DE/SE conversion, and replace the original manual-encoding 

interface with a simpler SE string passing interface that is much more user-friendly. This 

method is called holographic reduced representation. 
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Holographic Reduced Representations 

Holographic reduced representation is a robust method of representing symbolic 

concepts in a distributed form that can be combined to make holographic representations for 

complex concepts containing the information for each of the constituent concepts (Plate 1995). 

With HRRs, it is possible to use symbolic concepts with ANNs. HRRs are mathematical 

structures composed of vectors of Guassian values that, when specific operations are 

performed on them, can very effectively be combined to form complex data structures from 

many HRRs that are reduced into a single vector. What makes HRRs so powerful is that new 

vectors formed from combinations of vectors are of the same size as the originals, and yet still 

contain information from each of the constituent vectors. This means that a single vector can 

hold multiple layers of information – making them holographic. 

An HRR is formed by generating a 

vector of real values typically drawn from a 

Normal distribution with mean zero, and standard deviation 1/√𝑛 where n is the length of the 

vectors (figure 6). This isn’t what makes HRRs so versatile, as the vectors are rather ordinary 

in and of themselves. The power of HRRs comes from the operations can be performed on 

them. In the paper Tony Plate published which first proposed the concept of Holographic 

Reduced Representations, he described many incredible, powerful, and complex operations 

that can be done with HRRs. For the purpose of my project, I focused on the two most basic 

yet robust operations: circular convolution and circular correlation (also sometimes called 

circular involution).  

Figure 6: An example HRR of length 6. 
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Circular convolution is the operation used to combine 

two vectors into a single vector of the same length. It is 

achieved by first calculating the matrix representing the outer 

product of the two vectors. Figure 7 shows an example of an 

outer product matrix formed from two vectors containing the 

values [2, -1, 1] and [1, 0, 2]. In this and other examples, I may 

show integer values as the contents of the vectors for 

simplification and ease of conceptualization. It is important to 

note that in real applications the values will be small real 

values drawn from a Gaussian distribution, as described 

above. Once an outer product has been formed, the circular 

convolution is calculated by summing each value across the 

matrix’s trans-diagonals. This is best illustrated in figure 8. 

Using circular convolution in this way, we can 

combine the vectors [2, -1, 1] and [1, 0, 2] to form the vector [0, 1, 5], a vector of the same 

size which contains information from both of the original vectors. To understand this 

conceptually, we can say that the first vector represents the concept “red” while the second 

represents the concept “ball,” and the resulting vector from the circular convolution represents 

the complex concept “red ball” (figure 9). Note that the new vector does not appear to have 

anything in common with the two constituent vectors. This is to our advantage, because a 

complex concept that is represented by two 

vectors is in fact, once combined, a new and 

unique concept in and of itself. Take for 
Figure 9: Convolving the concepts for "red" and 

"ball" yields the complex concept "red ball". 

Figure 7: Forming the outer 

product matrix of two vectors of 

length 3. 

Figure 8: Summing across the 

trans-diagonals to calculate the 

circular convolution. 
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example the concept of the color red and the concept of ball. Individually, these concepts have 

nothing in common, but each has one element in common with the complex concept of a red 

ball. Nonetheless, a red ball is a unique concept in its own right. This is reflected in HRRs as 

well as the three vectors given above. This is another reason HRRs are so well suited for 

concept representation, because they mirror the distinctive nature of concepts, even when 

combined. 

One may ask the question: if the 

HRR of complex concepts do not appear to 

have anything in common with their 

constituent HRRs, then how can they 

contain the information of those original vectors? The answer is in circular correlation. Circular 

correlation is the inverse operation of circular convolution. While convolving two vectors 

combines them into a single vector, correlating a complex vector with one of its constituent 

vectors will yield the other constituent vector. For example, if we have a vector representing 

the complex concept “red ball” and we correlate it with the vector representing the concept 

“red,” we get back the vector representing the concept “ball” (figure 10). 

The circular correlation operation is actually very easy to perform once you understand 

circular convolution. All that is required to achieve circular correlation is to convolve the 

vector representing the complex concept “red ball” with the inverse of the vector representing 

one of its constituent concepts, say, “red.” The approximate inverse of a vector is gained by 

reversing the order of each of its elements after the first. For example, the approximate inverse 

of the vector [1, 2, 3, 4] is [1, 4, 3, 2].  

Figure 10: Correlating the complex concept "red ball" 

with constituent concept "red" yields the other 

constituent concept "ball". 
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Unfortunately, if we were to try to extract the one of the constituent vectors from our 

convolution example from earlier using circular correlation, we would not get a vector that 

looked quite like our original. This is because using the convolution and correlation operations 

as described above with the approximate inverses of vectors will yield slightly distorted or 

noisy results. The math gets answers that are generally very close, but inexact. This problem 

decreases the larger your vector size. Had I used vectors of size 128 for my examples, my 

answers would have been much more precise, however the exercise would have been 

dreadfully long and tedious. Precise answers can also be found by performing the operations 

in fourier space using fast fourier transforms, but that is an advanced method that Plate covers 

in his paper and is beyond the scope of this project. For our purposes, using large vectors with 

the operations as described above will suffice. 

Another reason to use large vectors for the HRRs is related to the fact fewer elements 

in the vectors increases the odds of randomly generating similar vectors for orthogonal 

concepts. In this case, the two vectors may appear to have something mathematically in 

common, when they might represent independent concepts. Using large vectors is a way to 

reduce the probability of this happening. 
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Building the Holographic Reduced Representation Engine 

The first step of incorporating HRRs into the WMtk was to build a software engine that 

would automate and handle the generation and manipulation of concept representations. Thus, 

I spent the spring semester of 2016 building the Holographic Reduced Representation Engine. 

The base data structure for this engine is a dictionary called Concept Memory, where the string 

name for the concept is the key, and the HRR representing that concept is the value (figure 11). 

The engine’s concept memory keeps track of all concept-representation pairs that the engine 

has encoded. From this point forward, the term 

concept will be used to refer to the entity 

composed of a symbolic string value and its 

associated HRR. The term representation may be 

used interchangeably with HRR, since HRRs are 

the structure we use to form the digital 

representation of the concepts we will use. 

Developing a Conjunctive Encoding 

Engine. After setting up the base dictionary for the engine’s concept memory and building the 

functionality for HRR generation, we needed to add a conjunctive encoding function to the 

engine for combining the HRRs to form complex concepts. We combine the representations 

for the concepts into conjunctive representations using the circular convolution operation. 

The main part of the HRRE’s conjunctive encoding functionality is the construct 

function. This function takes a list of concept names, or a string containing the concatenation 

of concept names, delimited by an asterisk (“*”), and combines all individual concepts into a 

single complex concept. The construct function would first make sure that there is a 

Figure 11: Concept Memory stores all "known" 

concepts that have been encoded by the HRR 

Engine. 
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representation in concept memory for each given concept name, reorder each concept in 

lexicographic order, and then convolve each together to form the final representation. In this 

way, the construction of the concept made from “big,” “red,” and “ball” would result in the 

complex concept, “ball*big*red.” In addition to constructing the final combination of all 

concepts, the engine also constructs representations for every combination of the constituent 

concepts. For example, constructing a concept using the values “big,” “red,” and “ball,” would 

not only create concepts for each of the previous and the combination “ball*big*red,” but also 

the combinations “ball*big,” “ball*red,” and “big*red.” 

It is worth noting that we ensured that the HRRE always sorts the concepts into 

lexicographical order before working with them to ensure that there are no duplicate 

representations made for the same concept. For example, we do not want the engine to see 

“big*red*ball,” if “ball*red*big” exists. Otherwise, it could potentially perceive it as a new 

concept and generate a new representation for it even though it already contains 

“ball*red*big,” which is represented by the same HRR. There is an additional safeguard built 

into the engine, however, that protects against this as well. Whenever a concept is requested 

from the HRRE that it does not currently have in memory, it constructs it by splitting it apart 

into its constituent concepts by name, and constructing each using the process described above. 

In this way, the user can pass in “ball*big*red,” “red*ball*big,” or any other permutation of 

these concepts, and the HRRE will always construct or perceive it as “ball*big*red.” 

Developing a Conjunctive Decoding Engine. The final piece added to the HRRE was 

the conjunctive decoding function. Whereas conjunctive encoding is the combination of two 

representations through circular convolution, conjunctive decoding is the extraction of one 

constituent concept from a complex concept using circular correlation.  
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Similar to the encoding part of the engine’s construct function, the decoding part of the 

engine has an unpack function that separates a complex concept into all combinations of its 

constituent parts. Whereas the construct function is merely encoding each combination to 

ensure that they are all recognizable concepts for the HRRE, the unpack function serves to find 

all combinations and return them as a list of concepts. This is useful to the WMtk, as it will be 

the means by which a list of concepts in the environment will be assembled as candidates for 

storing in WM. 

When we finished the HRRE, it was capable of generating HRRs for new concepts, 

storing concepts as key-value pairs of names and representations in the concept memory 

dictionary, combining concepts through circular convolution, extracting concepts through 

circular correlation, constructing and encoding all combinations of a list of concepts, and 

unpacking all combinations of constituent concepts from a complex concept and returning the 

resulting list to the user. 
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Building the Holographic Working Memory Toolkit 

Once the HRR Engine was finished, my next step was to rebuild the WMtk with the 

engine at its core. The three-part process for building the Holographic WMtk comprised of (a) 

researching the specifications of the original WMtk and making a development plan for the 

augmented toolkit, (b) rebuilding the WMtk around the HRRE, and (c) testing the augmented 

toolkit to ensure that it still learns using the new HRR interface. 

Researching WMtk Specifications and Making a Development Plan. The Working 

Memory toolkit is composed of a single-layer neural network that utilizes a working memory 

model inspired by the human pre-frontal cortex. This network works by passing the chunks of 

information in working memory and the state representation to a value function, which 

determines how valuable that particular set of working memory contents is in that state. All 

states and combinations of WM contents are equally meaningless at first, but the critic network 

employs temporal difference (TD) learning (Sutton, 1998, O’Reilly, 2007) to learn the value 

of each WM-state combination by experiencing repeated episodes of the learning task. In this 

way, the working memory learns what information is the most valuable to retain depending on 

what state it is currently seeing. At this point, it is up to the user to design their learning task 

in such a way that the agent decides to make an action according to what is currently held in 

working memory. 

We decided to start with a minimal design for our augmented toolkit. Since our aim for 

the project was to improve ease of use for researchers using the toolkit, providing a simple 

interface in addition to automating the concept encoding process was our best option, 

especially since more utilities can be added to the toolkit in future projects. As such, we decided 
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to start the HWMtk with two main components: the Working Memory component, and the 

Critic Network (CN). 

Working Memory. The WM component is the workhorse of the toolkit. It houses the 

HRR Engine, which serves as the store of known concepts, as well as the processor for the 

representations of all concepts. WM receives a string representation of the current state, which 

is set up as a string containing a concatenation of the concepts describing the state, delimited 

by a cross (“+”). An example of a state containing a cross in the center of the environment and 

a target in the north position of the environment could be denoted “center*cross+north*target.” 

WM parses the state string for the list of concepts it contains, splitting each by the cross 

delimiter, then passes these to the HRRE, which returns a list of all the unpacked combinations 

of concepts. Following the cross-target example, the list of candidate chunks would be 

“center,” “center*cross,” “cross,” “north,” “north*target,” and “target.” This list of concepts 

becomes our list of candidate chunks, from which any are candidates for retention in WM. It 

is important to note that the previous contents of WM are also candidates for retention. This is 

what makes WM store task-relevant information in the long run, and thus what makes WM 

behave as it should. WM then goes through every combination of all candidate chunks that can 

fit in its WM slots, combining those with the representation of the state and feeding each 

combination into the critic network to determine their value. The WM-state combination is 

calculated by convolving the WM contents into a single WM representation, then adding the 

representations for each concept in the state into a single state representation, and convolving 

the resulting two HRRs into the final WM-state representation. When passed into the critic, 

the set of WM that returns the highest value in the given state is chosen for retention, and the 
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control is returned to the user until WM is passed a new state on the next step of the simulation 

run. 

Critic Network. The CN component is the neural network that drives learning in the 

WMtk. It is passed representations from WM that it then passes through a value function. The 

value function for the CN is a dot product calculation of the WM-state combination with a 

weight vector that is retained for the duration of the simulation. The weight vector is initialized 

with very small random values, and thus values for each representation will begin quite low. 

However, the CN employs TD-learning over many episodes of simulation, which will update 

the values in the weight vector, and thus make the value function converge to the correct values 

for each WM-state combination, according to their effectiveness at determining task outcomes. 

 TD learning is implemented through 3 functions in the toolkit: Initialize Episode, Step, and 

Absorb Reward. Each function is passed the string representation of the state and the reward 

for that state. These functions are implemented and called through the WM object, but are 

closely tied to the CN for TD calculations. Initialize episode resets all episodic variables, clears 

and chooses the initial contents for WM, and stores reward and value information about the 

initial state for later use. Step chooses the current contents of WM, calculates reward and value 

information for the current state, and uses those values along with those stored from the 

previous state to update the weight vector using the CN’s TD functions. Step then stores the 

current state’s value and reward for use in the next step of the episode. Step is called on each 

time step of the simulation to update working memory and drive learning. Finally, Absorb 

Reward is called at the end of the episode, which takes the state string for the final state, and 

does the TD update for the previous state as well as the final state. Typically, all scalar reward 

of zero is provided throughout all steps of the task. On the final step, a reward value of 1 is 
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provided if the agent successfully completes the task and zero for task failure. When a new 

episode begins, these functions are called again, in the same order: Initialize Episode, a 

sequence of calls to Step, and finishing the episode with Absorb Reward. We do use eligibility 

traces in our TD calculations, and our epsilon soft policy is implemented by generating random 

WM contents, epsilon percent of the time. 

A visual comparison of the basic architecture of the original and augmented toolkits is 

shown in figure 12. The main difference between the two architectures is in the amount of code 

the user needs to provide in the form of functions/methods. Many of these user-defined 

functions are now completely performed within the HWMtk. Sensory information can now be 

provided in a symbolic, English-like syntax and the symbols are automatically converted to 

appropriate vectors by the HRRE for presentation to the CN so that it learns to select task-

relevant concepts that enable the agent to override pre-potent responses with task-relevant 

Figure 12: Comparison of the original WMtk architecture (left) to the 

  architecture of the HWMtk (right). 
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behaviors. Also, while the function calculating reward information still needs to be specified 

by the user, the augmented toolkit does not need to call this function directly.  This simplifies 

the user's implementation since it no longer needs to be concerned with the inner-workings of 

the toolkit to perform reward calculations. 

Testing the Holographic Working Memory Toolkit 

We developed a task for the HWMtk to determine if the user interface is indeed easier 

for developing new tasks compared to the original toolkit. Additionally, the task tests the basic 

components of working memory function: learning to store task-relevant information and 

ignore task-irrelevant information (distractors). For this task, the agent is shown 7 colors in 

random order, and is rewarded if it remembers the color “red” at the end of the simulation. 

This task would be equivalent to shuffling 7 cards of different colors, and showing them all to 

the agent, one at a time, and asking at the end which color we were thinking of. The task is 

simple, but not trivial, as the toolkit can choose to remember nothing or any of the other colors 

as well. Also, the presentation order is randomized, so the agent cannot anticipate when the 

relevant color is being presented. The agent must decide to hold onto the color “red” and retain 

this concept in working memory even while other colors (distractors) are being presented to 

the agent until the end of the episode is reached.  We repeat this process many times (each 

repetition being a single episode). The agent must learn that it is only rewarded upon 

remembering red, regardless of presentation order or the number of distractors encountered. 

This ability to retain task-relevant information in the face of competing distractions is the core 

mechanism of focused attention needed to perform all working memory tasks. 

Learning parameters for the task were set to similar values as the defaults for the 

standard WMtk: CN learning rate parameter, α = 0.1; future reward discounting factor, γ = 0.9; 
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past action eligibility factor, λ = 0.1; epsilon-soft random working memory selection 

probability, ε = 0.01; number of working memory slots, s = 1; and HRR vector length, n = 64. 

The HRR vector length n is the only new parameter on this list, and must be set to a value large 

enough that the dot products between base HRR concept vectors remain close to zero. A value 

of 64 was the minimum size needed to run 100 successful trials (described below), but larger 

values did not show any noticeable difference in learning behavior. Considering the simplicity 

and ease of setting up the task, the HWMtk meets our first and most important criterion for 

success: simplification of interface and ease of use for the developer. 

We additionally have developed a test in the statistical language R that serves as further 

proof of concept for our research. This test uses the same constructs and processes as the 

HWMtk, making it a valid proof of concept that we plan on implementing using the full toolkit 

in the future. We chose to use the Wisconsin Card Sort task (WCST) – a task well suited for 

testing cognitive models of PFC function (Rougier et al., 2005). In our version of the WCST, 

a deck of cards containing objects is generated. These objects are described by 2 dimensions 

each with three features. A dimension would be something like color or shape and a feature 

would be something like green in the color dimension, and square in the shape dimension. 

Thus sample cards might be something like a green square, a blue triangle, or a red circle, and 

the deck would contain all permutations of these features per dimension. We chose a 

dimension-feature design for our cards for scalability. It is easier to increase the number of 

dimensions and features to create complex tasks than explicitly creating every permutation of 

the cards to add another dimension – such as the number of each shape present on each card. 

At the start of the task, a rule is selected. This rule would be a single feature from one 

of the dimensions, e.g. blue or triangle. The agent is then shown a random card from the deck 
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and is required to place it on one of two piles. The “match” pile is where the agent should 

choose to place the card if the card contains the feature specified by the rule, otherwise it should 

place it on the “discard” pile. Since the rule is not part of the agent’s knowledge base, it makes 

its decision based on the feature it decides to store in WM. A reward of 1 is given if the agent 

chose correctly, otherwise a reward of 0. Either way, the task is repeated episodically for 1M 

trials. Eventually, the agent’s WM will learn that the most valuable feature to remember is that 

which matches the rule, and it will always choose the correct pile for any card that it is shown. 

We know that the agent has correctly learned the rule if it has chosen the correct pile 

for 100 contiguous cards, at which point we generate a new rule and record the number of trials 

since the previous switch, which we call the switch time. We found that for 1M trials, the 

median switch time was 3883.5 ± 327.1163, meaning it typically took the agent between 3500 

and 4200 trials to correctly learn a new rule.  

The parameters for the WCST are as follows: CN learning rate parameter, α = 0.9; 

future reward discounting factor, γ = 0.5; past action eligibility factor, λ = 0.1; epsilon-soft 

random working memory selection probability, ε = 0.05; number of working memory slots, s 

= 1; and HRR vector length, n = 1024. 
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Results and Discussion 

When testing the HWMtk with the colors task, we were looking to see if it held up to 

the two main criteria for success mentioned in the introduction: 1) ease of use in setting up a 

learning task using the new string-passing SE interface, and 2) successful learning using HRRs 

in place of the old distributed encodings. 

Ease of Use. Setting up the colors learning task proved simple compared to setting up 

tasks using the original toolkit. Had we been using the original WMtk, we would have had to 

write a function to create distributed representations of each color as a chunk of information 

usable to WM, as well as a similar function for encoding the state, and a reward function to 

check to provide a reward value according to the agent’s performance. We would have had to 

write each of these before writing the logic for the task itself, but using the augmented toolkit, 

none of this preparation was necessary. We simply set up an array of n color strings, shuffled 

them at the beginning of each episode, initialized episode with the first color, called the Step 

function with each subsequent color less than n, and called the Absorb Reward function with 

the nth color string. The only logic for the reward was written in line with the rest of the task, 

and it entailed a check to see if “red” was stored in the contents of WM. If it were, Absorb 

Reward was provided a reward value of 1.0 for success, else a 0.0 for failure. Considering the 

simplicity and ease of setting up the task, the HWMtk meets our first and most important 

criterion for success: simplification of interface and ease of use for the developer. 

Effective Learning Using HRRs. The final test to determine the outcome of our 

project was to run the task for 100 trials and collect the data to determine whether or not the 

agent was learning. We gathered information over every trial, keeping track of the number of 
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episodes the agent successfully completed the task and recording the number of successes per 

every 1000 episodes. We considered a 98 percent success rate per thousand episodes an 

indication that the agent had effectively learned the task. Over the 100 trials, we found that the 

agent learned the task to a 100 percent success rate within an average of 8000 episodes. 

Therefore, the HWMtk meets the requirement of being capable of learning using holographic 

reduced representations for concepts. 

Discussions. The HWMtk has several advantages over the WMtk by using HRRs for 

SE/DE representation. HRRs are much more robust than the task specific, manually encoded 

representations used in the original toolkit. New, complex concepts can be encoded 

automatically without having to alter the topology of the CN since such concepts are 

constructed via new HRRs or convolved representations of equivalent length. Thus, complex 

concepts fit into the same WM slots as simple ones, allowing slots to encode increasingly more 

complex concepts. 

Tasks that were previously beyond the capabilities of the previous toolkit are now more 

realizable. For example, since new concepts can be formed when needed, learning performance 

on a simple task might transfer to a more complex task. More complex tasks might be more 

learned in far fewer episodes by leveraging such previous knowledge rather than learning the 

task from scratch. Also, since HRRs provide a natural method for encoding hierarchical 

structure, tasks which require paying attention to hierarchical signals will be easier to program, 

and possibly easier to learn. 

The HWMtk antiquates the need for user-specified concept encoding mechanisms, thus 

greatly reducing both the time and knowledge of ANNs needed to adequately set up those 

functions before writing the simulation. Specifically, the user no longer needs background 
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knowledge on how to construct sparse, distributed, conjunctive codes, and does not need to 

rewrite encoding function when new concepts need to be proposed to WM or encoding into 

the state descriptions. We hope that this alone will increase the interest in the HWMtk, and 

will make it a better resource for other researchers wishing to test WM-related tasks. 

The development of the HWMtk has opened up several new avenues for future work. 

First, we plan to utilize the HWMtk to create a new version of the delayed saccade task. This 

task is no more complicated, in practice, than the colors task presented earlier, but it would 

provide a more intuitive comparison of how the distributed encoding process is simplified by 

the HRRE component of the HWMtk as shown in figure 13. Second, the ability to rehearse 

Figure 13: Example of how task-specific, sparse, distributed encoding was performed in the original 

WMtk. In the HWMtk, an appropriate distributed HRR representation can be built automatically 

without the user’s aid from a symbolic description of the environment: “center*cross+northeast*target.” 
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and group items using convolution might be added to tackle tasks what require memorizing 

long sequences of information quickly. Such functionality might be used to study how limits 

on cognitive faculties arise from a small set of WM slots. Additionally, the TD learning 

element of the toolkit is currently being used to learn internal actions (selecting working 

memory contents), but has traditionally been used to learn external actions. It seems likely that 

the toolkit could be provided with a list of symbolic actions to choose from and the TD learning 

element could then learn to select appropriate actions given the current state and working 

memory concepts. This avenue would further reduce the programming burden placed on the 

user, but would also complicate the learning process by needing to learn both internal actions 

and external actions simultaneously. 
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Appendix 

ANN – Artificial Neural Network 

AI – Artificial Intelligence 

CN – Critic Network 

DE – Distributed Encoding 

DST – Delayed Saccade Task 

HRR – Holographic Reduced Representation 

HRRE – Holographic Reduced Representation Engine 

HWMtk – Holographic Working Memory toolkit 

SE – Symbolic Encoding 

TD – Temporal Difference 

WCST – Wisconsin Card Sort Task 

WM – Working Memory 

WMtk – Working Memory toolkit 

 

 


