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We all want to help one another. Human beings are like that. We 
want to live by each other’s happiness - not by each other’s misery.  
 
We don’t want to hate and despise one another. In this world there 
is room for everyone. And the good earth is rich and can provide 
for everyone.  
 
The way of life can be free and beautiful, but we have lost the way.  
 
Greed has poisoned men’s souls, has barricaded the world with 
hate, has goose-stepped us into misery and bloodshed.  
 
We have developed speed, but we have shut ourselves in. 
Machinery that gives abundance has left us in want.  
 
Our knowledge has made us cynical. Our cleverness, hard and 
unkind. We think too much and feel too little.  
 
More than machinery we need humanity. More than cleverness we 
need kindness and gentleness.  
 
Without these qualities, life will be violent and all will be lost. 
 
 
 

-- Charlie Chaplin, 
from The Great Dictator (1940) 
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ABSTRACT 

Cellular automata are a set of discrete structures generated and manipulated by 

predetermined rules, in which each state (or evolution) is influenced by the previous. 

Utilizing the simplicity of this fundamental structure, a number of configurations have 

been organized and derived from elementary (single dimensional) cellular automata. By 

harvesting the evolution of these structures as output, they lend greatly to random 

number generation and by extension, encryption. Analyzing, testing, and programming 

these methods has led to observations on optimal approaches to each. Utilizing the 

Diehard testing suite and the National Institute of Standards and Technology (NIST) 

Statistical Testing Suite (STS), configurations can be judged against each other as well as 

external systems. Optimal methods for generating configurations, visual observation 

and data analysis are compiled in a workbook program. A complete analysis for the 

state diagrams of k [1, 27] in the 3-bit rule space is included and a Cellular Automata 

Standard of Encryption (CASE) is suggested for real world use. 
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CHAPTER ONE: CELLULAR AUTOMATA 

SECTION 1.1 – Elementary Cellular Automata 

All structures operate on rules, whether it is the natural world relying on the laws of 

physics or an artificial environment relying on compiled logic, which itself is arguably an 

extension of physics. An elementary cellular automata (ECA), shown in Figure 1, consists 

of a single dimension of cells, each set in an active (binary 1, logic high) or inactive 

(binary 0, logic low) state. Each ECA begins with a seed, a string of active or inactive 

cells, serving as the initial state before the start of automation, in which a rule produces 

the next state of a cell depending on its neighborhood and fundamental look up table. 

 

c0 c1 ... ck-2 ck-1

SEED 
t0

ck-1c0c1 c0c1c2 ... ck-3ck-2ck-1 ck-2ck-1c0

RULE
Ø 

RULE
Ø 

RULE
Ø 

RULE
Ø 

RULE
Ø 

c0 c1 ... ck-2 ck-1

NEXT
t1

 

Figure 1 – Elementary Cellular Automata of Size k Using a 3-cell Neighborhood 
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SECTION 1.2 – Rules and Neighborhoods 

A rule is built from a fundamental function or polynomial expression of a basic binary 

neighborhood – in the case of ECA the neighborhood consists of the cell and its two 

adjacent cells, or 3 bits. As a result, there are only 8 (or 23) states that this neighborhood 

can exhibit, each producing a different output based on their position in that rule’s 

lookup table (LUT), shown in Figure 2. Expanding the possible rules for a neighborhood 

of 3 bits creates a complete neighborhood of 256 (or 2 ^ [2^3] = 28) fundamental 

functions, denoted by their decimal value, i.e. Rule 0 through Rule 255. To 

accommodate the left and right extremes’ lack of a third adjacency, the ECA is looped 

around as shown in Figure 1, making the extremes adjacencies of each other. 

 

0Rule 30 000
1001
1010
1011
1100
0101
0110
0111

0 1

1 1

0 0

1 0

ABC
0 1

00

01

11

10

 A B + A C + AB C  = A XOR (B OR C)

A

B

C
3010 = 000111102

 

Figure 2 – Tri-Cell Neighborhood Diagram with k-Map Reduced Function - Rule 30 

 
Applying the fundamental rules across the ECA produces its next evolution, or state. 

Following the initial state, each successive state is a temporal iteration, or timestep, 
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which can be used to describe a specific state of the structure when in combination 

with the ECA’s seed (timestep 0, or t0) and governing rule. Figure 3 shows Rules 30, 45, 

60, and 90 for the 32-bit seed 1111 1101 1111 0111 1110 0000 1110 10112. 

 

 

Figure 3 – Automation of ECA with Rules 30, 45, 60, and 90 (left to right) 
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SECTION 1.3 – Adjacencies 

Varying these rules and the way the neighborhoods are represented leads to a number 

of basic configurations. Extending the neighborhood to 5 bits produces (2 ^ [2 ^ 5] = 

232), or 4,294,967,296 rules, and further extending the neighborhood to 7 bits produces 

(2 ^ [2 ^ 7] = 2128), or 340,282,366,920,938,463,463,374,607,431,768,211,456 rules. 

CA rapidly becomes exponential as the configurations and basic neighborhoods evolve 

beyond their ECA limits. In addition, each cell’s adjacencies are not static, allowing for 

even more variation in the basic representation of single dimension CA by moving the 

physical adjacency to cells that do not directly connect, shown in Figure 4. 

 

cx

cx-y ... cx ... cx+2

MULTI-BIT
RULE

Ø 

cx

... ...cx-y cx+y cx-1

cx-3 cx cx+3

3-BIT
RULE

Ø 

cx

cx-2 cxcx-3 cx+1 cx+2 cx+3

 

Figure 4 – Extending ECA Neighborhoods and Changing Adjacencies 

 

Representations of the CA lattice also lend to variation. Expanding into multiple 

dimensions and including additional generators on the boundaries are prime examples. 

In those cases, the use of fundamental rules changes to use more than one 

neighborhood and rule results are combined. John von Neumann’s two dimensional 

neighborhood of four adjacent cells is one of the first examples of this configuration. 

See chapter two for more detail on configurations. 
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SECTION 1.4 – Complete Description of a k-Space 

CA are finite objects – the k-Space of any particular rule can be completely defined for 

study and analysis. For example, an ECA of length 8 has a complete k-Space of (28 = 

256) potential states. In this space, there are three components – Cycles, Transients, and 

Garden of Eden States (GoES). Any given state is considered to fall into one of these 

three groups. When analyzed together, they show the CA’s “basin of attraction”. 

 

SECTION 1.4.1 – Garden of Eden States (GoES) 

A state that cannot be entered from any other state in the k-Space is considered a 

Garden of Eden state. Without the reverse algorithm (see 5.2), determining if a state is a 

GoE would require analyzing the next states of every state, putting them into a two 

column list and determining what entry on the left does not occur in the right, as shown 

in Figure 5. 

 

000
001
010
011
100
101
110
111

000
111
111
010
111
001
100
000

Rule 30
k = 3

STATE NEXT

000
001
010
011
100
101
110
111

GOEs

 

Figure 5 – GoE Discovery, Two Column Approach 
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SECTION 1.4.2 – Transients 

A state that is only entered once in automation is considered a transient. All transients 

originate from GoEs, since they will never be entered. By process of elimination, any 

state that does not fall into a cycle and is not a GoE must be a transient. Transient 

length is determined by the number of cycles between the state and cycle entry. In the 

complete analysis, the longest transient refers to the GoE state with the longest length 

before cycle entry. Figure 6 shows an example of two transients. 

 

011
010
111
000
000

t0

t1

t2

t3

t4

GOE, Length 3

CYCLE (Length 0)

TRANSIENT, Length 2

TRANSIENT, Length 1
Rule 30

k = 3

 

Figure 6 – Transient Diagram Using Rule 30, Size k = 3, GoE 011 
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SECTION 1.4.3 – Cycles 

Eventually, a state will be entered which will iterate into other states until it repeats, 

forming a cycle due to the natural law of the rule. There are three types of cycles. A 

regular cycle occurs when a transient or GoE enters a state that iterates for a number of 

states before the original entry is repeated. A single cycle occurs when the state cycles 

to itself – for Rule 30 this happens with a seed of all zeroes, since the next state is (000) 

= 0, as seen in Figure 6. An orphan cycle occurs when no entry points are defined. For 

Rule 105, this happens with even-length seeds of alternating 0s and 1s (ex. 01010101, 

k = 8), which forms the next state of 10101010, then back to 01010101. Figure 7 shows 

the differences between types. For Rule 105, k = 4, there are no transients or GoEs, 

making all the cycle states orphans. 

 

0000

t0

t1

Rule 30, k = 4

0010
0111

t2

t3

SINGLE CYCLE

0001
1011

t0

t1

Rule 30, k = 4

REGULAR CYCLE

1000
1101

t6

t7

0100
1110

t4

t5

t8

1111 1101
1111

t0

t1

Rule 105, k = 4 – all 16 states make orphan cycles

ORPHAN CYCLES

0000

0100
t0

t1

0001

1000
t0

t1

0010

1010
t0

t1

0101

t0 0011

t0 0110

1101
t0

t1

0111

t0 1001

1110
t0

t1

1011

t0 1100

 

Figure 7 – Cycle Types: Single, Regular, and Orphan 

  



8 
 

 
 

SECTION 1.4.4 – Basin of Attraction 

Combining GoEs, transients and cycles will show a complete picture of the k-Space of a 

CA in the form of basins of attraction, where each non-orphan cycle is considered an 

attractor. Since there can be many unique cycles, there can be many attractors. The very 

outmost leaves are GoEs and their inner branches are transients. Figure 8 shows the 

basin of attraction for rule 30, k = 4 in decimal form. There are no transients since each 

GoE immediately enters a cycle. States 5 and 10 (decimal values) are orphan cycles. The 

main attractor is made up of 1, 11, 2, 7, 4, 14, 8, and 13. The 0 state is a minor attractor. 

 

00000
10001
20010
30011
40100
50101
60110
70111

1000
1001
1010
1011
1100
1101
1110
1111

8
9

10
11
12
13
14
15

00000
111011
70111

141110
141110
50101

131101
40100

1101
0111
1010
0010
1011
0001
1000
0000

13
7

10
2

11
1
8
0

STATE NEXT

11

1

2

7

4

14

8

13

0

5

10
3

6

9

12

15Basin of Attraction, Rule 30, k = 4

 

Figure 8 – Basin of Attraction for Rule 30, k = 4 
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SECTION 1.5 – Research Problem 

Cellular automata were first formally described by John von Neumann in 1966 [1] and 

their use in random number generation described later by Stephen Wolfram in 1986 [2]. 

A basic element of this research is intended to provide background on specific 

configurations for the purpose of RNG creation and to form a more complete picture of 

the practical uses of ECA, in addition to the theoretical concepts. Rather than assume 

the conclusions of past research as fact, the focus of this research was to reaffirm the 

core knowledge of ECA and develop a model for testing and automation.  

 

SECTION 1.5.1 – Focus 1: ECA Chaotic Rules and Configurations 

1. What rules and configurations are conducive to chaotic structure? 

Of the 256 basic functions, which have the longest cycles and are thus chaotic in 

nature, allowing for pseudo-random variation in output? Research plans include the 

creation of software that can model and generate ECA rules and configurations, then 

complete analysis and random number testing on the software’s output. 

 

SECTION 1.5.2 – Focus 2: ECA Random Number Generators 

2. Can ECA be used for practical random number generation? 

While proving certain rules and configurations are chaotic and capable of passing 

random number tests, at what point is ECA capable of producing random numbers at a 

practical level? Research plans include rigorous testing of all ECA rules at increasing 

complexity (rising seed/key lengths) to determine practical RNG applications. 
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SECTION 1.5.3 – Focus 3: ECA Encryption 

3. If RNG creation is possible, how much complexity is necessary for encryption? 

Random number generation on its own is not enough to satisfy the growing needs of 

encryption in the modern world. What kind of complexity is necessary to actualize ECA 

for use in encryption? Research plans include initial evaluation of various 

configurations to judge which would be best suited for parallelized encryption, then 

concentrated testing to determine what rules are best suited for practical encryption. 
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CHAPTER TWO: CONFIGURATIONS 

SECTION 2.1 – Variations 

Various CA configurations were designed/tested for use as Pseudo Random Number 

Generators (PRNGs), differing by their adjacencies, boundaries, ruling combinations, and 

representations. Each has its own distinct advantages and disadvantages depending on 

rules and fundamental design. Among them are the 1D (3-bit, 5-bit), 2D (von Neumann, 

Moore, Arrow, Hexagonal), Cascade, and Inverted Pyramid.  

 

SECTION 2.2 – Spatial and Temporal Rules (1D) 

As shown in section 1.1, ECA form the fundamental 1D configuration, but they can be 

augmented using a variety of tools – including spatial and temporal rules. A spatial rule 

is a rule applied to a given cell. A temporal rule is a rule applied to an entire timestep. 

Under a single rule, both the spatial and temporal rules match. When using more than 

one rule, a choice must be made as to how they are represented. Under a spatial 

configuration, every alternating cell in an iteration is computed with a separate rule. 

Under a temporal configuration, every alternating iteration is computed with a separate 

rule. It is possible to combine the two with differing rules, resulting in a spatial-

temporal hybrid, though effects of rule combination and potential collision/cancellation 

need to be taken into consideration. Figure 9 displays the differences between the two. 
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c0 c1 ... ck-2 ck-1

SEED 
t0

Øa Øa Øa Øa Øa 

c0 c1 ... ck-2 ck-1
t1

c0 c1 ... ck-2 ck-1

SEED 
t0

Øa Øb Ø... Øy Øz 

c0 c1 ... ck-2 ck-1
t1

Øb Øb Øb Øb Øb 

c0 c1 ... ck-2 ck-1
t2

TEMPORAL SPATIAL

... ... ... ... ...tn

Ø = RULE

Øa Øb Ø... Øy Øz 

c0 c1 ... ck-2 ck-1
t2

 

Figure 9 – Temporal (left) and Spatial (right) Ruling 

 

SECTION 2.3 – Von Neumann Neighborhood (2D) 

Expanding the 1D ECA to a lattice or matrix of cells allows the representation of CA in 

two dimensions. Instead of two adjacencies, the lattice provides up to 8 direct 

connections. John von Neumann originally limited this neighborhood to the four 

immediate adjacencies on the cell perimeter. Just as in ECA, 2D grids are continuous in 

nature, analogous to a torus. To continue using the 3 bit rules, three steps are involved 

for computing the next state of a cell, as shown in Figure 10. A cell is computed 

horizontally, vertically, then ruled with a combination of the two results and the value 

of the original cell. The same or different rules can be specified for each calculation. 
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Figure 10 – 2D Von Neumann Neighborhood 

 

SECTION 2.4 – Moore Neighborhood (2D) 

Edward F. Moore described his neighborhood using all 8 surrounding cells, leaving a 

total of 9 values for computation. Four steps are required to compute the next rule, 

generated horizontally or vertically, as shown in Figure 11. Three results are computed 

from rows (horizontal) or columns (vertical) then ruled together for the final result. 
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Figure 11 – Moore Neighborhood, Horizontal (left) and Vertical (right) 
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SECTION 2.5 – Arrow Neighborhoods (2D) 

Arrow configurations are an augmentation of von Neumann neighborhoods, using a 

direction to pull an initial rule. Only two steps are involved for calculation. First, the 

directional bit (up, down, left, right) is ruled in conjunction with the two nearest 

adjacencies then ruled in the order they appear on the grid, shown in Figure 12. 
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Figure 12 – Arrow Neighborhoods (2D) 

 

SECTION 2.6 – Hexagonal Neighborhoods (2D) 

A hexagonal grid contains cells with six adjacencies, leaving multiple interpretations for 

rules and operations. Three results can be obtained by gathering rules from the 

hexagonal axes (x, y, z) then combined for a final result, similar to the Moore 

neighborhood. Alternatively, two results can be obtained from the outer shell (3 bit 

halves) then ruled together with the internal bit. Adjacency wrapping needs to be taken 
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into consideration since some grid sizes do not symmetrically mirror boundaries. Figure 

13 shows axis ruling with 4 calculations and shell ruling with 3 calculations. 
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Figure 13 – Hexagonal Neighborhoods (2D), Axis Ruling (left) and Shell Ruling (right) 

 

SECTION 2.7 – Cascade (1.5D) 

Cascade configurations generate sub-blocks of CA based off an initial seed block. An 

arbitrary length (K1) is used to generate an arbitrary number of timesteps (T1) with a 

starting rule. A number of sub-blocks (equal to K1) are seeded from the vertical columns 

in the original seed block, meaning (T1 = K2). The sub-blocks can then be independently 

iterated and the data collected for use in a PRNG. T2 is decided by how much data is 

requested, using the following formula and adding one to compensate for estimation: 

𝑇2 =
𝑑𝑎𝑡𝑎

(𝐾1 ∗ 𝑇1)
+ 1 

Figure 14 shows a diagram of the cascade configuration using a seed block of k = 8, 7 

timesteps, and Rule 30. Karim Salman describes this structure in his ECA research 

platform and refers to it as “Twister”. [3] 
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Figure 14 – Cascade Configuration, Using a Starting Block of Size 8 with 7 Timesteps 

 

SECTION 2.8 – Inverted Pyramid (1D) 

A fundamental problem with ECA is that the boundaries wrap and influence the entire 

lattice within a set number of timesteps. To avoid this influence, a CA analogous to an 

inverted pyramid is generated, starting with a large odd-numbered k and losing two bits 

per timestep until it reaches the final step, with a single cell remaining, shown in Figure 

15. Salman describes this as the unbounded ECA [3]. By not using the extremes of each 

timestep, the noise influence from wrapping is negated. For purposes of random 

number generation, the data size must be used to determine the initial k. The next 
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whole integer (ceiling) of the data length’s square root is taken, incremented to account 

for the row that will be used by the seed (so it does not mix with the end results), 

multiplied by 2, then subtracted by 1 to gain an odd-numbered k that will produce at or 

greater than the data length requested, according to the following formula: 

𝑘 = (𝑐𝑒𝑖𝑙𝑖𝑛𝑔(√𝑑𝑎𝑡𝑎) + 1) ∗ 2 − 1 
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Figure 15 – Inverted Pyramid Configuration with Rule 30, k = 9 
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CHAPTER THREE: CELLULAR AUTOMATA STANDARD OF ENCRYPTION 

SECTION 3.1 – Principle Theory 

Encryption standards are tricky systems to create, being only as strong as the principle 

and math behind them. Cellular Automata’s biggest strength lies in the guarantee of 

computation – there is no known way to skip computation and figure out the exact data 

from a seed’s timestep without actually calculating all the intermediate steps. In that 

respect, introducing a “critical time” factor can also increase complexity. A cellular 

automata standard of encryption, hereby referred to as CASE, can be used to encrypt 

data in a desired key configuration, similar to the way AES (the U.S. approved Advanced 

Encryption Standard) has 128, 192, and 256 blocks. There is no real limit on the key 

size, so long as the same encryption method is utilized on the decryption end. For the 

system described in CASE, the Cascade configuration is modified to accommodate 

certain key sizes. The seed block and cascade rules used in this system will need to be 

ones that produce the most reliable passing pseudo-random results in all tests – in 

other words, the combined result of the three focal points for the research problem. 
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SECTION 3.2 – CASE Structure 

Cascade
K1 = 128, 192, 256
T1 = 128, 256, 512

s0 s1 s2 ... SK1-3 SK1-2 SK1-1

S0, K2 = 128, 256, 512 Sk-1, K2 = 128, 256, 512

...

Critical time 
factor, T2

Key, K1

Block,
T1

Bit 0-0

Bit 1-0

Bit  ..

Bit (K2-2)-0

Bit (K2-1)-0
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Bit  ..

Critical time 
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K2 = T1
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Figure 16 – CASE Structure and Breakdown 

 
Figure 16 shows the CASE structure, with 9 basic configurations suggested. Further 

configurations are possible, but for simplicity only three choices are shown for the key 

and internal complexity sizes. The key can be a 128, 192, or 256-bit number, which is 

generated by hashing or encrypting an ASCII-input character into a 16, 24, or 32-byte 

array. The block size is the required amount of data to encrypt – i.e. a file or array of 

data will be segmented into 128, 192, or 256 bit blocks, then encrypted using this 
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method, with an internal complexity generated by the T1 value. 128-bit CA will not 

cycle for the critical period and by using bits from each seed, there should be more than 

enough entropy to produce pseudo-random results. To increase the amount of time 

required to decrypt, a critical time factor (of a very high magnitude) can be added, but 

since such information would not be stored in a key, it would more likely become a 

CASE configuration. Such factors could be thousands, millions, or billions of timesteps – 

there is no imposed limit. The decryption end would need to run through the 

calculations before arriving at usable stream data. This could be used to combat key 

interception for ultra-critical time periods and also to eliminate correlation between the 

key block and the stream data. 

 

Plaintext [Byte array, 16, 24, 32]

CASE stream [Byte array, 16, 24, 32]

XOR Stream cipher

B0-0

Block 0

Byte 0 ... Byte 15, 23, 31

B0-1 B0-2 B0-3 B0-4 B0-5 B0-6 B0-7

B0-0
Row = Block Index

Column = Block Index mod 
T1 complexity

B[Block Index]-Seed 0

B0-1
Row = Block Index

Column = Block Index mod 
T1 complexity

B[Block Index]-Seed 1

CASE Encrypted Ciphertext

 

Figure 17 – CASE Block Breakdown 

 
Figure 17 shows the block breakdown as CASE moves through its paces. The row index 

will change if a critical time factor is added.  
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SECTION 3.3 – CASE Configurations 

Similar to how current encryption systems have levels of use for classified or critical 

data, basic configurations for CASE and their suggested standard names are summarized 

in Table 1. T1 complexity will need to be investigated on a case by case basis, and will 

not be represented here.  

 
Table 1 – CASE Standards Summary 

CASE Standard Usage Breakdown 

CASE-128 General encryption 128-bit key/block size 

CASE-192 General encryption 192-bit key/block size 

CASE-256 General encryption 256-bit key/block size 

CASE-128T1 
CASE-192T1 
CASE-256T1 

Low-level time-sensitive 
hardware 

CASE-XXX plus T1 time 
factor of 1 million 
timesteps 

CASE-128T2 
CASE-192T2 
CASE-256T2 

Mid-level time-sensitive 
hardware 

CASE-XXX plus T2 time 
factor of 1 billion 
timesteps 

CASE-128T3 
CASE-192T3 
CASE-256T3 

High-level time-sensitive 
hardware 

CASE-XXX plus T3 time 
factor of 100 billion 
timesteps 

 

 
What this breaks down in to is the possibility of a computing system having mapped out 

all the possible 128, 192, and 256-bit CA diagrams. As demonstrated in the state 

diagram data in Section 5.5, the data necessary to hold these diagrams is too 

cumbersome for any real world theoretical storage. As computing power progresses, 

CASE standards can be scaled to match with higher time critical factors, leaving the 

general scheme intact. As such, provided no attacks on the system are extremely severe, 

it should be able to withstand the test of time, which is why it is very important to 

choose rules that have the highest possibility of maintaining pseudo-random streams. 
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CHAPTER FOUR: RANDOM NUMBER TESTING 

SECTION 4.1 – Fallacy of Random Number Generation 

Contrary to first impressions, the generation of random numbers means that by 

definition they are no longer “random”, in that they are not unexpected. In respect to an 

arbitrary viewpoint, they may appear random, which is why this process is always 

referred to as pseudo random number generation. CA are completely predictable 

provided you know the starting state and acting rules. In the same manner, one could in 

theory totally predict Earth’s weather with exact pressure simulations, measurements, 

and all applicable knowledge needed for the current state. Since this is not technically 

feasible as of this writing, the weather remains somewhat “random”. 

 

SECTION 4.2 – Diehard Battery of Randomness Tests 

Originally written in Fortran, the Diehard battery of tests is a common utility used to 

measure the statistical randomness of a given set of data, parsed into 32-bit numbers 

[4]. There are 17 tests that can be run, provided there is enough binary data for 68 

million random 32-bit integers (67,108,889 * 4 bytes = 256 MB). Three tests can be 

omitted for smaller data sets with a minimum of 2.5 million 32-bit integers. 229 

statistical p-values are generated from these tests, along with an overall p-value. The 

importance of these values is explained in section 3.4. Figure 18 shows the starting 

prompt for the Diehard program, with a short caveat on p-values. 
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Figure 18 – Diehard Command Prompt with Brief Explanation of P-Value Results 

 

SECTION 4.3 – NIST Statistical Testing Suite (STS) 

The U.S. National Institute of Standards and Technology (NIST) provides a statistical 

testing suite, shown in Figure 19, written in C for the use of testing random number 

generators [5]. Similar to Diehard, it provides 15 tests for randomness, however it uses 

several independent streams of data to perform many tests at once. Using 100 streams 

of 400,000 bits each (40,000,000 bits total), every test in the suite can be run for a 

rounded result. The testing suite documentation gives details on the acceptance of any 

particular test and passing results of over 90% can be safely called “random”. 

 

 

Figure 19 – NIST STS, Recoded to Pass in File Names with Internalized Options 
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SECTION 4.4 – Probability and p-Values 

In respect to random number generation, a p-value (ranging from 0.0 to 1.0) is a 

measure of probability that the given set of data is “random”, according to a threshold 

specified by α (alpha) [6]. Five steps in evaluating random p-value results are: 

1. Set null hypothesis – “This set of data is random.” 

2. Set alternative hypothesis – “This set of data is not random.” 

3. Calculate the p-value for the random test (in this case, Diehard or NIST is 

responsible for this step), using the known distributions for the given tests. 

4. Choose a significance level (alpha). An alpha that is too small will invariably 

judge many sets random and an alpha that is too high will invariably judge sets 

to be non-random.  

a. NOTE: The documentation for NIST uses an alpha of 0.01. For most early 

Diehard testing, an alpha of 0.0005 was used, which was later 

considered too lenient. For the final tests, an alpha of 0.01 was used for 

both testing suites. 

5. Judge p-value based on alpha. If inside the threshold (0 + alpha < p-value < 1 - 

alpha), accept the null hypothesis. If at or outside the threshold, reject the null 

hypothesis in favor of the alternative. 

 

SECTION 4.5 – Normal Distribution 

A single p-value is not usually considered enough to form a decision, which is why 

Diehard and the NIST STS provide so many tests. When many p-values are calculated for 

a given set of data, it is important that they follow a normal distribution. Deviations 
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from this distribution indicate that there are patterns within the data that came to light 

in a particular group of tests with similar pressure points. Figure 20 shows two results 

from Diehard testing – on the left is a result that is likely random since it follows a 

normal distribution. On the right, the p-value graph is skewed upward, meaning it is 

likely to be non-random. 

    

Figure 20 – P-value Distributions: Likely Random (left), Non-random (right) 
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CHAPTER FIVE: CODING AND TESTING CA 

SECTION 5.1 – Optimization and Best Practices 

ECA are simple structures which can be replicated in virtually any programming 

language built with an array data structure. Important considerations are calculation 

efficiency, representation, and ease of coding. Writing elementary calculators in Python 

2.7 may only take a handful of lines, but the calculations may take 1000x longer than 

the equivalent in C, C++, or other languages closer to pure assembly. The following best 

practices were devised to handle CA programming from scratch: 

1. Learn CA first. Repeating old methodology is an easy trap to fall in. 

2. Choose a comfortable language. Preferably “fast” and well documented. 

3. Avoid excessive use of expensive data types.  

a. For example, storing 0000 1101 1100 1100 1011 1011 1100 1100 (32 

cells) as a string takes up to 32 bytes in languages where characters are 

stored as an 8-bit data type.  

b. Instead, if a 32-bit integer data type or array of 32 Boolean (true/false, 

1/0) variables is used, the data size is simply 4 bytes (32 bits). As a result, 

any actions to handle those bits become much simpler than manipulating 

characters in a string, which normally have a high data overhead. 

4. Separate the CA calculator program from any custom User Interfaces (UIs). 

5. Plan for data consumption – CA is by its nature exponential, and any data 

gathered will grow at an accelerated pace. 

6. Use source control and backups – data loss and power outages are unavoidable. 
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SECTION 5.2 – Object Oriented Approach 

Early program designs were focused primarily on proof of concept CA calculators and 

on-demand functionality, which while useful for gaining a technical understanding of 

CA, valuable time could have been lent more effectively toward automating testing and 

analysis. To that end, major efforts were made to consolidate the programming 

constructs into a cohesive entity as well as to implement source control and 

maintenance to aid in continued development.  A framework for these operations is 

shown in Figure 21, with the workbook generating and analyzing tests via automation. 

 

CAWorkbook

Input.txt
[config string]

CADriver

Diehard Tester

[config-string].txt

NIST_STS

Command:
400000 

100 
out.bin

finalAnalysisReport.txt
CAWorkbook

Analysis

Generate NIST 
Analysis

Generate 
Diehard 
Analysis

out.bin

CADriver

Input.txt
[config string]

[USER]

 

Figure 21 – CA Testing Framework 
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SECTION 5.3 – CA Workbook 

 

Figure 22 – CA Workbook, Visual C# (.NET 4.6) 

 
To more effectively visualize the CA generation and aid in testing, the CA Workbook 

shown as a screenshot in Figure 22 was created to act as a front end interface for 

accessing the CA Driver and generating random data for testing. Options for Diehard 

and NIST STS testing are interfaced by passing CA configuration strings to the driver 

program, sending their output to the testers then analyzing their results. Since research 

is ongoing, the software grows as more CA configurations and analysis options are 

added. See Appendix B for a brief breakdown of all the screens as of this writing. 
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SECTION 5.3.1 – Diehard Analysis 

To generate a Diehard test, the form creates a configuration string based on the CA 

options, then feeds it into the driver program, which dissects the options and generates 

enough data to fill the requested length. Diehard is integrated into the driver, and it 

runs its tests as soon as data generation is completed, then outputs a results file with 

230-270 p-values, depending on the data length. If there were not enough random 

numbers for testing, the results file is not generated. Once alerted that testing is 

complete, the CA Workbook program analyzes the result. 

 

SECTION 5.3.2 – NIST STS Analysis 

To generate a NIST test, the configuration string is passed to the driver requesting 

enough data for 40 million bits while a command is passed to the NIST STS requesting 

100 stream tests of 400,000 bits each, taken from a binary file called “out.bin”. Once 

the driver generates the data, it stores it in a binary file then the NIST suite begins 

testing on the file. Once completed, a final analysis report is generated and then 

analyzed by the CA Workbook program. 
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SECTION 5.4 – Configuration Strings 

Four revisions of the configuration string system were created in the course of testing, 

each adding functionality or correcting past oversights, making them incompatible 

between each other. Revision 0 sets the basic format, containing all information for the 

CA configuration and the seed to fill the starting state. Revision 1 added an option for 

external data to be fed into the boundaries of CA (undoing the ECA wrap-around) as 

well as a test number feature for automation. Revision 2 added an option for specifying 

output files. Revision 3 added an extra output flag for von Neumann correction [7]. 

Figure 23 shows the way the configuration strings are connected – each arrow 

represents a dash. For example, 0-0-1-8-4_30_45_86_90-82000000-00001000-

00110101 breaks down into Revision 0, Configuration 0 (1D), 1 dimension, size 8, 4 

rules (30, 45, 86, 90), 82 million bits of data, output flags, and 00110101 as the seed. 

 

A
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B
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C
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D
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A
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[Ends File]
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A
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J
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K
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A
[Revision 3] ... G

[9 Output flags] ... K
[Test No.]

 

Figure 23 – CA Configuration Strings 
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SECTION 5.5 – CA Driver 

Each section of the driver corresponds to options in the CA configurations (see chapter 

2). Two primary data structures were created for the driver – Calculator and DiehardTest, 

as shown in Figure 24. The Collector (which handles most CA configurations), Cascade, 

and Pyramid classes all inherit from Calculator, which itself inherits from DiehardTest – 

as such, every CA calculator is also a tester. Diehard’s code was originally packaged in a 

single file and was relatively easy to integrate into the driver to facilitate testing. Due to 

its intricate organizational structure, the NIST testing suite was kept separate as a 

standalone executable. Further development would be needed to integrate NIST 

directly into the CA driver, mostly for organizational gains rather than functional.  

 

 

Figure 24 – CA Driver Class Diagram 
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SECTION 5.6 – Automation 

Automated CA testing required careful planning to ensure data integrity and meaningful 

results. Drawing on options from the original form (renamed CA1), a new automation 

form (CA2) was created to address the C# to C++ interfacing problem faced with the 

first iteration – mostly due to string interpretation since characters in C# are 16-bit 

types and characters in C++ are 8-bit types. The DLL functionality was removed and 

replaced with direct use of the driver executable. Each instance of the driver can run on 

a separate thread (virtual core), allowing the automation system to scale with more 

powerful computing hardware. Figure 25 shows the program flow for multithreading. 

 

[USER]

CA2 Form

START TESTS

Input.txt
[config-string]

(Number of 
Virtual Cores)

Input.txt
[config-string]

CA Driver 0

... ...

CA Driver NCA Driver n

results.csv

CA2 Analysis

 

Figure 25 – CA Driver Automation with Multiple Threads (Virtual Cores) 
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CHAPTER SIX: ECA COMPLETE ANALYSIS 

SECTION 6.1 – Observation Criteria 

The complete analysis of the ECA spectrum includes all k-space descriptions for each 

rule, meaning 256 k-space descriptions for each seed size (k). Since these are absolute 

observations (rather than statistical observations like the p-value results), judgments 

can be made on the scalability, complexity, feasibility and potential of a complete 

ruleset. Since all seeds in a k-space end up in the three fundamental categories – GoEs, 

transients, or cycles – eight observations were made for each k-space description. 

 Rule (0 to 255) 

 Size k (1 to ∞) 

 Number of GoE States 

 Number of Transient States 

 Number of Cycle States 

 Longest Transient Length 

 Longest Cycle Length 

 Number of Unique Cycles 

An important thing to note is that these are based on the interpretation that though the 

two boundaries are connected, seeds cannot be rotated and remain the same – i.e. 001, 

010, and 100 are all treated as totally different states (1, 2, and 4 in decimal, 

respectively). Under the rule that such seeds are treated as the same state, these 

observations would change dramatically. See Appendix A for Rule 30, 45, and 106. 
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SECTION 6.2 – Reverse Algorithm 

Since all ECA states are attracted to cycles, the GoE states are likely to be the fastest 

entry point for classifying a k-space description. Determining if a state is a GoE through 

conventional brute force is effective but very slow and requires all next states to be 

known. Rather than calculate an entire block of seeds, the reverse algorithm (see Figure 

26) can be used to construct pre-images for each cell and see if it is possible that 

another state could produce the current state. If not, then the state in question must be 

a GoE. Pre-images for the given rule are created from a lookup table then stored for 

each cell. To trace a path, the right two cells of each pre-image are compared to the left 

two cells of the next potential pre-images. If a path can be constructed from start to 

finish, then a previous state was possible and thus the state in question is not a GoE. 
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Figure 26 – Reverse Algorithm for ECA 

 
The reverse algorithm is also proof that given enough permutations and computational 

power, it is possible to reconstruct data that was cycled if the rule and/or rules are 
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known – though the branching will quickly become exponential for larger seed lengths 

and without an initial timestep (length to current state), ambiguity remains. As such, this 

potential represents an NP-complete problem for certain rules, in that only by 

simulating all possible outcomes can the solution be known, and the number of 

simulations grows dynamically with the length of the CA, meaning no efficient system 

for narrowing the possibilities is easily derived [8]. 

 

SECTION 6.3 – Fundamental Functions 

Certain rules exhibit fundamental functions and their outcomes can be easily predicted. 

Rule 0 forces all next states to be 0 and Rule 255 forces all next states to be 1. 

Logically, this means the number of GoE states is 2^k – 1 for both rules since only one 

state (all 0s or all 1s) will cycle to itself – the rest will never fall into the “next state” list. 

Another example is Rule 204, which is essentially an “identity” rule. Its next state is 

always equal to B, the current state of the center cell, i.e. itself. Rule 51 is the flipped bit 

version of 204, meaning the next state is equivalent to the negation of the last. Shift left 

is Rule 170 and shift right is Rule 240, which essentially take cells C or A in place of the 

center cell B for the next state. These are summarized in Table 2. 

 
Table 2 – Fundamental Functions Implemented as Rules 
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SECTION 6.4 – ECA State Diagram Algorithm 

With the reverse algorithm, optimizing the ECA generation algorithm is a far less 

daunting task than brute force interpretation. By generating all the next states and 

determining GoEs, the search time can be restricted only by the size k. The final 

algorithm in use is represented in the pseudo-code of Figure 27. 

 
 

Figure 27 – ECA Algorithm in Pseudo Code 
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SECTION 6.5 – State Diagram Data Storage 

To facilitate more compartmentalized operations, the next state generation (i.e. running 

a given seed through a CA calculator) can be saved to a binary file. For sizes k = 1 to 32, 

this can be done by storing consecutive 32-bit integers rather than a text file with a 

string of bytes. So instead of 32 bytes to store a state, it would take 4 bytes. For sizes k 

= 33 to 64, a 64-bit integer could be used, leaving the size at 8 bytes instead of 64. 

Assuming the states are stored in the correct order, there is no reason to store the 

starting state, meaning the size of the file is equal to 2 bytes (one for rule and one for 

size) + 2^k * 4 bytes. For sizes 1 to 32, to hold all the states of a given rule will take up 

32 gigabytes (GB) a piece. So for all 256 rules, the required raw binary storage is 8 

terabytes. After they are analyzed, they would no longer be needed and can be deleted. 

A generator program was written to conform to the structure in Figure 28. 

 

 

Figure 28 – Binary State Diagram Storage 
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As the size k grows larger, it becomes increasingly difficult to contain all the working 

data for the diagram in RAM, and resorting to file storage is a necessary evil as the size k 

approaches 32. To just hold a working list of all possible 32-bit integers requires 16 

gigabytes of RAM. The necessary data sizes are shown in Table 3 and 4. As the algorithm 

completes, the working list will grow smaller and before the final phase when the GoEs 

are removed from the transient list, the transient and cycles lists will contain all 2^k 

states between them, meaning that the minimum target data size is 2^k * 20 bytes. 

Programming overhead for the data structures will magnify these values even further, 

and in reality at around k = 27, the C++ implementation begins to take up a majority of 

32 GB of RAM. To hold all k = 32 state data would take 80 gigabytes and to hold all k = 

64 state data (40 bytes instead of 20) would take 640 exabytes, which actually 

supersedes the addressing limits of a 64-bit processor (16 EB). 

 
Table 3 – Minimum Data Sizes for State Diagram Storage 

 

Table 4 – Minimum Data Size for k = 26 to 32, and 64 
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SECTION 6.6 – GoE Trends 

Globally, the number of GoE states for each rule follows a visible trend as the size (k) is 

incremented. Shown in Figure 29 is the GoE graph for k = 16. The traits become 

compressed into the two extremes as the k-space increases, leaving a noticeable gap in 

the bottom half – a rule will either have very few GoEs or more than half of all potential 

states will be GoEs. 

 

 

Figure 29 – Graph of GoE Counts, k = 16, All 256 ECA Rules 
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SECTION 6.7 – Unique Cycle Trends 

In part due to the fundamental functions listed in section 5.3, the number of unique 

cycles usually only has two critical points (identity, 204 and negative identity, 51), as 

shown in Figure 30, which are always 2k and 2k/2 respectively. 

 

 

Figure 30 – Graph of Unique Cycles, k = 26, All 256 ECA Rules 
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SECTION 6.8 – Longest Cycle Length 

Rule 45’s group (45, 75, 89, and 101) maintain the longest cycle for most k-spaces 

following 4, with the notable exception of 8 and 16, where Rule 30’s group (30, 86, 135, 

149) has the longest cycle length. Table 5 shows the longest cycles for k = 1 to 27. 

 
Table 5 – Longest Cycle Length by Rule Group 
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Despite Rule 45’s group being the longest cycle on most even sized k’s, the length to 

total number of states ratio is very low. Figure 31 shows the change between sizes on a 

logarithmic scale, showing the dips between even and odd while maintaining the 

obvious trend toward exponential growth. 

 

 

Figure 31 – Longest Cycle Length Graph, Logarithmic Scale, Base 10 

 
Long cycles are important to consider since they will not repeat data in a critical period 

of reference, allowing for more random number generation through chaotic 

propogation. Rule 30 and Rule 45 become important players due primarily to the fact 

that they hold the longest cycles. 

 

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

LO
N

G
ES

T 
C

YC
LE

 L
EN

G
TH

SIZE K (SEED LENGTH)

Longest Cycle 3-bit Neighborhood, Rules [0,255], Log Base 10



43 
 

 
 

CHAPTER SEVEN: TESTING RESULTS 

SECTION 7.1 – Balanced ECA Rules 

A rule is balanced when it has an equivalent number of preimages for both 0 and 1, but 

not every balanced rule lends to random number generation (chaotic propogation). 

Figure 32 shows 70 rules in the basic 256, which have an equal number of 0s and 1s. 

Diehard tests were ran for 100 random seeds on 128, 256, 512, 1024, 2048, and 4096-

bit seed lengths to test against what rules are viable. In total, this comprises 153,600 

tests (7 seconds per test). Some have obvious results (0 and 255, for example).  For 

comparison, there are 601,080,390 balanced rules in the 4,294,967,296 rules of the 5-

bit neighborhood, and to test all rules in the 5-bit space would require a large 

computing network to finish in a reasonable period of time. 

 

 

Figure 32 – Balanced Rules, ECA 256 
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SECTION 7.2 – ECA Tests 

The following sections show the results analysis of the ECA tests ran for all rules with a 

size k of 128, 256, 512, 1024, 2048, and 4096 (see Figure 33). One hundred random 

seeds were used, with the same set of seeds used in each size category. The y-axis data 

shows 100 points for each rule (corresponding to a test with a seed), with a percentage 

value of how many p-values were within the alpha of 0.01 out of the 230 Diehard 

results. For the purposes of evaluation, one could say that Rule 0’s test results all had a 

0% chance of being random. As the passing results draw closer to 100%, the results 

must be taken with the understanding that no result is 100% random, but for testing 

purposes appears random. Good candidates for random number generation are those 

that approach or exceed 90% passing. Data analysis seems to follow the hypothesis 

that a subset of balanced rules is most likely to produce more chaotic (random) 

behavior when analyzing the raw data from continuous CA calculations for PRNGs. 

 

CA2

k = 128
100 seeds

k = 256
100 seeds

k = 512
100 seeds

k = 1024
100 seeds

Diehard
Φ [0 – 255]

results.csv

AnalyzeECA.exe

analyzedResults128.csv
analyzedResults256.csv
analyzedResults512.csv

analyzedResults1024.csv
analyzedResults2048.csv
analyzedResults4096.csv

k = 2048
100 seeds

k = 4096
100 seeds

153,600 Tests

 

Figure 33 – ECA Testing and Analysis 
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SECTION 7.2.1 – k = 128, Diehard Results 

 

Figure 34 – Diehard Results, ECA k = 128, Alpha = 0.01, All Rules, 25600 Tests 

 
Figure 34 shows no result for k = 128 exceeds 90% passing when an alpha of 0.01 is 

used in the evaluation phase of Diehard testing. A simple conclusion that can be made 

on this data is that strictly harvesting the ECA data from a random 128 length starting 

seed (aka, a 128-bit key) is not enough to pass random testing, especially for the 

purposes of cryptography. However, there are 12 rules that stand out for further 

examination. From left to right, they are 30, 45, 75, 86, 89, 101, 106, 120, 135, 149, 

169, and 225. This behavior is expected, since they fall into three rules clusters, two of 

which have the longest cycles at the k < 32 level. These are the [30, 86, 135, 149], [45, 

75, 89, 101], and [106, 120, 169, 225] groups. Rule 30 and Rule 45’s clusters lead the k 

= 128 results. 
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SECTION 7.2.2 – k = 256, Diehard Results 

 

Figure 35 – Diehard Results, ECA k = 256, Alpha = 0.01, All Rules, 25600 Tests 

 
Figure 35 shows that for k = 256, the same groups from k = 128 lead the results, but 

still fall short of the 90% mark. Rule 30’s group [30, 86, 135, 149] takes the lead, 

averaging at the 80% mark while Rule 45’s group [45, 75, 89, 101] averages at the 75% 

mark. Rule 106’s group [106, 120, 169, 225] has risen to the 55% mark. Compared to 

AES-256 and other 256-bit secure algorithms, raw CA harvesting with these groups is 

not a viable option for cryptography at this level. 
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SECTION 7.2.3 – k = 512, Diehard Results 

 

Figure 36 – Diehard Results, ECA k = 512, Alpha = 0.01, All Rules, 25600 Tests 

 
Figure 36 shows at k = 512, the core groups for Rule 30 [30, 86, 135, 149] and Rule 45 

[45, 75, 89, 101] could be safely called random and potentially used in a 512-bit 

cryptographic system when using their raw output. It is likely that the third group, Rule 

106 [106, 120, 169, 225] will perform at greater bit levels since it averaged at 70% at 

this level. A clear lead is still given to Rule 30 over Rule 45, but this is likely because 

Rule 30 has a greater cycle than Rule 45’s group at size k with powers of 2. 
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SECTION 7.2.4 – k = 1024, Diehard Results 

 

Figure 37 – Diehard Results, ECA k = 1024, Alpha = 0.01, All Rules, 25600 Tests 

 
Figure 37 shows that Rule 30 and Rule 45’s groups maintain their status while Rule 

106’s group pulls up to 75% average passing at k = 1024, still not suitable for random 

number generation at this level.  Rule 105 and 150 (each are negations of each other) 

begin to show a break from their low numbers, pushing up to 20% average passing. 
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SECTION 7.2.5 – k = 2048, Diehard Results 

 

Figure 38 – Diehard Results, ECA k = 2048, Alpha = 0.01, All Rules, 25600 Tests 

 
Figure 38 shows that Rule 30 and 45 seem to have plateaued at their respective levels, 

while Rule 106 inches up by 1-2% on average. Further extensions of the key size (k) 

will likely push the 106 group into the 90% level. Rule 105 and 150 have moved up to 

35% average from their small lead at 20% in k = 1024. Tests for the remaining rules 

are still necessary since they provide context for the relative randomness among rules. 

In addition, it provides proof that simply extending the k-length is not the only catalyst 

for randomization, otherwise all rules would be increasing at a regular rate. 
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SECTION 7.2.6 – k = 4096, Diehard Results 

 

Figure 39 – Diehard Results, ECA k = 4096, Alpha = 0.01, All Rules, 25600 Tests 

 
Figure 39 shows the results of the final round of tests, where Rule 30 and 45 maintain 

their plateau while the Rule 106 group continues to crawl toward the 90% mark. Rule 

105 and 150 have pushed into the 55% average passing range, an increase of 20% 

over the 2048 range. 4096 bit keys are a common upper limit and therefore any system 

utilizing raw CA calculations should only be used with Rule 30 and 45 at this level. 
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SECTION 7.3 – Cascade Tests 

A large batch of Diehard tests were ran using a seed block of k = 16, t = 32, with 10 

random seeds on all combinations of two rules (i.e. 256 x 256 x 10 = 655,360 tests, at 

an average of roughly 10 seconds each), the results flow shown in Figure 40. Testing 

took ten days on an 8-thread processor running non-stop. Two graphs are represented 

in the following sections – one with the number of passing p-values (a scalar 

representing randomness density) and the second with Diehard tests that had a total 

number of p-values above the 90% threshold. Each chart is setup as a bubble chart, 

with the area of each bubble relative to its total at that x-y point pair. There are 65,536 

points on each graph, though many have zero passing values and thus no bubble is 

shown. Cascade’s configuration is proof that even with a 16-bit key, random number 

generation is still a decent possibility with CA. 

 

CA2

k1 = 16,
T1 = 32

10 seeds

Seed Block Rule
Φ [0 – 255]

results.csv

AnalyzeCascade.exe

FinalCascadeResults.csv

Cascade Rule
Φ [0 – 255]

X

655,360 Tests

 

Figure 40 – CA2 Process for Testing Cascade Combinations 
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SECTION 7.3.1 – k1=16, t1=32, Passing p-values Density 

 

Figure 41 – Cascade Tests, Passing P-values, k1 = 16, t1 = 32 

 
While the passing p-value density does not show the number of passing tests, it gives 

clear evidence that a weak seed block rule can be overrun by a stronger cascade rule. 

Rule 30 and 86 seem to perform the strongest regardless of their starting seed. Rule 45 

and its usual gamut of rules also fair very well. Figure 41’s graph correlates with the 

results from the ECA testing, representing the major trends.  
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SECTION 7.3.2 – k1=16, t1=32, Passing Tests Density 

 

Figure 42 – Cascade Tests, Passing Diehard Tests, k1 = 16, t1 = 32 

 
Figure 42 shows the density of Diehard tests that actually passed, ranging from 0 to 10 

at each point, with larger bubbles carrying greater weight. Despite its large density, Rule 

30 does not do as well as 45 here. In the raw data, Rule 45’s group [45,75,89,101] are 

the only ones with 8 to 10 total passes of the 10 seeds tested. Despite 45’s advantage, 

Rule 30 and 86 both have relatively equal distribution of passing tests across all seed 

block rules, and will likely pass at higher key lengths.  
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CHAPTER EIGHT: CONCLUSION 

SECTION 8.1 – Summary 

Elementary Cellular Automata are deterministic structures created by iterating through 

each cell and calculating its next state from predetermined rules. Configurations and 

augmentations of ECA are wide open interpretations of basic ECA rules and 

applications, leading to different lattices, rules, and circumstantial use. An encryption 

methodology for CA such as CASE can be modeled for practical use on modern and 

future equipment. Random number testing on ECA is accomplished via the Diehard 

utility or the statistical testing suite provided by the U.S. National Institute of Standards 

and Technology. P-values generated from those tests are statistical indicators of 

pseudo-randomness, since nothing can “truly” be random. Coding and testing CA is 

accomplished through the use of a driver and workbook program combination, allowing 

for automation, code reuse and flexibility. Complete analysis of ECA can help with 

logistically correlating testing results with their respective attributes. Rigorous testing 

allows systematic evaluation of certain rules and configurations, leading to judgments 

on practicality of pseudo-random number generation and ultimately encryption. 
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SECTION 8.2 – Conclusions 

In conjunction with ECA complete analysis and random number testing, results clearly 

show that pseudo random number generation is possible at high levels for basic ECA 

and that some rules are categorically more chaotic than others. Evaluation and 

concentrated testing on the Cascade configuration shows that it lends greatly to parallel 

encryption, since it is capable of producing random results with minimal input. 

 

SECTION 8.2.1 – Focus 1: ECA Chaotic Rules and Configurations 

1. What rules and configurations are conducive to chaotic structure? 

Rules 30 and 45 are the most likely candidates for chaotic propogation in ECA, 

regardless of configuration. Rules 105 and 106 show promise at higher complexity, 

warranting further analysis. Dr. Salman’s twister (or cascade) structure provides a 

minimal augmentation of ECA that is able to generate chaotic results with small seed 

lengths, lending greatly to practical use. 

 

SECTION 8.2.2 – Focus 2: ECA Random Number Generators 

2. Can ECA be used for practical random number generation? 

Cellular Automata are capable of producing pseudo-random results with minimal input. 

Concentrated research and extended proofs would be necessary to further this use of 

CA without making too many assumptions on the infallibility of its simplicity. Rigorous 

testing shows the practical level of RNG for each rule, correlating the state diagram 

analysis and affirming that the Rule 30 and 45 groups are most likely to be random. 
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SECTION 8.2.3 – Focus 3: ECA Encryption 

3. If RNG creation is possible, how much complexity is necessary for encryption? 

Cascade configurations allow for parallelized encryption by providing a source block of 

seeds (or keys) for child vectors. The CASE methodology should be flexible enough to 

provide a basis for a true encryption standard with CA at its core – preferably rule 

groups 30 or 45. Since basic ECA is NP-complete it requires all intermediate steps, 

meaning that as computing power increases, the critical time for the child vector 

propogation can be adapted depending on use. As with AES and other symmetric 

encryption, hardware and software implementations can coexist, provided rigorous 

validation and standardization are regulated. 

 

SECTION 8.3 – Recommendations 

The sheer simplicity of cellular automata is reason enough not to ignore its use, either 

for encryption or any other purpose. Its exponential scalability allows it to adapt as 

computing power advances, provided no proof is found to compute timesteps without 

intermediate results. Matthew Cook has provided a proof that Rule 110 is Turing 

complete, meaning it is useful for universal computation [9]. As process architecture 

shrinks, this could allow for a simplified deterministic computing structure without the 

possibility of clock failure, with the potential of encryption (by switching the base rule) 

built naturally into the circuits.  Whether or not CA comes to be used in the real world, it 

seems to be an untapped resource and its future cannot be ignored. 
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SECTION 8.3.1 – Future Work on Analysis 

Complete analysis of rules and increasing seed lengths requires exponentially greater 

amounts of memory for diminishing gains in data. Preliminary investigation seems to 

indicate that the Rule 30 and 45 groups are the most viable sets. Suggested avenues 

would include investigating the analysis of spatial/temporal rules to see if there is merit 

in combining certain selections over using flat rules for all timestep calculations. A new 

batch of tests could then be run to determine if PNRGs are possible at lower key lengths 

than 512, making ECA more viable. 

 

SECTION 8.3.2 – Future Work on Encryption 

Expanding the CASE model is the next logical step in utilizing CA for encryption, which 

would include investigating its weaknesses and potentially rewriting the premise 

entirely if such weaknesses could not be overcome. An alternative would be to develop 

another method of parallelizing the data output. Serial encryption is not necessarily 

efficient when large amounts of data is involved, but on small scale systems it may not 

be as much of a concern, therefore any configuration can do, provided it gives enough 

randomization with more minimal inputs than generic ECA.   

 

SECTION 8.3.3 – Self-Replication and Validation with CA 

John von Neumann’s original research into CA was for the purpose of creating machines 

that continuously replicate themselves. Nanotechnology is rapidly advancing in all 

fields of industry via microarchitecture shifts, bioscience procedures, or more mundane 

mechanics. While not a perfect fit, combining CA rules into a nano-environment could 
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easily allow for self-validation in testing and a multitude of other potentials, if not one 

day the creation of von Neumann’s machines. 

 

SECTION 8.3.4 – Bioscience Research with CA 

Natural rules govern cell replication, mitosis, creation, and general repair. CA rules are 

not perfectly analogous to chemistry, but in some cases can be close enough to warrant 

model creations to aid in reducing computer simulation time. Protein folding is one 

avenue of distributed computer research that could benefit if it is not utilizing rough 

models already. [10] DNA networks are also a potential for CA, since genomes and their 

nitrogen bases have many similarities to the way ECA form around attractor cycles. 
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APPENDIX A: STATE DIAGRAM CYCLE DATA 

SECTION A.1 – Complete ECA Analysis, Rules 30, 45, 106 

Table 6 – Rule 30 [30, 86, 135, 149] State Diagram Data, k = 1 to 27 

Size GoEs Transient 
States 

Cycle 
States 

Longest 
Transient 

Longest 
Cycle 

Unique 
Cycles 

1 1 0 1 1 1 1 

2 1 0 3 1 1 3 

3 3 4 1 3 1 1 

4 5 0 11 1 8 4 

5 6 20 6 5 5 2 

6 12 49 3 10 1 3 

7 22 14 92 2 63 9 

8 33 172 51 16 40 5 

9 57 211 244 13 171 3 

10 101 885 38 46 15 6 

11 166 1540 342 55 154 13 

12 280 3385 431 126 102 12 

13 482 6279 1431 66 832 5 

14 813 13489 2082 127 1428 18 

15 1373 29619 1776 321 1455 31 

16 2337 52908 10291 287 6016 9 

17 3962 113305 13805 362 10846 7 

18 6708 251086 4350 1137 2844 18 

19 11382 508782 4124 1234 3705 5 

20 19305 995345 33926 1736 6150 27 

21 32721 2047812 16619 4308 2793 60 

22 55485 4123075 15744 5477 3553 24 

23 94094 8251342 43172 6051 38249 4 

24 159536 16422689 194991 9568 185040 49 

25 270506 32600370 683556 9252 588425 16 

26 458693 66264744 385427 18758 312156 33 

27 777765 132913219 526744 34054 240300 40 
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Table 7 – Rule 45 [45, 75, 89, 101] State Diagram Data, k = 1 to 27 

Size GoEs Transient 
States 

Cycle 
States 

Longest 
Transient 

Longest 
Cycle 

Unique 
Cycles 

1 0 0 2 0 2 1 

2 2 0 2 1 2 1 

3 0 0 8 0 3 5 

4 4 10 2 4 2 1 

5 0 0 32 0 30 2 

6 8 30 26 6 18 6 

7 0 0 128 0 126 2 

8 16 134 106 18 32 7 

9 0 0 512 0 504 6 

10 32 260 732 16 430 9 

11 0 0 2048 0 979 16 

12 64 3094 938 167 240 33 

13 0 0 8192 0 1105 24 

14 128 8988 7268 312 2198 16 

15 0 0 32768 0 6820 54 

16 256 53014 12266 1776 2816 42 

17 0 0 131072 0 78812 22 

18 512 220728 40904 3533 7812 201 

19 0 0 524288 0 183920 36 

20 1024 771640 275912 3678 142580 282 

21 0 0 2097152 0 352884 262 

22 2048 3865994 326262 21950 122870 272 

23 0 0 8388608 0 3459591 224 

24 4096 14904662 1868458 53104 421188 4411 

25 0 0 33554432 0 10828525 514 

26 8192 66213056 887616 352642 334308 1353 

27 0 0 134217728 0 81688176 3134 
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Table 8 – Rule 106 [106, 120, 169, 225] State Diagram Data, k = 1 to 27 

Size GoEs Transient 
States 

Cycle 
States 

Longest 
Transient 

Longest 
Cycle 

Unique 
Cycles 

1 1 0 1 1 1 1 

2 1 0 3 1 2 2 

3 3 1 4 2 3 2 

4 5 0 11 1 4 5 

5 6 0 26 1 15 4 

6 12 34 18 8 6 5 

7 22 28 78 5 49 6 

8 33 52 171 6 15 18 

9 57 208 247 12 54 16 

10 101 375 548 17 205 18 

11 166 1507 375 73 176 20 

12 280 3094 722 85 168 37 

13 482 6071 1639 76 416 46 

14 813 12089 3482 153 448 72 

15 1373 23806 7589 191 1095 108 

16 2337 55492 7707 457 2688 155 

17 3962 116756 10354 938 3230 214 

18 6708 234871 20565 1155 2664 357 

19 11382 480586 32320 1233 13471 501 

20 19305 960275 68996 1063 21240 782 

21 32721 1995596 68835 3506 14658 1184 

22 55485 4049210 89609 5030 32428 1818 

23 94094 8200190 94324 10024 14306 2792 

24 159536 16061462 556218 6997 80544 4728 

25 270506 32549375 734551 11269 309150 6729 

26 458693 66315704 334467 26587 26858 10482 

27 777765 132053401 ERROR* 30637 242352 16317 

 

*A 32-bit rollover error occurred when computing the number of unique cycles for this group, 

resulting in loss of data for that category. 
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SECTION A.2 – Longest Cycle Graphs, k = 8, 16, 24, 27 

Figures 43 through 46 show the longest cycles for all rules in sizes k = 8, 16, 24, and 27. 

For 8 and 16, Rule 30 holds the longest cycle, and will likely continue this trend as the 

number doubles, since Rule 45 is still greater at k = 24. Even-numbered sizes produce 

lower cycle lengths for Rule 45, but with odd-numbered k’s it dominates the graph. 

 

 

Figure 43 – Longest Cycle Diagram, All Rules, k = 8 
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Figure 44 – Longest Cycle Diagram, All Rules, k = 16 

 

Figure 45 – Longest Cycle Diagram, All Rules, k = 24 
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Figure 46 – Longest Cycle Diagram, All Rules, k = 27 
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APPENDIX B: CA WORKBOOK SCREENS 

SECTION B.1 – Plot Screen 

 

Figure 47 – CA Workbook, Plot Screen 

 
Plot allows a user to easily observe the ECA with a variety of configurations and rules, 

including starting seed, scrolling to specific timesteps, and observing the changes 

between seeds on the same rule. 
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SECTION B.2 – Diehard Screen 

 

Figure 48 – CA Workbook, Diehard Screen 

 
Diehard allows a user to see pseudo-random analysis on a specific CA configuration, 

starting seed, and rules. Functionality for testing a user-generated binary file is also 

available. The configuration string, raw test results, grouped results, and p-value 

distribution are all shown to aid in quick one-off testing. A line above the raw test data 

shows the overall p-value and passing test results. 
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SECTION B.3 – NIST Screen 

 

Figure 49 – CA Workbook, NIST Screen 

 
NIST allows a user to run the National Institute of Technology’s Statistical Testing Suite 

against a CA configuration or user-supplied binary file. The final results text is parsed 

and placed into the grid for viewing following test completion. In addition to the test’s 

configuration string, a line above the results grid shows the total number of passing 

tests and whether or not the test failed or passed overall. 
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SECTION B.4 – Cycle Screen 

 

Figure 50 – CA Workbook, Cycle Screen 

 
Cycle allows the user to run a single cycle analysis for a given configuration and starting 

seed, usually reserved only for ECA. The test seed, type, dimensions, size, and rules are 

output in addition to the transient and cycle length.  
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SECTION B.5 – Automation Screen 

 

Figure 51 – CA Workbook, Automation Screen 

 
Automation is a powerful tool that allows parallelized testing of a range of configuration 

options – seed length, rule combinations, number of seeds, configuration ranges. It 

creating a separate process for each test, up to a maximum concurrent number of 

threads that the machine can technically handle – normally the number of cores, 

sometimes multiplied by two if hyper threading is enabled. The test configuration data 

and passing number of p-values are collected into a global results file for later analysis.  
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APPENDIX C: RGB MAPPING FOR ECA RULES 

SECTION C.1 – Bitmapping Process 

In mapping elementary CA to a bitmap image, each state’s next state is stored as an 

integer rather than a binary string, then mapped to an RGB color, which uses up to 24 

bits, or size k = 24. Using a square, the resulting image has both a width and height of 

√2𝑘. Mapping from left to right, top to bottom, 0 at the top left and 2𝑘-1 at the bottom 

right. For k = 16, only green and blue (R[GB]) will be used since there are only 2 bytes of 

data. To accurately portray a 24-bit scheme would require 3D modeling. The following 

figure shows the normal distribution when colors are created this way, from seed 0 

(0x000000) to 65535 (0x00FFFF). Figures 53 and 54 show the resulting bitmap images 

for rule groups 30 and 45 for k = 16. 

 

 

Figure 52 – RGB 16-bit, Normal Colorization 
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SECTION C.2 – Rule 30 [30, 86, 135, 149] 

     

  

Figure 53 – RGB Mapping, Rules 30, 86, 135, 149 (left to right) 
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SECTION C.3 – Rule 45 [45, 75, 89, 101] 

   

   

Figure 54 – RGB Mapping, Rules 45, 75, 89, 101 (left to right) 


