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ABSTRACT

This work details the development of the density functional theory (DFT) imple-

mentation for nonadditive three-body dispersion using the exchange dipole moment

(XDM) and the quantum chemistry functional KP16/B13 to calculate self-consistent

field energy of molecular systems through the application of genetic algorithms. In

the case of dispersion, current ab initio methods are accurate but computationally

expensive. The development of three-body dispersion detailed here involves a den-

sity functional model approach resulting in comparable performance and advantages

in computational efficiency. The KP16/B13 functional is developed to advance the

implementation of a single reference functional that addresses nondynamic/strong

correlation and for use as a general purpose functional. This work details the op-

timization of the two models with selected sets of atoms and molecules and bench-

marking KP16/B13 with the Minnesota sets involving a variety of chemical properties.

Both parts of this work compare results against contemporary methods demonstrat-

ing improved performance for some properties and comparable results in others. The

calibration and optimization of the methods detailed above are my main contribution.

Software development to achieve this goal resulted in a general purpose genetic algo-

rithm code stack. The software developed also facilitated the organization of results

and computation of the methods on computer clusters at MTSU and supercomputers

at Oak Ridge National Laboratory. Through multiple iterations, refactoring, and de-

sign input from colleagues, advisors, and users, the final software stack is robust and

will continue to be leveraged by members of Dr. Kong’s group in future research.
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1 Introduction

The title of this dissertation aptly sums up the theme of this work: the application of

genetic algorithms for density functional optimization and development. Before get-

ting into the main bodys of work, there is an introduction to the concepts presented

with some brief background into density functional theory and genetic algorithms.

The first two sections are on the development of DFT methods. First are the damp-

ing schemes for dispersion and second is the KP16/B13 functional. The last chapter

continues research of the KP16/B13 with establishing the optimized KP16/B13 as

a general purpose functional through benchmarking a variety of chemical systems.

These studies used my organizational framework for my genetic algorithm imple-

mentation. The developed software efficiently utilized multiple high performance

resources to maximize computation throughput. It is my hope that this work ade-

quately demonstrates the tenets of computational science: advancement of research

in a scientific domain, software development and application, mathematical theory,

and effective use of high performance computing.

1.1 Brief Outline of Density Functional Theory

The explanation of DFT first begins with quantum chemistry’s solution to the Schrödinger

equation [29, p. 3]. The Schrödinger equation, proposed by Schrödinger in 1926, de-

scribes the discrete energy levels of a quantum system [20, p. 132]. The equation is

proposed based on the hyperbolic partial differential wave equation and experiments

involving electron’s light wave properties[20, p. 132]:

ĤΨ = ÊΨ (1)
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Ĥ is the Hamiltonian operator, Ψ is the wave function, and Ê is the energy. The

general equation can be cast into two different forms, the time-dependent and time-

independent Schrödinger equations as shown below:

ĤΨ = ih̄
∂Ψ

∂t
(2)

ĤΨ = EΨ (3)

The first equation includes the partial derivative of the wave function with respect

to time, denoting it as the time-dependent Schrödinger equation. For the time-

independent equation, also known as the stationary Schrödinger equation, energy

and/or Ψ no longer changes over time. For the purposes of this work, the focus is

the time-independent Schrödinger equation due to the state of the considered atomic

or molecular system remaining constant over time. The Hamiltonian operator, Ĥ, in

atomic units is of the form

Ĥ = −
N∑
i=1

1

2
∇2
i −

M∑
A=1

1

2MA

∇2
A −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
RAB

(4)

The terms are as follows: N is the number of electrons, M is the number of nuclei,

MA is the ratio of the mass of nucleus A to the mass of an electron, ZA is the atomic

number of nucleus A, riA is the distance between nucleus A and electron i, rij is the

distance between electron i and j, and RAB is the distance between nucleus A and

nucleus B. The differentiation operators ∇2
i and ∇2

A are with respect to the coordi-

nates of the ith electron and Ath nucleus, respectively. The first and second terms of

the Hamiltonian are the kinetic energy operators for the electrons and nuclei respec-

tively. The third term is the Coulomb attraction between electron i and nucleus A.

The fourth term is one Coulomb repulsion term between electrons i and j and the

fifth is the repulsion between nucleus A and nucleus B.
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For the purposes of the work, the focus is on the reduced electronic Hamilto-

nian resulting from the Born-Oppenheimer approximation [29, p. 5]. The Born-

Oppenheimer approximation states that the kinetic energy and Coulomb repulsion

terms of nuclei can be neglected due to their heavy atomic weight and low velocity in

comparison to electrons. Repulsion between nuclei is effectively a constant while the

kinetic energy is approximately zero[29, p. 5][47, p. 43]. The resulting term is called

the electronic Hamiltonian:

Ĥelec = −
N∑
i=1

1

2
∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
(5)

Outside of simple atoms such as H, He+, and other one-electron systems, the electronic

Schrödinger equation cannot be solved analytically for many-electron systems due to

the Coulomb pair potential energy term. Therefore, approximate wave functions are

created. This begs the question, how does one know the best approximate solution.

The variational principle states that any approximate solution to the equation of

this eigenvalue form will have higher energy than the exact solution of Schrödinger

equation[47, p. 32]. Consequently, the wave function that minimizes the energy is the

best approximate trial solution to the Schrödinger equation. One of the first advances

to solving the approximate wave function for the electronic Schrödinger equation of

many electrons is the Hartree-Fock approximation[47, p. 53]. A principal assumption

of the Hartree-Fock approximation is that electrons occupy spatial orbitals and have

either spin up or spin down state[29, p. 9]. To resolve the complicated electron-

electron repulsion of a many electron system, the wave function, Ψ, is represented

in a general form as a product of single electron spin-orbital functions, φi [29, p. 9].

The spin-orbital function is made up of a spatial (orbital) and a spin component.

Each electron experiences repulsion from all other electrons in an average potential

field [29, p. 11][47, p. 54] . To satisfy the antisymmetry principle, which states
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that interchanging any two electrons changes the sign of the wave function, the Slater

determinant is used to represent Ψ[47, p. 45-53]. The Slater determinant also satisfies

the Pauli Exclusion Principle where two electrons of the same spin cannot occupy the

same orbital[47, p. 45-53]. If two rows or columns of the Slater determinant are

identical, then the result of the determinant is zero and the Pauli principle is fulfilled.

Ψ(~r1, ~r2, · · · , ~rN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(~r1) ψ1(~r2) · · · ψ1(~rN)

ψ2(~r1) ψ2(~r2) · · · ψ2(~rN)

...
...

. . .
...

ψN(~r1) ψN(~r2) · · · ψN(~rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(6)

=
1√
N !

det |ψ1(~r1)ψ2(~r2) · · ·ψN(~rN)| (7)

Here ψi is the molecular orbital i and ~rj is the coordinate of electron j. Molecular

orbitals are made up of a linear combination of atomic orbitals, denoted as φ, abbre-

viated as MO LCAO method[47, p. 56].

Two of the main challenges of the Hartree-Fock approximation is to correctly

choose functions for φ and how to determine whether the calculated energy is the

correct energy of the system. For the issue of the calculated energy, the variational

principle states that the energy of the approximate solution is greater than or equal

to the ground state energy of the atom or molecule[47, p. 32]. Therefore, the wave

function, Ψ, that minimizes the energy is the approximate solution to the Schrödinger

equation. As for what functions to use for φ, two main options are the Slater type

orbital[47, p. 56] and the Gaussian type orbital[47, p. 56]. The general Slater type
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orbital in the spherical coordinate system has the form:

φ(r, θ, φ) = Nα,nr
n−1e−αrY m

l (θ, φ) (8)

Nα,n =
(2α)n+

1
2

[(2n)!]
1
2

(9)

For the Slater type orbital, α is the exponential parameter, n is the principle quantum

number, Nα,n is the normalizing factor, and Y m
l (θ, φ) is the angular part represented

by the spherical harmonic function[29, p. 100-101]. Within the spherical harmonic,

l is the orbital angular quantum number and m is the magnetic quantum number.

The general Gaussian type orbital in Cartesian coordinates reads as:

φ(x, y, z) = g(~r) = Nφx
aybzce−αr

2

(10)

Nφ = (
2

π
)3/4

2(a+b+c)α(2a+2b+2c+3)/4

[(2a− 1)!!(2b− 1)!!(2c− 1)!!]1/2
(11)

l = a+ b+ c (12)

Similar to the Slater type orbital, α is the exponential parameter and Nφ is the nor-

malizing factor. However, this form is Cartesian instead of the spherical form of the

Slater type orbital given above. With the Cartesian function, the angular quantum

number is equal to the sum of a, b, and c which are the exponents for the angular

components in the x, y, and z directions respectively.

In 1951, Roothaan[29, p. 94][47, p. 138] developed the Roothaan equations to

solve the Hartree-Fock equations by using a set of known basis functions, such as

Slater or Gaussian type functions, and converting the problem into a matrix eigen-

value problem. ψ is expressed as a linear combination of spatial basis functions

with the intent of finding the energy-minimizing coefficients for the solution of the

matrix eigenvalue problem. From the Slater determinant, it is apparent that the

Schrödinger equation is a nonlinear problem, requiring an iterative process of solving
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the eigenvalue problem from the Roothaan equations named the Self Consistent Field

procedure[29, p. 12][47, p. 140,146], abbreviated as SCF. An overview of the SCF

procedure is as follows:

1. Setup molecule information such as coordinates, atomic numbers, number of

electrons, and basis set information.

2. Calculate integral values of the Hamiltonian matrix and additional terms. The

full term is called the Fock matrix, F

3. Solve the eigenvalue equation

FC = Cε (13)

to solve for the energies, ε, and coefficients of the orbital basis functions, C.

4. Determine whether the solution has converged by comparing the energy of the

current iteration and that from the previous iteration against a defined thresh-

old. If the energy difference is above the defined threshold, return to step 2

with the new coefficients and repeat the process.

When converting to an eigenvalue problem using a defined basis and the Roothaan

equations, the Coulomb interaction becomes a sum of four-centered two-electron in-

tegrals:

〈µν|λσ〉 =

∫
φ∗µ(1)φν(1)r−11,2φ

∗
λ(2)φσ(2)d~r1d~r2 (14)

The above equation uses the physicist’s notation of the Coulomb integrals where µ,

ν, λ, and ρ are indicies of basis functions, and 1 and 2 represent electrons with r1,2 as

the distance between them[47, p. 67,154]. Due to the four generally different indicies,

the creation of the Fock matrix is an N4 calculation. Now that wave function theory

and Hartree-Fock have been discussed, the transition to density functional theory can

be made which is the main focus of this work.
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Density functional theory began with a paper by Hohenberg and Kohn in 1964

[29], where the theorems proven in that work are the basis for modern day density

functional theories. The first Hohenberg-Kohn theorem states that ’the external

potential Vext(~r) is (to within a constant) a unique functional of ρ(~r)’[29, p. 33] and

vice versa. The second theorem establishes the variational principle applied to the

ground state energy as a function of the density. From these two theorems, it can be

concluded that a single ground state density, ρ0(~r), exists for a ground state energy

E0 and is subject to the variational principle. Leveraging these two theorems, Kohn

and Sham, in 1965, presented the Kohn-Sham equations to use the electron density,

made up of one electron orbitals, as the functional variable of the energy functional

while separating interacting and non-interacting terms [29, p. 41]. This separation

requires a new Hamiltonian and orbitals denoted as Kohn-Sham and abbreviated as

KS:

ĤKS = −1

2

N∑
i

∇2
i +

N∑
i

VS(~ri) (15)

As the above Hamiltonian shows, it only contains non-interacting terms, meaning no

explicit electron-electron interaction. It also introduces a new term for the effective

Kohn-Sham local potential VS(~r). The ground state wave function is also represented

as a Slater determinant, but uses what is called Kohn-Sham orbitals obtained by

solving the self-consistent eigenvalue problem with the Kohn-Sham Hamiltonian from

eq. (15). The result is similar to the Hartree-Fock eigenvalue equation [29, p. 43]:

f̂KSφi = εiφi (16)

where f̂KS is the Kohn-Sham operator corresponding to the Hamiltonian in eq. (15),

φi are the Kohn-Sham orbitals, and εi are the associated orbital energies. With the

separation of interacting and non-interacting terms, the full energy equation is [29,
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p. 44]:

E[ρ(~r)] = TS[ρ] + J [ρ] + ENe[ρ] + EXC [ρ] (17)

TS[ρ] is the non-interacting kinetic energy, J [ρ] is the Coulomb term, ENe[ρ] is the

attraction energy between nuclei and electrons, and EXC [ρ] is the correction term for

kinetic energy due to electron correlation and exchange effects. The above equation

is very similar the Hartree-Fock formalism except that Kohn-Sham orbitals are used,

the effective Kohn-Sham local potential VS is different from Hartree-Fock, and the

term EXC [ρ] is the only unknown since the noninteracting kinetic energy TS and the

electron density are calculated explicitly as functions of the occupied Kohn-Sham

orbitals. Applying the variational principle, the resulting equation is [29, p. 45]:

(
−1

2
∇2 + Veff (~r1)

)
φi = εiφi (18)

Veff (~r1) =

[∫
ρ(~r2)

r12
d~r2 + VXC(~r1)−

M∑
A

ZA
r1A

]
(19)

where VXC is the functional derivative of the exchange-correlation energy correction

term.

VXC =
δEXC
δρ

(20)

One of the principle challenges of density functional theory is the determination of

the term VXC [29, p. 44-50] and part of the focus of this work.

1.2 Genetic Algorithms

Many results of this work use an implementation of a genetic algorithm[21, p. 143] to

optimize parameters of the approximation scheme or functional for density functional

codes. A genetic algorithm is a random parameter space optimization scheme, similar

to Monte Carlo or simulated annealing[21, p. 138], that uses ideas from biological
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genetic processes to generate new points in the N-dimensional search space. When

discussing genetic algorithms, biological terms are used to describe the features. It-

erations are called generations, a single parameter set is labeled as an organism, and

a set of parameter sets is called a population. As with other parameter optimization

schemes, a fitness value or score is minimized or maximized to obtain the optimal

result. The characteristics of the fitness function to calculate the fitness score can

significantly affect direction of optimization and yield results that deviate from the

original goal. Similarly, over fitting is a concern for the genetic algorithm. For com-

plex problems, the fitness function should be carefully tailored to reach the desired

results [21, p. 164-173].

The main driving processes of a genetic algorithm are mutation, crossover, repli-

cation, and selection [21, p. 143-155]. Mutation is the random modification of the

organism. Several modification options can be used such as varying a single parame-

ter, many parameters, or all parameters. The variance can be small shifts, to search

the local space, or a completely random value. Crossover is a unique process of ge-

netic algorithms where two previously calculated organisms, labeled as parents, are

randomly chosen from the population and two new organisms, labeled as children,

are created by breeding the parameters of the parents. As with mutation, there are

several methods of breeding that involve interchanging the parameters of the parents.

Some examples are shown in Figure 1.
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Figure 1: An example of two types of crossover are detailed above. The example on
the left is a split cross breeding through the middle of the parameters. The example
on the right is a full shuffle of parameters.

These two processes, mutation and crossover, have many different implementa-

tions and knowledge of the problem, parameter space, or domain science is helpful in

determining the mutation and crossover process to use. While mutation and crossover

are influenced by genetics, replication and selection are related to evolution and natu-

ral selection[21, p. 143]. Replication is the process of favoring the more fit organisms

for reproduction. With this process, these organisms should be more likely to un-
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dergo mutation and crossover and influence further populations. Lastly, selection,

also known as culling, is the process of removing unfit organisms and creating a new

population of the fittest organisms for seeding the next population for investigation

[21, p. 144].
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2 Software and Codes

2.1 GA base

The main suite of programs used for this body of work I wrote is labeled as GA base

and involves a series of Bash (Bourne-again shell) and Perl scripts. The basic func-

tion of GA base is to facilitate the general use of genetic algorithms for any problem

involving the optimization of a set of parameters. This series of scripts was used in

all projects described in this work and the ease of use and effective implementation

of genetic algorithms allowed users to quickly and effectively calculate results. I im-

plemented a genetic algorithm with further additions of more sophisticated methods

of mutation and crossover available to create a more robust genetic algorithm.
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Table 1: Overview of GA base software

Software Description

gen new pop.pl Generates a new population and either creates a new popu-

lation of parameters to be searched, or uses results from pre-

vious populations to calculate a new population. Uses three

different mutation schemes and three basic crossover scheme.

Uses hashes to ensure no repeat parameter calculations and

has measures to avoid premature convergence

run pop.sh Runs the software to be optimized. Includes several different

schemes for running on a single machine, running across a

simple Beowulf cluster, or running across a supercomputer

with a scheduling system.

job setup.sh Sets up the necessary files, data, and input files for actual run

of the software.

err calc.sh The general error calculation script that calculates error and

aggregates it across a single generation. Puts the values in a

form that can then be used in the next generation and in the

gen new pop.pl script.

calc gen error.* Calculates the generation error. This script, implemented by

the user, is called by err calc.sh and extracts the necessary

values from output files generated by the software of inves-

tigation and calculates the error or fitness. The wild card

character implies that the decision for the programming lan-

guage is left up to the user. In this work, a Bash and Perl

version have been implemented.
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The intent of GA base is to be flexible, modular, and allow users to take advantage

of the genetic algorithm to do a guided search of high dimensionality space towards

optimization involving a specific software. It also organizes input files, output files,

calculated data, and intermediate scripts for the ease of the user. Bash and Perl

were predominately used for ease of modification and organization of input, output,

and other necessary files. Both languages allow native access to regular expressions

for parameter replacement and text input files. Regular expressions also provide

pattern matching to extract necessary values for calculating errors and fitness. The

organization of the parameter sets follows the overall genetic algorithm scheme of

separating results by generation with aggregate information present in each.

The computation of results took a variety of forms in this work. Whether the

software is a serial, multi-threaded, or a multi-node program, the setup and organiza-

tion allowed users to take full advantage of the computer systems. For single thread

software, multiple executions can be run on single node systems to fully utilize the

number of cores. For software already multi-threaded, jobs could be submitted across

nodes to take advantage of all available computational power. Overall, the setup

allows flexibility in execution for a variety of computer systems.

The genetic algorithm implementation in GA base has a basic foundation of a

genetic algorithm[21] with modifications to avoid repeated parameters and premature

convergence. As described in the genetic algorithms section, the basics of a GA are

evolutionary processes such as mutation, crossover, replication, and selection. In this

implementation, crossover has, by default, a 50% parameter split at the half section.

The visual representation is the first example in Figure 1. The crossover rate is

determined by the user within the gen new pop.pl script. The number of crossovers
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is determined by the following equation.

N =

[
P

Cr
e−r
]

(21)

For the above equation, N is the final number of crossovers to perform for a given

iteration, P is the population size, Cr is the crossover rate, and r is a random value

between 0 and 1. The brackets represent rounding to the nearest integer value. The

choice for an exponential curve is to allow at least some crossover, regardless of the

calculated random value. Various crossover rates allow users to control the probability

of selecting more or less crossovers.

Figure 2: Graph of different user-defined crossover rates detailing the relationship
between a random number and the resulting number of crossovers.
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Further improvements to this function may include the specification of maximum

and minimum number of crossovers with an additional parameter to control the decay.

All projects in this work used a crossover rate of 3 to allow a maximum of a third to a

minimum of about 20% of the population to undergo crossover. I chose this value in

order to ensure a balanced number of crossovers and mutations. In other problems,

it may be more beneficial for crossover or mutation to dominate but that is informed

by experimentation and domain knowledge. The projects in this work had no prior

informed knowledge of the space. Therefore, I implemented three types of crossover

with adjustable probabilities to cover a wide range of possibilities. The three types

are a one-to-one interchanging of parameters visualized in the right picture of Figure

1, a uniform crossover where the probability that an interchange of parameters is 50%,

and a single point crossover visualized in the right picture of Figure 1. To elaborate

on the uniform crossover, each parameter has a 50% chance of undergoing crossover.

This is a more random set than a one-to-one interchange.

My implementation of mutation comes in three options, total mutation of the

parameters to form a new parameter set, a total mutation of a randomly selected

subset of parameters, and up to a 5% perturbation of a randomly selected subset of

parameters for an existing set. The total mutation of parameters is used to search a

totally new area of parameter space by generating a whole new set of parameters. The

second mutation method of changing a subset of parameters is to fix some parameters

but search other points in space for the other parameters. The last mutation method

seeks to search around specific points in space, particularly those with high fitness. In

effect this is similar to trying to trace a local minimum or local maximum. The number

of perturbations is of the range of one to all parameters undergoing perturbation. The

total number of mutations is dependent on the difference between population size and

the number of crossovers.
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The selection process of choosing a population to undergo crossover and mutation

is determined by the top N of all searched parameters and the previous population

provided they are not within a user defined distance threshold of the existing top

N . Any additional selections are random from the total searched parameter sets.

I took such measures to reduce instances of premature convergence that occurred

during the research and development process. Additional improvements, such as

more sophisticated crossovers, could be added for more user options to tailor the

genetic algorithm to the application.

2.2 Density Functional Computational Codes

The main computational code, programmed in C++ and Fortran, in this work is

tentatively labeled xTron. This software was developed by Fenglai Liu, a previous

postdoctoral researcher Dr. Kong’s group, with necessary integral routines used by

the density functionals to evaluate Gaussian type orbitals. The code calculates self-

consistent field energy for molecular systems as well as additional properties such as

odd-electron populations and dipole moments. The calculated energy is conveniently

divided into energy components that make up the total energy of a molecule such

as nuclear repulsion, effective core potential, exchange-correlation, and kinetic en-

ergies. Additionally, xTron supports many contemporary DFT functionals such as

B3LYP, B05, PBE, and BLYP to name a few. xTron is still undergoing development

towards using general purpose graphical processing units, abbreviated as GPGPU’s,

and other improvements. For high performance, xTron supports threaded capability

through C++’s Thread Building Blocks (TBB) and the Boost library. It will use

CPU specifications to take advantage of the maximum number of cores on a given

system. No manual input of the number of cores is needed for threaded capability.

However, xTron does not support multi-node functionality at the moment.



18

3 Density-functional Approach to the Three-Body

Dispersion Interaction Based on the Exchange

Dipole Moment

3.1 Introduction

The first application of GA base on a density functional project was the optimization

of two non-additive three-body dispersion damping models. Damping refers to func-

tions needed to prevent dispersion energy divergence at small inter-nuclear distances

and errors from multipole expansion of electrostatic interaction [40, 43]. Dispersion

refers to van-der-Waals (VDW) interactions of instantaneous electric dipoles formed

from concentrations of electrons within atoms or molecules. Additive dispersion is the

summation of pairwise interactions while non-additive has no such summation. In the

context of three-body, the non-additive dispersion between three atoms or molecules

is given by a single term and cannot be ignored for accurate results as discussed in

Kennedy et. al[28]. The models in this work address computational cost and ac-

curacy in DFT methods. “Ab initio correlation methods, such as coupled-cluster

with singles, doubles, and perturbative triple excitations (CCSD(T)) and symmetry-

adapted perturbation theory (SAPT) are capable of accurately estimating the dis-

persion interaction” [40] but are computationally expensive. “Non-empirical DFT

models have also been put forward based on response formalism [19], model exchange

hole [8], exchange-correlation (XC) hole [1], and ground-state electron density with

reference values for the free atoms [19].” [40]. One such example is the exchange

dipole moment (XDM) model of Becke and Johnson [8, 6, 26], “a nonempirical den-

sity functional model of dispersion, in which the dipole moment of a model exchange

hole centered on one system induces an instantaneous dipole moment in a weakly
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interacting neighboring system” [40]. Most DFT models focus on two-body disper-

sion because it makes up the majority of dispersion interaction [40]. It is unclear

how much the non-additive three-body term contributes the total dispersion [40]. For

stabilization energy, Wen et. al estimates it to be as large as 10% in some molecular

crystals[54] while von Lilienfield and Tkatchenko report about “46% of the energy

difference between folded and elongated polyalanine decamers[34]. The three-body

dispersion contribution was also shown to be crucial to the third virial coefficient.[34,

55, 25, 11]”[40]. These reported estimated energy contributions indicate that ”current

DFT methods tend to overestimate the two-body dispersion interaction partly due to

the omission of the three-body contribution that is often of the opposite sign” [40].

The implementation of the XDM model includes the non-additive three-body disper-

sion component with two proposed damping functions. Performance of the models

was measured by isolating the non-additive three-body dispersion component for ben-

zene trimers from Sherrill et. al. [28] and from SAPT results from Szalewicz et. al.

for He3 and Ar3 trimers [12, 11, 9]. Isolation involved taking the difference between

Møller-Plesset perturbation theory (MP2) and CCSD(T) energies [28]. Parameters

for the damping functions were optimized using GA base and my implementation of

genetic algorithms. The results were published in The Journal of Chemical Physics

[40].

3.2 Background

3.2.1 Møller-Plesset Perturbation Theory

This section will briefly cover background on MP2, CCSD(T), and SAPT with de-

scriptions of dispersion in the context of these methods. The first method to discuss

is MP2, a wave function method from perturbation theory that approximately and

directly describes intermolecular forces such as electrostatics, induction, and disper-
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sion[36, 51]. A brief description is given here starting with the Hamiltonian defined

as:

Ĥ = Ĥ0 + V =
n∑
i

F̂i + V (22)

where the Fock operators, F̂i, are assumed nonperturbative [52]. The resulting elec-

tron correlation is given as:

EMP2 = −
nocc∑
i<j

nvir∑
a<b

| 〈ij|ab〉 − 〈ij|ba〉 |
εa + εb − εi − εj

(23)

where i and j are indicies over the occupied orbitals, φi and φj, a and b are indicies

over the virtual orbitals, φa and φb, and ε are the orbital energies of a specified index

[52]. MP2 overestimates the energy from dispersion interaction specifically from the

coefficients[51] or neglect of the three-body terms[28]. Many modern variations have

been developed to correct or improve MP2 such as DF-MP2/RI-MP2 (density fit-

ting/resolution of identity), LMP2, TRIM-MP2 (local correlation), and combinations

such as DF-LMP2, RI-TRIM [51, 36].

3.2.2 Symmetry-Adapted Perturbation Theory

SAPT stands for symmetry-adapted perturbation theory and begins with isolated

monomers or unperturbed molecules. The interaction energy is treated as small per-

turbations by Coulombic intermonomer interactions [48]. To begin, the Schrödinger’s

equations for isolated monomers A and B are given as [48]:

HXΦX = EXΦX , X = A orB (24)

where HX is the Hamiltonian, ΦX is the wave function, and EX is the energy for

monomer X. “Next, the monomers are placed in the dimer configuration and all
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electrons and nuclei of monomer A then interact with those of monomer B according

to Coulomb’s law.”[48] The sum of these Coulomb interaction terms is denoted by V ,

the intermolecular interaction operator [48]. The Hamiltonian with V for the dimer

is then:

H = HA +HB + V = H0 + V (25)

The unperturbed part of the problem with the Hamiltonian H0 has the solution as the

product of isolated monomers for the wave function: Ψ(0) = ΦAΦB and the eigenen-

ergy as E(0) = EA+EB. The operator V uses the standard Raleigh-Schrödinger (RS)

perturbation theory expressed as a sum of perturbation corrections [48]:

Eint = E
(1)
RS + E

(2)
RS + · · · (26)

This is the most basic formalism of SAPT with improved versions and methods pro-

posed for convergence, performance, and applications to categories of problems, such

as many-electron systems. In the context of dispersion, SAPT is able to describe

monomer properties through their direct relation to SAPT interaction energies and

naturally decomposes them into physically interpretable components. The main com-

ponents include electrostatic, induction, dispersion, and exchange energy contribu-

tions. SAPT, in the context of this work and dispersion, allows the direct computa-

tion of three-body nonaddtive energies to the effect that a three-body SAPT(DFT)

has been developed recently [48] by Podeszwa and Szalewicz[38].

3.2.3 CCSD(T)

CCSD(T), considered the ‘gold standard’ of reproducing experimental results [56],

is a wave function method from coupled-cluster theory where the wave function is
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written as [2]:

ΨCC = (1 + T̂ +
T̂ 2

2
+
T̂ 3

3!
+ · · · )Φ0 (27)

where Φ0 is the HF wave function and T̂ is the cluster operator. T̂ is the sum of

excitation cluster operators [2]:

T̂ = T̂1 + T̂2 + · · ·+ T̂N (28)

T̂n = (n!)−2
∑
i,j,...
a,b,...

tab...ij... ĉ
†
aĉ
†
b · · · ĉ

†
j ĉ
†
i (29)

T̂1Φ0 =
∑
i,a

taiΦ
a
i (30)

T̂2Φ0 =
∑

i>j,a>b

tabij Φab
ij (31)

T̂3Φ0 =
∑

i>j>k,a>b>c

tabcijkΦabc
ijk (32)

T̂4Φ0 =
∑

i>j>k>l,a>b>c>d

tabcdijkl Φ
abcd
ijkl (33)

Here the operator T̂n expands to single Φa
i , double Φabc

ijk , triple Φabc
ijk , etc. excitations

[2]. From the description of CCSD(T) and the expansion of higher order excitations

between bodies, it is observed that CCSD(T) treats correlation very accurately [13]

and thus describes dispersion effects well, as compared to MP2 and SAPT, though

at a significant computational cost.

3.3 Theory

The dispersion energy can be represented as a many body series expansion [49]:

Edisp =
1

2

∑
A,B

E(2)( ~RA, ~RB) +
1

6

∑
A,B,C

E(3)( ~RA, ~RB, ~RC) + ... (34)
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with groups of atoms (A, B, C, ...), positions (~RA, ~RB, ~RC , ...), and energies (E(2), E(2), ..., E(N)).

The two-body term is given as:

E(2) = −C
AB
6

R6
AB

− CAB
8

R8
AB

− CAB
10

R10
AB

− ... (35)

for spherical neutral atoms with non-overlapping densities [40]. The term RAB is the

distance from atoms A to atoms B and the dispersion coefficients, CAB
n are given from

the XDM model of Becke and Johnson [26]. Similarly, the non-additive three-body

interaction can be expressed as:

E(3)( ~RA, ~RB, ~RC) = CABC
9

(3 cos(φA)3 cos(φB)3 cos(φC) + 1)

R3
ABR

3
ACR

3
BC

(36)

where φA, φB, φC are the internal angles of the triangle ABC and CABC
9 is given by

the Axilrod-Teller formula [28, 40]. As observed from the above equations, at small

internuclear distances the resulting dispersion energy increases dramatically with er-

roneous values. This case occurs in molecules, necessitating damping factors (f) [40].

Damping functions are also needed to correct for errors from the multipole expansion

of electrostatic interaction [43]. The dispersion energy term is then rewritten as:

Edisp =
1

2

∑
A,B

E(2)( ~RA, ~RB; fAB(RAB)) +
1

6

∑
A,B,C

E(3)( ~RA, ~RB, ~RC ; fABC(RABC)) + ...

(37)

with the two-body function, fAB, and non-additive three-body dispersion interactions,

fABC and RABC is a geometrically averaged effective distance to be specified [40].

Before the discussion of the two damping schemes, it should be mentioned that the

CABC
9 was also a major focus of the publication but was not part of my contribution
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to this work. The modified term from Eq. (2.16) in Tang’s paper [49] is given as:

CABC
9 =

3

2
αAαBαC

ηAηBηC(ηA + ηB + ηC)

(ηA + ηB)(ηB + ηC)(ηC + ηA)
(38)

The term ηi are constants of an average atomic excitation energy[40]. The approxi-

mate form is given by Tang [49] as a function of the two-body interaction coefficients:

ηA =
4

3

CAA
6

α2
A

(39)

In this work, a modified ηA value is obtained by linking the XDM model and the

three-body dispersion model of Tang and Karpus to produce[40]:

ηA =
2

3

〈d2X〉A
αA

(40)

The result is “a nonempirical estimate of nonadditive three-body interaction contribu-

tion to the dispersion energy within the XDM model.”[40] Returning to damping, two

damping functions for the three-body term are suggested beginning with Scheme A

which is similar to the triple product equation in Ref. [43] with a different numerator

[40] and given by:

E(3)(~RA, ~RB, ~RC ; fABC) = CABC
9

(3 cos(φA)3 cos(φB)3 cos(φC) + 1)

(R
3

vdW,AB +R3
AB)(R

3

vdW,BC +R3
BC)(R

3

vdW,CA +R3
CA)
(41)

“RvdW,AB is a sum of effective atomic VDW radii of atoms A and B related to the

critical interatomic distance Rc, AB as defined in the two-body XDM model. It is

the distance where the three components of the two-body dispersion energy become
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roughly equal in magnitude[26], which is when [40]:”

Rc,ij =
1

3

[(C8,ij

C6,ij

)1/2
+
(C10,ij

C6,ij

)1/4
+
(C10,ij

C8,ij

)1/2]
(42)

RvdW,ij = α1Rc,ij + α2 (43)

α1 and α2 are the two adjustable damping parameters optimized for using my genetic

algorithm implementation. The second damping function named Scheme B uses a

geometric-mean of the XDM effective VDW radii [40],

E(3)( ~RA, ~RB, ~RC ; fABC(RABC)) = CABC
9

(3 cos(φA)3 cos(φB)3 cos(φC) + 1)

(R
9

vdW,ABC +R3
ABR

3
ACR

3
BC)

(44)

RvdW,ABC = 3
√
RvdW,ABRvdW,BCRvdW,CA (45)

The main difference between the two are the denominators where Scheme A uses

Rc,ij, the critical interatomic distance and, as shown above, Scheme B relates the

three interatomic distances in an effective mean radius, RvdW,ABC [40].

3.4 Computational Details

Development and execution of the VDW code and the GA base was done on the

two machines used by the group labeled as kong-srv and kong-wk to denote the

server and the workstation respectively. Each energy calculation took on the order

of 10 milliseconds with the calculation of all 62 benzene trimers at approximately

2-3 seconds. The calculation of the non-additive three-body dispersion involved a

program written by members in the group labeled as ‘VDW’. Calculation of the full

energy was done using Q-Chem [44]. Languages used were C++ for the ‘VDW’

program and Perl scripts to execute and run the genetic algorithm. Execution of

the genetic algorithm was further improved by threading each parameter set under
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investigation into it’s own separate thread. Therefore, each generation of the genetic

algorithm was approximately 2-6 seconds of execution time with a population size of

16 to take full advantage of the 16 core cpu. Mentioned early, the weights associated

with each set of trimers (benzene, He3, and Ar3) also involved some discussion and

experimentation to obtain the desired results.

3.5 Results and Discussion

The present model is an extension of the XDM algorithm from Ref [31]. The fully an-

alytic form is detailed in the theory section. An unpruned grid (194,590) consisting of

194 radial and 590 angular points provided the desired accuracy within 1 kcal/mol for

the numerical integration in all studied cases [40]. The dispersion energy is calculated

post-self-consistent field (SCF). “The electron density and the non-dispersion part

of the DFT energy are calculated with the exchange-correlation(XC) DFT scheme

P86(X) + PBE(C) as recommended in Ref. [27][40].” The investigation of the CABC
9

involved homonuclear trimers and noble atom triplets while the damping involved 62

symmetry-unique benzene trimers. Four benzene trimers were removed as extreme

outliers due to occasional poor agreement, resulting in these four outliers dominating

the error and optimization [40]. For the homonuclear trimers and noble atom triplets,

the SAPT values from Szalewicz et. al.[12, 9, 10] for He3 and Ar3 are used for their

accurate estimation of dispersion. As detailed in the background section of this work

and applied by Sherrill et. al.[28], the non-additive three-body intermolecular dis-

persion interaction can be estimated by taking the difference between CCSD(T) and

MP2 total three-body energy contributions [40]. This is done “under the assumption

that the two-body and additive three-body interactions in CCSDT(T) are mostly re-

covered by the MP2 energy[40].” Figure 3 illustrates the intermolecular interactions

only of E (CCSD(T))-E (MP2) deduced from reference [28].
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Figure 3: E (CCSD(T))-E (MP2) for a series of benzene trimers [28] as a function
of RABC ≡ R3

ABR
3
ACR

3
BC intermolecular distance normalized by the smallest RABC

value in the series [40] to the three-body dispersion energy, E
(3)
int. Values are available

in the appendix.

The X-axis values, RABC ≡ R3
ABR

3
ACR

3
BC , are normalized by the smallest RABC

value in the series. To first establish that E (CCSD(T))-E (MP2) is an accurate es-

timate of non-additive three-body intermolecular dispersion, we first compare the

calculated values to the basic, nondamped E(3)(~RA, ~RB, ~RC) from equation 41. The

C9 value is the newly proposed term, briefly covered in the theory section. The ac-

curacy and results of the non-damped three-body dispersion interaction and the C9

was verified and detailed in Table III in the original paper. The comparisons were

between highly accurate benchmarks of noble atom triplets[32, 50, 40]. In order to

correctly measure the nondamped non-additive three-body dispersion, the 7 most

distant symmetry-unique timers, measured by RABC , were chosen due to the negligi-

ble amount of damping for well-separated trimers[40]. The sum of these 7 trimers is

0.00120 kcal/mol and the sum of the latter is 0.00125 kcal/mol, with a mean absolute

deviation (MAD) on these trimers of 0.00005 kcal/mol.
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Figure 4: E (CCSD(T))-E (MP2) versus nondamped present model under investiga-

tion. Function of RABC and E
(3)
int

The observed results are within chemical accuracy (1 kcal/mol). This shows the

energy difference, E (CCSD(T))-E (MP2), is, mostly, due to the three-body dispersion,

E(3), [40]. As Figure 3 and 4 shows, the energy dispersion and the models agreement

deteriorates as the trimers become closer together. This observation highlights the

need for damping [40].

This work presents and tests two damping schemes, denoted as Scheme A and

Scheme B, detailed in the theory section. The initial damping parameter values were

first determined by the original XDM values of the two parameters from the damping

formula for two-body dispersion, α1 = 0.80 and α2 = 1.49 angstroms, as recommended

in Ref. [27] for the same basis set (aug-cc-PVDZ) and density functional (P8E(X)

+ PBE(C)) for the benzene trimers [40]. Figure 5 illustrates the performance of the

model with each of the two damping schemes using the original damping parameters

optimized for two-body interactions.



29

Figure 5: E (CCSD(T))-E (MP2) versus the values calculated with the present method
for a series of benzene trimers. The figures are Scheme A and Scheme B respectively.
Both use the original XDM two-body damping parameters meaning they are not the
optimized parameters.

For the benzene trimers observed in Figure 5, Scheme B performs better than

Scheme A. “However, the original damping parameters yield less accurate results

for the He3 and Ar3 trimers when compared to the fitted analytical potential of
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Szalewicz et. al. (see Table 2)[40].” Also for smaller values of RABC , the deterioration

is more apparent and, with the damping scheme, performs worse than without any

damping functions as displayed in Figure 4. This discrepancy highlights the need for

optimization of each damping scheme for all three data sets: benzene, He3, and Ar3

trimers. This shows the need for a combined optimization of our three-body damping

parameters using the three different data sets altogether. The genetic algorithm used

a weighted sum of the MAD for each trimer set as the fitness value and minimized

this. The relative weight was used to equalize three-body dispersion energy values

to similar magnitudes[40]. Results and optimized parameters can be observed in

Table 2. “Concerning first the benzene trimers, the MAD with optimized Scheme

B (0.00205 kcal/mol) remains about the same as in the case of using the original

damping parameters a1 and a2 (0.0021 kcal/mol). Scheme A benefits more from the

optimization here with MAD reduced from 0.006 kcal/mol to 0.0019 kcal/mol [40].”

As Table 2 shows, Scheme A performs slightly better than Scheme B overall,

but both damping schemes have reasonable accuracy overall after optimization [40].

Observing the total errors for each of the three sets between optimized damping

and no damping highlights the necessity of damping, specifically from the noble-gas

trimers. Figure 6 illustrates this comparison between no damping and optimized

damping parameters.
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Table 2: Mean Absolute Deviations (MAD) of Intermolecular Dispersion Energy:
MAD (kcal/mol) “of our results for the non-additive 3-body intermolecular disper-
sion energy for the set of 62 benzene trimers, 203 He3 trimers, and 203 Ar3 trimers
(benchmark data from Refs. [28, 12, 9]) The mean unsigned relative error is given in
square brackets. For the series of benzene trimers, the deviations are estimated with
respect to the energy difference E (CCSD(T))-E (MP2) reported in Ref. [28]. For
the series of He3 and Ar3 trimers, the deviations are with respect to the triple-dipole
part of the damped dispersion component of the SAPT non-additive three-body in-
teraction potential fitted to FCI and CCSDT(Q), respectively (the 111 term in Eqs.
(15)-(18) in Ref. [10]) [40].”

Scheme a1(Å) a2(Å) (C6H6)3 He3 Ar3

No damping ... ... 0.00372 3.849× 10−6 5× 10−5

[0.5690] [0.3927] [0.0946]
A(noopt) 0.80 1.49 0.0060 9.606× 10−7 1.16× 10−4

[3.9747] [0.2300] [1.2742]
B(noopt) 0.80 1.49 0.0021 2.591× 10−6 1.16× 10−4

[0.5948] [0.3810] [0.0725]
A(opt) 0.08438 1.938 0.0019 9.748× 10−7 1.464× 10−5

[0.5687] [0.2108] [0.1520]
B(opt) 0.2525 2.927 0.002053 1.432× 10−6 1.531× 10−5

[0.5770] [0.3547] [0.0779]
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Figure 6: Comparisons after optimizing the damping schemes displaying Scheme A
and Scheme B respectively.

“Listed in Table 2 are also mean unsigned relative errors for each scheme. The

main contribution to the relative errors is the small interaction energies as a result

from the angle factors in the three-body formalism (Eq. (41)) even at relatively close

distances [40].”
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3.6 Conclusion

This work presents two damping functions for non-additive three-body dispersion

from VDW interactions. The method is an extension of the DFT XDM version for

two-body interaction. The first part of the original paper is the investigation of the

dispersion coefficient, C9, with encouraging results. The C9 is an accurate estimate

for noble atom triplets compared to values in literature [43] and for benzene trimers

by Sherrill and Co. [28]. The results are necessary for the three-body dispersion term,

E(3), but only briefly detailed for this work due to my focus and contribution on the

damping schemes. For damping, two new schemes were purposed, benchmarked, and

optimized against a set of benzene, He3, and Ar3 trimers. The data for benzene is

from Sherrill and Co. [28] while He3 and Ar3 are from Szalewicz and Co. [12, 9].

Optimization involved using my genetic algorithm implementation. After optimiza-

tion, both schemes show comparable results with Scheme A slightly outperforming

Scheme B. Future work could include further improvement of non-additive three-body

interactions through computation of the third virial coefficients [40, 43, 28, 12].
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4 Density Functional Model for Nondynamic and

Strong Correlation

4.1 Introduction

xTron calibration first involved the optimization of functional values within the KP16

functional developed by Kong and Proynov [30]. The KP16/1B13 functional is a

single-term density functional model that handles nondynamic/strong correlation and

demonstrates the viability of such a functional instead of using multiple configura-

tions. Nondynamic correlation refers to the issue of using a single wave function

configuration as insufficient to represent degenerate electron states. The category

of methods that use multiple configurations to handle nondynamic correlation are

labeled as multiconfigurational methods. Some examples of strongly correlated sys-

tems include bond dissociation limits, transition metals, and diradicals [30]. One

approach to addressing nondynamic correlation is multiconfigurations, the method

where the wave function is a linear combination of configuration states. The mix

of near-degenerate configurations address nondynamic correlation for multiconfigura-

tion methods [52]. However, multiconfiguration DFT dissociates a bond but double

counts some of the correlation [24, 45, 22]. Other noteworthy methods that ad-

dress nondynamic correlation are density matrix functional theory (DMFT), random

phase approximation (RPA), and noncolinear DFT methods for strongly correlated

radicals. For this work, KP16/B13 is compared to other functionals of similar type

such as hybrid-GGA’s. Notable single determinate methods that incorporate nondy-

namic correlation include B05[5], B13[4] by Becke, and PSTS by Perdew et. al [37].

These methods compensate with a local correction for the delocalization of the exact

exchange [30]. For standard systems, these single determinate methods perform sim-

ilarly on standard thermodynamic benchmarks compared to mainstream methods,
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but much better on strongly correlated systems [39, 30]. Other functionals included

for comparison are the nonempirical PBE and the parameterized hybrid functionals

B3LYP and M06-2X. In this work, the analytical method KP16/B13 was proposed

to calculate the population of effectively unpaired electrons for characterizing nondy-

namic correlation with a single-determinate representation [39, 30].

4.2 Theory and Experiments

The KP16 functional starts with full Kohn-Sham exact exchange, Eex
x and uses the

adiabatic connection method to approximate the correlation energy and include non-

dynamic correlation as an estimation to the exchange energy. The exact exchange

here refers to Hartree-Fock (HF) which calculates the exchange exactly but, on its

own, poorly dissociates bonds and yields large errors for fractional spin[40]. The

resulting exchange-correlation term is as follows:

Exc = Eex
x +

∫
1 + ebz

1− ebz

[
1− 2

bz
ln

(
1 + ebz

2

)]
ũndc d

3r (46)

ũndc = (uoppstatC + cuparstatC)

1 +
1

2

√
α

π
e−α/z

2

( Dα

ρ
5/3
α

)1/3

+

(
Dβ
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5/3
β

)1/3
 (47)

Exc is the exchange correlation energy and ũndc is the dynamic correlation potential

energy density which adds the correction of nondynamic correlation. The parameters

under consideration for optimization were α, b, and c, where α and b are empirical

parameters with c as a scaling component to the parallel-spin part of the nondynamic

correlation. Other terms of note include uoppstatC , the nondynamic opposite-spin com-

ponent, and uparstatC , the parallel-spin component. The functional was first optimized

using the quantum chemistry code Q-Chem [44], while the finishing touches on the

integral codes were completed in xTron. While the goal of KP16 is to address the

nondynamic correlation energy, as a general purpose DFT functional, KP16 should
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perform well for equilibrium molecules and dissociation. Therefore, the optimization

of the functional involved three sets of molecules and atoms with the goal of reducing

the overall mean absolute deviation of atomization energy values to less than 1 kcal/-

mol. The value 1 kcal/mol is standard here for experimental accuracy. Atomization

energy refers to the difference between the energy of the molecule and the sum of the

isolated atom energies of the constituent parts of the molecule. An example for H2O

is shown below:

AtomizationEnergy(H2O) = E(H2O)− (2E(H) + E(O)) (48)

The sets used to calibrate the parameters were polyatomic molecules, diatomic molecules,

and fractional spin atoms. Polyatomics and diatomics are the standard benchmark

sets for atomization. Fractional spin atoms are included to optimize for fractional

spin error which dominates at the dissociation limit and is also important to many

systems near equilibrium [30, 14]. A limited set of molecules was chosen to reduce

over-fitting. The full list is available in the Appendix. With the set of fractional spin

atoms, the error is calculated by taking the difference between the ground state energy

of the atom and the same energy but with fractional spin occupancy corresponding to

its homonuclear dissociation limit [30]. The fitness function is a weighted sum of the

mean absolute deviations of the included sets. Optimization of the parameters was

done through the genetic algorithm and GA base detailed previously to minimize the

fitness function. All calculations used the self-consistent field (SCF) procedure for

energy, G3Large for the basis sets, and a large unpruned grid of 192 by 590 points.
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4.3 Computational Details

The majority of the computation for this work was done on Darter, the now decom-

missioned, supercomputer at Oak Ridge National Labs (ORNL). Babbage, the MTSU

Computational Science (COMS) cluster, was also used for development and compu-

tation, but once the procedure, genetic algorithm, and GA base were debugged and

tested, the code base was migrated to Darter. Each compute node had 64 cores. The

software used for atomic and molecular calculation was Q-Chem [44]. An acknowl-

edgment must be made for the software Eden, developed by Scott Simmerman at

ORNL, that ran single-threaded jobs over a multi-core compute node. This allowed

computation at full efficiency due to the single-threaded nature of Q-Chem, the ne-

cessity to use all available resources, and the large number of atomic and molecular

calculations. Computation time was limited by the largest molecules due to the ne-

cessity for all molecules to be computed for a particular parameter set (α, b, c) before

a fitness value could be calculated. The molecules that took the most of amount of

time were butane, pyrol, and pyridine. Atomic makeup of these molecules is listed in

the Appendix. This resulted in approximately 6 hours of compute time per parameter

set and a total of approximately 200,000 hours of compute time.

4.4 Results and Discussion

The result of the mean absolute deviations (MAD) are detailed in Table 3.
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Table 3: MAD of Fractional-Spin Error and Atomization Energy (kcal/mol) for the
Assessment Set

Fractional-Spin Atomization Energy Average

HF 179.21 107.37 143.29
PMF(2) 8.94 6.30 7.62
PMF(3) 8.14 3.64 5.89
RI-B05 55.95 2.32 29.14

B13 8.78 3.90 6.34
PSTS 50.97 5.18 28.08
PBE 81.50 12.74 47.12

B3LYP 57.56 2.99 30.28
M06-2X 92.17 1.98 47.08

PMF(2) stands for present model functional with two parameters and PMF(3) is

the three parameter model. PMF(2) was optimized using uniform grid search while

PMF(3), now labeled as KP16/B13, was optimized using my implementation of the

genetic algorithm. The final parameter values for the two functionals are b = 1.2,

α = 0.037 for PMF(2) and b = 1.355, α = 0.038, and c = 1.128 for PMF(3). As the

Table 3 shows, PMF(2) and PMF(3) significantly improve the error of equilibrium

and fractional spin atoms and molecules compared to the mainstream methods listed.



39

Figure 7: Dissociation curves of H2, N2, and F2. De is the dissociation energy. The
Full Configuration Interaction (FCI) curve represents the expected behavior where
the difference should approach 0 as the interatomic distance grows[40].

To assess the performance of PMF(2) and PMF(3) for strong correlation, the dis-

sociation curves of H2, F2, and N2 using PMF(2) and PMF(3) are compared against

mainstream methods. The 6-31G* basis set is used for the calculations with these

plots. As the figures show, the newly optimized functionals, PMF(2) and PMF(3),

and B13 perform similarly and are significantly better than the other hybrid function-

als, B3LYP and M06-2X [30]. This difference is most readily shown in the N2 case.
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However, the curve of PMF(2) and PMF(3) still exhibits the behavior of becoming

positive and then approaching the 0 line. Further improvements to the functional are

currently under investigation. However, the model with 3 parameters under consider-

ation for optimization performs well for nondynamic/strong correlation, atomization

energies, and singlet-triplet energy splitting without relying on error cancellation.

Additionally, the models presented in this work and B13 provide evidence of the fea-

sibility of single-determinant DFT functionals for describing nondynamic and strong

correlation[30].

4.5 Conclusion

In summary, the KP16/B13 was developed to include nondynamic correlation and

correct fractional spin error as a single determinant-based functional. The genetic

algorithm was successful in optimizing the functional to comparable accuracy of con-

temporary single determinant-based hybrid functionals. The results are favorable for

general and strongly correlated systems from the observed polyatomic, diatomic, and

fractional spin error values. The results here contrast contemporary DFT methods

which rely on error cancellation or heavy parameterization and, together with B13,

provide additional evidence for single-determinant Kohn-Sham DFT functionals that

address nondynamic correlation.
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5 xTron Performance on Chemical Properties Us-

ing Minnesota Sets

5.1 Introduction

As detailed in the previous section, the KP16/B13 functional was optimized using

standard benchmark sets and a fractional-spin set. Additionally, it was designed for

general purpose calculation with the intention of handling systems ranging from dy-

namic to nondynamic correlation. The purpose of this work is to extend the bench-

marks with the Minnesota sets[58] and determine whether KP16/B13 can handle

weak and normal correlation as well as a variety of chemical properties. The Min-

nesota sets refers to the Minnesota 2015 (MN15) database[58] of molecules. This

set is compiled by Zhao and Truhlar[58] for the purposes of benchmarking the M06

and M06-2X functionals. It contains a total of 29 subsets. However, only 17 subsets

are investigated in this work. The remaining sets include corrections for VDW in-

teractions, which KP16/B13 does not contain yet, solids, and other geometries that

are currently beyond the capability of KP16/B13. Excited states are noteworthy,

but the focus of KP16/B13 has currently been ground state energy. The selected

sets include molecules exhibiting properties of thermochemistry, kinetics, noncova-

lent interactions, transition metal bonding, atom excitation energies, and molecular

excitation energies[57] to name a few. An exhaustive list is detailed in Table 4.

5.2 Computational Details

The benchmarking of KP16/B13 in this section follows from the optimization of the

functional detailed in the previous chapter. Computation of the molecules did not

involve multiple iterations. As such, the total run time was minimal compared to the

original optimization. Initial calculations were done by Dwayne John with Dr. Jing
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Kong continuing with other functionals and adjusting specifications for optimal re-

sults. The results computed here used the GA base framework for ease of adding and

organizing molecular sets. GA base also provides flexibility and simplicity in chang-

ing job specifications, such as initial functional and convergence criterion, for each

molecule. Computation involving xTron was done on Roughshod, the temporarily

resurrected (now fully restored) Babbage cluster.

5.3 Methods and Results

For a comprehensive comparison, the results of KP16 functional are compared to a

variety of functionals. Hartree-Fock (HF) is included because B13 and KP16/B13

include full HF exchange. B3LYP is included as a popular hybrid GGA (generalized

gradient approximation) with a few parameters. M06 is included for representation of

a multi-parameter, extensively parameterized DFT method. PSTS is included as an

example of a local hybrid functional that also includes nondynamic correlation. B05

is included as the predecessor for B13 and KP16/B13. The recent SCAN exchange/-

correlation is included as an example of nonempirical pure meta-GGA. Another re-

cent rung-3.5 functional HF-HGPBE is also included as new practical alternative to

approaching nondynamic correlation. Lastly, B3tLap is included with B3LYP-like

hybrid exchange and the meta-GGA correlation tLAP.
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Table 4: Overview of Minnesota Sets [58]

Set Name Description

SR-MGM-BE9 Single-reference main-group metal bond energies, KOH→ CH3F + Cl

SR-TM-BE17 Single-reference transition-metal bond energies, MnF2 → Mn + 2F

MR-MGM-BE4 Multi-reference main group metal bond energies, MgS→ Mg + S

MR-MGN-BE1 Multi-reference main-group non-metal bond energies, SO2 → Mg + S

MR-TM-BE13 Multi-reference transition-metal bond energies, TiCl→ Ti + Cl

MR-TMD-BE2 Multi-reference transition-metal dimer dissociations, Cr2 → 2Cr

IP23 Ionization potentials, O2 → O2 + e

4pIsoE4 4p isomerization energies, CH3CH2CBr3 → CH2BrCHBrCH2Br

2pIsoE4 2p isomerization energies, C4H2O→ C4H7OH

IsoL6 Isomerization energies of large molecules, (C6H4NH2)2 → (C6H5NH)2

EA13 Electron affinities, SH + e→ SH−

PA8 Proton affinities, H2O + H+ → H+
3 O

πTC13 Thermochemistry of π-systems

HTBH38 Hydrogen transfer barrier heights, CH3 + H2 → CH4 + H

NHTBH38 Non-hydrogen transfer barrier heights, CH3 + FCl→ CH3F + Cl

HC7 Hydrocarbon chemistry

DC9 Difficult systems

All results used the basis set G3LargeXP [15]. The numerical grid is an atom-

centered un-pruned ultra-fine grid with 128 radial and 302 angular points per shell

within Becke’s relative weights integration scheme [3]. All calculations are done with

the self-consistent field (SCF) procedure with direct inversion of the iterative sub-

space (DIIS [41]) and/or geometric direct minimization (GDM [53]) for convergence



44

determination. Computation with B05, B13, KP16/B13 and PSTS was done using

the in-house code xTron. Results from other functionals not available in xTron were

computed using the Q-Chem [44] and Gaussian09 [23] programs.

The individual errors associated with each molecular system is the atomization

error computed by taking the difference between the energy of the molecule and the

sum of the energies of the molecule’s constituent atoms. The summary values of the

sets are the mean absolute deviations (MAD) of the errors of the molecules. A few

entries in those datasets were omitted due to failures of the SCF due to non-convergent

oscillatory behavior. All Cr containing compounds are omitted because the SCF

procedure did not converge for the Cr atom with B05 and KP16/B13. Elements

beyond the 3rd row of the periodic table in the set IP23 are not included due to the

unavailability of B13 parameters.
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Table 5: Overview of Minnesota Sets MAD in kcal/mol

HF SCAN B3LYP B3TLYP M06 PSTS HF-HGPBE

SR-MGM-BE9 37.892 3.257 6.279 3.023 5.792 7.927 20.73

SR-TM-BE17 41.384 8.205 11.266 8.595 12.375 9.433 19.75

MR-MGM-BE4 55.313 5.958 6.053 6.991 4.431 5.528 46.653

MR-MGN-BE17 115.886 5.8 5.299 5.262 4.694 8.23 30.539

MR-TM-BE13 132.63 18.136 7.928 88.62 9.33 11.32 79.372

MR-TMD-BE2 356.293 7.235 39.8 36.697 36.358 12.94 44.694

IP23 24.631 5.381 4.397 6.419 3.48 3.715 14.863

4pIsoE4 6.389 3.16 4.024 4.607 2.041 2.394 7.499

2pIsoE4 3.9 2.582 4.614 5.334 1.776 3.308 4.121

IsoL6 3.57 1.123 2.626 7708.8 2.145 3.471 4.4

EA13 36.248 3.038 2.258 5.009 1.759 3.044 17.377

PA8 3.296 1.306 1.308 14.565 2.177 3.432 15.717

TC13 10.166 7.164 5.732 8.554 4.285 8.484 23.132

HTBH38-08 15.118 7.458 4.378 2.729 2.431 4.508 9.818

NHTBH38-08 13.672 7.49 4.563 3.031 2.6 6.211 14.999

HC7-11 15.114 6.756 16.312 19.88 2.289 9.768 42.841

DC9-12 261.223 13.519 17.931 17.077 10.634 24.406 75.425
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Table 6: Overview of Minnesota Sets MAD in kcal/mol continued

B05 B13 KP16/B13

SR-MGM-BE9 3.846 4.507 4.416

SR-TM-BE17 8.02 7.105 7.798

MR-MGM-BE4 6.421 20.624 9.78

MR-MGN-BE17 4.44 4.836 5.92

MR-TM-BE13 75.687 16.143 10.779

MR-TMD-BE2 14.62 26.31 12.641

IP23 3.174 4.18 3.732

4pIsoE4 16.422 5.435 3.852

Analysis of the results begins with significant multireference character systems,

denoted by the MR prefix of the set name. B13 and KP16/B13 are both designed to

handle nondynamic correlation, so the expectation is good performance for these MR

sets. However, the results are mixed. B13 outperforms KP16/B13 for main-group

nonmetals, labeled as MR-MGN-BE17, while KP16/B13 does better for the other

three sets. B3LYP performs the best for binding energies of some transition-metal

compounds (MR-TM-BE13 set). PSTS, the local hybrid method, consistently reports

good results, and SCAN, the pure meta-GGA functional, performs well except for the

MR-TM-BE13 set.

Of the four multireference sets, the most difficult set is MR-TM-BE2 due to the

inclusion of Cr2. Cr2 is well-known as a difficult system exhibiting both static and

dynamic correlation [44]. Due to the convergence failure for Cr2 by the B13 and

KP16/B13 functionals, the results of the set MR-TM-BE2 are not reported in the

aggregate table but in the separate Table 7.
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Table 7: Binding energy (kcal/mol) predictions of Cr2 and V2 with various methods.
Values are in kcal/mol. ‘Ref’ stands for the reference value for comparison available
from the Minnesota Set[58].

Ref HF SCAN B3LYP B3tLap M06 PSTS HF-HGPBE

Cr2 36.02 -602.50 -35.60 -45.42 -89.79 -47.42 -25.64 -117.07

V2 64.20 -292.09 56.97 24.40 27.50 27.84 51.26 19.51

Table 8: Binding energy predictions continued. The * denotes an SCF convergence
failure.

Ref B05 B13 KP16/B13

Cr2 36.02 * 43.52 *

V2 64.20 49.58 90.51 51.56

As the values in Table 7 show, the B13 functional performs the best by a signif-

icant margin, possibly due to the element-wise parameterization. As for V2, SCAN,

KP16/B13, and PSTS perform well. M06 performs similarly to B3LYP, possibly

demonstrating the limit of multivariable parameterizations. A possible explanation

for low performance of B13 and KP16/B13 is the underestimation of the nondynamic

correlation of intermediate strength. This is illustrated by the dissociation curves

of covalent homonuclear diatomics in the previous work introducing the KP16/B13

functional [30].

As for the rest of the sets, B13 and KP16/B13 have larger errors with single-

reference transition-metal bond energies (SR-TM-BE17), hydrocarbons (HC7), and

difficult cases (DC9). Reaction barriers result in decent predictions from B13 and

KP16 which are significantly better than B3LYP. B05, B13, and KP16/13 all perform
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better than M06 for hydrogen transfers with B05 the best of the three and B13 in

second. The B05 results are consistent with previous reaction barrier benchmarks

from Dickson and Becke [18] and Liu et al.[35]. However, KP16/B13 performs the

best for nonhydrogen transfers among all methods tested. For SR-TM-BE17, the

mainstream functionals, M06 and B3LYP, do not perform as well as the rest (B05,

PSTS, B13, KP16/B13, SCAN, and B3tLap). DC9, in particular, has poor results for

all methods evaluated here with M06 giving the smallest error. For the hydrocarbons

(HC7), SCAN and PSTS perform well where intermediate-range between atoms and

VDW weak interactions are significant properties [18]. The SCAN positive result for

van der Waals has been discussed previously by Sun et. al [46]. For the rest of the

sets, B13 and KP16/B13 perform similarly to each other, reasonably close to B3LYP,

and mostly under-performing against B05. As a whole, B05 performs best for four

sets while M06 has six sets. Recent works have shown B05 to yield accurate results for

dipole moments [16] and charge-transfer complexes [7] using the variational extension.

The fact that B05 contains 100% Hartree-Fock exchange with four parameters further

shows possible improvement of DFT functionals at fundamental levels.

5.4 Conclusion

To summarize, the recently developed functionals for strong/nondynamic correlation,

B13 and KP16/B13, have been benchmarked with a subset of molecular systems from

the Minnesota 2015 dataset [58]. They were compared against the mainstream func-

tionals B3LYP and M06. Also included are less popular functionals, such as B05,

PSTS, and more recently developed SCAN[46]. The results show that B05, B13, and

KP16/B13, functionals with 100% HF exchange, recover the majority of correlation

where it is significant as indicated by their relatively low error as compared to the

large errors from HF. B05, B13, and KP16/B13 also perform well for reaction barriers
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(HTBH38 and NHTBH38) but do not definitively outperform for multireference sys-

tems. Overall, B05, B13, and KP16/B13 are competitive to B3LYP, and B05 is even

competitive to M06 for most sets despite containing 100% HF exchange. This work

and the previous work involving KP16/B13 demonstrates the possibility of handling

correlation of all strengths with only three empirical parameters and without relying

on excessive parameterization. Future projects may include comparison against mul-

ticonfiguration methods, for both accuracy and computational time. There are also

parameters within KP16/B13 that are available for optimization, such as a parallel

and an opposite correlation coefficient, to further improve the functional.
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6 Summary and Conclusion

The body of work presented here demonstrates the success of a genetic algorithm im-

plementation, GA base, I implemented for the purposes of developing new DFT mod-

els. To that end, two damping-dispersion schemes and the general purpose functional

KP16/B13 were proposed, optimized, and tested. The three-body damping disper-

sion schemes successfully calculated three-body dispersion with damping of molecules

in close proximity. The KP16/B13 functional was also developed and optimized for

general purpose molecules but maintains accuracy for nondynamic correlation and

fractional properties. Extension of the previous work to benchmarking for a wide

variety of chemical sets showed promising results, particularly when considering a

limited training set and the parameterization of only 3 values. These details present

possible future improvements through optimization of KP16/B13 and computational

chemical functionals.
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9 Appendix 1 - Software Codes

Listing 1: Genetic Algorithm code: gen new pop.pl
#!/ b in / p e r l
###########################################################################################
# Created by Matthew Wang
# This s c r i p t g en e r a t e s a new popu l a t i o n . I t r e q u i r e s 3 or 4 parameters , two o f which
# are inpu t parameters and 1 to s p e c i f y t h e ou tpu t . The 4 parameter i s o p t i o n a l and
# s p e c i f i e s t h e p r e v i o u s p opu l a t i o n and i t ’ s f i t n e s s / e r r o r . This i s then used to do
# the c r o s s o v e r s t e p o f a g e n e t i c a l g o r i t hm .
#
# The g e n e t i c a l g o r i t hm implemented here con t a i n s 3 v e r s i o n o f c r o s s o v e r and 3 v e r s i o n s
# o f mutat ion . Rates f o r each can be a d j u s t e d in t h e code . Future improvements may
# make t h e s e o p t i on s more a c c e s s i b l e . There a l s o con t a i n s a check so no d u p l i c a t e
# parameter s e t s are run .
#
# Cmd l i n e arg s :
# 1 . Popu la t i on s i z e
# 2 . Parameter f i l e
# 3 . F i l e to put t h e new popu l a t i o n i n t o
# ( 4 . Prev ious p opu l a t i o n f i l e )
# Output :
# New popu l a t i o n i n s i d e t h e ( 3 . )
###########################################################################################

use s t r i c t ;
use warnings ;

my ( $pop s i ze , $param f i l e , @para min , @para max , $pop p r ev f i l e , $pop new f i l e , @para type ) ;
my $g en f l a g = 0 ; # 0 f o r c omp l e t e l y new popu l a t i on , 1 f o r u s ing a pre−e x i s t i n g p opu l a t i o n

my $num args = $#ARGV + 1 ;
i f ( $num args == 3)
{

print ”You used 3 arguments , c r e a t i ng a new populat ion \n” ;
$ g en f l a g = 0 ;
$pop s i z e = int ($ARGV[ 0 ] ) ;
$pa ram f i l e = $ARGV[ 1 ] ;
$pop new f i l e = $ARGV[ 2 ] ;
chomp( $pop new f i l e ) ;

}
e l s i f ( $num args == 4)
{

print ”You used 4 arguments , c r e a t i ng a new populat ion us ing prev ious populat ion \n” ;
$ g en f l a g = 1 ;
$pop s i z e = int ($ARGV[ 0 ] ) ;
$pa ram f i l e = $ARGV[ 1 ] ;
$pop new f i l e = $ARGV[ 2 ] ;
$ p op p r e v f i l e = $ARGV[ 3 ] ;
chomp( $ p op p r e v f i l e ) ;

}
else
{

die ”\nERROR: Requires e i t h e r 3 or 4 parameters :\ n1 . I n i t i a l populat ion s i z e
2 . Parameter f i l e \n3 . F i l e to s t o r e the new populat ion
( 4 . Previous populat ion f i l e to use f o r seed ing )\n” ;
}
my $num params = 0 ;

# Open the parameters f i l e and read in t h e parameters i n t o array
open PARAM FILE, ”<$param f i l e ” or die ”Can ’ t open parameter f i l e $pa ram f i l e \n” ;
my $ l i n e = <PARAM FILE>;
chomp( $ l i n e ) ;
$num params = int ( $ l i n e ) ;

for (my $ i =0; $i<$num params ; $ i++)
{

$ l i n e = <PARAM FILE>;
my @params = sp l i t ( ” ” , $ l i n e ) ;
# s e t t h e parameter bounds from the parameter i npu t f i l e
$para min [ $ i ] = $params [ 0 ] ;
$para max [ $ i ] = $params [ 1 ] ;
i f ( $params [ 2 ] =˜ m/d/)
{

$para type [ $ i ] = $params [ 2 ] ;
}
e l s i f ( $params [ 2 ] =˜ m/ f /)
{

$para type [ $ i ] = $params [ 2 ] ;
}
else
{

die ” Inva l i d parameter type\n” ;
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}

}
close (PARAM FILE) ;

my $num new = 1 ;
my $new param str = ”” ;
# the parameters f o r t h e p r e v i o u s p opu l a t i o n and hash f o r t h e p r e v i o u s p opu l a t i o n as a s t r i n g
# f o r easy s e a r c h i n g
my ( @prev pop params , %prev params ) ;
# opening t h e f i l e f o r t h e new popu l a t i o n
open NEW POP, ”>$pop new f i l e ” or die ”Can ’ t not open new populat ion f i l e $pop new f i l e \n” ;

# I f s t a t emen t f o r u s ing t h e p r e v i o u s p opu l a t i o n f i l e f o r c r o s s o v e r
i f ( $ g en f l a g == 1 and −e $p op p r e v f i l e )
{

open POP FILE , ”<$p op p r e v f i l e ” or die
”Can ’ t open prev ious populat ion f i l e : $ p op p r e v f i l e \n” ;

my ( $ l i ne , $ i ) ;
my $to ta l pop = 0 ;
# i t e r a t e over t h e f i l e and s t o r e c on t en t s f o r c r o s s o v e r and d u p l i c a t e ch e c k i n g
foreach $ l i n e (<POP FILE>)
{

chomp( $ l i n e ) ;
i f ( $ l i n e ! ˜ /ˆ#/) # f o r comments
{

my @param line = sp l i t ( ” ” , $ l i n e ) ;
my $tmp num params = @param line ;
# Error check ing , +3 f o r gen number , i t e r a t i o n number , and e r r o r a t l e a s t
i f ( $tmp num params < $num params+3)
{

die ” Pos s i b l e e r r o r in $ p op p r e v f i l e . Less parameters than number” ,
” o f parameters in $pa ram f i l e : $num params !\n” ;

}
i f ( $ to ta l pop < $pop s i z e )
{

# save t he top popu l a t i o n f o r c r o s s o v e r
for (my $ j =0; $j<$num params ; $ j++) # l a s t column i s e r r o r
{

# f i r s t and second column are gen number and i t e r number
$prev pop params [ $ to ta l pop ] [ $ j ] = $param l ine [ $ j +2] ;

}
}
# cr e a t e a parameter l i n e and add i t t o hash f o r easy s e a r c h i n g
my $param l ine = join ( ” ” , @param line [ 2 . . $num params+1] ) ;
i f ( exists $prev params{ $param l ine} )
{

print ” Pos s i b l e e r r o r in $pop p r ev f i l e , parameter ” ,
” s e t $param l ine a l ready e x i s t s !\n” ;

}
else
{

$prev params{ $param l ine} = 0;
}
$to ta l pop = $tota l pop + 1 ;

}
}

close (POP FILE ) ;

# Check to see i f t h e t o t a l p r e v i o u s p opu l a t i o n i s g r e a t e r than 1 and
# the r e q u i r e d popu l a t i o n s i z e i s g r e a t e r than 1 . Cannot do c r o s s o v e r o t h e rw i s e .
i f ( $ to ta l pop > 1 && $pop s i z e > 1)
{

# prev pop params now has t h e p r e v i o u s p opu l a t i o n . Compute t h e nex t g en e r a t i on
# c a l c u l t e t h e number o f c r o s s o v e r s to be done
my $numCross = &calcCrossNum ( $pop s i z e ) ;
print ”Number o f c r o s s ov e r s : $numCross\n” ;
for (my $ i =0; $ i < $numCross ; $ i++)
{

# choose 2 random s e t s from popu l a t i o n
my $index1 = int ( $pop s i z e ∗rand ( ) ) ;
my $index2 = int ( $pop s i z e ∗rand ( ) ) ;
# check f o r d u p l i c a t i o n
while ( $index1 == $index2 )
{

$index2 = int ( $pop s i z e ∗rand ( ) ) ;
}
# c a l c u l a t e which dimension to c r o s s
my $cross d im = int ( ( $num params−1)∗rand ( ) ) + 1 ;
my $ j ;

$new param str = ”$prev pop params [ $index1 ] [ 0 ] ” ;
# do the c r o s s o v e r f o r f i r s t c h i l d
for ( $ j =1; $j<$cross d im ; $ j++)
{

$new param str = ”$new param str $prev pop params [ $index1 ] [ $ j ] ” ;
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}
for ( $ j=$cross d im ; $j<$num params ; $ j++)
{

$new param str = ”$new param str $prev pop params [ $index2 ] [ $ j ] ” ;
}
# f i g u r e out i f f i r s t c h i l d a l r e a d y e x i s t s in s ea rched space
i f ( ! exists $prev params{$new param str })
{

print NEWPOP ”$new param str\n” ;
$prev params{$new param str} = 0;
$num new++;

}
$new param str = ”$prev pop params [ $index2 ] [ 0 ] ” ;
# do the c r o s s o v e r f o r second c h i l d
for ( $ j =1; $j<$cross d im ; $ j++)
{

$new param str = ”$new param str $prev pop params [ $index2 ] [ $ j ] ” ;
}
for ( $ j=$cross d im ; $j<$num params ; $ j++)
{

$new param str = ”$new param str $prev pop params [ $index1 ] [ $ j ] ” ;
}
# f i g u r e out i f second c h i l d a l r e a d y e x i s t s in s earched space
i f ( ! exists $prev params{$new param str })
{

print NEWPOP ”$new param str\n” ;
$prev params{$new param str} = 0;
$num new++;

}
}

# s l i g h t p e r t u r b a t i o n code :
my $numPerturb = int (rand ( )∗ $pop s i z e /3 . 0 ) + 1 ;
for (my $ i =0; $ i < $numPerturb ; $ i++)
{

#my $popPer turb = i n t ( rand ()∗ $ p o p s i z e ) ;
my $popPerturb = $ i ;
my @temp params ;
for (my $ j =0; $ j < $num params ; $ j++) # copy over t h e parameters
{

$temp params [ $ j ] = $prev pop params [ $popPerturb ] [ $ j ] ;
}

my $numParaShift = int (rand ( )∗ $num params /2.0)+1; # s h i f t from 1 to h a l f o f t h e parameters
for (my $ j =0; $ j < $numParaShift ; $ j++)
{

my $paraSh i f t = int ( $num params∗rand ( ) ) ;
# s h i f t be tween −0.5 to 0 .5 t imes range /10 .0 around parameter
my $ s h i f t v a l = ( $para max [ $paraSh i f t ]−$para min [ $paraSh i f t ] ) / 1 0 . 0∗ ( rand ( ) − 0 . 5 ) ;
$ s h i f t v a l = int ( sprintf ( ”%.5 f ” , $ s h i f t v a l ) ) ;
i f ( $temp params [ $paraSh i f t ] + $ s h i f t v a l < $para max [ $paraSh i f t ] and

$temp params [ $paraSh i f t ] + $ s h i f t v a l > $para min [ $paraSh i f t ] )
{

$temp params [ $paraSh i f t ] = $temp params [ $paraSh i f t ] + $ s h i f t v a l ;
}

}
$new param str = ”$temp params [ 0 ] ” ;
for (my $ j =1; $ j < $num params ; $ j++)
{

$new param str = ”$new param str $temp params [ $ j ] ” ;
}
i f ( ! exists $prev params{$new param str })
{

print NEWPOP ”$new param str\n” ;
$prev params{$new param str} = 0;
$num new++;

}
}

}
}
e l s i f ( $ g en f l a g == 1 and ( ! −e $p op p r e v f i l e ) )
{

print ” $pop p r e v f i l e does not e x i s t ! Cannot use prev ious populat ion .\n” ;
}

while ( $num new <= $pop s i z e )
{

my $val = ( $para max [0]− $para min [ 0 ] ) ∗ rand ( ) + $para min [ 0 ] ;
$new param str = sprintf ( ”%.5 f ” , $va l ) ;
# c a l c u l a t e a new organism
for (my $ j =1; $j<$num params ; $ j++)
{

my $val = ( $para max [ $ j ]−$para min [ $ j ] )∗ rand ( ) + $para min [ $ j ] ;
i f ( $para type [ $ j ] =˜ m/d/)
{

$val = int ( $va l ) ;
}
i f ( $para type [ $ j ] =˜ m/ f /)
{
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$val = sprintf ( ”%.5 f ” , $va l ) ;
}
$new param str = ”$new param str $va l ” ;

}
# f i g u r e out i f randomly g ene ra t ed parameter s e t i s a d u p l i c a t e
# ( low chance i know , j u s t parano id )
i f ( ! exists $prev params{$new param str })
{

print NEWPOP ”$new param str\n” ;
$prev params{$new param str} = 0;
$num new++;

}
}

close (NEWPOP) ;
print ”\nDone c r e a t i ng new populat ion .\n” ;

# sub r ou t i n e to c a l c u l a t e how many c r o s s o v e r s to do
# can change c r o s s r a t e f o r more or l e s s c r o s s o v e r s
# sma l l e r i s more c ro s s o v e r s , l a r g e r i s l e s s
# f o l l o w s an e x p on en t i a l curve r a t h e r than l i n e a r
sub calcCrossNum
{

my $pop s i z e = sh i f t ;
my $ c r o s s r a t e = 3 . 0 ; # 2.0 − comes out r ou gh l y a 4 th

my $random = rand ( ) ;
my $n = int ( $pop s i z e / $ c r o s s r a t e ∗exp(−$random ) ) ;
return $n ;

}

Listing 2: Run population code: run pop.sh
#!/ b in / bash
# Created by Matthew Wang
##############################################################
# − This i s t h e main d r i v e r f i l e f o r t h e Genet ic a l g o r i t hm
# f o r running j o b s u s ing inpu t parameters
# − This s c r i p t does :
# 1 . Se t up nece sary d i r e c t o r i e s
# 2 . Goes th rough each l i n e o f t h e popu l a t i on , g ra b s
# the parameters and c a l l s ano ther s c r i p t
# ( p l a c e h o l d e r c a l l e d j o b s e t u p . sh )
# to s e t up inpu t f i l e s
# 3 . Cons t ruc t s a j o b commands t x t f i l e f o r e x e cu t i on
# Ex . exe t e s t . in t e s t . out
# 4 . Runs t h e j o b s /commands . Commands in r u n s c r i p t . sh to
# be ex e cu t ed in cu r r en t env or in commands to be
# used in o t h e r s c r i p t s .
# − Ex : . / run pop . sh p o p i n i t . t x t
#
#
# − j o b s e t u p . sh i s a p l a c e h o l d e r f o r a s c r i p t t h a t must t a k e a t minimum
# 1. A f i l e w i th t h e parameter s e t s to use f o r t h a t run
# 2 . The path to t h e cu r r en t g en e r a t i on f o r program use purpose s
# 3 . The run s c r i p t which i s t h e s c r i p t which w i l l run the commands
#
# Any f u r t h e r arguments needed can be added to t h e l i n e t h a t c a l l s
# run s c r i p t and mod i f i e d in t h e run s c r i p t . These 3 arguments are t h e
# 3 I ’ ve deemed nece s sa ry so f a r .
#
# The s e t up s c r i p t w i l l then popu l a t e t h e run s c r i p t w i th any nece s sa ry
# s e t up or env v a r i a b l e s f o r t h e e x e c u t a b l e . I t w i l l a l s o do any s e t up
# nece s sa r y f o r t h e j o b i n t o t h e i t e r a t i o n path d i r e c t o r y . A l l e x e c u t a b l e
# c a l l s w i l l go i n t o t h e $ r u n s c r i p t .
##############################################################

# Command l i n e argument check
i f [ [ $# −ne 1 ] ]
then

echo −e ” run pop . sh r e qu i r e s input argument f o r populat ion o f parameters ! ”
echo −e ”Ex : . / run pop . sh pop . txt \n”
exit

f i

# The f i l e w i th t h e p opu l a t i o n parameters
p o p f i l e=$1

# Conf ig f i l e
c o n f i g f i l e=” con f i g . txt ”
i f [ [ ! −e $ c o n f i g f i l e ] ]
then

echo ” In run pop . sh : $ c o n f i g f i l e does not e x i s t ! ”
exit

f i
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# Home path
ga path=$ ( grep ” ga path ” $ c o n f i g f i l e | awk ’{ pr in t $2 } ’ )
opt scheme=$ ( grep ”opt scheme” $ c o n f i g f i l e | awk ’{ pr in t $2 } ’ )
home path=”$ga path /$opt scheme”
i f [ [ −z $ga path | | −z $opt scheme | | −z $home path ] ]
then

echo ”ERROR: home path , ga path , or opt scheme i s not s e t in run pop . sh ! ”
exit

f i

# Where i n pu t s and ou t pu t s w i l l go
i o path=”$home path/ IO f i l e s ”

# The cu r r en t g en e r a t i on number
gen num=1
# This i s where t h e i n pu t s and ou t pu t s o f t h e new gene r a t i on w i l l go
gen path=” $ io path /gen$gen num”
while [ −d $gen path ]
do

gen num=$ ( ( $gen num+1))
gen path=” $ io path /gen$gen num”

done
echo ”Generation $gen num”

# Job s c r i p t s path , can make j o b path to be s e p a r a t e from the g en e r a t i on d i r e c t o r y
# This d i r e c t o r y shou l d con ta in s c r i p t s and f i l e s ne c e s s a ry f o r t h e whole j o b .
job path=”$gen path / j o b f i l e s ”

#s e t up d i r e c t o r i e s
mkdir −p $gen path
mkdir −p $job path

# copy the g en e r a t i on parameter in f o rma t i on i n t o t h e f o l d e r
cp $ p op f i l e $gen path / populat ion . txt

# Create run s c r i p t
r un s c r i p t=” $job path / r un s c r i p t . sh”
#job commands=” $ j o b p a t h / job commands . t x t ”
echo −e ”#!/bin /bash\n\ndate\n” > $ run s c r i p t

# c a l l s c r i p t t h a t c r e a t e s t h e inpu t f i l e s and s e t s up nece s s a r y f o l d e r s f o r t h e s p e c i f i c j o b
$home path/ job se tup . sh $ p o p f i l e $gen path $ run s c r i p t

echo −e ” echo \”Done with genera t i on $gen num\”” >> $ run s c r i p t

echo −e ”\ndate\n” >> $ run s c r i p t

# c a l c u l a t e d i f f e r e n c e
date1=‘date ”+%d %H %M %S” ‘

num sets=$ (wc − l $ p o p f i l e | awk ’{ pr in t $1 } ’ )
for ( ( i =1; i<=$num sets ; i++ ))
do

cat $gen path / s c r i p t s c o n f i g s / c o n f i g $ i /commands >> $gen path / s c r i p t s c o n f i g s /commands
done

####################################
# One o f t h e be low must be chosen !
####################################
## This i s used to run on a l l roughshod nodes . S p e c i f i c to roughshod or some o t h e r b eowu l f c l u s t e r
#p e r l mu l t i node run . p l $ g en pa t h / s c r i p t s c o n f i g s

## For SGE jo b submi s s i on
#./ s u bm i t j o b s . sh $ g en pa t h / s c r i p t s c o n f i g s $ ga pa t h / header . s ge

## The cmds be low run the run s c r i p t in t h e cu r r en t environment
#chmod 755 $ r u n s c r i p t
#echo ”Running”
#$ r u n s c r i p t

date2=‘date ”+%d %H %M %S” ‘
t imeDi f f =‘echo ” $date1 $date2 ” | awk ’{ printf ”%f ” , (\
$5−$1 )∗24 .0 + $6−$2 + \
( $7−$3 )/60 .0 + ( $8−$4 ) / ( 60 . 0∗60 . 0 )} ’ ‘
echo ” $date1 ”
echo ” $date2 ”
echo ”Time job took to complete : $ t imeDi f f hrs ”
echo ”Fin i shed with genera t i on $gen num”

Listing 3: Calculates the error of a population: err calc.sh
#!/ b in / bash
# Can e i t h e r t a k e a s p e c i f i c g en e r a t i on number in i o p a t h to c a l c u l a t e t h e e r r o r
# f o r or w i l l i t e r a t e th rough a l l t h e g en e r a t i o n s in I O f i l e s
# Wi l l c a l l c a l c g e n e r r o r . sh or user s p e c i f i e d s c r i p t t o c r e a t e g e n e r r o r s . t x t
# in the s p e c i f i e d g en e r a t i on f o l d e r . I t w i l l then add t h e s e to t h e a l l p o p
# f i l e which w i l l s t o r e a l l t h e e r r o r s . Sor t i s c a l l e d to keep l ow e s t e r r o r s a t
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# the top . THE ONLY STIPULATION IS THAT CALC GEN ERROR WILL CREATE A GEN ERRORS.TXT
############################################

c o n f i g f i l e=” con f i g . txt ”
i f [ [ ! −e $ c o n f i g f i l e ] ]
then

echo ” In run pop . sh : $ c o n f i g f i l e does not e x i s t ! ”
exit

f i

# Home path
ga path=$ ( grep ” ga path ” $ c o n f i g f i l e | awk ’{ pr in t $2 } ’ )
opt scheme=$ ( grep ”opt scheme” $ c o n f i g f i l e | awk ’{ pr in t $2 } ’ )
home path=”$ga path /$opt scheme”
i f [ [ −z $ga path | | −z $opt scheme | | −z $home path ] ]
then

echo ”ERROR: home path , ga path , or opt scheme i s not s e t in e r r c a l c . sh ! ”
exit

f i

# Where i n pu t s and ou t pu t s are
i o path=”$home path/ IO f i l e s ”

# The popu l a t i o n f i l e s
a l l p op=”$home path/ pop a l l . txt ”
a l l p o p s o r t e d=”$home path/ pop a l l s o r t e d . txt ”

i f [ [ ”$#” −eq 1 ] ]
then

gen=” $ io path /gen$1”
$home path/ c a l c g e n e r r o r . sh $gen

else
for i in $ io path /gen∗
do

i f [ ! −e $ i / g en e r r o r s . txt ]
then

echo ”Ca l cu la t ing e r r o r f o r $ i ”
# Sc r i p t to c a l c u l a t e t h e e r r o r f o r a s p e c i f i c g en e r a t i on be low
# Can be s h e l l or p e r l s c r i p t or any th ing e l s e
#$home path / c a l c g e n e r r o r . sh $ i
pe r l $home path/ c a l c g e n e r r o r . p l $ i
cat $ i / g en e r r o r s . txt $a l l pop > $home path/temp
mv $home path/temp $a l l pop

# e l s e
# echo −e ” g e n e r r o r s . t x t a l r e a d e x i s t s in $ i .
#P l ea se remove comments i f you would l i k e to r e c a l c u l a t e e r r o r \n”

f i
done

# so r t by t h e l a s t column
num cols=$ ( head −n 1 $a l l pop | awk ’{ printf NF} ’ )
s o r t −g −k$num cols $a l l pop > $home path/temp
cat $home path/ pop labe l . txt $home path/temp > $ a l l p op s o r t e d
rm $home path/temp

# echo −e ” F in i s hed c a l c u l a t i n g e r r o r \n”
f i

10 Appendix 2 - Supplementary Material for Non-

additive Three-body Dispersion

Table 9: The table reports non-additive three-body intermolecular dispersion energy
(in kcal/mol) with the normalized distances for each benzene trimer for the different
methods discussed previously. a Results from Sherrill et. al. [28] from E (CCSD(T))-
E (MP2) to isolate the non-additive three-body dispersion energy. The four underlined
trimers are the outliers omitted from the optimization procedure. bNondamped ver-
sion of the present method. c Scheme A with original XDM parameter values. d
Scheme B with original XDM parameter values. Last two columns are the optimized
parameter models.
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Trimer RABC
E(CCSD(T))-

E(MP2)a
E
(3)
int

nodampb
Scheme A

no-optc
Scheme B
no-optd

Scheme A
Opt

Scheme B
Opt

0001 1.000000 0.029143 0.042472 0.011302 0.035454 0.030921 0.037711
0014 1.05966 0.056103 0.087645 0.01646 0.054907 0.055691 0.060746
0011 1.08245 0.056212 0.089655 0.016473 0.055847 0.056811 0.062041
0012 1.08517 0.068995 0.100703 0.018191 0.061375 0.063291 0.068318
0031 1.19685 0.01786 0.02352 0.007096 0.020753 0.017755 0.021723
0009 1.25707 0.098341 0.127462 0.020073 0.069255 0.076045 0.078306
0043 1.47483 -0.00714 -0.00967 -0.00373 -0.00954 -0.007802 -0.009598
0038 2.10629 0.018711 0.02715 0.008331 0.023495 0.020531 0.024673
0055 2.28084 -0.0027 -0.00049 0.000168 -0.00045 -0.000183 -0.000469
0051 2.55225 0.002067 0.00428 0.001523 0.003922 0.003330 0.004025
0081 2.67368 -0.00587 -0.00314 -0.00076 -0.002990 -0.002235 -0.003040
0086 2.77877 -0.00358 -0.00203 -0.00041 -0.001930 -0.001439 -0.001965
0094 2.77878 -0.00358 -0.00203 -0.00041 -0.001930 -0.001439 -0.001965
0049 2.82250 -0.00513 -0.00289 -0.00012 -0.002160 -0.001587 -0.002329
0057 2.8225 -0.00512 -0.00284 -0.00011 -0.002120 -0.001555 -0.002286
0073 2.94338 0.006415 0.015545 0.005551 0.014427 0.012252 0.014835
0045 3.29523 -0.02227 -0.02047 -0.00486 -0.01731 -0.014124 -0.018165
0052 3.52073 -0.00534 -0.00731 -0.00045 -0.00483 -0.003800 -0.005302
0079 3.54715 0.000625 0.003038 0.001028 0.002717 0.002280 0.002775
0080 4.16483 -0.00429 -0.00467 -0.00035 -0.00345 -0.002568 -0.003745
0103 4.52322 0.002849 0.007594 0.002464 0.006972 0.005725 0.007121
0164 4.94626 -0.0008 -0.00064 -0.00024 -0.00064 -0.000506 -0.000638
0109 5.16552 0.003006 0.005796 0.00217 0.005433 0.004594 0.005540
0118 5.55052 0.001201 0.003617 0.001856 0.003566 0.003147 0.003585
0139 5.83854 -0.00461 -0.00068 -0.00026 -0.00066 -0.000551 -0.000665
0121 5.89480 0.003097 0.005797 0.00267 0.005666 0.004873 0.005711
0140 5.93042 -0.00475 -0.00319 -0.00109 -0.00308 -0.002458 -0.003112
0145 6.09161 -0.00353 0.000915 0.000233 0.000853 0.000635 0.000866
0177 6.15088 -0.00757 -0.0054 -0.00229 -0.00533 -0.004440 -0.005361
0115 6.63216 0.004465 0.005545 0.002291 0.005298 0.004467 0.005366
0116 6.81351 0.002356 0.002939 0.001537 0.002902 0.002594 0.002920
0163 6.97849 -0.00258 -0.00348 -0.00127 -0.00339 -0.002742 -0.003421
0186 7.18777 0.000583 0.001629 0.001012 0.001625 0.001512 0.001628
0141 7.30137 -0.00549 -0.00509 -0.00139 -0.00469 -0.003657 -0.004792
0235 7.30551 -0.0006 -0.00088 -0.00039 -0.00087 -0.000723 -0.000876
0230 7.68114 -0.00579 -0.00415 -0.00184 -0.00411 -0.003440 -0.004124
0183 7.69937 0.003407 0.004922 0.002261 0.004816 0.004121 0.004851
0175 7.72338 -0.00935 -0.007 -0.00263 -0.00681 -0.005561 -0.006871
0208 7.94617 0.001031 0.002205 0.001095 0.002191 0.001874 0.002197
0184 8.03238 0.003476 0.004899 0.002155 0.004776 0.004036 0.004814
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0194 8.13891 0.000949 0.001662 0.000986 0.001659 0.001522 0.001664
0181 8.13891 0.000949 0.001643 0.000977 0.001639 0.001506 0.001645
0249 9.02144 -0.00134 -0.00125 -0.00047 -0.00123 -0.000986 -0.001236
0210 9.23894 0.001406 0.00266 0.001258 0.002634 0.002230 0.002644
0229 9.54984 -0.00874 -0.00527 -0.00212 -0.00516 -0.004252 -0.005197
0236 9.97271 -0.00182 -0.00242 -0.001 -0.00238 -0.001965 -0.002394
0206 10.08848 0.004491 0.003807 0.00166 0.003725 0.003120 0.003750
0207 10.08848 0.004491 0.003807 0.00166 0.003725 0.003120 0.003750
0247 10.17288 -0.00176 -0.00192 -0.00074 -0.00189 -0.001533 -0.001899
0285 12.35459 0.000584 0.000589 0.000431 0.000589 0.000560 0.0005892
0283 12.89706 0.0018 0.002184 0.001312 0.00217 0.001976 0.002175
0263 13.37153 0.000783 0.001143 0.000617 0.001137 0.000998 0.001139
0297 13.48999 0.000576 0.000624 0.00037 0.000622 0.000559 0.000623
0296 13.51446 0.000695 0.000862 0.000467 0.000858 0.000749 0.000860
0333 14.19470 0.000215 0.001129 0.000646 0.001125 0.000992 0.001127
0319 14.31483 -0.00083 -0.00064 -0.00029 -0.00064 -0.000534 -0.000640
0334 14.51048 -2.2E-05 0.000891 0.000559 0.000889 0.000812 0.000890
0261 14.65563 0.001869 0.001683 0.000787 0.001662 0.001401 0.001669
0260 14.78262 0.001965 0.001979 0.000929 0.001957 0.001654 0.001965
0355 15.11490 0.000432 0.000961 0.000513 0.000958 0.000829 0.000959
0298 15.40517 0.001241 0.000754 0.000369 0.00075 0.000633 0.000752
0295 15.43960 0.000786 0.000871 0.000418 0.000866 0.000729 0.000868
0259 15.83553 0.00142 0.001495 0.000696 0.001478 0.001242 0.001484
0320 15.87463 -0.00081 -0.0011 -0.0005 -0.00109 -0.000913 -0.001093
0331 19.10939 0.002531 0.002297 0.001112 0.002263 0.001923 0.002272
0332 20.08028 0.002772 0.002244 0.001087 0.002202 0.001888 0.0022125

11 Appendix 3 - Supplementary Material DFT Model

for Nondynamic Correlation

The diatomic molecules are listed as: H2, N2, F2, O2, S2, P2, Cl2, HF, CO, NO, PN,
CN, NH, CS, CH, OH, HCl, SiO, LiF, MgS, ClF, ClO, Li2, LiH, SO, Si2.
Polytomic molecules are listed as: HCN, H2O, H2S, CO2, NH3, PH3, N2O, H2O2,
SiH4, CH4, C2H2, C2H4, C2H6, H2CO, CH3OH, C6H6, C4H6 buta, C4H5N pyrol, BF3,
CF4, CHF3, C5H5N pyrid , CH2OH, AlCl3, BCl3, C2Cl4, C2H4O, CCH, CCl4, CH2a,
CH2b, CH3Cl, CH3CN, CH3CO, CH3SH, CH3NH2, CH3NO2, HCO, N2H4, Si2H6,
SiH2a, SiH2b, SO2.
Fractional spin atoms are listed as: C frac, Cl frac F frac, H frac, N frac, O frac,
S frac, Si frac.
Geometries of the above molecules and atoms can be furnished upon request.
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