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We all want to help one another. Human beings are like that. We
want to live by each other’s happiness - not by each other’s misery.

We don't want to hate and despise one another. In this world there
is room for everyone. And the good earth is rich and can provide
for everyone.

The way of life can be free and beautiful, but we have lost the way.

Greed has poisoned men'’s souls, has barricaded the world with
hate, has goose-stepped us into misery and bloodshed.

We have developed speed, but we have shut ourselves in.
Machinery that gives abundance has left us in want.

Our knowledge has made us cynical. Our cleverness, hard and
unkind. We think too much and feel too little.

More than machinery we need humanity. More than cleverness we
need kindness and gentleness.

Without these qualities, life will be violent and all will be lost.

-- Charlie Chaplin,
from The Great Dictator (1940)



ABSTRACT

Cellular automata are a set of discrete structures generated and manipulated by
predetermined rules, in which each state (or evolution) is influenced by the previous.
Utilizing the simplicity of this fundamental structure, a number of configurations have
been organized and derived from elementary (single dimensional) cellular automata. By
harvesting the evolution of these structures as output, they lend greatly to random
number generation and by extension, encryption. Analyzing, testing, and programming
these methods has led to observations on optimal approaches to each. Utilizing the
Diehard testing suite and the National Institute of Standards and Technology (NIST)
Statistical Testing Suite (STS), configurations can be judged against each other as well as
external systems. Optimal methods for generating configurations, visual observation
and data analysis are compiled in a workbook program. A complete analysis for the
state diagrams of k[1, 27]in the 3-bit rule space is included and a Cellular Automata

Standard of Encryption (CASE) is suggested for real world use.
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CHAPTER ONE: CELLULAR AUTOMATA

SECTION 1.1 - Elementary Cellular Automata

All structures operate on rules, whether it is the natural world relying on the laws of
physics or an artificial environment relying on compiled logic, which itself is arguably an
extension of physics. An elementary cellular automata (ECA), shown in Figure 1, consists
of a single dimension of cells, each set in an active (binary 1, logic high) or inactive
(binary 0, logic low) state. Each ECA begins with a seed, a string of active or inactive
cells, serving as the initial state before the start of automation, in which a rule produces

the next state of a cell depending on its neighborhood and fundamental look up table.

SEED
to
\V&V&V&V%/
+ coclcz ks+uu «2Ck-1Co
RULE RULE RULE RULE RULE
1) 1) 1) 1) @
'S B N B
o [ColCq]...|CulC.

Figure 1 — Elementary Cellular Automata of Size k Using a 3-cell Neighborhood




SECTION 1.2 - Rules and Neighborhoods

Arule is built from a fundamental function or polynomial expression of a basic binary
neighborhood - in the case of ECA the neighborhood consists of the cell and its two
adjacent cells, or 3 bits. As a result, there are only 8 (or 2°) states that this neighborhood
can exhibit, each producing a different output based on their position in that rule’s
lookup table (LUT), shown in Figure 2. Expanding the possible rules for a neighborhood
of 3 bits creates a complete neighborhood of 256 (or 2 * [2”3] = 28) fundamental
functions, denoted by their decimal value, i.e. Rule O through Rule 255. To
accommodate the left and right extremes’ lack of a third adjacency, the ECA is looped

around as shown in Figure 1, making the extremes adjacencies of each other.

3010 = 0001 11102 -

) T [0
a4 o |[T][T
100 |[ 1 i
101 [0 17 10]0
110110 o M o

A’'B+A’C+AB'C’ =A XOR (BORC)

Figure 2 — Tri-Cell Neighborhood Diagram with k-Map Reduced Function - Rule 30

Applying the fundamental rules across the ECA produces its next evolution, or state.

Following the initial state, each successive state is a temporal iteration, or timestep,



which can be used to describe a specific state of the structure when in combination
with the ECA’s seed (timestep O, or to) and governing rule. Figure 3 shows Rules 30, 45,

60, and 90 for the 32-bit seed 1111 1101 11110111 1110 0000 1110 1011,.

Figure 3 — Automation of ECA with Rules 30, 45, 60, and 90 (left to right)



SECTION 1.3 - Adjacencies

Varying these rules and the way the neighborhoods are represented leads to a number
of basic configurations. Extending the neighborhood to 5 bits produces (2 *[2 * 5] =
23%), or 4,294,967,296 rules, and further extending the neighborhood to 7 bits produces
(2 ~[2"7]=2"%), or 340,282,366,920,938,463,463,374,607,431,768,211,456 rules.
CA rapidly becomes exponential as the configurations and basic neighborhoods evolve
beyond their ECA limits. In addition, each cell’s adjacencies are not static, allowing for
even more variation in the basic representation of single dimension CA by moving the

physical adjacency to cells that do not directly connect, shown in Figure 4.

Coy| coe | G| ooe [ Cuy | | Cus C. Cros

MULTI-BIT 3-BIT
RULE RULE

2 9

v L]
CX CX

Figure 4 — Extending ECA Neighborhoods and Changing Adjacencies

Representations of the CA lattice also lend to variation. Expanding into multiple
dimensions and including additional generators on the boundaries are prime examples.
In those cases, the use of fundamental rules changes to use more than one
neighborhood and rule results are combined. John von Neumann’s two dimensional
neighborhood of four adjacent cells is one of the first examples of this configuration.

See chapter two for more detail on configurations.



SECTION 1.4 - Complete Description of a k-Space

CA are finite objects — the k-Space of any particular rule can be completely defined for
study and analysis. For example, an ECA of length 8 has a complete k-Space of (28 =
256) potential states. In this space, there are three components — Cycles, Transients, and
Garden of Eden States (GoES). Any given state is considered to fall into one of these

three groups. When analyzed together, they show the CA's "basin of attraction”.

SECTION 1.4.1 - Garden of Eden States (GoES)
A state that cannot be entered from any other state in the k-Space is considered a
Garden of Eden state. Without the reverse algorithm (see 5.2), determining if a state is a
GoE would require analyzing the next states of every state, putting them into a two
column list and determining what entry on the left does not occur in the right, as shown

in Figure 5.

Rule 30 889

k=3 010
011
100
101
110
111

A

Y YVYVY VY YY

(T N [ Y [ | [ - N

Figure 5 — GoE Discovery, Two Column Approach



SECTION 1.4.2 - Transients
A state that is only entered once in automation is considered a transient. All transients
originate from Go€Es, since they will never be entered. By process of elimination, any
state that does not fall into a cycle and is not a GoE must be a transient. Transient
length is determined by the number of cycles between the state and cycle entry. In the
complete analysis, the longest transient refers to the GoE state with the longest length

before cycle entry. Figure 6 shows an example of two transients.

to GOE, Length 3
5] 010 |[«=— TRANSIENT, Length 2
Rule 30 t 117 TRANSIENT, Length 1
Dl , t
k=3 2 ll1 eng
t3 OOO <—— CYCLE (Length 0)

Figure 6 — Transient Diagram Using Rule 30, Size k = 3, GoE 011



SECTION 1.4.3 - Cycles
Eventually, a state will be entered which will iterate into other states until it repeats,
forming a cycle due to the natural law of the rule. There are three types of cycles. A
regular cycle occurs when a transient or GoE enters a state that iterates for a number of
states before the original entry is repeated. A single cycle occurs when the state cycles
to itself — for Rule 30 this happens with a seed of all zeroes, since the next state is (000)
=0, as seen in Figure 6. An orphan cycle occurs when no entry points are defined. For
Rule 105, this happens with even-length seeds of alternating Os and 1s (ex. 01010101,
k = 8), which forms the next state of 10101010, then back to 01010101. Figure 7 shows
the differences between types. For Rule 105, k = 4, there are no transients or GoEs,
making all the cycle states orphans.

SINGLE CYCLE REGULAR CYCLE ORPHAN CYCLES
Rule 30, k=4 Rule 30, k=4 Rule 105, k = 4 — all 16 states make orphan cycles

0 11"11 to 0000 vl 0011 ZERAE 1001 u
150 0000 mf®! 1111 I

~i-—==
T oo t1 10

:

t4 to to
ts 0010

N Thrm |t LSy

o8l 1000 t

1PN 1107

Figure 7 — Cycle Types: Single, Regular, and Orphan



SECTION 1.4.4 - Basin of Attraction
Combining GoEs, transients and cycles will show a complete picture of the k-Space of a
CAin the form of basins of attraction, where each non-orphan cycle is considered an
attractor. Since there can be many unique cycles, there can be many attractors. The very
outmost leaves are GoEs and their inner branches are transients. Figure 8 shows the
basin of attraction for rule 30, k = 4 in decimal form. There are no transients since each
GoE immediately enters a cycle. States 5 and 10 (decimal values) are orphan cycles. The

main attractor is made up of 1, 11, 2, 7, 4, 14, 8, and 13. The O state is a minor attractor.

STATE NEXT Basin of Attraction, Rule 30, k =4 @

00007 0 [0000T 0

001017 (01117 & ) 12 (0
A Rt e N M S
SRR

S 2

180 U

e W R o
TT10174 10001 8 9 e 9 @
1111115 [0000I O

Figure 8 — Basin of Attraction for Rule 30, k = 4



SECTION 1.5 — Research Problem

Cellular automata were first formally described by John von Neumann in 1966 [1] and
their use in random number generation described later by Stephen Wolfram in 1986 [2].
A basic element of this research is intended to provide background on specific
configurations for the purpose of RNG creation and to form a more complete picture of
the practical uses of ECA, in addition to the theoretical concepts. Rather than assume
the conclusions of past research as fact, the focus of this research was to reaffirm the

core knowledge of ECA and develop a model for testing and automation.

SECTION 1.5.1 - Focus 1: ECA Chaotic Rules and Configurations
1. What rules and configurations are conducive to chaotic structure?
Of the 256 basic functions, which have the longest cycles and are thus chaotic in
nature, allowing for pseudo-random variation in output? Research plans include the
creation of software that can model and generate ECA rules and configurations, then

complete analysis and random number testing on the software’s output.

SECTION 1.5.2 - Focus 2: ECA Random Number Generators

2. Can ECA be used for practical random number generation?
While proving certain rules and configurations are chaotic and capable of passing
random number tests, at what point is ECA capable of producing random numbers at a
practical level? Research plans include rigorous testing of all ECA rules at increasing

complexity (rising seed/key lengths) to determine practical RNG applications.
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SECTION 1.5.3 - Focus 3: ECA Encryption

3. If RNG creation is possible, how much complexity is necessary for encryption?
Random number generation on its own is not enough to satisfy the growing needs of
encryption in the modern world. What kind of complexity is necessary to actualize ECA
for use in encryption? Research plans include initial evaluation of various
configurations to judge which would be best suited for parallelized encryption, then

concentrated testing to determine what rules are best suited for practical encryption.
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CHAPTER TWO: CONFIGURATIONS

SECTION 2.1 - Variations

Various CA configurations were designed/tested for use as Pseudo Random Number
Generators (PRNGs), differing by their adjacencies, boundaries, ruling combinations, and
representations. Each has its own distinct advantages and disadvantages depending on
rules and fundamental design. Among them are the 1D (3-bit, 5-bit), 2D (von Neumann,

Moore, Arrow, Hexagonal), Cascade, and Inverted Pyramid.

SECTION 2.2 - Spatial and Temporal Rules (1D)

As shown in section 1.1, ECA form the fundamental 1D configuration, but they can be
augmented using a variety of tools —including spatial and temporal rules. A spatial rule
is a rule applied to a given cell. A temporal rule is a rule applied to an entire timestep.
Under a single rule, both the spatial and temporal rules match. When using more than
one rule, a choice must be made as to how they are represented. Under a spatial
configuration, every alternating cell in an iteration is computed with a separate rule.
Under a temporal configuration, every alternating iteration is computed with a separate
rule. It is possible to combine the two with differing rules, resulting in a spatial-
temporal hybrid, though effects of rule combination and potential collision/cancellation

need to be taken into consideration. Figure 9 displays the differences between the two.
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Figure 9 — Temporal (left) and Spatial (right) Ruling

SECTION 2.3 - Von Neumann Neighborhood (2D)
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Expanding the 1D ECA to a lattice or matrix of cells allows the representation of CA in

two dimensions. Instead of two adjacencies, the lattice provides up to 8 direct

connections. John von Neumann originally limited this neighborhood to the four

immediate adjacencies on the cell perimeter. Just as in ECA, 2D grids are continuous in

nature, analogous to a torus. To continue using the 3 bit rules, three steps are involved

for computing the next state of a cell, as shown in Figure 10. A cell is computed

horizontally, vertically, then ruled with a combination of the two results and the value

of the original cell. The same or different rules can be specified for each calculation.
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SECTION 2.4 - Moore Neighborhood (2D)

Edward F. Moore described his neighborhood using all 8 surrounding cells, leaving a

total of 9 values for computation. Four steps are required to compute the next rule,

generated horizontally or vertically, as shown in Figure 11. Three results are computed

from rows (horizontal) or columns (vertical) then ruled together for the final result.
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Figure 11 — Moore Neighborhood, Horizontal (left) and Vertical (right)
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SECTION 2.5 - Arrow Neighborhoods (2D)

Arrow configurations are an augmentation of von Neumann neighborhoods, using a
direction to pull an initial rule. Only two steps are involved for calculation. First, the
directional bit (up, down, left, right) is ruled in conjunction with the two nearest

adjacencies then ruled in the order they appear on the grid, shown in Figure 12.

C |C [ CX:Y'1CX+1,nyIy+]_ ¢X = rright
le-l X,y'l

[Cx-l,vcx,vrrightj_> Dy
Cx-1,y C)&(Cxﬂ,y Cx-l,y %y/ CXJ

//\ [ CX-l,ny,y+1Cx+1’y ]» ¢x = ldown

Ex,y+1 x,y+1 =
[Cx,y—lcx,yrdown ) By| = Cxy

= Cxy

éc [ CX-l,ny,y-1Cx+1,y ]_' By| = rup
x,y-1 i
= [ FupCx,yCuyn ]" Dy| = Cxy
LCX‘LV X,y Cx+1,y Cx+1,y
[ CX,V'lcx-l,ny'y+1 ¢X = rleft
I(:x y+1
[ rleftcx,ycx+1,y j_' @y | = Cxy

Figure 12 — Arrow Neighborhoods (2D)

SECTION 2.6 - Hexagonal Neighborhoods (2D)

A hexagonal grid contains cells with six adjacencies, leaving multiple interpretations for
rules and operations. Three results can be obtained by gathering rules from the
hexagonal axes (x, y, z) then combined for a final result, similar to the Moore
neighborhood. Alternatively, two results can be obtained from the outer shell (3 bit

halves) then ruled together with the internal bit. Adjacency wrapping needs to be taken
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into consideration since some grid sizes do not symmetrically mirror boundaries. Figure

13 shows axis ruling with 4 calculations and shell ruling with 3 calculations.

Dy

Dy — D

Figure 13 — Hexagonal Neighborhoods (2D), Axis Ruling (left) and Shell Ruling (right)

SECTION 2.7 - Cascade (1.5D)

Cascade configurations generate sub-blocks of CA based off an initial seed block. An
arbitrary length (K4) is used to generate an arbitrary number of timesteps (T1) with a
starting rule. A number of sub-blocks (equal to K;) are seeded from the vertical columns
in the original seed block, meaning (T, = K5). The sub-blocks can then be independently
iterated and the data collected for use in a PRNG. T, is decided by how much data is

requested, using the following formula and adding one to compensate for estimation:

T - data +1
2o (K1 *Th)

Figure 14 shows a diagram of the cascade configuration using a seed block of k = 8, 7

timesteps, and Rule 30. Karim Salman describes this structure in his ECA research

platform and refers to it as "Twister". [3]
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K1=8
SEED BLOCK I
/4 \
7”0 1{0{1]|0]1
1 o{o[1]|0|1
0 1/1|1(o0f1
Ti=7 | 0 1/o|ofof1 T1=K;
0 o{1]{o|1|1
1 of{1{o|1]|0
\ LY o|1|{o|1]0
SE EDO Ky=7 SEED;1K; =7 SEEDk 1Ky =7
[of1]ofofo]1]0] 11fofaf1]1]o0] of1fof1]ofa]1]
T,DATA T, DATA .. T,DATA

Figure 14 — Cascade Configuration, Using a Starting Block of Size 8 with 7 Timesteps

SECTION 2.8 - Inverted Pyramid (1D)

A fundamental problem with ECA is that the boundaries wrap and influence the entire
lattice within a set number of timesteps. To avoid this influence, a CA analogous to an
inverted pyramid is generated, starting with a large odd-numbered k and losing two bits
per timestep until it reaches the final step, with a single cell remaining, shown in Figure
15. Salman describes this as the unbounded ECA [3]. By not using the extremes of each
timestep, the noise influence from wrapping is negated. For purposes of random

number generation, the data size must be used to determine the initial k. The next
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whole integer (ceiling) of the data length’s square root is taken, incremented to account
for the row that will be used by the seed (so it does not mix with the end results),
multiplied by 2, then subtracted by 1 to gain an odd-numbered k that will produce at or

greater than the data length requested, according to the following formula:

k= (ceiling(Vdata) + 1) *2—1

RULE30,k=9
to ] =DATA
:2 = UNUSED DATA
ts
ts

Figure 15 —Inverted Pyramid Configuration with Rule 30, k=9
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CHAPTER THREE: CELLULAR AUTOMATA STANDARD OF ENCRYPTION

SECTION 3.1 - Principle Theory

Encryption standards are tricky systems to create, being only as strong as the principle
and math behind them. Cellular Automata’s biggest strength lies in the guarantee of
computation — there is no known way to skip computation and figure out the exact data
from a seed’s timestep without actually calculating all the intermediate steps. In that
respect, introducing a “critical time"” factor can also increase complexity. A cellular
automata standard of encryption, hereby referred to as CASE, can be used to encrypt
data in a desired key configuration, similar to the way AES (the U.S. approved Advanced
Encryption Standard) has 128, 192, and 256 blocks. There is no real limit on the key
size, so long as the same encryption method is utilized on the decryption end. For the
system described in CASE, the Cascade configuration is modified to accommodate
certain key sizes. The seed block and cascade rules used in this system will need to be
ones that produce the most reliable passing pseudo-random results in all tests —in

other words, the combined result of the three focal points for the research problem.
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SECTION 3.2 - CASE Structure

Key, K1

Cascade
Block, | K1=128,192, 256
T1 T1=128, 256,512

K2=T1
So, K2=128,256,512 | [~ | | S, K2 =128, 256,512
Critical time Critical time
factor, T2 factor, T2
| |Bito-0 Bit 0-(K1-1)
[ ]sit 10 Bit 1-(K1-1)
Bit ..... Bit .....
Bit (K2-2)-0 D[ Bit (K2-2)-(K1-1) D[
Bit (K2-1)-0 Bit (K2-1)-(K1-1)
| it (k2)-0 Bit (K2)-(K1-1)
[ ] sit (k2+1)-0 Bit (K2+1)-(K1-1)
, Bit .....
Bit .....

Figure 16 — CASE Structure and Breakdown

Figure 16 shows the CASE structure, with 9 basic configurations suggested. Further
configurations are possible, but for simplicity only three choices are shown for the key
and internal complexity sizes. The key can be a 128, 192, or 256-bit number, which is
generated by hashing or encrypting an ASCll-input character into a 16, 24, or 32-byte
array. The block size is the required amount of data to encrypt —i.e. a file or array of

data will be segmented into 128, 192, or 256 bit blocks, then encrypted using this
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method, with an internal complexity generated by the T1 value. 128-bit CA will not
cycle for the critical period and by using bits from each seed, there should be more than
enough entropy to produce pseudo-random results. To increase the amount of time
required to decrypt, a critical time factor (of a very high magnitude) can be added, but
since such information would not be stored in a key, it would more likely become a
CASE configuration. Such factors could be thousands, millions, or billions of timesteps —
there is no imposed limit. The decryption end would need to run through the
calculations before arriving at usable stream data. This could be used to combat key
interception for ultra-critical time periods and also to eliminate correlation between the

key block and the stream data.

| Plaintext [Byte array, 16, 24, 32] |

| XOR Stream cipher |

CASE stream [Byte array, 16, 24, 32] CASE Encrypted Ciphertext

Byte O | | Byte 15, 23,31

| Bo-0 | Bo-1 | Bo-2 | Bo3 | Bo-4 | BO-5 | BO-6 | BO7 |

B0-0 BO-1
Row = Block Index Row = Block Index
Column = Block Index mod Column = Block Index mod
T1 complexity T1 complexity
B[Block Index]-Seed 0 B[Block Index]-Seed 1

Figure 17 — CASE Block Breakdown

Figure 17 shows the block breakdown as CASE moves through its paces. The row index

will change if a critical time factor is added.
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SECTION 3.3 - CASE Configurations

Similar to how current encryption systems have levels of use for classified or critical
data, basic configurations for CASE and their suggested standard names are summarized
in Table 1. T1 complexity will need to be investigated on a case by case basis, and will

not be represented here.

Table 1 — CASE Standards Summary

CASE Standard Usage Breakdown

CASE-128 General encryption 128-bit key/block size
CASE-192 General encryption 192-bit key/block size
CASE-256 General encryption 256-bit key/block size
CASE-128T1 Low-level time-sensitive CASE-XXX plus T1 time
CASE-192T1 hardware factor of 1 million
CASE-256T1 timesteps
CASE-128T2 Mid-level time-sensitive CASE-XXX plus T2 time
CASE-192T2 hardware factor of 1 billion
CASE-256T2 timesteps
CASE-128T3 High-level time-sensitive | CASE-XXX plus T3 time
CASE-192T3 hardware factor of 100 billion
CASE-256T3 timesteps

What this breaks down in to is the possibility of a computing system having mapped out
all the possible 128, 192, and 256-bit CA diagrams. As demonstrated in the state
diagram data in Section 5.5, the data necessary to hold these diagrams is too
cumbersome for any real world theoretical storage. As computing power progresses,
CASE standards can be scaled to match with higher time critical factors, leaving the
general scheme intact. As such, provided no attacks on the system are extremely severe,
it should be able to withstand the test of time, which is why it is very important to

choose rules that have the highest possibility of maintaining pseudo-random streams.
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CHAPTER FOUR: RANDOM NUMBER TESTING

SECTION 4.1 - Fallacy of Random Number Generation

Contrary to first impressions, the generation of random numbers means that by
definition they are no longer “random”, in that they are not unexpected. In respect to an
arbitrary viewpoint, they may appear random, which is why this process is always
referred to as pseudo random number generation. CA are completely predictable
provided you know the starting state and acting rules. In the same manner, one could in
theory totally predict Earth’s weather with exact pressure simulations, measurements,
and all applicable knowledge needed for the current state. Since this is not technically

feasible as of this writing, the weather remains somewhat “random”.

SECTION 4.2 - Diehard Battery of Randomness Tests

Originally written in Fortran, the Diehard battery of tests is a common utility used to
measure the statistical randomness of a given set of data, parsed into 32-bit numbers
[4]. There are 17 tests that can be run, provided there is enough binary data for 68
million random 32-bit integers (67,108,889 * 4 bytes = 256 MB). Three tests can be
omitted for smaller data sets with a minimum of 2.5 million 32-bit integers. 229
statistical p-values are generated from these tests, along with an overall p-value. The
importance of these values is explained in section 3.4. Figure 18 shows the starting

prompt for the Diehard program, with a short caveat on p-values.
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&8 Administrator: Ci\Windows\system32\cmd.exe - Dichard |E| |.5|E|éj

: ) ARD return a p—'-.ia'l
be uniform on [0,1) if the input file contains
t random bi values are obtaine ed

A tt—f Fit will 1k
I

. L t [
at the .05 . ¢ happen
among the hundr at DIEHARD produces, en \ 1 good RNGs.

So I-;E-:zp in mind that "p happens"

"direct” binary

Figure 18 — Diehard Command Prompt with Brief Explanation of P-Value Results

SECTION 4.3 - NIST Statistical Testing Suite (STS)

The U.S. National Institute of Standards and Technology (NIST) provides a statistical
testing suite, shown in Figure 19, written in C for the use of testing random number
generators [5]. Similar to Diehard, it provides 15 tests for randomness, however it uses
several independent streams of data to perform many tests at once. Using 100 streams
of 400,000 bits each (40,000,000 bits total), every test in the suite can be run for a
rounded result. The testing suite documentation gives details on the acceptance of any

particular test and passing results of over 90% can be safely called “random”.

& Administrator: C\Windows\system32\emd.exe |.E| |£‘E|é]

1'1'|~ bin / file.txt) with X*Y bits / chars
name r:|1' results folder

Figure 19 — NIST STS, Recoded to Pass in File Names with Internalized Options
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SECTION 4.4 - Probability and p-Values
In respect to random number generation, a p-value (ranging from 0.0 to 1.0) is a
measure of probability that the given set of data is "random”, according to a threshold
specified by a (alpha) [6]. Five steps in evaluating random p-value results are:

1. Set null hypothesis — "This set of data is random.”

2. Setalternative hypothesis — "This set of data is not random.”

N

Calculate the p-value for the random test (in this case, Diehard or NIST is

responsible for this step), using the known distributions for the given tests.

4. Choose a significance level (alpha). An alpha that is too small will invariably
judge many sets random and an alpha that is too high will invariably judge sets
to be non-random.

a. NOTE: The documentation for NIST uses an alpha of 0.01. For most early
Diehard testing, an alpha of 0.0005 was used, which was later
considered too lenient. For the final tests, an alpha of 0.01 was used for
both testing suites.

5. Judge p-value based on alpha. If inside the threshold (0 + alpha < p-value < 1 -

alpha), accept the null hypothesis. If at or outside the threshold, reject the null

hypothesis in favor of the alternative.

SECTION 4.5 - Normal Distribution
A single p-value is not usually considered enough to form a decision, which is why
Diehard and the NIST STS provide so many tests. When many p-values are calculated for

a given set of data, it is important that they follow a normal distribution. Deviations
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from this distribution indicate that there are patterns within the data that came to light
in a particular group of tests with similar pressure points. Figure 20 shows two results
from Diehard testing — on the left is a result that is likely random since it follows a
normal distribution. On the right, the p-value graph is skewed upward, meaning it is

likely to be non-random.

P-VALUE DISTRIBUTION P-VALUE DISTRIBUTION

s 038
3 5
*04 ® 04
//
02 02 94
e ofr
CERRE¥RSRERIZSEITSEBRZIR SSRRERESEEISSEBISS2ERE =R
P-VALUE INDEX P-VALUE INDEX
NORMAL NORMAL
- P-VALUES
W F VIS ® brstrisurIoN * ® brstrisurION

Figure 20 — P-value Distributions: Likely Random (left), Non-random (right)
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CHAPTER FIVE: CODING AND TESTING CA

SECTION 5.1 - Optimization and Best Practices
ECA are simple structures which can be replicated in virtually any programming
language built with an array data structure. Important considerations are calculation
efficiency, representation, and ease of coding. Writing elementary calculators in Python
2.7 may only take a handful of lines, but the calculations may take 1000x longer than
the equivalentin C, C++, or other languages closer to pure assembly. The following best
practices were devised to handle CA programming from scratch:

1. Learn CA first. Repeating old methodology is an easy trap to fall in.

2. Choose a comfortable language. Preferably “fast” and well documented.

3. Avoid excessive use of expensive data types.

a. For example, storing 0000 1101 1100 1100 1011 1011 1100 1100 (32
cells) as a string takes up to 32 bytes in languages where characters are
stored as an 8-bit data type.

b. Instead, if a 32-bit integer data type or array of 32 Boolean (true/false,
1/0) variables is used, the data size is simply 4 bytes (32 bits). As a result,
any actions to handle those bits become much simpler than manipulating
characters in a string, which normally have a high data overhead.

4. Separate the CA calculator program from any custom User Interfaces (Uls).
5. Plan for data consumption — CA is by its nature exponential, and any data
gathered will grow at an accelerated pace.

6. Use source control and backups — data loss and power outages are unavoidable.
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SECTION 5.2 - Object Oriented Approach

Early program designs were focused primarily on proof of concept CA calculators and
on-demand functionality, which while useful for gaining a technical understanding of
CA, valuable time could have been lent more effectively toward automating testing and
analysis. To that end, major efforts were made to consolidate the programming
constructs into a cohesive entity as well as to implement source control and
maintenance to aid in continued development. A framework for these operations is

shown in Figure 21, with the workbook generating and analyzing tests via automation.

Y
[USER]
Generate : :
Diehard — — — CAWorkbook t— — — GeneratelNIST
. Analysis
Analysis \ )
J_ \ l
Input.txt Input.txt Command:
[config string] [config string] 400000
100
out.bin
\
CADriver CADriver
Diehard Tester v
out.bin NIST_STS
\

CAWorkbook |
Analysis -

[config-string].txt ————® finalAnalysisReport.txt

Figure 21 — CA Testing Framework
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SECTION 5.3 — CA Workbook

sl CAWorkbeok - (] x

Seed | 1919199119191111| Length (k) 16 2| CONFIGURATION

CA TYPE 1D ~

m DIMENSIONS 1 + SIZE 16

CASCADE BLOCK SIZE (T1) 75

‘ ‘ REDRAW ONES ZEROES RANDOM PREV NEXT | [] SHOW DIFFERENCES

Plot Diehard NIST Cycle

RESET | | START | STOP | Interval |18@ =] ms Brush size 5 ||  REFRESH T |e
DATA LENGTH 82000000 2| bits
SMALL CRUSH BIG CRUSH

5 BIT RULE
DEC @ > |e-e-0-0
HEX __96—96*96*% CLEAR

OUTPUT FLAGS
[] searzaL TEMPORAL

ALL | CLEAR [] TEXT FILE (out.txt)

RULE ORDER [] BINARY FILE (out.bin)
UNCLUSTER [ rows
CLUSTER [] Tass

[] ALTERNATE CLASSICAL

KILL DRIVER [] correLaTE

[[] sHoW cONSOLE DIEHARD

Copy pLor | L DIEHARD RESULTS FILE

[] vON NEUMANN CORRECTION

COPY RESULTS | | pounpaRTES | OPEN

none
COPY PVALUES

CLEAR
CONFIGURATION STRING
3-8-1-16-1_30-52000000- 0000000100~
1010186118161111-none-none-8
GENERATE COPY CONFIG STRING

Figure 22 — CA Workbook, Visual C# (.NET 4.6)

To more effectively visualize the CA generation and aid in testing, the CA Workbook
shown as a screenshot in Figure 22 was created to act as a front end interface for
accessing the CA Driver and generating random data for testing. Options for Diehard
and NIST STS testing are interfaced by passing CA configuration strings to the driver
program, sending their output to the testers then analyzing their results. Since research
is ongoing, the software grows as more CA configurations and analysis options are

added. See Appendix B for a brief breakdown of all the screens as of this writing.
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SECTION 5.3.1 - Diehard Analysis
To generate a Diehard test, the form creates a configuration string based on the CA
options, then feeds it into the driver program, which dissects the options and generates
enough data to fill the requested length. Diehard is integrated into the driver, and it
runs its tests as soon as data generation is completed, then outputs a results file with
230-270 p-values, depending on the data length. If there were not enough random
numbers for testing, the results file is not generated. Once alerted that testing is

complete, the CA Workbook program analyzes the result.

SECTION 5.3.2 - NIST STS Analysis
To generate a NIST test, the configuration string is passed to the driver requesting
enough data for 40 million bits while a command is passed to the NIST STS requesting
100 stream tests of 400,000 bits each, taken from a binary file called "out.bin”. Once
the driver generates the data, it stores it in a binary file then the NIST suite begins
testing on the file. Once completed, a final analysis report is generated and then

analyzed by the CA Workbook program.
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SECTION 5.4 - Configuration Strings

Four revisions of the configuration string system were created in the course of testing,
each adding functionality or correcting past oversights, making them incompatible
between each other. Revision O sets the basic format, containing all information for the
CA configuration and the seed to fill the starting state. Revision 1 added an option for
external data to be fed into the boundaries of CA (undoing the ECA wrap-around) as
well as a test number feature for automation. Revision 2 added an option for specifying
output files. Revision 3 added an extra output flag for von Neumann correction [7].
Figure 23 shows the way the configuration strings are connected — each arrow
represents a dash. For example, 0-0-1-8-4_30_45_86_90-82000000-00001000-
00110101 breaks down into Revision 0, Configuration 0 (1D), 1 dimension, size 8, 4

rules (30, 45, 86, 90), 82 million bits of data, output flags, and 00110101 as the seed.

A 8 c b E1234 F G M
[Revision 0] B [Configuration ID]_> [Dimensions] > [Size] [ [No.ofrules followed by [Data ¥ [8 Output [Seed]
by rule values] length] flags]

P T
[Revision 1] oo [Ends File] [Test No.]

A P | P ! K
[Revision 2] B b [Ends File] [Outpl.,rt fle [Test No.]

location]

A L G K

[Revision 3] B oo [9 Output flags] ™ oo > [Test No.]

Figure 23 — CA Configuration Strings



SECTION 5.5 - CA Driver

Each section of the driver corresponds to options in the CA configurations (see chapter
2). Two primary data structures were created for the driver — Calculator and DiehardTest,
as shown in Figure 24. The Collector (which handles most CA configurations), Cascade,
and Pyramid classes all inherit from Calculator, which itself inherits from DiehardTest —
as such, every CA calculator is also a tester. Diehard’s code was originally packaged in a

single file and was relatively easy to integrate into the driver to facilitate testing. Due to

its intricate organizational structure, the NIST testing suite was kept separate as a

standalone executable. Further development would be needed to integrate NIST

directly into the CA driver, mostly for organizational gains rather than functional.

S
Collector ¥ | public
Class

=+ Calculator

Cascade
Class
=+ Calculator

Pyramid
Class
=+ Calculator

Figure 24 — CA Driver Class Diagram

C4 Driver Class Structure

( Calculator A |

Class
=+ DiehardTest

= Fields
'ii"* numBits

| B Methods

calculate

calculate_correct

*

+ copyData

& & & @

*

correct

init
readByte

. writeBinFile

oQee

. writeTxtFile

( DiehardTest
Class

= Fields

config
data
public datalndex
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SECTION 5.6 — Automation

32

Automated CA testing required careful planning to ensure data integrity and meaningful

results. Drawing on options from the original form (renamed CA1), a new automation
form (CA2) was created to address the C# to C++ interfacing problem faced with the
first iteration — mostly due to string interpretation since characters in C# are 16-bit

types and characters in C++ are 8-bit types. The DLL functionality was removed and

replaced with direct use of the driver executable. Each instance of the driver can run on

a separate thread (virtual core), allowing the automation system to scale with more

powerful computing hardware. Figure 25 shows the program flow for multithreading.

[USER]

CA2 Form

A

START TESTS

A

Y

Input.txt
[config-string]

CA Driver O
—

(Number of
Virtual Cores)

Input.txt
[config-string]

CA Driver n CA Driver N
N
results.csv &
Y
CA2 Analysis — — — — — — — — —

Figure 25 — CA Driver Automation with Multiple Threads (Virtual Cores)
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CHAPTER SIX: ECA COMPLETE ANALYSIS

SECTION 6.1 - Observation Criteria

The complete analysis of the ECA spectrum includes all k-space descriptions for each
rule, meaning 256 k-space descriptions for each seed size (k). Since these are absolute
observations (rather than statistical observations like the p-value results), judgments
can be made on the scalability, complexity, feasibility and potential of a complete
ruleset. Since all seeds in a k-space end up in the three fundamental categories — GoEs,
transients, or cycles — eight observations were made for each k-space description.

e Rule(0to 255)

Size k(1 to oo)

e Number of GoE States

e Number of Transient States

e Number of Cycle States

e Longest Transient Length

e Longest Cycle Length

e Number of Unique Cycles
An important thing to note is that these are based on the interpretation that though the
two boundaries are connected, seeds cannot be rotated and remain the same —i.e. 001,
010, and 100 are all treated as totally different states (1, 2, and 4 in decimal,
respectively). Under the rule that such seeds are treated as the same state, these

observations would change dramatically. See Appendix A for Rule 30, 45, and 106.
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SECTION 6.2 - Reverse Algorithm

Since all ECA states are attracted to cycles, the GoE states are likely to be the fastest
entry point for classifying a k-space description. Determining if a state is a GoE through
conventional brute force is effective but very slow and requires all next states to be
known. Rather than calculate an entire block of seeds, the reverse algorithm (see Figure
26) can be used to construct pre-images for each cell and see if it is possible that
another state could produce the current state. If not, then the state in question must be
a GoE. Pre-images for the given rule are created from a lookup table then stored for
each cell. To trace a path, the right two cells of each pre-image are compared to the left
two cells of the next potential pre-images. If a path can be constructed from start to

finish, then a previous state was possible and thus the state in question is not a GoE.

(‘Rute 30 ) {3999 twe [ TOT0T ]
010 1 v
011 1 tewr [ 00101 |
100 1
101 0 .
110 0 00101 is not a GoE
111 0
0 0 1 0 1
Pre-images Pre-images Pre-images Pre-images Pre-images
(0) (0) (1) (0) (1)
R L R L R L R L

L R
00][000 J0OF+{00] 000][00H=100]001]01] /J0O0J 000 Iﬂl—ﬂﬂl 001 M

mm- -—\:: | 10]101] m
@i\& %
[11] 100100}

110 011 11f»{11]110

11][111] 11 111]11] Y10][100 11111

Figure 26 — Reverse Algorithm for ECA

The reverse algorithm is also proof that given enough permutations and computational

power, it is possible to reconstruct data that was cycled if the rule and/or rules are
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known —though the branching will quickly become exponential for larger seed lengths
and without an initial timestep (length to current state), ambiguity remains. As such, this
potential represents an NP-complete problem for certain rules, in that only by
simulating all possible outcomes can the solution be known, and the number of
simulations grows dynamically with the length of the CA, meaning no efficient system

for narrowing the possibilities is easily derived [8].

SECTION 6.3 - Fundamental Functions

Certain rules exhibit fundamental functions and their outcomes can be easily predicted.
Rule O forces all next states to be 0 and Rule 255 forces all next states to be 1.
Logically, this means the number of GoE states is 2"k — 1 for both rules since only one
state (all Os or all 1s) will cycle to itself — the rest will never fall into the "next state” list.
Another example is Rule 204, which is essentially an “identity” rule. Its next state is
always equal to B, the current state of the center cell, i.e. itself. Rule 51 is the flipped bit
version of 204, meaning the next state is equivalent to the negation of the last. Shift left
is Rule 170 and shift right is Rule 240, which essentially take cells C or A in place of the

center cell B for the next state. These are summarized in Table 2.

Table 2 — Fundamental Functions Implemented as Rules

Rule Action Logic (ABC neighborhood)
24010 = 1111 00002 | Shift right A

20410 = 1100 11002 | Identity B

17010 = 1010 10102 | Shift left C

1510 = 0000 11112 | Negate A, Shift Right | ‘A

511 = 0011 Q0112 Negate B ‘B

8510 = 0101 01012 | Negate C, Shift Left ‘C

Q10 = 0000 00002 |Logic @ 0
25519 = 1111 11112 Logic 1 1




SECTION 6.4 - ECA State Diagram Algorithm

With the reverse algorithm, optimizing the ECA generation algorithm is a far less
daunting task than brute force interpretation. By generating all the next states and
determining GoEs, the search time can be restricted only by the size k. The final

algorithm in use is represented in the pseudo-code of Figure 27.

Find Cycle Data
While Cycle Not Found
Get Next State
If Next State is Known Transient or Cycle
Break
End If
If Cycle Found
Record Cycle entry
Break
End If
End While
Record Transients
Record Cycle

Generate State Diagram
For All States in 2%k
Generate Next State
Determine if Garden of Eden State (Reverse Algorithm)
If GoE Found
Rotate binary string and insert all representations
End If
End For
For All GoE States
Find Cycle Data
End For
For A1l Non-GoE States
Find Cycle Data
End For
Record Diagram Observations
Record Number of GoEs
Record Number of Transients
Record Number of States that are in Cycles
Record Longest Cycle
Record Longest Transient
Record Number of Unique Cycles

Figure 27 — ECA Algorithm in Pseudo Code

36
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SECTION 6.5 - State Diagram Data Storage

To facilitate more compartmentalized operations, the next state generation (i.e. running
a given seed through a CA calculator) can be saved to a binary file. For sizes k = 1 to 32,
this can be done by storing consecutive 32-bit integers rather than a text file with a
string of bytes. So instead of 32 bytes to store a state, it would take 4 bytes. For sizes k
= 33 to 64, a 64-bit integer could be used, leaving the size at 8 bytes instead of 64.
Assuming the states are stored in the correct order, there is no reason to store the
starting state, meaning the size of the file is equal to 2 bytes (one for rule and one for
size) + 2"k * 4 bytes. For sizes 1 to 32, to hold all the states of a given rule will take up
32 gigabytes (GB) a piece. So for all 256 rules, the required raw binary storage is 8
terabytes. After they are analyzed, they would no longer be needed and can be deleted.

A generator program was written to conform to the structure in Figure 28.

4 )

[Byte 1] Size

[Byte 2] Rule

[Byte 3-6] State 1

[Byte 7-10] State 2

[Byte 2*k-8+2] State 2*k-1

[Byte 2*k-4+2] State 2"k
BinStateRead

ECA State Diagram
Algorithm

Analsysis.txt

Figure 28 — Binary State Diagram Storage
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As the size k grows larger, it becomes increasingly difficult to contain all the working
data for the diagram in RAM, and resorting to file storage is a necessary evil as the size k
approaches 32.To just hold a working list of all possible 32-bit integers requires 16
gigabytes of RAM. The necessary data sizes are shown in Table 3 and 4. As the algorithm
completes, the working list will grow smaller and before the final phase when the GoEs
are removed from the transient list, the transient and cycles lists will contain all 2"k
states between them, meaning that the minimum target data size is 2"k * 20 bytes.
Programming overhead for the data structures will magnify these values even further,
and in reality at around k = 27, the C++ implementation begins to take up a majority of
32 GB of RAM. To hold all k = 32 state data would take 80 gigabytes and to hold all k =
64 state data (40 bytes instead of 20) would take 640 exabytes, which actually

supersedes the addressing limits of a 64-bit processor (16 EB).

Table 3 — Minimum Data Sizes for State Diagram Storage

Item Data Types Data Size (base)
Transients 32-bit state, 32-bit length 8 bytes
Cycles 32-bit state, 32-bit cycle ID 8 bytes
Working List | 32-bit state 4 bytes
GoE States 32-bit state 4 bytes

Table 4 — Minimum Data Size for k = 26 to 32, and 64

Size k Bytes (B) Kilobytes (KB) Megabytes (MB) Gigabytes (GB)
26 | 1342177280 1310720 1280 1.25
27 | 2684354560 2621440 2560 2.5
28 | 5368709120 5242880 5120 5
29 | 10737418240 10485760 10240 10
30 | 21474836480 20971520 20480 20
31 | 42949672960 41943040 40960 40
32 | 85899345920 83886080 81920 80
64| 7.4 x 1020 7.2 x 10*17 703687441776640 687194767360
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SECTION 6.6 — GoE Trends

Globally, the number of GoE states for each rule follows a visible trend as the size (k) is
incremented. Shown in Figure 29 is the GoE graph for k = 16. The traits become

compressed into the two extremes as the k-space increases, leaving a noticeable gap in
the bottom half — a rule will either have very few GoEs or more than half of all potential

states will be GoEs.

[A] Number of GoEs for Size (k) = 16, Rules [0,255]
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Figure 29 — Graph of GoE Counts, k = 16, All 256 ECA Rules
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SECTION 6.7 = Unique Cycle Trends

In part due to the fundamental functions listed in section 5.3, the number of unique

cycles usually only has two critical points (identity, 204 and negative identity, 51), as

shown in Figure 30, which are always 2" and 2"/2 respectively.

NUMBER OF UNIQUE CYCLES

[F] Number of Unique Cycles for Size (k) = 26, Rules [0,255]
o

60000000

50000000

40000000

30000000

20000000

10000000

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255

RULE

Figure 30 — Graph of Unique Cycles, k = 26, All 256 ECA Rules
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Rule 45's group (45, 75, 89, and 101) maintain the longest cycle for most k-spaces

following 4, with the notable exception of 8 and 16, where Rule 30’s group (30, 86, 135,

149) has the longest cycle length. Table 5 shows the longest cycles for k = 1 to 27.

Table 5 — Longest Cycle Length by Rule Group

k Longest Cycle Group (Rules) Length Seeds (2°k) Length/Seeds
1 0dd 1-127 2 2 100.00%

0dd 1-127, 160-163, 168-171, 176-179,

184-187, 224-227, 232-235, 240-243,
2 | 248-251 2 4 50.00%

14-15, 26-27, 38-39, 52-53, 82-85, 142-
3 | 143, 154-155, 166-167, 180-181, 210-213 6 8 75.00%

3, 17, 27, 30, 35, 39, 49, 53, 58-59,

62-63, 83, 86, 114-115, 118-119, 131,
4 135, 145, 149, 163, 177 8 16 50.00%
5 |45, 75, 89, 101 30 32 93.75%
6 45, 75, 89, 101 18 64 28.13%
7 45, 75, 89, 101 126 128 98.44%
8 |30, 86, 135, 149 40 256 15.63%
9 45, 75, 89, 101 504 512 98.44%
10 | 45, 75, 89, 101 430 1024 41.99%
11 | 45, 75, 89, 101 979 2048 47.80%
12 | 45, 75, 89, 101 240 4096 5.86%
13 | 45, 75, 89, 101 1105 8192 13.49%
14 | 45, 75, 89, 101 2198 16384 13.42%
15 | 45, 75, 89, 101 6820 32768 20.81%
16 | 30, 86, 135, 149 6016 65536 9.18%
17 | 45, 75, 89, 101 78812 131072 60.13%
18 | 45, 75, 89, 101 7812 262144 2.98%
19 | 45, 75, 89, 101 183920 524288 35.08%
20 | 45, 75, 89, 101 142580 1048576 13.60%
21 | 45, 75, 89, 101 352884 2097152 16.83%
22 | 45, 75, 89, 101 122870 4194304 2.93%
23 | 45, 75, 89, 101 3459591 8388608 41.24%
24 | 45, 75, 89, 101 421188 16777216 2.51%
25 | 45, 75, 89, 101 10828525 33554432 32.27%
26 | 45, 75, 89, 101 334308 67108864 0.50%
27 | 45, 75, 89, 101 81688176 134217728 60.86%
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Despite Rule 45's group being the longest cycle on most even sized k's, the length to
total number of states ratio is very low. Figure 31 shows the change between sizes on a
logarithmic scale, showing the dips between even and odd while maintaining the

obvious trend toward exponential growth.

Longest Cycle 3-bit Neighborhood, Rules [0,255], Log Base 10
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Figure 31 — Longest Cycle Length Graph, Logarithmic Scale, Base 10

Long cycles are important to consider since they will not repeat data in a critical period
of reference, allowing for more random number generation through chaotic
propogation. Rule 30 and Rule 45 become important players due primarily to the fact

that they hold the longest cycles.
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CHAPTER SEVEN: TESTING RESULTS

SECTION 7.1 -Balanced ECA Rules

Arule is balanced when it has an equivalent number of preimages for both 0 and 1, but
not every balanced rule lends to random number generation (chaotic propogation).
Figure 32 shows 70 rules in the basic 256, which have an equal number of Os and 1s.
Diehard tests were ran for 100 random seeds on 128, 256, 512, 1024, 2048, and 4096-
bit seed lengths to test against what rules are viable. In total, this comprises 153,600
tests (7 seconds per test). Some have obvious results (0 and 255, for example). For
comparison, there are 601,080,390 balanced rules in the 4,294,967,296 rules of the 5-
bit neighborhood, and to test all rules in the 5-bit space would require a large

computing network to finish in a reasonable period of time.

15 23 27 29 30 39 43 45 46 51 53 54 57 58 60 71 75 77 78 83 85 86
89 90 92 99 101 102 105 106 108 113 114 116 120 135 139 141 142 147
149 150 153 154 156 163 165 166 169 170 172 177 178 180 184 195 197

198 201 202 204 209 210 212 216 225 226 228 232 240

BALANCED RULES [0-255], BALANCED =1

1 OG0 00D D00 00 000 000 OO G0 NS WIS VO N NS Mo o

IR
0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255

Figure 32 —Balanced Rules, ECA 256
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SECTION 7.2 -ECA Tests

The following sections show the results analysis of the ECA tests ran for all rules with a
size k of 128,256, 512, 1024, 2048, and 4096 (see Figure 33). One hundred random
seeds were used, with the same set of seeds used in each size category. The y-axis data
shows 100 points for each rule (corresponding to a test with a seed), with a percentage
value of how many p-values were within the alpha of 0.01 out of the 230 Diehard
results. For the purposes of evaluation, one could say that Rule O's test results all had a
0% chance of being random. As the passing results draw closer to 100%, the results
must be taken with the understanding that no result is 100% random, but for testing
purposes appears random. Good candidates for random number generation are those
that approach or exceed 90% passing. Data analysis seems to follow the hypothesis
that a subset of balanced rules is most likely to produce more chaotic (random)

behavior when analyzing the raw data from continuous CA calculations for PRNGs.

CA2

k=128 k=256 k=512 k=1024 k =2048 k = 4096
100 seeds || 100seeds ){ 100 seeds ){ 100 seeds ){ 100 seeds )| 100 seeds
O [0-255

[ results.csv

153,600 Tests

AnalyzeECA.exe

analyzedResults128.csv
analyzedResults256.csv
analyzedResults512.csv
analyzedResults1024.csv
analyzedResults2048.csv
analyzedResults4096.csv

Figure 33 — ECA Testing and Analysis
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SECTION 7.2.1 -k = 128, Diehard Results

DIEHARD RESULTS, K=128,
ECA RULES [0-255], ALPHA = 0.01
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0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255
RULE

Figure 34 — Diehard Results, ECA k = 128, Alpha = 0.01, All Rules, 25600 Tests

Figure 34 shows no result for k = 128 exceeds 90% passing when an alpha of 0.01 is
used in the evaluation phase of Diehard testing. A simple conclusion that can be made
on this data is that strictly harvesting the ECA data from a random 128 length starting
seed (aka, a 128-bit key) is not enough to pass random testing, especially for the
purposes of cryptography. However, there are 12 rules that stand out for further
examination. From left to right, they are 30, 45, 75, 86, 89, 101, 106, 120, 135, 149,
169, and 225. This behavior is expected, since they fall into three rules clusters, two of
which have the longest cycles at the k < 32 level. These are the [30, 86, 135, 149], [45,
75,89, 101], and [106, 120, 169, 225] groups. Rule 30 and Rule 45's clusters lead the k

= 128 results.
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SECTION 7.2.2 -k = 256, Diehard Results

DIEHARD RESULTS, K=256,
ECA RULES [0-255], ALPHA = 0.01
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Figure 35 — Diehard Results, ECA k = 256, Alpha = 0.01, All Rules, 25600 Tests

Figure 35 shows that for k = 256, the same groups from k = 128 lead the results, but
still fall short of the 90% mark. Rule 30’s group [30, 86, 135, 149] takes the lead,
averaging at the 80% mark while Rule 45's group [45, 75, 89, 101] averages at the 75%
mark. Rule 106's group [106, 120, 169, 225] has risen to the 55% mark. Compared to
AES-256 and other 256-bit secure algorithms, raw CA harvesting with these groups is

not a viable option for cryptography at this level.
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SECTION 7.2.3 -k = 512, Diehard Results

DIEHARD RESULTS, K=512,
ECA RULES [0-255], ALPHA = 0.01
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Figure 36 — Diehard Results, ECA k = 512, Alpha = 0.01, All Rules, 25600 Tests

Figure 36 shows at k = 512, the core groups for Rule 30[30, 86, 135, 149] and Rule 45
[45, 75, 89, 101] could be safely called random and potentially used in a 512-bit
cryptographic system when using their raw output. It is likely that the third group, Rule
106 [106, 120, 169, 225] will perform at greater bit levels since it averaged at 70% at
this level. A clear lead is still given to Rule 30 over Rule 45, but this is likely because

Rule 30 has a greater cycle than Rule 45°s group at size k with powers of 2.
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SECTION 7.2.4 -k = 1024, Diehard Results

DIEHARD RESULTS, K=1024,
ECA RULES [0-255], ALPHA = 0.01
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Figure 37 — Diehard Results, ECA k = 1024, Alpha = 0.01, All Rules, 25600 Tests

Figure 37 shows that Rule 30 and Rule 45's groups maintain their status while Rule
106's group pulls up to 75% average passing at k = 1024, still not suitable for random
number generation at this level. Rule 105 and 150 (each are negations of each other)

begin to show a break from their low numbers, pushing up to 20% average passing.
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SECTION 7.2.5 -k = 2048, Diehard Results

DIEHARD RESULTS, K=2048,
ECA RULES [0-255], ALPHA = 0.01
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Figure 38 — Diehard Results, ECA k = 2048, Alpha = 0.01, All Rules, 25600 Tests

Figure 38 shows that Rule 30 and 45 seem to have plateaued at their respective levels,
while Rule 106 inches up by 1-2% on average. Further extensions of the key size (k)
will likely push the 106 group into the 90% level. Rule 105 and 150 have moved up to
35% average from their small lead at 20% in k = 1024. Tests for the remaining rules
are still necessary since they provide context for the relative randomness among rules
In addition, it provides proof that simply extending the k-length is not the only catalyst

for randomization, otherwise all rules would be increasing at a regular rate.
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SECTION 7.2.6 — k = 4096, Diehard Results

DIEHARD RESULTS, K=4096,
ECA RULES [0-255], ALPHA = 0.01
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Figure 39 — Diehard Results, ECA k = 4096, Alpha = 0.01, All Rules, 25600 Tests

Figure 39 shows the results of the final round of tests, where Rule 30 and 45 maintain
their plateau while the Rule 106 group continues to crawl toward the 90% mark. Rule
105 and 150 have pushed into the 55% average passing range, an increase of 20%
over the 2048 range. 4096 bit keys are a common upper limit and therefore any system

utilizing raw CA calculations should only be used with Rule 30 and 45 at this level.
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SECTION 7.3 — Cascade Tests

A large batch of Diehard tests were ran using a seed block of k = 16, t = 32, with 10
random seeds on all combinations of two rules (i.e. 256 x 256 x 10 = 655,360 tests, at
an average of roughly 10 seconds each), the results flow shown in Figure 40. Testing
took ten days on an 8-thread processor running non-stop. Two graphs are represented
in the following sections — one with the number of passing p-values (a scalar
representing randomness density) and the second with Diehard tests that had a total
number of p-values above the 90% threshold. Each chart is setup as a bubble chart,
with the area of each bubble relative to its total at that x-y point pair. There are 65,536
points on each graph, though many have zero passing values and thus no bubble is
shown. Cascade’s configuration is proof that even with a 16-bit key, random number

generation is still a decent possibility with CA.

CA2

k1 =16,

T1=32 655,360 Tests
10 seeds ' :

CSeed Block Rule) X C Cascade Rule )
@ [0-255] * @ [0-255]
[ results.csv
(AnalyzeCascade.exe)
A4

FinalCascadeResults.csv

Figure 40 — CA2 Process for Testing Cascade Combinations
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SECTION 7.3.1-k1=16, t1=32, Passing p-values Density

CASCADE TESTS, PASSING P-VALUES (ALPHA = 0.01)
K1=16, T1 =32 (K2=32)
SEED BLOCK RULE [0-255], CASCADE RULE [0-255]
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Figure 41 — Cascade Tests, Passing P-values, k1 = 16, t1 = 32

While the passing p-value density does not show the number of passing tests, it gives
clear evidence that a weak seed block rule can be overrun by a stronger cascade rule.
Rule 30 and 86 seem to perform the strongest regardless of their starting seed. Rule 45
and its usual gamut of rules also fair very well. Figure 41's graph correlates with the

results from the ECA testing, representing the major trends.
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SECTION 7.3.2 - k1=16, t1=32, Passing Tests Density

CASCADE TESTS, PASSING TESTS (90% THRESHOLD)
K1=16, T1 =32 (K2=32)
SEED BLOCK RULE [0-255], CASCADE RULE [0-255]
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Figure 42 — Cascade Tests, Passing Diehard Tests, k1 = 16, t1 = 32

Figure 42 shows the density of Diehard tests that actually passed, ranging from 0 to 10
at each point, with larger bubbles carrying greater weight. Despite its large density, Rule
30 does not do as well as 45 here. In the raw data, Rule 45's group [45,75,89,101] are
the only ones with 8 to 10 total passes of the 10 seeds tested. Despite 45's advantage,
Rule 30 and 86 both have relatively equal distribution of passing tests across all seed

block rules, and will likely pass at higher key lengths.
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CHAPTER EIGHT: CONCLUSION

SECTION 8.1 — Summary

Elementary Cellular Automata are deterministic structures created by iterating through
each cell and calculating its next state from predetermined rules. Configurations and
augmentations of ECA are wide open interpretations of basic ECA rules and
applications, leading to different lattices, rules, and circumstantial use. An encryption
methodology for CA such as CASE can be modeled for practical use on modern and
future equipment. Random number testing on ECA is accomplished via the Diehard
utility or the statistical testing suite provided by the U.S. National Institute of Standards
and Technology. P-values generated from those tests are statistical indicators of
pseudo-randomness, since nothing can “truly” be random. Coding and testing CA is
accomplished through the use of a driver and workbook program combination, allowing
for automation, code reuse and flexibility. Complete analysis of ECA can help with
logistically correlating testing results with their respective attributes. Rigorous testing
allows systematic evaluation of certain rules and configurations, leading to judgments

on practicality of pseudo-random number generation and ultimately encryption.



55

SECTION 8.2 - Conclusions

In conjunction with ECA complete analysis and random number testing, results clearly
show that pseudo random number generation is possible at high levels for basic ECA
and that some rules are categorically more chaotic than others. Evaluation and
concentrated testing on the Cascade configuration shows that it lends greatly to parallel

encryption, since it is capable of producing random results with minimal input.

SECTION 8.2.1 - Focus 1: ECA Chaotic Rules and Configurations
1. What rules and configurations are conducive to chaotic structure?
Rules 30 and 45 are the most likely candidates for chaotic propogation in ECA,
regardless of configuration. Rules 105 and 106 show promise at higher complexity,
warranting further analysis. Dr. Salman'’s twister (or cascade) structure provides a
minimal augmentation of ECA that is able to generate chaotic results with small seed

lengths, lending greatly to practical use.

SECTION 8.2.2 - Focus 2: ECA Random Number Generators

2. Can ECA be used for practical random number generation?
Cellular Automata are capable of producing pseudo-random results with minimal input.
Concentrated research and extended proofs would be necessary to further this use of
CA without making too many assumptions on the infallibility of its simplicity. Rigorous
testing shows the practical level of RNG for each rule, correlating the state diagram

analysis and affirming that the Rule 30 and 45 groups are most likely to be random.
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SECTION 8.2.3 - Focus 3: ECA Encryption

3. If RNG creation is possible, how much complexity is necessary for encryption?
Cascade configurations allow for parallelized encryption by providing a source block of
seeds (or keys) for child vectors. The CASE methodology should be flexible enough to
provide a basis for a true encryption standard with CA at its core — preferably rule
groups 30 or 45. Since basic ECA is NP-complete it requires all intermediate steps,
meaning that as computing power increases, the critical time for the child vector
propogation can be adapted depending on use. As with AES and other symmetric
encryption, hardware and software implementations can coexist, provided rigorous

validation and standardization are regulated.

SECTION 8.3 - Recommendations

The sheer simplicity of cellular automata is reason enough not to ignore its use, either
for encryption or any other purpose. Its exponential scalability allows it to adapt as
computing power advances, provided no proof is found to compute timesteps without
intermediate results. Matthew Cook has provided a proof that Rule 110 is Turing
complete, meaning it is useful for universal computation [9]. As process architecture
shrinks, this could allow for a simplified deterministic computing structure without the
possibility of clock failure, with the potential of encryption (by switching the base rule)
built naturally into the circuits. Whether or not CA comes to be used in the real world, it

seems to be an untapped resource and its future cannot be ignored.
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SECTION 8.3.1 - Future Work on Analysis
Complete analysis of rules and increasing seed lengths requires exponentially greater
amounts of memory for diminishing gains in data. Preliminary investigation seems to
indicate that the Rule 30 and 45 groups are the most viable sets. Suggested avenues
would include investigating the analysis of spatial/temporal rules to see if there is merit
in combining certain selections over using flat rules for all timestep calculations. A new
batch of tests could then be run to determine if PNRGs are possible at lower key lengths

than 512, making ECA more viable.

SECTION 8.3.2 - Future Work on Encryption
Expanding the CASE model is the next logical step in utilizing CA for encryption, which
would include investigating its weaknesses and potentially rewriting the premise
entirely if such weaknesses could not be overcome. An alternative would be to develop
another method of parallelizing the data output. Serial encryption is not necessarily
efficient when large amounts of data is involved, but on small scale systems it may not
be as much of a concern, therefore any configuration can do, provided it gives enough

randomization with more minimal inputs than generic ECA.

SECTION 8.3.3 - Self-Replication and Validation with CA
John von Neumann’s original research into CA was for the purpose of creating machines
that continuously replicate themselves. Nanotechnology is rapidly advancing in all
fields of industry via microarchitecture shifts, bioscience procedures, or more mundane

mechanics. While not a perfect fit, combining CA rules into a nano-environment could
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easily allow for self-validation in testing and a multitude of other potentials, if not one

day the creation of von Neumann'’s machines.

SECTION 8.3.4 - Bioscience Research with CA
Natural rules govern cell replication, mitosis, creation, and general repair. CA rules are
not perfectly analogous to chemistry, but in some cases can be close enough to warrant
model creations to aid in reducing computer simulation time. Protein folding is one
avenue of distributed computer research that could benefit if it is not utilizing rough
models already. [10] DNA networks are also a potential for CA, since genomes and their

nitrogen bases have many similarities to the way ECA form around attractor cycles.
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SECTION A.1 - Complete ECA Analysis, Rules 30, 45, 106

APPENDIX A: STATE DIAGRAM CYCLE DATA

Table 6 — Rule 30[30, 86, 135, 149] State Diagram Data, k = 1 to 27

Size GoEs | Transient Cycle Longest | Longest | Unique
States States | Transient Cycle Cycles

1 1 0 1 1 1 1
2 1 0 3 1 1 3
3 3 4 1 3 1 1
4 5 0 11 1 8 4
5 6 20 6 5 5 2
6 12 49 3 10 1 3
7 22 14 92 2 63 9
8 33 172 51 16 40 5
9 57 211 244 13 171 3
10 101 885 38 46 15 6
11 166 1540 342 55 154 13
12 280 3385 431 126 102 12
13 482 6279 1431 66 832 5
14 813 13489 2082 127 1428 18
15 1373 29619 1776 321 1455 31
16 2337 52908 10291 287 6016 9
17 3962 113305 13805 362 10846 7
18 6708 251086 4350 1137 2844 18
19 11382 508782 4124 1234 3705 5
20 19305 995345 33926 1736 6150 27
21 32721 2047812 16619 4308 2793 60
22 55485 4123075 15744 5477 3553 24
23 94094 8251342 43172 6051 38249 4
24 | 159536 | 16422689 | 194991 9568 | 185040 49
25 | 270506 | 32600370 | 683556 9252 | 588425 16
26 | 458693 | 66264744 | 385427 18758 | 312156 33
27 | 777765 | 132913219 | 526744 34054 | 240300 40
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Table 7 —Rule 45 [45, 75, 89, 101] State Diagram Data, k = 1 to 27

Size GoEs | Transient Cycle Longest Longest | Unique
States States | Transient Cycle Cycles

1 0 0 2 0 2 1
2 2 0 2 1 2 1
3 0 0 8 0 3 5
4 4 10 2 4 2 1
5 0 0 32 0 30 2
6 8 30 26 6 18 6
7 0 0 128 0 126 2
8 16 134 106 18 32 7
9 0 0 512 0 504 6
10 32 260 732 16 430 9
11 0 0 2048 0 979 16
12 64 3094 938 167 240 33
13 0 0 8192 0 1105 24
14 128 8988 7268 312 2198 16
15 0 0 32768 0 6820 54
16 256 53014 12266 1776 2816 42
17 0 0 131072 0 78812 22
18 512 220728 40904 3533 7812 201
19 0 0 524288 0 183920 36
20 1024 771640 275912 3678 142580 282
21 0 0 2097152 0 352884 262
22 2048 | 3865994 326262 21950 122870 272
23 0 0 8388608 0| 3459591 224
24 4096 | 14904662 1868458 53104 421188 4411
25 0 0| 33554432 0 | 10828525 514
26 8192 | 66213056 887616 352642 334308 1353
27 0 0| 134217728 0 | 81688176 3134
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Table 8 —Rule 106 [106, 120, 169, 225] State Diagram Data, k = 1 to 27

Size GoEs Transient Cycle Longest | Longest | Unique
States States | Transient Cycle Cycles

1 1 0 1 1 1 1
2 1 0 3 1 2 2
3 3 1 4 2 3 2
4 5 0 11 1 4 5
5 6 0 26 1 15 4
6 12 34 18 8 6 5
7 22 28 78 5 49 6
8 33 52 171 6 15 18
9 57 208 247 12 54 16
10 101 375 548 17 205 18
11 166 1507 375 73 176 20
12 280 3094 722 85 168 37
13 482 6071 1639 76 416 46
14 813 12089 3482 153 448 72
15 1373 23806 7589 191 1095 108
16 2337 55492 7707 457 2688 155
17 3962 116756 10354 938 3230 214
18 6708 234871 20565 1155 2664 357
19 11382 480586 32320 1233 13471 501
20 19305 960275 68996 1063 21240 782
21 32721 1995596 68835 3506 14658 1184
22 55485 4049210 89609 5030 32428 1818
23 94094 8200190 94324 10024 14306 2792
24 | 159536 16061462 | 556218 6997 80544 4728
25 | 270506 32549375 | 734551 11269 | 309150 6729
26 | 458693 66315704 | 334467 26587 26858 10482
27 | 777765 | 132053401 | ERROR* 30637 | 242352 16317

*A 32-bit rollover error occurred when computing the number of unique cycles for this group,

resulting in loss of data for that category.

63



64

SECTION A.2 - Longest Cycle Graphs, k = 8, 16, 24, 27

Figures 43 through 46 show the longest cycles for all rules in sizes k=8, 16, 24, and 27.
For 8 and 16, Rule 30 holds the longest cycle, and will likely continue this trend as the
number doubles, since Rule 45 is still greater at k = 24. Even-numbered sizes produce

lower cycle lengths for Rule 45, but with odd-numbered k's it dominates the graph.

[B] Longest Cycle for Size (k) = 8, Rules [0,255]
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Figure 43 — Longest Cycle Diagram, All Rules, k = 8
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[B] Longest Cycle for Size (k) = 16, Rules [0,255]
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Figure 44 —Longest Cycle Diagram, All Rules, k = 16

[B] Longest Cycle for Size (k) = 24, Rules [0,255]
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Figure 45 — Longest Cycle Diagram, All Rules, k = 24
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[B] Longest Cycle for Size (k) = 27, Rules [0,255]
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Figure 46 — Longest Cycle Diagram, All Rules, k = 27



67

APPENDIX B: CA WORKBOOK SCREENS

SECTION B.1 - Plot Screen

a5l CAWorkbook - [m] X

Seed ‘ 1001000111000110011110111011101000110000111000100001101110111111 | | ength (k) |64 2| CONFIGURATION
i

CA TYPE 1D ~

00| EC| DIMENSIONS 1 5| SIZE |64

CASCADE BLOCK SIZE (T1) |75

ONES ZEROES | RANDOM  PREV NEXT

Plot Diehard NIST  Cycle Automation

RESET START STOP Interval 108 5| ms Brush Size r? = REFRESH T @

DATA LENGTH 82080000 2| bits

5 BIT RULE

DEC 505290270 30-30-30-30
OUTPUT FLAGS

150 [] satzaL  [] TEMPORAL
ALL  CLEAR

RULE ORDER
UNCLUSTER

CLUSTER

KILL DRIVER
[ stow consoLE

COPY PLOT
COPY RESULTS

COPY PVALUES CLEAR
CONFIGURATION STRING
3-8-1-64-1_3@- 32080000 0AREEA210-
1861668111862116611116111011181868116866111688180
©961161110111111-none -none- @

GENERATE COPY CONFIG STRING

Figure 47 — CA Workbook, Plot Screen

Plot allows a user to easily observe the ECA with a variety of configurations and rules,
including starting seed, scrolling to specific timesteps, and observing the changes

between seeds on the same rule.
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SECTION B.2 - Diehard Screen

ol CAWorkbook - [m] X
s i ‘
Seed | 11111611101011111011 1001101 10010100001111101101010100000(| (cngth (k) |259 =]  CONFIGURATION
Done...@ m 8.859 s ONES ZEROES RANDOM PREV NEXT CRITYeE B -
Plot  Diehard NIST Cycle Automation ECHE| DIMENSIONS |1 [T SIZE |259 &
CASCADE BLOCK SIZE (T1) |75 :
TEST | | OPEN FILE
1 DATA LENGTH 82000000 2 bits
3 3-8-1-259-1_30-52000066-0000000110-
00000EAEE000111111011101011111011161000160100110110161010160160161000011111011010101000000000161116010101161611601 = amien N mE e
g £11166611110010161111116608186911111016116111611100011611016166118100161601116116116010661110606011661111811161116168
4 9110660111600100601101110111111-none-none -8 5 BIT RULE
E|
DEC 505290270 |3 __30 30-30-30
5 223/230 96.96% passed Overall P-Value = 8.864735
o ©.902804,0.684983,0.873116,0.817332,0.647076,0. 239924, 0. 705375, 0.948684,0.537980,0.050614, 0. 377663,0.044517,
©.373611,8.095962,8.225675,8. 897996, 6.591408, 8. 879582, 8. 448529, 0.993663, 8. 683886,0.941098,, 8. 285515, 0. 389688, (T LTS
9| ©.913346,0.955169,0.166886,0. 654116,0.076511,0. 705008, 0. 786606, 0. 150102, 0.921230,0.746015,6.975386,0.972118,
I 8.744979,0.759587,8.203672,0. 368954, 8.508881,0.461536,0.987677,0.528563,0.274619,0.0812575,0.331654,8.0807832, L1 [ sparza TEMPORAL
| ©.171811,0.130875,0.164184, 0. 857011,0.223592, 0. 464320, 8.927788,0. 519259, 8.575666,0.937231,8.182739,0.758757, ALL | [CLEAR | [ rexr Fxee cout.txty
©.826453,0.427047,0.022689,0. 695904, 0.755513,0. 325324, 0.550312,0. 877865, 0. 866330, 0. 235200, 0.194012,0.723063,
| ©.748978,0.731087,0.763036,0.459721,0.466569, 8. 863332, 8. 265895, 0. 316681, 8. 683736,0.703103,8.358426,0. 247470, RULE ORDER [] BInay FILE (out.bin)
| 0.677101,0.471186,0.974497,0. 710489, 0.607749,0. 966582, 8. 893057, 0. 328093, 0. 883389, 0. 524095, 6. 539426,0.139521,
b ©.879581,0.426948,0.764519,0.880710,0.967332,0.015767,0.762428,0.046238,0.989538, 0. 656749,8. 561516, 8. 194306, UNCLUSTER [ rows.
©.948742,0.549463,0.928554,0. 554749, 0.725029, 0. 655498, 0. 223901, 0.871754, 0. 584869, 0.962038, 0. 982871, 0.690089, ALEe WS
| ©.872986,8.176904,0.218643,8.965775,8.093491, 8. 533699, 8.271381,0.621248,08.576801,0. 756532, 8.911974,0.818729,
| ©.623490,0.910552,0.831643,0. 659832,0.167128,0. 003786, 0. 385144, 0. 367962, 0. 382505, 0. 308266, 0. 747148, 0.424997, ] ALTeRnare CLASSICAL
| ©.232899,0.339844,6.773280,0. 751574, 6.198699, 0. 263612, 8. 287435, 0. 487518, 8.719972,0.967581,, 6. 168896,0. 651691, KILL DRIVER
8.92580@,9.450375,8.647359,0.789932,0.1274@2,0.136859,0.885596,0.245805,0.359232,0.90923083,0.749559,08. 676028, [ conreLaTe
[
©.192812,0.590298,8.392053,0. 841356, 8.650449, 0. 723613, 0. 085365, 0. 982156, 8. 878457, 0. 568894, 8. 309150, 0.982781, =] ConsoLE TEHARD
[
DIEHARD TEST RESULTS TEHARD RESULTS FILE
E P-VALUE DISTRIBUTION @y S
» D VON NEUMANN CORRECTION
| 1 COPY RESULTS | ] gounparies | OPEN
g none
NIl onkey (20-bit) 3 ne COPY PVALUES G
g Monkey (OPS0)
E CONFIGURATION STRING
E 06 3-8-1-259-1_30-32000600- 0006680110~
¥ 6066666E6B681111116111616111110111616661661661101
| 1616101016010010100061111101101010100060000016111
| 04 2010101101011001011160011116010101111110001000111
! 1161011911101110001161101¢12011010016160111011011
| 8610001116601100111161110111016001106061110001000
£1101118111111-non&-none-2
\ 02
5 Runs Up and Down
5 C : 4/ 4 wmmm 0
H “PREYBERERSZRBIBERBEIZR
[ GENERATE COPY CONFIG STRING
L —— F

Figure 48 — CA Workbook, Diehard Screen

Diehard allows a user to see pseudo-random analysis on a specific CA configuration,
starting seed, and rules. Functionality for testing a user-generated binary file is also
available. The configuration string, raw test results, grouped results, and p-value
distribution are all shown to aid in quick one-off testing. A line above the raw test data

shows the overall p-value and passing test results.



SECTION B.3 - NIST Screen
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ol CAWorkbook [m] X
| I
Seed | 11111611101011111011 1001101 10010100001111101101010100000(| (cngth (k) |259 CONFIGURATION
Done...2 m 40.843 s ONES ZEROES RANDOM PREV NEXT CRITYeE B -
Plot  Dichard NIST  Cycle Automation ECHE| DIMENSIONS |1 [T SIZE |259 &
3-0-1-253-1_30-40000000-0010000100- CASCADE BLOCK STZE (T1) |75 :
8286802000021111116111810111118111 1161161 100101666611111611010101006666600101116016161161611601
1 |e11100011110016161111116001600111116101161110111006116110101001161001616611161101160100611100011001111011161116108 DATA LENGTH 48800000 2 bits
3| |e118800111000166661161110111111-none-none-8
3 SMALL CRUSH | BIG CRUSH
4 5 BIT RULE
5|  |Total Passes: 163/188  86.70% Passing P-values: 165/188  87.77%
: DEC 505290278 |3 |30-30-30-30
NIST Results
8
q OUTPUT FLAGS
i [] spaTzaL TEMPORAL
| ALL | CLEAR [] TEXT FILE (out.txt)
| = RULE ORDER 7] BINARY FILE (out.bin
| 100/100 Frequency 4 D
@.153763 99/100 BlockFrequency UNCLUSTER ] Rows
14 6 a. 0 100/100 CumulativeSums
| 7 2. 000000 100/100 CumulativeSums CLUSTER [ Taes
h 7 0.000000 78/100 Runs [ autennare Ereenn
14 9.759756 99/100 LongestRun
| a 99/100 Rank KILL DRIVER | [ congerate
| [} /100 FFT
‘ 8 90/100 NonOverlappingTemplate [ stow consoLe DIEHARD
3 90/100 NonOverlappingTemplate
DIEHARD RESULTS FILE
| 15 1. @.171867 160/100 NonOverlappingTemplate COPY PLOT a
3 8 9.401199 99/100 NonOverlappingTemplate [] von NEUMANN CORRECTION
12 0.834308  100/100 NonOverlappingTemplate COPY RESULTS.
, BOUNDA
| 7 @.851383 99/100 NonOverlappingTemplate o Rits | OREN
y q
E 9 9.419021 98/100 NonOverlappingTemplate none
2 10 @.955361 99/100 NonOverlappingTemplate COPY PVALUES CLEAR
| 10 9.000406 99/100 NonOverlappingTemplate
i 3 9.000076 98/100 NonOverlappingTemplate CONFIGURATION STRING
3 8 0.051942  100/100 NonOverlappingTemplate 3-8-1-259-1_30-10000600- 0016680100
¥ 7 0.162606  100/100 NonOverlappingTemplate 6066666666681111116111616111110111616061661661101
| 9.350485  100/100 NonOverlappingTemplate 1616101016010010100061111101101010100060000016111
| @.554420  100/100 NonOverlappingTemplate 2010101101011001011160011116010101111110001000111
! @.534146 99/100 NonOverlappingTemplate 1161011911101110001161101¢12011010016160111011011
| a.213309 98/100 NonOverlappingTemplate 8610001116601100111161110111016001106061110001000
] @.181557  100/100 NonOverlappingTemplate @1181118111111-none-none-@
0.017912  100/100 NonOverlappingTemplate
; @.071177 97/100 NonOverlappingTemplate
5 9.319084 99/100 NonOverlap
;1
; GENERATE COPY CONFIG STRING
L - :

Figure 49 — CA Workbook, NIST Screen

NIST allows a user to run the National Institute of Technology’s Statistical Testing Suite

against a CA configuration or user-supplied binary file. The final results text is parsed

and placed into the grid for viewing following test completion. In addition to the test's

configuration string, a line above the results grid shows the total number of passing

tests and whether or not the test failed or passed overall.




SECTION B.4 - Cycle Screen
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skl CAWorkbook - O X
d

Seed ‘ 100001101110111111| | ength (k) (CONFIGURATION

[pone...0 m 0.31 5 ones | | zeroes | mawpom | | PREV | | WEXT CANTveES B 4

Plot  Dichard NIST  Cycle Automation ECHNNN| pTMEWSTONS |1 [T SIZE 18 :
3-0-1-18-1_30-0-0010000100-100001101110111111-none-none-@ GETNE HTE T () (g -
1 DATA LENGTH 8 2| bits
2|
3 SMALL CRUSH | | BIG CRUSH
4 Cycle Results 5 BIT RULE
5|
Ca Type: 10 DEC 505290270 |3 [30-30-30-30
5 Dimensions: 1
7l size(k): 18 HEX CLEAR
o Rules: 1 3@
E Transient Length: 875 OUTPUT FLAGS
Cycle Length: 2844
I Seed: 100001101110111111 [ [Eearaal TEMPORAL
| ALL | CLEAR [] TEXT FILE (out.txt)
14 RULE ORDER BINARY FILE (out.bin)
| UNCLUSTER [ rows
14
| CLUSTER [] Tass
i [ aLTERNATE CLASSICAL
i KILL DRIVER | [ conpevare
I
[ stow consoLE DIEHARD

I
I Copy pror | ] DIEHARD RESULTS FILE
» D 'VON NEUMANN CORRECTION
| COPY RESULTS | ] gounparies | OPEN
i none
b COPY PVALUES CLERR
? CONFIGURATION STRING
| 3-9-1-18-1_38-0-6610860160-108601101118111111-
i none-none-8
,
Iy
[
¥
1
¥
|
[ GENERATE COPY CONFIG STRING
L - E

Figure 50 — CA Workbook, Cycle Screen

Cycle allows the user to run a single cycle analysis for a given configuration and starting

seed, usually reserved only for ECA. The test seed, type, dimensions, size, and rules are

output in addition to the transient and cycle length.



SECTION B.5 — Automation Screen
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Length (k) |16

ol CAWorkbook
Seed ‘ 1110001101100101
‘ ONES ZEROES | RANDOM | PREV | | NEXT
Plot  Diehard NIST  (ycle Automation
SEED OPTIONS CASCADE OPTIONS
® CURRENT SEED BLOCK SIZE (T1) RANGE
(O SEED LENGTH (K) RANGE 100 100 32 =) ->[64
100
O FILE OPEN
(O ALL SEEDS IN K = 1
Progress
[Thread @] [19:48:45.9157348] [PID: 8852] [It: 9] [Processed: 1]
[Thread 1] [19:40:46.8869561] [PID: 11668] [It: 13] [Processed: 1]
[Thread 2] [19:40:46.1262958] [PID: 6992] [It: 18] [Processed: 1]
[Thread 3] [19:40:47.0037578] [PID:  412] [It: 14] [Processed: 1]
[Thread 4] [19:40:46.6267531] [PID: 11576] [It: 11] [Processed: 1]
[Thread 5] [19:40:48.1992518] [PID: 4904] [It: 15] [Processed: 1]
[Thread 6] [19:40:46.7527255] [PID: 11788] [It: 12] [Processed: 1]
[Thread 7] [19:4@:32.7181652] [PID: 11720] [It: 8] [Processed: o]
Results: COPY CONFIG STRING
Start: 2/18/2@16 7:48:31 PM Avg: 6.57 s
- 4
End: 2/18/2816 7:41:88 PM Running 1D... |

RULE OPTIONS

CLR

(® SINGLE RULES
(O PERMUTATIONS

THREADS

STOP

8 MAX: 8
PAUSE

- [m] X
CONFIGURATION
CA TYPE 1D ~
ECM| DIMENSIONS 1 5| SIZE 16
CASCADE BLOCK SIZE (T1) |75
DATA LENGTH (82000000 : | bits

5 BIT RULE
DEC 5085290270 |3

HEX |1E-1E-1E-1E

OUTPUT FLAGS
[] spatzar

30-30-30-30

CLEAR

TEMPORAL

ALL

CLEAR
RULE ORDER
UNCLUSTER

CLUSTER

KILL DRIVER
[ stow consoLE
COPY PLOT

COPY RESULTS

none

COPY PVALUES CLEAR

CONFIGURATION STRING

3-8-1-16-1_3@- 32080000 0AREEE210-
11186011@8118@181-none-none-8

GENERATE COPY CONFIG STRING

Figure 51 — CA Workbook, Automation Screen

Automation is a powerful tool that allows parallelized testing of a range of configuration

options — seed length, rule combinations, number of seeds, configuration ranges. It

creating a separate process for each test, up to a maximum concurrent number of

threads that the machine can technically handle — normally the number of cores,

sometimes multiplied by two if hyper threading is enabled. The test configuration data

and passing number of p-values are collected into a global results file for later analysis.
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APPENDIX C: RGB MAPPING FOR ECA RULES

SECTION C.1 - Bitmapping Process
In mapping elementary CA to a bitmap image, each state’s next state is stored as an
integer rather than a binary string, then mapped to an RGB color, which uses up to 24

bits, or size k = 24. Using a square, the resulting image has both a width and height of

V2k. Mapping from left to right, top to bottom, 0 at the top left and 2*-1 at the bottom
right. For k = 16, only green and blue (R[GB]) will be used since there are only 2 bytes of
data. To accurately portray a 24-bit scheme would require 3D modeling. The following
figure shows the normal distribution when colors are created this way, from seed 0O
(0x000000) to 65535 (OXOOFFFF). Figures 53 and 54 show the resulting bitmap images

for rule groups 30 and 45 for k = 16.

Figure 52 — RGB 16-bit, Normal Colorization
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SECTION C.2 —Rule 3030, 86, 135, 149]

Figure 53 — RGB Mapping, Rules 30, 86, 135, 149 (left to right)
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SECTION C.3 - Rule 45 [45, 75, 89, 101]

Figure 54— RGB Mapping, Rules 45, 75, 89, 101 (left to right)




