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ABSTRACT

In the past two decades, neuroimaging has become the most commonly used imag-

ing technique for the study of human brain, which has given us insights about the

complex neural characteristics of the human brain and also provided helpful informa-

tion for the diagnosis of various diseases.

However, the analysis of neuroimaing data is extremely complex, requiring the use

of sophisticated techniques from acquiring raw data to image processing and statistical

analysis. The purpose of this dissertation is to provide accurate and efficient machine

learning models for neuroimaging data analysis. In this dissertation, we will focus on

the study of two neuroimaging techniques: functional MRI data and MRI data.

Functional magnetic resonance imaging (fMRI) has become one of the most widely

used techniques in investigating human brain function over the past two decades.

However, the analysis of fMRI data is extremely complex due to its difficulties in big

data processing. Hence, efficient and accurate machine learning models are necessary

to interpret fMRI data by incorporating both spatial and temporal information. We

will investigate a class of spatial multitask learning models which incorporates spatial

information of each task’s 2-dimensional neighborhood. Simulation and real applica-

tion results show satisfactory performance from spatial multitask learning algorithms.

As Magnetic Resonance Imaging (MRI) has matured, a large number of researchers

have studied Alzheimer’s disease (AD) image data. Many high-dimensional classifi-

cation methods use structural MRI brain images for classification between AD and

healthy individuals. As computer computation power has improved, neural networks

have been widely applied in Alzheimer’s disease diagnosis. However, the first layer

of this method is based on individual brain voxel, which means neural networks

learn each voxel individually without considering the brain spatial information. This

iv



method may lose some important information since the neighbor effect is ignored. Be-

cause the voxel of the brain is not isolated, in reality some brain area has an extremely

close relationship. To overcome the shortcomings of the spatial correlation problem,

we proposed a new technique called spatial regularization neural network (SRNN),

which incorporates spatial information provided by each voxel’s 3-dimensional neigh-

bor voxels. It is successfully applied in real applications.

v



TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Neuroimaging Techniques . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 fMRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Image Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

CHAPTER 2: SPATIAL REGULARIZATION FORMULTITASK LEARN-

ING AND APPLICATION IN FMRI DATA ANALYSIS . . . . . . . . . 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Linear Regression for a Single Task . . . . . . . . . . . . . . . . . . . 16

2.3 Spatial Multitask Learning . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Spatial Ridge Regression . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Spatial Lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Spatial EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Simulation Data . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vi



CHAPTER 3: SPATIAL REGULARIZED NEURAL NETWORKAND

APPLICATION IN ALZHEIMER’S DISEASE CLASSIFICATION 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Regularized Neural Network . . . . . . . . . . . . . . . . . . . 42

3.2.3 Spatial Regularized Neural Network . . . . . . . . . . . . . . . 43

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

CHAPTER 4: SUMMARY AND FUTURE WORK . . . . . . . . . . . . . . . . 51

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



LIST OF TABLES

1 Mean Squared Error on Simulated Data . . . . . . . . . . . . . . . . 27

2 The Cross Validation Error of Regression Algorithms on the fMRI Data. 29

3 Classification Accuracy for Whole Brain Grey Matter . . . . . . . . . 49

4 Classification Accuracy for Regions of Interested (ROI) . . . . . . . . 49

viii



LIST OF FIGURES

1 Different Weighted MRI. . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 MRI 3D Cube. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 A MRI Slice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 The Blood Oxygenation Level Dependent (BOLD) Signal. . . . . . . 6

5 Hemodynamic Response Function. . . . . . . . . . . . . . . . . . . . . 7

6 fMRI Time Series Data. . . . . . . . . . . . . . . . . . . . . . . . . . 8

7 Free Software for Neuroimage Preprocessing. . . . . . . . . . . . . . . 9

8 Neighborhood Structure for Each Task . . . . . . . . . . . . . . . . . 20

9 Attention Activation of Slice 16 . . . . . . . . . . . . . . . . . . . . . 30

10 Attention Activation of Slice 20 . . . . . . . . . . . . . . . . . . . . . 31

11 Neural Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . 37

12 Sigmoid Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

13 Neural Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . 40

14 Neighborhood Structure for Each Voxel . . . . . . . . . . . . . . . . . 44

15 Whole Brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

16 Whole Brain Gray Matter . . . . . . . . . . . . . . . . . . . . . . . . 47

17 Regions of Interested . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ix



1

CHAPTER 1

INTRODUCTION

1.1 Overview

The human brain has almost 100 billion neurons with more than trillion’s connec-

tions. Despite our technological advancements, we have still been unable to unlock

the mysteries of the human brain. As a result, we still can not prevent or cure brain

disorders such as Alzheimer’s disease, autism, stroke, and so on. In 2013, presi-

dent Barak Obama of the United States announced a bold new research investment:

BRAIN Initiative. This bold new research is to revolutionize our understanding of

the human brain and uncover its mysteries so that we can find new ways to prevent

and cure brain disorders. Since the BRAIN Initiative has been announced, many

academic institutions and scientists have answered this call and made significant con-

tributions and progress. Some universities have invested large sums of money to buy

neuroimaging scanners in order to collect human brain data, enabling data scientists

to use mathematical models to analyze this data mathematically.

Among all these research efforts, neuroimaging has become the most commonly

used imaging technique for the study of human brain, which has given us insights

about the complex neural characteristics of the human brain and also provided help-

ful information for the diagnosis of many diseases. However, the analysis of neu-

roimaging data is extremely complex, requiring the use of sophisticated techniques

from acquiring raw data to image processing and statistical analysis. As a result, it

is often said that “neuroscience is data rich yet theory-poor.” Therefore, the aim of

this dissertation is to provide theories and specific models for the neuroimaging data
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analysis. In this dissertation, we will focus on the study of machine learning tech-

niques for high-dimensional neuroimaging data, especially to provide insight into the

complex brain activities of the fMRI data and also Alzheimer’s disease classification

of MRI data.

This dissertation is organized as follows: Chapter 1 provides the background in-

formation of neuroimaging technique, such as fMRI and MRI, and presents the basic

steps of image preprocessing. Chapter 2 presents a novel spatial regularization multi-

task learning framework for fMRI data analysis. A class of spatial multitask learning

models: MTLRidge, MTLLasso, MTLEN was proposed. Simulation and real applica-

tion are used to verify their performance. In Chapter 3, we will propose a spatial reg-

ularization approach for neural network and apply it to structural MRI Alzheimer’s

disease classification. Chapter 4 summarizes this dissertation and discusses future

work to be done in this field of research.

1.2 Neuroimaging Techniques

Currently, two major neuroimaging techniques are available: the anatomical tech-

nique and the functional technique.

The anatomical technique is used to track normal and abnormal development of

the human brain in both a healthy condition and disease condition. Moreover, the

anatomical technique is also combined with the functional technique to track brain

activity. The earliest brain imaging technique was computed tomography (CT). Now,

CT has been largely replaced by the more powerful magnetic resonance imaging (MRI)

technique [1]. MRI provides high quality images of brain structure.

The functional technique has become dominant in cognitive neuroscience because

it can track the neural activity associated with the corresponding ability to perform a
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particular cognitive task. There are a variety of noninvasive functional neuroimaging

techniques. They are divided into two categories: The first one directly measures

electrical activity associated with neuronal activity, such as electroencephalography

(EEG) and magnetoencephalography (MEG). The second one indirectly measures

neuronal activity by measuring changes in the local oxygenation of blood, such as

positron emission tomography (PET) and functional magnetic resonance imaging

(fMRI) [1].

These techniques enable researchers to study the anatomical structure and metabolic

function of the human brain throughout the life span, in both sickness and health.

This will help uncover the mysteries of the human brain so that we can find new

ways to prevent and treat brain disorders. In this dissertation, we have applied our

proposed methodology to both fMRI and MRI data.

1.2.1 MRI

Magnetic resonance imaging (MRI) is an imaging technique to produce high quality

images of the human body, which is primarily used for the human brain [2]. MRI

provides good contrast between the different soft tissues of the body based on the

facts that the human body is largely composed of water molecules, and MRI is based

on Nuclear magnetic resonance (NMR) of hydrogen protons [3].

One very important feature of MRI is that it can generate different contrast char-

acteristics images, such as T1 weighted MRI, T2 weighted MRI. T1 is when the

machine only looks at the longitudinal movement of protons, so T1 images are usu-

ally used to look at anatomical information of healthy people. T2 is the transverse

movement of protons, which is usually used to track the pathology of the patient.

MRI has a wide range of application in medical diagnosis, because most of the dis-
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ease tissue tends to have higher water molecules than healthy individuals [4]. As a

result, MRI has been used as a matured medical diagnosis tool in hospitals and clinics.

Figure 1: Different Weighted MRI.

Source: Magnetic Resonance Imaging e-tutorials [4]

MRI is a 3D data cube, which is usually composed of many MRI slices. Each MRI

slice is a 2D image. The 2D brain image is made up of many pixels, we call each pixel

a voxel in MRI/fMRI.
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Figure 2: MRI 3D Cube.

Source: University of Missouri [5]

Figure 3: A MRI Slice.

Source: Handbook of Functional MRI Data Analysis [6]
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In Figure 3, each voxel is represented by a number. The corresponding numbers

for the particular voxels in the closeup section are shown on the right of Figure 3.

1.2.2 fMRI

Functional magnetic resonance imaging (fMRI) is a functional neuroimaging proce-

dure using MRI technology that measures brain activity by detecting blood-oxygen-

level-dependent (BOLD). The functional magnetic resonance imaging (fMRI) tech-

nique is used to indirectly measure brain activity by measuring changes in the local

blood oxygen level, which in turn reflects the amount of brain activity. This is based

on the fact that when neurons in the local brain area become active, the amount of

blood flowing through that corresponding local area is also increased, which leads to

a relative surplus in local blood oxygen. The higher blood oxygen level will create

higher fMRI signal intensity. This measured signal in fMRI is referred to as the blood

oxygenation level dependent (BOLD) [6]. The BOLD signal for an active voxel (blue)

and the stimulus time series (red) is shown in Figure 4.

Figure 4: The Blood Oxygenation Level Dependent (BOLD) Signal.

Source: Handbook of Functional MRI Data Analysis [6]
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If a voxel becomes active, the BOLD signal will start to gradually increase, and

reach its peak after several seconds. Finally it will gradually go back to the normal

state. This whole process is called hemodynamic response. “Hemo” means blood,

“dynamic” means change. Figure 5 shows the ideal hemodynamic response. This

whole process persists up to 20 seconds or more after the stimulus.

Figure 5: Hemodynamic Response Function.

Source: Intro to fMRI [7]

During an fMRI experiment, a series of 3D brain images are acquired while the

subject performs a set of particular cognitive tasks. The fMRI machine will record

a number for the magnetism of each voxel at each time point while the external

particular task is ongoing, which means if we take a picture every 2 seconds for 5

minutes, we will get 150 numbers for each voxel. As there are 100,000 or more voxels

in the whole brain, a huge amount of data will be processed. Hence accurate and
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efficient methods are necessary due to the high dimensionality of fMRI data. Figure

6 shows a time series of 3D fMRI images, measure at very Repetition time (TR).

Figure 6: fMRI Time Series Data.

Source: Principles of fMRI. [8]

The general purpose of fMRI study is to analyze each voxel’s time series to check

whether the BOLD signal changes in response to an external particular cognitive task

and hence to infer neuronal activity of the human brain. fMRI is used both in the

research world, and in the clinical world. However, unlike MRI, the fMRI technique

has not been tested enough for widespread commercial products, so it is mostly used

as a research tool.
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1.3 Image Preprocessing

The analysis of fMRI data is extremely complex due to its high dimensionality. More-

over, the data is susceptible to other factors such as head movement, variability be-

tween individuals, and variability through the time within individuals. Therefore,

applying imaging preprocessing to MRI/fMRI data will provide more meaningful

interpretation of the analysis results. As neuroimaging techniques matured, many

laboratories began to distribute their software packages for MRI/fMRI analysis as

open source. The most common packages are: SPM, FSL, AFNI and Brain Voyager

shown in Figure 7.

Figure 7: Free Software for Neuroimage Preprocessing.

In our analysis, SPM is used for image preprocessing. Here, we outline the basic

preprocessing pipeline for MRI/fMRI analysis as listed in in Statistic Parametric
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Mapping (SPM) [9].

• Realignment

This step will align a time series of images acquired from the same subject. The

aim is to remove movement artifacts in fMRI time-series.

• Coregistration

This step will implement a coregistration between the structural and functional

data that maximizes the mutual information.

• Segmentation

This step will segment the structural image and create grey and white matter

images and bias-filed corrected structural image.

• Normalize

This step normalizes different MRI images into a standard template such as

MNI template.

• Smoothing

This step is used to suppress noise and effects due to the residual differences in

functional and structural images.
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CHAPTER 2

SPATIAL REGULARIZATION FOR MULTITASK LEARNING AND

APPLICATION IN FMRI DATA ANALYSIS

2.1 Introduction

Functional magnetic resonance imaging is an MRI procedure that measures brain

activity by detecting associated changes in blood flow. This is based on the fact that

when neurons in the local brain area become active, the amount of blood flowing

through that corresponding local area is also increased, which leads to a relative

surplus in local blood oxygen [6]. The higher blood oxygen level will create higher

fMRI signal intensity. Because the neuronal activity can be indirectly observed via the

blood oxygenation level dependent (BOLD) signal contrast, usually the BOLD signal

is used to detect the neuronal activity. Functional magnetic resonance imaging(fMRI)

has become the most widely used technique to investigate human brain function in

the past two decades.

The general purpose of fMRI data studies is to analyze each voxel’s time series

data to detect whether the BOLD signal changes in response to a particular stimulus

and hence to infer neuronal activity of the human brain. However, fMRI data has

an extremely complicated structure. The subject’s 3D volume brain is divided into a

grid of volume boxes, or voxels. The BOLD signal is observed at each voxel at each

time point resulting in an enormous amount of data. Hence efficient and accurate

models are necessary in detecting accurate neuronal activity.

The analysis of fMRI data is challenging due to artifacts, variability in the data,

and high dimensionality. The major components of fMRI analysis include but are
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not limited to processing techniques, statistical modeling and inference from the data,

and applications in medical diagnosis. The initial development of fMRI was driven by

cognitive psychology researchers, who were interested in exploring the brain’s active

responses to external tasks [6].

One of the most important research areas in fMRI analysis literature has focused

on the detection of the activated brain regions associated to human activities or

diseases; see e.g. [10, 11, 12, 13, 14, 15] and references therein. This could be

modeled from either the voxel level [10, 11] or cluster level [12]. The statistical models

for active region detection include the general linear models [10] and autoregressive

models [11]. In these models, each voxel is usually treated as a linear regression

task. As all the tasks are correlated, considering all voxels together may benefit the

modeling and inference. This has driven the use of multitask learning in this area

[16, 17, 18, 19, 20].

In general, fMRI analysis methods have centered on the relationship between

cognitive variables and individual brain voxels, but it has limits on what can be

learned about brain activity by isolated voxel study. The application of the multitask

method into fMRI data is motivated by fMRI studies in which functional activity is

classified using brain voxels as features. By using multitask, each voxel can be studied

as a task. This training process has significant advantages, since the related tasks

(voxels) can help one another gain better performance.

Multitask learning (MTL) refers to a machine learning framework that learns

multiple related tasks simultaneously to improve generalization. This is especially

true when the data is small and the performance of single task learning is not as

good. Intuitively it would seem that learning of one task could benefit from the

information of closely related tasks. A more formal explanation is that the learning
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of related tasks introduces an inductive bias while helping to significantly reduce

the variance. MTL has been found successful in the study of many real applications

[21, 22, 23, 24, 25, 26, 27]. A variety of techniques and algorithms have been proposed

for MTL for different purposes and different problem domains.

The idea of MTL dates back at least to the application of NETtalk to learning

both phonemes and their stresses [21, 22], although the concept of MTL was coined

much later. In the context of neural network learning, back-propagation was used

to learn multiple related tasks that are drawn from the same domain and share the

same hidden units [22, 23, 24]. MTL formulation was also proposed for k-nearest

neighborhood, kernel regression, and decision tree in [24].

In 1997, Caruana published a paper entitled Multitask Learning [24]. In this

paper, Caruana demonstrated that multitask learning could work in many fields. He

presents nine kinds of fields often available, and most of the real world problem fall

into one of these domains [24]. In addition, he also mentioned in this paper that most

problems traditionally used in machine learning have been preprocessed to fit single

task learning (STL), thus eliminating the opportunities for multitask Learning before

learning was applied.

In 2003, Bart and Tom proposed Bayesian multitask learning in [25]. In this

paper, they proposed a hierarchical Bayesian approach to multitask in which some of

the model parameters are shared explicitly, and others are soft-shared through a prior

distribution. Their method is applied into two real world problems: a school problem

and newspaper sales. Finally, they concluded that both problems are modeled better

through Bayesian multitask learning.

In [26], Evgeniou and Pontill proposed an approach to multitask learning based

on the minimization of regularization functions, which is the first generation of



14

regularization-based methods from single task to multitask learning. They applied

their method into the “school data”. The experiments show that their proposed

method outperforms other multitask learning methods and largely perform better

than single task learning methods. Moreover, their results significantly outperform

the Bayesian method of [25].

In recent years, regularization theory was introduced into MTL. Regularized MTL

algorithms are usually problem dependent because the penalty term is designed ac-

cording to prior knowledge of the problem. For instance, by assuming all the tasks

share a common component and each task has an additional individual component,

the authors in [26] proposed an MTL approach by trading off the size of the common

component and the individual components. By adjusting the trade-off parameter,

this method allows the data itself to demonstrate how closely the tasks are related

and how much improvement can be garnered by learning multiple tasks at the same

time.

In some applications, not all tasks share the same components, but there is a

cluster structure and only tasks belonging to the same cluster share a common com-

ponent, while the relationship between tasks from different clusters may be weak.

This has motivated the structured regularization for MTL [28, 29]. Temporal priors

were introduced in a study of the progression of Alzheimer’s disease, where each task

is the status of patients at a time point, and the temporal relationship arises naturally

[30].

While the multitask learning algorithm is becoming stable and flexible, researchers

are paying more attention to apply it to more interesting high dimension medical data:

MRI or fMRI data. In high dimensional data analysis such as fMRI data, feature

selection is a natural issue and sparse penalty is required. In order to facilitate
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sparsity, the adaptive multitask lasso and elastic net were introduced in [18] which

utilizes the l1/lq mixed matrix norm. Here, p-norm is ‖x‖p := (
∑n

i=1 |xi|p)1/p, p ≥ 1.

l1 norm is simply the sum of the absolute values of the columns, ‖x‖1 :=
∑n

i=1 |xi|.

One of the most common applications for medical image analysis is the diagnosis of

Alzheimer’s disease. Papers study this topic include [30], [31], [16], [17]. In [30], Jiayu

Zhou and Lei Yuan propose a multitask learning formulation for predicting the disease

progression measured by the cognitive scores and selecting markers predictive of the

progression. They capture the relatedness among different tasks by a temporal group

Lasso regularizer. This method is based on the regularization-based method from [26].

These experimental studies demonstrate the effectiveness of the proposed algorithm

for capturing the progression trend, and also show that the markers selected by the

proposed algorithm are consistent with the existing findings from other studies. In

[17], Biao Jie and Daoqiang Zhang proposed a manifold regularized multitask learning

framework to jointly select features from multi-modality data. The experimental

results demonstrate the effectiveness of the proposed method.

In [18] and [19], multitask learning method is applied into fMRI data. In [18], the

adaptive multitask elastic net method is used to study fMRI data and the results out-

perform Lasso and Elastic Net. In [19], Nikhil Rao and Christopher Cox proposed a

new procedure called sparse overlapping sets Lasso, the experimental results demon-

strate this method is better than Lasso and Group Lasso. Although these approaches

are useful for fMRI data, they do not directly attempt to include the potential com-

monalities between voxels. To remedy this, we propose a class of multitask learning

methods to extract the spatial information for each voxel that are neighbors by a

shared tuning parameter.

In this chapter we propose a spatial regularization approach for MTL and apply it
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to fMRI data analysis. In the problem of active region detection using fMRI data, the

tasks (brain voxels) are spatially related. It is natural to code the spatial information

into the training process to improve the learning performance. Works on this topic

include [32, 33]. However, to the best of our knowledge, the idea of coding spatial

information in the regularization theory context is new.

The remainder of this chapter is organized as follows: The linear regression model

for single task is described in Section 2.2. We develop our spatial regularized multitask

learning models and show how to solve the model in Section 2.3. In Section 2.4, the

models are tested on both simulated and real fMRI data. We finish with concluding

remarks in Section 2.5.

2.2 Linear Regression for a Single Task

For fMRI data analysis, our goal is to detect the neuronal activation for each voxel.

We can formulate each voxel’s time series data by using a standard linear regression

model. The most traditional method to solving a linear regression model is the

ordinary least square method (OLS, [34]). In linear regression, a scalar response

variable y is assumed to be linearly dependent on a set of p predictors. The data is

a sample of n observations subject to noise:

yi = xiβ + εi, i = 1, 2, . . . , n (1)

where yi ∈ R, xi ∈ Rp is a row vector, and β ∈ Rp is an unknown column vector.

Denote Y = (y1, y2, . . . , yn)> ∈ Rn as a column vector of the response values, X =

[x1;x2; . . . ;xn] ∈ Rn×p the data matrix, and E = (ε1, . . . , εn)> the error vector. We
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can rewrite (1) as

Y = Xβ + E.

The OLS estimator minimizes the sum of squared errors (SSE) made by predicting

the true response yi by xiβ, that is

β̂ = arg min ‖Y −Xβ‖22 = arg min
n∑
i=1

(yi − xiβ)2.

Here and in the sequel ‖ · ‖q denotes the q-Euclidean norm for any 1 ≤ q ≤ ∞. If X

is of full rank, the OLS estimator can be solved by a linear system

β̂ = (X>X)−1X>Y. (2)

The OLS estimator is known as the best linear conditionally unbiased estimator.

However, it could be numerically unstable when the matrix X>X is singular or has a

large conditional number. This is usually the case when n < p or when the predictors

are highly correlated. Even when the matrix is well conditioned, it may be beneficial

to introduce some bias to facilitate some desired properties (such as sparsity). These

considerations have led to the development and application of regularized regression

methods such as ridge regression [35], Lasso [36] and Elastic Net [37].

Ridge regression is a method that utilizes Tikhonov regularization of the OLS

estimator. It shrinks the coefficients in the estimator by minimizing the penalized

SSE where the penalty term λ2‖β‖22 is determined by a regularization parameter

λ2 > 0 and the Euclidean 2-norm square of β, that is

β̂Ridge = arg min
β

{
‖Y −Xβ‖22 + λ2‖β‖22

}
. (3)

The Ridge regression estimator can also be solved by a linear system, which gives

β̂Ridge = (X>X + λ2I)−1X>Y. (4)
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Here and in the sequel, I denotes an identity matrix (whose dimension is omitted if

it is clear from the context or appears as subscript otherwise).

Although ridge regression is numerically stable, the coefficients are never exactly

zero even when the corresponding predictors are irrelevant to the response. To im-

plement variable selection, Tibshirani [36] proposed an alternative regularization ap-

proach called least absolute shrinkage and selection operator (Lasso). It minimizes

the SSE with an `1 norm penalty.

β̂Lasso = arg min
β

{
‖Y −Xβ‖22 + λ1‖β‖1

}
, (5)

where λ1 > 0 is the regularization parameter. It is well known that the `1 penalty

leads to sparse solution. Therefore, Lasso is advantageous for sparse models because

of its facilitation of variable selection.

The elastic net (EN, [37]) also combines shrinkage and variable selection, and in

addition encourages grouping of variables: groups of highly correlated variables tend

to be selected together, whereas the Lasso would only select one variable of the group.

To implement the grouping effect, EN comprises both the `2 and `1 penalty.

β̂EN = arg min
β

{
‖Y −Xβ‖l22 + λ2‖β‖22 + λ1‖β‖1

}
. (6)

EN is particularly useful in the “large p small n” setting where the number of pre-

dictors is much larger than the number of observations. Since the `1 norm is not

differentiable at 0, the optimization process to solve Lasso and EN is more compli-

cated than ridge regression. The most commonly used solvers include the LARS [38],

cyclical coordinate descent [39], etc.

But from our study, we found that all these algorithms are only suitable for a

single task, which means each time they only study one task individually. In fMRI

data, if we assume each voxel is a task, then all these algorithms can only study one
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voxel each time without considering brain spatial information. However, in reality, the

voxels of the brain normally have some relations with each other, in order to improve

this spatial limit we proposed a class of Spatial Multi-task learning algorithms. We

present a class of spatial MTL algorithms for fMRI data analysis in section 2.3.

2.3 Spatial Multitask Learning

In fMRI studies, one of the important problems is detection of a functional region

associated with certain brain activities. For each voxel, this can be done by a linear

regression model. As the brain contains thousands of voxels, we need to solve thou-

sands of linear regression problems. Of course one can solve these problems voxel by

voxel using the single task learning methods. However, this is suboptimal because

each functional region contains multiple voxels that are spatially continuous. As a

result, if one voxel is active, then its neighbors are very likely to be active as well.

Conversely, if one voxel is inactive, its neighbors are unlikely to be active. We ex-

pect such spatial information will benefit the learning performance if it is used in the

training process. In some applications, Markov random field is used to incorporate

the spatial information: image reconstruction [40] and IMS proteomic data analysis

in [41], for instance. In this dissertation, we propose a spatial regularization approach

for MTL by using user defined neighborhood structure.

In MTL regression, there are T ≥ 2 tasks. Assume the t-th task has the data

matrix Xt and response vector Yt which are linked by

Yt = Xtβt + Et.

To code the spatial information, we first define a neighborhood system. It is defined

by the user and may be quite data dependent. An example of the 4 or 8 nearest
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neighborhood systems in two dimensional space is shown in Figure 8.

(a) 4 Neighborhood (b) 8 Neighborhood

Figure 8: Neighborhood Structure for Each Task

Based on the neighborhood system, we define the task similarity coefficient by

wtk =


1, if task t is a neighborhood of task k;

0, if task t is not a neighborhood of task k.

We assume the neighborhood system is symmetrically defined so that wtk = wkt. The

penalty term for spatial regularization is defined by

λs

T∑
t,k=1

wtk‖βt − βk‖22.

Here we use a shared tuning parameter, λs, to adjust the spatial information. When

λs becomes large, it forces the neighboring tasks to become very close, while as λs

tends to 0, the tasks are treated as independent.

By applying the spatial penalty to ridge regression, Lasso, and EN, we propose

three new MTL algorithms. We discuss their formulation and solution in the next

three subsections. In the sequel, we will denote B = [β1; β2; . . . ; βT ] ∈ RpT as the
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column vector composed of all the task coefficients and W = [wtk]
T
t,k=1 as the matrix

of the task similarity coefficients, here βi ∈ p× 1, i = 1, 2, ..., T .

2.3.1 Spatial Ridge Regression

When we learn all T ridge regression problems simultaneously and apply the spatial

penalty, the resulted MTL learning algorithm, called spatial ridge regression algo-

rithm, takes the form

B̂SR = arg min
B

{
T∑
t=1

‖ Yt −Xtβt ‖22 +λ2

T∑
t=1

‖βt‖22 + λs

T∑
t,k=1

ωtk‖βt − βk‖22

}
. (7)

It is easy to check that

T∑
t=1

‖ Yt −Xtβt ‖22= B>SB − 2V >B +
T∑
i=1

‖Yt‖22,

where S = diag(X>1 X1, . . . , X
>
T XT ) and V = [X>1 Y1; . . . ;X

>
T YT ]. For S, Xk ∈ n × p,

X>k Xk ∈ p× p, so we have S:



X>1 X1 0 . . . . . . . . . . . . . . .
0 X>2 X2 0 . . . . . . . . . . . .
... 0

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . X>T XT


pT×pT

.

Let dt =
∑T

k=1wtk, D1 = diag(d1Ip, . . . , dT Ip), and D2 = W⊗Ip, (where ⊗ denotes

the kronecker product of two matrices). For D1, we have the following matrix:



22

d1 0 0 0 0 0 . . . . . . . . . . . . . . . . . .

0
. . .

p

0 0 0 0 . . . . . . . . . . . . . . . . . .
0 0 d1 0 0 0 . . . . . . . . . . . . . . . . . .
0 0 0 d2 0 0 . . . . . . . . . . . . . . . . . .

0 0 0 0
. . .

p

0 . . . . . . . . . . . . . . . . . .
0 0 0 0 0 d2 . . . . . . . . . . . . . . . . . .
...

...
...

...
...

...
. . . . . . . . . 0 0 0

...
...

...
...

...
...

. . . . . . . . . 0 0 0
...

...
...

...
...

...
. . . . . . . . . 0 0 0

...
...

...
...

...
... 0 0 0 dT 0 0

...
...

...
...

...
... 0 0 0 0

. . .
p

0
...

...
...

...
...

... 0 0 0 0 0 dT


pT×pT

.

For D2, we have:



ω11 0 0 ω12 0 0 . . . . . . . . . ω1T 0 0

0
. . .

p

0 0
. . .

p

0 . . . . . . . . . 0
. . .

p

0
0 0 ω11 0 0 ω12 . . . . . . . . . 0 0 ω1T

ω21 0 0 ω22 0 0 . . . . . . . . . . . . . . . . . .

0
. . .

p

0 0
. . .

p

0 . . . . . . . . . . . . . . . . . .
0 0 ω21 0 0 ω22 . . . . . . . . . . . . . . . . . .
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . .

...
...

...
...

...
...

. . . . . . . . . . . . . . . . . .
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . .

ωT1 0 0
...

...
...

...
...

... ωTT 0 0

0
. . .

p

0
...

...
...

...
...

... 0
. . .

p

0

0 0 ωT1
...

...
...

...
...

... 0 0 ωTT


pT×pT

.
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Define D = 2D1 − 2D2. Then we have

T∑
t,k=1

ωtk‖βt − βk‖22 = B>DB.

Let Q = S + λsD. The function in (7) that needs to be minimized takes the

quadratic form

B>(Q+ λ2I)B − 2V >B +
T∑
i=1

‖Yt‖22.

It can be solved by a linear system:

B̂ = (Q+ λ2I)−1V.

Noticing that Q = S+λSD, where S is a block diagonal matrix, D = 2(D1−D2) with

D1 a diagonal matrix and D2 a sparse matrix, we see that Q is a sparse matrix. There-

fore, this linear system can be solved quickly by using the conjugate gradient method.

2.3.2 Spatial Lasso

Analogously, the spatial Lasso algorithm takes the form

B̂SL = arg min
B

{
T∑
t=1

‖ Yt −Xtβt ‖22 +λ1

T∑
t=1

‖βt‖1 + λs

T∑
t,k=1

ωtk‖βt − βk‖22

}
. (8)

By ignoring the constancy term that does not affect the solution, we need to minimize

the `1 penalized quadratic function:

B>QB − 2V >B + λ1‖B‖1. (9)

The parameter for the l1 penalty controls the sparsity. As it increases, the sparsity

of the solution increases. Its choice depends on the sparsity of the true model. If the
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true model is not sparse, the parameter should be chosen to be small. Similarly, when

the true model is sparse, the large parameter should be used. In practice, the true

model is unknown and there are many criteria to select it. But usually, we have some

priori information to guide us using l1 penalty, which could be model interpretation

needs. In fMRI study, since we believe not all voxels are functioning with all activities,

thus sparsity is natural.

One of the most popular methods for solving (9) is in the class of iterative

shrinkage-thresholding algorithms (ISTA). A Fast Iterative Shrinkage Thresholding

Algorithm (FISTA) with the computational simplicity of ISTA but a significantly bet-

ter global rate of convergence was proposed in [42]. In order to solve (9) by FISTA,

we first define a soft thresholding operator on RpT

(proxλ1α(z))i =



zi − λ1α, if zi > λ1α

0, if |zi| ≤ λ1α

zi + λ1α, if zi < −λ1α

with some α ∈ (0, 1
‖Q‖). Then the spatial Lasso can be solved by using the following

iterating steps:

• Bk = proxλ1α (gk − α(Qgk − V ));

• ak+1 =
1+
√

1+4a2k
2

;

• gk+1 = Bk + (ak−1
ak+1

)(Bk −Bk−1),

after given suitable initial values of B, a, and g.
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2.3.3 Spatial EN

In Spatial Elastic Net, λs
T∑
t=1

T∑
s=1

ωts‖βt − βs‖22 is added based on EN Regression. Be-

cause l1 penalty is not differential. So we have to use numerical solution to approxi-

mate the results.

Spatial EN solves the problem

B̂SEN = arg min
B

{
T∑
t=1

‖Yt −Xtβt‖22 + λ1

T∑
t=1

‖βt‖1 + λ2

T∑
t=1

‖βt‖22 + λs

T∑
t,k=1

ωtk‖βt − βk‖22

}
.

(10)

By ignoring the constant, we need to minimize

B>(Q+ λ2I)B − 2V >B + λ1‖B‖1.

The solution to this problem can be obtained by the same procedure as spatial Lasso,

except we need to replace Q with Q+ λ2I.

2.4 Results

We illustrate the power of spatial MTL algorithms by simulation and their appli-

cation to real fMRI data sets. The performance is compared with the single task

learning (STL) method and the regularized MTL algorithm proposed in [26]. All the

parameters used in this section are selected by 5 fold cross validation. For the spatial

MTL algorithm, there are two or three parameters. An extensive but computation-

ally expensive way to cross validate the parameter is by grid search. To speed up the

computation, we adopt a simpler way. We first select the non-spatial parameter (e.g.

λ2 in spatial ridge or λ1 in spatial Lasso) and fix it. Then the spatial parameter λs is

selected. Both steps are done by cross validation.
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2.4.1 Simulation Data

We first verify the effectiveness of spatial MTL algorithms on simulated data. In this

case, since we know the true model, it is easy to compare the performance of different

algorithms.

The model and data are generated as follows. We have designed a 10 × 10 grid to

mimic 100 voxels in a slice of the brain. For each grid, there is an associated input

variable and an associated response variable. The array of all input variables mimics

the design matrix and the response values mimic the fMRI times series. The response

of each grid is computed by the average of input variables associated to the grid

itself and its left, right, upper, and lower neighbor grids (if they exist). This gives us

100 tasks in the 100 dimensional input space. For the simulation data, we applied

4-neighborhood structure.

We generate n = 100 samples and run spatial MTL algorithms. This process is

repeated 20 times and the learning performance is measured by the mean squared

error between the estimated model and true model. We compare our algorithms with

the STL learning algorithms and the regularized MTL algorithm proposed in [26].

The mean squared error (MSE) and the standard deviation (SD) of these algorithms

are reported in Table 2.4.1. It is clear that the MTL is superior to STL. The tasks

are related but do not share a common component. The regularized MTL method

in [26] is suboptimal. The spatial regularization helps to improve the performance

significantly. Since the true model is rather sparse and there is no grouping effect,

spatial Lasso performs the best.
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Table 1: Mean Squared Error on Simulated Data

STL Algorithm MSE (SD) MTL Algorithm MSE (SD)
Ridge 0.1592 (0.0152) Spatial Ridge 0.0489 (0.0014)
Lasso 0.1029 (0.0055) Spatial Lasso 0.0426 (0.0009)
EN 0.0498 (0.0010) Spatial EN 0.0445 (0.0009)

RMTL in [26] 0.0742 (0.0010)

2.4.2 Real Data

Neuroscientists have shown that attention to visual motion can increase the activation

of certain cortical areas. Decreased or increased activation of specific brain area

would lead to the notion that attention is associated with neuronal activity. This

study helps us understand the brain functional connectivity. In this dissertation we

applied the spatial MTL algorithm to the Attention to Visual motion fMRI data set,

which is available on the SPM web site http://www.fil.ion.ucl.ac.uk/spm/data/

attention/. This dataset was collected by Christian Büchel [43] for a study of finding

the brain functional connectivity with visual attention. There are four conditions: F,

‘fixation’, A, ‘attention’, N, ‘no attention’, and S, ‘stationary’ condition. During

the ‘no attention’ and ‘attention’ conditions, two hundred and fifty white dots were

moving radially from a fixation point towards the border of the screen [43]. During

the ‘fixation’ condition, only the fixation mark was visible. The brain is split into 46

slices, with each slice containing 53×63 voxels. For each voxel, data is collected at

360 time points. Thus, the dimension of the whole fMRI dataset is 53 × 63 × 46 ×

360. We obtained the fMRI data for 2 slices of the brain.

For the real fMRI data analysis, we do not know the true model. We adopt

the cross validation error to evaluate the performance of different algorithms. Cross

validation error is an unbiased estimator of the mean squared prediction error. Small

http://www.fil.ion.ucl.ac.uk/spm/data/attention/
http://www.fil.ion.ucl.ac.uk/spm/data/attention/
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cross validation error usually leads to small prediction error and thus is a relatively

reliable metric to compare regression algorithms.

In this real data set, there are 4 contiguous blocked image sets: (0016-0105), (0116-

0205), (0316-0405), (0416-0505). Each block has 90 time points, so there are 360 data

points in the time series. It is natural to use 4 fold cross validation, considering the

special property of the fMRI data. Both 4-neighborhood and 8-neighborhood struc-

tures are shown in Figure 8. Though no significant difference was noticed between

these two structures for the cross validation error result in this real data analysis, it’s

possible to have a better contrast in other applications. The time complexity increase

for 8-neighborhood is minimal because only the sparsity of D2 is slightly increased.

All results for real data given here are based on 8-neighborhood structure.

Applying the single task learning and multiple task learning algorithms to the

two slices of fMRI data, the cross validation errors are compared in Table 2. On one

hand we see spatial MTL slightly improves the result. This indicates that the spatial

information does help in the multiple task learning process. On the other hand, we

see the improvement is very small. A possible explanation is that, since the design

matrix in this study is very simple, the signal is very clear and easy to detect. At

the same time, because the noise level is high, the prediction error cannot decrease

significantly even if the spatial regularization helps to improve the model estimation.

In this dissertation, we have run 2 slices of the whole brain: slice16, and slice20.

Figure 9 (a) and Figure 10 (a) show the functional EPI image for slice 16 and slice 20.

Figure 9 (b) - (g) shows the active area of the brain (slice 16) under attention condition

by using the estimated β̂ learned from both STL and MTL algorithms. Figure 10

(b) - (g) shows the active area of the brain (slice 20) under attention condition. The

activity of voxels is indicated by the β̂ values in the regression model – the larger and
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Table 2: The Cross Validation Error of Regression Algorithms on the fMRI Data.

Algorithm Slice 16 Slice 20

STL

Ridge 43.5825 33.9385
Lasso 43.2791 33.7631
EN 43.3004 33.7600

MTL

Spatial Ridge 43.1141 33.8207
Spatial Lasso 43.0957 33.7068
Spatial EN 43.1211 33.7066
RMTL in [26] 43.2320 33.9384

more positive the values, the more active the voxels are. With the naked eye, it is

hard to see the difference between the six algorithms. But the numerical values of

the β̂ coefficients do have some small differences. Since the spatial MTL algorithms

provide slightly better cross validation error, it is reasonable to assume the active

area detection by spatial MTL algorithms is more accurate.
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(a) Anatomy Slice 16

(b) Single Ridge (c) Single Lasso (d) Single EN

(e) Spatial Ridge (f) Spatial Lasso (g) Spatial EN

Figure 9: Attention Activation of Slice 16
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(a) Anatomy Slice 20

(b) Single Ridge (c) Single Lasso (d) Single EN

(e) Spatial Ridge (f) Spatial Lasso (g) Spatial EN

Figure 10: Attention Activation of Slice 20
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2.5 Conclusion

Motivated by the fMRI data analysis where spatial information is available between

voxels, we proposed a class of spatial multiple task learning algorithms for regression.

In these methods, we assume the spatially adjacent regression tasks are close. This

leads to a natural spatial regularization approach to code the spatial information by

using a user-defined neighborhood system. The spatial regularization multiple task

learning is shown to be effective in simulated data and real data analysis.

The spatial regularization approach is not necessarily limited to fMRI data anal-

ysis. Instead, it may potentially be useful in many fields where spatial information is

available, for instance, in environment data from multiple geographical sites. For mul-

tiple task learning where no spatial information is available, if soft clustering structure

or neighborhood systems could be defined, spatial regularization formulation may also

be used, although the regularization term does not code spatial information in this

situation. Thus, it would be interesting to further investigate the application domains

of spatial regularization in future research. In fMRI data analysis, the real challenges

are related to the direction and application of the study. In this chapter, we only

developed MTL approaches for analyzing brain activity with visual attention based

on 2-dimensional spatial information. MTL scheme(s) using 3-dimensional spacial

information and tasks associated with more general regions of interest (ROIs) of the

study could be considered.
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CHAPTER 3

SPATIAL REGULARIZED NEURAL NETWORK AND

APPLICATION IN ALZHEIMER’S DISEASE CLASSIFICATION

3.1 Introduction

Artificial neural network (ANN) have been around since the 1940s [44]. An artificial

neural network is similar to a biological neural network by performing all unites

collectively. The term “neural network” usually refers to models in statistics and

artificial intelligence.

The idea of a neural network was first introduced by Warren McCulloch and

Walter Pitts [44]. However, they did not know how to train the neural network at

that time. In 1985, Rumelhart, Hinton, and Williams proposed a training algorithm

called backpropagation [45]. However, backpropagation is computationally slow. The

hardware power between the 1980s and early 1990s could not effectively train neural

networks. In fact, the benefits of neural networks have not been recognized until

recent advancements in computer computation power.

The neural network model is particularly useful in applications where the complex-

ity of the data is high. Therefore, it is a powerful tool in many practical applications,

such as aerospace, electronics, robotics and so on [46]. A neural network is not only

good at fitting non-linear functions, but also efficient in recognizing patterns. Hence

neural networks have been widely applied in the fields of speech and image recogni-

tion [47]. In [48], the neural network model is used to perform word recognition. In

[49], it is applied in a speech synthesizer. The research for face detection applications

can be found in [50, 51, 52, 53]. In addition, neural networks have also been widely
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applied in disease diagnosis. In [54], an artificial neural network is used to classify

brain cancer to specific diagnostic categories based on their gene expression signa-

tures. The diagnosis of Hepatic Fibrosis is also evaluated using a neural network in

[55] by considering the regions of interests (ROI) from the liver MRI images as in-

put features. Neural networks have also been used for early detection of Alzheimer’s

disease in [56]. The EGG data has been used as inputs to NN model, the single

unit output indicates whether the subject is AD or normal. Recently, deep learning

has emerged as a relatively new advanced technique in neural network studies. In

2012, Alex Krizhevsky proposed a deep learning algorithm: deep convolutional neu-

ral networks in [57]. They introduce convolution to image recognition networks, and

achieved better, more accurate results than previous state-of-the-art results. Since

then, convolution neural networks have been widely applied to fields with large scale

data such as video classification and human action classification [58, 59, 60].

Alzheimer’s disease (AD) is a progressive, irreversible, degenerative brain disorder,

causing impaired memory, thinking and behavior. The symptoms of AD usually

develop slowly and get worse and worse over time. In the absence of AD, the human

brain often can live up to the age of 100 and beyond [61]. The research to uncover the

mysteries of human brain will help us to find the new ways to treat, prevent and cure

AD. In past decades, MRI has been widely used as an image aid tool for clinical disease

diagnosis. In consequently, many researchers have studied Alzheimer’s disease by

using MRI brain image data. A lot of research has been done by using structural MRI

brain images for classification between AD and healthy controls. According to the

features being extracted from the structural MRI, the existing classification methods

can be roughly divided into three categories [62] : voxel level, cortical thickness, and

hippocampus.
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For voxel levels, some researchers use whole brain gray matter as the input features

directly, then Support Vector Machine (SVM) is used for the classification. SVM

successfully separate patients with AD from healthy aging subjects in [61]. Some

other researchers prefer to reduce the dimensionality of the input features first, for

example in [63], only 90 regions of interested (ROI) extracted from the brain are set

as input features. In addition to SVM, the unsupervised method such as PCA, ICA

have also been applied to AD classification[64].

In addition to voxel levels, there has also been a considerable research focus on

cortical thickness. The cortical thickness represents a direct index of atrophy, which

is properly known to be affected in Alzheimer’s disease. For the cortical thickness

method, the cortical surface with a lot of vertices should be generated from the MRI

image first. Then the cortical structures segmented from the surface will be set as

input features. The work includes [65, 66].

Unlike the voxel level considering the whole brain, the cortical thickness considers

the whole cortical surface. The third category method only considers the hippocam-

pus of the human brain, research includes [67, 68, 69]. The hippocampus is located

in the medial temporal lobe of the brain, which is underneath the cortical surface. In

Alzheimer’s disease, the hippocampus is believed to be one of the first regions of the

brain to become damaged. This leads to memory loss and disorientation associated

with the condition.

By considering the brain spatial information, we use voxel level method in this

paper. Related to the problem of AD detection using MRI data, the brain voxels are

spatially related. It is natural to code the 3-dimensional spatial information in the

training process to improve the learning performance. The idea of coding spatial infor-

mation in the regularization theory contexts is proposed in our previous chapter, and
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has been successfully applied in fMRI data [70]. Since computer hardware power has

been improved, neural networks have been widely applied in different fields. However,

to the best of our knowledge, the idea of coding spatial information for AD classifi-

cation in the regularization neural network context is still new. Consequently, this

current condition has led us to propose a spatial regularization approach for neural

network and apply it to structural MRI Alzheimer’s disease classification. We tested

our proposed model on two types of data. For the first type, the whole brain grey

matter voxels are considered as input features. For the second type, we extracted 5

regions of interest (ROI) from the whole brain by using SPM MNI template, and these

5 ROI are considered as input features. The 5 regions we selected are: Hippocam-

pus, Amygdala, Temporal Lobe, Frontal Lobe, and Parietal Lobe. These regions are

chosen based on the current publications for AD study. The AD subjects have shown

atrophy patterns in these 5 regions [71, 72, 73, 74, 68, 75, 76, 77, 78]. Real application

results show satisfactory performance from spatial regularization neural network for

both whole-brain data and ROI data.

The remainder of this chapter is organized as follows. In section 3.2.1, the neural

network model is described and we also show how to solve the model. The regularized

neural network model is explained in section 3.2.2. We develop our spatial regularized

neural network model in Section 3.2.3. In Section 3.3, the three models are tested on

real MRI AD data. We finish with concluding remarks in Section 3.4.



37

3.2 Methods

3.2.1 Neural Network

A typical neural network is shown in Figure 11. It has at least 3 layers: an input

layer, a hidden layer, and an output layer. The neural network accepts an input and

returns an output. The hidden layer helps the neural network understand the input

data, and form the output.

A primary question here is how many hidden layers should be used. In [79],

Hornik and Kurt have proved that a single hidden layer can function as a universal

approximator. In other words, a single hidden layer neural network should be able to

approximate any output from any input as long as it has enough neurons in a single

layer [44]. However, the neural network with a larger number of hidden layers could

facilitate a more complex model at the cost of expensive computation.

Figure 11: Neural Network Model
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In a neural network, activation functions are needed to establish bounds for the

output [44]. There are many activation functions available for a neural network. The

two most common activation functions are step function and sigmoid function. In

this dissertation, we use sigmoid function: g(z) = sigmoid(z) =
1

1 + e−z
.

Figure 12: Sigmoid Function

For a classification problem, we could use a neural network to classify the input

into one or more classes. When a neural network has to choose between two options

like true or false, this is a binary classification. A binary classification needs a single

output neural network to do classification. In other words, we could classify the input

into two categories by using the single output. If we want to predict more than two

categories, we need more than two outputs. This is called Multi-Class classification.

In this dissertation, we use binary classification, because we only have two categories:

Alzheimer disease(AD) and Control subject(CS). Typically, we use a log loss function

to evaluate a neural network.
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The objective function for the binary classification is:

J(θ) =
1

m

m∑
i=1

[
− y(i)log(hθ(x

(i)))− (1− y(i))log(1− hθ(x(i)))

]
. (11)

where X =

[
(x(1)), (x(2)), ..., (x(m))

]
∈ Rn×m , y = [1, 1, ..., 0]> ∈ Rm . X is the input

data with m training data, x(i) ∈ Rn is a column vector, y(i) ∈ R, (i = 1, ...,m). The

column vector y is the known labels for X. In this paper, AD is labeled as ‘1’, CS is

labeled as ‘0’. hθ(x
(i)) (i = 1, ...,m) is neural network’s classification prediction for

ith subject calculated in Figure 11.


y(i) = 1, if hθ(x

(i)) ≥ 0.5.

y(i) = 0, if hθ(x
(i)) < 0.

To train the neural network, we implement the classic back propagation, which is

the most common method to train a neural network.

Back propagation was introduced by Rumelhart, Hinton, and Williams in [45].

The principle of back propagation is based on gradient descent. Gradient descent

refers to calculating an individual gradient for each node in the neural network for

each sample. The error function calculates the difference between the expected out-

put and actual output of the neural network [44]. Based on these derivatives, the

training algorithm will decide whether the weights of the node should be increased

or decreased. In other words, back propagation optimized individual weights with

derivatives. In turn, this optimization will decrease the total error of the neural

network. The specific steps are described as following:

1. Set the network architecture.
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• Set the the number of hidden layers, number of neurons in each layer, and

activation function.

• Input layer size: n

• Hidden layer size:h1

• Num of labels: h2

Figure 13: Neural Network Model

2. Initialize weights randomly.

• Initialize each Θ
(l)
ij to a random value in [−ε, ε]

• Θ(1) = rand(h1, n) ×( 2ε init - ε init )

• Θ(2) = rand(h2, h1) ×( 2ε init - ε init )
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3. Forward propagation.

Use forward propagation to determine the output node given the training data

(X,y):

• Input layer: a(1) = X

• Hidden layer: z(2) = Θ(1)a(1), a(2) = g(z(2))

• Output layer: z(3) = Θ(2)a(2), a(3) = g(z(3)) = hθ(X)

4. Calculate gradient.

We need to calculate:

∂J(Θ)

∂Θ
(l)
ij

=
∂J(Θ)

∂z(l+1)

∂z(l+1)

∂Θ
(l)
ij

. (12)

We need to compute the error δ
(l)
j for each node j in layer l, this error term

measures the difference between the actual output of this node and the expected

output. In other words, how much error this node is responsible for in this

output. To calculate the error, we need to start with the output layer and

work backwards through the neural network. Because we need to propagate the

errors backwards through the neural network. We don’t need to calculate the

error term for input layer, because the gradient calculation does not need this.

First let’s define:

δ(l) =
∂J(Θ)

∂z(l)
. (13)

For output layer 3, we need to calculate error term δ(3):

δ(3) =
∂J(Θ)

∂z(3)
= (a(3))T − y. (14)
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For hidden layer 2, we need to calculate error term δ(2):

δ(2) =
∂J(Θ)

∂z(2)
=
∂J(Θ)

∂z(3)
∂z(3)

∂z(2)

= Θ(2)T δ(3). ∗ g′(z(2)).
(15)

After replace equation 13 into 12, we obtain the gradient for the objective

function:

∂J(Θ)

∂Θ(l)
=

1

m
δ(l+1)(a(l))T . (16)

5. Update the weights to minimize cost function:

Θ
(l)
ij = Θ

(l)
ij + ∆Θ

(l)
ij = Θ

(l)
ij − α

∂J(Θ)

∂Θ
(l)
ij

.

Since we obtain the gradient, now we could train the neural network by minimizing

the objective function J(Θ).

3.2.2 Regularized Neural Network

Although a neural network is a very powerful technique for the classification, it is

more prone to overfitting when there are a huge number of features. For example, for

the data used in this dissertation, the dimension of the input feature is 79×95×79 =

592895, because each subject brain has 79 × 95 × 79 = 592895 voxels. In order to

avoid overfitting, we could implement the regularization approach. There are two

common regularization techniques to reduce overfitting: l1 and l2 regularization [80].

Both regularization techniques will add a weight penalty to the neural network, but

they calculate this penalty differently. l1 regularization is used to create sparsity in

the neural network. The l2 regularization is utilized to create lower weight values in
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the neural network. The lower weight values typically lead to less overfitting [44]. In

this dissertation, we implement l2 regularization to reduce overfitting.

The objective function of l2 regularization neural network for binary classification

is:

Jλ(θ) =
1

m

m∑
i=1

[
− y(i)log(hθ(x

(i)))− (1− y(i))log(1− hθ(x(i)))

]
(17)

+
λ2
2m

[
h1∑
j=1

n∑
k=1

(θ
(1)
j,k )2 +

h2∑
j=1

h1∑
k=1

(θ
(2)
j,k )2

]
,

where n is the total number of input layer features, h1 is the total number of the

hidden layer nodes, and h2 is the total number of the output layer nodes. λ2 is the

parameter to control the importance the l2 penalty. λ2 = 0 means l2 regularization

is not considered at all.

Since a l2 penalty is added in regularization neural network, derivatives of the

regularization term for the gradient should be added:

∂Jλ(Θ)

∂Θ(l)
=

1

m
δ(l+1)(a(l))T +

λ

m
Θ(l). (18)

In this dissertation, we add bias for the input layer and hidden layer weight. The

bias has a constant value of 1, it is not connected to the previous layer. We don’t

add regularization for the bias. Since we have obtained the gradient, now we could

train the regularization neural network by minimizing the objective function Jλ(Θ).

3.2.3 Spatial Regularized Neural Network

In the problem of Alzheimer’s disease classification using structural MRI data, the

brain voxels are spatially related. In other words, if one voxel is abnormal, its neigh-

bors are more likely to be abnormal, and vice versa. So it is natural to code the
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spatial information into the neural network training process to improve the learning

performance.

The idea of coding spatial information in the regularization theory contexts is

proposed in our paper [70], and has been successfully applied in fMRI data analysis.

However, we only consider the 2-dimension spatial information in [70], because we

only studied one slice of the brain which is 2-dimensional. In this chapter, our AD

data is the whole 3-dimensional brain, so we need to consider the 3-dimension spatial

information.

To code the spatial information, we need to define a neighborhood system first.

We define the voxel similarity coefficient by :

wkt =


1, if voxel k is a neighborhood of voxel t.

0, if voxel k is not a neighborhood of voxel t.

Figure 14 shows three different 3-dimensional neighborhood structures: (a) 6

neighborhood, (b) 18 neighborhood, (c) 26 neighborhood. In this dissertation, we

consider 26 neighbors for each voxel. If the voxel has no such neighbors, the coeffi-

cient is set to 0.

Figure 14: Neighborhood Structure for Each Voxel

The objective function of spatial regularization neural network for the binary
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classification is:

JSλ(θ) =
1

m

m∑
i=1

[
− y(i)log(hθ(x

(i)))− (1− y(i))log(1− hθ(x(i)))

]
(19)

+
λ2
2m

[
h1∑
j=1

n∑
k=1

(θ
(1)
j,k )2 +

h2∑
j=1

h1∑
k=1

(θ
(2)
j,k )2

]

+
λs
2m

h1∑
j=1

n∑
k=1

n∑
t=1

ωkt(θ
(1)
j,k − θ

(1)
j,t )2,

where λs is the spatial parameter to control the spatial penalty. λs = 0 means the

spatial penalty is not considered at all and each voxel is treated independently. When

λs is increased, neighbors are more close to each other.

In the previous section, we added regularization for both input layer weights Θ(1)

and hidden layer weights Θ(2). However, we only added spatial regularization for

the input layer Θ(1) in this section, because we know that the input layer has the 3-

dimensional information of the whole brain. The spatial information from the input

layer will help the neural network to improve the learning performance. However, we

don’t know the information for the hidden layer, because the hidden layer is a black

box.

Because a spatial penalty is added in a spatial regularization neural network, we

should add the derivatives of the spatial regularization term for the gradient:

∂JSλ(Θ)

∂Θ(2)
=

1

m
δ(3)(a(2))T +

λ2
m

Θ(2)

∂JSλ(Θ)

∂Θ(1)
=

1

m
δ(2)(a(1))T +

λ2
m

Θ(1) +
λs
m

(B1 −B2), (20)

where
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B1 = [
n∑
t=1

ω1tθ
(1)
1 ,

n∑
t=1

ω2tθ
(1)
2 , ...,

n∑
t=1

ωntθ
(1)
n ],

B2 = [
n∑
t=1

ω1tθ
(1)
t ,

n∑
t=1

ω2tθ
(1)
t , ...,

n∑
t=1

ωntθ
(1)
t ],

Θ(1) = [θ
(1)
1 , θ

(1)
2 , ..., θ(1)n ].

θ
(1)
i is a column vector with dimension of h1, i = 1, 2, ..., n. Both B1 and B2 are

matrix with dimension of h1 × n. We don’t add regularization for the bias. Since

we have obtained the gradient, now we can train the spatial regularization neural

network by minimizing the objective function JSλ(Θ).

3.3 Results

We have evaluated the performance of spatial regularization neural network with the

application on real MRI data. The performance is compared with neural network

(NN), regularized neural network (RNN), and spatial regularization neural network

(SRNN) proposed in section 3.2.3. For the real MRI data, we obtained 80 subjects

in total: 42 Alzheimer’s disease (AD) and 38 Control subject (CS). All data can be

downloaded from the Alzheimer’s disease Neuroimaging Initiative (ADNI) website

http://adni.loni.usc.edu. All data is normalized by using SPM12 (http://www.

fil.ion.ucl.ac.uk/spm/software/spm12/).

We tested all three models in section 3.2 on two types of data. The first type data

is based on the whole brain gray matter shown in Figure 16. The whole brain gray

matter is considered as input features.

http://adni.loni.usc.edu
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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Figure 15: Whole Brain

Figure 16: Whole Brain Gray Matter
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The second type of data is based on ROI data shown in Figure 17. For the second

type, we extracted 5 regions of interest (ROI) from the whole brain by using SPM

MNI template, and these 5 ROI are considered as input features. The 5 regions we

selected are: Hippocampus, Amygdala, Temporal Lobe, Frontal Lobe and Parietal

Lobe. The AD subjects have shown atrophy patterns in these 5 regions [71, 72, 73,

74, 68, 75, 76, 77, 78].

Figure 17: Regions of Interested

The classification results for whole brain grey matter is in Table 3 and the classifi-

cation results for ROI is in Table 4. All the parameters for the algorithms are selected

by 5 fold cross validation. For SRNN, we first select the non-spatial parameter λ2 for



49

regularization neural network and fix it. Then the spatial parameter λs is selected.

Both steps are done by cross validation. The learning performance is measured by

cross validation training classification accuracy, testing classification accuracy, testing

sensitivity, and testing specificity.

Table 3: Classification Accuracy for Whole Brain Grey Matter

Methods Training Accuracy Testing Accuracy Sensitivity Specificity
NN 78.58 % 62.62 % 81.67 % 37.22 %

RNN 92.42 % 72.38 % 85.83 % 54.44 %
SRNN 99.67 % 73.81 % 90.00 % 49.44 %

Table 4: Classification Accuracy for Regions of Interested (ROI)

Methods Training Accuracy Testing Accuracy Sensitivity Specificity
ROI NN 89.58 % 65.50 % 65.50 % 65.50 %

ROI RNN 100 % 93.12 % 87.25 % 99.00 %
ROI SRNN 100 % 94.63 % 91.00 % 98.44 %

From Table 3 and Table 4, it is clear that RNN increases the classification accu-

racy significantly compared to NN, because the regularization technique reduces the

overfitting problem. Moreover, SRNN is superior to RNN, which indicates that spa-

tial information further improves the learning performance. In addition, we can see

that SRNN has the best testing sensitivity among all three methods. Although the

testing specificity for SRNN is not as good as RNN, it is still better than NN. For the

disease diagnosis, sensitivity is usually more important than specificity. These results

demonstrate that our proposed spatial penalty not only helps increase the classifica-

tion accuracy in the neural network, but also keeps the tradeoff between sensitivity

and specificity.
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3.4 Conclusion

As computer computation power has improved in recent years, neural networks have

been widely applied in Alzheimer’s disease diagnosis. However, the first layer of

this method is based on an individual brain voxel, which means a neural network

learns each voxel individually without considering the brain spatial information. Mo-

tivated by MRI data analysis where spatial information is available between voxels,

we proposed a spatial regularization neural network. In this method, we assumed

the spatially adjacent voxels are close. This leads to a natural spatial regulariza-

tion approach to code the spatial information by using a user defined 3-dimensional

neighborhood system. Real application results show that spatial regularization neural

network increases the classification accuracy.

However, in this dissertation, we only used a single hidden layer for the neural

network by considering the computational cost. Although researchers have proved

that a single hidden layer can function as a universal approximator, brain data has

more complex patterns than we think. The neural network with a larger number of

hidden layers could be considered to facilitate a more complex model.
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CHAPTER 4

SUMMARY AND FUTURE WORK

4.1 Summary

In this dissertation, we focused on the study of machine learning techniques for high-

dimensional neuroimaging data. Two kinds of neuroimaging data have been studied:

functional MRI data and MRI data. fMRI data is used to gain insight into brain

activities of vision motion. MRI data is used to study the Alzheimer’s disease classi-

fication.

In Chapter 2, we used a General Linear Model to formulate the fMRI data, where

each voxel is assumed as a task, and proposed a spatial regularization approach for

multitask learning which incorporates spatial information provided by each task’s

neighborhood. In the problem of active region detection using fMRI data, the tasks

(brain voxels) are spatially related. It is natural to code the spatial information

into the training process to improve the learning performance. The contribution

for our proposed algorithm is that we define a new spatial penalty term for spatial

regularization provided by each task’s neighborhood using multitask learning (MTL).

A class of spatial multitask learning models: MTLRidge, MTLLasso, MTLEN was

proposed. Simulation and real application results show satisfactory performance from

spatial multitask learning algorithms.

Since computer processing power has improved in recent years, neural networks

have been widely applied in different fields. However, to the best of our knowledge, the

idea of coding spatial information for AD classification in the regularization neural

network context is still new. In Chapter 3, we proposed a spatial regularization
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approach for a neural network and applied it to structural MRI Alzheimer’s disease

classification. Instead of considering 2-dimensional spatial information, we considered

3-dimensional spatial information for SRNN. We tested our proposed model on both

whole-brain gray matter data and ROI data. Real application results show that our

proposed spatial regularization neural network increased the classification accuracy.

4.2 Future Work

In Chapter 2, based on the fMRI data analysis where spatial information is available

between voxels, we proposed a class of spatial multiple task learning algorithms for

regression. In this method, we used a universal tuning parameter, λs, to control the

spatial information for all voxels. The more optimal way is to select a specific tuning

parameter for each individual voxel. Although this is very challenging work due to the

high dimensionality of fMRI data, this should further improve the current learning

performance.

Relative to the problem of AD detection using MRI data, the brain voxels are

spatially related. It is natural to code the 3-dimensional spatial information in the

training process to improve the learning performance. In consequently, this discovery

has led us to propose a spatial regularization approach for neural network and apply

it to structural MRI Alzheimer’s disease classification in chapter 3. However, we only

used a single hidden layer for the neural network by considering the computational

cost. Although researchers have proved that a single hidden layer can function as

a universal approximator, the brain data is more complex than original anticipated.

The neural network with a larger number of hidden layers could facilitate a more

complex model at the cost of expensive computation.

Autism spectrum disorder (ASD) is a neurally based psychiatric disorder [81],
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which is characterized by the impaired development of social interaction and commu-

nication skills [82]. Although strong genetic factors are suspected [81], ASD continues

to be diagnosed using symptom-based clinical criteria [82] and its etiology remains un-

established. One recent topic garnering significant attention is the study of functional

connectivity of autism and controls [83, 84]. Further study in this area could provide

helpful information in gaining a better understanding of the neuronal pathology of

autism in children.
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[15] H. L. Gallagher, F. Happé, N. Brunswick, P. C. Fletcher, U. Frith, and C. D.

Frith, “Reading the mind in cartoons and stories: an fMRI study of ‘theory of

mind’ in verbal and nonverbal tasks,” Neuropsychologia, vol. 38, no. 1, pp. 11–21,

2000.

[16] J. Wan, Z. Zhang, J. Yan, T. Li, B. D. Rao, S. Fang, S. Kim, S. L. Risacher,

A. J. Saykin, and L. Shen, “Sparse bayesian multi-task learning for predict-

ing cognitive outcomes from neuroimaging measures in alzheimer’s disease,” in



56

Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,

pp. 940–947, IEEE, 2012.

[17] B. Jie, D. Zhang, B. Cheng, and D. Shen, “Manifold regularized multi-task fea-

ture selection for multi-modality classification in alzheimer’s disease,” in Medical

Image Computing and Computer-Assisted Intervention–MICCAI 2013, pp. 275–

283, Springer, 2013.

[18] X. Chen, J. He, R. Lawrence, and J. G. Carbonell, “Adaptive multi-task sparse

learning with an application to fMRI study,” in Proceedings of SIAM Interna-

tional Conference on Data Mining (SDM), pp. 212–223, SIAM, 2012.

[19] N. Rao, C. Cox, R. Nowak, and T. T. Rogers, “Sparse overlapping sets lasso for

multitask learning and its application to fMRI analysis,” in Advances in Neural

Information Processing Systems, pp. 2202–2210, 2013.

[20] K.-J. Lee, G. L. Jones, B. S. Caffo, and S. S. Bassett, “Spatial bayesian variable

selection models on functional magnetic resonance imaging time-series data,”

Bayesian Analysis (Online), vol. 9, no. 3, pp. 699–732, 2014.

[21] T. J. Sejnowski and C. R. Rosenberg, “Nettalk: A parallel network that learns

to read aloud,” Neurocomputing: Foundations of Research, pp. 661–672, 1988.

[22] T. G. Dietterich, H. Hild, and G. Bakiri, “A comparative study of ID3 and back-

propagation for english text-to-speech mapping.,” in Machine Learning, vol. 18,

pp. 51–80, Kluwer Academic Publishers, 1995.

[23] R. A. Caruana, “Multitask connectionist learning,” in Proceedings of the 1993

Connectionist Models Summer School, pp. 372–379, 1993.



57

[24] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp. 41–75,

1997.

[25] B. Bakker and T. Heskes, “Task clustering and gating for bayesian multitask

learning,” The Journal of Machine Learning Research, vol. 4, pp. 83–99, 2003.

[26] T. Evgeniou and M. Pontil, “Regularized multi–task learning,” in Proceedings of

the tenth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pp. 109–117, ACM, 2004.

[27] J. Bi, T. Xiong, S. Yu, M. Dundar, and R. B. Rao, “An improved multi-task

learning approach with applications in medical diagnosis,” in Machine Learning

and Knowledge Discovery in Databases, pp. 117–132, Springer, 2008.

[28] A. Agarwal, S. Gerber, and H. Daume, “Learning multiple tasks using manifold

regularization,” in Advances in Neural Information Processing Systems, pp. 46–

54, 2010.

[29] J. Zhou, J. Chen, and J. Ye, “Clustered multi-task learning via alternating

structure optimization,” in Advances in Neural Information Processing Systems,

pp. 702–710, 2011.

[30] J. Zhou, L. Yuan, J. Liu, and J. Ye, “A multi-task learning formulation for

predicting disease progression,” in Proceedings of the 17th ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining, pp. 814–822,

ACM, 2011.

[31] D. Zhang, D. Shen, A. D. N. Initiative, et al., “Multi-modal multi-task learn-

ing for joint prediction of multiple regression and classification variables in

alzheimer’s disease,” Neuroimage, vol. 59, no. 2, pp. 895–907, 2012.



58

[32] K. A. Norman, S. M. Polyn, G. J. Detre, and J. V. Haxby, “Beyond mind-reading:

multi-voxel pattern analysis of fMRI data,” Trends in Cognitive Sciences, vol. 10,

no. 9, pp. 424–430, 2006.

[33] M. Smith and L. Fahrmeir, “Spatial bayesian variable selection with application

to functional magnetic resonance imaging,” Journal of the American Statistical

Association, vol. 102, no. 478, pp. 417–431, 2007.

[34] P. Whittle, Prediction and Regulation by Linear Least-Square Methods. Univer-

sity of Minnesota Press, 1983.

[35] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for

nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55–67, 1970.

[36] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the

Royal Statistical Society. Series B (Methodological), pp. 267–288, 1996.

[37] H. Zou and T. Hastie, “Regularization and variable selection via the elastic

net,” Journal of the Royal Statistical Society: Series B (Statistical Methodology),

vol. 67, no. 2, pp. 301–320, 2005.

[38] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, et al., “Least angle regression,”

The Annals of Statistics, vol. 32, no. 2, pp. 407–499, 2004.

[39] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for generalized

linear models via coordinate descent,” Journal of Statistical Software, vol. 33,

no. 1, pp. 1–22, 2010.



59

[40] R. G. Aykroyd and S. Zimeras, “Inhomogeneous prior models for image recon-

struction,” Journal of the American Statistical Association, vol. 94, no. 447,

pp. 934–946, 1999.

[41] L. Xiong and D. Hong, “Incorporating spatial information in IMS data anal-

ysis to optimize classification accuracy using Markov Random Field and

MCMC method,” in Statistical Analysis of Spectrometry Based Proteomics and

Metabolomics Data, Frontiers in Probability and Statistics Series, pp. xx–xx,

Springer, New York, (to appear).

[42] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm

for linear inverse problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 1,

pp. 183–202, 2009.
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