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ABSTRACT

Advances in data collection and storage capabilities during the past decades have

led to information overload in most sciences and ushered in a big data era. Data

of big volume, as well as high dimensionality, become ubiquitous in many scientific

domains. They present many mathematical challenges as well as some opportunities

and are bound to give rise to new theoretical developments.

Dimension reduction aims to explore low dimensional representation for high di-

mensional data. It helps promote the understanding of the data structure through

visualization and enhance the predictive performance of machine learning algorithms

by preventing the “curse of dimensionality.” As high dimensional data become ubiq-

uitous in modern sciences, dimension reduction methods are playing more and more

important roles in data analysis. The contribution of this dissertation is to pro-

pose some new algorithms for supervised dimension reduction that can handle high

dimensional data more efficiently.

The first new algorithm is the overlapping sliced inverse regression (OSIR). Sliced

inverse regression (SIR) is a pioneer tool for supervised dimension reduction. It iden-

tifies the subspace of significant factors with intrinsic lower dimensionality, specifically

known as the effective dimension reduction (EDR) space. OSIR refines SIR through

an overlapping slicing scheme and can estimate the EDR space and determine the

number of effective factors more accurately. We show that the overlapping procedure

has the potential to identify the information contained in the derivatives of the inverse

regression curve, which helps to explain the superiority of OSIR. We prove that OSIR

algorithm is
√
n-consistent. We also propose the use of bagging and bootstrapping

techniques to further improve the accuracy of OSIR.

Online learning has attracted great attention due to the increasing demand for
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systems that have the ability of learning and evolving. When the data to be processed

is also high dimensional, and dimension reduction is necessary for visualization or pre-

diction enhancement, online dimension reduction will play an essential role. We pro-

pose four new online learning approaches for supervised dimension reduction, namely,

the incremental sliced inverse regression, the covariance-free incremental sliced inverse

regression, the incremental overlapping sliced inverse regression, and the covariance-

free incremental overlapping sliced inverse regression. All four methods are able to

update the EDR space fast and efficiently when new observations come in. The effec-

tiveness and efficiency of all four algorithms are verified by simulations and real data

applications.
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CHAPTER 1

INTRODUCTION

1.1 Dimension reduction: an overview

Due to the development of sciences and technologies, data collected in all scientific

areas has been tending to be more complex. One aspect of the complexity reflects in

the dimensionality, which is the number of variables in the vectorized data. Often,

the originally represented data contains some redundant information because of the

variation in individual variable generated by noise, imperfection in the measurement

system, the addition of irrelevant variables, or the correlation existing in each other

throughout either linear combination or other functional dependence. It is possible

and also necessary to get rid of the redundant information and represent the data

more concisely and efficiently.

To represent the data in a more compact way, there exist two main approaches.

One is variable selection, in which we believe that only some of the original variables

contain useful information. The other is dimension reduction, which assumes that all

the variables may have explanatory effect, but the effect is only expressed in some

functional relation.

Dimension reduction aims to explore low dimensional representation for high di-

mensional data. It helps to promote our understanding of the data structure through

visualization and enhances the predictive performance of machine learning algorithms

by preventing the “curse of dimensionality,” which refers to the fact that, in the ab-

sence of simplifying assumptions, the sample size needed to estimate a function of

several variables to a given degree of accuracy (i.e., to get a reasonably low-variance
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estimate) grows exponentially with the number of variables [16]. Therefore, as high

dimensional data become ubiquitous in modern sciences, dimension reduction meth-

ods are playing more and more critical roles in data analysis.

Dimension reduction algorithms can be either unsupervised or supervised. As-

suming the normal distribution of the data and that the low dimensional data is the

linear combination of the original high dimensional data, principal component anal-

ysis (PCA) [61] is the best unsupervised dimension reduction methods if the mean-

squared-error is chosen as the criterion. PCA and factor analysis (FA) [98] are the

two most widely used linear methods based on the second-order statistics, in which

we believe the covariance matrix contains all the information we need to reduce the

dimensionality. However, the normality of data cannot always be promised. When

the normality assumption is violated, it becomes more appropriate to use high-order

statistics instead of the covariance matrix, which is the core idea of projection pur-

suit (PP) [57] and independent component analysis (ICA) [58]. Other linear methods

include non-linear PCA [78] (it introduces the non-linearity into the objective func-

tion, but the new variables are still linear combinations of the original ones) and

random projections [8]. For non-linear methods, principal curves [50], self-organizing

maps [64], and topographic maps [9], in principle, are all special cases of non-linear

ICA. Other non-linear methods include neural network [54], vector quantization [41],

and genetic and evolutionary algorithms (GEAs) [92], to name only a few.

Unlike the unsupervised dimension reduction, supervised dimension reduction in-

volves a response variable. It finds the intrinsic low dimensional representations that

are relevant to the prediction of the response values. Supervised dimension reduction

methods can date back to the well known linear discriminant analysis (LDA) while its

popularity occurred in the last decades. Many related approaches have been proposed
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and successfully applied in various scientific domains, see [1,4,81] and the references

therein.

While LDA is mostly used in classification, we also need some techniques to solve

regression problems. Regression analysis is a common tool to identify the relationship

between a multivariate predictor x = (x1, x2, . . . , xp)
> ∈ Rp and a scalar response y.

Regression for supervised dimension reduction is usually under an assumption for the

conditional mean of y on x

E[y|x] = E[y|R(x)], (1.1)

where R(x) maps each x ∈ Rp to a lower dimensional vector and is called a dimension

reduction function. Equation (1.1) implies that R(x) retains all the useful information

to predict the conditional mean of y given x, the so-called mean regression function.

The goal of supervised dimension reduction is to retrieve R(x) from (x, y).

1.2 Supervised dimension reduction in regression

When an appropriate and reasonable model is prespecified, we can adopt standard

parametric modeling techniques, such as maximum likelihood estimation or ordinary

least squares method to make statistical inferences. When no persuasive model is

available, we can use non-parametric modeling methods, such as local smoothing,

to derive information from the data. When y ∈ R, many smoothing techniques are

available [33].

To balance the modeling bias in parametric regression and “curse of dimensional-

ity” in non-parametric regression for high dimensional data, semi-parametric model

is often a good alternative, which is defined as

y = f(β>1 x,β>2 x, . . . ,β>Kx, ε), (1.2)
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where βk, k = 1, 2, . . . , K, are p-dimensional column vectors and ε is independent of

x. This is equivalent to

y |= x|B>x, (1.3)

where |= represents “statistical independence,” which implies B>x contains all the

information needed to predict y, and B = [β1,β2, . . . ,βK ] is a p×K matrix. Clearly

R(x) = B>x for the semi-parametric model.

It is obvious that Equation (1.3) holds true when K = p and B is full-rank. When

some predictors of x are independent of y, the corresponding columns of B can be

set to 0 [24]. In this case, we can retrieve all the information of y from a smaller

K dimensional subspace (β>1 x,β>2 x, . . . ,β>Kx)> and achieve the goal of dimension

reduction. In dimension reduction literature, this process is called sufficient dimension

reduction (SDR) or effective dimension reduction (EDR), and the goal is to find the

column space of B with minimum dimension, which is denoted as Sy|x and usually

called EDR space or central space [25].

The purpose of supervised dimension reduction is to recover the EDR space Sy|x

and its intrinsic dimensionalityK. Many algorithms for this situation have been devel-

oped in past decades. Some of these algorithms are based on regression methods which

regress y on x in a regular way. We call them forward regression based algorithms.

Examples include the standard linear regression and its variations, the most original

non-parametric method, the minimum average variance estimation (MAVE) [107], to

name a few. Others algorithms regress x on y instead. We call them inverse regression

based algorithms. Examples are seen in [27,28,37,70,72,77,96,103,105,106,118] and

the references therein.
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1.3 Sliced inverse regression

One of the earliest and most popular methods to recover the EDR space in re-

gression analysis is the sliced inverse regression (SIR) [70]. It considers regressing x

against y and identifies Sy|x based on the inverse conditional mean E[x|y]. The linear

conditional mean condition is the key assumption for SIR to effectively recover the

EDR space. It assumes that, for any b ∈ Rp,

E[b>x|β>1 x, . . . ,β>Kx] = c0 +
K∑
k=1

ckβ
>
k x. (1.4)

This assumption roughly requires that x follows an elliptical contour distribution

(e.g., normal distribution). With the semi-parametric model (1.2) and the linear

conditional mean condition (1.4), it was proved in [70] that the centered regression

curve E[x|y] − E[x] falls into the K-dimensional subspace spanned by Σβk, k =

1, . . . , K, where Σ is the covariance matrix of x. Consequently, all or part of the EDR

directions can be recovered by solving a generalized eigen-decomposition problem

Γβ = λΣβ, (1.5)

where

Γ = E

[(
E[x|y]− E[x]

)(
E[x|y]− E[x]

)>]
is the covariance matrix of inverse regression curve E[x|y]. Each eigenvector associated

with a non-zero eigenvalue is an EDR direction.

Given i.i.d observations {(xi, yi)}ni=1, SIR algorithm can be implemented as follows:

1) Compute sample mean x̄ = 1
n

∑n
i=1 xi and the sample covariance matrix

Σ̂ =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)>.
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Figure 1.1. Slicing and inverse regression for the computation of Γ̂ in SIR.

2) Bin the observations into H slices according to y values. For each slice sh, h =

1, . . . , H, compute the sample probability p̂h = nh

n
and the sample slice mean

m̂h = 1
nh

∑
yi∈sh xi. The matrix Γ is estimated by

Γ̂ =
H∑
h=1

p̂h (m̂h − x̄) (m̂h − x̄)>.

See Figure 1.1 for the illustration of this process.

3) Solve the generalized eigen-decomposition problem

Γ̂B̂ = Σ̂B̂Λ.

The EDR directions are estimated by the topK eigenvectors β̂k, k = 1, 2, . . . , K.

This algorithm is not very sensitive to the choice of parameter H provided it is

sufficiently larger than K while not greater than n
2
. Root-n consistency is usually

promised. It is suggested samples are evenly distributed into the H slices for best

performance.
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1.4 Development and extension of SIR-like methods

The publication of SIR drew the attention of the community immediately due

to its effectiveness. It received comments [12, 27, 62] and rejoinder [71] directly. A

geometry insight and links to other well-established statistical analysis methods such

as multivariate discriminant analysis were proposed in [48]. Due to its ease of im-

plementation and effectiveness, SIR and its variants have been successfully applied

in bioinformatics, hyperspectral image analysis, physics, and many other fields of

science; see for example [2, 6, 7, 23,29,32,38,38,40,51,75,75,82,104,119].

However, the success of SIR is restricted by several conditions. First, the distribu-

tion of x must be unique and symmetric if we want to implement SIR successfully [70],

this condition has been relaxed to distribution with a longer tail [20], distribution

without ellipticity [69], stratified population defined by a categorical response vari-

able [19], and even several distributions in the same data set [100]. Other methods

force the distribution requirement to be satisfied such as clustering the data [21] or

skipping this assumption using entropy as a measure of dispersion of data [53]. Sec-

ond, a linearity condition on the predictor distribution is required, and that restricts

the applications. Different methodologies, which either relieve this condition [76, 83]

or do not require the linearity [73,80,103,106,106], have been proposed.

The number of slices or the number of observations in each slice may affect the

asymptotic variance of the output estimate. The author mentioned that
√
n consis-

tency holds no matter how the number is chosen [70]. In [55], the authors considered

the asymptotic property when each slice contains only two observations and obtained

simple conditions for
√
n convergence with asymptotic normality. In [125], the asymp-

totic normality was established when the number of observations in each slice is vary-

ing from 2 to
√
n. When the number of observations in each slice is arbitrary but
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fixed, even it is infinite, the asymptotic properties can also be obtained [124–126].

The asymptotic results can also be found in [65]. There also exists fusion estimator

to mitigate the impact of the choice of the slice number [28] or cumulative slicing esti-

mation, which follows the idea of classical slicing estimation and sums up all possible

estimations relating to E[x(y ≤ ỹ)], for all ỹ ∈ R [123], to avoid it.

To determine the intrinsic dimensionality K, a χ2 statistical test was provided

under the assumption that x follows a multivariate normal distribution [70]. It has

also been extended to other SIR-related algorithms such as SAVE or sirIIα [94]. New

χ2 tests which do not require the normal distribution of x was proposed in [14]. One

can also utilize the goodness of estimation of SDR space [34], bootstrapping, [5],

Bayes information criterion(BIC)-type procedures [123,126] or other criteria [59,84].

SIR and other inverse regression based dimension reduction methods may degen-

erate in some situations, for example, when Equation (1.2) is symmetric and βkx

is also symmetric about 0. The second moment methods were recommended and

the principal Hessian directions (PHD) method was proposed to overcome this draw-

back [72]. Sliced average variance estimates (SAVE) algorithm also overcomes the

degeneration of SIR by exploring the second moment [27]. Using the combination of

the first and second moment, some SIR-based algorithms were proposed [70,113] and

a corresponding asymptotic theory was presented [39]. In [117], the central subspace

is obtained via third moments. Localization and finite Gaussian mixture models

(GMM) have been applied to SIR to overcome the nonlinearity and alleviates the

issue of degenerate solutions [95,106].

SIR has also been extended to overcome the computation complexity with high-

dimensional data [30] and the matrix inversion [26], to mine the sparsity of projection

subspace for improving the feature selection and model interpretation abilities [109],
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to overcome the lack of observations and the collinearity among predictors [74, 77],

to deal with missing values of predictors [31], to test the significance of a subset of

predictors [24], and to deal with functional covariates [35, 36, 56, 60]. SIR has been

applied to interaction detection [59], parametric inverse regression [14], smoothing

[13], multi-variate regression [79,96] and incremental learning [18].

1.5 Outline of this dissertation

In this chapter, we have overviewed the background of supervised dimension re-

duction, the sliced inverse regression (SIR) algorithm that our new algorithms are

based on, and the development of SIR-like methods in the past decades. The rest of

this dissertation is organized as follows.

In Chapter 2 we propose an overlapping strategy and develop a new dimension

reduction method called overlapping sliced inverse regression (OSIR). In Chapter 3,

we propose an alternative bootstrapping procedure and apply it to SIR and OSIR. We

also apply an existing bagging technique to SIR and OSIR. These new algorithms aim

to improve the performance of SIR when the data size is relatively small. Theoretical

justifications and empirical simulations on artificial as well as real-world data are used

to verify their performance.

In Chapter 4 and Chapter 5, we propose two incremental learning approaches

and apply them to SIR and OSIR algorithms. We name them as incremental sliced

inverse regression (ISIR), incremental overlapping sliced inverse regression (IOSIR),

covariance-free incremental sliced inverse regression (CFISIR), and covariance-free

incremental overlapping sliced inverse regression (CFIOSIR). The goal of incremental

learning is to update the EDR space B when the new observations are coming one by

one instead of storing all the observations and repeating the original SIR process. We
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show the convergence of the two incremental SIR methods by simulations on artificial

and real-world data.

We end with Chapter 6 by a summary of the main contributions of this dissertation

and some discussions of potential future research topics that are related to work of

this dissertation.



11

CHAPTER 2

OVERLAPPING SLICED INVERSE REGRESSION

2.1 Overview

In the SIR algorithm, m̂h, the mean of x in each slice, actually provides a sample

estimation for E[x|y], y ∈ sh, the inverse conditional mean at y within slice h. Under

the linear condition (1.4), we know that the centered inverse regression curve E[x|y]−

E[x] lies in the subspace spanned by Σβ1, . . . ,ΣβK . As an estimated vector, m̂h −

x̄ is expected to be close to this subspace but not exactly lies in it. To improve

the estimation of E[x|y], a simple and direct approach is to increase the number of

observations within each slice. This, however, is equivalent to decreasing the number

of slices H and is generally not desirable, because H must be larger than K. In

practice, a moderate value of H is preferred as a too small H may lead to severe

degeneracy and loss of EDR information. Therefore, a natural question becomes

that, with an appropriately selected and fixed H, can we take more advantage of the

data in hand and estimate the inverse regression curve more accurately? This inspires

us to allow slicing overlapping which leads to a refined algorithm for sliced inverse

regression. The new estimator is called overlapping sliced inverse regression (OSIR).

The rest of this chapter is as follows. In Section 2.2, we introduce the motivation

of overlapping SIR (OSIR) along with its algorithm. Consistency and dimensionality

determination strategy are also discussed. In Section 2.3 we discuss the connections

and differences between OSIR and related algorithms. In Section 2.4 we compare

OSIR with SIR and other related algorithms through comprehensive simulation stud-

ies and evaluate its effectiveness on a real data application. We conclude our paper
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Figure 2.1. Illustration of slice overlapping technique.

with some discussions and remarks in Section 2.5. We prove all the theorems in

Section 2.6.

2.2 OSIR: algorithms and theory

We now describe the OSIR algorithm in detail. For each h = 1, . . . , H − 1, we

combine slice sh and its adjacent slice sh+1 to form a bundle and compute the mean

of predictors in this bundle (see Figure 2.1)

m̂h:(h+1) =
1

nh + nh+1

∑
yi∈sh

⋃
sh+1

xi,

which is expected to be closer to the subspace spanned by Σβ1, . . . ,ΣβK than m̂h

and m̂h+1. As a result, the OSIR algorithm using kernel matrix estimated from these

bundle means is expected to provide more accurate estimation for the EDR directions.

Note that for each h = 2, . . . , H − 1, the original slice sh is the overlapping of two

bundles and is used twice in the computation of the bundle means. Thus we make a

50% adjustment for computing the sample probability of the bundles, that is, we will
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Figure 2.2. Problem existing in OSIR.

use

p̂h:(h+1) =
1

2
(p̂h + p̂h+1) =

nh + nh+1

2n
.

The first slice s1 and the last slice sH , however, are used only once (see Figure

2.2). To make all data points have the same contribution to the algorithm, we need

further adjustment by adding m̂1 with weight p̂1
2

and m̂H with weight p̂H
2

towards the

estimation of Γ. Taking all these into consideration, we obtain

Γ̂
(1)

H =
H−1∑
h=1

p̂h:(h+1)(m̂h:(h+1) − x̄)(m̂h:(h+1) − x̄)>

+
p̂1
2

(m̂1 − x̄)(m̂1 − x̄)> +
p̂H
2

(m̂H − x̄)(m̂H − x̄)>.

This algorithm can be interpreted alternatively as follows. We first duplicate the

data so that we have 2n data points which contain two copies of every original data

point. Then we bin the data into H+ 1 bundles with the constraint that each bundle

can only contain one copy of an original data point. Then the first bundle naturally
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contains one copy of slice 1 and one copy of slice 2, the second bundle contains slice

2 and slice 3, and so on. This leaves slice 1 and slice H to be treated separately.

In this process the data is replicated once or equivalently each slice is overlapped

once. Therefore, we call this algorithm level-one overlapping sliced inverse regression

(OSIR1).

2.2.1 Overlapping codes information of difference

Firstly we notice that the level-one overlapping actually codes the first order

difference (or the first order derivative in the limit sense) of the inverse regression

curve, which allows us to interpret the effectiveness of OSIR from an alternative

perspective.

Theorem 2.1. We have

Γ̂
(1)

H = Γ̂H −
1

2

H−1∑
h=1

p̂hp̂h+1

p̂h + p̂h+1

(m̂h+1 − m̂h) (m̂h+1 − m̂h)
> .

In particular if n1 = n2 = . . . = nH = n
H
, we have

Γ̂
(1)

H = Γ̂H −
1

4H

H−1∑
h=1

(m̂h+1 − m̂h) (m̂h+1 − m̂h)
> .

Theorem 2.1 tells that Γ
(1)
H can be obtained by subtracting from Γ̂H a weighted

covariance matrix of the first order difference of sample inverse regression curve m̂h.

The proof is given in Section 2.6.1.

Let ph be the probability and mh the mean vector of slice sh. The population

version of the difference between ΓH and Γ
(1)
H is

D
(1)
H =

1

2

H−1∑
h=1

phph+1

ph + ph+1

(mh+1 −mh) (mh+1 −mh)
> .
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If the inverse regression curve is smooth, then mh+1−mh is of order O( 1
H

) for large H

and codes the information of the first order derivative of E[x|y]. This indicates that

D
(1)
H , the difference between ΓH and Γ

(1)
H , is O( 1

H2 ). Thus, if we let H tend to infinity,

both OSIR and SIR estimate the covariance matrix Γ of the inverse regression curve.

But for small or moderate H, their difference could be substantive.

Now let us see why OSIR1 is generally superior to SIR. We decompose m̂h+1−m̂h

as v̂h + v̂⊥h where vh is the component in the subspace ΣB and v⊥h is the orthog-

onal component. Let V̂ and V̂⊥ be the weighted sample covariance matrices of v̂h

and v̂⊥h , respectively. Then D̂
(1)
H = V̂ + V̂⊥ and moreover, we expect V̂ → 0 and

V̂⊥ → D
(1)
H as n becomes large. Note v̂h contains information of the EDR space, so

subtracting V̂ from Γ̂H reduces effective information. The orthogonal component v⊥h

measures the deviation of m̂h from the subspace ΣB. Subtracting V̂⊥ reduces noise

and improves EDR space estimation. We claim that, in general, the impact of reduc-

ing noise by subtracting V̂⊥ is greater than the loss of effective information resulted

from subtracting V̂. First, V̂ is of order O( 1
H2 ) for large n when m(y) is smooth.

Thus, its impact is minimal even with a moderate H. Second, roughly speaking, the

estimation accuracy of SIR algorithms is positively correlated to signal to noise ratio

ρ =
∑K

k=1 λ̂k∑p
k=K+1 λ̂k

. In the perfect situation λ̂k = 0 for k = K+1, . . . , p, the signal to noise

ratio is infinity and the EDR space can be exactly estimated. Let γ0 measure the

effective information contained in V̂ and γ1 the noise level in V̂⊥. Then the signal to

noise ratio of OSIR1 becomes ρ(1) =
∑K

k=1 λ̂k−γ0∑p
k=K+1 λ̂k−γ1

. It is larger than ρ provided that

γ1 > γ0

∑p
k=K+1 λ̂k∑K
k=1 λ̂k

. (2.1)

In most solvable problems,
∑p

k=K+1 λ̂k should be much smaller than
∑K

k=1 λ̂k (for

otherwise no algorithm works due to very small signal to noise ratio). Thus, Equation
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(2.1) can be easily fulfilled so that OSIR1 outperforms SIR.

2.2.2 The
√
n consistency

For supervised dimension reduction methods such as SIR, the
√
n-consistency and

asymptotic normality not only provides theoretical guarantee for the asymptotic esti-

mation accuracy of the EDR space, but also establishes the basis of various strategies

for dimensionality determination. In this subsection, we show that, for OSIR, the

√
n-consistency and asymptotic normality can be established as follows.

Theorem 2.2. Let (λk,βk), k = 1, . . . , K be the eigenvalues and eigenvectors of the

generalized eigen-decomposition problem

Γ
(1)
H β = λΣβ

and (λ̂k, β̂k), k = 1, . . . , K be the eigenvalues and eigenvectors of the generalized eigen-

decomposition problem

Γ̂
(1)

H β = λΣ̂β.

Assume λk, k = 1, . . . , K are distinct. Then there exist a real-valued function ξk(x, y)

and a vector-valued function Υk(x, y) such that

λ̂k = λk +
1

n

n∑
i=1

ξk(xi, yi) + oP ( 1√
n
)

and

β̂k = βk +
1

n

n∑
i=1

Υk(xi, yi) + oP ( 1√
n
).

The proof of Theorem 2.2 is given in Section 2.6.2.
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2.2.3 High level overlapping

The idea of extending OSIR to high level overlapping is natural. The only tricky

part is on the adjustment for the slices at the two ends. We now illustrate the idea

with the level two overlapping.

For level two overlapping we construct bundles using three adjacent base slices.

So for h = 1, . . . , H−2, the h-th bundle contains data points from base slices sh, sh+1

and sh+2. The corresponding bundle probability is computed as

p̂h:(h+2) =
1

3
(p̂h + p̂h+1 + p̂h+2)

because each base slice is used three times. The corresponding bundle mean is

m̂h:(h+2) =
p̂hm̂h + p̂h+1m̂h+1 + p̂h+2m̂h+2

p̂h + p̂h+1 + p̂h+2

.

Then we see the slice s1 and sH are used only once, the slice s2 and sH−1 are used

twice. To make all data points have equal contribution in the algorithm, we will not

add them separately. Instead, we do the adjustment as follows. We combine s1 and

s2 as one intermediate bundle, compute its probability as 1
3
(p̂1 + p̂2) and the bundle

mean. Then we add slice s1 with probability 1
3
p̂1. The last two slices sH−1 and sH are

treated analogously. This leads to

Γ̂
(2)

H =
H−2∑
h=1

p̂h:(h+2)(m̂h:(h+2) − x̄)(m̂h:(h+2) − x̄)>

+1
3
(p̂1 + p̂2)(m̂1:2 − x̄)(m̂1:2 − x̄)>

+1
3
(p̂H−1 + p̂H)(m(H−1):H − x̄)(m̂(H−1):H − x̄)>

+1
3
p̂1(m̂1 − x̄)(m̂1 − x̄)> + 1

3
p̂H(m̂H − x̄)(m̂H − x̄)>.

Again, we can interpret the process as that we first duplicate the data twice to obtain

three copies of all original data points and then bin the data into H + 2 bundles with

the constraint that each slice can only contain one copy of an original data point.
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We can further extend the algorithm to any overlapping level L ≤ H − 1. The

representation of the associated matrix Γ̂
(L)

H will be more complicated by using normal

notations. But interestingly we can have a unified representation for all 1 ≤ L ≤ H−1

by introducing some ghost slices. To this end, we define null slices for indices h =

. . . ,−2,−1, 0 and h = H + 1, H + 2, H + 3, . . . to be slices with probability p̂h = 0

and slice mean m̂h = 0. For each h define

p̂h:h+L =
1

L+ 1
(p̂h + . . .+ ph+L)

and

m̂h:(h+L) =
p̂hm̂h + . . .+ p̂h+Lm̂h+L

p̂h + . . .+ p̂h+L
.

Then for all 1 ≤ L ≤ H − 1, we have

Γ̂
(L)

H =
H∑

h=−L+1

p̂h:h+L
(
m̂h:(h+L) − x̄

) (
m̂h:(h+L) − x̄

)>
.

The algorithm using Γ̂
(L)

H for dimension reduction will be called level-L overlapping

sliced inverse regression, or OSIRL.

We notice that the level-two overlapping codes both the first and the second order

derivatives of the inverse regression curve.

Theorem 2.3.

Γ̂
(2)

H = Γ̂H −
1

3

H∑
h=−1

( p̂hp̂h+1 + 2p̂hp̂h+2

p̂h + p̂h+1 + p̂h+2

(m̂h+1 − m̂h) (m̂h+1 − m̂h)
>

+
p̂h+1p̂h+2 + 2p̂hp̂h+2

p̂h + p̂h+1 + p̂h+2

(m̂h+2 − m̂h+1) (m̂h+2 − m̂h+1)
>
)

+
1

3

H∑
h=−1

p̂hp̂h+2

p̂h + p̂h+1 + p̂h+2

(m̂h+2 − 2m̂h+1 + m̂h)

(m̂h+2 − 2m̂h+1 + m̂h)
> .
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In particular if n1 = n2 = . . . = nH = n
H
, we have

Γ̂
(2)

H = Γ̂H −
2

3H

H−1∑
h=1

(m̂h+1 − m̂h) (m̂h+1 − m̂h)
>

+
1

9H

H−2∑
h=1

(m̂h+2 − 2m̂h+1 + m̂h) (m̂h+2 − 2m̂h+1 + m̂h)
>

+
1

2H
(m̂2 − m̂1) (m̂2 − m̂1)

> +
1

2H
(m̂H − m̂H−1) (m̂H − m̂H−1)

> .

Theorem 2.3 tells that Γ
(2)
H can be obtained by subtracting from Γ̂H a weighted

covariance matrix of the first order difference of the sample inverse regression curve

and adding a weighted covariance matrix of the second order difference of the sample

inverse regression curve m̂h. The proof is given in Section 2.6.3.

Similar to OSIR1 and OSIR2, one can show that OSIRL codes the information

of up to L-th order derivatives of the inverse regression curve. Also, OSIRL is
√
n-

consistent. The proofs are similar to those for OSIR1 and OSIR2 but the computation

and representation of the results are much more complicated. We omit the details.

2.2.4 Determine the dimensionality

In practice, the true dimensionality K is unknown and has to be estimated from

the data. For SIR and related algorithms, classical methods for dimensionality deter-

mination are the sequential χ2 test based on the asymptotic normality. This method

can also be applied to OSIR. However, as mentioned in [123], it is usually very chal-

lenging because the asymptotic variance has very complicated structure and the de-

gree of freedom is difficult to determine. We follow the idea in [123,126] and propose

a modified BIC method to determine K. For each 1 ≤ L ≤ H − 1, let λ̂
(L)
i be the

eigenvalues of the generalized eigen-decomposition problem Γ̂
(L)

H β = λΣ̂β and assume
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they are arranged in decreasing order. Define

G(L)(k) = n
k∑
i=1

(
λ̂
(L)
i

)2/ p∑
i=1

(
λ̂
(L)
i

)2
− Cnk(k + 1)

2

and we estimate K by

K̂(L) = arg max
1≤k≤p

G(L)(k).

Since OSIR algorithms are
√
n-consistent, this criterion is consistent if Cn →∞ and

Cn/n → 0 as n → ∞. A challenging issue remaining is the choice of Cn in a data-

driven manner. We are motivated by [123] to choose Cn ∼ n3/4

p
. At the same time

we observe from empirical simulations that smaller penalty should be used for larger

H. These motivate us to choose Cn = 2n3/4

p(L+1)H1/2 . It is found to work satisfactorily in

many situations, although universally optimal or problem dependent choices deserve

further investigation.

2.3 Connections with existing methods

From its motivation, we see OSIR is so closely related to SIR that it seems needless

to say anything regarding their relationship. However, it would be interesting to

notice that overlapping technique does make OSIR essentially different from SIR in

some situations. First, it is pointed out that SIR works even when there are only

two observations in one slice [55]. But surely SIR does not work with only one

observation in a slice — Γ̂H degenerates to be the same as Σ̂ in this case. OSIR,

however, still works even if there is only one point in a slice. Second, SIR can be

applied to classification problem where each class naturally defines a slice. The design

of OSIR algorithm depends on the concept of “adjacent” slices. This prevents its use

in classification problems because there is no natural way to define two or more classes

are “adjacent” unless the classification problem is an ordinal one.
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Another method that is closely related to OSIR is the cumulative slicing estimate

(CUME) proposed in [123]. CUME aims to recover the EDR space by the covariance

matrix of the cumulative inverse regression curve M(ỹ) = E[x|y ≤ ỹ]. Empirically,

let M(yi) = 1
|{j:yj≤yi}|

∑
j:yj≤yi xj and

Ξ̂ =
1

n

n∑
i=1

(M(yi)− x̄) (M(yi)− x̄)> .

CUME estimates the EDR space by solving the generalized eigen-decompostion prob-

lem

Ξ̂β = λΣ̂β.

It is interesting to notice that, if OSIR has each slice containing only on observation

(so that there are H = n slices) and selects overlapping level L = n − 1, then

Γ̂
(n−1)
n = 2Ξ̂. Therefore, CUME can be regarded as special case of OSIR.

2.4 Simulations

In this section we will verify the effectiveness of OSIR with simulations on artificial

data and one real application. Comparisons will be made with two closely related

methods, SIR and CUME.

2.4.1 Artificial data

In the simulations with artificial data, since we know the true model, we measure

the performance by the accuracy of the estimated EDR space and the ability of

dimension determination. For the accuracy of the estimated EDR space, we adopt

the trace correlation r(K) = trace(PBPB̂)/K used in [34] as the measurement, where

PB and PB̂ are the projection operators onto the true EDR space B and the estimated
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EDR space B̂, respectively. For the ability of dimension determination, we use the

modified BIC type criterion which is suitable for all three methods. For SIR and OSIR

we use the choice for Cn as suggested in section 2.2.4 (where note SIR corresponds

to L = 0) while for CUME we use Cn = 2n3/4/p as suggested in [123].

We performed simulation studies with four different models, three from [70] and

one from [123].

y = x1 + x2 + x3 + x4 + 0x5 + ε, (2.2)

y = exp(x1 + 2ε) (2.3)

y = x1(x1 + x2 + 1) + ε, (2.4)

y =
x1

0.5 + (x2 + 1.5)2
+ ε, (2.5)

where x = [x1, x2, . . . , xp]
> follow multivariate normal distribution, ε follows standard

normal distribution, x and ε are independent. The experiment setting is as follows.

Model (2.2): n = 100, p = 5, K = 1, β = (0.5, 0.5, 0.5, 0.5, 0)>;

Model (2.3): n = 100, p = 5, K = 1, β = (1, 0, 0, 0, 0)>;

Model (2.4): n = 400, p = 10, K = 2, β1 = (1, 0, 0, . . . , 0)>, β2 = (0, 1, 0 . . . , 0)>;

Model (2.5): n = 400, p = 10, K = 2, β1 = (1, 0, 0, . . . , 0)>, β2 = (0, 1, 0 . . . , 0)>.

We tested H = 5 and H = 10. All experiments are replicated 1000 times. The average

accuracy of EDR estimation in terms of r(K) values as well as the standard errors is

reported in Table 2.1. The results indicate for both choices of H, OSIR outperforms

SIR and when H and L are correctly selected, OSIR also outperforms CUME. We

notice that both SIR and OSIR show not sensitive to the choice of H provided that

it is sufficiently large regarding to the true dimension K. For model (2.2) and (2.3),

since K = 1, a choice of H = 5 already large enough, so we see the result for H = 5

and H = 10 are quite similar. For model (2.4) and (2.5), since K = 2, H = 5 seems
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Table 2.1. Accuracy of EDR space estimation by SIR, OSIR and CUME for models

(2.2)-(2.5).

Algorithm
Model

(2.2) (2.3) (2.4) (2.5)

H = 5

SIR 0.9826(0.0004) 0.7776(0.0057) 0.7174(0.0037) 0.7015(0.0038)
OSIR1 0.9827(0.0004) 0.8132(0.0043) 0.7453(0.0031) 0.7300(0.0033)
OSIR2 0.9827(0.0004) 0.8193(0.0041) 0.7522(0.0031) 0.7413(0.0032)
OSIR3 0.9832(0.0004) 0.8241(0.0039) 0.7504(0.0031) 0.7378(0.0032)
OSIR4 0.9832(0.0004) 0.8241(0.0039) 0.7504(0.0031) 0.7378(0.0032)

H = 10

SIR 0.9856(0.0003) 0.7371(0.0068) 0.7291(0.0041) 0.7371(0.0038)
OSIR1 0.9865(0.0003) 0.8065(0.0048) 0.7749(0.0032) 0.7703(0.0033)
OSIR2 0.9863(0.0003) 0.8212(0.0042) 0.7832(0.0030) 0.7763(0.0030)
OSIR3 0.9860(0.0003) 0.8255(0.0040) 0.7860(0.0029) 0.7813(0.0029)
OSIR4 0.9858(0.0003) 0.8280(0.0039) 0.7890(0.0028) 0.7864(0.0028)
OSIR5 0.9859(0.0003) 0.8306(0.0038) 0.7921(0.0028) 0.7914(0.0027)
OSIR6 0.9861(0.0003) 0.8327(0.0037) 0.7941(0.0028) 0.7951(0.0027)
OSIR7 0.9863(0.0003) 0.8343(0.0037) 0.7944(0.0028) 0.7956(0.0027)
OSIR8 0.9865(0.0003) 0.8352(0.0037) 0.7933(0.0028) 0.7932(0.0027)
OSIR9 0.9865(0.0003) 0.8352(0.0037) 0.7933(0.0028) 0.7932(0.0027)

CUME 0.9849(0.0003) 0.8297(0.0038) 0.7855(0.0029) 0.7800(0.0029)

not relatively large enough and the results are slightly worse. When H is increased

to 10 both SIR and OSIR performs better. But the performance improvement is

ignorable if we further increase H (results are not shown). As for the impact of L, we

see that the most significant improvement is from SIR to OSIR, that is, from L = 0

to L = 1. When L further increases, the performance of OSIR may still improves

slightly within a small range, but soon becomes stable. It seems increasing L does

not significantly degrade the performance of OSIR. Therefore, we assume L = 2 or 3

should be good enough for most applications but, if computational complexity is not

a concern, the user may feel free to choose a large L.

Next, let us fix H = 10. The correctness of dimension determination based on the

modified BIC criterion is summarized in Table 2.2 and Table 2.3. CUME seems un-
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derestimate the dimensionality. It works perfectly for models (2.2) and (2.3) and fails

for models (2.4) and (2.5). OSIR tends to overestimate the dimensionality with small

L while underestimate the dimensionality with large L. Considering the accuracy of

both EDR subspace estimation and dimensionality determination, a balanced choice

of L is recommended to be L = bH/2c, the integer part of H/2.

Table 2.2. Accuracy of dimensionality determination by SIR, OSIR and CUME for

models (2.2) and (2.3).

Algorithm
Model (2.2) (2.3)

K̂ < 1 K̂ = 1 K̂ > 1 K̂ < 1 K̂ = 1 K̂ > 1
SIR 0 0.941 0.059 0 0.063 0.937

OSIR1 0 0.978 0.022 0 0.172 0.828
OSIR2 0 0.987 0.013 0 0.285 0.715
OSIR3 0 0.990 0.010 0 0.403 0.597
OSIR4 0 0.997 0.003 0 0.492 0.508
OSIR5 0 0.999 0.001 0 0.555 0.445
OSIR6 0 0.999 0.001 0 0.601 0.399
OSIR7 0 1.000 0.000 0 0.618 0.382
OSIR8 0 1.000 0.000 0 0.602 0.398
OSIR9 0 0.999 0.001 0 0.559 0.441
CUME 0 1.000 0 0 1.000 0

2.4.2 Real data application

We test the use of OSIR on the Boston housing price data, collected by Harrison

and Rubinfeld for the purpose of discovering whether or not clean air influenced the

value of houses in Boston [49]. The data consist of 506 observations and 14 attributes.

We first preprocess the data by transforming the attributes according to their

distribution shapes. The logarithm transformation is applied to the response variable
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Table 2.3. Accuracy of dimensionality determination by SIR, OSIR and CUME for

models (2.4) and (2.5).

Algorithm
Model (2.4) (2.5)

K̂ < 2 K̂ = 2 K̂ > 2 K̂ < 2 K̂ = 2 K̂ > 2
SIR 0.003 0.507 0.490 0.001 0.559 0.440

OSIR1 0.005 0.738 0.257 0.006 0.785 0.209
OSIR2 0.005 0.887 0.108 0.011 0.911 0.078
OSIR3 0.006 0.953 0.041 0.014 0.967 0.019
OSIR4 0.006 0.983 0.011 0.020 0.976 0.004
OSIR5 0.007 0.990 0.003 0.028 0.971 0.001
OSIR6 0.011 0.987 0.002 0.037 0.963 0.000
OSIR7 0.014 0.983 0.003 0.046 0.954 0.000
OSIR8 0.015 0.981 0.004 0.050 0.948 0.002
OSIR9 0.009 0.981 0.010 0.035 0.962 0.003
CUME 1.000 0.000 0.000 1.000 0.000 0.000

and 4 predictors named as “crim”, “zn”, “nox”, and “dis”. Square transformation is

applied to the predictor “ptratio”. All other predictors are kept untransformed.

To test the impact of dimensional reduction by SIR and OSIR on the predictive

modeling, we split the data into a training set of 200 observations and a test set

of 306 observations, applied SIR and OSIR on the training set to implement the

dimension reduction, then K-nearest neighbor (KNN) regression is applied to predict

the response on the test set. In the experiment, we choose H = 20. We repeat the

experiment 100 times. The dimensionality estimated by modified BIC varies between

2 and 4 due to randomness of the training set. To avoid information loss and for fair

comparison, we fixed K = 4 instead of estimating it using the modified BIC criterion

in this experiment. The mean and standard error of the squared prediction errors

are reported in Table 2.4. For comparison purpose we also reported the errors by

multiple linear regression (MLR) and KNN regression before dimension reduction.
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Table 2.4. Experiment results for Boston housing price data.

Correlation to Response

Algorithm MSE β̂1 β̂2 β̂3 β̂4 Weighted Average
SIR 19.92(0.32) 0.8639 0.1219 0.0880 0.0776 0.4476
OSIR1 19.70(0.32) 0.8640 0.1205 0.0967 0.0724 0.4881
OSIR3 19.80(0.33) 0.8634 0.1177 0.1061 0.0766 0.5321
OSIR5 19.91(0.32) 0.8622 0.1155 0.1157 0.0788 0.5696
OSIR8 19.83(0.32) 0.8611 0.1142 0.1262 0.0770 0.6220
OSIR12 19.52(0.31) 0.8616 0.1146 0.1239 0.0726 0.6767
OSIR16 19.63(0.30) 0.8631 0.1142 0.1147 0.0748 0.7054
OSIR19 19.60(0.30) 0.8634 0.1140 0.1132 0.0746 0.7084
MLR 20.75(0.30)
KNN 45.35(0.60)

The results implies that both SIR and OSIR is effective to find the relevant directions

for prediction and OSIR outperforms SIR.

We next investigate the correlations between the estimated EDR directions and the

response variable, which have also shown in Table 2.4. Clearly the first EDR directions

estimated by OSIR has higher correlations than SIR, indicating its better ability to

accurately estimate the relevant predictive direction. To compare the accuracy of

the whole EDR space estimation, it is reasonable to consider the weighted average

of the correlations of all EDR directions, with the weights being their corresponding

eigenvalues, because eigenvalues measure the importance of the corresponding EDR

directions. The results in Table 2.4 show that OSIR finds EDR space more accurately

than SIR.



27

2.5 Conclusions and discussions

We developed an adjacent slice overlapping technique and applied it to the sliced

inverse regression method. This leads to a new dimension reduction approach called

overlapping sliced inverse regression (OSIR). This new approach is showed to improve

the dimension reduction accuracy by coding the higher order difference (or deriva-

tive) information of the inverse regression curve. The root-n consistency provides

theoretical guarantee for its application.

We have adopted a modified BIC criterion for the dimensionality determination for

OSIR method. Several alternative strategies have been proposed for dimensionality

determination for SIR method such as the χ2 test [3, 14, 70] and bootstrapping [5].

We expect these strategies also apply to OSIR and would leave it a future research

topic for an optimal strategy.

Finally we remark that the purpose of OSIR is to improve the dimension reduction

accuracy in the situation SIR works but does not give optimal estimation. It does not

overcome the degeneracy problem of SIR. Instead, it inherited this problem from SIR.

In fact, all inverse regression based method including SIR, OSIR and CUME face this

problem when Sx|y degenerates. To overcome this problem, some other approaches

should be used. An interesting future research topic is to see whether overlapping

technique can apply to other slicing based dimension reduction methods such as sliced

average variance estimation [27] and the sliced average third moment estimation [117]

to improve the estimation accuracy as well as overcome the degeneracy phenomenon

simultaneously.
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2.6 Proofs

2.6.1 Proof of Theorem 2.1

We adopt the notations sn+1 = sH+1 = ∅, p̂0 = p̂H+1 = 0, and m̂0 = m̂H+1 = 0.

This allows us to simplify the representations of the matrices of interest.

Proof. Without loss of generality, we can assume x̄ = 0. Then

Γ̂H =
H∑
h=1

p̂hm̂hm̂
>
h

and

Γ̂
(1)

H =
H∑
h=0

p̂h:(h+1)m̂h:(h+1)m̂
>
h:(h+1).

By p̂h:(h+1) = 1
2
(p̂h + p̂h+1) and

m̂h:(h+1) =
p̂hm̂h + p̂h+1m̂h+1

p̂h + p̂h+1

,

we have

2p̂h:(h+1)m̂h:(h+1)m̂
>
h:(h+1)

=
1

p̂h + p̂h+1

(
p̂2hm̂hm̂

>
h + p2h+1m̂h+1m̂

>
h+1 + p̂hp̂h+1m̂hm̂

>
h+1 + p̂hp̂h+1m̂h+1m̂

>
h

)
=

1

p̂h + p̂h+1

{
p̂h(p̂h + p̂h+1)m̂hm̂

>
h + ph+1(p̂h + p̂h+1)m̂h+1m̂

>
h+1

−p̂hp̂h+1

(
m̂hm̂

>
h − m̂hm̂

>
h+1 − m̂h+1m̂

>
h + m̂h+1m̂

>
h+1

)}
=

(
p̂hm̂hm̂

>
h + ph+1m̂h+1m̂

>
h+1

)
− p̂hp̂h+1

p̂h + p̂h+1

(
m̂h+1 − m̂h

)(
m̂h+1 − m̂h

)>
.
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Therefore,

2Γ̂
(1)

H =
H∑
h=0

(
p̂hm̂hm̂

>
h + ph+1m̂h+1m̂

>
h+1

)
−

H∑
h=n+1

p̂hp̂h+1

p̂h + p̂h+1

(
m̂h+1 − m̂h

)(
m̂h+1 − m̂h

)>
= 2

H∑
h=1

p̂hm̂hm̂
>
h −

H−1∑
h=1

p̂hp̂h+1

p̂h + p̂h+1

(
m̂h+1 − m̂h

)(
m̂h+1 − m̂h

)>
= 2Γ̂H − 2D̂

(1)
H .

This finishes the proof. �

2.6.2 Proof of the
√
n consistency

The following lemma was well known and a detailed proof can be found in [118].

Lemma 2.4. Assume that x has finite fourth moments. Let

S(x) = (x− µ)(x− µ)> −Σ.

Then

Σ̂−Σ =
1

n

n∑
i=1

S(xi) + oP

(
1√
n

)
.

Lemma 2.5. There exists a matrix-valued random variable R(x, y) such that

Γ̂
(1)

H − Γ
(1)
H =

1

n

n∑
i=1

R(xi, yi) + oP

(
1√
n

)
.

Proof. Note that

p̂h:(h+1) =
1

2n

n∑
i=1

1h:(h+1)(yi)

and ph:(h+1) = 1
2
E[1h:(h+1)(y)], we have

p̂h:(h+1) − ph:(h+1) =
1

2n

n∑
i=1

(
1h:(h+1)(yi)− ph:(h+1)

)
= OP

(
1√
n

)
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and

1

p̂h:(h+1)

− 1

ph:(h+1)

=
1

2np2h:(h+1)

n∑
i=1

(1h:(h+1)(yi)− ph:(h+1)) + oP

(
1√
n

)
= OP

(
1√
n

)
.

It is not difficult to check that ph:(h+1)mh:(h+1) = E[x1h:(h+1)(y)] and

p̂h:(h+1)m̂h:(h+1) =
1

n

n∑
i=1

xi1h:(h+1)(yi).

Hence,

p̂h:(h+1)m̂h:(h+1) − ph:(h+1)mh:(h+1) =
1

n

n∑
i=1

(
xi1h:(h+1)(yi)− ph:(h+1)mh:(h+1)

)
= OP

(
1√
n

)
.

and

m̂h:(h+1) −mh:(h+1) =
p̂h:(h+1)m̂h:(h+1)

p̂h:(h+1)

−
ph:(h+1)mh:(h+1)

ph:(h+1)

=
1

p̂h:(h+1)

(
p̂h:(h+1)m̂h:(h+1) − ph:(h+1)mh:(h+1)

)
+ph:(h+1)mh:(h+1)

(
1

p̂h:(h+1)

− 1

ph:(h+1)

)
=

1

ph:(h+1)

(
p̂h:(h+1)m̂h:(h+1) − ph:(h+1)mh:(h+1)

)
+ph:(h+1)mh:(h+1)

(
1

p̂h:(h+1)

− 1

ph:(h+1)

)
+ oP

(
1√
n

)
=

1

n

n∑
i=1

Uh,1(xi, yi) + oP

(
1√
n

)
= OP

(
1√
n

)
,

where

Uh,1(xi, yi) =
xi1h:(h+1)(yi)

ph:(h+1)

−mh:(h+1) + mh:(h+1)

(
1h:(h+1)(yi)

ph:(h+1)

− 1

)
.
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Therefore,

p̂h:(h+1)m̂h:(h+1)m̂
>
h:(h+1) − ph:(h+1)mh:(h+1)m

>
h:(h+1)

=
(
p̂h:(h+1)m̂h:(h+1) − ph:(h+1)mh:(h+1)

)
m̂>h:(h+1)

+ph:(h+1)mh:(h+1)

(
m̂>h:(h+1) −mh:(h+1)

)>
=

(
p̂h:(h+1)m̂h:(h+1) − ph:(h+1)mh:(h+1)

)
m>h:(h+1)

+ph:(h+1)mh:(h+1)

(
m̂h:(h+1) −mh:(h+1)

)>
+ oP

(
1√
n

)
=

1

n

n∑
i=1

Uh(xi, yi) + oP

(
1√
n

)

= OP

(
1√
n

)
,

where

Uh(xi, yi) =
(
xi1h:(h+1)(yi)− ph:(h+1)mh:(h+1)

)
m>h:(h+1) + ph:(h+1)mh:(h+1)Uh,1(xi, yi)

>.

Note that

x̄− µ =
1

n

n∑
i=1

(xi − µ) = OP

(
1√
n

)
,

we obtain

x̄x̄> − µµ> = (x̄− µ)x̄> + µ(x̄− µ)>

= (x̄− µ)µ> + µ(x̄− µ)> + oP ( 1√
n
)

=
1

n

n∑
i=1

(xi − µ)µ> + µ(xi − µ)> + oP ( 1√
n
).

By simple calculation we have

Γ̂
(1)

H =
H∑
h=0

p̂h:(h+1)m̂h:(h+1)m̂
>
h:(h+1) − x̄x̄>

and

Γ
(1)
H =

H∑
h=0

ph:(h+1)mh:(h+1)m
>
h:(h+1) − µµ>
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So

Γ̂
(1)

H − Γ
(1)
H =

H∑
h=0

(
p̂h:(h+1)m̂h:(h+1)m̂

>
h:(h+1) − ph:(h+1)mh:(h+1)m

>
h:(h+1)

)
+
(
x̄x̄> − µµ>

)
=

1

n

n∑
i=1

R(xi, yi) + oP (
1√
n

)

with

R(xi, yi) =
H∑
h=0

Uh(xi, yi) + (xi − µ)µ> + µ(xi − µ)>.

This finishes the proof.

�

Proof of Theorem 2.2. By perturbation theory and standard argument (see e.g. [118]),

we can obtain

λ̂k = λk + β>k

{
(Γ̂

(1)

H − Γ
(1)
H ) + λk(Σ̂−Σ)

}
βk

and

β̂k = βk −
βkβ

>
k (Σ̂−Σ)βk

2
−
∑
j 6=k

βjβ
>
j

{
(Γ̂

(1)

H − Γ
(1)
H ) + λK(Σ̂−Σ)

}
βk

λj − λk
.

By using Lemma 2.4 and Lemma 2.5 we obtain the desired estimation with

ξk(x, y) = β>k {U(x, y) + λkS(x, y)}βk

and

Υk(x, y) = −βkbβ
>
k S(x, y)βk

2
−
∑
j 6=k

βjβ
>
j {U(x, y) + λKS(x, y)}βk

λj − λk
.

�
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2.6.3 Proof of Theorem 2.3

We again adopt the null slice notations s−1 = s0 = sH+1 = sH+2 = ∅, p̂−1 =

p̂0 = p̂H+1 = p̂H+2 = 0, and m̂−1 = m̂0 = m̂H+1 = m̂H+2 = 0 to simplify the

representations.

Proof. Without loss of generality, we can assume x̄ = n+ 1. Then

Γ̂H =
H∑
h=1

p̂hm̂hm̂
>
h

and

Γ̂
(2)

H =
H∑

h=−1

p̂h:(h+2)m̂h:(h+2)m̂
>
h:(h+2).

By p̂h:(h+2) = 1
3
(p̂h + p̂h+1 + p̂h+2) and

m̂h:(h+1) =
p̂hm̂h + p̂h+1m̂h+1 + p̂h+2m̂h+2

p̂h + p̂h+1 + p̂h+2

,
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we have

3p̂h:(h+2)m̂(h:(h+2)m̂
>
(h:(h+2)

=
1

p̂h + p̂h+1 + p̂h+2

(
p̂2hm̂hm̂

>
h + p2h+1m̂h+1m̂

>
h+1 + p2h+2m̂h+2m̂

>
h+2

+ p̂hp̂h+1m̂hm̂
>
h+1 + p̂hp̂h+1m̂h+1m̂

>
h

+ p̂h+1p̂h+2m̂h+1m̂
>
h+2 + p̂h+1p̂h+2m̂h+2m̂

>
h+1

+ p̂hp̂h+2m̂hm̂
>
h+2 + p̂hp̂h+2m̂h+2m̂

>
h

)
=

1

p̂h + p̂h+1 + p̂h+2

{
p̂h(p̂h + p̂h+1 + p̂h+2)m̂hm̂

>
h

+ph+1(p̂h + p̂h+1 + p̂h+2)m̂h+1m̂
>
h+1

+ph+2(p̂h + p̂h+1 + p̂h+2)m̂h+2m̂
>
h+2

− p̂hp̂h+1

(
m̂hm̂

>
h − m̂hm̂

>
h+1 − m̂h+1m̂

>
h + m̂h+1m̂

>
h+1

)
− p̂h+1p̂h+2

(
m̂h+1m̂

>
h+1 − m̂h+1m̂

>
h+2

−m̂h+2m̂
>
h+1 + m̂h+2m̂

>
h+2

)
− p̂hp̂h+2

(
m̂hm̂

>
h − m̂hm̂

>
h+2

−m̂h+2m̂
>
h + m̂h+2m̂

>
h+2

)}
=

(
p̂hm̂hm̂

>
h + ph+1m̂h+1m̂

>
h+1 + ph+2m̂h+2m̂

>
h+2

)
− p̂hp̂h+1

p̂h + p̂h+1 + m̂h+2

(
m̂h+1 − m̂h

)(
m̂h+1 − m̂h

)>
− p̂h+1p̂h+2

+p̂h + p̂h+1 + p̂h+2

(
m̂h+2 − m̂h+1

)(
m̂h+2 − m̂h+1

)>
− p̂hp̂h+2

+p̂h + p̂h+1 + p̂h+2

(
m̂h+2 − m̂h

)(
m̂h+2 − m̂h

)>
.
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By the fact that(
m̂h+2 − m̂h

)(
m̂h+2 − m̂h

)>
=

(
(m̂h+2 − m̂h+1) + (m̂h+1 − m̂h)

)(
(m̂h+2 − m̂h+1) + (m̂h+1 − m̂h)

)>
= 2

(
m̂h+2 − m̂h+1

)(
m̂h+2 − m̂h+1

)>
+ 2
(
m̂h+1 − m̂h

)(
m̂h+1 − m̂h

)>
−
(
m̂h+2 − 2m̂h+1 + m̂h

)(
m̂h+2 − 2m̂h+1 + m̂h

)>
,

we obtain

3Γ̂
(1)

H =
H∑

h=−1

(
p̂hm̂hm̂

>
h + ph+1m̂h+1m̂

>
h+1 + ph+2m̂h+2m̂

>
h+2

)
−

H∑
h=−1

p̂hp̂h+1 + 2p̂hp̂h+2

p̂h + p̂h+1 + p̂h+2

(
m̂h+1 − m̂h

)(
m̂h+1 − m̂h

)>
−

H∑
h=−1

p̂h+1p̂h+2 + 2p̂hp̂h+2

p̂h + p̂h+1 + p̂h+2

(
m̂h+2 − m̂h+1

)(
m̂h+2 − m̂h+1

)>
+

H∑
h=−1

p̂hp̂h+2

p̂h + p̂h+1 + p̂h+2

(
m̂h+2 − 2m̂h+1 + m̂h

)(
m̂h+2 − 2m̂h+1 + m̂h

)>

= 3Γ̂H − D̃
(1)
H + D̃

(2)
H .

This finishes the proof. �
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CHAPTER 3

BAGGING AND BOOTSTRAPPING

3.1 Overview

We can easily recover the true EDR space if we have infinite number of obser-

vations, but sometimes it is even impossible to get enough observations to achieve a

relatively good estimated EDR space. Instead, what we usually have is a small size

sample, and the EDR space B̂ retrieved from the specific sample is an estimate of

the true EDR space B. Suppose we have several different samples, then we can get

several B̂’s, and all these estimates are wiggling near B. We can also get estimates

of the covariance matrices Σ̂ and Γ̂ hovering around the true Σ and Γ respectively.

Bootstrapping is a computational intensive method that allows simulating the

distribution of a statistic. The idea is to sample the observed data and compute the

statistic repeatedly. The accumulated set of the estimates provides a sample distri-

bution for the statistic so that we have an opportunity to generate a better estimate.

In this manner, the method allows you to pull yourself up by your bootstraps (an old

idiom, popularized in America, that means to improve your situation without outside

help). Bootstrapping is non-parametric by nature, and there is a certain appeal to let-

ting the data speak so freely. Bootstrapping was first developed for independent and

identically distributed data, but this assumption can be relaxed so that bootstrap-

ping estimate from dependent data such as regression residuals or time series data is

possible. The bootstrapping method can be easily implemented and the details can

be found in [43]. Because of its ability to simulate the population, bootstrapping has

been mainly developed as a tool for variance estimation and hypothesis testing.
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Figure 3.1. Illustration of bagging and bootstrapping OSIR.

In [11], the application of bootstrapping in combination with output averaging,

termed as bagging (an abbreviation for bootstrap aggregating), was proposed and

shown able to improve estimation from unstable procedures. Bagging SIR has been

developed in [66] and found to improve the estimation of the EDR space B. In this

chapter, we extend the application of bagging to OSIR, and we also propose a new

application of bootstrapping in combination with a technique called extended Ja-

cobian angles for simultaneous diagonalization and the corresponding bootstrapping

version of SIR and OSIR methods, which are simply termed as bootstrapping SIR

and bootstrpping OSIR. The process of these algorithms is shown in Figure 3.1.

3.2 Bagging OSIR

There have been several algorithms applying the bootstrapping strategy into SIR.

The Bagging SIR bootstraps observations [66] , while random SIR selects variables

[52]. We follow the same idea from [66] to develop the bagging OSIR algorithms. Note

that the bagging SIR algorithms in [66] have four versions. Simulations showed that

standardizing x has little impact on the performance, so we ignore the two versions
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which standardizes x and only develop two versions of bagging OSIR algorithms

without standardization taken into account.

In the first version of bagging OSIR algorithm, called Bagging-I OSIR, we boot-

strap the observations T times and compute a sequence of estimations Γ̂
∗(L)
t , t =

1, . . . , T, using the boostrap sample. Then we estimate Γ by

Γ̂
∗(L)

=
1

T

T∑
t=1

Γ̂
∗(L)
t .

Finally, the EDR space is estimated by solving the eigen-decomposition problem

Γ̂
∗(L)
β = λΣ̂β.

In the second version of bagging OSIR algorithm, called Bagging-II OSIR, we first

apply OSIR algorithm to each bootstrapping sample and obtain a sequence of EDR

space estimations B̂
∗(L)
t , t = 1, . . . , T. Then the a new eigen-decomposition problem

VV>B = λB,

where V = [B̂
∗(L)
1 , . . . , B̂

∗(L)
T ], is used to produce the final estimation for B.

3.3 An alternative bootstrapping method

In this section, we propose an alternative bootstrapping method for SIR and OSIR

by using the extended Jacobian angles for simultaneous diagonalization technique

in [15]. Note that SIR is a special case of OSIR with the overlapping level L = 0. So

we will only describe the bootstrapping OSIR algorithm below.

Let us first recall the extended Jacobian angles for simultaneous diagonalization.

Given a set R = {Rt|t = 1, 2, . . . , T} of real symmetric p × p matrices, they can be
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simultaneously diagonalized by a unitary transform if the matrices commute [47].

Under this condition each matrix Rt is similar to a diagonal matrix Λt and

Rt = UΛtU
>,

where U is the unitary transform which diagonalizes all the matrices in R. To find

this common eigenspace, one possible approach is to minimize the following criterion

function

f(U) =
T∑
t=1

n∑
i,j=1
i 6=j

∣∣∣∣(U>RtU
)
(i,j)

∣∣∣∣2 , (3.1)

where ()i,j denotes the (i, j) element of the matrix. Every matrix R(t) is now similar

to the diagonal matrix Λt = U>ΛU.

In our alternative bootstrapping OSIR algorithm, we first bootstrap the observa-

tions T times and compute two sets of symmetric matrices, R1 = {Σ̂∗t |t = 1, . . . , T}

and R2 = {Γ̂∗(L)t |t = 1, . . . , T}. Next we hope to apply the extended Jacobian angles

for simultaneous diagonalization technique to achieve better estimates for Σ and Γ

from these two sets. A challenge here is that the matrices in R1 or R2 are not nec-

essarily commute. But note that Γ̂
∗(L)
t hovers around Γ and Σ̂

∗
t hovers around Γ, it

is reasonable to expect both sets of matrices “nearly” commute. So, although there

does not exist a common eigenspace, we propose to minimize the criterion in Equation

(3.1) to compute an “average” eigenspace for each set. Let U1 and U2 denote the

average eigenspaces for R1 and R2, respectively. We then compute Λ1,t = U>1 Σ̂
∗
tU1

and Λ2,t = U>2 Γ̂
∗(L)
t U2. To aggregate them together we average them to get

Λ̄1 =
1

T

T∑
t=1

Λ1,t

and

Λ̄2 =
1

T

T∑
t=1

Λ2,t.
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Note they are generally not diagonal because R1 and R2 violate the commuting

condition, but we expect the off-diagonal elements are close to zero. By manually

setting the off-diagonal elements to zeros we obtain two diagonal matrices Λ̄′1 and

Λ̄′2. They allows us to estimate Σ and Γ via

Σ̂∗ = U1Λ̄
′
1U
>
1 ,

and

Γ̂∗(L) = U2Λ̄
′
2U
>
2 ,

Finally, our bootstrapping OSIR estimates the EDR space by solving the eigen-

decomposition problem

Γ̂
∗(L)
β = λΣ̂

∗
β.

We note here that the accuracy of this bootstrapping version of OSIR will not drop

significantly and the computational complexity will be saved if we skip the bootstrap-

ping process on R1 = {Σ̂∗t |t = 1, . . . , T}.

3.4 Simulations

In this section, we will verify the performance of bagging and bootstrapping OSIR

algorithms by comparing them with OSIR algorithms without using bagging or boot-

strapping techniques. We also compare the results with bagging and bootstrapping

SIR, bagging and bootstrapping CUME.

3.4.1 Artificial Data

In the simulation on the artificial data, we use the four models from Chapter 2 and

the same simulation settings except that we skip H = 5. We repeat the simulation
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Table 3.1. Accuracy of EDR space estimation for Model (2.2).

Algorithm
Replicates

T = 10 T = 100 T = 400

SIR 0.9849 (0.0011) 0.94
OSIR2 0.9855 (0.0012) 0.97
OSIR5 0.9847 (0.0012) 0.99
OSIR7 0.9853 (0.0012) 1.00
OSIR9 0.9854 (0.0011) 1.00
CUME 0.9838 (0.0013) 1.00

Bagging-I

SIR 0.9775 (0.0015) 0.79 0.9860 (0.0011) 0.84 0.9864 (0.0010) 0.86
OSIR2 0.9809 (0.0015) 0.91 0.9859 (0.0011) 0.95 0.9862 (0.0011) 0.95
OSIR5 0.9786 (0.0016) 0.97 0.9845 (0.0013) 0.99 0.9855 (0.0012) 0.99
OSIR7 0.9801 (0.0013) 0.99 0.9852 (0.0012) 0.99 0.9863 (0.0011) 0.99
OSIR9 0.9784 (0.0019) 0.98 0.9858 (0.0012) 0.99 0.9862 (0.0011) 0.99
CUME 0.9785 (0.0016) 1.00 0.9836 (0.00124) 1.00 0.9842 (0.0012) 1.00

Bagging-II

SIR 0.9851 (0.0010) 0.05 0.9866 (0.0012) 0.02 0.9866 (0.0010) 0.02
OSIR2 0.9856 (0.0011) 0.85 0.9860 (0.0010) 0.87 0.9863 (0.0011) 0.88
OSIR5 0.9843 (0.0012) 0.98 0.9855 (0.0011) 0.99 0.9857 (0.0011) 0.98
OSIR7 0.9851 (0.0011) 0.99 0.9860 (0.0011) 0.99 0.9862 (0.0011) 0.99
OSIR9 0.9840 (0.0012) 0.98 0.9861 (0.0011) 0.99 0.9862 (0.0011) 0.99
CUME 0.9822 (0.0013) 1.00 0.9844 (0.0012) 1.00 0.9840 (0.0012) 1.00

Bootstrapping

SIR 0.9822 (0.0014) 0.80 0.9855 (0.0011) 0.87 0.9850 (0.0011) 0.87
OSIR2 0.9825 (0.0016) 0.94 0.9844 (0.0013) 0.95 0.9851 (0.0012) 0.95
OSIR5 0.9818 (0.0014) 1.00 0.9842 (0.0013) 0.98 0.9844 (0.0013) 0.98
OSIR7 0.9819 (0.00126) 0.99 0.9844 (0.0013) 0.99 0.9847 (0.0013) 0.99
OSIR9 0.9832 (0.0015) 0.99 0.9844 (0.0013) 0.98 0.9851 (0.0012) 0.98
CUME 0.9803 (0.0014) 1.00 0.9825 (0.0014) 1.00 0.9824 (0.0016) 1.00

100 times. To see the impact of bootstrapping, we run the simulations by varying T

values from {10, 100, 400}.

Tables 3.1, 3.2, 3.3 and 3.4 show the results of the trace correlation mean, trace

correlation standard error, and the predication accuracy of the intrinsic dimensional-

ity. We see that both bootstrapping techniques help improve the performance of OSIR

while these two techniques does not show significant difference. Again, we see that

the overlapping level L = H/2 allows to get the best EDR space and dimensionality

prediction.



42

Table 3.2. Accuracy of EDR space estimation for Model (2.3).

Algorithm
Replicates

T = 10 T = 100 T = 400

SIR 0.7357 (0.0187) 0.08
OSIR2 0.8039 (0.0128) 0.33
OSIR5 0.8148 (0.0121) 0.54
OSIR7 0.8179 (0.0120) 0.60
OSIR9 0.8182 (0.0120) 0.56
CUME 0.8179 (0.0120) 1.00

Bagging-I

SIR 0.7221 (0.0201) 0.00 0.7654 (0.0162) 0.00 0.7734 (0.0163) 0.00
OSIR2 0.8024 (0.0136) 0.02 0.8075 (0.0125) 0.02 0.8137 (0.0121) 0.02
OSIR5 0.7991 (0.0133) 0.08 0.8174 (0.0121) 0.10 0.8192 (0.0119) 0.11
OSIR7 0.8026 (0.0127) 0.07 0.8250 (0.0117) 0.07 0.8228 (0.0116) 0.10
OSIR9 0.8020 (0.0132) 0.04 0.8253 (0.0118) 0.06 0.8228 (0.0116) 0.06
CUME 0.8017 (0.0129) 1.00 0.8140 (0.0121) 1.00 0.8164 (0.0121) 1.00

Bagging-II

SIR 0.7143 (0.0200) 0.00 0.7683 (0.0171) 0.00 0.7707 (0.0155) 0.00
OSIR2 0.7998 (0.0134) 0.00 0.8131 (0.0122) 0.00 0.8149 (0.0121) 0.00
OSIR5 0.8077 (0.0132) 0.07 0.8203 (0.0116) 0.09 0.8197 (0.0121) 0.07
OSIR7 0.8153 (0.0121) 0.15 0.8215 (0.0118) 0.10 0.8236 (0.0116) 0.09
OSIR9 0.8067 (0.0118) 0.09 0.8222 (0.0118) 0.05 0.8232 (0.0117) 0.04
CUME 0.8046 (0.0125) 1.00 0.8171 (0.0119) 1.00 0.8184 (0.0121) 1.00

Bootstrapping

SIR 0.7119 (0.0201) 0.00 0.7663 (0.0175) 0.00 0.7703 (0.0169) 0.00
OSIR2 0.7853 (0.0153) 0.01 0.8141 (0.0131) 0.04 0.8168 (0.0122) 0.04
OSIR5 0.7872 (0.0147) 0.06 0.8215 (0.0120) 0.10 0.8217 (0.0123) 0.10
OSIR7 0.8062 (0.0131) 0.08 0.8227 (0.0124) 0.11 0.8247 (0.0122) 0.09
OSIR9 0.7866 (0.0170) 0.02 0.8224 (0.0125) 0.03 0.8246 (0.0120) 0.05
CUME 0.7876 (0.0149) 1.00 0.8200 (0.0118) 1.00 0.8167 (0.0123) 1.00

3.4.2 Real data application

We again use the Boston housing price data to test the ability of bagging OSIR

methods to extract the EDR space. We follow the same simulation strategy as in

Chapter 2 but set the number of observations in training set to be 100, skip the

correlation calculation and only report the mean and standard error of the prediction

accuracy for each method. We choose the replicates T from {10, 100, 400}. The

simulation results are reported in Table 3.5 and Figure 3.2, which confirmed the

advantages of using bagging and the alternative bootstrapping techniques to improve
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Table 3.3. Accuracy of EDR space estimation for Model (2.4).

Algorithm
Replicates

T = 10 T = 100 T = 400

SIR 0.7253 (0.0133) 0.40
OSIR2 0.7909 (0.0095) 0.88
OSIR5 0.8021 (0.0088) 0.98
OSIR7 0.8058 (0.0087) 0.98
OSIR9 0.8042 (0.0088) 0.96
CUME 0.7895 (0.0092) 0.00

Bagging-I

SIR 0.7206 (0.0135) 0.17 0.7520 (0.0122) 0.23 0.7517 (0.0123) 0.22
OSIR2 0.7788 (0.0098) 0.53 0.7944 (0.0094) 0.66 0.7964 (0.0093) 0.66
OSIR5 0.7835 (0.0096) 0.76 0.8050 (0.0087) 0.90 0.8062 (0.0086) 0.91
OSIR7 0.7874 (0.0090) 0.76 0.8077 (0.0086) 0.87 0.8099 (0.0085) 0.89
OSIR9 0.7833 (0.0099) 0.58 0.8104 (0.0088) 0.80 0.8104 (0.0086) 0.81
CUME 0.7671 (0.0099) 0.00 0.7936 (0.0091) 0.00 0.7940 (0.0090) 0.00

Bagging-II

SIR 0.6953 (0.0141) 0.00 0.7413 (0.0122) 0.00 0.7426 (0.0125) 0.00
OSIR2 0.7713 (0.0104) 0.42 0.7872 (0.0099) 0.39 0.7903 (0.0095) 0.39
OSIR5 0.7843 (0.0092) 0.95 0.7969 (0.0090) 0.94 0.7997 (0.0089) 0.97
OSIR7 0.7915 (0.0094) 0.95 0.8033 (0.0085) 0.98 0.8029 (0.0088) 0.98
OSIR9 0.7875 (0.0095) 0.91 0.7981 (0.0091) 0.90 0.8026 (0.0089) 0.91
CUME 0.7725 (0.0095) 0.00 0.7860 (0.0093) 0.00 0.7868 (0.0092) 0.00

Bootstrapping

SIR 0.7173 (0.0126) 0.33 0.7573 (0.0123) 0.28 0.7575 (0.0125) 0.27
OSIR2 0.7683 (0.0116) 0.67 0.7931 (0.0100) 0.72 0.7970 (0.0095) 0.69
OSIR5 0.7640 (0.0109) 0.78 0.8051 (0.0088) 0.94 0.8099 (0.0087) 0.90
OSIR7 0.7680 (0.0110) 0.78 0.8127 (0.0088) 0.91 0.8124 (0.0086) 0.89
OSIR9 0.7635 (0.0109) 0.72 0.8106 (0.0085) 0.83 0.8121 (0.0085) 0.84
CUME 0.7504 (0.0113) 0.00 0.7907 (0.0095) 0.00 0.7981 (0.0088) 0.00

the EDR estimations.

3.5 Conclusions and discussions

We have proved the effectiveness of the overlapping strategy in the last chapter.

In this chapter we explored the application of bootstrapping with simple output

averaging or extended Jacobian angles for simultaneous diagonalization in the SIR-

like algorithms. Both overlapping and bootstrapping are shown to be able to retrieve

a better estimate of the EDR space with limited sample size. To close this chapter,
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Figure 3.2. Comparison among OSIR, bagging-I OSIR and bootstrapping OSIR.
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Table 3.4. Accuracy of EDR space estimation for Model (2.5).

Algorithm
Replicates

T = 10 T = 100 T = 400

SIR 0.7320 (0.0118) 0.48
OSIR2 0.7884 (0.0086) 0.90
OSIR5 0.8050 (0.0076) 0.97
OSIR7 0.8086 (0.0073) 0.96
OSIR9 0.8061 (0.0075) 0.95
CUME 0.7870 (0.0087) 0.00

Bagging-I

SIR 0.7319 (0.0112) 0.10 0.7673 (0.0102) 0.21 0.7693 (0.0100) 0.20
OSIR2 0.7720 (0.0095) 0.62 0.7929 (0.0085) 0.64 0.7934 (0.0085) 0.66
OSIR5 0.7908 (0.0083) 0.93 0.8075 (0.0074) 0.93 0.8112 (0.0074) 0.95
OSIR7 0.7959 (0.0082) 0.87 0.8114 (0.0071) 0.95 0.8142 (0.0072) 0.96
OSIR9 0.7926 (0.0076) 0.74 0.8088 (0.0077) 0.92 0.8112 (0.0074) 0.92
CUME 0.7618 (0.0096) 0.00 0.7837 (0.0087) 0.00 0.7901 (0.0084) 0.00

Bagging-II

SIR 0.7292 (0.0118) 0.01 0.7642 (0.0101) 0.00 0.7618 (0.0108) 0.00
OSIR2 0.7676 (0.0088) 0.47 0.7890 (0.0089) 0.40 0.7902 (0.0088) 0.42
OSIR5 0.7894 (0.0077) 0.99 0.8046 (0.0077) 0.99 0.8067 (0.0076) 0.98
OSIR7 0.7977 (0.0086) 0.99 0.8106 (0.0074) 0.98 0.8116 (0.0073) 0.98
OSIR9 0.7932 (0.0088) 0.95 0.8061 (0.0076) 0.96 0.8089 (0.0075) 0.97
CUME 0.7563 (0.0094) 0.00 0.7822 (0.0090) 0.00 0.7838 (0.0088) 0.00

Bootstrapping

SIR 0.7173 (0.0126) 0.33 0.7573 (0.0123) 0.28 0.7575 (0.0125) 0.27
OSIR2 0.7683 (0.0116) 0.67 0.7931 (0.0100) 0.72 0.7970 (0.0095) 0.69
OSIR5 0.7640 (0.0109) 0.78 0.8051 (0.0088) 0.94 0.8099 (0.0087) 0.90
OSIR7 0.7680 (0.0110) 0.78 0.8127 (0.0088) 0.91 0.8124 (0.0086) 0.89
OSIR9 0.7635 (0.0109) 0.72 0.8106 (0.0085) 0.83 0.8121 (0.0085) 0.84
CUME 0.7504 (0.0113) 0.00 0.7907 (0.0095) 0.00 0.7981 (0.0088) 0.00

we remark that the benefits brought by bootstrapping diminishes as the sample size

increase. When the sample size is very large and the EDR estimation by SIR or

OSIR is already very accurate, bootstrapping does not help much. So bootstrapping

is recommended when the sample size is relatively small and the EDR estimation from

SIR or OSIR is not as good. Also, it seems there is no promise that one bootstrapping

strategy outperforms another all the time.
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Table 3.5. Prediction accuracy on Boston housing price data.

Algorithm
Replicates

T = 10 T = 100 T = 400

SIR 24.2831 (0.4009)
OSIR2 22.9554 (0.3355)
OSIR3 22.7722 (0.3278)
OSIR5 22.7433 (0.3266)
OSIR10 22.3336 (0.3121)
OSIR15 22.3059 (0.3127)
OSIR19 22.3294 (0.3037)
CUME 23.5774 (0.3064)
KNN 53.2681 (0.5463)
MLR 23.2193 (0.3248)

Bagging-I

SIR 25.9968 (0.4280) 23.7489 (0.3473) 23.5766 (0.3527)
OSIR2 24.1607 (0.3720) 22.9018 (0.3215) 22.9187 (0.3384)
OSIR3 24.0479 (0.3950) 22.7149 (0.3266) 22.7626 (0.3424)
OSIR5 23.2559 (0.3620) 22.6596 (0.3307) 22.4901 (0.3068)
OSIR10 23.3666 (0.3536) 22.1370 (0.3088) 22.1066 (0.3072)
OSIR15 23.0640 (0.3288) 22.0789 (0.3146) 22.0422 (0.2988)
OSIR19 23.2770 (0.3709) 22.0343 (0.3097) 22.0184 (0.2965)
CUME 22.9611 (0.3459) 23.1063 (0.3471) 23.1257 (0.3505)

Bagging-II

SIR 36.1423 (1.6052) 44.2176 (2.7331) 55.4316 (3.2356)
OSIR2 33.6886 (1.5477) 44.5956 (2.8699) 53.3035 (3.1676)
OSIR3 34.7295 (1.5705) 40.5122 (2.4379) 50.9358 (3.1648)
OSIR5 35.2912 (1.5855) 41.5326 (2.5864) 56.0961 (3.3180)
OSIR10 33.5910 (1.4478) 41.2416 (2.4549) 54.1709 (3.0798)
OSIR15 33.0274 (1.4159) 39.5041 (2.6061) 48.8280 (3.1242)
OSIR19 32.6730 (1.4130) 37.5451 (2.4310) 53.7906 (3.3623)
CUME 54.9420 (3.2753) 52.6485 (3.2114) 54.5268 (3.3410)

Bootstrapping

SIR 24.0767 (0.4126) 24.1421 (0.3943) 23.7772 (0.3418)
OSIR2 23.1040 (0.3586) 23.0941 (0.3414) 22.8884 (0.3278)
OSIR3 23.2166 (0.3357) 22.8615 (0.3429) 22.8949 (0.3270)
OSIR5 23.0175 (0.2692) 22.7414 (0.3189) 22.6726 (0.3051)
OSIR10 22.6379 (0.3207) 22.1560 (0.2986) 22.1181 (0.2923)
OSIR15 22.5323 (0.3233) 22.1805 (0.3166) 22.2687 (0.3099)
OSIR19 22.6673 (0.3322) 22.3158 (0.3077) 22.1908 (0.3164)
CUME 23.1698 (0.3418) 23.2259 (0.3617) 23.1281 (0.3572)
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CHAPTER 4

INCREMENTAL SLICED INVERSE REGRESSION

4.1 Introduction

Due to the fast development of modern information technology, we are in a big

data era and facing the challenges of big data processing, among which two primary

challenges are the big volume and fast velocity of the data. When a data set is too

big to store in a single machine or when the data arrives in real time and information

update is needed frequently, analysis of the data in an online manner is necessary

and efficient. If the data is simultaneously big and high dimensional, it becomes

necessary to develop incremental learning approaches for dimension reduction. To

be more specific, we define an incremental learning for dimension reduction as one

that meets the following criteria according to a definition of the incremental learning

algorithm for classification [89]:

1. It should be able to learn additional information from new data.

2. It should not require to access to the original data to train the existing model.

3. It should preserve the previously acquired knowledge.

4. It should be able to accommodate new dimensionality that may be introduced

with new data.

As PCA and LDA are most wildly used in dimension reduction techniques, cor-

respondingly, a bunch of PCA-based and LDA-based online dimension reduction al-

gorithms have been proposed. Incremental PCA have been described in [17, 45, 46,
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90, 91, 102, 122]. Incremental LDA have been developed in [22, 42, 63, 67, 88, 97, 99,

108,110,112,121]. Although many SIR related algorithms have been proposed, to our

best knowledge, there is not incremental learning method for incremental supervised

dimension reduction in the regression setting that satisfies the criteria above. In this

chapter, our purpose is to propose such a new incremental learning approach. The

new data can show up by a single observation or by block. We are going to figure out

how to update an SIR model when a single observation is received. For block update,

we can take it as several single observation problems temporarily.

Our motivation is to implement the sliced inverse regression (SIR) in an incremen-

tal manner. SIR can be implemented by solving an generalized eigen-decomposition

problem in Equation (1.5). To make it implementable in an online manner we rewrite

it as normal eigen-decomposition problem Σ−
1
2 ΓΣ−

1
2η = λη, where η = Σ

1
2β and

adopt the ideas from incremental PCA. We need to overcome two main challenges

in this process. First, how do we transform the data so that they are appropriate

for the transformed PCA problem? Note that simply normalizing the data does not

work. Second, online update of Σ−
1
2 , if not impossible, seems very difficult, The first

contribution of this chapter is to overcome these difficulties and design a workable

incremental SIR method. Our second contribution will be to refine the method by an

overlapping technique and design an incremental overlapping SIR algorithm.

The rest of this chapter is arranged as follows. We review the incremental PCA

algorithm in Section 4.2. We propose the incremental SIR algorithm in Section 4.3

and refine it in Section 4.4. Simulations are done in Section 4.5 and we close with

discussions in Section 4.6 and provide the formula inference in Section 4.7.
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4.2 Incremental PCA

PCA looks for directions along which the data have largest variances. It is imple-

mented by solving an eigen-decomposition problem

Σ̂u = λu. (4.1)

The principal components are the eigenvectors corresponding to largest eigenvalues.

Throughout this chapter, we assume all eigenvalues are arranged in a descending

order, i.e., λ1 ≥ λ2 ≥ . . . ≥ λp. Suppose that we need to retain the top K principal

components, denote UK = [u1, . . . ,uK ], ΛK = diag(λ1, . . . , λK), we have a reduced

system Σ̂UK = UKΛK .

In incremental PCA, after receiving a new coming observation xn+1, we need to

update the reduced eigen-system to a new one

Σ̂′U′K ≈ U′KΛ′K . (4.2)

The idea of updating the system in [45] is as follows. Compute a residual vector

v = (xn+1 − x̄′)−UKU>K(xn+1 − x̄′),

where x̄′ is the mean of all observations (including xn+1). It defines the component

of xn+1 that is perpendicular with the subspace defined by UK . If xn+1 lies exactly

within the current eigenspace, then the residual vector is zero and there is no need to

update the system. Otherwise, we normalize v to obtain v̄ = v
‖v‖ . We may reasonably

assume each column vector of U′K is a linear combination of column vectors of UK

and v̄ – this is exactly true if λK+1 = . . . = λp = 0. This allows us to write

[U′K ,u
′
K+1] = [UK , v̄]R.
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where R is a (K + 1)× (K + 1) rotation matrix and u′K+1 is an approximation of the

(K + 1)th eigenvector of Σ̂′. So we have

Σ̂′[UK , v̄]R = [UK , v̄]RΛ′K+1,

which is equivalent to

[UK , v̄]>Σ̂
′
[UK , v̂]R = RΛ′K+1.

This is an eigen-decomposition problem of dimensionality K + 1 � p. It solves the

rotation matrix R and allows us to update principal components to U′K , given by

the first K columns of [Uk, v̄]R. If we need to increase the number of principal

components, we can just update the system to K ′ = K + 1 and U′K′ = [U′K ,u
′
K+1].

This incremental PCA algorithm was shown convergent to a stable solution when the

sample size increases [45].

4.3 Incremental SIR

Our idea to develop the incremental sliced inverse regression (ISIR) is motivated by

reformulating SIR problem to a PCA problem. To this end, we define η = Σ
1
2β, called

the standardized EDR direction, and rewrite the generalized eigen-decomposition

problem (1.5) as an eigen-decomposition problem

Σ−
1
2 ΓΣ−

1
2η = λη. (4.3)

Note that Σ−
1
2 ΓΣ−

1
2 is the covariance matrix of Σ−

1
2 E[x|y]. So Equation (4.3) can

be regarded as a PCA problem with data collected for Σ−
1
2 E[x|y]. To apply the ideas

from IPCA to this transformed PCA problem, however, is not as direct as it looks like.

We face two main challenges. First, when a new observation (xn+1, yn+1) is received,

we need to transform it to an observation for the standardized inverse regression
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curve. This is different from simply standardizing the data. Second, conceptually, we

need to update Σ−
1
2 in an online manner in order to standardize the data. This does

not seem feasible. In the following, we will describe in detail how we address these

challenges and make the ISIR implementable.

Suppose we have n observations in hand with well defined sample slice probabilities

p̂h and means (m̂h, ȳh) for h = 1, . . . , H, and the eigenvectors B̂ = [β̂1, . . . , β̂K ] of the

generalized eigen-decomposition problem Γ̂β = λΣ̂β. With ΛK = diag(λ1, . . . , λK),

we have

Γ̂B̂ = Σ̂B̂ΛK .

Denote Ξ = Σ̂
1
2 B̂. We have

Σ̂
− 1

2 Γ̂Σ̂
− 1

2 Ξ = ΞΛK . (4.4)

When we have a new observation (xn+1, yn+1), we first locate which slice it belongs

to according to the distances from yn+1 to sample slice mean values ȳh of the response

variable. Let us suppose the distance from yn+1 to ȳs is the smallest. So we place the

new observation into the slice s and update sample slice probabilities by p̂′h = np̂h
n+1

for

h 6= s and p′s = nps+1
n+1

. Let ns = nps be the number of observations in slice s before

receiving the new observation. For slice mean values we update

m′s =
ns

ns + 1
ms +

1

ns + 1
xn+1

for slice s only. We can regard zn+1 = Σ̂
− 1

2 m′s as a new observation for the stan-

dardized inverse regression curve Σ−
1
2 E[x|y]. Following the idea of IPCA, we define

a residual vector

v =

(
zn+1 − Σ̂

− 1
2 x̄′
)
−ΞΞ>

(
zn+1 − Σ̂

− 1
2 x̄′
)
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and normalize it to v̄ = v
‖v‖ when v is not zero. To update the eigen-decomposition

system to

Σ̂′
− 1

2
Γ̂′ Σ̂′

− 1
2
Ξ′ = Ξ′Λ′K , (4.5)

we assume [Ξ′,η′K+1] = [Ξ, v̄]R with R being a (K + 1) × (K + 1) rotation matrix

and ηK+1 the (K + 1)th eigenvector of Σ̂′
− 1

2
Γ̂′ Σ̂′

− 1
2
. So we have

Σ̂′
− 1

2
Γ̂′ Σ̂′

− 1
2
[Ξ, v̄]R = [Ξ, v̄]RΛ′K+1

where Λ′K+1 = diag(Λ′K , λ
′
K+1) and λ′K+1 is the (K + 1)th eigenvalue. Multiplying

both sides by [Ξ, v̄]>, we obtain(
Σ̂′
− 1

2
[Ξ, v̄]

)
>Γ̂
′
(

Σ̂′
− 1

2
[Ξ, v̄]

)
R = RΛ′K+1. (4.6)

Note that Σ̂′
− 1

2
cannot be easily updated, we have to avoid using it. To overcome

this challenge, we notice that

Σ̂′ =
n

n+ 1
Σ̂ +

n

(n+ 1)2
(xn+1 − x̄)(xn+1 − x̄)> (4.7)

and the well known Sherman-Morrison formula allows us to update the inverse matrix

Σ̂′
−1

=
n+ 1

n
Σ̂
−1
−

1
n
Σ̂
−1

(xn+1 − x̄)(xn+1 − x̄)>Σ̂
−1

1 + 1
n+1

(xn+1 − x̄)>Σ̂
−1

(xn+1 − x̄)
. (4.8)

See Section 4.7 for the detailed proof of (4.8). We just need to compute and store Σ′
−1

once and there is no more need to do inverse matrix calculation which is always time

consuming and inaccurate numerically. If we store Σ̂
−1

and update it incrementally,
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we can approximate the quantities in (4.6) as follows:

Σ̂′
− 1

2
Ξ ≈ Σ̂

− 1
2 Ξ = B̂,

Σ̂′
− 1

2
v ≈ Σ̂

−1
(m̂′s − x̄′)− B̂B̂> (m̂′s − x̄′) ,

‖v‖2 = (m̂′s − x̄′)
>
(
Σ̂
−1
− B̂B̂>

)
(m̂′s − x̄′) ,

ṽ = Σ̂′
− 1

2
v̄ =

Σ̂′
− 1

2
v

‖v‖

≈

(
Σ̂
−1
− B̂B̂>

)
(m̂′s − x̄′)√

(m̂′s − x̄′)>
(

Σ̂−1 − B̂B̂>
)

(m̂′s − x̄′)

.

So the problem (4.6) is approximated by[
B̂, ṽ

]>
Γ̂′
[
B̂, ṽ

]
R = RΛ′K+1. (4.9)

Finally notice that the new EDR space B̂′ = Σ̂′
− 1

2
Ξ′ is the first K columns of

Σ̂′
− 1

2
[Ξ′,η′K+1] = Σ̂′

− 1
2
[Ξ, v̄]R and can be approximated by the first K columns

of [B̂, ṽ]R.

Note that we avoided updating the inverse square root of the covariance matrix

by using the approximation Σ̂
− 1

2 ≈ Σ̂
′− 1

2 . This approximation can be very accurate

when n is large enough because both converge to Σ−
1
2 . Therefore, we may expect the

convergence of ISIR as a corollary of the convergence of IPCA. However, when n is

small, the approximation may be less accurate and result in larger difference between

EDR spaces estimated by ISIR and SIR. So we recommend that ISIR be used with a

warm start, that is, using SIR first on a small amount of data before using ISIR.

In terms of memory, the primary requirement is the storage of Σ̂
−1

, the slice mean
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matrix M̂ = [m̂1, . . . , m̂H ], and the EDR space B̂. So the memory requirement is

O(p2+pH+pK). As for the computational complexity, notice that the update of Σ̂′
−1

in Equation (4.8) requires the calculation of Σ̂
−1

(xn+1 − x̄) and matrix addition and

has a complexity of O(p2). Since we need to store M̂ and update it sequentially, it is

not efficient to store and update Γ̂′ for either memory or computation consideration.

Instead, we use the fact Γ̂′ = M̂′P̂′M̂′> where P̂′ = diag(p̂′1, . . . , p̂
′
H) and write

[B̂, ṽ]>Γ̂
′
[B̂, ṽ] =

[
B̂>M̂′, ṽ>M̂′

]
P̂′
[
B̂>M̂′, ṽ>M̂′

]>
.

Notice that

ṽ>M̂′ =

(
Σ̂
−1

(m̂′s − x̄′)
)>

M̂′ −
(
B̂>(m̂′s − x̄′)

)>(
B̂>M̂′

)
√

(m̂′s − x̄′)>
(
Σ̂
−1

(m̂′s − x̄′)
)
−
(
B̂>(m̂′s − x̄′)

)>(
B̂>(m̂′s − x̄′)

)
and B̂>(m̂′s − x̄′) is just the sth column of B̂>M̂′. The primary computation for the

matrix [B̂, ṽ]>Γ̂
′
[B̂, ṽ] is B̂>M̂′ and Σ̂

−1
(m̂′s−x̄′) which has a complexity of O(pKH+

p2). The complexity of the eigen-decomposition in Equation (4.9) is O((K + 1)3) and

to update B̂ to B̂′ requires O(p(K + 1)2). So the computational complexity for the

whole ISIR update is O(p2 + pKH + pK2 + K3). For a high dimensional problem,

this is much smaller than the complexity of O(p3 + p2n) for SIR.

4.4 Refinement by overlapping

In Chapter 2, an overlapping technique was introduced to SIR algorithm and

shown effectively improving the accuracy of EDR space estimation. It is motivated

by placing each observation in two or more adjacent slices to reduce the deviations of

the sample slice means m̂h from the EDR subspace. This is equivalent to using each

observation two or more times. In this section, we adopt the overlapping technique to
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ISIR algorithm above to develop an incremental overlapping sliced inverse regression

(IOSIR) algorithm and wish it refines ISIR.

To apply the overlapping idea, we use each observation twice. So when we have n

observations, we duplicate them and assume we have N = 2n observations. When a

new observation (xn+1, yn+1) is received, we duplicate it and assume we receive two

identical observations. Based on the yn+1 value we place the first copy into the slice s

if ȳs is the closest to yn+1 and run ISIR update as described in Section 4.3. Note that

if ȳ1 < yn+1 < ȳH , then yn+1 must fall into the interval [ȳs′ , ȳs] with s′ = s − 1 or it

falls into [ȳs, ȳs′ ] with s′ = s+ 1. So we place the second copy of the new observation

to slice s′, which is adjacent to slice s, and run ISIR algorithm again. If yn+1 ≤ ȳ1 or

yn+1 > ȳH , the second copy will be still placed into slice s to guarantee all observations

are weighted equally. As OSIR has superior performance over SIR, we expect IOSIR

will perform better than ISIR by a price of double calculation time.

We remark that SIR and ISIR can be used for both regression problems and

classification problems. But since the concept of “adjacent slice” cannot be defined

for categorical values (as is the case in classification problems), IOSIR can only be

used for regression problems where the response variable is numeric.

4.5 Simulations

In this section, we will verify the effectiveness of ISIR and IOSIR with simulations

on artificial and real-world data. Comparisons will be made between them and SIR.
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4.5.1 Artificial data

In the simulations with artificial data, since we know the true model, we measure

the performance by the accuracy of the estimated EDR space. We adopt the trace

correlation r(K) = trace(PBPB̂)/K used in [34], where PB and PB̂ are the projection

operators onto the true EDR space B and the estimated EDR space B̂, respectively,

and the angle between B and B̂ [10,101] as the criteria. We consider the model (2.5)

from Chapter 2,

y = x1(x1 + x2 + 1) + ε,

where x = [x1, x2, . . . , xp]
> follow multivariate normal distribution, ε follows standard

normal distribution and is independent of x. It has K = 2 effective dimensions with

β1 = (1, 0, 0, . . . , 0)> and β2 = (0, 1, 0 . . . , 0)>. We conduct the simulation in p = 10

dimensional space and select the number of slices as H = 10. We give the algorithm

a warm start with the initial guess of the EDR space obtained by applying SIR algo-

rithm to a small data set of 40 observations. Then a total of 400 new observations will

be fed to update the EDR space one by one. SIR, ISIR, and IOSIR are applied when

each observation was fed in and we calculate their trace correlation and cumulative

computation time. We repeat this process 100 times. The mean trace correlation for

each of the three methods is reported in Figure 4.1(a), the mean angle is in Figure

4.1(b) and the mean cumulative time is in Figure 4.1(c). We see that ISIR performs

quite similar to SIR and IOSIR slightly outperforms both ISIR and SIR. ISIR is much

faster than SIR and IOSIR gains higher accuracy by sacrificing on computation time.

This verifies the convergence and efficiency of ISIR and IOSIR.
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(a) (b) (c)

Figure 4.1. Performance and computational complexity of dimension reduction meth-

ods for artificial data generated from the model (2.5). (a) trace correlation; (b) angle;

(c) cumulative computation time.

4.5.2 Real data applications

We validate the reliability of Incrmental SIR and Incremental OSIR on two data

sets: Concrete Compressive Strength and Cpusmall (available on https://www.csie.

ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html). There have been

many proposed algorithms to increase the prediction accuracy on these data sets

[44, 87, 114–116]. We do not intend to outperform those methods. Our goal is to

compare the performance of supervised dimension reduction algorithms and verify

the effectiveness and correctness of our incremental methods.

The Concrete Compressive Strength data has p = 8 predictors and 1030 samples.

We use H = 10 and K = 3 to run SIR, ISIR, and IOSIR. We select 50 observations

to warm start ISIR and IOSIR algorithms, then 700 observations are fed sequentially.

The left 280 observations are left as test data. After each new observation is received

we estimate the EDR space, project the available training set to the estimated EDR

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html
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(a) (b)

Figure 4.2. Mean square errors (MSE) for two real data applications: (a) Concrete

Compressive Strength data and (b) Cpusmall data.

space, build a regression model using the k-nearest neighbor method, and compute

the MSE on the test data set. This process is repeated 100 times and the average MSE

was reported in Figure 4.2(a). For the Cpusmall data, which has p = 12 predictors

and 8192 samples, we do the experiment with H = 10, K = 3, 50 observations

to warm start ISIR and IOSIR, 2000 observation for sequential training, and 6142

observations for testing. The average MSE was plotted in Figure 4.2(b). The results

indicate both ISIR and IOSIR are as effective as SIR.

4.6 Conclusions and discussions

We proposed two online learning approaches for supervised dimension reduction,

namely, ISIR and IOSIR. They are motivated by standardizing the data and refor-
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mulate the SIR algorithm to a PCA problem. However, data standardization is only

used to motivate the algorithm while not explicitly calculated in the algorithms. We

proposed to use Sherman Morrison formula to online update Σ̂
−1

and some approxi-

mated calculation to circumvent explicit data standardization. This novel idea played

a key role in our algorithm design. Both algorithms are shown effective and efficient.

While IOSIR does not apply to classification problems, it is usually superior over

ISIR in regression problems.

We remark that the purpose of ISIR and IOSIR is to keep the dimension reduction

accuracy in the situation that a batch learning is not suitable. This is especially the

case for streaming data where information update and system involving is necessary

whenever new data becomes available. When the whole data is given and one only

needs the EDR space from batch learning, ISIR or IOSIR is not necessarily more

efficient than SIR because their complexity to run over the whole sample path is

O(p2n), comparable to the complexity O(p3 + p2n) of SIR.

There are two open problems worth further investigation. First, the need to store

and use Σ̂
−1

during the updating process is the main bottleneck for ISIR and IOSIR

when the dimensionality of the data is ultrahigh. Second, for SIR and other batch

dimension reduction methods, many methods have been proposed to determine the

intrinsic dimension K; see e.g. [3, 5, 14, 70, 84, 94]. They depend on all p eigenvalues

of the generalized eigen-decomposition problem and are impractical for incremental

learning. We do not have obvious solutions to these problems at this moment and

would like to leave them for future research.
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4.7 Inference of the inverse covariance matrix update

Suppose A is an invertible square matrix, and u, v are column vectors, and

1 + v>A−1u 6= n+ 1, we have

(A + uv>) = A−1 − A−1uv>A−1

1 + v>A−1u
. (4.10)

In our case, compare Equation (4.7) with Equation (4.10), if we let A =
n

n+ 1
Σ̂,

u =

√
n

n+ 1
(xn+1 − x̄), and it is clear v = u. Thus,

Σ̂′
−1

= (A + uu>)
−1

= A−1 − A−1uu>A−1

1 + u>A−1u

= (
n

n+ 1
Σ̂)−1

−
(

n

n+ 1
Σ̂)−1

√
n

n+ 1
(xn+1 − x̄)

( √
n

n+ 1
(xn+1 − x̄)

)>
(

n

n+ 1
Σ̂)−1

1 +

( √
n

n+ 1
(xn+1 − x̄)

)>
(

n

n+ 1
Σ̂)−1

√
n

n+ 1
(xn+1 − x̄)

=
n+ 1

n
+

n+ 1

n
Σ̂
−1 n

(n+ 1)2
(xn+1 − x̄)(xn+1 − x̄)>

n+ 1

n
Σ̂
−1

1 +
n

(n+ 1)2
(xn+1 − x̄)

n+ 1

n
Σ̂
−1

(xn+1 − x̄)

=
n+ 1

n
Σ̂
−1
−

1

n
Σ̂
−1

(xn+1 − x̄)(xn+1 − x̄)>Σ̂
−1

1 +
1

n+ 1
(xn+1 − x̄)>Σ̂

−1
(xn+1 − x̄)

.
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CHAPTER 5

COVARIANCE-FREE INCREMENTAL SLICED INVERSE

REGRESSION

5.1 Introduction

In Chapter 4, we have proposed the incremental versions of the SIR and OSIR

methods. The update of the EDR space B̂ involves with plenty of matrix multi-

plications and needs a time-consuming eigen-decomposition even the computational

complexity has been reduced from O(p3) to O((K + 1)3), K < p. In this chapter, we

aim to develop incremental learning methods for SIR and OSIR with reduced matrix

multiplications for computational efficiency. We also want to skip the computation

of eigen-decomposition problem and adjust each EDR directions individually rather

than rotate the whole EDR space B̂. Again we hope to find inspirations from in-

cremental PCA algorithms. This time we focus on covariance-free methods for their

higher efficiency and simpler implementation.

5.2 Candid covariance-free incremental PCA

Several covariance-free incremental PCA algorithms [85, 86, 93] have been pro-

posed, but they all have convergence problems [102]. The two most state-of-art

covariance-free incremental PCA algorithms are the candid covariance-free Incremen-

tal PCA (CCIPCA) [102] and the largest-eigenvalue-theory for incremental PCA

(LET-IPCA) [111]. Both methods can achieve good convergence speed and accu-

racy. The only difference is the eigenvectors got by CCIPCA are dependent, while

LET-IPCA can get these directions independently. For a traditional IPCA algorithm,



62

it must observe an open number of observations and the number is larger than the

dimension of the observed vectors, covariance-free IPCA methods can also skip this

requirement. In this chapter, we adopt the ideas of CCIPCA to motivate our incre-

mental SIR and OSIR algorithms.

Suppose we have a sequentially acquired online data stream: x1,x2, . . . ,xn, . . ..

We can assume E[x] = 0 without loss of generality. For an eigenvalue problem

Σu = λu,

if we replace Σ and u on the left with their sample versions and set v = λu, we have

v =
1

n

n∑
i=1

xixi
>u.

After receiving a new observation xn+1, we wish to update it to

v′ =
1

n+ 1

n+1∑
i=1

xixi
>u′.

If we use v
‖v‖ to estimate u′, we can get the following incremental expression:

v′ =
1

n+ 1

n+1∑
i=1

xix
>
i

v

‖v‖

=
1

n+ 1

n∑
i=1

xix
>
i

v

‖v‖
+

1

n+ 1
xn+1x

>
n+1

v

‖v‖

=
n

n+ 1
v +

1

n+ 1
xn+1x

>
n+1

v

‖v‖
.

(5.1)

This is the updating formula for CCIPCA. Note that n
n+1

is the weight for the pre-

vious estimate and 1
n+1

is the weight for the new observation. They indicates all

observations in the data stream are equally weighted toward the calculation of prin-

cipal components. To speed up the convergence, one may prefer to give a smaller

weight to the early samples by changing the weights. This leads to the following

updating formula

v′ =
n− l
n+ 1

v +
1 + l

n+ 1
xn+1x

>
n+1

v

‖v‖
, (5.2)
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where l > 0 is a re-weighting parameter and typically l ranges from 2 to 4 [102]. With

the presence of l, a larger weight is given to new sample while the effort of old samples

will fade out gradually. We can use Equation (5.2) as the incremental estimate of the

first direction. When v converges, it is clear that u = v
‖v‖ .

Equations (5.1) and (5.2) only work for the first direction [120]. For the second

direction, we can generate an “observation” in the complementary space of the first

eigenvector by subtracting the projection of xn+1 onto the first direction from itself.

The residual

x
(2)
n+1 = x

(1)
n+1 − x

(1)>

n+1

v(1)′

‖v(1)′‖
v(1)′

‖v(1)′‖
, (5.3)

where x
(1)
n+1 = xn+1, v(1)′ = v′, can then be used to update the second direction by

v(2)′ =
n− l
n+ 1

v(2) +
1 + l

n+ 1
x
(2)
n+1x

(2)>

n+1

v(2)

‖v(2)‖
. (5.4)

We can similarly update other directions. Note that the first K new observations will

be used to initialize v(i), i = 1, 2, . . . , K. CCIPCA promises the convergence even if

some eigenvalues are equal.

5.3 Covariance-free incremental SIR

To apply the idea of the CCIPCA and develop incremental algorithms for SIR

and OSIR, we need to define new observations suitable for the EDR space or a space

that can be transformed into EDR space. By [70, Theorem 3.1], the centered inverse

regression curve E[x|y]−E[x] is contained in the linear subspace spanned by Σβk, k =

1, 2, . . . , K. We can consider z = E[x|y] − E[x] as the random variable of interest

and the approximation of random drawers for z as observations in this subspace. In

sample version, when a new observation (xn+1, yn+1) comes, we find which slice it

falls in by the corresponding distances from yn+1 to each slice center. Suppose the
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distance from yn+1 to ȳs is the shortest, then we can update the sample mean x̄ and

slice mean ms via

x̄′ =
n

n+ 1
x̄ +

1

n+ 1
xn+1

and

m′s =
ns

ns + 1
ms +

1

ns + 1
xn+1,

respectively. The new observation for subspace ΣB is computed as

z = m′s − x̄′.

Now, following the idea of CCIPCA we propose to update the k-th direction of the

subspace ΣB by

v(k)′ =
n− l
n+ 1

v(k) +
1 + l

n+ 1
z(k)z(k)> v(k)

‖v(k)‖
, (5.5)

where z(1) = z and for k ≥ 1

z(k+1) = z(k) − z(k)> v(k)′

‖v(k)′‖
v(k)′

‖v(k)′‖
. (5.6)

For the two weights n−l
n+1

and 1+l
n+1

, we can simply set l = 0 if n−l
n+1
≤ 0. After the conver-

gence of V = [v(1),v(2), . . . ,v(K)], we can easily compute H = [η(1),η(2), . . . ,η(K)],

where η(k) = v(k)

‖v(k)‖ , which spans the subspace in which the centered inverse regression

curve E[x|y]− E[x] lies. Finally we can recover the EDR space by

B̂ = Σ̂
−1
H , (5.7)

where again we can use Sherman-Morrison formula to incrementally update Σ̂
−1

incrementally. We call this method the covariance-free incremental SIR (CFISIR).

The primary computational cost of CFISIR results from the matrix multiplica-

tion, which has a complexity of O(p2). Note that Sherman-Morrison formula also

circumvent the computational load of matrix inversion with a complexity of at least
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O(p2.373) [68] and the complexity of SIR is O(p3) due to the eigen-decomposition. In

terms of storage, CFISIR only needs to keep matrices V, M = [m1,m2, . . . ,mk],

vectors x̄ , ȳ = [ȳ1, ȳ2, . . . , ȳH , ] and some scalars. For high dimensional data, the

computational complexity and memory requirement will be reduced significantly.

We note that, by following the same process of IOSIR in Chapter 4, we can propose

the covariance-free incremental OSIR (CFIOSIR) method.

5.4 Simulations

In this section, we will prove the the accuracy and convergence of CFISIR and

CFIOSIR on both artificial and real world data. We compare their performance with

ISIR, IOSIR and SIR.

Our simulations use the same model and real data and follow exactly the same

settings as in Chapter 4. For the artificial data we use both trace correlation and the

angle between B and B̂ as the evaluation criteria. The experiment results are reported

in Figure 5.1. They indicate the CFISIR and CFIOSIR have similar performance as

other methods but are more computationally efficient.

For real data we use the KNN regression with k = 5 nearest neighbors to make

prediction and the mean squared error (MSE) is used as the evaluation criterion.

We repeat this process 100 times and report the average errors in Figure 5.2. Again

we see that both CFISIR and CFIOSIR work as well as the original SIR and other

incremental SIR algorithms.
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(a) (b) (c)

Figure 5.1. Performance and computational complexity of dimension reduction meth-

ods for artificial data generated from the model (2.5). (a) trace correlation; (b) angle;

(c) cumulative computation time.

(a) (b)

Figure 5.2. MSE of various methods on two real data sets. (a) Concrete; (b)

Cpusmall.
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5.5 Conclusions and Discussions

We proposed two incremental learning algorithms, CFISIR and CFIOSIR, for

supervised dimension reduction. They are able to incrementally update the EDR

space without the burden of the storage of data and the computational complexity of

eigen-decomposition. Similar to ISIR and IOSIR, they are good candidates when a

batch learning is not suitable, especially when data is acquired streamingly and it is

impossible to store all the observations or a real-time system is required to respond

or update instantly.

Again, similar to ISIR and IOSIR, determining the intrinsic dimensionality re-

mains an open probem for CFISIR and CFIOSIR. We do not have obvious solutions

to this problems at this moment and would like to leave it for future research.



68

CHAPTER 6

SUMMARY AND FUTURE WORK

6.1 Summary

Based on the different ways of receiving data and achieving the new model, ma-

chine learning techniques can be categorized as batch learning and incremental learn-

ing algorithms. We refined a classic dimension reduction algorithm in regression

analysis, the sliced inverse regression (SIR), to proposed several new batch learning

and incremental learning algorithms.

For batch learning, we aimed to improve the performance of SIR when the number

of observations we have in hand is relatively limited. We introduced a slicing over-

lapping technique to code the information of the derivative of E[X|y] and proposed

a new algorithm called overlapping sliced inverse regression (OSIR). We applied two

bootstrapping techniques, the bagging and an alternative bootstrapping method with

extended Jacobian angles for simultaneous diagonalization, to “generate” more sam-

ples and “average” the corresponding estimated EDR spaces or covariance matrices in

the group of generalized eigen-decomposition equations, which motivated the bagging

OSIR and an alternative bootstrapping OSIR. Both overlapping and bootstrapping

strategies are able to extract more information from limited observations and improve

the accuracy of EDR space estimation.

For incremental learning, we aimed to update the existing EDR space when new

observations are received as a streaming sequence and system update is required in

an online manner. We proposed two versions of incremental SIR. The difference is

their approaches to adjust the directions of the EDR space. ISIR needs a warm up



69

by applying SIR to a small bunch of observations, then extracts the information of

the new coming observation to adjust EDR space as a whole. The warm up is not

necessary for CFISIR, we can even choose the initial directions randomly, and the

directions of EDR space are adjusted one by one, so we can also avoid the eigen-

decomposition problem. We also applied the idea of overlapping into the incremental

learning methods to propose IOSIR and CFIOSIR algorithms.

The effectiveness and efficiency of these new algorithms are justified by consistency

analysis and simulation studies on both artificial and real world data.

6.2 Future work

In Chapter 3, an alternative way to implement bootstrapping OSIR is to run OSIR

on bootstrapping samples and generate a set of projection matrices

{P̂∗(t)|t = 1, 2, . . . , T},

where P̂∗(t) = B̂∗(t)B̂∗(t)
>

is symmetric and B̂∗(t) is an estimated EDR space. After

diagonalization, we can find the averaged projection matrix

P̂ = UΛ̄′U>,

where Λ̄′ is the average of all the diagonal matrices. We believe that the EDR space

can be recovered from P̂, further study will try to build this connection. There

are a bunch of SIR-based algorithms, which are also worth investigating with the

bootstrapping and overlapping techniques.

We had tried another version of ISIR method other than the version studied in

Chapter 4. Recall that SIR method is associated to a generalized eigen-decomposition

problem in Equation (1.5). It can be converted into a regular eigen-decomposition
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problem by multiplying an inverse covariance matrix on both sides:

Σ−1ΓB = BΛ.

Applying the idea of incremental PCA, an alternative approach to update EDR space

is to solve the eigen-decompostion problem

[B, v̂]>Σ′
−1

Γ′[B, v̂]R = RΛ′.

There is no estimate in this approach so that we preserve the accuracy when we update

the EDR space. According to the theoretical analysis and simulation, it is also faster

than the ISIR method we have proposed in Chapter 4. But a problem is that the

matrix [B, v̂]>Σ′
−1

Γ′[B, v̂] is not symmetric, which causes a computational problem:

the accumulation of computational inaccuracies will yield complex numbers. The

simulation results show that the problem only occurs after the first two directions, it

gives us a hope to refine this algorithm and overcome this problem by some fancier

eigen-decomposition algorithm.

The incremental SIR methods we proposed in Chapter 4 and Chapter 5 can only

deal with the new observations one by one. When a bunch of observations come, it is

expected to extract useful information at once to update the model. It is necessary

to investigate new incremental methods for this mini-batch learning setting.

The determination of the intrinsic dimensionality K in incremental SIR methods

is another open problem for us. Most existing methods find K by using all the p

eigenvalues of the generalized eigen-decomposition problem of SIR. They cannot be

extended to the incremental learning setting because our methods only have K +

1 eigenvalues computed in ISIR and IOSIR, and even no eigenvalues computed in

CFISIR and CFIOSIR. New techniques to tackle this problem should be developed

in the future.
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Due to the wide range of applications of SIR and other SIR-like algorithms, we

believe it is worth applying our new algorithms for supervised dimension reduction

to more real-world data in the future.
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[34] Louis Ferré. Determining the dimension in sliced inverse regression and related

methods. Journal of the American Statistical Association, 93(441):132–140,

1998.
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inverse regression in reference curves estimation. Computational Statistics &

Data Analysis, 46(1):103–122, 2004.



77
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