
CELLULAR AUTOMATA:

OPTIMAL ANALYSIS, CODING, AND TESTING FOR ENCRYPTION

By

Stephen J. Faulkenberry

A Thesis Submitted in Partial Fulfillment
Of the Requirements for the Degree of

Master of Science in Engineering Technology

Middle Tennessee State University
May 2016

Thesis Committee:

Dr. Karim Salman, Chair

Dr. Walter Boles

Dr. Saleh Sbenaty

ii

We all want to help one another. Human beings are like that. We
want to live by each other’s happiness - not by each other’s misery.

We don’t want to hate and despise one another. In this world there
is room for everyone. And the good earth is rich and can provide
for everyone.

The way of life can be free and beautiful, but we have lost the way.

Greed has poisoned men’s souls, has barricaded the world with
hate, has goose-stepped us into misery and bloodshed.

We have developed speed, but we have shut ourselves in.
Machinery that gives abundance has left us in want.

Our knowledge has made us cynical. Our cleverness, hard and
unkind. We think too much and feel too little.

More than machinery we need humanity. More than cleverness we
need kindness and gentleness.

Without these qualities, life will be violent and all will be lost.

-- Charlie Chaplin,
from The Great Dictator (1940)

iii

ABSTRACT

Cellular automata are a set of discrete structures generated and manipulated by

predetermined rules, in which each state (or evolution) is influenced by the previous.

Utilizing the simplicity of this fundamental structure, a number of configurations have

been organized and derived from elementary (single dimensional) cellular automata. By

harvesting the evolution of these structures as output, they lend greatly to random

number generation and by extension, encryption. Analyzing, testing, and programming

these methods has led to observations on optimal approaches to each. Utilizing the

Diehard testing suite and the National Institute of Standards and Technology (NIST)

Statistical Testing Suite (STS), configurations can be judged against each other as well as

external systems. Optimal methods for generating configurations, visual observation

and data analysis are compiled in a workbook program. A complete analysis for the

state diagrams of k [1, 27] in the 3-bit rule space is included and a Cellular Automata

Standard of Encryption (CASE) is suggested for real world use.

iv

TABLE OF CONTENTS

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

LIST OF SYMBOLS / ABBREVIATIONS ... xii

CHAPTER ONE: CELLULAR AUTOMATA ... 1

SECTION 1.1 – Elementary Cellular Automata .. 1

SECTION 1.2 – Rules and Neighborhoods .. 2

SECTION 1.3 – Adjacencies .. 4

SECTION 1.4 – Complete Description of a k-Space .. 5

SECTION 1.4.1 – Garden of Eden States (GoES) .. 5

SECTION 1.4.2 – Transients ... 6

SECTION 1.4.3 – Cycles .. 7

SECTION 1.4.4 – Basin of Attraction .. 8

SECTION 1.5 – Research Problem ... 9

SECTION 1.5.1 – Focus 1: ECA Chaotic Rules and Configurations 9

SECTION 1.5.2 – Focus 2: ECA Random Number Generators .. 9

SECTION 1.5.3 – Focus 3: ECA Encryption .. 10

CHAPTER TWO: CONFIGURATIONS .. 11

SECTION 2.1 – Variations .. 11

SECTION 2.2 – Spatial and Temporal Rules (1D) ... 11

SECTION 2.3 – Von Neumann Neighborhood (2D) ... 12

SECTION 2.4 – Moore Neighborhood (2D) .. 13

SECTION 2.5 – Arrow Neighborhoods (2D) .. 14

v

SECTION 2.6 – Hexagonal Neighborhoods (2D) .. 14

SECTION 2.7 – Cascade (1.5D) ... 15

SECTION 2.8 – Inverted Pyramid (1D) ... 16

CHAPTER THREE: CELLULAR AUTOMATA STANDARD OF ENCRYPTION 18

SECTION 3.1 – Principle Theory .. 18

SECTION 3.2 – CASE Structure ... 19

SECTION 3.3 – CASE Configurations .. 21

CHAPTER FOUR: RANDOM NUMBER TESTING ... 22

SECTION 4.1 – Fallacy of Random Number Generation .. 22

SECTION 4.2 – Diehard Battery of Randomness Tests .. 22

SECTION 4.3 – NIST Statistical Testing Suite (STS) ... 23

SECTION 4.4 – Probability and p-Values... 24

SECTION 4.5 – Normal Distribution ... 24

CHAPTER FIVE: CODING AND TESTING CA .. 26

SECTION 5.1 – Optimization and Best Practices ... 26

SECTION 5.2 – Object Oriented Approach.. 27

SECTION 5.3 – CA Workbook ... 28

SECTION 5.3.1 – Diehard Analysis ... 29

SECTION 5.3.2 – NIST STS Analysis .. 29

SECTION 5.4 – Configuration Strings ... 30

SECTION 5.5 – CA Driver ... 31

SECTION 5.6 – Automation ... 32

CHAPTER SIX: ECA COMPLETE ANALYSIS ... 33

SECTION 6.1 – Observation Criteria ... 33

vi

SECTION 6.2 – Reverse Algorithm .. 34

SECTION 6.3 – Fundamental Functions ... 35

SECTION 6.4 – ECA State Diagram Algorithm .. 36

SECTION 6.5 – State Diagram Data Storage ... 37

SECTION 6.6 – GoE Trends .. 39

SECTION 6.7 – Unique Cycle Trends .. 40

SECTION 6.8 – Longest Cycle Length ... 41

CHAPTER SEVEN: TESTING RESULTS .. 43

SECTION 7.1 – Balanced ECA Rules .. 43

SECTION 7.2 – ECA Tests ... 44

SECTION 7.2.1 – k = 128, Diehard Results ... 45

SECTION 7.2.2 – k = 256, Diehard Results ... 46

SECTION 7.2.3 – k = 512, Diehard Results ... 47

SECTION 7.2.4 – k = 1024, Diehard Results .. 48

SECTION 7.2.5 – k = 2048, Diehard Results .. 49

SECTION 7.2.6 – k = 4096, Diehard Results .. 50

SECTION 7.3 – Cascade Tests... 51

SECTION 7.3.1 – k1=16, t1=32, Passing p-values Density .. 52

SECTION 7.3.2 – k1=16, t1=32, Passing Tests Density ... 53

CHAPTER EIGHT: CONCLUSION .. 54

SECTION 8.1 – Summary ... 54

SECTION 8.2 – Conclusions .. 55

SECTION 8.2.1 – Focus 1: ECA Chaotic Rules and Configurations 55

SECTION 8.2.2 – Focus 2: ECA Random Number Generators .. 55

vii

SECTION 8.2.3 – Focus 3: ECA Encryption .. 56

SECTION 8.3 – Recommendations .. 56

SECTION 8.3.1 – Future Work on Analysis ... 57

SECTION 8.3.2 – Future Work on Encryption .. 57

SECTION 8.3.3 – Self-Replication and Validation with CA ... 57

SECTION 8.3.4 – Bioscience Research with CA ... 58

REFERENCES ... 59

APPENDICES ... 60

APPENDIX A: STATE DIAGRAM CYCLE DATA ... 61

SECTION A.1 – Complete ECA Analysis, Rules 30, 45, 106 ... 61

SECTION A.2 – Longest Cycle Graphs, k = 8, 16, 24, 27 ... 64

APPENDIX B: CA WORKBOOK SCREENS .. 67

SECTION B.1 – Plot Screen ... 67

SECTION B.2 – Diehard Screen .. 68

SECTION B.3 – NIST Screen... 69

SECTION B.4 – Cycle Screen ... 70

SECTION B.5 – Automation Screen ... 71

APPENDIX C: RGB MAPPING FOR ECA RULES .. 72

SECTION C.1 – Bitmapping Process .. 72

SECTION C.2 – Rule 30 [30, 86, 135, 149] .. 73

SECTION C.3 – Rule 45 [45, 75, 89, 101]... 74

viii

LIST OF TABLES

Table 1 – CASE Standards Summary .. 21

Table 2 – Fundamental Functions Implemented as Rules .. 35

Table 3 – Minimum Data Sizes for State Diagram Storage.. 38

Table 4 – Minimum Data Size for k = 26 to 32, and 64 .. 38

Table 5 – Longest Cycle Length by Rule Group.. 41

Table 6 – Rule 30 [30, 86, 135, 149] State Diagram Data, k = 1 to 27 61

Table 7 – Rule 45 [45, 75, 89, 101] State Diagram Data, k = 1 to 27 .. 62

Table 8 – Rule 106 [106, 120, 169, 225] State Diagram Data, k = 1 to 27 63

ix

LIST OF FIGURES

Figure 1 – Elementary Cellular Automata of Size k Using a 3-cell Neighborhood 1

Figure 2 – Tri-Cell Neighborhood Diagram with k-Map Reduced Function - Rule 30 2

Figure 3 – Automation of ECA with Rules 30, 45, 60, and 90 (left to right) 3

Figure 4 – Extending ECA Neighborhoods and Changing Adjacencies 4

Figure 5 – GoE Discovery, Two Column Approach ... 5

Figure 6 – Transient Diagram Using Rule 30, Size k = 3, GoE 011 ... 6

Figure 7 – Cycle Types: Single, Regular, and Orphan .. 7

Figure 8 – Basin of Attraction for Rule 30, k = 4 ... 8

Figure 9 – Temporal (left) and Spatial (right) Ruling .. 12

Figure 10 – 2D Von Neumann Neighborhood ... 13

Figure 11 – Moore Neighborhood, Horizontal (left) and Vertical (right) 13

Figure 12 – Arrow Neighborhoods (2D) ... 14

Figure 13 – Hexagonal Neighborhoods (2D), Axis Ruling (left) and Shell Ruling (right) .. 15

Figure 14 – Cascade Configuration, Using a Starting Block of Size 8 with 7 Timesteps .. 16

Figure 15 – Inverted Pyramid Configuration with Rule 30, k = 9 .. 17

Figure 16 – CASE Structure and Breakdown .. 19

Figure 17 – CASE Block Breakdown .. 20

Figure 18 – Diehard Command Prompt with Brief Explanation of P-Value Results 23

Figure 19 – NIST STS, Recoded to Pass in File Names with Internalized Options 23

Figure 20 – P-value Distributions: Likely Random (left), Non-random (right) 25

Figure 21 – CA Testing Framework ... 27

Figure 22 – CA Workbook, Visual C# (.NET 4.6) ... 28

file:///C:/Users/John%20Cale/Dropbox/MTSU/Thesis/Thesis%20Print/Cellular%20Automata%20-%20Stephen%20Faulkenberry.docx%23_Toc446522605

x

Figure 23 – CA Configuration Strings .. 30

Figure 24 – CA Driver Class Diagram ... 31

Figure 25 – CA Driver Automation with Multiple Threads (Virtual Cores) 32

Figure 26 – Reverse Algorithm for ECA .. 34

Figure 27 – ECA Algorithm in Pseudo Code ... 36

Figure 28 – Binary State Diagram Storage .. 37

Figure 29 – Graph of GoE Counts, k = 16, All 256 ECA Rules .. 39

Figure 30 – Graph of Unique Cycles, k = 26, All 256 ECA Rules .. 40

Figure 31 – Longest Cycle Length Graph, Logarithmic Scale, Base 10 42

Figure 32 – Balanced Rules, ECA 256 .. 43

Figure 33 – ECA Testing and Analysis.. 44

Figure 34 – Diehard Results, ECA k = 128, Alpha = 0.01, All Rules, 25600 Tests 45

Figure 35 – Diehard Results, ECA k = 256, Alpha = 0.01, All Rules, 25600 Tests 46

Figure 36 – Diehard Results, ECA k = 512, Alpha = 0.01, All Rules, 25600 Tests 47

Figure 37 – Diehard Results, ECA k = 1024, Alpha = 0.01, All Rules, 25600 Tests............. 48

Figure 38 – Diehard Results, ECA k = 2048, Alpha = 0.01, All Rules, 25600 Tests............. 49

Figure 39 – Diehard Results, ECA k = 4096, Alpha = 0.01, All Rules, 25600 Tests............. 50

Figure 40 – CA2 Process for Testing Cascade Combinations .. 51

Figure 41 – Cascade Tests, Passing P-values, k1 = 16, t1 = 32 .. 52

Figure 42 – Cascade Tests, Passing Diehard Tests, k1 = 16, t1 = 32 ... 53

Figure 43 – Longest Cycle Diagram, All Rules, k = 8 .. 64

Figure 44 – Longest Cycle Diagram, All Rules, k = 16 ... 65

Figure 45 – Longest Cycle Diagram, All Rules, k = 24 ... 65

Figure 46 – Longest Cycle Diagram, All Rules, k = 27 ... 66

xi

Figure 47 – CA Workbook, Plot Screen ... 67

Figure 48 – CA Workbook, Diehard Screen .. 68

Figure 49 – CA Workbook, NIST Screen .. 69

Figure 50 – CA Workbook, Cycle Screen .. 70

Figure 51 – CA Workbook, Automation Screen .. 71

Figure 52 – RGB 16-bit, Normal Colorization .. 72

Figure 53 – RGB Mapping, Rules 30, 86, 135, 149 (left to right) ... 73

Figure 54 – RGB Mapping, Rules 45, 75, 89, 101 (left to right) .. 74

file:///C:/Users/John%20Cale/Dropbox/MTSU/Thesis/Thesis%20Print/Cellular%20Automata%20-%20Stephen%20Faulkenberry.docx%23_Toc446522638
file:///C:/Users/John%20Cale/Dropbox/MTSU/Thesis/Thesis%20Print/Cellular%20Automata%20-%20Stephen%20Faulkenberry.docx%23_Toc446522639

xii

LIST OF SYMBOLS / ABBREVIATIONS

AES = Advanced Encryption Standard

c = CA cell

CA = Cellular Automata

CASE = Cellular Automata Standard of Encryption

ECA = Elementary Cellular Automata

GoE = Garden of Eden state

k = Length of CA seed

LUT = Lookup Table

Ø = Rule symbol

PRNG = Pseudo Random Number Generator

RNG = Random Number Generator

t = CA time step

1

CHAPTER ONE: CELLULAR AUTOMATA

SECTION 1.1 – Elementary Cellular Automata

All structures operate on rules, whether it is the natural world relying on the laws of

physics or an artificial environment relying on compiled logic, which itself is arguably an

extension of physics. An elementary cellular automata (ECA), shown in Figure 1, consists

of a single dimension of cells, each set in an active (binary 1, logic high) or inactive

(binary 0, logic low) state. Each ECA begins with a seed, a string of active or inactive

cells, serving as the initial state before the start of automation, in which a rule produces

the next state of a cell depending on its neighborhood and fundamental look up table.

c0 c1 ... ck-2 ck-1

SEED
t0

ck-1c0c1 c0c1c2 ... ck-3ck-2ck-1 ck-2ck-1c0

RULE
Ø

RULE
Ø

RULE
Ø

RULE
Ø

RULE
Ø

c0 c1 ... ck-2 ck-1

NEXT
t1

Figure 1 – Elementary Cellular Automata of Size k Using a 3-cell Neighborhood

2

SECTION 1.2 – Rules and Neighborhoods

A rule is built from a fundamental function or polynomial expression of a basic binary

neighborhood – in the case of ECA the neighborhood consists of the cell and its two

adjacent cells, or 3 bits. As a result, there are only 8 (or 23) states that this neighborhood

can exhibit, each producing a different output based on their position in that rule’s

lookup table (LUT), shown in Figure 2. Expanding the possible rules for a neighborhood

of 3 bits creates a complete neighborhood of 256 (or 2 ^ [2^3] = 28) fundamental

functions, denoted by their decimal value, i.e. Rule 0 through Rule 255. To

accommodate the left and right extremes’ lack of a third adjacency, the ECA is looped

around as shown in Figure 1, making the extremes adjacencies of each other.

0Rule 30 000
1001
1010
1011
1100
0101
0110
0111

0 1

1 1

0 0

1 0

ABC
0 1

00

01

11

10

 A B + A C + AB C = A XOR (B OR C)

A

B

C
3010 = 000111102

Figure 2 – Tri-Cell Neighborhood Diagram with k-Map Reduced Function - Rule 30

Applying the fundamental rules across the ECA produces its next evolution, or state.

Following the initial state, each successive state is a temporal iteration, or timestep,

3

which can be used to describe a specific state of the structure when in combination

with the ECA’s seed (timestep 0, or t0) and governing rule. Figure 3 shows Rules 30, 45,

60, and 90 for the 32-bit seed 1111 1101 1111 0111 1110 0000 1110 10112.

Figure 3 – Automation of ECA with Rules 30, 45, 60, and 90 (left to right)

4

SECTION 1.3 – Adjacencies

Varying these rules and the way the neighborhoods are represented leads to a number

of basic configurations. Extending the neighborhood to 5 bits produces (2 ^ [2 ^ 5] =

232), or 4,294,967,296 rules, and further extending the neighborhood to 7 bits produces

(2 ^ [2 ^ 7] = 2128), or 340,282,366,920,938,463,463,374,607,431,768,211,456 rules.

CA rapidly becomes exponential as the configurations and basic neighborhoods evolve

beyond their ECA limits. In addition, each cell’s adjacencies are not static, allowing for

even more variation in the basic representation of single dimension CA by moving the

physical adjacency to cells that do not directly connect, shown in Figure 4.

cx

cx-y ... cx ... cx+2

MULTI-BIT
RULE

Ø

cx

... ...cx-y cx+y cx-1

cx-3 cx cx+3

3-BIT
RULE

Ø

cx

cx-2 cxcx-3 cx+1 cx+2 cx+3

Figure 4 – Extending ECA Neighborhoods and Changing Adjacencies

Representations of the CA lattice also lend to variation. Expanding into multiple

dimensions and including additional generators on the boundaries are prime examples.

In those cases, the use of fundamental rules changes to use more than one

neighborhood and rule results are combined. John von Neumann’s two dimensional

neighborhood of four adjacent cells is one of the first examples of this configuration.

See chapter two for more detail on configurations.

5

SECTION 1.4 – Complete Description of a k-Space

CA are finite objects – the k-Space of any particular rule can be completely defined for

study and analysis. For example, an ECA of length 8 has a complete k-Space of (28 =

256) potential states. In this space, there are three components – Cycles, Transients, and

Garden of Eden States (GoES). Any given state is considered to fall into one of these

three groups. When analyzed together, they show the CA’s “basin of attraction”.

SECTION 1.4.1 – Garden of Eden States (GoES)

A state that cannot be entered from any other state in the k-Space is considered a

Garden of Eden state. Without the reverse algorithm (see 5.2), determining if a state is a

GoE would require analyzing the next states of every state, putting them into a two

column list and determining what entry on the left does not occur in the right, as shown

in Figure 5.

000
001
010
011
100
101
110
111

000
111
111
010
111
001
100
000

Rule 30
k = 3

STATE NEXT

000
001
010
011
100
101
110
111

GOEs

Figure 5 – GoE Discovery, Two Column Approach

6

SECTION 1.4.2 – Transients

A state that is only entered once in automation is considered a transient. All transients

originate from GoEs, since they will never be entered. By process of elimination, any

state that does not fall into a cycle and is not a GoE must be a transient. Transient

length is determined by the number of cycles between the state and cycle entry. In the

complete analysis, the longest transient refers to the GoE state with the longest length

before cycle entry. Figure 6 shows an example of two transients.

011
010
111
000
000

t0

t1

t2

t3

t4

GOE, Length 3

CYCLE (Length 0)

TRANSIENT, Length 2

TRANSIENT, Length 1
Rule 30

k = 3

Figure 6 – Transient Diagram Using Rule 30, Size k = 3, GoE 011

7

SECTION 1.4.3 – Cycles

Eventually, a state will be entered which will iterate into other states until it repeats,

forming a cycle due to the natural law of the rule. There are three types of cycles. A

regular cycle occurs when a transient or GoE enters a state that iterates for a number of

states before the original entry is repeated. A single cycle occurs when the state cycles

to itself – for Rule 30 this happens with a seed of all zeroes, since the next state is (000)

= 0, as seen in Figure 6. An orphan cycle occurs when no entry points are defined. For

Rule 105, this happens with even-length seeds of alternating 0s and 1s (ex. 01010101,

k = 8), which forms the next state of 10101010, then back to 01010101. Figure 7 shows

the differences between types. For Rule 105, k = 4, there are no transients or GoEs,

making all the cycle states orphans.

0000

t0

t1

Rule 30, k = 4

0010
0111

t2

t3

SINGLE CYCLE

0001
1011

t0

t1

Rule 30, k = 4

REGULAR CYCLE

1000
1101

t6

t7

0100
1110

t4

t5

t8

1111 1101
1111

t0

t1

Rule 105, k = 4 – all 16 states make orphan cycles

ORPHAN CYCLES

0000

0100
t0

t1

0001

1000
t0

t1

0010

1010
t0

t1

0101

t0 0011

t0 0110

1101
t0

t1

0111

t0 1001

1110
t0

t1

1011

t0 1100

Figure 7 – Cycle Types: Single, Regular, and Orphan

8

SECTION 1.4.4 – Basin of Attraction

Combining GoEs, transients and cycles will show a complete picture of the k-Space of a

CA in the form of basins of attraction, where each non-orphan cycle is considered an

attractor. Since there can be many unique cycles, there can be many attractors. The very

outmost leaves are GoEs and their inner branches are transients. Figure 8 shows the

basin of attraction for rule 30, k = 4 in decimal form. There are no transients since each

GoE immediately enters a cycle. States 5 and 10 (decimal values) are orphan cycles. The

main attractor is made up of 1, 11, 2, 7, 4, 14, 8, and 13. The 0 state is a minor attractor.

00000
10001
20010
30011
40100
50101
60110
70111

1000
1001
1010
1011
1100
1101
1110
1111

8
9

10
11
12
13
14
15

00000
111011
70111

141110
141110
50101

131101
40100

1101
0111
1010
0010
1011
0001
1000
0000

13
7

10
2

11
1
8
0

STATE NEXT

11

1

2

7

4

14

8

13

0

5

10
3

6

9

12

15Basin of Attraction, Rule 30, k = 4

Figure 8 – Basin of Attraction for Rule 30, k = 4

9

SECTION 1.5 – Research Problem

Cellular automata were first formally described by John von Neumann in 1966 [1] and

their use in random number generation described later by Stephen Wolfram in 1986 [2].

A basic element of this research is intended to provide background on specific

configurations for the purpose of RNG creation and to form a more complete picture of

the practical uses of ECA, in addition to the theoretical concepts. Rather than assume

the conclusions of past research as fact, the focus of this research was to reaffirm the

core knowledge of ECA and develop a model for testing and automation.

SECTION 1.5.1 – Focus 1: ECA Chaotic Rules and Configurations

1. What rules and configurations are conducive to chaotic structure?

Of the 256 basic functions, which have the longest cycles and are thus chaotic in

nature, allowing for pseudo-random variation in output? Research plans include the

creation of software that can model and generate ECA rules and configurations, then

complete analysis and random number testing on the software’s output.

SECTION 1.5.2 – Focus 2: ECA Random Number Generators

2. Can ECA be used for practical random number generation?

While proving certain rules and configurations are chaotic and capable of passing

random number tests, at what point is ECA capable of producing random numbers at a

practical level? Research plans include rigorous testing of all ECA rules at increasing

complexity (rising seed/key lengths) to determine practical RNG applications.

10

SECTION 1.5.3 – Focus 3: ECA Encryption

3. If RNG creation is possible, how much complexity is necessary for encryption?

Random number generation on its own is not enough to satisfy the growing needs of

encryption in the modern world. What kind of complexity is necessary to actualize ECA

for use in encryption? Research plans include initial evaluation of various

configurations to judge which would be best suited for parallelized encryption, then

concentrated testing to determine what rules are best suited for practical encryption.

11

CHAPTER TWO: CONFIGURATIONS

SECTION 2.1 – Variations

Various CA configurations were designed/tested for use as Pseudo Random Number

Generators (PRNGs), differing by their adjacencies, boundaries, ruling combinations, and

representations. Each has its own distinct advantages and disadvantages depending on

rules and fundamental design. Among them are the 1D (3-bit, 5-bit), 2D (von Neumann,

Moore, Arrow, Hexagonal), Cascade, and Inverted Pyramid.

SECTION 2.2 – Spatial and Temporal Rules (1D)

As shown in section 1.1, ECA form the fundamental 1D configuration, but they can be

augmented using a variety of tools – including spatial and temporal rules. A spatial rule

is a rule applied to a given cell. A temporal rule is a rule applied to an entire timestep.

Under a single rule, both the spatial and temporal rules match. When using more than

one rule, a choice must be made as to how they are represented. Under a spatial

configuration, every alternating cell in an iteration is computed with a separate rule.

Under a temporal configuration, every alternating iteration is computed with a separate

rule. It is possible to combine the two with differing rules, resulting in a spatial-

temporal hybrid, though effects of rule combination and potential collision/cancellation

need to be taken into consideration. Figure 9 displays the differences between the two.

12

c0 c1 ... ck-2 ck-1

SEED
t0

Øa Øa Øa Øa Øa

c0 c1 ... ck-2 ck-1
t1

c0 c1 ... ck-2 ck-1

SEED
t0

Øa Øb Ø... Øy Øz

c0 c1 ... ck-2 ck-1
t1

Øb Øb Øb Øb Øb

c0 c1 ... ck-2 ck-1
t2

TEMPORAL SPATIAL

...tn

Ø = RULE

Øa Øb Ø... Øy Øz

c0 c1 ... ck-2 ck-1
t2

Figure 9 – Temporal (left) and Spatial (right) Ruling

SECTION 2.3 – Von Neumann Neighborhood (2D)

Expanding the 1D ECA to a lattice or matrix of cells allows the representation of CA in

two dimensions. Instead of two adjacencies, the lattice provides up to 8 direct

connections. John von Neumann originally limited this neighborhood to the four

immediate adjacencies on the cell perimeter. Just as in ECA, 2D grids are continuous in

nature, analogous to a torus. To continue using the 3 bit rules, three steps are involved

for computing the next state of a cell, as shown in Figure 10. A cell is computed

horizontally, vertically, then ruled with a combination of the two results and the value

of the original cell. The same or different rules can be specified for each calculation.

13

cx,y

cx,y-1

cx+1,y

cx,y+1

cx-1,y

cx-1,ycx,ycx+1,y

rxcx,yry

cx,y-1cx,ycx,y+1

Øx Øy

Øz

cx,y

Figure 10 – 2D Von Neumann Neighborhood

SECTION 2.4 – Moore Neighborhood (2D)

Edward F. Moore described his neighborhood using all 8 surrounding cells, leaving a

total of 9 values for computation. Four steps are required to compute the next rule,

generated horizontally or vertically, as shown in Figure 11. Three results are computed

from rows (horizontal) or columns (vertical) then ruled together for the final result.

cx,y

cx,y-1

cx+1,y

cx,y+1

cx-1,y

rwrxry

Øz

cx,y

cx+1,y-1cx-1,y-1

cx+1,y+1cx-1,y+1

cx,y

cx,y-1

cx+1,y

cx,y+1

cx-1,y

cx+1,y-1cx-1,y-1

cx+1,y+1cx-1,y+1

Øw Øx Øy

Øz

Øw

Øx

Øy

Øz

Figure 11 – Moore Neighborhood, Horizontal (left) and Vertical (right)

14

SECTION 2.5 – Arrow Neighborhoods (2D)

Arrow configurations are an augmentation of von Neumann neighborhoods, using a

direction to pull an initial rule. Only two steps are involved for calculation. First, the

directional bit (up, down, left, right) is ruled in conjunction with the two nearest

adjacencies then ruled in the order they appear on the grid, shown in Figure 12.

cx,y

cx,y-1

cx+1,y

cx,y+1

cx-1,y

cx-1,ycx,yrright Øy

cx,y

cx,y-1

cx+1,y

cx,y+1

cx-1,y

cx,y

cx,y-1

cx+1,y

cx,y+1

cx-1,y cx,y

cx,y-1

cx+1,y

cx,y+1

cx-1,y

cx,y-1cx+1,ycx,y+1
Øx = rright

= cx,y

cx,y-1cx,yrdown Øy

cx-1,ycx,y+1cx+1,y
Øx = rdown

= cx,y

rupcx,ycx,y+1
Øy

cx-1,ycx,y-1cx+1,y
Øx = rup

= cx,y

rleftcx,ycx+1,y
Øy

cx,y-1cx-1,ycx,y+1
Øx = rleft

= cx,y

Figure 12 – Arrow Neighborhoods (2D)

SECTION 2.6 – Hexagonal Neighborhoods (2D)

A hexagonal grid contains cells with six adjacencies, leaving multiple interpretations for

rules and operations. Three results can be obtained by gathering rules from the

hexagonal axes (x, y, z) then combined for a final result, similar to the Moore

neighborhood. Alternatively, two results can be obtained from the outer shell (3 bit

halves) then ruled together with the internal bit. Adjacency wrapping needs to be taken

15

into consideration since some grid sizes do not symmetrically mirror boundaries. Figure

13 shows axis ruling with 4 calculations and shell ruling with 3 calculations.

Øx

Øy

Øz

c

rØxrØyrØz

Øw

c
cori

Øx

Øy

rØxcorirØy

Øz

c

Figure 13 – Hexagonal Neighborhoods (2D), Axis Ruling (left) and Shell Ruling (right)

SECTION 2.7 – Cascade (1.5D)

Cascade configurations generate sub-blocks of CA based off an initial seed block. An

arbitrary length (K1) is used to generate an arbitrary number of timesteps (T1) with a

starting rule. A number of sub-blocks (equal to K1) are seeded from the vertical columns

in the original seed block, meaning (T1 = K2). The sub-blocks can then be independently

iterated and the data collected for use in a PRNG. T2 is decided by how much data is

requested, using the following formula and adding one to compensate for estimation:

𝑇2 =
𝑑𝑎𝑡𝑎

(𝐾1 ∗ 𝑇1)
+ 1

Figure 14 shows a diagram of the cascade configuration using a seed block of k = 8, 7

timesteps, and Rule 30. Karim Salman describes this structure in his ECA research

platform and refers to it as “Twister”. [3]

16

0 1

1 1

1 0

0 0

0 0

0 1

1 1

1 0

0 1

1 1

0 1

0 1

0 0 0 1

1 0

1 0

1 0

1 1

1 0

0 0

1 0

1 1

0 1

0 1

1 0

0 1

0 1 0 1

SEED BLOCK

T1 = 7

0 1 0 0 0 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1

SEED0 K2 = 7

K1 = 8

SEED1 K2 = 7 SEEDK-1 K2 = 7...

T2 DATA T2 DATA T2 DATA...

...

T1 = K2

Figure 14 – Cascade Configuration, Using a Starting Block of Size 8 with 7 Timesteps

SECTION 2.8 – Inverted Pyramid (1D)

A fundamental problem with ECA is that the boundaries wrap and influence the entire

lattice within a set number of timesteps. To avoid this influence, a CA analogous to an

inverted pyramid is generated, starting with a large odd-numbered k and losing two bits

per timestep until it reaches the final step, with a single cell remaining, shown in Figure

15. Salman describes this as the unbounded ECA [3]. By not using the extremes of each

timestep, the noise influence from wrapping is negated. For purposes of random

number generation, the data size must be used to determine the initial k. The next

17

whole integer (ceiling) of the data length’s square root is taken, incremented to account

for the row that will be used by the seed (so it does not mix with the end results),

multiplied by 2, then subtracted by 1 to gain an odd-numbered k that will produce at or

greater than the data length requested, according to the following formula:

𝑘 = (𝑐𝑒𝑖𝑙𝑖𝑛𝑔(√𝑑𝑎𝑡𝑎) + 1) ∗ 2 − 1

0 1

0 1

1 1

0 0

1 1

1 0

1 0

0 0

0 1 0 1

0 1

0 1

1 1

0 0

1 1

1 0

1 0

0 1

1 1 1 1

1

0

0

1

0

= DATA

= UNUSED DATA

t0

t1

t2

t3

t4

RULE 30, k = 9

Figure 15 – Inverted Pyramid Configuration with Rule 30, k = 9

18

CHAPTER THREE: CELLULAR AUTOMATA STANDARD OF ENCRYPTION

SECTION 3.1 – Principle Theory

Encryption standards are tricky systems to create, being only as strong as the principle

and math behind them. Cellular Automata’s biggest strength lies in the guarantee of

computation – there is no known way to skip computation and figure out the exact data

from a seed’s timestep without actually calculating all the intermediate steps. In that

respect, introducing a “critical time” factor can also increase complexity. A cellular

automata standard of encryption, hereby referred to as CASE, can be used to encrypt

data in a desired key configuration, similar to the way AES (the U.S. approved Advanced

Encryption Standard) has 128, 192, and 256 blocks. There is no real limit on the key

size, so long as the same encryption method is utilized on the decryption end. For the

system described in CASE, the Cascade configuration is modified to accommodate

certain key sizes. The seed block and cascade rules used in this system will need to be

ones that produce the most reliable passing pseudo-random results in all tests – in

other words, the combined result of the three focal points for the research problem.

19

SECTION 3.2 – CASE Structure

Cascade
K1 = 128, 192, 256
T1 = 128, 256, 512

s0 s1 s2 ... SK1-3 SK1-2 SK1-1

S0, K2 = 128, 256, 512 Sk-1, K2 = 128, 256, 512

...

Critical time
factor, T2

Key, K1

Block,
T1

Bit 0-0

Bit 1-0

Bit ..

Bit (K2-2)-0

Bit (K2-1)-0

Bit (K2)-0

Bit (K2+1)-0

Bit ..

Critical time
factor, T2

Bit 0-(K1-1)

Bit ..

Bit (K2+1)-(K1-1)
Bit ..

K2 = T1

Bit 1-(K1-1)

Bit (K2-2)-(K1-1)

Bit (K2-1)-(K1-1)

Bit (K2)-(K1-1)

Figure 16 – CASE Structure and Breakdown

Figure 16 shows the CASE structure, with 9 basic configurations suggested. Further

configurations are possible, but for simplicity only three choices are shown for the key

and internal complexity sizes. The key can be a 128, 192, or 256-bit number, which is

generated by hashing or encrypting an ASCII-input character into a 16, 24, or 32-byte

array. The block size is the required amount of data to encrypt – i.e. a file or array of

data will be segmented into 128, 192, or 256 bit blocks, then encrypted using this

20

method, with an internal complexity generated by the T1 value. 128-bit CA will not

cycle for the critical period and by using bits from each seed, there should be more than

enough entropy to produce pseudo-random results. To increase the amount of time

required to decrypt, a critical time factor (of a very high magnitude) can be added, but

since such information would not be stored in a key, it would more likely become a

CASE configuration. Such factors could be thousands, millions, or billions of timesteps –

there is no imposed limit. The decryption end would need to run through the

calculations before arriving at usable stream data. This could be used to combat key

interception for ultra-critical time periods and also to eliminate correlation between the

key block and the stream data.

Plaintext [Byte array, 16, 24, 32]

CASE stream [Byte array, 16, 24, 32]

XOR Stream cipher

B0-0

Block 0

Byte 0 ... Byte 15, 23, 31

B0-1 B0-2 B0-3 B0-4 B0-5 B0-6 B0-7

B0-0
Row = Block Index

Column = Block Index mod
T1 complexity

B[Block Index]-Seed 0

B0-1
Row = Block Index

Column = Block Index mod
T1 complexity

B[Block Index]-Seed 1

CASE Encrypted Ciphertext

Figure 17 – CASE Block Breakdown

Figure 17 shows the block breakdown as CASE moves through its paces. The row index

will change if a critical time factor is added.

21

SECTION 3.3 – CASE Configurations

Similar to how current encryption systems have levels of use for classified or critical

data, basic configurations for CASE and their suggested standard names are summarized

in Table 1. T1 complexity will need to be investigated on a case by case basis, and will

not be represented here.

Table 1 – CASE Standards Summary

CASE Standard Usage Breakdown

CASE-128 General encryption 128-bit key/block size

CASE-192 General encryption 192-bit key/block size

CASE-256 General encryption 256-bit key/block size

CASE-128T1
CASE-192T1
CASE-256T1

Low-level time-sensitive
hardware

CASE-XXX plus T1 time
factor of 1 million
timesteps

CASE-128T2
CASE-192T2
CASE-256T2

Mid-level time-sensitive
hardware

CASE-XXX plus T2 time
factor of 1 billion
timesteps

CASE-128T3
CASE-192T3
CASE-256T3

High-level time-sensitive
hardware

CASE-XXX plus T3 time
factor of 100 billion
timesteps

What this breaks down in to is the possibility of a computing system having mapped out

all the possible 128, 192, and 256-bit CA diagrams. As demonstrated in the state

diagram data in Section 5.5, the data necessary to hold these diagrams is too

cumbersome for any real world theoretical storage. As computing power progresses,

CASE standards can be scaled to match with higher time critical factors, leaving the

general scheme intact. As such, provided no attacks on the system are extremely severe,

it should be able to withstand the test of time, which is why it is very important to

choose rules that have the highest possibility of maintaining pseudo-random streams.

22

CHAPTER FOUR: RANDOM NUMBER TESTING

SECTION 4.1 – Fallacy of Random Number Generation

Contrary to first impressions, the generation of random numbers means that by

definition they are no longer “random”, in that they are not unexpected. In respect to an

arbitrary viewpoint, they may appear random, which is why this process is always

referred to as pseudo random number generation. CA are completely predictable

provided you know the starting state and acting rules. In the same manner, one could in

theory totally predict Earth’s weather with exact pressure simulations, measurements,

and all applicable knowledge needed for the current state. Since this is not technically

feasible as of this writing, the weather remains somewhat “random”.

SECTION 4.2 – Diehard Battery of Randomness Tests

Originally written in Fortran, the Diehard battery of tests is a common utility used to

measure the statistical randomness of a given set of data, parsed into 32-bit numbers

[4]. There are 17 tests that can be run, provided there is enough binary data for 68

million random 32-bit integers (67,108,889 * 4 bytes = 256 MB). Three tests can be

omitted for smaller data sets with a minimum of 2.5 million 32-bit integers. 229

statistical p-values are generated from these tests, along with an overall p-value. The

importance of these values is explained in section 3.4. Figure 18 shows the starting

prompt for the Diehard program, with a short caveat on p-values.

23

Figure 18 – Diehard Command Prompt with Brief Explanation of P-Value Results

SECTION 4.3 – NIST Statistical Testing Suite (STS)

The U.S. National Institute of Standards and Technology (NIST) provides a statistical

testing suite, shown in Figure 19, written in C for the use of testing random number

generators [5]. Similar to Diehard, it provides 15 tests for randomness, however it uses

several independent streams of data to perform many tests at once. Using 100 streams

of 400,000 bits each (40,000,000 bits total), every test in the suite can be run for a

rounded result. The testing suite documentation gives details on the acceptance of any

particular test and passing results of over 90% can be safely called “random”.

Figure 19 – NIST STS, Recoded to Pass in File Names with Internalized Options

24

SECTION 4.4 – Probability and p-Values

In respect to random number generation, a p-value (ranging from 0.0 to 1.0) is a

measure of probability that the given set of data is “random”, according to a threshold

specified by α (alpha) [6]. Five steps in evaluating random p-value results are:

1. Set null hypothesis – “This set of data is random.”

2. Set alternative hypothesis – “This set of data is not random.”

3. Calculate the p-value for the random test (in this case, Diehard or NIST is

responsible for this step), using the known distributions for the given tests.

4. Choose a significance level (alpha). An alpha that is too small will invariably

judge many sets random and an alpha that is too high will invariably judge sets

to be non-random.

a. NOTE: The documentation for NIST uses an alpha of 0.01. For most early

Diehard testing, an alpha of 0.0005 was used, which was later

considered too lenient. For the final tests, an alpha of 0.01 was used for

both testing suites.

5. Judge p-value based on alpha. If inside the threshold (0 + alpha < p-value < 1 -

alpha), accept the null hypothesis. If at or outside the threshold, reject the null

hypothesis in favor of the alternative.

SECTION 4.5 – Normal Distribution

A single p-value is not usually considered enough to form a decision, which is why

Diehard and the NIST STS provide so many tests. When many p-values are calculated for

a given set of data, it is important that they follow a normal distribution. Deviations

25

from this distribution indicate that there are patterns within the data that came to light

in a particular group of tests with similar pressure points. Figure 20 shows two results

from Diehard testing – on the left is a result that is likely random since it follows a

normal distribution. On the right, the p-value graph is skewed upward, meaning it is

likely to be non-random.

Figure 20 – P-value Distributions: Likely Random (left), Non-random (right)

26

CHAPTER FIVE: CODING AND TESTING CA

SECTION 5.1 – Optimization and Best Practices

ECA are simple structures which can be replicated in virtually any programming

language built with an array data structure. Important considerations are calculation

efficiency, representation, and ease of coding. Writing elementary calculators in Python

2.7 may only take a handful of lines, but the calculations may take 1000x longer than

the equivalent in C, C++, or other languages closer to pure assembly. The following best

practices were devised to handle CA programming from scratch:

1. Learn CA first. Repeating old methodology is an easy trap to fall in.

2. Choose a comfortable language. Preferably “fast” and well documented.

3. Avoid excessive use of expensive data types.

a. For example, storing 0000 1101 1100 1100 1011 1011 1100 1100 (32

cells) as a string takes up to 32 bytes in languages where characters are

stored as an 8-bit data type.

b. Instead, if a 32-bit integer data type or array of 32 Boolean (true/false,

1/0) variables is used, the data size is simply 4 bytes (32 bits). As a result,

any actions to handle those bits become much simpler than manipulating

characters in a string, which normally have a high data overhead.

4. Separate the CA calculator program from any custom User Interfaces (UIs).

5. Plan for data consumption – CA is by its nature exponential, and any data

gathered will grow at an accelerated pace.

6. Use source control and backups – data loss and power outages are unavoidable.

27

SECTION 5.2 – Object Oriented Approach

Early program designs were focused primarily on proof of concept CA calculators and

on-demand functionality, which while useful for gaining a technical understanding of

CA, valuable time could have been lent more effectively toward automating testing and

analysis. To that end, major efforts were made to consolidate the programming

constructs into a cohesive entity as well as to implement source control and

maintenance to aid in continued development. A framework for these operations is

shown in Figure 21, with the workbook generating and analyzing tests via automation.

CAWorkbook

Input.txt
[config string]

CADriver

Diehard Tester

[config-string].txt

NIST_STS

Command:
400000

100
out.bin

finalAnalysisReport.txt
CAWorkbook

Analysis

Generate NIST
Analysis

Generate
Diehard
Analysis

out.bin

CADriver

Input.txt
[config string]

[USER]

Figure 21 – CA Testing Framework

28

SECTION 5.3 – CA Workbook

Figure 22 – CA Workbook, Visual C# (.NET 4.6)

To more effectively visualize the CA generation and aid in testing, the CA Workbook

shown as a screenshot in Figure 22 was created to act as a front end interface for

accessing the CA Driver and generating random data for testing. Options for Diehard

and NIST STS testing are interfaced by passing CA configuration strings to the driver

program, sending their output to the testers then analyzing their results. Since research

is ongoing, the software grows as more CA configurations and analysis options are

added. See Appendix B for a brief breakdown of all the screens as of this writing.

29

SECTION 5.3.1 – Diehard Analysis

To generate a Diehard test, the form creates a configuration string based on the CA

options, then feeds it into the driver program, which dissects the options and generates

enough data to fill the requested length. Diehard is integrated into the driver, and it

runs its tests as soon as data generation is completed, then outputs a results file with

230-270 p-values, depending on the data length. If there were not enough random

numbers for testing, the results file is not generated. Once alerted that testing is

complete, the CA Workbook program analyzes the result.

SECTION 5.3.2 – NIST STS Analysis

To generate a NIST test, the configuration string is passed to the driver requesting

enough data for 40 million bits while a command is passed to the NIST STS requesting

100 stream tests of 400,000 bits each, taken from a binary file called “out.bin”. Once

the driver generates the data, it stores it in a binary file then the NIST suite begins

testing on the file. Once completed, a final analysis report is generated and then

analyzed by the CA Workbook program.

30

SECTION 5.4 – Configuration Strings

Four revisions of the configuration string system were created in the course of testing,

each adding functionality or correcting past oversights, making them incompatible

between each other. Revision 0 sets the basic format, containing all information for the

CA configuration and the seed to fill the starting state. Revision 1 added an option for

external data to be fed into the boundaries of CA (undoing the ECA wrap-around) as

well as a test number feature for automation. Revision 2 added an option for specifying

output files. Revision 3 added an extra output flag for von Neumann correction [7].

Figure 23 shows the way the configuration strings are connected – each arrow

represents a dash. For example, 0-0-1-8-4_30_45_86_90-82000000-00001000-

00110101 breaks down into Revision 0, Configuration 0 (1D), 1 dimension, size 8, 4

rules (30, 45, 86, 90), 82 million bits of data, output flags, and 00110101 as the seed.

A
[Revision 0]

B
[Configuration ID]

C
[Dimensions]

D
[Size]

E_1_2_3_4
[No. of rules followed

by rule values]

F
[Data

length]

G
[8 Output

flags]

H
[Seed]

A
[Revision 1] ... I

[Ends File]
J

[Test No.]

A
[Revision 2] ... I

[Ends File]

J
[Output file

location]

K
[Test No.]

A
[Revision 3] ... G

[9 Output flags] ... K
[Test No.]

Figure 23 – CA Configuration Strings

31

SECTION 5.5 – CA Driver

Each section of the driver corresponds to options in the CA configurations (see chapter

2). Two primary data structures were created for the driver – Calculator and DiehardTest,

as shown in Figure 24. The Collector (which handles most CA configurations), Cascade,

and Pyramid classes all inherit from Calculator, which itself inherits from DiehardTest –

as such, every CA calculator is also a tester. Diehard’s code was originally packaged in a

single file and was relatively easy to integrate into the driver to facilitate testing. Due to

its intricate organizational structure, the NIST testing suite was kept separate as a

standalone executable. Further development would be needed to integrate NIST

directly into the CA driver, mostly for organizational gains rather than functional.

Figure 24 – CA Driver Class Diagram

32

SECTION 5.6 – Automation

Automated CA testing required careful planning to ensure data integrity and meaningful

results. Drawing on options from the original form (renamed CA1), a new automation

form (CA2) was created to address the C# to C++ interfacing problem faced with the

first iteration – mostly due to string interpretation since characters in C# are 16-bit

types and characters in C++ are 8-bit types. The DLL functionality was removed and

replaced with direct use of the driver executable. Each instance of the driver can run on

a separate thread (virtual core), allowing the automation system to scale with more

powerful computing hardware. Figure 25 shows the program flow for multithreading.

[USER]

CA2 Form

START TESTS

Input.txt
[config-string]

(Number of
Virtual Cores)

Input.txt
[config-string]

CA Driver 0

... ...

CA Driver NCA Driver n

results.csv

CA2 Analysis

Figure 25 – CA Driver Automation with Multiple Threads (Virtual Cores)

33

CHAPTER SIX: ECA COMPLETE ANALYSIS

SECTION 6.1 – Observation Criteria

The complete analysis of the ECA spectrum includes all k-space descriptions for each

rule, meaning 256 k-space descriptions for each seed size (k). Since these are absolute

observations (rather than statistical observations like the p-value results), judgments

can be made on the scalability, complexity, feasibility and potential of a complete

ruleset. Since all seeds in a k-space end up in the three fundamental categories – GoEs,

transients, or cycles – eight observations were made for each k-space description.

 Rule (0 to 255)

 Size k (1 to ∞)

 Number of GoE States

 Number of Transient States

 Number of Cycle States

 Longest Transient Length

 Longest Cycle Length

 Number of Unique Cycles

An important thing to note is that these are based on the interpretation that though the

two boundaries are connected, seeds cannot be rotated and remain the same – i.e. 001,

010, and 100 are all treated as totally different states (1, 2, and 4 in decimal,

respectively). Under the rule that such seeds are treated as the same state, these

observations would change dramatically. See Appendix A for Rule 30, 45, and 106.

34

SECTION 6.2 – Reverse Algorithm

Since all ECA states are attracted to cycles, the GoE states are likely to be the fastest

entry point for classifying a k-space description. Determining if a state is a GoE through

conventional brute force is effective but very slow and requires all next states to be

known. Rather than calculate an entire block of seeds, the reverse algorithm (see Figure

26) can be used to construct pre-images for each cell and see if it is possible that

another state could produce the current state. If not, then the state in question must be

a GoE. Pre-images for the given rule are created from a lookup table then stored for

each cell. To trace a path, the right two cells of each pre-image are compared to the left

two cells of the next potential pre-images. If a path can be constructed from start to

finish, then a previous state was possible and thus the state in question is not a GoE.

0 0 1 0 1

0Rule 30 000
1001
1010
1011
1100
0101
0110
0111

000
101
110
111

001
010
011
100

10101

00101

Pre-images
(0)

Pre-images
(1)

tprev

tcur

00
10
11
11

00
01
10
11

L R

00
01
01
10

01
10
11
00

000
101
110
111

00
10
11
11

00
01
10
11

000
101
110
111

00
10
11
11

00
01
10
11

001
010
011
100

00
01
01
10

01
10
11
00

Pre-images
(0)

Pre-images
(1)

Pre-images
(0)

L R L R L R L R

00101 is not a GoE

Figure 26 – Reverse Algorithm for ECA

The reverse algorithm is also proof that given enough permutations and computational

power, it is possible to reconstruct data that was cycled if the rule and/or rules are

35

known – though the branching will quickly become exponential for larger seed lengths

and without an initial timestep (length to current state), ambiguity remains. As such, this

potential represents an NP-complete problem for certain rules, in that only by

simulating all possible outcomes can the solution be known, and the number of

simulations grows dynamically with the length of the CA, meaning no efficient system

for narrowing the possibilities is easily derived [8].

SECTION 6.3 – Fundamental Functions

Certain rules exhibit fundamental functions and their outcomes can be easily predicted.

Rule 0 forces all next states to be 0 and Rule 255 forces all next states to be 1.

Logically, this means the number of GoE states is 2^k – 1 for both rules since only one

state (all 0s or all 1s) will cycle to itself – the rest will never fall into the “next state” list.

Another example is Rule 204, which is essentially an “identity” rule. Its next state is

always equal to B, the current state of the center cell, i.e. itself. Rule 51 is the flipped bit

version of 204, meaning the next state is equivalent to the negation of the last. Shift left

is Rule 170 and shift right is Rule 240, which essentially take cells C or A in place of the

center cell B for the next state. These are summarized in Table 2.

Table 2 – Fundamental Functions Implemented as Rules

36

SECTION 6.4 – ECA State Diagram Algorithm

With the reverse algorithm, optimizing the ECA generation algorithm is a far less

daunting task than brute force interpretation. By generating all the next states and

determining GoEs, the search time can be restricted only by the size k. The final

algorithm in use is represented in the pseudo-code of Figure 27.

Figure 27 – ECA Algorithm in Pseudo Code

37

SECTION 6.5 – State Diagram Data Storage

To facilitate more compartmentalized operations, the next state generation (i.e. running

a given seed through a CA calculator) can be saved to a binary file. For sizes k = 1 to 32,

this can be done by storing consecutive 32-bit integers rather than a text file with a

string of bytes. So instead of 32 bytes to store a state, it would take 4 bytes. For sizes k

= 33 to 64, a 64-bit integer could be used, leaving the size at 8 bytes instead of 64.

Assuming the states are stored in the correct order, there is no reason to store the

starting state, meaning the size of the file is equal to 2 bytes (one for rule and one for

size) + 2^k * 4 bytes. For sizes 1 to 32, to hold all the states of a given rule will take up

32 gigabytes (GB) a piece. So for all 256 rules, the required raw binary storage is 8

terabytes. After they are analyzed, they would no longer be needed and can be deleted.

A generator program was written to conform to the structure in Figure 28.

Figure 28 – Binary State Diagram Storage

38

As the size k grows larger, it becomes increasingly difficult to contain all the working

data for the diagram in RAM, and resorting to file storage is a necessary evil as the size k

approaches 32. To just hold a working list of all possible 32-bit integers requires 16

gigabytes of RAM. The necessary data sizes are shown in Table 3 and 4. As the algorithm

completes, the working list will grow smaller and before the final phase when the GoEs

are removed from the transient list, the transient and cycles lists will contain all 2^k

states between them, meaning that the minimum target data size is 2^k * 20 bytes.

Programming overhead for the data structures will magnify these values even further,

and in reality at around k = 27, the C++ implementation begins to take up a majority of

32 GB of RAM. To hold all k = 32 state data would take 80 gigabytes and to hold all k =

64 state data (40 bytes instead of 20) would take 640 exabytes, which actually

supersedes the addressing limits of a 64-bit processor (16 EB).

Table 3 – Minimum Data Sizes for State Diagram Storage

Table 4 – Minimum Data Size for k = 26 to 32, and 64

39

SECTION 6.6 – GoE Trends

Globally, the number of GoE states for each rule follows a visible trend as the size (k) is

incremented. Shown in Figure 29 is the GoE graph for k = 16. The traits become

compressed into the two extremes as the k-space increases, leaving a noticeable gap in

the bottom half – a rule will either have very few GoEs or more than half of all potential

states will be GoEs.

Figure 29 – Graph of GoE Counts, k = 16, All 256 ECA Rules

40

SECTION 6.7 – Unique Cycle Trends

In part due to the fundamental functions listed in section 5.3, the number of unique

cycles usually only has two critical points (identity, 204 and negative identity, 51), as

shown in Figure 30, which are always 2k and 2k/2 respectively.

Figure 30 – Graph of Unique Cycles, k = 26, All 256 ECA Rules

41

SECTION 6.8 – Longest Cycle Length

Rule 45’s group (45, 75, 89, and 101) maintain the longest cycle for most k-spaces

following 4, with the notable exception of 8 and 16, where Rule 30’s group (30, 86, 135,

149) has the longest cycle length. Table 5 shows the longest cycles for k = 1 to 27.

Table 5 – Longest Cycle Length by Rule Group

42

Despite Rule 45’s group being the longest cycle on most even sized k’s, the length to

total number of states ratio is very low. Figure 31 shows the change between sizes on a

logarithmic scale, showing the dips between even and odd while maintaining the

obvious trend toward exponential growth.

Figure 31 – Longest Cycle Length Graph, Logarithmic Scale, Base 10

Long cycles are important to consider since they will not repeat data in a critical period

of reference, allowing for more random number generation through chaotic

propogation. Rule 30 and Rule 45 become important players due primarily to the fact

that they hold the longest cycles.

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

LO
N

G
ES

T
C

YC
LE

 L
EN

G
TH

SIZE K (SEED LENGTH)

Longest Cycle 3-bit Neighborhood, Rules [0,255], Log Base 10

43

CHAPTER SEVEN: TESTING RESULTS

SECTION 7.1 – Balanced ECA Rules

A rule is balanced when it has an equivalent number of preimages for both 0 and 1, but

not every balanced rule lends to random number generation (chaotic propogation).

Figure 32 shows 70 rules in the basic 256, which have an equal number of 0s and 1s.

Diehard tests were ran for 100 random seeds on 128, 256, 512, 1024, 2048, and 4096-

bit seed lengths to test against what rules are viable. In total, this comprises 153,600

tests (7 seconds per test). Some have obvious results (0 and 255, for example). For

comparison, there are 601,080,390 balanced rules in the 4,294,967,296 rules of the 5-

bit neighborhood, and to test all rules in the 5-bit space would require a large

computing network to finish in a reasonable period of time.

Figure 32 – Balanced Rules, ECA 256

0

1

0 1 5 3 0 4 5 6 0 7 5 9 0 1 0 5 1 2 0 1 3 5 1 5 0 1 6 5 1 8 0 1 9 5 2 1 0 2 2 5 2 4 0 2 5 5

BALANCED RULES [0-255], BALANCED = 1

44

SECTION 7.2 – ECA Tests

The following sections show the results analysis of the ECA tests ran for all rules with a

size k of 128, 256, 512, 1024, 2048, and 4096 (see Figure 33). One hundred random

seeds were used, with the same set of seeds used in each size category. The y-axis data

shows 100 points for each rule (corresponding to a test with a seed), with a percentage

value of how many p-values were within the alpha of 0.01 out of the 230 Diehard

results. For the purposes of evaluation, one could say that Rule 0’s test results all had a

0% chance of being random. As the passing results draw closer to 100%, the results

must be taken with the understanding that no result is 100% random, but for testing

purposes appears random. Good candidates for random number generation are those

that approach or exceed 90% passing. Data analysis seems to follow the hypothesis

that a subset of balanced rules is most likely to produce more chaotic (random)

behavior when analyzing the raw data from continuous CA calculations for PRNGs.

CA2

k = 128
100 seeds

k = 256
100 seeds

k = 512
100 seeds

k = 1024
100 seeds

Diehard
Φ [0 – 255]

results.csv

AnalyzeECA.exe

analyzedResults128.csv
analyzedResults256.csv
analyzedResults512.csv

analyzedResults1024.csv
analyzedResults2048.csv
analyzedResults4096.csv

k = 2048
100 seeds

k = 4096
100 seeds

153,600 Tests

Figure 33 – ECA Testing and Analysis

45

SECTION 7.2.1 – k = 128, Diehard Results

Figure 34 – Diehard Results, ECA k = 128, Alpha = 0.01, All Rules, 25600 Tests

Figure 34 shows no result for k = 128 exceeds 90% passing when an alpha of 0.01 is

used in the evaluation phase of Diehard testing. A simple conclusion that can be made

on this data is that strictly harvesting the ECA data from a random 128 length starting

seed (aka, a 128-bit key) is not enough to pass random testing, especially for the

purposes of cryptography. However, there are 12 rules that stand out for further

examination. From left to right, they are 30, 45, 75, 86, 89, 101, 106, 120, 135, 149,

169, and 225. This behavior is expected, since they fall into three rules clusters, two of

which have the longest cycles at the k < 32 level. These are the [30, 86, 135, 149], [45,

75, 89, 101], and [106, 120, 169, 225] groups. Rule 30 and Rule 45’s clusters lead the k

= 128 results.

46

SECTION 7.2.2 – k = 256, Diehard Results

Figure 35 – Diehard Results, ECA k = 256, Alpha = 0.01, All Rules, 25600 Tests

Figure 35 shows that for k = 256, the same groups from k = 128 lead the results, but

still fall short of the 90% mark. Rule 30’s group [30, 86, 135, 149] takes the lead,

averaging at the 80% mark while Rule 45’s group [45, 75, 89, 101] averages at the 75%

mark. Rule 106’s group [106, 120, 169, 225] has risen to the 55% mark. Compared to

AES-256 and other 256-bit secure algorithms, raw CA harvesting with these groups is

not a viable option for cryptography at this level.

47

SECTION 7.2.3 – k = 512, Diehard Results

Figure 36 – Diehard Results, ECA k = 512, Alpha = 0.01, All Rules, 25600 Tests

Figure 36 shows at k = 512, the core groups for Rule 30 [30, 86, 135, 149] and Rule 45

[45, 75, 89, 101] could be safely called random and potentially used in a 512-bit

cryptographic system when using their raw output. It is likely that the third group, Rule

106 [106, 120, 169, 225] will perform at greater bit levels since it averaged at 70% at

this level. A clear lead is still given to Rule 30 over Rule 45, but this is likely because

Rule 30 has a greater cycle than Rule 45’s group at size k with powers of 2.

48

SECTION 7.2.4 – k = 1024, Diehard Results

Figure 37 – Diehard Results, ECA k = 1024, Alpha = 0.01, All Rules, 25600 Tests

Figure 37 shows that Rule 30 and Rule 45’s groups maintain their status while Rule

106’s group pulls up to 75% average passing at k = 1024, still not suitable for random

number generation at this level. Rule 105 and 150 (each are negations of each other)

begin to show a break from their low numbers, pushing up to 20% average passing.

49

SECTION 7.2.5 – k = 2048, Diehard Results

Figure 38 – Diehard Results, ECA k = 2048, Alpha = 0.01, All Rules, 25600 Tests

Figure 38 shows that Rule 30 and 45 seem to have plateaued at their respective levels,

while Rule 106 inches up by 1-2% on average. Further extensions of the key size (k)

will likely push the 106 group into the 90% level. Rule 105 and 150 have moved up to

35% average from their small lead at 20% in k = 1024. Tests for the remaining rules

are still necessary since they provide context for the relative randomness among rules.

In addition, it provides proof that simply extending the k-length is not the only catalyst

for randomization, otherwise all rules would be increasing at a regular rate.

50

SECTION 7.2.6 – k = 4096, Diehard Results

Figure 39 – Diehard Results, ECA k = 4096, Alpha = 0.01, All Rules, 25600 Tests

Figure 39 shows the results of the final round of tests, where Rule 30 and 45 maintain

their plateau while the Rule 106 group continues to crawl toward the 90% mark. Rule

105 and 150 have pushed into the 55% average passing range, an increase of 20%

over the 2048 range. 4096 bit keys are a common upper limit and therefore any system

utilizing raw CA calculations should only be used with Rule 30 and 45 at this level.

51

SECTION 7.3 – Cascade Tests

A large batch of Diehard tests were ran using a seed block of k = 16, t = 32, with 10

random seeds on all combinations of two rules (i.e. 256 x 256 x 10 = 655,360 tests, at

an average of roughly 10 seconds each), the results flow shown in Figure 40. Testing

took ten days on an 8-thread processor running non-stop. Two graphs are represented

in the following sections – one with the number of passing p-values (a scalar

representing randomness density) and the second with Diehard tests that had a total

number of p-values above the 90% threshold. Each chart is setup as a bubble chart,

with the area of each bubble relative to its total at that x-y point pair. There are 65,536

points on each graph, though many have zero passing values and thus no bubble is

shown. Cascade’s configuration is proof that even with a 16-bit key, random number

generation is still a decent possibility with CA.

CA2

k1 = 16,
T1 = 32

10 seeds

Seed Block Rule
Φ [0 – 255]

results.csv

AnalyzeCascade.exe

FinalCascadeResults.csv

Cascade Rule
Φ [0 – 255]

X

655,360 Tests

Figure 40 – CA2 Process for Testing Cascade Combinations

52

SECTION 7.3.1 – k1=16, t1=32, Passing p-values Density

Figure 41 – Cascade Tests, Passing P-values, k1 = 16, t1 = 32

While the passing p-value density does not show the number of passing tests, it gives

clear evidence that a weak seed block rule can be overrun by a stronger cascade rule.

Rule 30 and 86 seem to perform the strongest regardless of their starting seed. Rule 45

and its usual gamut of rules also fair very well. Figure 41’s graph correlates with the

results from the ECA testing, representing the major trends.

53

SECTION 7.3.2 – k1=16, t1=32, Passing Tests Density

Figure 42 – Cascade Tests, Passing Diehard Tests, k1 = 16, t1 = 32

Figure 42 shows the density of Diehard tests that actually passed, ranging from 0 to 10

at each point, with larger bubbles carrying greater weight. Despite its large density, Rule

30 does not do as well as 45 here. In the raw data, Rule 45’s group [45,75,89,101] are

the only ones with 8 to 10 total passes of the 10 seeds tested. Despite 45’s advantage,

Rule 30 and 86 both have relatively equal distribution of passing tests across all seed

block rules, and will likely pass at higher key lengths.

54

CHAPTER EIGHT: CONCLUSION

SECTION 8.1 – Summary

Elementary Cellular Automata are deterministic structures created by iterating through

each cell and calculating its next state from predetermined rules. Configurations and

augmentations of ECA are wide open interpretations of basic ECA rules and

applications, leading to different lattices, rules, and circumstantial use. An encryption

methodology for CA such as CASE can be modeled for practical use on modern and

future equipment. Random number testing on ECA is accomplished via the Diehard

utility or the statistical testing suite provided by the U.S. National Institute of Standards

and Technology. P-values generated from those tests are statistical indicators of

pseudo-randomness, since nothing can “truly” be random. Coding and testing CA is

accomplished through the use of a driver and workbook program combination, allowing

for automation, code reuse and flexibility. Complete analysis of ECA can help with

logistically correlating testing results with their respective attributes. Rigorous testing

allows systematic evaluation of certain rules and configurations, leading to judgments

on practicality of pseudo-random number generation and ultimately encryption.

55

SECTION 8.2 – Conclusions

In conjunction with ECA complete analysis and random number testing, results clearly

show that pseudo random number generation is possible at high levels for basic ECA

and that some rules are categorically more chaotic than others. Evaluation and

concentrated testing on the Cascade configuration shows that it lends greatly to parallel

encryption, since it is capable of producing random results with minimal input.

SECTION 8.2.1 – Focus 1: ECA Chaotic Rules and Configurations

1. What rules and configurations are conducive to chaotic structure?

Rules 30 and 45 are the most likely candidates for chaotic propogation in ECA,

regardless of configuration. Rules 105 and 106 show promise at higher complexity,

warranting further analysis. Dr. Salman’s twister (or cascade) structure provides a

minimal augmentation of ECA that is able to generate chaotic results with small seed

lengths, lending greatly to practical use.

SECTION 8.2.2 – Focus 2: ECA Random Number Generators

2. Can ECA be used for practical random number generation?

Cellular Automata are capable of producing pseudo-random results with minimal input.

Concentrated research and extended proofs would be necessary to further this use of

CA without making too many assumptions on the infallibility of its simplicity. Rigorous

testing shows the practical level of RNG for each rule, correlating the state diagram

analysis and affirming that the Rule 30 and 45 groups are most likely to be random.

56

SECTION 8.2.3 – Focus 3: ECA Encryption

3. If RNG creation is possible, how much complexity is necessary for encryption?

Cascade configurations allow for parallelized encryption by providing a source block of

seeds (or keys) for child vectors. The CASE methodology should be flexible enough to

provide a basis for a true encryption standard with CA at its core – preferably rule

groups 30 or 45. Since basic ECA is NP-complete it requires all intermediate steps,

meaning that as computing power increases, the critical time for the child vector

propogation can be adapted depending on use. As with AES and other symmetric

encryption, hardware and software implementations can coexist, provided rigorous

validation and standardization are regulated.

SECTION 8.3 – Recommendations

The sheer simplicity of cellular automata is reason enough not to ignore its use, either

for encryption or any other purpose. Its exponential scalability allows it to adapt as

computing power advances, provided no proof is found to compute timesteps without

intermediate results. Matthew Cook has provided a proof that Rule 110 is Turing

complete, meaning it is useful for universal computation [9]. As process architecture

shrinks, this could allow for a simplified deterministic computing structure without the

possibility of clock failure, with the potential of encryption (by switching the base rule)

built naturally into the circuits. Whether or not CA comes to be used in the real world, it

seems to be an untapped resource and its future cannot be ignored.

57

SECTION 8.3.1 – Future Work on Analysis

Complete analysis of rules and increasing seed lengths requires exponentially greater

amounts of memory for diminishing gains in data. Preliminary investigation seems to

indicate that the Rule 30 and 45 groups are the most viable sets. Suggested avenues

would include investigating the analysis of spatial/temporal rules to see if there is merit

in combining certain selections over using flat rules for all timestep calculations. A new

batch of tests could then be run to determine if PNRGs are possible at lower key lengths

than 512, making ECA more viable.

SECTION 8.3.2 – Future Work on Encryption

Expanding the CASE model is the next logical step in utilizing CA for encryption, which

would include investigating its weaknesses and potentially rewriting the premise

entirely if such weaknesses could not be overcome. An alternative would be to develop

another method of parallelizing the data output. Serial encryption is not necessarily

efficient when large amounts of data is involved, but on small scale systems it may not

be as much of a concern, therefore any configuration can do, provided it gives enough

randomization with more minimal inputs than generic ECA.

SECTION 8.3.3 – Self-Replication and Validation with CA

John von Neumann’s original research into CA was for the purpose of creating machines

that continuously replicate themselves. Nanotechnology is rapidly advancing in all

fields of industry via microarchitecture shifts, bioscience procedures, or more mundane

mechanics. While not a perfect fit, combining CA rules into a nano-environment could

58

easily allow for self-validation in testing and a multitude of other potentials, if not one

day the creation of von Neumann’s machines.

SECTION 8.3.4 – Bioscience Research with CA

Natural rules govern cell replication, mitosis, creation, and general repair. CA rules are

not perfectly analogous to chemistry, but in some cases can be close enough to warrant

model creations to aid in reducing computer simulation time. Protein folding is one

avenue of distributed computer research that could benefit if it is not utilizing rough

models already. [10] DNA networks are also a potential for CA, since genomes and their

nitrogen bases have many similarities to the way ECA form around attractor cycles.

59

REFERENCES

[1] J. V. Neumann, The Theory of Self-Reproducing Automata, Urbana and London:

University of Illinois Press, 1966.

[2] S. Wolfram, "Random Sequence Generation by Cellular Automata," in Advances in

Applied Mathematics 7 No. 2, 1986, pp. 123-169.

[3] K. Salman, "Elementary Cellular Automata (ECA) Research platform," Journal of

Selected Areas in Software Engineering (JSSE), vol. 3, no. 6, 2013.

[4] G. Marsaglia, "The Marsaglia Random Number CDROM including the Diehard

Battery of Tests of Randomness," Florida State University, 1995. [Online].

Available: http://stat.fsu.edu/pub/diehard/.

[5] National Institute of Standards and Technology, "NIST Statistical Test Suite," 16

July 2014. [Online]. Available:

http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html.

[6] "Hypothesis Testing (P-value approach)," 2015. [Online]. Available:

https://onlinecourses.science.psu.edu/statprogram/node/138.

[7] D. Naccache, "von Neumann Correction," in Encyclopedia of Cryptogtraphy and

Security, Springer US, 2011, p. 1364.

[8] F. Green, "NP-Complete Problems in Cellular Automata," Complex Systems, pp.

453-474, 1987.

[9] M. Cook, "Universality in Elementary Cellular Automata," Complex Systems, vol. 15,

pp. 1-40, 2004.

[10] "Folding@Home," Stanford University, [Online]. Available:

https://folding.stanford.edu/home/the-science/. [Accessed 23 1 2015].

60

APPENDICES

61

APPENDIX A: STATE DIAGRAM CYCLE DATA

SECTION A.1 – Complete ECA Analysis, Rules 30, 45, 106

Table 6 – Rule 30 [30, 86, 135, 149] State Diagram Data, k = 1 to 27

Size GoEs Transient
States

Cycle
States

Longest
Transient

Longest
Cycle

Unique
Cycles

1 1 0 1 1 1 1

2 1 0 3 1 1 3

3 3 4 1 3 1 1

4 5 0 11 1 8 4

5 6 20 6 5 5 2

6 12 49 3 10 1 3

7 22 14 92 2 63 9

8 33 172 51 16 40 5

9 57 211 244 13 171 3

10 101 885 38 46 15 6

11 166 1540 342 55 154 13

12 280 3385 431 126 102 12

13 482 6279 1431 66 832 5

14 813 13489 2082 127 1428 18

15 1373 29619 1776 321 1455 31

16 2337 52908 10291 287 6016 9

17 3962 113305 13805 362 10846 7

18 6708 251086 4350 1137 2844 18

19 11382 508782 4124 1234 3705 5

20 19305 995345 33926 1736 6150 27

21 32721 2047812 16619 4308 2793 60

22 55485 4123075 15744 5477 3553 24

23 94094 8251342 43172 6051 38249 4

24 159536 16422689 194991 9568 185040 49

25 270506 32600370 683556 9252 588425 16

26 458693 66264744 385427 18758 312156 33

27 777765 132913219 526744 34054 240300 40

62

Table 7 – Rule 45 [45, 75, 89, 101] State Diagram Data, k = 1 to 27

Size GoEs Transient
States

Cycle
States

Longest
Transient

Longest
Cycle

Unique
Cycles

1 0 0 2 0 2 1

2 2 0 2 1 2 1

3 0 0 8 0 3 5

4 4 10 2 4 2 1

5 0 0 32 0 30 2

6 8 30 26 6 18 6

7 0 0 128 0 126 2

8 16 134 106 18 32 7

9 0 0 512 0 504 6

10 32 260 732 16 430 9

11 0 0 2048 0 979 16

12 64 3094 938 167 240 33

13 0 0 8192 0 1105 24

14 128 8988 7268 312 2198 16

15 0 0 32768 0 6820 54

16 256 53014 12266 1776 2816 42

17 0 0 131072 0 78812 22

18 512 220728 40904 3533 7812 201

19 0 0 524288 0 183920 36

20 1024 771640 275912 3678 142580 282

21 0 0 2097152 0 352884 262

22 2048 3865994 326262 21950 122870 272

23 0 0 8388608 0 3459591 224

24 4096 14904662 1868458 53104 421188 4411

25 0 0 33554432 0 10828525 514

26 8192 66213056 887616 352642 334308 1353

27 0 0 134217728 0 81688176 3134

63

Table 8 – Rule 106 [106, 120, 169, 225] State Diagram Data, k = 1 to 27

Size GoEs Transient
States

Cycle
States

Longest
Transient

Longest
Cycle

Unique
Cycles

1 1 0 1 1 1 1

2 1 0 3 1 2 2

3 3 1 4 2 3 2

4 5 0 11 1 4 5

5 6 0 26 1 15 4

6 12 34 18 8 6 5

7 22 28 78 5 49 6

8 33 52 171 6 15 18

9 57 208 247 12 54 16

10 101 375 548 17 205 18

11 166 1507 375 73 176 20

12 280 3094 722 85 168 37

13 482 6071 1639 76 416 46

14 813 12089 3482 153 448 72

15 1373 23806 7589 191 1095 108

16 2337 55492 7707 457 2688 155

17 3962 116756 10354 938 3230 214

18 6708 234871 20565 1155 2664 357

19 11382 480586 32320 1233 13471 501

20 19305 960275 68996 1063 21240 782

21 32721 1995596 68835 3506 14658 1184

22 55485 4049210 89609 5030 32428 1818

23 94094 8200190 94324 10024 14306 2792

24 159536 16061462 556218 6997 80544 4728

25 270506 32549375 734551 11269 309150 6729

26 458693 66315704 334467 26587 26858 10482

27 777765 132053401 ERROR* 30637 242352 16317

*A 32-bit rollover error occurred when computing the number of unique cycles for this group,

resulting in loss of data for that category.

64

SECTION A.2 – Longest Cycle Graphs, k = 8, 16, 24, 27

Figures 43 through 46 show the longest cycles for all rules in sizes k = 8, 16, 24, and 27.

For 8 and 16, Rule 30 holds the longest cycle, and will likely continue this trend as the

number doubles, since Rule 45 is still greater at k = 24. Even-numbered sizes produce

lower cycle lengths for Rule 45, but with odd-numbered k’s it dominates the graph.

Figure 43 – Longest Cycle Diagram, All Rules, k = 8

0

5

10

15

20

25

30

35

40

45

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255

LO
N

TE
ST

 C
YC

LE
 L

EN
G

TH

RULE

[B] Longest Cycle for Size (k) = 8, Rules [0,255]

65

Figure 44 – Longest Cycle Diagram, All Rules, k = 16

Figure 45 – Longest Cycle Diagram, All Rules, k = 24

0

1000

2000

3000

4000

5000

6000

7000

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255

LO
N

G
ES

T
C

YC
LE

 L
EN

G
TH

RULE

[B] Longest Cycle for Size (k) = 16, Rules [0,255]

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255

LO
G

N
ES

T
C

YC
LE

 L
EN

G
TH

RULE

[B] Longest Cycle for Size (k) = 24, Rules [0,255]

66

Figure 46 – Longest Cycle Diagram, All Rules, k = 27

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255

LO
N

G
ES

T
C

YC
LE

 L
EN

G
TH

RULE

[B] Longest Cycle for Size (k) = 27, Rules [0,255]

67

APPENDIX B: CA WORKBOOK SCREENS

SECTION B.1 – Plot Screen

Figure 47 – CA Workbook, Plot Screen

Plot allows a user to easily observe the ECA with a variety of configurations and rules,

including starting seed, scrolling to specific timesteps, and observing the changes

between seeds on the same rule.

68

SECTION B.2 – Diehard Screen

Figure 48 – CA Workbook, Diehard Screen

Diehard allows a user to see pseudo-random analysis on a specific CA configuration,

starting seed, and rules. Functionality for testing a user-generated binary file is also

available. The configuration string, raw test results, grouped results, and p-value

distribution are all shown to aid in quick one-off testing. A line above the raw test data

shows the overall p-value and passing test results.

69

SECTION B.3 – NIST Screen

Figure 49 – CA Workbook, NIST Screen

NIST allows a user to run the National Institute of Technology’s Statistical Testing Suite

against a CA configuration or user-supplied binary file. The final results text is parsed

and placed into the grid for viewing following test completion. In addition to the test’s

configuration string, a line above the results grid shows the total number of passing

tests and whether or not the test failed or passed overall.

70

SECTION B.4 – Cycle Screen

Figure 50 – CA Workbook, Cycle Screen

Cycle allows the user to run a single cycle analysis for a given configuration and starting

seed, usually reserved only for ECA. The test seed, type, dimensions, size, and rules are

output in addition to the transient and cycle length.

71

SECTION B.5 – Automation Screen

Figure 51 – CA Workbook, Automation Screen

Automation is a powerful tool that allows parallelized testing of a range of configuration

options – seed length, rule combinations, number of seeds, configuration ranges. It

creating a separate process for each test, up to a maximum concurrent number of

threads that the machine can technically handle – normally the number of cores,

sometimes multiplied by two if hyper threading is enabled. The test configuration data

and passing number of p-values are collected into a global results file for later analysis.

72

APPENDIX C: RGB MAPPING FOR ECA RULES

SECTION C.1 – Bitmapping Process

In mapping elementary CA to a bitmap image, each state’s next state is stored as an

integer rather than a binary string, then mapped to an RGB color, which uses up to 24

bits, or size k = 24. Using a square, the resulting image has both a width and height of

√2𝑘. Mapping from left to right, top to bottom, 0 at the top left and 2𝑘-1 at the bottom

right. For k = 16, only green and blue (R[GB]) will be used since there are only 2 bytes of

data. To accurately portray a 24-bit scheme would require 3D modeling. The following

figure shows the normal distribution when colors are created this way, from seed 0

(0x000000) to 65535 (0x00FFFF). Figures 53 and 54 show the resulting bitmap images

for rule groups 30 and 45 for k = 16.

Figure 52 – RGB 16-bit, Normal Colorization

73

SECTION C.2 – Rule 30 [30, 86, 135, 149]

Figure 53 – RGB Mapping, Rules 30, 86, 135, 149 (left to right)

74

SECTION C.3 – Rule 45 [45, 75, 89, 101]

Figure 54 – RGB Mapping, Rules 45, 75, 89, 101 (left to right)

