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ABSTRACT

Photonic crystals and their use in exciting Bloch surface waves have received immense

attention over the past few decades. This interest is mainly due to their applications in bio-

sensing, wave-guiding, and other optical phenomena such as surface field enhanced Raman

spectroscopy. Improvement in numerical modeling techniques, state of the art computing

resources, and advances in fabrication techniques have also assisted in growing interest in

this field. The ability to model photonic crystals computationally has benefited both the

theoretical as well as experimental communities. It helps the theoretical physicists in solving

complex problems which cannot be solved analytically and helps to acquire useful insights

that cannot be obtained otherwise. Experimentalists, on the other hand, can test different

variants of their devices by changing device parameters to optimize performance before fab-

rication. In this dissertation, we develop two commonly used numerical techniques, namely

transfer matrix method, and rigorous coupled wave analysis, in C++ and MATLAB, and

use two additional software packages, one open-source and another commercial, to model

one-dimensional photonic crystals. Different variants of one-dimensional multilayered struc-

tures such as perfectly periodic dielectric multilayers, quasicrystals, aperiodic multilayer are

modeled, along with one-dimensional photonic crystals with gratings on the top layer.

Applications of Bloch surface waves, along with new and novel aperiodic dielectric mul-

tilayer structures that support Bloch surface waves are explored in this dissertation. We

demonstrate a slow light configuration that makes use of Bloch Surface Waves as an interme-

diate excitation in a double-prism tunneling configuration. This method is simple compared

to the more usual techniques for slowing light using the phenomenon of electromagnetically

induced transparency in atomic gases or doped ionic crystals operated at temperatures be-

low 4K. Using a semi-numerical approach, we show that a 1D photonic crystal, a multilayer

structure composed of alternating layers of TiO2 and SiO2, can be used to slow down light

by a factor of up to 400. The results also show that better control of the speed of light can

be achieved by changing the number of bilayers and the air-gap thickness appropriately.
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The existence of Bloch surface waves in periodic dielectric multilayer structures with a

surface defect is well-known. Not yet recognized is that quasi-crystals and aperiodic dielectric

multilayers can also support Bloch-like surface waves. We numerically show the excitation

of Bloch-like surface waves in Fibonacci quasi-crystals, Thue-Morse aperiodic dielectric mul-

tilayers using the prism coupling method. We report improved surface electric field intensity

and penetration depth of Bloch-like surface waves in the air side in such structures compared

to their periodic counterparts.

Bloch surface waves have also demonstrated significant potential in the field of biosensing

technology. We further extend our study into a new type of multilayer structure based on

Maximal-length sequence, which is a pseudo random sequence. We study the characteristics

of Bloch surface waves in a 32 layered Maximal-length sequence multilayer and perform

angular, as well as spectral sensitivity analysis for refractive index change detection. We

demonstrate numerically that Maximal-length sequence multilayers significantly enhance

the sensitivity of Bloch surface waves.

Another type of structure that support Bloch surface waves are dielectric multilayer

structures with a grating profile on the top-most layer. The grating profile adds an additional

degree of freedom to the phase matching conditions for Bloch surface wave excitation. In such

structures, the conditions for Bloch surface wave coupling can also be achieved by rotating

both polar and azimuthal angles. The generation of Bloch surface waves as a function of

azimuthal angle have similar characteristics to conventional grating coupled Bloch surface

waves. However, azimuthal generated Bloch surface waves have enhanced angular sensitivity

compared to conventional polar angle coupled modes, which makes them appropriate for

detecting tiny variations in surface refractive index due to the addition of nano-particles

such as protein molecules.
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CHAPTER 1

INTRODUCTION

When a ray of light passes through a glass slab, some of the light is reflected back from

the first interface whereas the rest propagates into the glass. That light travels until it hits

the second interface. At the second interface, some of the light is reflected back to the glass

and some is transmitted to the air. If a second slab of glass with a slightly different material

properties is attached to one side of the first slab, the light is reflected at three interfaces

and has to travel through two different materials. The interaction of light with the two

slab system is thus more complicated. If multiple copies of the two slab system are stitched

together, a periodic multilayered structure is obtained. Light in such structures is multiply

reflected and refracted in a similar fashion as in the two slab system, but due to the increased

number of interfaces, the interaction of light with periodic multilayered structures is more

complex. The periodicity of such a material system gives rise to new features which cannot

be observed otherwise. Light of certain wavelengths cannot propagate through such periodic

multilayered structures and hence are completely reflected back. The reason for this effect,

which was first explained by Lord Rayleigh in 1887, is that the light wave is partially reflected

and partially transmitted at each interface, and the multiple reflections from the periodic

layer interfaces interact destructively to eliminate the forward propagating wave [1]. Such

periodic multilayer structures are known in modern terminology as one-dimensional photonic

crystals (1DPC).

1.1 Photonic Crystals

Photonic crystals are man-made periodic materials that when interact with light can “mold”

or control the properties and flow of light [1]. The underlying theoretical background of pho-

tonic crystals and their interaction with photons was laid out by Yablonovitch [2] and John [3]

independently in 1987. This theoretical model is similar to the interaction between ordinary



2

crystals and electrons which results in electronic band gaps and led to an understanding of

semiconductor action. The ground work of Yablonovitch and John led scientists and engi-

Figure 1: Examples of one, two, and three dimensional photonic crystals. This image is

directly extracted from [1].

neers to design, fabricate, and study the properties of different types of photonic crystals,

from simple one-dimensional multilayers to complex three-dimensional photonic crystals.

Examples of photonic crystals of different dimensions is presented in Figure 1. They forbid

light of certain wavelengths to propagate through them. Such wavelength regions are called

forbidden bands or photonic band gaps (PBG), and for this reason photonic crystals are also

known as PBG materials. Initial experimental investigation of such PBG material and their

photonic band structures were done by Robertson et. al. in 1992 [4] and 1993 [5].

Propagation of electromagnetic waves (EM) in PBG materials is well described by the

Bloch-Floquet theorem. According to the theorem, when a light wave with a wavelength in

the PBG is sent onto the top interface of the photonic crystal from outside, the wave cannot

extend into the crystal because no purely real wave vector exists for any mode at that

wavelength. Instead, the wave vector is complex, the imaginary part of which is responsible

for the exponentially decaying wave amplitude inside the crystal. Thus, the modes in the
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crystal are evanescent:

EK(z, x) = EK(z)eiKzeiβx, (1)

where the Bloch wave number K = mπ/Λ + iKi (refer section 1.3 for details). Although

evanescent modes in photonic crystals are valid solutions of the electromagnetic eigenvalue

problem, they diverge as z – direction of propagation – goes to ±∞, depending on the sign

of Ki. Thus, they cannot be excited in a perfectly periodic multilayer structure of infinite

extent (Figure 2(a)). However, a defect – layer with a different thickness or refractive index

than other such layers – can suppress the exponential growth and thus sustain an evanescent

mode. Examples of periodic multilayers are depicted in Figure 2 (b) and (c). This enables

photonic crystals to have localized modes with wavelengths inside the PBG.

Figure 2: Illustrations of infinitely extending perfect 1DPC (a), finite 1DPC with defect (b),

and finite 1DPC with suface defect.

A defect in the center of a periodic PBG material (see Figure 2(b)) creates a defect state

in which light can become localized. The periodic multilayer films at both the sides of the

defect behave as frequency-specific mirrors. A propagating light wave with such frequency is

thus reflected back and forth from either sides of the defect and gets trapped inside it. The

defect acts as a resonant cavity, which can be utilized in many applications. For example,

resonant cavities can increase the efficiency of zero threshold lasers, as the density of states

at the resonance frequency is very high. The same property can also be utilized to creating

bandpass filters known as the dielectric Fabry-Perot filters.
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1.2 Bloch Surface Wave

In 1977, Yeh et al. [6] studied electromagnetic (EM) propagation in periodic stratified media

and explained the theoretical basis for surface EM waves in dielectric multilayer structures.

Later in 1991, Meade et al. [7] did a comprehensive study and predicted that PBG structures

could support surface EM waves – propagating EM waves localized to the surface of a PBG.

Existence of four kinds of surface modes, modes that extend in both the air region and

crystal region, modes that extend in the crystal region and decay in the air region, modes

that decay in the crystal region and extend the in air region, and modes that decay in both the

air and crystal region were shown theoretically. The fourth kind of surface mode that decay

exponentially in both the air and crystal sides was experimentally realized by Robertson et

al. [8–10] in the following years. These modes called the Bloch Surface Waves (BSW) were

originally thought to be detrimental to many of the projected PBG applications because

they were optical modes that existed within the forbidden bandgap. However, it was later

shown that the dispersion of these modes could be adjusted by the termination conditions

of the PBG. BSWs have become recognized as an important excitation in applications in

sensing, fast and slow light, and non-linear optics.
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Figure 3: (a) Prism coupling (b) Grating coupling

BSWs can only exist at the surface of PBG structures with a surface defect. An example

of such a PBG structure is presented in Figure 2(b). The mode frequency is not allowed to

extend into the 1DPC due to the PBG and it decays exponentially in the air side, i.e., these

modes are evanescent in nature. Although such modes are intrinsically present at dielectric-

air interfaces, they are non-radiative in nature; their momentum is larger than the free-space

wave momentum. Due to the momentum mismatch, BSW modes cannot be excited directly

by light incident from the air side. This restriction on optical generation of the BSWs can

be circumvented either by prism coupling [8, 11, 12] or by grating coupling [13] as shown in

Figure 3 (a) and (b) respectively.

BSW using the prism coupling is excited when the parallel wavevector (β) on the top of

the 1DPC is equal to kBSW as given by

β = kBSW = k0nglasssin(θinc), (2)

where k0 = 2π/λ0 is the free-space wave number, nglass is the refractive index of the prism,

and θinc is the angle of incidence of the input wave. Although this technique is well un-
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derstood, widely used, and easy to model theoretically, because of the necessity of a bulky

prism, it is not conducive to creating practical optical devices on the nanoscale. The pur-

pose of the prism is to decrease the effective wavelength of the light so that it is able to

couple to non-radiative surface waves. An alternative technique is to use a grating structure

(see Figure 3 (b)) that relaxes the parallel wavevector conservation condition at the surface

and essentially permits light to be diffracted directly into surface modes without the use of

a prism. As shown in the inset of Figure 3 (b), in the presence of surface gratings on a

1DPC, the incident light is diffracted into several diffraction orders (m = ±1,±2, ...). These

diffraction orders from the grating can provide the additional momentum for the incident

light required to couple to the BSWs as given by

km = kinc ±mG m = ±1,±2, ..., (3)

where km is the wave number of the diffracted beam, kinc = k0sin(θinc) is the parallel com-

ponent of the incident wave number, m is the diffraction order, and G = 2π/Λy is the

grating wave number, Λy being the grating period. When km, with the appropriate addi-

tional momentum supplied by the grating, equals kBSW , BSW can be excited. If we know

the parallel wavevector component (kBSW ) where the BSW can be generated, the required

angle of incidence for the incident wave can be obtained by θinc = sin−1((kBSW −G)/k0) for

m = 1.
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Figure 4: (a) Prism configuration for exciting BSW (b) Band structure of a 16-layered TiO2-

SiO2 multilyer (c-top) Reflectivity versus angle for light coupled to BSW in the multilayer

at λ = 632.8 nm (c-bottom) Reflectivity versus wavelength for light coupled to BSW in

the multilayer at θinc = 44.40 (d-top) |E|2 field profile of the BSW in the multilayer at

θinc = 44.40 and λ = 632.8 nm (d-middle) Cross-sectional view of a 16-layered TiO2-SiO2

multilyer with the top defect layer on a glass substrate (d-bottom) |E|2 amplitude of the

BSW in the multilayer at θinc = 44.40 and λ = 632.8 nm.

Figure 4 shows a general picture of BSW, its excitation in a 1DPC and its properties.

The 1DPC that we employ here is a stack of TiO2 (εT iO2 = 4.8400 − 0.0007i) and SiO2
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(εSiO2 = 2.1316− 0.0001i) on a glass substrate (ε = 2.25). The thicknesses of TiO2 and SiO2

are 82.8 nm and 154.9 nm respectively and the defect layer is 185 nm. The BSW excitation

shown in Figure 4 (a), as explained earlier, can only be excited at certain wavelengths of

light. This can be clearly seen in Figure 4 (b), which shows the band structure of a 16-layered

1DPC for both TE and TM mode. The green region indicates the allowed wavelengths of

the EM waves that can propagate in the 1DPC and the blue region indicates the forbidden

wavelengths or the forbidden band-gap. The slanted gray lines are the light-lines in air;

the region to the left of the light line in the TE mode and right of the TM mode are the

wavelengths of EM waves allowed in air. The yellow stripe in the forbidden band-gap in

the TE mode is the BSW mode. It lies to the right of the air light-line and thus cannot be

accessed directly through air.

Every point that lies on the yellow stripe indicates a specific pair of wavevector at a

specific angle of incidence (θ) and wavelength (λ) where the BSW can be excited. The

reflectivity at one such pair (θ = 44.40, λ = 632.8 nm) is shown in 4 (c). The sharp dips that

we observe on both the reflectivity curves is due to the transfer of energy from the incident

EM wave to the BSW that propagates along the interface of the crystal and air. The electric

field profile and amplitude of the BSW at the incidence angle-wavelength pair is illustrated

in Figure 4 (d).

BSW extends slightly into the air side and creates a tightly confined EM field which

decays exponentially. This property has been used extensively by many researchers for bio-

sensing applications [14–24]. For example, Figure 5 shows an example of BSW sensing due

to resonant angle shift as a means of reading protein arrays without the need of fluorescent

labels. The addition of external material, eg. chemical electroyte, on the surface of the 1DPC

changes the effective refractive index of the sensing medium. As a result, the BSW condition

changes and the reflectivity dips shift to the left or right of the previous reflectivity dip

position on either the reflectivity versus wavelength or reflectivity versus angle. The angular

or spectral change between the dips help analyze the electrolyte and detect the changes in it.
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Figure 5: Experimental BSW resonance array scan showing eight spots of Bovine Serum

Albumin (BSA) (Rows 1 and 2) and four spots of Immunoglobulin G (IgG) (Row 3) before

(left plot) and after (right plot) exposure to anti-BSA.

Another application of the BSW is to achieve slow light [26]. The incident light is temporarily

stored on the surface of the 1DPC in the form of BSW before being transmitted which can be

extracted with the assistance of a prism at the transmission side. The ability of 1DPC can be

utilized to make slow light devices such as optical buffers and switches. Other applications

of BSW include focusing and extraction of light mediated by BSW [27], designing platform

concep-based flat lens [28], and exciting surface-enhanced Raman scattering [29,30].

1.3 Bloch Waves and Band Structures

The properties of a 1DPC can be understood from their dispersion relation, which explains

the relation between the wavelength and the wavevector of light in the structure [31]. To

study the dispersion relation, consider an infinite stack of alternating high and low refractive

index materials as shown in Figure 6. The refractive index profile of a unit cell is given by
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Figure 6: An illustration of infinitely periodic multilayer dielectric structure with plane wave

amplitudes associated with the nth unit cell and its neighboring cells.

n(z) =


n2 0 < z < b,

n1 b < z0 < Λ

(4)

with n(z+ Λ) = n(z), where the z axis is normal to the interfaces and Λ is the period of the

unit cell. The electric field in such structure is of the form

E(z, x) = E(z)eiβx. (5)

The electric field within each homogeneous layer, say layer α, is a sum of forward and

backward propagating plane waves with amplitudes a
(α)
n and b

(α)
n respectively and can be

written as

E(z, x) = (a(α)
n eikαz(z−nΛ) + b(α)

n e−ikαz(z−nΛ))eiβx, (6)

with

kαz =
√
{[(ω/c)nα]2 − β2}, α = 1, 2. (7)
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Imposing the continuity of E and ∂E/∂z at the interfaces for transverse electric (TE) mode,

we get

an−1 + bn−1 = e−ik2zΛcn + eik2zΛdn,

ik1z(an−1 − bn−1) = ik2z(e
−ik2zΛcn − eik2zΛdn),

e−ik2zacn + eik2zadn = e−ik1zaan + eik1zabn,

ik2z(e
−ik2zacn − eik2zadn) = ik1z(e

−ik1zaan − eik1zabn).

(8)

Eliminating cn and dn in Eqn. (8) and doing some algebra, we can put them in a matrix

form as [
an−1

bn−1

]
=

[
A B
C D

] [
an
bn

]
. (9)

The matrix elements are

A = e−ik1za

[
cos(k2zb)−

1

2
i

(
k2z

k1z

+
k1z

k2z

)
sin(k2zb)

]
, (10)

B = eik1za

[
−1

2
i

(
k2z

k1z

− k1z

k2z

)
sin(k2zb)

]
, (11)

C = e−ik1za

[
1

2
i

(
k2z

k1z

− k1z

k2z

)
sin(k2zb)

]
, (12)

D = eik1za

[
cos(k2zb) +

1

2
i

(
k2z

k1z

+
k1z

k2z

)
sin(k2zb)

]
. (13)

The matrix in Eqn. (9) relates the amplitudes of the forward and backward wave of a layer

in a unit cell to those of the equivalent layer in the next unit cell. The matrix in unimodular,

which gives

AD −BC = 1. (14)

The matrix elements for transverse magnetic (TM) mode are slightly different than that of

the TE mode and are given by

A = e−ik1za

[
cos(k2zb)−

1

2
i

(
n2

2k2z

n2
1k1z

+
n2

1k1z

n2
2k2z

)
sin(k2zb)

]
, (15)

B = eik1za

[
−1

2
i

(
n2

2k2z

n2
1k1z

+
n2

1k1z

n2
2k2z

)
sin(k2zb)

]
, (16)
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C = e−ik1za

[
1

2
i

(
n2

2k2z

n2
1k1z

+
n2

1k1z

n2
2k2z

)
sin(k2zb)

]
, (17)

D = eik1za

[
cos(k2zb) +

1

2
i

(
n2

2k2z

n2
1k1z

+
n2

1k1z

n2
2k2z

)
sin(k2zb)

]
. (18)

According to Floquet theorem, electric field propagating in periodic structure is of the form

EK(z, x) = EK(z)eiKzeiβx, (19)

where

EK(z + Λ) = EK(z). (20)

The constant K in Eqn. (19) and (20) is known as the Bloch wave number. From Eqn. (6),

the periodic condition in Eqn. (20) for the Bloch wave is[
an
bn

]
= eiKΛ

[
an−1

bn−1

]
(21)

and it follows from Eqn. (9) and (21), the Bloch wave satisfies from the following eigenvalue

problem [
A B
C D

] [
an
bn

]
= e−iKΛ

[
an
bn

]
. (22)

The term e−iKΛ is the eigenvalue of the ABCD matrix and is given by

e−iKΛ =
1

2
(A+D)±

√√√√{[1

2
(A+D)

]2

− 1

}
(23)

and its eigenvectors are [
a0

b0

]
=

[
B

e−KΛ − A

]
(24)

times an arbitrary constant. Eqn. (23) gives the dispersion relation between ω, β, and K

for the Bloch wave function

K(β, ω) =
1

Λ
cos−1

[
1

2
(A+D)

]
. (25)

Eqn. (25) is an important equation for understanding Bloch waves and band structures. The

regions of β and ω where |1
2
(A+D)| < 1 corresponds to real K, which gives the propagating

Bloch waves. The regions where |1
2
(A+D)| > 1, K = mπ/Λ + iKi. The Bloch wave number
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in this region has an imaginary part Ki, which means the Bloch wave is evanescent. Such

regions are the forbidden bands of the periodic structure, where the Bloch surface waves

(BSW) can exist. The regime where |1
2
(A + D)| = 1 gives the band edges. An example of

band structures of a 1DPC is shown in Figure 4(b). The green regions are the allowed regions

where EM waves can propagate, and the blue regions are the forbidden regions, also known

as photonic bandgaps, where no EM waves can propagate. The defect modes however, can

exist in such photonic bandgaps. Finally, from Eqn. (6) and (21), the Bloch wave in the n1

layer of the nth unit cell is given by

EK(z)e−iKz = [(a0e
ik1z(z−nΛ) + b0e

−ik1z(z−nΛ))e−iK(z−nΛ)]eiKz. (26)

The terms a0 and b0 in the above equation can be computed from Eqn. (24). Eqn. (26)

can then be used iteratively to compute the electric field profile in all the layers of periodic

multilayer structures.
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CHAPTER 2

NUMERICAL TECHNIQUES

At the present time, numerical techniques have become one of the most important tools

in research. The advantages of numerical techniques are many-folds. First, they help us

solve complex problems for which analytical solutions cannot be obtained. Second, they

assist in studying the effects of changing various problem parameters and achieve optimized

solutions. Third, they are comparatively cheaper and less time consuming than building the

real structures and then testing and retesting them. In this chapter, we introduce several

numerical techniques that are commonly used for studying the properties and uses of 1DPC.

We present their mathematical background in brief and also give their pros and cons.

2.1 Transfer Matrix Method using Scattering Matrices

Transfer matrix method (TMM) using scattering matrices [32–34] for 1D multilayer structure

described below is a rigorous semi-analytical method. We assume that the 1D multilayer

structure is homogeneous in x-y plane, but not in z-direction, i.e., material with differ-

ent properties are stacked along the z-direction. We further assume that the propagation

direction of the plane wave is the positive z-direction. The plane wave has the form

E(r) = E0e
−jk.r = E0e

−jkxxe−jkyye−jkzz (27)

H̃(r) = H̃0e
−jk.r = H̃0e

−jkxxe−jkyye−jkzz (28)

We start with Maxwell’s equations describing the fields inside a single linear, homogeneous,

and isotropic layer of the device which are given below

∇× E = k0µrH̃ (29)

∇× H̃ = k0εrE (30)

The term H̃ is the normalized magnetic field which is equal to −jη0H, where j =
√
−1

and η0 is the impedance of free space, k0 is the free space wave number and is equal to
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Figure 7: A schematic of a 1D multilayer structure.

2π/λ0, where λ0 is the free space wavelength, and µr and εr are relative permeability and

permittivity of the material respectively. Eqn. (27) and (28) can be expanded into a set of

six coupled partial differential equations as follows

∂Ez
∂y
− ∂Ey

∂z
= k0µrH̃x (31)

∂Ey
∂x
− ∂Ex

∂y
= k0µrH̃z (32)

∂Ex
∂z
− ∂Ez

∂x
= k0µrH̃y (33)

∂H̃z

∂y
− ∂H̃y

∂z
= k0εrEx (34)

∂H̃x

∂z
− ∂H̃z

∂x
= k0εrEy (35)
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∂H̃y

∂x
− ∂H̃x

∂y
= k0εrEz. (36)

Since the 1D multilayer structure is homogeneous in the x-y plane, ∂
∂x

and ∂
∂y

in the above

equations can be replaced by −jkx and −jky respective. Therefore, the Maxwell’s equations

reduce to

−jkyEz −
∂Ey
∂z

= k0µrH̃x (37)

∂Ex
∂z

+ jkxEz = k0µrH̃y (38)

−jkxEy + jkyEx = k0µrH̃z (39)

−jkyH̃z −
∂H̃y

∂z
= k0εrEx (40)

∂H̃x

∂z
+ jkxH̃z = k0εrEy (41)

−jkxH̃y + jkyH̃x = k0εrEz (42)

Normalizing z and wave vectors kx, ky, and kz as z′ = k0z, k̃x = kx/k0, k̃y = ky/k0, and

k̃z = kz/k0, and finally eliminating longitudinal components Ez and H̃z by backsubstitution,

we get

∂Ex
∂z′

=
k̃xk̃y
εr

H̃x +

(
µr −

k̃2
x

εr

)
H̃y (43)

∂Ey
∂z′

=

(
k̃2
y

εr
− µr

)
H̃x −

k̃xk̃y
εr

H̃y (44)

∂H̃y

∂z′
=
k̃xk̃y
µr

Ex +

(
εr −

k̃2
x

µr

)
Ey (45)

∂H̃y

∂z′
=

(
k̃2
y

µr
− εr

)
Ex −

k̃xk̃y
µr

Ey (46)

These equations can be compactly written in matrix forms as follows

d

dz′

[
Ex
Ey

]
= P

[
H̃x

H̃y

]
(47)

d

dz′

[
H̃x

H̃y

]
= Q

[
Ex
Ey

]
, (48)
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where

P =
1

εr

[
k̃xk̃y µrεr − k̃2

x

k̃2
y − µrεr −k̃xk̃y

]
(49)

Q =
1

µr

[
k̃xk̃y µrεr − k̃2

x

k̃2
y − µrεr −k̃xk̃y

]
(50)

Taking the derivative of eqn. (47) w.r.t. z′ and then substituting eqn. (48) in the result, we

get

d2

dz′2

[
Ex
Ey

]
= Ω2

[
Ex
Ey

]
, (51)

where Ω2 = PQ. Eqn. (51) is the second order wave equation in matrix form. It has a

general solution of the form [
Ex(z

′)
Ey(z

′)

]
= e−Ωz′a+ + eΩz′a−. (52)

a+, and a− are column vectors of proportionality constants for forward and backward waves

respectively. The terms e−Ωz′ and eΩz′ have a matrix as their exponents. These matrix

exponentials can be computed using the eigen-vectors and eigen-values of the matrix Ω.

Letting W and λ2 as the eigen-vector and eigen-value matrix of Ω2, we can compute the

matrix exponentials as

e−Ωz′ = We−λz
′
W−1 (53)

eΩz′ = Weλz
′
W−1, (54)

where e±λz
′
= diag(e

√
±λ2

1z
′
, e
√
±λ2

2z
′
, ..., e

√
±λ2

Nz
′
). Therefore, the solution can be written as[

Ex(z
′)

Ey(z
′)

]
= We−λz

′
W−1a+ + Weλz

′
W−1a−. (55)

Finally, letting W−1a+ ≡ c+ and W−1a− ≡ c−, which are column vectors of amplitude

coefficients of the eigen-modes in the forward and backward directions respectively, we can

rewrite eqn. (55) as [
Ex(z

′)
Ey(z

′)

]
= We−λz

′
c+ + Weλz

′
c− (56)
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The matrix W =

[
1 0
0 1

]
= I and e±λz

′
=

[
e±jk̃zz

′
0

0 e±jk̃zz
′

]
. The magnetic field has a similar

solution given below [
H̃x(z

′)

H̃y(z
′)

]
= −Ve−λz

′
c+ + Veλz

′
c− (57)

To compute V, eqn. (48) is differentiated w.r.t. z′.

d

dz′

[
H̃x(z

′)

H̃y(z
′)

]
= Vλe−λz

′
c+ + Vλeλz

′
c− (58)

Combining eqn. (48) and (56) gives V = QWλ−1. Combining the solutions of electric

(eqn. (56)) and magnetic (eqn. (57)) fields into one matrix, we get,

Ψ(z′) =


Ex(z

′)
Ey(z

′)

H̃x(z
′)

H̃y(z
′)

 =

[
W W
−V V

] [
e−λz

′
0

0 eλz
′

] [
c+

c−

]
(59)

Eqn. (59) represents electric and magnetic field in a layer of linear, homogeneous, and

isotropic material.

2.1.1 Scattering Matrix for a Layer

Figure 8: Field representations in the ith layer of a 1D multilayer.

A 1D multilayer device has a stack of multiple layers of different material. Thus, for a
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certain ith layer in such a device, the solutions can be represented as

Ψi(z
′
i) =


Ex,i(z

′
i)

Ey,i(z
′
i)

H̃x,i(z
′
i)

H̃y,i(z
′
i)

 =

[
Wi Wi

−Vi Vi

] [
e−λiz

′
i 0

0 eλiz
′
i

] [
c+
i

c−i

]
(60)

Each layer has two interfaces with corresponding boundary conditions. Here, we considering

each layer separately; thus, medium 1 (left region) and medium 2 (right region) do not

strictly need to be layers of the 1D device in consideration. In fact, for the sake of numerical

efficiency, we let both medium 1 and 2 to be free space of zero thicknesses. The boundary

condition at the first (left) interface is

Ψ1 = Ψi(0) (61)[
W1 W1

−V1 V1

] [
c+

1

c−1

]
=

[
Wi Wi

−Vi Vi

] [
c+
i

c−i

]
(62)

The boundary condition at the second (right) interface is

Ψi(k0Li) = Ψ2 (63)[
Wi Wi

−Vi Vi

] [
e−λik0Li 0

0 eλik0Li

] [
c+
i

c−i

]
=

[
W2 W2

−V2 V2

] [
c+

2

c−2

]
(64)

Figure 9: Representation of the scattering matrix of a single layer.

After some manipulations of eqn. (62) and (64), we can reduce them to a system of the

following form [
c−1
c+

2

]
= S(i)

[
c+

1

c−2

]
, (65)
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where

S(i) =

[
S

(i)
11 S

(i)
12

S
(i)
21 S

(i)
22

]
. (66)

The element of matrix S(i) are calculated as

S
(i)
11 = (Ai −XiBiA

−1
i XiBi)

−1(XiBiA
−1
i XiAi −Bi) (67)

S
(i)
12 = (Ai −XiBiA

−1
i XiBi)

−1Xi(Ai −BiA
−1
i Bi) (68)

S
(i)
21 = S

(i)
12 (69)

S
(i)
22 = S

(i)
11 (70)

The matrices Ai, Bi, and Xi are computed as

Ai = W−1
i W0 + V−1

i V0 (71)

Bi = W−1
i W0 −V−1

i V0 (72)

Xi = e−λik0Li . (73)

The matrix S(i) is the scattering matrix of the ith layer. It relates the input field to

the output field. The elements S
(i)
11 , and S

(i)
21 give reflection and transmission coefficients

respectively. Because each layer is surrounded by free space in our formulation, the scattering

matrices are symmetric. Thus only two of the matrix components have to be calculated for

each layer.

2.1.2 Redheffer Star Product

In order to model a device with multiple layers, we need to combine multiple scattering

matrices into a single scattering matrix. However, the scattering matrices cannot be com-

bined directly by applying matrix multiplication. Also, the combined scattering matrix is

not symmetric as the scattering matrix for a single layer so it becomes necessary to compute

and store all four components of the combined scattering matrix. Two scattering matrices
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can be combined using the Redheffer star product [32, 35]. The Redheffer star product of

two scattering matrices S(A) =

[
S

(A)
11 S

(A)
12

S
(A)
21 S

(A)
22

]
and S(B) =

[
S

(B)
11 S

(B)
12

S
(B)
21 S

(B)
22

]
is defined as

S(AB) =

[
S

(AB)
11 S

(AB)
12

S
(AB)
21 S

(AB)
22

]
, (74)

where

S
(AB)
11 = S

(A)
11 + S

(A)
12 [I− S

(B)
12 S

(A)
22 ]−1S

(B)
11 S

(A)
21 (75)

S
(AB)
12 = S

(A)
12 [I− S

(B)
12 S

(A)
22 ]−1S

(B)
12 (76)

S
(AB)
21 = S

(B)
21 [I− S

(A)
22 S

(B)
11 ]−1S

(A)
21 (77)

S
(AB)
22 = S

(B)
22 + S

(B)
21 [I− S

(A)
22 S

(B)
11 ]−1S

(A)
22 S

(B)
12 (78)

2.1.3 Global Scattering Matrix

The scattering matrix of a 1D multilayer with N layers can be computed by taking Redheffer

star product of the scattering matrices of each layer.

S(Device) = S(1) ⊗ S(2) ⊗ ...⊗ S(N−1) ⊗ S(N) (79)

The multilayer device is surrounded by the reflection region and transmission region at its

two ends. It is connected to these external materials by “connection” scattering matrices

that have zero-thicknesses. The global scattering matrix finally combines all the scattering

matrices into a single matrix as

S(Global) = S(Ref) ⊗ S(Device) ⊗ S(Trn) (80)

The matrices S(Ref) and S(Trn) are the reflection and transmission region scattering matrices.

S(Ref) =

[
S

(Ref)
11 S

(Ref)
12

S
(Ref)
21 S

(Ref)
22

]
, (81)

where

S
(Ref)
11 = −A−1

RefBRef (82)
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Figure 10: Representation of global scattering matrix.

S
(Ref)
12 = 2A−1

Ref (83)

S
(Ref)
21 = 0.5(ARef −BRefA

−1
RefBRef ) (84)

S
(Ref)
22 = −BRefA

−1
Ref , (85)

with

ARef = W−1
0 WRef + V−1

0 VRef (86)

BRef = W−1
0 WRef −V−1

0 VRef (87)

And

S(Trn) =

[
S

(Trn)
11 S

(Trn)
12

S
(Trn)
21 S

(Trn)
22

]
, (88)

where

S
(Trn)
11 = −BTrnA

−1
Trn (89)

S
(Trn)
12 = 0.5(ATrn −BTrnA

−1
TrnBTrn) (90)

S
(Trn)
21 = 2A−1

Trn (91)

S
(Trn)
22 = −A−1

TrnBTrn, (92)
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with

ATrn = W−1
0 WTrn + V−1

0 VTrn (93)

BTrn = W−1
0 WTrn −V−1

0 VTrn. (94)

2.1.4 Calculating Transmitted and Reflected Electric Field

The global scattering matrix connects the input from the reflection region to the output at

the transmission region [
cRef
cTrn

]
=

[
S

(Global)
11 S

(Global)
12

S
(Global)
21 S

(Global)
22

] [
cinc
0

]
, (95)

where

cinc =

[
Ex,inc
Ey,inc

]
(96)

The terms Ex,inc and Ey,inc are known quantities. From eqn. (95) we get

cRef = S11
(Global)cinc (97)

cTrn = S21
(Global)cinc (98)

We can finally compute the reflected and transmitted electric field as[
ERef
x

ERef
y

]
= WRefcRef = WRefS

(Global)
11 cinc = WRefS

(Global)
11 W−1

Ref

[
Ex,inc
Ey,inc

]
(99)

[
ETrn
x

ETrn
y

]
= WTrncTrn = WTrnS

(Global)
21 cinc = WTrnS

(Global)
21 W−1

Ref

[
Ex,inc
Ey,inc

]
, (100)

and

ERef
z = −

k̃xE
Ref
x + k̃yE

Ref
y

k̃Refz

(101)

ETrn
z = −

k̃xE
Trn
x + k̃yE

Trn
y

k̃Trnz

(102)
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2.1.5 Calculating Transmittance and Reflectance

With the knowledge of reflected and transmitted electric fields, we can compute the re-

flectance and transmittance as

R =
|ERef |2

|Einc|2
, (103)

and

T =
|ETrn|2

|Einc|2
R
[
µr,Ref
µr,T rn

kz,trn
kz,inc

]
, (104)

with

|E|2 = |Ex|2 + |Ey|2 + |Ez|2. (105)

2.2 Rigorous Coupled Wave Analysis

The TMM described in section 2.2 is capable of handling 1D multilayer structures with

different material in z-direction, but it cannot be used for structures having variations in x-y

plane. For instance, the field distribution and the reflection and transmission responses from

a 1D multilayer structure with grating on the top layer (see Figure 11) cannot be calculated

with the TMM. Rigorous coupled wave analysis (RCWA) [36–42], as suggested by its name,

is a more general formulation of Maxwell’s equation for structures with material variation

in x-y plane as well. The assumption here is that the medium may be inhomogeneous in

x-y plane, but it must be uniform in the z-direction for each layer. The formulation of

RCWA presented here is very similar to that of TMM in section 2.2. The main difference is

the representation of fields and material properties in the Fourier representation. Once the

matrices P and Q are obtained, all the remaining steps are exactly the same as in TMM.

We begin the formulation of RCWA starting from eqn. (31)-(36). For RCWA, εr and µr

are represented in terms of Fourier transforms along the x and y direction, the z-parameter

remains analytical and unchanged.

∇× E = k0µrH̃ (106)
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Figure 11: A schematic of a 1D multilayer structure with a grating on the top layer.

∇× H̃ = k0εrE (107)

The term H̃ is the normalized magnetic field which is equal to −jη0H, where j =
√
−1

and η0 is the impedance of free space, k0 is the free space wave number and is equal to

2π/λ0, where λ0 is the free space wavelength, and µr and εr are relative permeability and

permittivity of the material respectively. Eqn. (106) and (107) can be expanded into a set

of six coupled partial differential equations as follows

∂Ez
∂y
− ∂Ey

∂z
= k0µrH̃x (108)

∂Ey
∂x
− ∂Ex

∂y
= k0µrH̃z (109)
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∂Ex
∂z
− ∂Ez

∂x
= k0µrH̃y (110)

∂H̃z

∂y
− ∂H̃y

∂z
= k0εrEx (111)

∂H̃x

∂z
− ∂H̃z

∂x
= k0εrEy (112)

∂H̃y

∂x
− ∂H̃x

∂y
= k0εrEz. (113)

For RCWA, εr and µr are represented in terms of Fourier transforms along the x and y

direction, the z-parameter remains analytical and unchanged.

εr(x, y) =
∞∑

m=−∞

∞∑
n=−∞

am,ne
j
(

2πmx
Λx

+ 2πny
Λy

)
(114)

µr(x, y) =
∞∑

m=−∞

∞∑
n=−∞

bm,ne
j
(

2πmx
Λx

+ 2πny
Λy

)
(115)

The coefficients am,n and bm,n are given as

am,n =
1

ΛxΛy

∫ Λx
2

−Λx
2

∫ Λy
2

−Λy
2

εr(x, y)e
−j

(
2πmx

Λx
+ 2πny

Λy

)
dxdy. (116)

The terms Λx and Λy are the periods in x and y directions respectively.

bm,n =
1

ΛxΛy

∫ Λx
2

−Λx
2

∫ Λy
2

−Λy
2

µr(x, y)e
−j

(
2πmx

Λx
+ 2πny

Λy

)
dxdy (117)

The Fourier expansion of the fields are

Ex(x, y, z) =
∞∑

m=−∞

∞∑
n=−∞

Sx,m,n(z)e−j(kx,mx+ky,ny ) (118)

Ey(x, y, z) =
∞∑

m=−∞

∞∑
n=−∞

Sy,m,n(z)e−j(kx,mx+ky,ny ) (119)

Ez(x, y, z) =
∞∑

m=−∞

∞∑
n=−∞

Sz,m,n(z)e−j(kx,mx+ky,ny ) (120)

Hx(x, y, z) =
∞∑

m=−∞

∞∑
n=−∞

Ux,m,n(z)e−j(kx,mx+ky,ny ) (121)

Hy(x, y, z) =
∞∑

m=−∞

∞∑
n=−∞

Uy,m,n(z)e−j(kx,mx+ky,ny ) (122)
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Hz(x, y, z) =
∞∑

m=−∞

∞∑
n=−∞

Uz,m,n(z)e−j(kx,mx+ky,ny ), (123)

where

kx,m = kx,inc −
2πm

Λx

, m = −∞, ...,−2,−1, 0, 1, 2, ...,∞ (124)

ky,n = ky,inc −
2πn

Λy

, n = −∞, ...,−2,−1, 0, 1, 2, ...,∞ (125)

Substituting the field expressions in eqn. (118)-(123), and doing some algebraic manipula-

tions, the Maxwell’s equations in real space can be converted to the Maxwell’s equations in

semi-analytical Fourier space

−jk̃y,nSz,m,n(z̃)− d

dz̃
Sy,m,n(z̃) =

∞∑
q=−∞

∞∑
r=−∞

bm−q,n−rUx,q,r(z̃) (126)

d

dz̃
Sx,m,n(z̃) + jk̃x,mSz,m,n(z̃) =

∞∑
q=−∞

∞∑
r=−∞

bm−q,n−rUy,q,r(z̃) (127)

−jk̃x,mSy,m,n(z̃) + jky,mSz,m,n(z̃) =
∞∑

q=−∞

∞∑
r=−∞

bm−q,n−rUz,q,r(z̃) (128)

−jk̃y,nUz,m,n(z̃)− d

dz̃
Uy,m,n(z̃) =

∞∑
q=−∞

∞∑
r=−∞

am−q,n−rSx,q,r(z̃) (129)

d

dz̃
Ux,m,n(z̃) + jk̃x,mUz,m,n(z̃) =

∞∑
q=−∞

∞∑
r=−∞

am−q,n−rSy,q,r(z̃) (130)

−jk̃x,mUy,m,n(z̃) + jky,mUz,m,n(z̃) =
∞∑

q=−∞

∞∑
r=−∞

am−q,n−rSz,q,r(z̃). (131)

Expanding each of these equations for every possible combination of m and n and putting

them in matrix form, they can be compactly represented as

−jKyuz −
d

dz̃
uy = εrsx (132)

d

dz̃
ux + jKxuz = εrsy (133)

Kxuy −Kyux = jεrsz (134)

−jKysz −
d

dz̃
sy = µrux (135)



28

d

dz̃
sx + jKxsz = µruy (136)

Kxsy −Kysx = jµruz, (137)

where

ux =


Ux,1,1
Ux,1,2
.
.
.

Ux,M,N

 uy =


Uy,1,1
Uy,1,2
.
.
.

Uy,M,N

 uz =


Uz,1,1
Uz,1,2
.
.
.

Uz,M,N

 sx =


Sx,1,1
Sx,1,2
.
.
.

Sx,M,N

 sy =


Sy,1,1
Sy,1,2
.
.
.

Sy,M,N

 sz =


Sz,1,1
Sz,1,2
.
.
.

Sz,M,N



Kx =



k̃x,1,1

k̃x,1,2 0
.
.

0 .

k̃x,M,N


Ky =



k̃y,1,1

k̃y,1,2 0
.
.

0 .

k̃y,M,N



εr =

Toeplitz Convolution matrix

 µr =

Toeplitz Convolution matrix

 .
Eliminating the longitudinal components sz and uz by back-substitution and rearranging

them, eqn. (132)-(137) can be further reduced down to

d

dz̃
ux = Kxµ

−1
r Kysx + (εr −Kxµ

−1
r Kx)sy (138)

d

dz̃
uy = (Kyµ

−1
r Ky − εr)sx −Kyµ

−1
r Kxsy (139)

d

dz̃
sx = Kxε

−1
r Kyux + (µr −Kxε

−1
r Kx)uy (140)

d

dz̃
sy = (Kyε

−1
r Ky − µr)ux −Kyε

−1
r Kxuy (141)

These equations can be compactly written in matrix form as follows

d

dz̃

[
ux
uy

]
= Q

[
sx
sy

]
(142)

d

dz̃

[
sx
sy

]
= P

[
ux
uy

]
, (143)
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where

Q =

[
Kxµ

−1
r Ky εr −Kxµ

−1
r Kx

Kyµ
−1
r Ky − εr −Kyµ

−1
r Kx

]
(144)

P =

[
Kxε

−1
r Ky µr −Kxε

−1
r Kx

Kyε
−1
r Ky − µr −Kyε

−1
r Kx

]
(145)

Taking the derivative of eqn. (143) w.r.t. z′ and then substituting eqn. (142) in the result,

we get

d2

dz′2

[
sx
sy

]
= Ω2

[
sx
sy

]
, (146)

where Ω2 = PQ. Eqn. (146) is the second order wave equation in matrix form. It has a

general solution of the form [
sx(z

′)
sy(z

′)

]
= e−Ωz′s+(0) + eΩz′s−(0). (147)

The terms s+(0), and s−(0) are the initial values for this differential equation. The ±

superscripts indicate whether they pertain to forward propagating waves (+) or backward

propagating waves (-). The terms e−Ωz′ and eΩz′ have a matrix as their exponents. These

matrix exponentials can be computed using the eigen-vectors and eigen-values of the matrix

Ω. Letting W and λ2 as the eigen-vector and eigen-value matrix of Ω2, we can compute the

matrix exponentials as

e−Ωz′ = We−λz
′
W−1 (148)

eΩz′ = Weλz
′
W−1, (149)

where e±λz
′
= diag(e

√
±λ2

1z
′
, e
√
±λ2

2z
′
, ..., e

√
±λ2

Nz
′
). Therefore, the solution can be written as[

sx(z
′)

sy(z
′)

]
= We−λz

′
W−1s+(0) + Weλz

′
W−1s−(0). (150)

Finally, letting W−1s+(0) ≡ c+ and W−1s−(0) ≡ c−, which are column vectors of amplitude

coefficients of the eigen-modes in the forward and backward directions respectively, we can

rewrite eqn. (150) as [
sx(z

′)
sy(z

′)

]
= We−λz

′
c+ + Weλz

′
c− (151)
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The matrix W =

[
1 0
0 1

]
= I and e±λz

′
=

[
e±jk̃zz

′
0

0 e±jk̃zz
′

]
. The magnetic field has a similar

solution given below [
ux(z

′)
uy(z

′)

]
= −Ve−λz

′
c+ + Veλz

′
c− (152)

To compute V, eqn. (152) is differentiated w.r.t. z′.

d

dz′

[
ux(z

′)
uy(z

′)

]
= Vλe−λz

′
c+ + Vλeλz

′
c− (153)

Then, substituting eqn. (151) into eqn. (142), and then comparing it to eqn. (153), we get

V = QWλ−1. Combining the solutions of electric (eqn. (151)) and magnetic (eqn. (152))

fields into one matrix, we get,

Ψ(z′) =


sx(z

′)
sy(z

′)
ux(z

′)
uy(z

′)

 =

[
W W
−V V

] [
e−λz

′
0

0 eλz
′

] [
c+

c−

]
(154)

Eqn. (154) represents electric and magnetic field in a layer of linear, homogeneous, and

isotropic material.

2.2.1 Scattering Matrix for a Layer

Figure 12: Field representations in the ith layer of a 1D multilayer.
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A 1D multilayer device has a stack of multiple layers of different material. Thus, for a

certain ith layer in such a device, the solutions can be represented as

Ψi(z
′
i) =


sx,i(z

′
i)

sy,i(z
′
i)

ux,i(z
′
i)

uy,i(z
′
i)

 =

[
Wi Wi

−Vi Vi

] [
e−λiz

′
i 0

0 eλiz
′
i

] [
c+
i

c−i

]
(155)

Each layer has two interfaces with corresponding boundary conditions. Here, we considering

each layer separately; thus, medium 1 (left region) and medium 2 (right region) do not

strictly need to be layers of the 1D device in consideration. In fact, for the sake of numerical

efficiency, we let both medium 1 and 2 to be free space of zero thicknesses. The boundary

condition at the first (left) interface is

Ψ1 = Ψi(0) (156)[
W1 W1

−V1 V1

] [
c+

1

c−1

]
=

[
Wi Wi

−Vi Vi

] [
c+
i

c−i

]
(157)

The boundary condition at the second (right) interface is

Ψi(k0Li) = Ψ2 (158)[
Wi Wi

−Vi Vi

] [
e−λik0Li 0

0 eλik0Li

] [
c+
i

c−i

]
=

[
W2 W2

−V2 V2

] [
c+

2

c−2

]
(159)

Figure 13: Representation of the scattering matrix of a single layer.
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After some manipulations of eqn. (157) and (159), we can reduce them to a system of

the following form [
c−1
c+

2

]
= S(i)

[
c+

1

c−2

]
, (160)

where

S(i) =

[
S

(i)
11 S

(i)
12

S
(i)
21 S

(i)
22

]
. (161)

The element of matrix S(i) are calculated as

S
(i)
11 = (Ai −XiBiA

−1
i XiBi)

−1(XiBiA
−1
i XiAi −Bi) (162)

S
(i)
12 = (Ai −XiBiA

−1
i XiBi)

−1Xi(Ai −BiA
−1
i Bi) (163)

S
(i)
21 = S

(i)
12 (164)

S
(i)
22 = S

(i)
11 (165)

The matrices Ai, Bi, and Xi are computed as

Ai = W−1
i W0 + V−1

i V0 (166)

Bi = W−1
i W0 −V−1

i V0 (167)

Xi = e−λik0Li . (168)

The matrix S(i) is the scattering matrix of the ith layer. It relates the input field to

the output field. The elements S
(i)
11 , and S

(i)
21 give reflection and transmission coefficients

respectively. Because each layer is surrounded by free space in our formulation, the scattering

matrices are symmetric. Thus only two of the matrix components have to be calculated for

each layer.

2.2.2 Redheffer Star Product

In order to model a device with multiple layers, we need to combine multiple scattering

matrices into a single scattering matrix. However, the scattering matrices cannot be com-

bined directly by applying matrix multiplication. Also, the combined scattering matrix is
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not symmetric as the scattering matrix for a single layer so it becomes necessary to compute

and store all four components of the combined scattering matrix. Two scattering matrices

can be combined using the Redheffer star product [32, 35]. The Redheffer star product of

two scattering matrices S(A) =

[
S

(A)
11 S

(A)
12

S
(A)
21 S

(A)
22

]
and S(B) =

[
S

(B)
11 S

(B)
12

S
(B)
21 S

(B)
22

]
is defined as

S(AB) =

[
S

(AB)
11 S

(AB)
12

S
(AB)
21 S

(AB)
22

]
, (169)

where

S
(AB)
11 = S

(A)
11 + S

(A)
12 [I− S

(B)
12 S

(A)
22 ]−1S

(B)
11 S

(A)
21 (170)

S
(AB)
12 = S

(A)
12 [I− S

(B)
12 S

(A)
22 ]−1S

(B)
12 (171)

S
(AB)
21 = S

(B)
21 [I− S

(A)
22 S

(B)
11 ]−1S

(A)
21 (172)

S
(AB)
22 = S

(B)
22 + S

(B)
21 [I− S

(A)
22 S

(B)
11 ]−1S

(A)
22 S

(B)
12 (173)

2.2.3 Global Scattering Matrix

The scattering matrix of a 1D multilayer with N layers can be computed by taking Redheffer

star product of the scattering matrices of each layer.

S(Device) = S(1) ⊗ S(2) ⊗ ...⊗ S(N−1) ⊗ S(N) (174)

The multilayer device is surrounded by the reflection region and transmission region at its

two ends. It is connected to these external materials by “connection” scattering matrices

that have zero-thicknesses. The global scattering matrix finally combines all the scattering

matrices into a single matrix as

S(Global) = S(Ref) ⊗ S(Device) ⊗ S(Trn) (175)

The matrices S(Ref) and S(Trn) are the reflection and transmission region scattering matrices.

S(Ref) =

[
S

(Ref)
11 S

(Ref)
12

S
(Ref)
21 S

(Ref)
22

]
, (176)
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Figure 14: Representation of global scattering matrix.

where

S
(Ref)
11 = −A−1

RefBRef (177)

S
(Ref)
12 = 2A−1

Ref (178)

S
(Ref)
21 = 0.5(ARef −BRefA

−1
RefBRef ) (179)

S
(Ref)
22 = −BRefA

−1
Ref , (180)

with

ARef = W−1
0 WRef + V−1

0 VRef (181)

BRef = W−1
0 WRef −V−1

0 VRef (182)

And

S(Trn) =

[
S

(Trn)
11 S

(Trn)
12

S
(Trn)
21 S

(Trn)
22

]
, (183)

where

S
(Trn)
11 = −BTrnA

−1
Trn (184)

S
(Trn)
12 = 0.5(ATrn −BTrnA

−1
TrnBTrn) (185)

S
(Trn)
21 = 2A−1

Trn (186)
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S
(Trn)
22 = −A−1

TrnBTrn, (187)

with

ATrn = W−1
0 WTrn + V−1

0 VTrn (188)

BTrn = W−1
0 WTrn −V−1

0 VTrn. (189)

2.2.4 Calculating Transmitted and Reflected Electric Field

The global scattering matrix connects the input from the reflection region to the output at

the transmission region [
cRef
cTrn

]
=

[
S

(Global)
11 S

(Global)
12

S
(Global)
21 S

(Global)
22

] [
cinc
0

]
, (190)

where

cinc = W−1
Refs

inc
T (191)

The term sincT is the electric field source defined as

sincT =

[
pxδ0,pq

pyδ0,pq

]
, (192)

where px and py are the x and y components of a unit amplitude polarization vector P.

The delta function (δ0,pq) is defined as δ0,pq = [0, 0, ..., 1, ..., 0, 0]T . The coefficients for the

reflected and transmitted fields can be computed from eqn. (190) as

cRef = S11
(Global)cinc (193)

cTrn = S21
(Global)cinc (194)

The transverse components of the reflected and transmitted fields are then[
rx
ry

]
= WRefcRef = WRefS

(Global)
11 cinc (195)

[
tx
ty

]
= WTrncTrn = WTrnS

(Global)
21 cinc. (196)
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The longitudinal field components are calculated from the transverse components using the

divergence equation and are given as

rz = −K−1
z,Ref (Kxrx + Kyry), (197)

and

tz = −K−1
z,T rn(Kxtx + Kyty), (198)

where Kz,Ref = −
(√

µr,Refεr,RefI−K2
x −K2

y

)∗
and Kz,T rn =

(√
µr,Trnεr,T rnI−K2

x −K2
y

)∗
.

2.2.5 Calculating Diffraction Efficiencies

The diffraction efficiencies R and T are computed as

R = R
[
−Kz,Ref

kz,inc

]
· |r|2, (199)

and

T = R
[
µr,Ref
µr,Trn

Kz,T rn

kz,inc

]
· |t|2, (200)

where

|r|2 = |rx|2 + |ry|2 + |rz|2, (201)

and

|t|2 = |tx|2 + |ty|2 + |tz|2. (202)

2.2.6 Calculating Overall Reflectance and Transmittance

Finally, the overall reflectance R and transmittance T can be calculated by adding all of the

diffraction efficiencies as

R =
∑

R, (203)

and

T =
∑

T. (204)
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2.3 Finite-Difference Time-Domain Method

The finite-difference time-domain (FDTD) method [43–46] is one of the most widely used nu-

merical technique for solving problems in electromagnetism. This method works by iterating

Maxwell’s curl equation in a Yee grid (Figure 15) over time. The TMM and RCWA methods

described in the previous sections are frequency domain solvers, whereas the FDTD method

is a time domain solver; it is thus significant when the transient response of the structure is

required. This method is also especially useful when the materials in the structure possess

nonlinearity.

Figure 15: 3D FDTD Yee grid.
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The formulation of FDTD method begins from Maxwell’s equations as well. The nor-

malized time-dependent Maxwell’s curl equations for materials with diagonal permittivity

tensor are

∇× E = − [µr]

c0

∂H̃

∂t
(205)

∇× H̃ =
[εr]

c0

∂E

∂t
. (206)

Eqn. (205) and (206) when expanded into their component forms give the final form of

Maxwell’s equations for the FDTD method.

∂Ez
∂y
− ∂Ey

∂z
= −µxx

c0

∂H̃x

∂t
(207)

∂Ex
∂z
− ∂Ez

∂x
= −µyy

c0

∂H̃y

∂t
(208)

∂Ey
∂x
− ∂Ex

∂y
= −µzz

c0

∂H̃z

∂t
(209)

∂H̃z

∂y
− ∂H̃y

∂z
=
εxx
c0

∂Ex
∂t

(210)

∂H̃x

∂z
− ∂H̃z

∂x
=
εyy
c0

∂Ey
∂t

(211)

∂H̃y

∂x
− ∂H̃x

∂y
=
εzz
c0

∂Ez
∂t

(212)

The above equations are approximated using finite difference techniques and then iteratively

solved until the simulation is finished. The finite difference approximations for are as follows

Ei,j+1,k
z |t − Ei,j,k

z |t
∆y

−
Ei,j,k+1
y |t − Ei,j,k

y |t
∆z

= −µ
i,j,k
xx

c0

H̃ i,j,k
x |t+ ∆t

2
− H̃ i,j,k

x |t−∆t
2

∆t
(213)

Ei,j,k+1
x |t − Ei,j,k

x |t
∆z

− Ei+1,j,k
z |t − Ei,j,k

z |t
∆x

= −
µi,j,kyy

c0

H̃ i,j,k
y |t+ ∆t

2
− H̃ i,j,k

y |t−∆t
2

∆t
(214)

Ei+1,j,k
y |t − Ei,j,k

y |t
∆x

− Ei,j+1,k
x |t − Ei,j,k

x |t
∆y

= −µ
i,j,k
zz

c0

H̃ i,j,k
z |t+ ∆t

2
− H̃ i,j,k

z |t−∆t
2

∆t
(215)

H̃ i,j,k
z |t+ ∆t

2
− H̃ i,j−1,k

z |t+ ∆t
2

∆y
−
H̃ i,j,k
y |t+ ∆t

2
− H̃ i,j,k−1

y |t+ ∆t
2

∆z
=
εi,j,kxx

c0

Ei,j,k
x |t+∆t − Ei,j,k

x |t
∆t

(216)

H̃ i,j,k
x |t+ ∆t

2
− H̃ i,j,k−1

x |t+ ∆t
2

∆y
−
H̃ i,j,k
z |t+ ∆t

2
− H̃ i−1,j,k

z |t+ ∆t
2

∆z
=
εi,j,kyy

c0

Ei,j,k
y |t+∆t − Ei,j,k

y |t
∆t

(217)
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H̃ i,j,k
y |t+ ∆t

2
− H̃ i−1,j,k

y |t+ ∆t
2

∆x
−
H̃ i,j,k
x |t+ ∆t

2
− H̃ i,j−1,k

x |t+ ∆t
2

∆y
=
εi,j,kzz

c0

Ei,j,k
z |t+∆t − Ei,j,k

z |t
∆t

. (218)

The indices i, j, and k indicate the grid positions in x, y, and z directions, ∆x, ∆y, ∆z, and

∆t are step sizes in x, y, z, and forward time directions respectively. For numerical stability,

the time step should satisfy the Courant stability condition [44]

∆t ≤ nmin

c0

√
1

∆x2 + 1
∆y2 + 1

∆z2

, (219)

where nmin is the lowest refractive index of any structure in the device or computational

domain.

For the present work, we use an open-source implementation of FDTD method known

as Meep [47] by MIT. It is one of the most widely used and cited FDTD tools available. It

uses a rectangular, Cartesian style mesh, for discretization of the computational space and

time domain and solves for electric and magnetic fields on those grids. The field components

within a Yee cell are computed at a slightly different locations as shown in Figure 15; the

fields are all other positions can be computed by interpolating the results from its neighboring

grid solutions. The computational domains can be terminated using perfectly matched layer

(PML). It supports different types of input sources such as a total-field scattered-field (TFSF)

source, plane waves, beams, point dipoles, and a guided-mode source.

2.4 Finite Element Method

The finite element method (FEM) is one of the most powerful techniques for solving general

partial differential equations (PDE). For electromagnetic problems, although it can be used

for transient problems, it is mostly used for frequency domain problems. The real power

of the FEM comes when the structures have irregular shapes. The TMM is useful only for

planar structures with periodicity in one dimension and the RCWA method can be used

for structures with periodicity in all three dimensions. Although the FDTD method can

be used for more complex structures, it requires very fine meshing for such structures and
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hence requires a significant amount of time. The FEM, on the other hand, is best suited for

structures with complex and irregular shapes.

For electromagnetic problems, the FEM starts from Maxwell’s curl equations [48–51],

which we write here in slightly different form than in eqn. (29) and (30) as

∇× E = −jωµ0µrH (220)

∇×H = jωε0εrE, (221)

where ε0 and µ0 are the vacuum permittivity and permeability, εr and µr are the relative

permittivity and permeability respectively. Eqn. (220) and (221) can be combined into one

equation by taking the curl of eqn. (221), and then substituting Eqn. (220) into the resulting

equation as

∇× 1

εr
∇×H− ω2ε0µ0µrH = 0 (222)

Decomposing eqn. (222) into its transverse and longitudinal components, we get

∇T ×
1

εr
∇T ×HT − jβ

1

εr
(∇THz + jβHt)− ω2ε0µ0µrHT = 0 (223)

∇T ×
1

εr
(∇THz + jβHT )× z− ω2ε0µ0µrHzz = 0, (224)

where for simplicity ∂
∂z

is replaced by −jβ; β is the phase constant. The subscript “T” and

“z” indicate the transverse and longitudinal components respectively. We now introduce a

variable transformation [48] to find the eigen value β,

hT = βHT (225)

hzz = −jk0Hzz. (226)

Substituting eqn. (225) and (226) in eqn. (223) and (224) give

∇T ×
1

εr
∇T × hT − k2

0µrhT = −β
2

εr

(
∇T

hz
k0

+ hT

)
(227)

and

β2

[
1

k0

∇T .
1

εr

(
∇T

hz
k0

+ hz

)
+ µrhz

]
= 0 (228)
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respectively. The above two coupled differential equations with the appropriate boundary

conditions can now be solved for β2. The boundary conditions on perfect magnetic conduc-

tors (PMC) are

n× hT = 0 (229)

hz = 0. (230)

Similarly, for perfect electric conductors (PEC), the boundary conditions are

(∇Thz + hT ).n = 0 (231)

∇T × hT = 0. (232)

2.4.1 Weak Formulation

The FEM for electromagnetics uses a weak formulation of eqn. (227) and (228) subject to the

boundary conditions in eqn. (229)-(232). To obtain the weak formulation, we multiply each

of the equations by a test function, and integrate the resulting equations over the waveguide

cross-sectional area. Multiplying (dot product) eqn. (227) by a test function h∗T , and then

integrating by parts, we get∫
s

h∗T .

[
∇T ×

1

εr
∇T × hT − k2

0µrhT

]
ds =

∫
s

[
−h∗T .

(
β2

εr

(
∇T

hz
k0

+ hT

))]
ds (233)

Similarly, we multiply eqn. (228) by a test function h∗z and get∫
s

h∗zβ
2

[
1

k0

∇T .
1

εr

(
∇T

hz
k0

+ hT

)
+ µThz

]
ds = 0. (234)

Eqn. (233) and (234) can be further simplified by integrating the equations by part and

applying Green’s theorem [50],∫
s

[
∇T × h∗T .

1

εr
∇T × hT

]
ds−

∫
s

k2
0µrh

∗
T .hTds =

∫
s

[
−h∗T .

(
β2

εr

(
∇T

hz
k0

+ hT

))]
ds (235)

−
∫
s

β2

εr

[(
∇T

h∗z
k0

)
.

(
∇T

hz
k0

)]
ds−

∫
s

β2

εr

[(
∇T

h∗z
k0

)
hT

]
ds+

∫
s

µrβ
2hzh

∗
zds = 0. (236)
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Finally, combining these equations we get a full vectorial weak form as∫
s

[
∇T × h∗T .

1

εr
∇T × hT

]
ds−

∫
s

k2
0µrh

∗
T .hTds

= −β2

∫
s

[(
∇T

hz
k0

+ hT

)
.
1

εr

(
∇T

h∗z
k0

+ h∗T

)
− µThzh∗z

]
ds

(237)

A similar expression for electric field can also be obtained in a similar manner. In this

work, we use COMSOL Multiphysics [52], a commercial implementation of the FEM, which is

a computational tool for general PDEs. For problems in electromagnetism, it solves equation

similar to eqn. (237) subject to the appropriate boundary conditions.
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CHAPTER 3

SLOW LIGHT BY BLOCH SURFACE WAVE TUNNELING

3.1 Introduction

Interest in slow light began after the research group led by Hau et al. [53] slowed down the

speed of light to 17 meters per second using the technique of electromagnetically induced

transparency (EIT) in a Bose-Einstein condensate. In a recent experiment [54], light has

been stopped and used for image storage by EIT up to a time of one minute, setting a

new benchmark for EIT-based light stopping. Although the recent experiment uses a doped

Pr3+:Y2SiO5 crystal instead of atomic gas, it still requires temperatures lower than 4K

for its operation, which limits the adoption of the technique in real-world applications. A

more practical way to achieve slow light is through the use of photonic band gap materials

(PBGM), which operate at room temperature [55–60]. Significant reduction in the speed of

light in PBGMs is mainly attributed to photonic band-structure effects due to a spatially

periodic dielectric function, rather than from material dispersion [61]. Theoretically and

numerically, using loss-less PC waveguides, researchers have been able to completely stop

light at the vicinity of band gap edges by dynamically tuning the properties of the material

while the light is still in the material [62,63]. With no dynamic tuning, the authors of ref. [64]

claim three orders of magnitude reduction in the speed of light (vg ∼ 0.0008c). However,

due to leaky modes, out of plane radiation, material absorption, and structural distortion,

even the three orders of magnitude reduction is not realizable in practice. These effects

inherently imposes limits on the maximum achievable slow down factor in PBGMs. Such

imperfections can partially be accounted for in simulations by adding a small imaginary part

to the otherwise real-valued refractive indices of the materials used in PBGMs.

Slowing down the speed of light is of significance for many practical applications. Slow

light in optical devices can be used to make optical buffers which temporarily store light
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[65, 66]. Contrary to its name, it can actually increase the speed of telecommunications

and data transfer in photonic crystal waveguides [67, 68]. Higher density of modes and

enhanced light-matter interaction assisted by slow light in PBGMs can in turn enhance light

amplification [69], nonlinear phase sensitivity [70], nonlinearities in the material response [71],

and stimulated Raman scattering [73]. Recently, applications in sensing have also been

proposed based on slow light in photonic crystal waveguides [74,75].

In this paper, we introduce a new configuration that can reduce the speed of light by a

factor of up to 400 in a prism tunneling configuration using the Bloch surface wave (BSW)

on a one dimensional photonic bandgap TiO2-SiO2 multilayer as an intermediate excitation.

BSWs [10,31] are propagating non-radiative, surface-bound electromagnetic waves that exist

within the forbidden band gap of the multilayer. The frequency of BSWs can be located

anywhere within the band gap by adjusting the thickness of the termination layer of the pho-

tonic multilayer. For the simulations presented here we chose an operating optical wavelength

(632.8 nm) tuned to the BSW mode. To our knowledge, this technique of generating slow

light assisted by BSW of a one-dimensional PBGM has not been reported in the literature;

the traditional approach has been slow light generation at the bandgap edges.

3.2 Simulation Approach

The optical configuration for the generation of slow light using BSW on a one-dimensional

PBGM is shown in Figure 16. The set up consists of two prisms separated by an air gap. One

prism has a PBGM multilayer structure deposited on its reflecting face such that when light

is incident at the appropriate phase matching angle, BSWs are excited at the multilayer-air

interface. Excitation of BSWs is indicated by a sharp drop in the reflected light. BSW is a

surface bound excitation with evanescent fields that penetrate both into the multilayer and

the air. The second prism permits the evanescent BSW field in the air to become a radiative

wave that is transmitted out of the prism as shown. The process is similar to the frustrated

total internal reflection, a configuration much explored in previous work on group velocity
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manipulation [76]. For the simulation, a collimated optical beam with a Gaussian temporal

pulse profile is incident through the prism at θres, the resonant angle for BSW excitation.

The Gaussian pulse is described by

y(t) = A sin(ω0t)exp

(
−(t− t0)2

2σ2

)
, (238)

where A is the amplitude of the pulse, t is time, t0 is the center of the pulse, and σ is the

pulse envelope width.

Figure 16: A schematic diagram of the configuration for slow light generation using BSW as

an intermediate excitation.

Using the 2× 2 matrix formulation for a layered medium [31], transmittance coefficients

of each frequency present in the pulse are computed. These transmittance coefficients are

complex numbers, containing both the amplitude and phase information of transmitted light

as a function of frequency. To determine the effect of this transmittance function on our

Gaussian pulse, we form the Fast Fourier Transform (FFT) of the pulse and multiply each

frequency component by the corresponding complex transmittance value. The result is the

spectrum of the transmitted pulse in the frequency domain. An inverse FFT is then used to

recover the transmitted pulse as a function of time. The difference between the peaks of the

input and transmitted pulses is called the group-delay (τg), which can be computed using
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the phase information of the transmittance function and is given by

τg = −dφ(ω)

dω
, (239)

where φ is the phase of the pulse at a given frequency ω. The group velocity (vg) is conse-

quently given by

vg =
z

τg
, (240)

where z is the total propagation distance of the pulse. The group index (ng), which is a

slow-down factor from the velocity c [66] is

ng =
c

vg
. (241)

3.3 Results and Discussions

The results represented here are based upon a one-dimensional PBGM which consists of a

multilayer composed of eight bilayers of TiO2 (refractive index = (4.84 + i0.0007)1/2) and

SiO2 (refractive index = (2.1316 + i0.0001)1/2), with thicknesses of 82.8 nm and 154.9 nm

respectively. The termination layer has a thickness of 185 nm which results in a BSW mode

near the center of the bandgap. The band structure of the multilayer (see Figure 16(b)) is

shown in Figure 17. The vertical axis represents normalized frequency and the horizontal axis

the wave vector component parallel to the plane of the multilayer. The BSW, as a surface

bound wave, has its wave vector entirely in this plane. The dispersion diagram shows regions

in which light is radiative into the multilayer (green shaded) and regions in which it is non-

radiative into the multilayer (blue shaded). The band of blue that rises from left to right

in the figure represents the photonic band gap in the multilayer. The plot also shows the

limiting light line as the red dashed line. This line is the dispersion for light incident at

grazing incidence along the multilayer surface. For light at other angles of incidence in air

the parallel component will be smaller, thus the entire region to the left of the limiting light

line is radiative into the air side of the multilayer. BSWs exist in a region in which the mode
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is not radiative into either the air or the multilayer. This region is shown as the narrow strip

to the right of the light line and within the photonic band gap. Given this dispersion relation

we set the wavelength of light for our simulation to be 632.8nm (ω = 0.3756 [2πc/Λ]) and

θres = 44.390 (β = 0.3838 [2π/Λ]), corresponding to the narrow defect mode region in Figure

17.

Reduction in the speed of light in the defect mode of the multilayer can be attributed

to the generation of the BSW at the resonance frequency. The light is stored temporarily

on the surface of the multilayer in the form of the BSW before being transmitted to the

second prism through the air gap. The thickness of the air gap determines the strength

of coupling between the BSW and the second prism and hence establishes the lifetime of

the BSW before it becomes radiative. The air gap can be adjusted appropriately to obtain

the maximum time delay possible. Figure 18(a) shows the maximum time delays gained

at different air gap thickness for a eight bilayed TiO2-SiO2 multilayer. An optimum time

delay of 4.209 ps (ng ∼ 350) was achieved with air gap thickness of 1600 nm, which can

also be clearly seen in Figure 18(b). The transmitted (red) pulse is shifted to the right

compared to the incident (blue) pulse, meaning that the pulse takes a longer time to travel

the same distance when the multilayer is present on its way compared to the situation when

there is a glass-slab of equal thickness in place of the multilayer. To observe the optimum

group-delay, however, a sufficiently long-enough pulse is required. This is important because

the frequency bandwidth of the pulse has to lie within the narrow transmission bandwidth

of the multilayer to observe slow light. In our simulation, this was ensured by requiring

the FFT spectrum of the incident pulse to completely lie within the transmittance region.

Moreover, the transmission bandwidth of the multilayer becomes narrower with the increase

in the number of bilayers. So, an even longer pulse is required for multilayers with a higher

number of bilayers.

To exhibit the behavior of the group index (slow-down factor) and transmittance with

respect to increasing air-gap thickness, a plot is presented in Figure 19(a) with the multilayer
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of 8 bilayers. At smaller air-gap thickness, higher transmittance is observed but the group

index is low, and vice-versa. Adjusting these properties, a required group delay with some

acceptable transmittance can be easily acquired. The plot also shows that increasing the

air-gap thickness after a certain level does not further increase the group index. In fact,

the group index starts decreasing, owing to the fact that increasing the air-gap thickness

decreases the transmittance significantly. The transmitted pulse tunnels through the air-gap

in the form of an evanescent wave which is a very short-range wave. Thus, with increasing

air-gap thickness, only a small amount of input light is tunneled across the air-gap which

eventually starts decreasing the group index.

A similar behavior is also seen with the increase in the number of bilayers in the multi-

layer (Figure 19(b)). Increasing the number of bilayers and setting an appropriate air gap

thickness initially increases the group index, but after reaching a certain limiting number

of bilayers, improvement in the group index is not seen. Adding more bilayers increases

internal reflections, absorption, and scattering which limits the amount of transmitted light

resulting in the low transmittance and group index.

3.4 Summary

Our study shows that a simple one-dimensional PBG multilayer structure in a prism-coupled

BSW configuration can reduce the speed of light by about a factor of up to 400 when operated

at its narrow defect mode transmission region. This finding is remarkable, keeping in mind

that losses due to material absorption are not ignored. The slow-down factor depends greatly

on the number of bilayers in the multilayer and on the air gap thickness. Further improvement

in the slow down factor is possible by wisely choosing materials with higher refractive index

contrast for the multilayers.
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Figure 17: Surface dispersion diagram for an 8 bilayer multilayer TiO2-SiO2 PBGM used

in the simulations. The red dashed line represents the limiting lightline in air. The green

and blue shaded areas represent radiative and non-radiative regions respectively into the

multilayer. The plot units are in reduced angular frequency (2πc/Λ) and wavevector (2π/Λ)

where Λ is the periodicity of the multilayer.
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Figure 18: (a) Delay time as a function of wavelength for four different air gap values. (b)

Incident (top) and transmitted (bottom) pulses showing 4.209 ps delay.
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Figure 19: (a) Group Index (blue) and corresponding transmittance (green) as a function of

air-gap thickness with the number of TiO2-SiO2 bilayers = 8. (b) Group Index (blue) and

Air Gap thickness (green) as a function of number of bilayers.
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CHAPTER 4

EXCITATION OF BLOCH-LIKE SURFACE WAVES IN QUASI-CRYSTALS

AND APERIODIC DIELECTRIC MULTILAYERS

4.1 Introduction

Bloch surface waves (BSWs) are electromagnetic modes propagating at the interface of trun-

cated dielectric multilayer structures and a homogeneous dielectric medium. BSWs were

first predicted by Meade et al. [7], and later experimentally observed in photonic crystals by

Robertson et al. [8]. Recently BSWs have also been studied and experimentally observed in

various configurations [9, 10, 25]. In all of the studies however, the photonic crystals under

consideration were periodic in nature, i.e., alternating layers of high and low refractive index

materials, with a surface defect. This preference towards periodic crystals for excitation

of BSWs is largely due to the establishment of their robust and well-understood theoreti-

cal background, which makes it easier to model and predict the behavior to BSWs in such

structures. It is also easy to fabricate periodic crystals for real experiments and applications.

On the other hand, despite the significant interest in optical characteristics of quasi-crystals

and aperiodic photonic crystals, it has not been recognized that such structures also support

Bloch-like surface waves (BLSWs). Other optical properties of these aperiodic systems such

as dispersion and bandgaps [77, 78], perfect transmission [79, 81], propagation [82, 84] and

localization [85,86] of light have been extensively studied. It is observed that when compared

to their periodic counterparts, quasi-crystals and aperiodic multilayers exhibit enhanced op-

tical properties and also add significant flexibility in optical engineering [87]. Recognizing

this fact, we recently showed via numerical simulation that BLSWs can exist in a 34 layered

Fibonacci quasi-crystal (FQC) and a 32 layered Thue-Morse aperiodic dielectric multilayer

(TMADM) structure [88]. In this paper, we extend our study of BLSWs in quasi-crystals and

aperiodic dielectric multilayers to different generations of FQCs and TMADMs. Moreover,
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we look into their applicability for making biosensors.

The advantage of FQCs and TMADMs over conventional periodic dielectric multilayers

(PDMs) is two fold. First, the electric field (E-field) intensity at the surface due to BLSWs in

FQCs and TMADMs is significantly improved compared to their periodic counterparts. This

improved surface field intensity can be utilized for engineering optical slow-light devices [26],

slow-light enhanced nonlinear effects [71,72], surface-enhanced Raman spectroscopy [29,30],

label-free biosensing based on enhanced diffraction [24, 99, 100], spectral and angular reso-

nance shift [18, 23], and fluorescence-based detection [14, 15, 20]. Second, the penetration

depth (PD) of the exponentially decaying BLSW in the homogeneous medium is increased.

The extended PD results in a higher interaction with the homogeneous medium and conse-

quently higher sensitivity to refractive index change in that medium. This feature, together

with the improved surface field intensity of FQCs and TMADMs can be exploited to make

sensitivity enhanced biosensors.

4.2 Materials and Computational Method

FQCs are one-dimensional quasi-crystals, first proposed by Kohmoto et. al. [90]. They can

be constructed using a simple substitution rule A → AB, B → A. On the other hand,

TMADMs are aperiodic multilayers [91, 92] designed using the inflation rule A → AB, and

B → BA. The first five generations of FQCs and TMADMs, assuming the first generation

(S0) to be A, are given in Tab. 1

Table 1: First four generations of FQCs and TMADMs

Generation (Sj) FQC TMADM
S0 A A
S1 AB AB
S2 ABA ABBA
S3 ABAAB ABBABAAB
S4 ABAABABA ABBABAABBAABABBA
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The schematic of the theoretical model consisting of prism–FQC/TMADM–air is shown

in Figure 20(a). Although BSW/BLSW modes are intrinsically present at dielectric-air

interfaces, they cannot be directly excited by light incident from the air side due to their

non-radiative and evanescent nature. The use of a prism mitigates this inability by providing

an additional momentum to the free-space wave vector required to satisfy the phase matching

condition with the BSW/BLSW wave vector. The coupling of the free-space wave vector

into the BLSW wave vector can be realized by observing sharp dips in the reflection maps.

For any particular wavelength, at incident angles above the critical angle, the dips in the

reflectivity curve represent light coupling either into BLSW modes or inner guided modes.

These modes can be distinguished by their characteristic E-field profiles. Knowing the angle

of incidence at which BLSW is excited, the field profile can be computed by solving for

the E-field iteratively in the multilayer structure imposing the continuity of E-field and its

derivative at the interfaces. The BLSW modes have highly confined E-field at the surface

layer and exponentially decaying field profile in the homogeneous superstrate layer.

For our FQC/TMADM, we use TiO2 (A) and SiO2 (B) as the high and low refractive

index materials. We consider wavelength (λ) dependent refractive index of both TiO2 [101]

and SiO2 [102] over the range of 0.43 µm to 0.8 µm given by

n2
T iO2

= 5.913 +
0.2441

λ2 − 0.0803
, (242)

and

n2
SiO2

= 1 +
0.6961663λ2

λ2 − 0.06840432
+

0.4079462λ2

λ2 − 0.11624142
+

0.8974794λ2

λ2 − 9.8961612
(243)

respectively. We note that the λ in Eqn. 242 and 243 is in the units of µm; in the rest of the

paper however, λ is given in nm. We also introduce small losses in these materials through

the imaginary parts of their refractive indices. The values used here, 0.00016 and 0.000034 for

TiO2 and SiO2 respectively, are based on the published sources [103,104] and are selected to

match with experimental investigations of BSWs [10,18,23]. We use a 34 layered FQC (j = 7)

and a 32 layered TMADM (j = 5) with the thicknesses of 71.9 nm and 108.4 nm for the
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TiO2 and SiO2 layers respectively. These layer thicknesses correspond to quarter wave stacks

at the wavelength 632.8 nm for normal incidence, taking the refractive indices of TiO2 and

SiO2 to be 2.2 and 1.46 respectively. Similar periodic systems have been extensively studied

numerically and experimentally [9, 10, 18, 23]. However, since the structures studied in this

Letter are not periodic, the choice is arbitrary; the freedom to choose essentially any values

for layer thicknesses create an enormous parameter space in designing new applications.

The number of layers, layer thicknesses, materials, and the superstrate refractive index are

parameters that can be varied. Exploration of these parameter spaces is only amenable via

numerical computation. This paper provides a roadmap for discovering and characterizing

surface modes in these systems.

Figure 20: (a) A schematic of the prism coupling technique to excite Bloch-like surface wave

in a dielectric multilayer. (b) A 2D schematic with the system parameters.

Because FQCs and TMADMs are not periodic, we consider a general plane wave incident

of a stack of N−1 layers as shown in Figure 20(b), with a total of N interfaces. The refractive

indices and thicknesses of the layers are denoted by nj and dj respectively. The FQCs and

TMADMs in this paper are all dielectric in nature; thus, we only consider transverse-electric
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(TE) mode. For TE wave, Ex = Ez = 0 and Hy = 0. The remaining electric and magnetic

field in each layer is of the form [105,106]

Eyj(x, z, t) = Eyj(z)exp){i(k0αjx− ωt)},

Hxj(x, z, t) = Hxj(z)exp){i(k0αjx− ωt)},

Hzj(x, z, t) = Hzj(z)exp){i(k0αjx− ωt)},

(244)

where Eyj(z), Hxj(z), and Hzj(z) are the complex amplitudes of appropriate fields in layer-j,

k0 = 2π/λ0, and αj = n0sin(θ0). The electric and magnetic fields amplitudes at the entrance

of each layer are connected to the corresponding amplitudes at a distance z inside the layer

as [
E0
yj

H0
xj

]
= Mj ·

[
Eyj(z)
Hxj(z)

]
, Mj =

[
cosβj − i

pj
sinβj

−ipjsinβj cosβj

]
. (245)

E0
yj and H0

xj are the respective amplitudes of Eyj and Hxj at the appropriate boundaries zj of

layer-j, Mj is the characteristic matrix of layer-j, βj = k0njdjcosθj, and pj =
√

(εj/µj)cosθj.

In a multilayered structure, as considered in this paper, the fields amplitudes at the first and

the last interfaces are connected through the total characteristic matrix of the structure[
E0
y1

H0
x1

]
= MTOT ·

[
E0
yN

H0
xN

]
, MTOT =

j=N−1∏
j=1

Mj. (246)

The complex reflection and transmission coefficients r and t can be computed as

r =
Eref
y

Einc
y

=
(M11 +M12 · pN) · p0 − (M21 +M22 · pN)

(M11 +M12 · pN) · p0 + (M21 +M22 · pN)
,

t =
E0
yN

Einc
y

=
2 · p0

(M11 +M12 · pN) · p0 + (M21 +M22 · pN)
,

(247)

where Einc
y , Eref

y , and E0
yN are the incident, reflected and the transmitted electric fields

amplitudes, and Mij are the elements of the total characteristic matrix MTOT.

The electric and magnetic fields in the 1st layer can then be calculated as[
Ey1(z)
Hx1(z)

]
= P1(z) ·

[
(1 + r)
p0(1− r)

]
Einc
y , z1 ≤ z ≤ z2, (248)
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where

P1(z) =

[
cos(k0n1zcosθ1) i

pj
sin(k0n1zcosθ1)

ipjsin(k0n1zcosθ1) cos(k0n1zcosθ1)

]
, (249)

and the in incident electric field Einc
y = 1. Finally, the field distribution in the remaining

layers can be calculated as[
Eyj(z)
Hxj(z)

]
= P1(z) ·

(
1∏

l=j−1

Pl(z = zl + dl)

)
·
[

(1 + r)
p0(1− r)

]
Einc
y , zj ≤ z ≤ zj+1, (250)

where Pj(z), inverse of Mj(z), is the propagation matrix for the layer-j given by

Pj(z) =

[
cos(k0nj(z − zj)cosθj)

i
pj

sin(k0nj(z − zj)cosθj)

ipjsin(k0nj(z − zj)cosθj) cos(k0nj(z − zj)cosθj)

]
. (251)

For transverse magnetic (TM) mode, Hx = Hz = 0 and Ey = 0. All the above expression

are valid for the TM mode simply by replacing pj =
√

(εj/µj)cosθj by qj =
√

(µj/εj)cosθj

and the field columns

[
Eyj
Hxj

]
by

[
Hyj

−Exj

]
.

4.3 Results and Discussions

BSWs can be observed in the reflection maps of FQCs or TMADMs, provided that the

structures are designed appropriately to support them. Reflection maps capture the re-

flectivity response of the structure at different wavelengths and angle of incidence of the

incident light. They can be computed from Eqn. (252). BSWs in reflection maps are

characterized by sharp and narrow dips, which result in localized electric field at the sur-

face of the structure. Figure 21(a) shows the reflection map of a 34 layered FQC. The

vertical dotted line near the left boundary denotes the light line. We observe several op-

tical modes beyond the light line over the wavelength range of 430-800 nm; most of the

modes however, are guides modes in the inner layers of the FQC. The BLSW modes are

highlighted with solid black curves are are labeled BLSW1 and BLSW2. In a periodic

multilayer, the excitation of BSWs is attributed to the surface defect. The surface de-

fect breaks the translational symmetry of the multilayer, which facilitates additional optical

modes in the otherwise forbidden bandgaps [1]. The FQC pattern for Fibonacci order j
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Figure 21: BLSWs in FQC. (a) Reflection map of a 34 layered FQC (j = 7) in contact with

air as a function of wavelength (λ) and angle of incidence (AoI). (b) Dispersion curves of

BLSW1 and BLSW2. (c-d) BLSW assisted E-field intensity at the surface for (c) λ = 443.2

nm and AoI = 45.67o, (d) λ = 760 nm and AoI = 42.14o. (e-f) Reflectivity curves as a

function of AoI at (e) λ = 443.2 nm, (f) λ = 760 nm.

= 7 is ABAABABAABAABABAABABAABAABABAABAAB. This sequence is not peri-

odic and thus it does not have translational symmetry. However, the components of this

sequence can be sub-grouped in a “periodic” form as XYXYXZ, where X = ABAABA, Y

= BAABAAB, and Z = AB. The sub-group Z acts as the surface defect that supports the

excitation of the BLSW in this FQC.

The dispersion curves of the BLSWs are shown in Figure 21(b). They can be computed

from the reflection map by applying a coordinate transformation for their incidence angle
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Figure 22: (a) BLSW assisted E-field intensity at the surface of a 13 layered FQC (j = 5)

at λ = 475 nm and AoI = 42.360. (b) Corresponding reflectivity curve for λ = 475 nm. (a)

BLSW assisted E-field intensity at the surface of a 89 layered FQC (j = 9) at λ = 440 nm

and AoI = 46.530. (b) Corresponding reflectivity curve for λ = 440 nm.

axis given by

kBLSW =
2π

λ0

n0 sin(θBLSW ), (252)

where kBLSW is the parallel wave vector of BLSW, n0 = 1.5 is the refractive index of

the prism, and λ0 and θBLSW are the free space wavelength and angle of incidence at the

respective BLSW reflectivity minima extracted from the reflection map. We normalize the

frequency axis by multiplying the angular frequency (ω) by a/2πc, where a is the thickness

of a unit cell consisting of a TiO2 and SiO2 bilayer, and c is the speed of light. A similar

normalization for the wave vector axis is accomplished by multiplying the parallel wave

vector (k) by a/2π. The light green region is the radiative light cone in air, whereas the

white region is the non-radiative region. The dotted vertical light line from Figure 21(a) is

transformed into the solid black line that divide the radiative and non-radiative regions. It
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Figure 23: BLSWs in TMADM. (a) Reflection map of a 32 layered TMADM (j = 5) in

contact with air as a function of λ and AoI. (b) Dispersion curves of BLSW1, BLSW2,

BLSW3 and BLSW4. (c-f) BLSW assisted E-field intensity at the surface for (c) λ = 762.4

nm and AoI = 42o, (d) λ=701.4 nm and AoI = 42.01o, (e) λ = 488.1 nm and AoI = 41.86o,

(f) λ = 465.1 nm and AoI = 41.85o.
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Figure 24: (a) BLSW assisted E-field intensity at the surface of a 8 layered TMADM (j = 3)

at λ = 460 nm and AoI = 42.460. (b) Corresponding reflectivity curve for λ = 460 nm. (a)

BLSW assisted E-field intensity at the surface of a 8 layered TMADM (j = 3) at λ = 700

nm and AoI = 43.630. (b) Corresponding reflectivity curve for λ = 700 nm.

is the dispersion line for light incident at the grazing angle along the multilayer surface in

the absence of the prism. The solid blue curves represent the BLSW modes. As expected,

they lie beyond the dispersion line for light. Although such modes are intrinsically present

at dielectric-air interfaces, they are non-radiative in nature; their momentum is larger than

the free-space wave momentum. Due to the momentum mismatch, BLSW modes cannot

be excited directly by light incident from the air side. For this reason, we use a prism

to couple light into the structure. The prism provides the additional momentum to the

incident wave to excite BLSWs. Figure 21(c) and 21(d) show the E-field intensity (lEl2)

profiles, normalized to the incident E-field intensity (lE0l2 = 1), overlaid on top of their

structure profiles corresponding to BLSW2 and BLSW1 respectively. The BLSW modes

have highly confined E-field at the surface layer and exponentially decaying field profile
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Figure 25: BSW assisted E-field intensity at the surface of a periodic counterpart (32 layers)

of FQC and TMADM at wavelength 440 nm and incident angle 53.16o.

in the homogeneous analyte/superstrate layer. However, unlike the BSW modes, the field

confinement of the BLSW modes inside the FQC is not necessarily tied to periodicity and thus

they can have non-exponential decaying field profile inside the FQC. The E-field intensity

in Figure 21(c) is observed for the incident angle of 45.67o at the wavelength 443.2 nm. The

incident angle and wavelength for Figure 21(d) are 42.14o and 760 nm respectively. The plots

demonstrate that the E-field intensity at the surface is magnified by ∼1500x and ∼100x for

BLSW2 and BLSW1 respectively. Such high E-field intensity at the surface of multilayer

structures is of great significance for fluorescence-based detection [14, 15, 20] and surface-

enhanced Raman spectroscopy [29, 30]. Moreover, the plots also permit determination of

the PD of the evanescent wave beyond the surface as 93 nm and 533 nm at the exp(-1)

point. Figure 21(e) and 21(f) show the reflectivity dips for the respective BLSW excitations

in Figure 21(c) and 21(d).

Figure 22 shows BLSWs in two additional generations of FQCs. Besides the number of

layers, all other parameters of the FQCs are the same as in the 32 layered FQC. In Figure

22(a), we plot the BLSW assisted E-field enhancement superposed on a 13 layered (j = 5)

FQC, and the corresponding reflectivity curve in plotted in Figure 22(b). The BLSW in

this structure is excited for the wavelength 475 nm at the incident angle 42.360. The E-

field enhancement achieved for this FQC is larger than 3000x, which is the largest field
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Figure 27: Reflectivity curves of (a) a FQC (j = 7) at λ = 443.2 nm (b) a TMADM (j = 5)

at λ = 465.1 nm for different refractive indices nN of superstrate layer.

enhancement that we predict in this paper. Similarly, Figure 22(c) and (d) shows the BLSW

and the reflectivity curve of a 89 layered (j = 9) FQC respectively. The corresponding BLSW

wavelength and incident angle are 440 nm and 46.530. These results show that BLSWs can

exist in different generations of FQC, ranging from lower to higher generations.

Figure 23(a) is the reflection map of a 32 layered TMADM. We observe four distinct

BLSW modes, labeled as BLSW1/2/3/4, lying beyond the light line; their dispersion curves

are presented in Figure 23(b). The TMADM pattern for Thue-Morse order j = 5 is AB-

BABAABBAABABBABAABABBAABBABAAB. The sequence can be sub-grouped in a
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near-periodic form as XYXY’XZ, where X = ABBAB, Y = AABBAAB, Y’ = AABABBA,

and Z = AAB, with Z acting as the surface defect. The sub-groups Y and Y’ have the same

first three components but the order of last four components are switched. The structure

pattern and the lEl2 field profiles for the four distinct BLSW modes are shown in Figure

23(c)-23(f). The BLSW in Figure 23(c) is realized at the incident angle of 42o and wavelength

762.4 nm. The maximum E-field intensity at the surface and the exp(-1) PD obtained for

this mode (BLSW1) are ∼1410x and 710 nm respectively. The E-field intensity of ∼1550x

and the PD of 630 nm are attained at the BLSW2 mode in Figure 23(d) for the incident

angle 42.01o and wavelength 701.4 nm. The E-field intensity and the PD for the BLSW3

in Figure 23(e) at the incident angle 41.86o and wavelength 488.1 nm are ∼1870x and 894

nm respectively. Similarly, for the BLSW4 at 41.85o and 465.1 nm [Figure 23(f)], the E-field

intensity and the PD are ∼2450x and 960 nm respectively. The results presented here are

based on an infinite plane wave approach. In real applications, the results will be modified

because of finite beam spot size [29].

As in the case of FQCs, BLSWs only exist in different generations of TMADMs. Figure

24 shows two separate BLSW modes on a 8 layered (j = 3) TMADM. BLSW at the wave-

length 460 nm and the incident angle 42.460 is shown in Figure 24(a), whereas the BLSW

at the wavelength 700 nm and the incident angle 43.630 is shown in Figure 24(c). Their

corresponding reflectivity curves are plotted in Figure 24(b) and (d) respectively.

The FQCs and TMADMs exhibit enhanced optical properties compared to their periodic

counterparts [87]. To compare the surface E-field intensity and the exp(-1) PD obtained

from the FQC (j = 7) and the TMADM (j = 5) with that from a PDM, we plot the lEl2

field profile of a 32 layered PDM in Figure 25(a), and the reflectivity curve in Figure 25(b).

The PDM consists of alternating layers of TiO2 and SiO2 with thicknesses 71.9 nm and

108.4 nm respectively. The surface SiO2 (defect layer) has a thickness of 120 nm. The BSW

wavelength of 440 nm and the incident angle of 54.16o for Figure 25 are chosen such that

the E-field intensity at the surface of the structure is the largest. For the results presented
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in Figure 21, 22, and 23, we do not undergo any optimization. Optimizing the structure

parameters, such as layer thicknesses, refractive indices, and number of layers can improve

the results further.

The maximum surface E-field intensities of the BLSWs and the exp(-1) PD obtained

for the FQC from Figure 21(c)-21(d) and from Figure 23(c)-23(f) for the TMADM, along

with that for the PDM from Figure 25 are plotted in Figure 26(a) and 26(b). The PDM

has only one BSW mode over the wavelength range of 430-800 nm, whereas the FQC and

the TMADM have two and fours BLSW modes respectively, corresponding to the different

number of data points for the PDM, FQC, and TMADM in Figure 26(a) and 26(b). For the

PDM, the maximum E-field intensity at the surface is ∼600x, which is low compared to the

amplifications of up-to 1495 and 2450 obtained in the FQC and the TMADM respectively.

The evanescent tail extending to the air side beyond the PDM surface has the exp(-1)

PD equal to 55.45 nm, whereas the PD for the FQC and the TMADM are 533 nm and

961 nm respectively. We emphasize that this comparison is not comprehensive because we

fix the number of layers and the thicknesses of the PDM to be the same as that of the

TMADM, and that the structures are not optimized. The increased PD for the FQC and

the TMADM results from BLSW resonances near the total internal reflection (TIR) angle.

The angle of incidence sets the real part of the kBSW and determines the PD as given

by 1/PD ∼ (k2
BSW − k2

air)
1/2. A comparable PD for the PDM can be obtained for BSW

resonances near the TIR angle, however for the PDM considered here, we do not observe

BSW near the TIR angle. In general, shifting the BSW/BLSW resonance towards the TIR

angle increases the PD of these resonances.

Finally, we also explore the angular sensitivity of BLSW in a 34 layered FQC and a 32

layered TMADM. We note that the sensitivity analysis presented here is in no way compre-

hensive; we plan to do a detailed study in our future work. Figure 27(a) shows reflectivity

curves of BLSW2 (see Figure 21) for the wavelength 443.2 nm for different refractive indices

(nN) of the superstrate/analyte layer. The maximum angular sensitivity obtained from Fig-
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ure 27(a) is 220/RIU. The angular sensitivity of biosensors is defined as the change in the

angle of BSW/BLSW excitation with respect to the change in the refractive index given by

Angular sensitivity =
∆θBSW/BLSW

∆nN
, (253)

and is measured in refractive index units (RIU). The reflectivity curves of BLSW4 (see Figure

23) for the wavelength 465.1 nm for different nN is shown in Figure 27(b). We observe the

maximum angular sensitivity of 500/RIU, which is typical for biosensors based on BSW.

4.4 Summary

We demonstrate the excitation of BLSWs in different genrations of FQCs and TMADMs.

Although these structures are not periodic, their components can be sub-grouped to obtain

some superficial periodicity, which can potentially explain the excitation of BLSWs in these

structures. These systems possess several advantages over the periodic counterparts. The

surface E-field intensity is highly enhanced and the exp(-1) penetration depth in the air side

beyond the surface is strongly extended. We envision the applications of these enhanced

properties in making better slow light devices and highly sensitive BLSW assisted biosensors

for antibody-antigen binding and analyte refractive index change detections, and enhanced

surface non-linear optical phenomena such as Raman Spectroscopy.
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CHAPTER 5

SENSITIVITY ENHANCEMENT VIA SLOW BLOCH SURFACE WAVE IN

MAXIMAL LENGTH SEQUENCE MULTILAYERS

5.1 Introduction

Recently, Bloch surface waves have emerged as an attractive alternative to Surface plasmon

polaritons (SPP) for biosensing applications [14,15,18,20,23–25]. Bloch surface waves (BSW)

are a surface electromagnetic excitation that exists at the interface between an optically

active composite and a homgeneous dielectric. BSWs are a superior choice for two related

reasons. First, BSWs exist on the surface of dielectric multilayer structures, which have low

loss as compared to metal used for SPP. Second, this low loss results in a BSW resonance

that has a higher Q-factor than SPP resonance. This sharp resonant phenomena can be used

to detect small surface variations [10]. Moreover, BSW can be excited at any wavelength

by suitably changing the refractive index and thicknesses of the dielectric materials in the

multilayer structure. This flexibility in the case of metals is limited.

BSWs are non-radiative electromagnetic modes [7,8], i. e., they do not exist in free space

on their own. The BSW wavevector is longer compared to the free space wavevector at

a given frequency. Thus, we need to provide an additional momentum to the wavevector

of the incident wave so that it can satisfy the phase matching condition with the BSW

wavevector. This task is usually accomplished by prism coupling technique, either using

Kretshmann configuration [12] or Otto configuration [11]. In this paper, we mainly use the

Kretshmann configuration, and later demonstrate that BSWs can also be excited using the

Otto configuration. In the Kretchmann configuation, as shown in Figure 28(a), the multilayer

structure is deposited on top of a prism, whereas in Otto configuration [see Figure 28(b)],

there is an air-gap between the multilayer and the prism.

BSWs have been extensively studied. Researchers have used different variations of pe-
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Figure 28: A schematic of a prism coupling technique (Kretschmann configuration) to excite

Bloch surface wave using a dielectric multilayer.

riodic multilayers that support BSWs [99, 124, 125]. Almost all the studies however, only

use perfectly periodic multilayer structures with a surface defect. In our previous study, we

showed that BSWs can also be excited in Fibonacci quasi-crystals and Thue-Morse aperiodic

multilayer structures [88,89]. Using quasi-crystals and aperiodic multilayers have advantages

of their own. They provide engineering design flexibility, and better performance in some

cases. In this paper, we propose a new type of aperiodic multilayer structure known as

Maximal-length sequence (MLS) multilayers. MLS is a pseudo random sequence, which is

widely used in electrical engineering for signal processing and in acoustics to design walls

that help reduce sound reflections [126]. MLS is generated using the following recursion

formula

Sk+3 = Sk ⊕ Sk+2, (254)

where ⊕ denotes an XOR (modulo-2 sum) operation. Some examples of MLS are given in

Table 1.

In this work we consider TiO2 (A) and SiO2 (B) as the high and low refractive index
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Table 2: Maximal-length sequence examples
Generation (Sj) MLS

S3 AAABBAB
S4 AAAABBBABBAABAB
S5 AAAAABBBAABAAABABABBBBABBABAABB

materials. We consider the wavelength (λ) dependent refractive index of both TiO2 [101]

and SiO2 [102] over the range of 1.1 µm to 1.55 µm given by

nTiO2 =

√
5.913 +

0.2441

λ2 − 0.0803
, (255)

and

nSiO2 =

√
1 +

0.6961663λ2

λ2 − 0.06840432
+

0.4079462λ2

λ2 − 0.11624142
+

0.8974794λ2

λ2 − 9.8961612
(256)

respectively. In the rest of the paper however, λ is given in nm. We also introduce small losses

in these materials through the imaginary parts of their refractive indices. The values used

here, 0.00016 and 0.000034 for TiO2 and SiO2 respectively, are based on the published sources

[103,104] and are selected to match with experimental investigations of BSWs [10,18,23].

5.2 Results and Discussions

Figure 29(a)-29(f) shows reflection maps of a MLS multilayer (S5) structure for different

values of superstrate refractive index. We add one additional layer of TiO2 with the same

thickness as of the first layer. Thus, the MLS sequence used in this papaer is

AAAAABBBAABAAABABABBBBABBABAABBAAAAA. The thickness of TiO2 (A)

is 230 nm and SiO2 (B) is 503 nm. For all superstrate refractive indices, we observe BSW-

like modes at wavelengths in the range of 1100 nm - 1300 nm. The vertical dashed lines are

the lightlines for their respective superstrate refractive index. For high superstrate refractive

index, the lightline shifts to the higher angular position. Thus, the BSW excitation angles

for any particular wavelength are larger for higher superstrate refractive index. In this paper,

we only consider the reflection maps of electric field waves in transverse-electric mode. The

reflection maps, along with all other results in this paper, are computed from an iterative
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implementation of Fresnel’s equations as a function of angle of incidence and wavelength.

The electric field profile inside the multilayer structure is computed by solving for the field

iteratively imposing the continuity of electric field and its derivatives at the interfaces of the

multilayer structure (refer [89] for details).
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Figure 29: Reflection maps of a 36-layered maximal length sequence multilayer over a wave-

length range of 1115nm-1295nm and incident angle range of 66o-85o for superstrate indices

(a) 1.32, (b) 1.33, (c) 1.34, (d) 1.35, (e) 1.36, and (f) 1.37. Shift in the BSW mode as a func-

tion of superstrate index is clearly observed. The dotted lines represent the cross-sections of

the reflection map plotted in Figure 30(a), and the solid circle in (b) is the wavelength-angle

pair for the field enhancement plot shown in Figure 30(b).

The dotted horizontal lines in Figure 29(a)-29(f) at the wavelength of 1159.88 nm and

angular range 700-850 are plotted as reflectivity curves in Fig 3(a). We observe sharp and

narrow BSW resonances for different values of superstrate refractive indices. One important

feature that we can observe here is that as the superstrate refractive index value increases, the

angular displacement between the BSW resonances increases as well. This has an important
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implication in increasing the angular sensitivity of the system. The figure of merit (FOM)

of the resonances however, decrease for higher superstrate refractive indices, as illustrated

in Figure 30(a) with dark red solid line (right-axis). The FOM [127] of the BSW resonances

are defined as

FOM =
Sideal(1− R)

FWHM
, (257)

where Sideal is the average angular sensitivity of the BSW resonances, R is the reflectance

at θ and FWHM is the full-width of the resonance dip at half-maximum. The higher the

FOM, i. e., the deeper and narrower the BSW resonances are, the higher the accuracy

to detect the refractive index of analyte by the angular displacements. BSWs also create

amplified electric field intensity at the surface of the multilayer structure with evanescent

decaying fields on the either side of the surface. The amplified electric field intensity for the

superstrate refractive index of 1.33 at the wavelength of 1159.88 nm and incident angle of

77.070 is shown in Figure 30(b). The normalized electric field intensity at the surface of the

structure is 250x greater than the input incident field.

The angular sensitivity of MLS multilayer structure is illustrated in detail in Figure 31.

It is defined as

Sθ =
∆θ

∆n
, (258)

where ∆θ is the change in angular position of BSW resonances and ∆n is the change in

superstrate refractive index. BSW modes as a function of θ and wavelength for different

values of superstrate refractive index is shown in Figure 31(a). The range of superstrate

refractive index investigated is 1.32-1.37. The angular sensitivity, as defined by Eqn. (258),

is plotted in Figure 31(b). For clarity, only the greatest and least sensitivity curves are

plotted. The remaining sensitivity curves lie in between these two curves. As can be seen

clearly, the maximum sensitivity obtained is greater than 250 deg/RIU. The reported angular

sensitivity is significantly higher than that observed in several other studies [19, 128, 129].

Typically, angular sensitivity of BSWs lie in the range of 50-150 deg/RIU. The enhanced

sensitivity is achieved here by using porous TiO2 on the top layer. Detailed explanation of
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depositing porous TiO2 is explained elsewhere [130, 131]. The use of porous TiO2 enables

us in dynamically modulating the refractive index of the corresponding layer by altering the

refractive index of the superstrate layer. Here we change the refractive index of the top TiO2

layer by 0.01 for the refractive index change of 0.01 in the superstrate layer.

Sensitivity of BSW can also be measured in terms of wavelength, as defined by

Sλ =
∆λ

∆n
, (259)

where ∆λ is the change in spectral position of BSW resonances and ∆n is the change in

superstrate refractive index. To explore spectral sensitivity of the MLS multilayer structure,

we plot BSW modes as a function of wavelength and incident angle as shown in Figure 32(a)

for a range of superstrate refractive index values. From these curves, we can extract the

spectral sensitivity using Eqn. (259), which is shown in Figure 32(b). For clarity, we only

plot the results for the maximum and mininum sensitivities. We observe spectral sensitivity

higher than 1600 nm/RIU, which is again a significant improvement compared to previously

reported results [19,124].

The overall improvement in sensitivity of BSWs, both in angular and spectral regimes,

can also be understood by looking at their dispersion curves. BSW dispersion curves, plotted

as a function of frequency and wavevector [see Figure 33(a)], shed invaluable insights on the

characteristics of BSWs. We apply coordinate transformation of the incidence angle axis in

Figure 29(a)-29(f) as given by

kBSW =
2π

λ0

n0sin(θBSW), (260)

where kBSW is the parallel wavevector of BSW, n0 = 1.5 is the refractive index of the prism,

and λ0 and θBSW are the free space wavelength and angle of incidence at the respective

BSW reflectiviey minima.The dashed line in Figure 33(a) is the light line for the superstrate

refractive index of 1.32. The corresponding dispersion curve lies beyond this light line, which

indicates that BSWs are non-radiative modes. Thus, they cannot be excited directly from

free space. The light line for the remaining superstrate refractive indices are not shown in
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the figure but they show the same behavior as well. This is the reason we employ prism

coupling technique to excite BSWs on dielectric multilayer surfaces. Moreover, dispersion

curves can also be used to compute group velocity (vg) of BSWs, which is defined as

vg =
∂ω

∂k
, (261)

where ω is angular frequency and k is wavevector. Group velocities of BSW modes in Figure

33(a) are shown in Figure 33(b). We can notice a striking characteristic of BSWs looking

at their group velocity. The group velocities are less than the actual speed of light in their

corresponding medium. Thus, BSWs travel slower on the surface of dielectric multilayer

structures, which increases their interaction time with the analyte. This increased interaction

hence, enhances the sensitivity of BSWs.

The results presented so far are based on the Kretchmann configuration, which is one of

the most popular and widely used techniques used to excite BSWs. However, researchers

also use another technique known as the Otto configuration [see Figure 28(b)] for sensing

purposes via BSWs [25]. In the remaining of this paper, we demonstrate that BSWs in MLS

multilayer can be excited using the Otto configuration as well. The main difference between

the Kretchmann and Otto configuration is the air-gap between the multilayer structure and

the prism in the Otto configuration. We use a high refractive index prism (nprism = 2.1252)

and a 31 layered MLS given as BBAABABBABBBBABABAAABAABBBAAAAA. The

refractive indices of the high and low index materials used here are however different than

those used in previous results. The refractive index of the low (B) and the high (A) index

materials are 1.36 + 0.000037i and 2.15 + 0.00016i respectively and the refractive index of

the substrate layer (Silicon) is 3.5. The reason for choosing these refractive indices is their

easy fabrication using porous silicon on silicon substrate [25]. The layer thicknesses of B and

A are 380 and 210 nm respectively. The air gap thickness is 1000 nm. The results of BSW

excitation in a 31 layered MLS multilayer are shown in Figure 34(a) and 34(b). As in the

reflectivity curves from the Kretchmann configuration, we observe a sharp and narrow dip

in the reflectivity curve from the Otto configuration as shown in Figure 34(a). Similarly, the
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electric field intensity at the surface layer is highly amplified as well, which is a characteristic

of BSWs.

5.3 Summary

We propose a new type of pseudo-random sequence based MLS multilayer structure for

generating BSWs. We numerically show that it can be used for making highly sensitive

biosensors to detect refractive index changes, both in angular and spectral regimes. We

report angular sensitivity higher than 250 deg/RIU and spectral sensitivity higher than

1600 nm/RIU. These results are significantly better than the previously reported results in

the literature. The enhancement in sensitivity is attributed to slow BSWs on the surface of

MLS multilayer structure, which increases the interaction time of BSWs with the superstrate

analyte. The use of porous TiO2 as the material for the top-most layer of the structure

also further aids in improving the sensitivity. Finally, we demonstrate that BSWs in MLS

multilayers can also be excited using the Otto configuration.
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Figure 34: (a) Reflectivity curve (b) Electric field profile of a 31 layered maximal-length

sequence multilayer using Otto configuration.
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CHAPTER 6

LEAKY BLOCH-LIKE SURFACE WAVES IN THE

RADIATION-CONTINUUM FOR SENSITIVITY ENHANCED

BIOSENSORS VIA AZIMUTHAL INTERROGATION

6.1 Introduction

Bloch surface waves (BSW) are electromagnetic modes propagating at the interface of trun-

cated dielectric multilayer structures and a homogeneous medium. The resonant generation

of these modes via prism or grating coupling is an active field of research at present. Fol-

lowing the prediction [7] and experimental observation [8] of BSWs in photonic crystals,

these modes have been studied, both theoretically and experimentally, in various configura-

tions [9,10,25,88]. The resulting strong field/energy localization at the surface layer and the

evanescently extending field in the homogeneous medium are of interest in applications such

as label-free biosensing based on enhanced diffraction [24,99,100], surface-enhanced Raman

spectroscopy [29, 30], spectral and angular resonance shift [18, 19, 22, 23, 132], fluorescence-

based detection [14, 15, 20], slow light enhanced nonlinear effects [71, 72] and optical slow

light devices and sensors [17, 26]. BSWs are evanescent in nature, i.e., they are perfectly

bound non-radiative states that lie below the light line of the homogeneous layer material.

However, it was recently shown that if the surface layer is periodically corrugated and the

dielectric constant of the dielectric medium is real, positive, and large, it can support a leaky

BSW [107]. Such leaky modes still lie below the light line of the homogeneous layer material

but fall above that of the dielectric multilayer material. As a result, this leaky BSW is bound

to the surface in the homogeneous region but is radiative into the dielectric multilayer. More-

over, under appropriate conditions, it is possible to excite photonic surface states inside the

radiation continuum [108–110]. Although these states are radiative into the homogeneous

medium, they can have a long lifetime assisted by destructive interference between different
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leakage channels. Such leaky-mode resonances with moderate to infinitely high Quality fac-

tor (Q) that confine freely propagating electromagnetic waves at a periodically modulated

surface are of interest in applications such as lossless mirrors [111], high-performance opti-

cal filters [112], label-free biosensors [113], dielectric metasurfaces [114,115], dielectric-based

optical magnetism [116], and many others [117,118].

In this paper, we show that moderate Q leaky BSWs on a dielectric multilayer surface

with periodic corrugation can be used to significantly enhance the sensitivity of biosensors.

To enhance the sensitivity we take advantage of the fact that the periodic corrugation of the

surface layer allows us an additional degree of freedom over the azimuthal angle of the inci-

dent beam, which is not possible on a planar uncorrugated surface. In an experimental setup,

this additional degree of freedom can be accessed by rotating the multilayer platform itself

azimuthally. To our best knowledge however, little has been done in this regards [119, 120].

Previous related studies were done on surface plasmon polaritons (SPPs) – electromagnetic

modes propagating at the interface of a metal and a dielectric medium – where the reflectiv-

ity is measured by fixing the azimuthal angle to a certain value followed by the conventional

polar incident angle sweep. Here we propose a new technique of sensing using leaky BSWs,

wherein we fix the polar incident angle to a specific value that excites a leaky BSW and

then sweep over the azimuthal angle. The advantages of this technique are two fold. First,

it mitigates the requirement of a bulky prism to excite BSWs and thus opens a prospect

to engineer nanoscale lab-on-chip biosensors. Second, it can be used to make polarization

independent biosensors, due to the fact that linear grating profile facilitates polarization

conversion [121–123].

6.2 Computational Method

A schematic of the computational setup considered in this study is shown in Figure 35 We

use a sixteen layered TiO2-SiO2 multilayer on a SiO2 substrate. The grating profile on the

surface SiO2 layer is SiO2 as well. We consider wavelength (λ) dependent refractive index of
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both TiO2 [101] and SiO2 [102] over the range of 0.43 µm to 0.8 µm given by

nTiO2 =

(
5.913 +

0.2441

λ2 − 0.0803

) 1
2

(262)

and

nSiO2 =

(
1 +

0.6962λ2

λ2 − 0.06842
+

0.4080λ2

λ2 − 0.11622
+

0.8975λ2

λ2 − 9.89622

) 1
2

(263)

respectively. In the rest of the paper however, λ is given in nm. The thicknesses of TiO2

and SiO2 layers are 126.13 nm and 205.41 nm respectively. The excitation and confinement

of BSWs on the surface of one dimensional (1D) photonic crystals is highly sensitive to the

thickness of the surface defect layer due to the effects of multiple reflections from the periodic

dielectric multilayer beneath [1]. For this reason, we set the thickness of the top SiO2 layer

to 280.03 nm. The grating height is set to 70 nm with a fill factor of 0.5a, where a is the

grating period set to 510 nm. The refractive index of the superstate layer (nsup) considered

in our study is 1.26-1.4. The polar incident angle (θinc) is measured relative to the surface

normal, while the azimuthal angle (φ) is measured with respect to the plane perpendicular

to the grating profile.

We use an in-house three-dimensional (3D) scattering matrix based rigorous coupled

wave analysis (SMRCWA) method to simulate the electric/magnetic field distribution in

the computational domain containing the multilayer structure, the SiO2 substrate, and the

superstrate. The incident electric and magnetic field are expressed in their Fourier expansion

as

E(x, y, z) =
∞∑

m=−∞

∞∑
n=−∞

Sm,n(z)e−j(kx,mx+ky,ny) (264)

H(x, y, z) =
∞∑

m=−∞

∞∑
n=−∞

Um,n(z)e−j(kx,mx+ky,ny), (265)

where

kx,m = kx,inc −
2πm

Λx

, m = −∞, ...,−2,−1, 0, 1, 2, ...,∞ (266)
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Figure 35: Schematic of a grating coupling technique to excite leaky Bloch surface waves on

the surface of a dielectric multilayer.

ky,n = ky,inc −
2πn

Λy

, n = −∞, ...,−2,−1, 0, 1, 2, ...,∞. (267)

kx,inc = 2π
λ

nsupsin(θinc)cos(φ) and ky,inc = 2π
λ

nsupsin(θinc)sin(φ) are the x and y components

of the kinc. Λx = a is the grating period in the x direction. The structure considered in

this paper does not have any periodicity in y direction. Thus Λy can be set to any value.

For simplicity however, here we set Λy = a as well. Sm,n(z) and Um,n(z) in Eqn. (264) and

(265) are the Fourier coefficients, which can be computed by solving Maxwell’s equations in

Fourier space. The method is described in detail in Chapter 2.2.

To verify the results obtained from the 3D SMRCWA method, we also do a 3D im-

plementation of the structure in a commercial Finite Element Method software COMSOL

Multiphysics. A detailed step-by-step tutorial on setting the model up in COMSOL Multi-
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physics and reproducing the results of this paper is presented in Appendix A. The results

from both the methods are in good agreement. Moreover, the dispersion curves and the

mode profiles were verified using Meep (an open source FDTD software from MIT) as well.

6.3 Results and Discussions

The proposed method consists in taking advantage of the surface grating profile, as illustrated

in Figure 35, to excite and then use BSW for biosensing via azimuthal interrogation. It is

however, first crucial to realize BSW in a setting where φ = 00. A cross-section of a one

period structure for this purpose is shown in Figure 36(a). The surface grating serves as

an input coupler that couples a plane wave (PW) mode into BSW mode. This BSW mode

excitation is assisted by the constructive interference of PWs. At the correct incidence angle

and groove spacing, a maximum coupling of the PWs to the BSW mode on the grating can

be achieved, as summarized by Eqn. (268).

kBSW = −k0nsupsin(θinc) + 2πm/a, (268)

where k0 = 2π/λ and kBSW are the magnitudes of the free space wave vector and grating

BSW wave vector respectively, nsup is the refractive index of the superstrate, θinc is the

incident angle, a is the grating period, and m is an integer [136].

To excite grating coupled BSW for a given incident wavelength, the grating period a

is chosen such that there is at least one angle that satisfies Eqn. (268), which leads to

λ/a < kBSW/k0 + 1 with the superstrate index taken as 1. In this paper, we choose m = 1

and θinc > 0, such that 2π/a > kBSW . Given that kBSW > k0, we get λ/a > kBSW/k0 > 1.

Therefore, the range of appropriate grating period can be summarized as kBSW/k0 < λ/a <

kBSW/k0 + 1.

The surface mode band structures of BSW modes for the structure are shown in Figure

36(b). By terminating the surface layer with an additional thickness to act as a defect,

we can create a platform for exciting BSWs, and etching a grating profile on top of it, we
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Figure 36: Leaky Bloch surface wave at φ = 0◦. (a) TiO2-SiO2 multilayer with grating on

the top layer. (b) Dispersion curves of the leaky BSWs supported by the structure. The

green region is the radiative region (c)-(d) Reflectance of BSW as a function of incident angle

and wavelength respectively. (e)-(f) Electric field profiles of BSW modes. The red and blue

circles at the resonance peaks represent the reflectance at the corresponding circles in (b).

can mitigate the necessity of a prism to excite them. Periodicity on the surface plays an

important role on these modes. The evanescent fields in the superstrate layer, in the presence

of periodicity, can have wavevector kx in the reciprocal lattice that are integer multiples of

2π/a, resulting in BSW resonances. We observe two distinct BSW modes, highlighted in

red and blue, in Figure 36(b). Refectivity curves of these modes, as a function of angle

of incidence and wavelength, are shown in Figure 36(c) and 36(d) respectively, where the

colored tips correspond to their respective colored circle marks in Figure 36(b). As can be

seen in these figures, these modes have sharp resonance features at their excitation both as
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Figure 37: Azimuthal dispersion curves of BSWs for different values of superstrate refractive

indices and θinc = 5.40.

a function of angle and wavelength. Figure 36(e) and 36(f) show the field profile Ey of the

BSW modes at the red (λ = 660 nm) and blue (λ = 710 nm) circles in Figure 36(b) at

θinc ≈ 2.50. At these surface-parallel wavevectors near kx,inc ≈ 0.04 × 2π/a, the Ey field

is highly confined to the surface giving rise to the BSW modes. We can also see a slight

leakage in the superstrate layer. The direction of propagation of these modes in Figure

36(d) and 36(e) are opposite however. This difference in the direction of propagation can

be explained by the opposite slopes of the red and blue BSW modes in Figure 36(b). These

modes are different than conventional BSW modes as they exist in the radiative region.
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BSWs in general, only exist in the non-radiative region where they are perfectly bound to

the surface. The BSW modes under consideration in this paper are not perfectly bound and

are somewhat leaky. However, the quality factor (Q = ωτ/2 = (1/Qr) + (1/Qnr)) of these

modes are high enough (Q ≈ 6000) that they can safely be used for practical applications in

bio-sensing. The resonance lifetimes are extracted from the Fano features [109] by fitting the

reflectivity of the grating coupled multilayer structure to be the thin-film reflectivity with

the Fano features described by

f(ω) =
Q−1
r

2i(1− ω/ω0) +Q−1
r +Q−1

nr

(rslab − tslab), (269)

where ω0 is the resonance frequency, Qr and Qnr are the normalized radiative and non-

radiative lifetimes due to leakage into the free space, rslab and tslab are the reflection and

transmission coefficients of a homogeneous slab, respectively. We further confirmed the

quality factors of these modes using finite-difference time-domain (FDTD) simulations with

point sources on the surface to perform harmonic analysis to compute the lifetime τ and Q

of these resonant modes.

With this understanding of BSWs for φ = 00, we can now move to BSWs via azimuthal

interrogation, i.e., φ 6= 00. To explore this, we choose the operating wavelength of 632.8

nm and set θinc = 5.40, which is slightly above the actual BSW excitation angle (θBSW ) of

5.20 for φ = 00. Setting the incident angle greater than the actual BSW excitation angle

is important as indicated by kx,inc = 2π
λ

nsupsin(θinc)cos(φ). With greater θinc, we can get

kx,inc = kBSW by changing φ, thus excite azimuthal BSW. Figure 37 shows the surface

mode band structures of azimuthal BSW modes for different values of superstrate refractive

indices. This figure indicates directly how the azimuthal angle sensing is achieved. For a

fixed incident wavelength the azimuthal angle of coupling changes with superstrate refractive

index. Similarly, at fixed azimuthal angle the coupling wavelength alters with superstrate

index.

Sensitivity enhancement of biosensors is an active field of research. Both surface plasmon

polaritons [133–135] and BSWs [14, 18, 22, 23] are widely used for the purpose of making
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plasmonic biosensors. Prism coupling techniques – Kretschmann configuration and Otto

configurations – are the two most widely used sensing techniques, with angular sensitivity

in the range of 50-200 0/RIU. In general the grating coupling technique, although having an

advantage of not requiring a voluminous prism, has suffered with lower sensitivity compared

to prism coupling techniques. However, all the studies on sensitivity analysis of grating

coupling techniques have only utilized polar angle interrogation. Recently, Romanato et

al. [120] studied sensitivity enhancement in grating coupled surface plasmon resonance by

azimuthal control. The authors search for an optimal value of the azimuthal angle, set the

value and sweep over the polar θinc angle. In this paper, we take an opposite approach. First

the θinc angle is set to an angle greater than θBSW for φ = 00, then the azimuthal angle is

swept over to excite azimuthal BSW at appropriate φ.

Figure 38(a) shows BSW modes supported by the structure as a function of superstrate

refractive indices and azimuthal angle for different values of polar incident angles at the

wavelength of 632.8 nm. We observe that for high values of θinc, the azimuthal angular

range for BSWs get wider. More importantly, at smaller azimuthal angles, the dispersion

curves tend to flatten, i.e., for a small change in the superstrate refractive index, the change

in the azimuthal angle is significantly larger. This has a crucial impact in increasing the

azimuthal sensitivity of BSWs. The azimuthal sensitivity (Snsup,φ) is defined as

Snsup,φ =
∆φ

∆nsup
, (270)

where, ∆φ is the change in the azimuthal angle and ∆nsup is the change in the superstrate

refractive index. The results for the azimuthal sensitivity given by Eqn. (270) is shown in

Figure 38(b). The sensitivity curves are computed from their respective colored BSW modes

in Figure 38(a). The improvement in the sensitivity can be clearly seen from the figure, with

the azimuthal sensitivity as high as ∼ 2500 0/RIU. Higher sensitivity is especially useful

for detecting tiny variations in the refractive index, as well as in detecting antibody-protein

binding for disease detection. The sensitivity enhancement reported here is an order of mag-

nitude higher compared to the previously reported grating coupled surface plasmon/BSW
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sensivities [25, 137–140], which typically is in the range of 50-200 0/RIU.
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Figure 38: (a) BSW modes as a function of superstrate refractive index and azimuthal angle

for different values of θinc and λ = 632.8 nm. (b) Azimuthal sensitivity of BSWs.

Figure 39(a) shows the reflectivity curves of the azimuthal BSWs for different values of the

superstrate refractive indices. The solid curves are obtained using the 3D SMRCWA method,

whereas the open circle curves are computed from COMSOL multiphysics. The results from

both the numerical techniques are in excellent agreement with each other. We can observe

from the figure that for a small change in the refractive index value (∆nsup = 0.005), the

azimuthal angular shift between the resonance peaks gets larger at small azimuthal angles.

Finally, the field profile of azimuthal BSW for the superstrate refractive index of 1.33 (water)

is shown in Figure 39(b)-39(d). The corresponding resonance peak is indicated in Fig 5(a)

by the arrows. As in the case of conventional BSW (φ = 00), the suface field intensity is

highly amplified, and the mode is slightly leaky as well.

6.4 Summary

We have studied a new way of exciting Bloch surface waves in dielectric multilayer structures

with grating profile on the top-most layer via azimuthal interrogation. Fixing the polar
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Figure 39: (a) Reflectivity curves as a function of Azimuthal angle for different values of

nsup. The wavelength (λ)and incident angle (θ) are fixed at 632.8 nm and 5.40 respectively.

The results obtained using COMSOL (circles) and an in-house 3D RCWA code (solid lines)

show good agreement. (b) x-y (c) x-z (d) y-z plane views of azimuthal BSW at the resonance

peak indicated by the arrows in (a).

incident angle to a value slighly higher than the BSW angle (for φ = 00 configuration),

azimuthal BSWs can be excited by sweeping over the azimuthal angle. We show that as

the refractive index of the superstrate layer increases, the azimuthal angular displacement

between the BSW resonances increases as well. This significantly increases the sensitivity

of azimuthal BSWs. We report an order of magnitude higher sensitivity compared to the

sensitivity of conventional BSWs.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In conclusion, BSWs are surface bound electromagnetic waves that have applications in

various fields, such as label-free bio-sensing, fluorescence detection, optical data storage

buffers using slow light, slow-light enhanced non-linear optical effects, and surface-enhanced

Raman spectroscopy. In this dissertation, I have described a BSW-mediated configuration

for slow light generation and explored BSW assisted bio-sensing specifically new avenues to

improve the sensitivity of BSW based bio-sensors using different variations of 1D photonic

crystals.

I demonstrated that BSWs in simple one-dimensional periodic multilayer structures can

be used to reduce the group velocity of light. The reduction in the speed of light is attributed

to the surface bound and non-radiative nature of BSWs that temporarily traps and stores

light on the surface of such materials. The technique is relatively simple compared to other

techniques described previously in the literature [53,54].

I also numerically showed, for the first time, that BSWs/BLSWs can be excited in non-

periodic multilayer structures. All previous work in BSWs was based on periodic multilayers

with some sort of defect surface layer. Using non-periodic multilayer structures such as

Fibonacci quasi-crystals, Thue-Morse aperiodic multilayers, and pseudo-random Maximum-

length sequence multilayers, we demonstrated that the desireable properties of BSWs can be

improved compared to the properties of BSWs in their periodic counterparts. Specifically,

the sensitivity of BSW-based bio-sensors can be enhanced using such non-periodic multilayer

structures. In addition the electromagnetic field amplification and penetration depth in

prism-coupled configurations (Kretschmann or Otto geometries) can be engineered. The

ability to tailor these qualities are of significant importance both in sensing and in enhancing

non-linear optical phenomena.

Prism-coupling techniques are currently the dominant method used to excite BSWs;
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however, the bulkiness of prisms limits the application of BSWs in nano-scaled sensors. To

mitigate this problem, I investigated the grating-coupling technique that does not require

a prism to generate BSWs with incident light. I presented a novel way of enhancing the

sensitivity of one-dimensional photonic crystals through the use of azimuthal angle generation

of BSWs. The maximum sensitivity achieved using azimuthal BSWs is more than 10-fold

better as compared to the previously reported sensitivities in the literature using conventional

polar angle coupling [25,137–140].

The work in this dissertation can be envisaged as a road-map to explore new applications

of BSWs in photonics. For example, the work on BSWs in 1D non-periodic multilayer

structures can be extended into 2D non-periodic photonic crystals. Such systems can be

created using either dielectric rods or etched holes in various patterns such as Fibonacci,

Thue-Morse, or Maximum-length sequences. It is envisioned that such 2D non-periodic

structures that support BSWs can be used for various optical devices such as beam splitters,

waveguides, optical buffers, and slow light devices. The extension to two dimensions provides

a larger parameter space with which to engineer desirable properties.

BSWs can be used in harvesting energy from light. A key drawback is that, because the

phase matching restriction requires the use of either prism or periodic grating structure, it is

only possible to couple a narrow wavelength and/or angular range into BSWs. To overcome

this limitation, it is plausible to explore novel aperiodic surface structures that possess a

range of grating wave vectors permitting coupling of a broad optical wavelength range (or a

broad angular range of monochromatic radiation). One strategy to realize this objective is to

employ gratings based on Maximal-length sequence patterns which mathematically possess

all grating periodicities equally.

Another avenue of taking this work forward is through the design of BSW-based lasers.

The strong confinement of BSWs to the material surface leads to high electromagnetic fields.

By further confining the propagating modes in the plane of the surface, through the use of

grating structures, it is possible to construct surface standing wave cavities. Laser radiation
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could either be coupled out of the cavity using prism coupling or through first-order diffrac-

tion from the end gratings that define the cavity. Placing a gain medium on the surface or

embedded in the termination layer of the multilayer, enables the creation of a new class of

BSW laser. The BSW resonance is approximately 100 times narrower with concomitantly

higher field intensities resulting in lasers with much lower threshold. In addition the possi-

bility of making the termination layer, where the BSW field intensity is greatest, the gain

medium makes this configuration an ideal candidate for developing a new compact laser

source.

Another fruitful research avenue to extend this research is through the design of functional

BSW materials that can serve as a platform for a new class of photonic circuits. Many

authors have suggested and even done rudimentary experiments using surface plasmons on

metal films as a venue for compact photonic circuits. However, the large dieletric loss of

metals results in very short propagation distances for surface plasmons which means these

schemes are unlikely to succeed in practical applications. In contrast, the BSW can propagate

two orders of magnitude further because the dielectric multilayer materials have extremely

low loss. Long propagation distance and the ability to create integrated laser sources make

this functional material system a little studied, but highly promising, avenue for optical

processing and interconnects.

Thus, this work is a starting point for a rich variety of scientific applications that can

benefit human lives. I have listed some ideas that can be explored based on my work here.

The hope is to inspire the reader to take these ideas forward and advance them with even

newer concepts and applications.
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[61] G. Grgić, J. G. Pedersen, S. Xiao, and N. A. Mortensen, “Group index limitations in

slow-light photonic crystals,” Photon. Nanost. – Fund. and App., 8, 56 – 61 (2010).

[62] M. E. Yanik, and S. Fan, “Stopping light all optically,” Phys. Rev. Lett., 92, 083901

(2004).

[63] M. E. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an

all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett., 93,

233903 (2004).
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APPENDIX A

MODELING AZIMUTHAL BLOCH SURFACE WAVE IN COMSOL

MULTIPHYSICS

COMSOL Multiphysics is a commercial finite element software widely used for numerical

simulations of physical phenomena from a variety of fields such as physics, chemistry, and

biology. It has been adopted in both, academic and industrial research and production.

In this dissertation, we have used COMSOL Multiphysics 5.1a to model azimuthal Bloch

surface waves in a 3D geometry. The geometry used here is a periodic multilayer structure

of TiO2 and SiO2 with grating profile on the top-most SiO2 layer. This chapter presents

a step-by-step tutorial to build the geometry, define the materials, specify the appropriate

boundary conditions, run the model, and visualize the results. The model described below

is used to generate the results [Figure 36(e), 36(f), and 39] in chapter 6. The chapter follows

the tutorial style adopted in official COMSOL Multiphysics tutorials.

A.1 Model Setup

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD

1. In the Model Wizard window, click 3D.

2. In the Select Physics tree, select Radio Frequency> Electromagnetic Waves,

Frequency Domain (emw)
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3. Click Add.

4. Click Study.

5. In the Select Study tree, select Preset Studies> Frequency Domain.

6. Click Done.

GLOBAL DEFINITIONS

Parameters

1. On the Home toolbar, click Parameters.

2. In the Settings window for Parameters, locate the Parameters section.

3. In the table, enter the following settings:

Table A.1: Parameters used in modeling 3D azimuthal Bloch surface wave
Name Expression Value Description
dTiO2 126.12[nm] 1.2613E-7 m thickness of TiO2

dSiO2 205.41[nm] 2.0541E-7 m thickness of SiO2

dDefect 280.03[nm] 2.8003E-7 m thickness of SiO2 defect
dGrating 70[nm] 7E-8 m thickness of grating
ff 0.5 0.5 fillout factor
GPeriod 510[nm] 5.1E-7m grating period
eTiO2 6.6755 6.6755 relative permittivity of TiO2

eSiO2 2.1229 2.1229 relative permittivity of SiO2

na 1.33 1.33 refractive index of superstrate
nb sqrt(eSiO2) 1.457 refractive index of substrate
nBilayer 8 8 number of bilayers
theta 5.4[deg] 0.094248 rad Polar angle of incidence in superstrate
phi 12[deg] 0.20944 rad Azimuthal angle of incidence in both media
thetab asin(na*sin(theta)/nb) 0.08601 rad Polar angle in substrate
lmd 632.8[nm] 6.328E-7 Wavelength
f0 c const/lmd 4.7376E14 1/s Frequency

We specify the azimuthal angle (phi) to be 120 here. This value, however will not remain

constant, and change while conducting parametric sweep over the azimuthal angle. It needs

to be specified here so that it is accessible to the parametric solver.
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A.2 Geometry Construction

GEOMETRY

Block 1 (blk1)

1. On the Geometry toolbar, click Block.

2. In the Settings window for Block, locate the Size and Shape section.

3. In the Width text field, type GPeriod.

4. In the Depth text field, type GPeriod/4.

5. In the Height text field, type dTiO2.

6. In the Settings window for Block, locate the Position section.

7. Set Base to Corner.

8. Type 0 in the x, y, z text fields.

9. In the Settings window for Block, locate the Axis section.

10. Set Axis type to z-axis.

11. In the Settings window for Block, locate the Rotation section.

12. In the Rotation text field, type 0.

Block 2 (blk2)
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1. On the Geometry toolbar, click Block.

2. In the Settings window for Block, locate the Size and Shape section.

3. In the Width text field, type GPeriod.

4. In the Depth text field, type GPeriod/4.

5. In the Height text field, type dSiO2.

6. In the Settings window for Block, locate the Position section.

7. Set Base to Corner.

8. Type 0 in the x, y text fields.

9. In the z text field, type dTiO2.

10. In the Settings window for Block, locate the Axis section.

11. Set Axis type to z-axis.

12. In the Settings window for Block, locate the Rotation section.

13. In the Rotation text field, type 0.

Array 1 (arr1)

We now create an array of the above defined geometries. This avoids the manual creation of

the components, and helps in defining a periodic structure in a convenient way.

1. On the Geometry toolbar, select Transforms and click Array.

2. In the Settings window for Array, locate the Input section.

3. In the Input objects field, select blk1 and blk2.
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4. In the Settings window for Array, locate the Size section.

5. Set Array type to Linear.

6. In the Size text field, type nBilayer-1.

7. In the Settings window for Array, locate the Displacement section.

8. Type 0 in the x, y text fields.

9. In the z text field, type dSiO2 + dTiO2.

Block 3 (blk3)

1. On the Geometry toolbar, click Block.

2. In the Settings window for Block, locate the Size and Shape section.

3. In the Width text field, type GPeriod.

4. In the Depth text field, type GPeriod/4.

5. In the Height text field, type dTiO2.

6. In the Settings window for Block, locate the Position section.

7. Set Base to Corner.

8. Type 0 in the x, y text fields.

9. In the z text field, type (nBilayer-1)*(dTiO2+dSiO2).

10. In the Settings window for Block, locate the Axis section.

11. Set Axis type to z-axis.

12. In the Settings window for Block, locate the Rotation section.
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13. In the Rotation text field, type 0.

Block 4 (blk4)

1. On the Geometry toolbar, click Block.

2. In the Settings window for Block, locate the Size and Shape section.

3. In the Width text field, type GPeriod.

4. In the Depth text field, type GPeriod/4.

5. In the Height text field, type dDefect.

6. In the Settings window for Block, locate the Position section.

7. Set Base to Corner.

8. Type 0 in the x, y text fields.

9. In the z text field, type (nBilayer-1)*(dTiO2+dSiO2) +dTiO2.

10. In the Settings window for Block, locate the Axis section.

11. Set Axis type to z-axis.

12. In the Settings window for Block, locate the Rotation section.

13. In the Rotation text field, type 0.

Block 5 (blk5)

1. On the Geometry toolbar, click Block.

2. In the Settings window for Block, locate the Size and Shape section.



115

3. In the Width text field, type ff*GPeriod.

4. In the Depth text field, type GPeriod/4.

5. In the Height text field, type dGrating.

6. In the Settings window for Block, locate the Position section.

7. Set Base to Corner.

8. In the x text field, type (1-ff)*GPeriod/2

9. In the y text field, type 0

10. In the z text field, type (nBilayer-1)*(dTiO2+dSiO2) +dTiO2+dDefect.

11. In the Settings window for Block, locate the Axis section.

12. Set Axis type to z-axis.

13. In the Settings window for Block, locate the Rotation section.

14. In the Rotation text field, type 0.

Block 6 (blk6)

1. On the Geometry toolbar, click Block.

2. In the Settings window for Block, locate the Size and Shape section.

3. In the Width text field, type GPeriod.

4. In the Depth text field, type GPeriod/4.

5. In the Height text field, type 5*dDefect.

6. In the Settings window for Block, locate the Position section.
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7. Set Base to Corner.

8. Type 0 in the x, y text fields.

9. In the z text field, type (nBilayer-1)*(dTiO2+dSiO2) +dTiO2+dDefect.

10. In the Settings window for Block, locate the Axis section.

11. Set Axis type to z-axis.

12. In the Settings window for Block, locate the Rotation section.

13. In the Rotation text field, type 0.

Block 7 (blk7)

1. On the Geometry toolbar, click Block.

2. In the Settings window for Block, locate the Size and Shape section.

3. In the Width text field, type GPeriod.

4. In the Depth text field, type GPeriod/4.

5. In the Height text field, type 5*dDefect.

6. In the Settings window for Block, locate the Position section.

7. Set Base to Corner.

8. Type 0 in the x, y text fields.

9. In the z text field, type -5*dDefect.

10. In the Settings window for Block, locate the Axis section.

11. Set Axis type to z-axis.
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12. In the Settings window for Block, locate the Rotation section.

13. In the Rotation text field, type 0.

Form Union (fin)

1. In the Model Builder window, under Component 1 (comp1) <Geometry 1

right-click Form Union (fin) and choose Build Selected.

A.3 Material Setup

MATERIALS

In the Model Builder window, under Component 1 right-click Materials and choose

Blank Material.

Material 1 (mat1)

1. In the Settings window for Material, type Water in the Label field.

2. Locate the Material Contents section. In the table, enter the following settings:

Table A.2: Refractive index parameter for superstrate layer

Properties Name Value Unit Property group
Refractive index n na 1 Refractive index

Material 2 (mat2)

1. Right-click Materials and choose Blank Material.

2. In the Settings window for Material, type SiO2 in the Label field.

3. Select Domains 1, 3, 5, 7, 9, 11, 13, 15, 17,and 19.
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Table A.3: Refractive index parameter for SiO2

Properties Name Value Unit Property group
Refractive index n sqrt(eSiO2) 1 Refractive index

4. Locate the Material Contents section. In the table, enter the following settings:

Material 3 (mat3)

1. Right-click Materials and choose Blank Material.

2. In the Settings window for Material, type TiO2 in the Label field.

3. Select Domains 2, 4, 6, 8, 10, 12, 14, and 16.

4. Locate the Material Contents section. In the table, enter the following settings:

Table A.4: Refractive index parameter for TiO2

Properties Name Value Unit Property group
Refractive index n sqrt(eTiO2) 1 Refractive index

The structure geometry at this point should look like the geometry shown in Figure 40.

A.4 Physics Setup

ELECTROMAGNETIC WAVES, FREQUENCY DOMAIN (EMW)

1. In the Model Builder window, under Component 1 (comp1) click Electromagtic

Waves, Frequency Domain (emw).

2. In the Settings windor, locate the Settings section.

3. From the Solve for list, choose Full field.



119

Figure 40: Geometries of multilayer structure with grating profile showing different compo-

nents

Port 1

Defining port boundary conditions correctly is crucial in modeling BSWs. In 2D modeling,

it is relatively easier to set the port boundaries up. However, while modeling BSWs in

3D, special care has to be taken. In order to specify the direction of input waves into the

structure and output waves exiting the structure correctly, we need to use ’periodic port

reference point’ at both the ports. This helps in correct implementation of the reference

coordinates at the input and output ports.

1. On the Physics toolbar, click Boundaries and choose Port.

2. Select Boundary 55 only.

3. In the Settings window for Port, locate the Port Properties section.

4. From the Type of port list, choose Periodic.
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5. From the Wave excitation at this port list, choose On.

6. Locate the Port Mode Settings section. Specify the E0 vector as sin(phi), cos(phi),

0 for x, y, z components.

7. In the α1 text field, type theta.

8. In the α2 text field, type phi.

9. In the n text field, type na.

10. In the fmax text field, type na.

Periodic Port Reference Point

1. Right-click on Port 1 and select Periodic Port Reference Point 1.

2. On the Settings window for Periodic Port Reference Point 1, locate the Point Se-

lection section.

3. From the Selection list, choose bManual.

4. Select Point 19 only.

Diffraction Order 1

1. Right-click on Port 1 and select Diffraction Order.

2. In the Settings window for Diffraction Order, locate the Port Mode Settings sec-

tion.

3. From the Components list, choose Out-of-plane vector.

4. In the m text field, type 1.
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5. In the n text field, type 0.

6. In the θin text field, type 0.

Diffraction Order 2

1. Right-click on Port 1 and select Diffraction Order.

2. In the Settings window for Diffraction Order, locate the Port Mode Settings sec-

tion.

3. From the Components list, choose Out-of-plane vector.

4. In the m text field, type -1.

5. In the n text field, type 0.

6. In the θin text field, type 0.

Diffraction Order 3

1. Right-click on Port 1 and select Diffraction Order.

2. In the Settings window for Diffraction Order, locate the Port Mode Settings sec-

tion.

3. From the Components list, choose In-plane vector.

4. In the m text field, type 1.

5. In the n text field, type 0.

6. In the θin text field, type 0.
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Diffraction Order 4

1. Right-click on Port 1 and select Diffraction Order.

2. In the Settings window for Diffraction Order, locate the Port Mode Settings sec-

tion.

3. From the Components list, choose In-plane vector.

4. In the m text field, type -1.

5. In the n text field, type 0.

6. In the θin text field, type 0.

Figure 41: Input and output port boundary condition parameters
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The input and output ports, and their parameter specifications are shown in Figure 41.

Port 2

1. On the Physics toolbar, click Boundaries and choose Port.

2. Select Boundary 3 only.

3. In the Settings window for Port, locate the Port Properties section.

4. From the Type of port list, choose Periodic.

5. From the Wave excitation at this port list, choose Off.

6. Locate the Port Mode Settings section. Specify the E0 vector as sin(phi), cos(phi),

0 for x, y, z components.

7. In the α1 text field, type -thetab.

8. In the α2 text field, type -phi+pi/2.

9. In the n text field, type nb.

10. In the fmax text field, type na.

Periodic Port Reference Point

1. Right-click on Port 2 and select Periodic Port Reference Point 1.

2. On the Settings window for Periodic Port Reference Point 1, locate the Point Se-

lection section.

3. From the Selection list, choose bManual.
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4. Select Point 66 only.

Diffraction Order 1

1. Right-click on Port 1 and select Diffraction Order.

2. In the Settings window for Diffraction Order, locate the Port Mode Settings sec-

tion.

3. From the Components list, choose Out-of-plane vector.

4. In the m text field, type 1.

5. In the n text field, type 0.

6. In the θin text field, type 0.

Diffraction Order 2

1. Right-click on Port 1 and select Diffraction Order.

2. In the Settings window for Diffraction Order, locate the Port Mode Settings sec-

tion.

3. From the Components list, choose Out-of-plane vector.

4. In the m text field, type -1.

5. In the n text field, type 0.

6. In the θin text field, type 0.

Diffraction Order 3
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1. Right-click on Port 1 and select Diffraction Order.

2. In the Settings window for Diffraction Order, locate the Port Mode Settings sec-

tion.

3. From the Components list, choose In-plane vector.

4. In the m text field, type 1.

5. In the n text field, type 0.

6. In the θin text field, type 0.

Diffraction Order 4

1. Right-click on Port 1 and select Diffraction Order.

2. In the Settings window for Diffraction Order, locate the Port Mode Settings sec-

tion.

3. From the Components list, choose In-plane vector.

4. In the m text field, type -1.

5. In the n text field, type 0.

6. In the θin text field, type 0.

Periodic Condition 1

1. Right-click on Electromagnetic Waves, Frequency Domain (emw) and select

Periodic Condition.

2. Select Boundaries 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56-73,

78.
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3. In the Settings window for Periodic Condition, locate the Periodicity Settings

section.

4. From the Type of periodicity list, choose Floquet periodicity.

5. From the k-vector for Floquet periodicity list, choose [From periodic port].

Figure 42: Floquet periodic boundary condition parameters

Periodic boundary condition specifications are shown in Figure 42.
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Periodic Condition 2

1. Right-click on Electromagnetic Waves, Frequency Domain (emw) and select

Periodic Condition.

2. Select Boundaries 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 81-98.

3. In the Settings window for Periodic Condition, locate the Periodicity Settings

section.

4. From the Type of periodicity list, choose Floquet periodicity.

5. From the k-vector for Floquet periodicity list, choose [From periodic port].

A.5 Mesh Setup

Meshing the geometry is an important aspect of finite element simulation. The resolution

of the mesh has a significant importance in determining the accuracy of the numerical sim-

ulation. As a rule of thumb, the smallest mesh element size in finite element is typically

one-tenth of a wavelength. The mesh parameters used in our simulation are shown below

and in Figure 43.

MESH 1

1. In the Model Builder window, under Component 1 (comp1) click Mesh 1.

2. In the Settings window for Mesh, locate the Mesh Settings section.

3. From the Sequence type list, choose User-controlled mesh.

Size
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1. In the Settings window for Size, locate Element Size section.

2. From the Calibrate for list, choose General physics.

3. Click on the Custom radio button.

4. In the Settings window for Size, locate Element Size Parameters section.

5. In the Maximum element size text field, type 0.555E-7.

6. In the Minimum element size text field, type 1.11E-7.

7. In the Maximum element growth rate text field, type 1.3.

8. In the Curvature factor text field, type 0.2.

9. In the Resolution of narrow regions text field, type 1.

Free Triangular 1

1. Right-click on Mesh 1, under More Operations choose Free Triangular.

2. In the Settings window for Free Triangular 1, locate Boundary Selection section.

3. From the Geometry entity level list, choose Boundary.

4. From the Selection list, choose Manual.

5. Select the Active toggle button.

6. Select Boundaries 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, and 52.

Copy 1

1. Right-click on Mesh 1, under More Operations choose Copy.
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2. In the Settings window for Copy 1, locate Source Entities section.

3. From the Selection list, choose Manual.

4. Select the Active toggle button.

5. Select Boundaries 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, and 52.

6. In the Settings window for Copy 1, locate Destination Entities section.

7. From the Selection list, choose Manual.

8. Select the Active toggle button.

9. Select Boundaries 81-98.

Free Triangular 2

1. Right-click on Mesh 1, under More Operations choose Free Triangular.

2. In the Settings window for Free Triangular 2, locate Boundary Selection section.

3. From the Geometry entity level list, choose Boundary.

4. From the Selection list, choose Manual.

5. Select the Active toggle button.

6. Select Boundaries 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, and

75.

Copy 2

1. Right-click on Mesh 1, under More Operations choose Copy.

2. In the Settings window for Copy 2, locate Source Entities section.
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Figure 43: Mesh parameters

3. From the Selection list, choose Manual.

4. Select the Active toggle button.

5. Select Boundaries 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, and

75.

6. In the Settings window for Copy 2, locate Destination Entities section.

7. From the Selection list, choose Manual.
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8. Select the Active toggle button.

9. Select Boundaries 56-78.

Free Tetrahedral 1

1. Right-click on Mesh 1, choose Free Tetrahedral.

2. In the Settings window for Free Tetrahedral 1, locate Domain Selection section.

3. From the Geometry entity level list, choose Remaining.

4. Select the Active toggle button.

STUDY 1

Step 1: Frequency Domain

1. In the Settings window for Frequency Domain, locate the Study Settings section.

2. In the Frequencies text field, type f0.

Parametric Sweep

1. On the Study toolbar, click Parametric Sweep.

2. In the Settings window for Parametric Sweep, locate Study Settings section.

3. Click Add.

4. From the Parameter name dropdown menu, choose phi (Azimuthal angle of

incidence in both media).

5. Click Range.
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6. In the Range dialog box, type 0[deg] in the Start text field.

7. In the Stop text field, type 10[deg].

8. In the Number of values, type 11.

9. Click Replace.

10. Click Range.

11. In the Range dialog box, type 10.1[deg] in the Start text field.

12. In the Stop text field, type 14.5[deg].

13. In the Number of values, type 100.

14. Click Add.

15. Click Range.

16. In the Range dialog box, type 15[deg] in the Start text field.

17. In the Stop text field, type 20[deg].

18. In the Number of values, type 5.

19. Click Add.

20. On the Study toolbar, click Compute.

A.6 Results

RESULTS

The results presented in Figure 44 and 45 are a subset of the results described in chapter 6.

Electric Field (emw)



133

Figure 44: Electric field profile, y component, of azimuthal Bloch surface wave

1. Right-click on Results and select 2D Plot Group.

2. Locate the Data secion. From the Parametric value (phi (rad)) list, choose

0.20963.

3. Right-click on 2D Plot Group 1 and select Surface.

4. Locate the Data section. From the Data set list, choose From parent.

5. In the Expression text field, type emw.Ey.

6. Right-click on Surface 1 and choose Height Expression.

7. In the Offset text field, type 1.6E-6.
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Figure 45: Reflectance (R) and Transmittance (T) of azimuthal Bloch surface wave

8. Right-click on 2D Plot Group 1 and select Surface.

9. Locate the Data section. From the Data set list, choose From parent.

10. In the Expression text field, type emw.Ey.

11. On the 2D Plot Group 1 toolbar, click Plot.

1D Plot Group 2

1. Right-click on Results and select 1D Plot Group.

2. Right-click on 1D Plot Group 2 and select Global.
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3. In the Settings window for Global, locate y-Axis Data section.

4. In the table, enter the following settings:

Table A.5: Reflectance and Transmittance from S-parameters
Expression Unit Description
abs(emw.S11)ˆ 2 1 R
abs(emw.S21)ˆ 2 1 T

5. Locate the x-Axis Data secion. From the Parameter list, choose Parameter value.

6. From the Unit list, choose 0.

7. On the 1D Plot Group 2 toolbar, click Plot.


