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ABSTRACT

Potential fields of various physical nature might significantly affect viability of struc-
tures in automobiles, aircraft, and other areas of contemporary engineering. That is
why accurate analysis of potential fields, occurring in elements of structures, is re-
quired for the exploration of conditions of their predetermined functioning. Thermo-
elasticity, for example, is a specific branch of natural sciences where information
about thermal fields is especially critical. Fields induced by point sources represent
an important particular case quite often occurring in reality.

The present project aims at the investigation of potential fields in thin shell struc-
tures made of conductive materials. Our manual is conditionally viewed as consisting
of three segments, the first of which deals with point sources in single shell fragments
of standard geometry (cylindrical, spherical, toroidal, etc.). The second segment is
devoted to joint shell structures composed of fragments of different geometries, whilst
single fragments and joint structures weakened with apertures are considered in the
last segment.

The Green’s function formalism constitutes theoretical background of our work.
Exploring potential fields generated by point sources in single shell fragments, we use
the Green’s function method, possibility of which implementation had been advoc-
ated, for this class of problems, a few decades ago. We have further developed this
approach by obtaining computer-friendly representations of Green’s functions for a
broad variety of boundary-value problems stated for the Laplace equation written in
geographical coordinates.

In approaching solid joint shell structures, the classical Green’s function formal-
ism fails. We turn therefore to the matrix of Green’s type notion also introduced
awhile ago, and our focus is on obtaining readily computable matrices for a score of
structures.

A Green’s function-based algorithm, that allows an accurate computation of po-

tential fields induced in shell structures weakened with apertures, is developed.
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1 Introduction

Study of potential fields had traditionally attracted researchers who worked in nearly
every branch of natural science and engineering, and it continues to remain in the
sphere of their interest in nowadays. This is so because a vast number of phenomena
and processes that are going on in real life are potential in nature. The most important
among those are: steady-state heat conduction in solids [25, 45, 86, 91], magneto- and
electrostatics [2, 23, 34, 35, 82|, gravitation [29, 51, 62], steady-state concentration
of substance in the media [41, 85], and so on. Mathematically, potential phenomena
and processes reduce to boundary-value problems stated for Laplace and Poisson
equation. Simplest of those problems allow analytical solutions, for most others —
numerical methods appear efficient.

The heat transfer, in particular, represents one of the significant phenomena that
requires professional treatment in engineering. This phenomenon is crucial in the
decision making for experts who work on either construction of new or modification
of modern machines and devices. To name just some of the engineering sciences,
where the heat conduction should be taken into account, one might recall the heat
insulation [42], laser welding [7], drilling [87], geodesy [27], plasma study [17], etc.
The most recent area of interest for the heat transfer is in the nano-engineering [61,
71, 78].

Three different types of the heat transfer problems are distinguished in applica-
tions based on their spatial dimensionality. One-dimensional problems occur when
one of the spatial dimensions of the considered object is significantly larger compared
to the other two, which allows to neglect the heat flow in their directions. Examples
of such objects could be long and thin beams, tubes, spiral-shaped heating elements,
and so on [63, 80]. Two-dimensional heat transfer occurs, when only one of the
dimensions of the object is negligibly small, but two others must be taken into con-
sideration. Such problems arise, when we consider heat transfer in different plates,

shells, jackets, etc. [54, 70, 72] If none of the dimensional sizes of the considered



object is negligible, we have to stay within the scope of three-dimensional heat con-
duction scenario. It occurs, for example, when one evaluates the heat conduction
inside fluid or gas containing reservoirs [59], or if the heat distribution must be found
in thick walls weakened with some cavities or holes [84]. Three-dimensional problem
statements are also unavoidable if the air conditioning system is developed to cool
down industrial or residential rooms [60].

Another approach to the classification of heat transfer problems touches upon the
time variable. If the heat distribution in a system depends not only on spatial variables
but on time as well, then the heat transfer is transient, if the heat distribution is
only the spatial variables dependent function and does not depend on time, then the
process reaches the so-called steady-state phase. Transient heat transfer is studied,
when we are interested in actual heat distribution through the space within the time
period prior to the steady state is reached, if ever [8, 36, 76].

If the heat in solids is distributed due to the heat conduction mechanism, then
this is where the classical heat equation [19, 31] comes to the picture. In the case of
a steady-state situation, the heat equation degenerates to either Laplace (if there are
no internal sources of energy available) or Poisson equation.

Two different types of problems are distinguished for the heat equation. If the
shape of the object under consideration, the initial and boundary conditions, the
thermal coefficients of the material of which the object is made (we will refer to all
of these as the initial data) all are given, then we face the so-called direct problem
formulation. Direct problems have traditionally been considered and solved in science
and engineering for centuries. If, in contrast to the direct formulation, the solution of a
heat conduction problem is available, but some of the initial data are missed, then the
so-called inverse or semi-inverse problems take place. This type of problems attracts
more and more attention nowadays. Many scientists devoted their efforts to this
subject using methods based on various techniques, such as finite-difference method
[65], fundamental solution method [33], Green’s function-based methods [28], genetic

algorithms [64], and so on. Other scientists focus on estimating the heat transfer



coefficients using iterative regularization method [69], input estimation approach [77],
or other techniques. Inverse problems for potential fields also arise in other fields of
science, for example, medicine and geophysics [3], where the electrostatic potential
around cardio-stimulators, or gravitational forces within different Earth layers are
studied.

Theory of inverse problems [5, 57, 72, 83] is much more complex compared to
the theory of direct problems, because inverse problems are generally speaking ill-
posed, which implies that their solution must not necessarily vary a small amount if
the initial data are slightly changed. As to the selection of numerical methods, that
have to be used to obtain the solution of inverse problems, engineers have to be very
delicate, because rounding up initial data, which is practically unavoidable, might
result in large errors in the solution. That is why various regularization procedures
are usually recommended [57, 72, 74] to provide reliable results for inverse problems.

There is no (and could not be) a general consensus on which particular method is
the best for all heat conduction problems. Many scientists put their effort to find the
analytical solution for some simple or specific cases [4, 43, 46]. The fundamental work,
which has been done in this field, is efficiently summarized in [79], which provides a
score of efficient analytic techniques for solving heat conduction problems. The key
emphasis of the study of Wang et al. [79] is made on the wave equation, steady-state
heat conduction equation, mixed problems and Cauchy problems for the hyperbolic
heat conduction equation, dual-phase-lagging heat conduction equation, and other
potential phenomena related equations. However that remarkable work does not con-
sider important class of problems posed in multi-layer structures, where some analyt-
ical approaches have later been proven to be efficient. See [52] for more information
on heat conduction in one-dimensional composite slabs, or [39] for multi-layer heat
conduction problems posed on a sphere.

Another popular in applied mathematical approach is to design a general numer-
ical algorithm which would be capable to solve a certain class of problems. There exist

a vast number of numerical methods to solve partial differential equations in general



and heat conduction equation in particular. In some of them the uniform mesh over
the domain is used to calculate values at grid-points [1, 55], while in others the mesh
is nonuniform [60]. In order to achieve higher accuracy and low computational cost,
the entire class of the so-called meshless method was developed (see, for example, [6,
67, 88]). Though, numerical methods enable us to solve a wide range of problems
compare to analytic approaches, their vulnerability is oscillations, which occur at
points of discontinuity. To overcome this phenomenon, a number of methods have
been proposed and is referred to as Gibb’s phenomenon. To name a few, Laplace
transform-based control-volume special schemes [20], characteristics-based total vari-
ation diminishing scheme [81], hybrid Green’s function-based method [21], and some
others.

Many authors combine the knowledge and experience from other fields of science
to come up with the solution for yet unsolved problems. For example, in [3] the
moment theory was successfully applied for a score of problems dealing with potential
fields; machine-learning schemes based on generic algorithms were summoned to solve
inverse problems in heat conduction in [64]; Cheng and Wu [22] combined body-fitted
grid generation and conjugate gradient methods to achieve high accuracy in solving
heat conduction problems.

Mostly recommended for engineers numerical approaches to the solution of direct
heat conduction problems are based on either the finite difference method (FDM)
[7, 38, 65] or the finite element method (FEM) [40, 44, 56]. These methods reduce
the original initial-boundary-value problem (transient formulation) or boundary-value
problem (steady-state case) to some linear algebra problems for which well-established
computer friendly routines are available in most contemporary software. The main
advantage of the finite difference schemes is their formal ease, but practical imple-
mentation of them meets many constraints coming up, in particular, from convergence
requirements, shape irregularity of the region, and enormous computer time consump-
tion. For the FEM, the region’s shape does not represent an important issue, because

a proper mesh pattern can quite accurately approximate the region. But practical



creation of such a mesh is very individual for each region and could significantly drop
the method’s efficiency.

An alternative to the FDM and FEM, that was quite recently introduced [18]
into industrial applications, is the so-called boundary element method (BEM). It
reduces boundary-value problem for a partial differential equation to some integral
or integral-type functional equations. The numerical algorithm, based on a semi-
analytical approach developed in the present study, is relevant to the BEM.

The present work is devoted to potential fields induced in thin-walled structures,
implying that some two-dimensional boundary-value problems should be considered
for second order partial differential equations in regions representing fragments of
middle surfaces of those structures. We are going to develop computationally ef-
ficient semi-analytical techniques for obtaining potential fields generated by point-
concentrated sources in assemblies of thin-walled shells. The assemblies of shells to
be considered are composed of fragments representing standard shells of revolution
(cylindrical, spherical, toroidal, and so on), each of which is made of an individual ho-
mogeneous isotropic conductive material, contains some foreign inclusions, and might
be weakened with apertures. This results in an intricate situation where we arrive at
some boundary-value problems for sets of two-dimensional Laplace equations written
in geographical coordinates specific for each shell fragment.

Among other factors, building up complexity of the problems considered in the
present study, is, in particular, the fact that the problems are set up in inhomogeneous
multiply-connected regions of irregular configuration. This factor makes merely im-
possible application of pure analytical methods for their solution. The semi-analytical
approach, which is developed instead in this study and whose efficiency is demon-
strated herein, belongs to the classical [53, 75] boundary integral equation (BIE)
group of methods, which are predecessors of the BEM. The key point of those meth-
ods is that they are meshless [24, 68, 89] in nature, implying that the solution of
the original boundary-value problem for a governing partial differential equation is

expressed in a form of an integral representation whose kernel is the fundamental



solution of the considered PDE. This reduces the original problem to a boundary in-
tegral equation which is to solve numerically. This approach provides the users with
two significant advantages. First, the dimensionality of the original boundary-value
problem reduces, and, second, not differential but integral operators require some
numerical approximation.

To further modify the classical BIE approach to boundary-value problems, its
Green’s function version (see, for example, [48]) had been proposed. The key idea
of this version is the use of some Green’s functions as kernels of boundary integrals
representing the problem’s solution. This further elevates the computational effect-
iveness of the BIE method, because some of the boundary conditions in the original
problem formulation are supposed to be exactly satisfied prior to a computational
phase of the solution process. But, on another hand, a notable drawback of this
version of the BIE method is the necessity for the user to have a required Green’s
function available. Note that a vast number of Green’s functions for a variety of
boundary-value problems can, for instance, be found in [26, 48, 50].

Since many of the problems considered in the present study do not deal with a
single PDE but rather with sets of equations, neither the classical BIE methods nor
their Green’s function version can be directly implemented. With this in mind, to
properly treat such complex problems, we make use of the extension of the Green’s
function formalism proposed earlier in [48]. This gives birth to the notion of mat-
rix of Green’s type. Specific matrices of Green’s type, required for present work,
are constructed for solid shell assemblies. Either compact analytical expressions for
those matrices or some of their compact computer-friendly series representations are
obtained.

So, in the present study we are going to focus on the boundary element method,
with an emphasis on one of its Green’s function modifications. We feel necessity
to show the step-by-step algorithm for the construction of Green’s functions for a
number of boundary-value problems to be considered. Our construction procedure

for required Green’s functions is based on the classical [31] separation of variables
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method whose essential component is a Green’s function for a corresponding ordinary
differential equation. That is why we begin our presentation with the latter subject,
limiting ourself to the case of second order equations. Two standard [49] approaches
are reviewed in necessary detail. We will frequently refer to the results presented here
and implement them later in this manual.

Consider a linear second order homogeneous ordinary differential equation with
variable coefficients on the interval [a,b], which is not supposed to be necessarily
finite,

Lly(z)] = po(2)y" (z) + p1(x) ¥ (x) + p2(z)y (x) =0 (L.1)

and subject it to the homogeneous boundary conditions

1

x (y;a,b) EZ +@y ()}:0, k=1,2 (1.2)

=0
where p; () (i = 0,1, 2) are continuous functions on |a, b], with po () # 0. Let M}, be
linearly independent operators, with a?, ﬁ? representing constants. The superscript
(7) stands for the derivative order. It worth noting that each standard boundary
condition (Dirichlet, Neumann, and Robin) follows from (1.2) as a particular case.
The form in (1.2) includes also the case of periodic boundary conditions.

If the boundary-value problem in (1.1)-(1.2) is well-posed, providing only the
trivial solution, then its unique Green’s function g(z, s) exists possessing the following
four properties, for any arbitrarily fixed point s € (a, b):

1. g(z,s) satisfies the governing equation in (1.1) everywhere except for = = s,
ie.:

Lig(x,8)] =0, x€(a,s)U(s,b), (1.3)

2. g(z,s) is continuous at = s

lim g (z,s) = lim g (z,s), (1.4)

z—st T—s~
3. the first derivative of g(z,s) has removable discontinuity at z = s, to satisfy

the relation
0 0 1
lim 29088 g, d9l@s) 1 (1.5)
z—st X T—s™ X Do (S)




where pg(x) is the leading coefficient of the equation in (1.1), and

4. g(z, s) satisfies the boundary conditions in (1.2), that is
My (g;a,b) =0, k=1,2. (1.6)

To prove the existence of the Green’s function for the boundary-value problem in
(1.1)-(1.2), we follow the classical [31] straightforward procedure. In doing so assume
that y; () and yz(x) are two linearly independent particular solutions of the equation

in (1.1), and look for the Green’s function in the form

automatically satisfying the first defining property in (1.3).

Indeed, both branches of (1.7) are linear combinations of y;(z) and ya(x), and
each of them is therefore a solution of (1.1). In order to find the unknown functions
A;(s), and B;(s) we refer to the remaining properties. By satisfying the property in

(1.4) one comes up with the following equation:
Y1 (s) C1(s) +y2(s) Ca(s) = 0 (1.8)

where

From the property in (1.5) it follows that

1

Yi(5) Cr(s) + 12 (5) Ca () = = )

(1.10)

Relations in (1.8) and (1.10) form a system of linear algebraic equations in two
unknown functions Ci(s) and Cy(s). This system has a unique solution since its
determinant represents Wronskian for the fundamental set of solutions y;(x), and is
therefore nonzero. Before we turn to property 4 we split up the operator M (y) in

two parts as

My (y) = P (y) + Qr (y) ,



where )

Pe(y) = 3_ajy? (@), Quly) =D 5y (b).

=0

To continue let us introduce a shorthand notation for the two pieces of the piece-
wise defined Green’s function in (1.7). From now on, the piece that corresponds to
the interval [a, s] will be called the upper branch of the Green’s function and denoted
as g¥(x,s), whilst the piece defined on the interval [s,b] will be referred to as the
lower branch g~ (z, s).

Since g(a, s) corresponds to the upper branch of the Green’s function in (1.7) and

g(b, s) corresponds to the lower branch, the relations in (1.6) could be rewritten as

Mk (g(ac,s)) Epk (g+ ($,S)) +Qk (gi (I,S)) :07 k:172

Or in other words, because of the linearity of the operators Py(y) and Q(y), the
above expressions read

2 2

> Pelyi () Ai () + > Qe (yi (b)) Bi(s) =0, k=1,2 (1.11)

i=1 i=1
Expressing then the functions A;(s) in terms of C;(s) and B;(s) from (1.9), we

obtain the 2 x 2 system of linear algebraic equations in B;(s)

D P (i (0)) (Bi(s) = Ci(9)) + D Qi (3: (1) Bi(s) =0, k=1,

which can be written in a more compact form as

ZMk (5: (b)) Bi (s) = ZPk (yi (a)) Ci(s), k=12 (1.12)

The system in (1.12) has a unique solution, because the operators M (y) are
linearly independent. And once B;(s) are found, the corresponding A;(s) follow from
(1.9).

So, observing the derivation just completed, we outline that it does not only prove
the existence and uniqueness of the Green’s function of the problem in (1.1) and (1.2),

but also gives us a straightforward procedure for its obtaining.
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Note that for some of boundary-value problems of the type in (1.1) and (1.2),
the construction procedure for their Green’s functions, that we just described, can
be notably modified [49]. Namely, if the boundary conditions in (1.2) are point-split,

meaning that one of them is imposed at z = a
apy (a) + ary’ (a) =0, (1.13)

whilst another is imposed at x = b

Boy (b) + 51?/ (b) =0, (1.14)

then, instead of taking any pair of linearly independent particular solutions of the
governing differential equation in (1.1) and proceeding with them as earlier suggested,
we choose the first component 3, (z) of the fundamental set of solutions as the solution

to the initial-value problem

agyr (a) + anyy (a) =0 (1.15)

and
agy1 (a) +ajyy (@) =0 (1.16)

for equation (1.1). The second component yo(z) of the fundamental set of solutions

is chosen as the solution to another initial-value problem

Boy (b) + 61?/1 (b)=0 (1.17)

and

Boyr (b) + 1y (b) = (1.18)

Clearly, to make the initial-value problem in (1.1), (1.15) and (1.16) well-posed,
the coefficients afy and o in (1.16) must be chosen in the way making the determinant

of the matrix
Qg 7

* *
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non-zero. By similar reasoning, the choice of g and /7 in (1.18) must be predeter-

mined by the condition

Bo B

Bo A
Now, in light of the proposed specific choice of the components y; () and ys(x) of
the fundamental set of solution, the Green’s function of the boundary-value problem

in (1.1), (1.13), and (1.14) can be expressed in the form

g(x,s) = - (1.19)

It is evident that the above form satisfies the defining properties 1 and 4 in the
definition of the Green’s function. To find the functions A(s) and B(s), we take
advantage of the continuity properties 2 and 3 which results in the system of linear

algebraic equations
yi(s) A(s) —y2(s) B(s) = 0
Vi (s)A(s) = (s)B(s) = —pg" (s)

the well-posedness of which follows from the fact that the coefficient matrix of (1.20)

(1.20)

is not singular (indeed, it is the Wronskian of the fundamental set of solutions whose
components are y;(x) and y2(x)). So, once the functions A(s) and B(s) are available,
they go to where they belong to, that is to equation (1.19). This completes the
construction of the Green’s function that we are looking for.

Before turning to the second of the classical ways [49] usually used to practically
construct the Green’s function for the boundary-value problem of the type (1.1) and

(1.2), we will consider the non-homogeneous equation

po(x)y" (x) +p1 (2)y () +p2 (2) y (x) = = f (2) (1.21)

subject to the boundary conditions in (1.2). It can be shown that the solution of the
boundary-value problem in (1.21) and (1.2) can be expressed in terms of the Green’s

function g(z, s) of the setting in (1.1) and (1.2) in the form

y () = / g (,5) f (s) ds (1.22)
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This implies that our objective is to show that the function in (1.22) does make
the equation in (1.21) true and satisfies the boundary conditions in (1.2). To proceed
with this endeavour, note that since the Green’s function g(z,s) is defined in two

pieces, the form in (1.22) can be split as

yﬁw-—L/%g‘(x,s)f(s)ds+l/‘g*(lns)f(s)ds (1.23)

To substitute the above expression for y(z) into (1.21) we recall the differentiation

rule for the integral with variable limits. It reads

(=) (=)

b(z) b(z)
% (/a h(zx,s) ds) :/a he (z,8)ds+ h(x,b(x))b (x) — h(x,a(x))ad (x).
Differentiation of the expression for y(x) in (1.23) yields
x b
V@) = [ @) fdst [ g m)f (s

+g (w2 = 0) f (x) — g (2,24 0) f ()

which reduces, due to the second property of the Green’s function, to

b
szf%@@f®% (1.24)

This implies that the boundary conditions in (1.2) are satisfied with y(z) expressed
by (1.22), since all the differentiations in My (y; a,b) can be brought under the integ-
ration sign. Following the same logic as for the first derivative and keeping in mind
the third property of the Green’s function, the expression for the second derivative
of y(z) could be found as

1
po ()

ym—/ymm@ﬂ@@— /(@) (1.25)

By substituting (1.22), (1.24), and (1.25) into (1.21) it can be shown that the

latter reduces to

[ty wsls s+ [ Lly @s)] S () ds— f @)= 1 @
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which is an identity, because of the first property of the Green’s function,

Lig(z,s)]=0, z€ (a,s)U(s,b).

So, an important practical observation follows from what we have done. That is,
if the solution to a boundary-value problem posed for a non-homogeneous differential
equation subject to homogeneous boundary conditions could be expressed in the
integral form of (1.22), then the kernel of that integral is the Green’s function for the
corresponding homogeneous problem. This fact gives rise to another approach for the
construction of Green’s functions which is described below in detail by means of the
Lagrange’s method of variation of parameters [31]. In doing so, assume that y;(z)
and yo(z) are two linearly independent particular solutions of the equation in (1.1).

Then the general solution of the non-homogeneous equation could be written as

y(x) = Cr(x) yr () + C2 (z) y2 (z) (1.26)

Differentiating the above yields
y (x) = Cf (z) y1 (2) + O () y2 (2) + C1 () 4 (2) + O () 3 () -
Making the assumption
Ci (@) (x) + C5 (2) y2 () = 0, (1.27)

the second derivative of (1.26) reads

y' (x) = C1 () 1 (2) + C () 45 (2) + Co () 41 (2) + Ca () 3 ()

Substituting the above expressions for 4’ (z) and y” (z) into (1.21), one obtains

po(x)C1 () vy (x) + po(2)C5 (z) g5 (2) = —f (2) (1.28)

The relations in (1.27) and (1.28) form a system of linear algebraic equations in

C] (z) and C4 (x) which reads as

(1.29)
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The system in (1.29) has a unique solution since its determinant is Wronskian
W () = 1 (2) 4 (2) = 91 (#) g2 (2) # 0
of the two linearly independent functions y; (z) and ys () .

The solution of the above system is obtained in the form

@@ m @)@
R@OW@ 2T W@

which after straightforward integration yields

[ meI6) N ACHON
Cl (.T) == /a Do (S) W(S)d + Dl, OQ( ) /a o (S) W(S)d + D2 (130)

Substituting the above expressions into (1.26), we obtain the general solution of

C1(z) =

the non-homogeneous equation in (1.21) as

T uOn@-n@n),
y(o) = [ DD I f (5) ds 4 Diy o) + Do (2) (130

The constants of integration D; and Dj in (1.31) are to be determined from the
boundary conditions in (1.2). To complete the derivation procedure let us consider

the simplest case of the boundary conditions as
y(a)=0, y()=0 (1.32)
Satisfying these conditions yields the system of linear algebraic equations

Dyyi (a) + Doy (a) =0
D1y1 (b) + D2y2 (b) =P

(1.33)

in D, and D,, where

[HBSIE),
P= ZZM@W@W

and
H(b,s) =y1(s)y2 (b) — y1 (0) y2 (5)
Solving the above system results in

_ ["w@HG)f() [ @HbBS) ()
D= lmwﬂmmW@“ b Lm@ﬂwmwwd
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which upon substitution into (1.31) provides us with the solution of the problem in

(1.21) and (1.32) as

TH(z5)f(s), " H(a,2) H(b,s) f (s)
o« Po(s)W(s) o Po(s)H (a,b) W (s)

Combining the above integrals in a single integral form, we finally obtain

y(z) = ds

y () :/ K (z,s) f(s)ds (1.34)

with the kernel being defined in two pieces as

K( )— 1 —H(a,{L’)H(b,S), fa<zxz<s
" po(s) H (a,b) W (s) H(a,b)H (x,s) — H(a,z)H (b,s), ifs<z<b
(1.35)

Thus, the function in (1.35) does indeed represent the Green’s function for the
boundary-value problem in (1.1) and (1.32) that we are looking for.

The present manual is organized in five chapters. Chapter 1 is actually the Intro-
duction. In Chapter 2, we provide a detailed description of the method that we use
for the construction of Green’s functions for boundary-value problems stated for the
Laplace equation written in geographical coordinates for single shell fragment. We
consider different fragments of spherical, cylindrical, and toroidal shape as regions
over which actual boundary-value problems are formulated. For each of these regions
a score of Green’s functions are provided in Chapter 2. Chapter 3 is devoted to the
construction of matrices of Green’s type for a number of thin shell assemblies. A
special attention is paid to the obtaining of computer-friendly forms of the elements
of such matrices.

Most complicated problem statements, considered in this study, are discussed
in Chapter 4 where perforated single shell fragments and assemblies of fragments
undergoing point sources are considered. The last Chapter provides some verification
of the efficiency of the proposed semi-analytic algorithms. The computational cost
and the parallelizability of those algorithms are discussed in there. Based on the

method of successive approximations approach we also explored in Chapter 5 the
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possibility of solving some inverse problems, where our algorithms appear efficient if
used at each iteration for solution of corresponding direct settings.

The results of the present study have been published [11,13,15] in peer-reviewed
journals and presented to a series of regional, national, and international professional

conferences (see [10, 12, 14, 16]).
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2 Laplace equation on surfaces of revolution

Thin plates and shells represent widely used fragments of structural elements of ma-
chines and devices in contemporary engineering and science. If these fragments are
made of conductive materials, then potential fields of various origin may occur in
them affecting their functional properties and capacity for efficient work. This is why
an engineer, who is involved in the design process, is required to accurately compute
potential fields generated in thin-walled fragments of machines and devices.

Our objective in this chapter is to develop a reliable background for computing
potential fields induced by point-concentrated sources in single shells of standard geo-
metry. Spherical, cylindrical, and toroidal shells will be considered in detail. Math-
ematically, this requires Green’s functions for the two dimensional Laplace equation
written in various geographical coordinates. A number of boundary-value problems

will be considered.

2.1 Boundary-value problems on sphere

We begin with a boundary-value problem stated in the quadrilateral region (see Figure
1)
Q= {¢79|¢1 S ¢ S ¢2’91 S 9 S ‘92}

on a spherical surface of radius a for the two-dimensional Poisson equation

10 (.  0ou(¢,0) 1 9*u(e,0)
a? sin ¢ Ag (Sm¢ 0o ) + a?sin®¢p  06*

written in spherical coordinates and subject to the boundary conditions
Bi[u(,01)] =0 Bslu(¢,02)] =0 (2:2)

and

Bs[u(¢y,0)] =0 Bylu(p,,0)] =0, (2.3)

where B;, i = 1,4, are the boundary condition operators of one of the three (Dirichlet,

Neumann, and Robin) standard types.
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Figure 1: Quadrilateral fragment of a thin spherical shell

If G(¢,0;1,7) represents the Green’s function of the homogeneous boundary-
value problem corresponding to (2.1)-(2.3), then the solution to the problem in (2.1)-

(2.3) itself can be expressed as the domain integral

uw®=/AGwﬁwﬂﬂwﬂ%ﬁ. (2.4)

If the boundary-value problem in (2.1)-(2.3) allows analytic separation of variables,
implying that B; and Bs represent either Dirichlet or Neumann operators, then we
expand the solution u (¢, @) of the original problem and the right-hand side function

f (6, 0) of the governing equation in the Fourier series

w(p,0) =Y u, (¢)sinvh (2.5)
and o
F(0,0) =Y fu(¢)sinu, (2.6)

where the factor v is directly proportional to the index of summation n.
Substituting the above trigonometric representations into the boundary-value prob-

lem in (2.1)-(2.3), we obtain the set

1 d . dun (qb) ]/2 B B
a2 sin ¢ d¢b <Sm¢ do > " Zagn (@) = —h(@), n=123.. (27)
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Bs[un (¢1)] =0 Bylun (¢9)] =0 (2.8)

of boundary-value problems in the coefficients u,(¢) of the series in (2.5).
Keeping in mind application of the method of variation of parameters to the
boundary-value problem in (2.7)-(2.8), we need two linearly independent particular

solutions for the homogeneous equation corresponding to (2.7). While changing the

(e (2)

we reduce the problem in (2.7)-(2.8) to

independent variable as

Pu, (W), _
—z Y un (w)=20 (2.9)
B3 [Un (wl)] =0 B4 [Un ((A)Q)] = 0. (210)

This allows us to express the general solution for (2.9), within the scope of the

method of variation of parameters [31], in the form
Uy (W) = C1 (w) e”” + Cy (w) e,

or going back to the original independent variable ¢, we have the solution u, (¢) to

(2.7) in the form

¢

Un (¢) = C1 (¢) tan” (%) + Oy (¢) tan™ (5) . (2.11)

Following the classical procedure, which was described explicitly in the Introduc-
tion, we arrive at the general solution for the non-homogeneous equation in (2.7)

¢ tan”
n(@) = = [ e W)+ Ditant (672

¢ tan” (1/2)
|t o

| avtan (/)T (V)10 et T(O/2),

which transforms into

L[ /)t (6)2)
un (¢) = 2v /¢ (tan” (¢p/2)  tan” (¢/2)) fu () i
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+D; tan” (¢/2) + Dytan™ (¢/2) . (2.12)

Satisfying the boundary conditions in (2.8), we express (2.12) in the form
B
w0 (0) = [ (00 (@) dv, (213)
where the kernel function g, (¢, ) is expressed in two pieces. In considering particular
problems later in this chapter, we discuss this issue in detail.
To proceed further with our approach, we express the coefficients f,, (1) of (2.6)
using the Euler-Fourier formula

2 02
0y =01 g,

fn (0) f (¢, 7)sinvrdr

and substitute u, (¢) into (2.5). This yields
’LL(¢,(9) = G(@&%ﬂf@ﬁ) dw,fgv
i

where G (¢,0;1,7) represents the Green’s function of the homogeneous boundary-

value problem corresponding to (2.1)-(2.3), and appears in the form

G(¢,0;0,7) =

Zgn (¢,7)sinvfsinvr. (2.14)
0 — 0

In what follows, we will consider a score of specific boundary-value problems and

obtain explicit expression for their Green’s functions.
To be more specific, consider the spherical quadrilateral
Q={9,0|a<o<p; 050},

where 0 < a < f < 7 and 0 < v < 27, and impose the following boundary conditions

on its contour

_o u(e) _

and

ou (3,0)
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To meet the conditions in (2.15), the summation index v in the Fourier series
expansions of (2.5)-(2.6) must be v = (2n — 1) 7/2v. By satisfying the boundary
conditions in (2.16) to determine the constants D; and Dy in (2.12), we come up with

the following system of linear algebraic equations in Dy and D,

DlAV + DQA_V - 0
D1B” — DyB™" = P,

r=5 ] (F F) Row

®(€) =tan™7 (£/2), A=tan™ («/2), and B =tan™"(5/2).

where

and

Upon solving the above system, we obtain

B 1 7 B 4 92 () +
Dy = 2u (A2 4 B2n) /a P (¢h) fn ($) dy (2.17)
and 5
- A2n B2n + (I)Qn (q/)) .
Dy = gy g | ey (0 (2.18)

Substituting expressions from (2.17) and (2.18) into (2.12), one obtains
1 ¢(I)2n w _A2nB2n+q)2n ¢ _
wA+ B2 )y P (Y) o (9)

59 (§) — AP B 4 B2 () +
+/¢ o L GLE

which could be interpreted as

un(¢) =

Do -
un (§) = / 0 (6,0) i (4) d,

where

r(y) A" B» " ()
AnBr ( A @nw)) <<1>n<¢> B ) asP<o

)

In (&,0) = 5

" (¢) An B " (4)
An q;.n(¢)) (q;.n(w) + n ) ) (b S w S ﬁ
(2.19)
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Now we make use of (2.14) to find the Green’s function for the homogeneous
boundary-value problem corresponding to that in (2.1), (2.15) and (2.16). Breaking
the product of sines into the difference of cosines, using then the standard summation

formula [30]

i p?n-t 1 1+ 2pcosa + p?
cos(2n — 1)a = —1In :
2n — 1 4 1 —2pcosa + p?

n=1

and introducing shorthand notations

1 (1—}—21:(:0804—1—1:2) 11 <1—|—2xcosﬂ+x2
—~In
7r

H _—
n (2,0, 6) T 1 — 2z cos 3+ 22

) . (2.20)

1 —2xcosa+ a2
T
v
we appear at the Green’s function G (¢, 0;1), 7) in the form

k(0,7)=—(0+7), and n(e,T)zg(e—T), (2.21)

: _ () () n K A2 n K

@) n ) _ [2DA n »
+ HN( q’(w)’”z) HN( ‘I’(WBQ’Q") +R,  (2.22)
o) 1k O(Y)A2 9 g ’ '
Hy ( Wvgai) — Hy ( q>(¢)32,gv§)

where R = R(¢,0;1,7) is the regular part of the original series in (2.14) which
converges uniformly and is expressed as

1 A" (9" (¢) + B") (2" () — A")
VB (6) " (¢) (B" + A7)

sin vf sin v,

R(6,0:9,7) =) 5
n=1

and the upper branch of the third additive component in (2.22) is valid for a < ¢ < 1),
whereas in its lower branch ¢ < ¢ < 3.

Note that the Green’s function in (2.22) possesses the logarithmic singularity when
¢ — 1 and € — 7 and represents the solution of the boundary-value problem in (2.1),
(2.15) and (2.16) if the right-hand side function f (¢, ) in (2.1) is understood as the
Dirack delta-function 0 (¢ — 1,0 — 7). Profile of the Green’s function just found is
shown in Figure 2 for the domain 2 = {¢,0|0.157m < ¢ < 0.57,0 < 6 < 0.57} with a

point-source location at (0.357,0357) .
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Figure 2: A point source-generated field in the spherical quadrilateral

The described in this section technique can be used to obtain compact representa-
tions of Green’s functions for a score of boundary-value problems set up for a variety
of regions on a spherical surface.

Before proceeding further with our development we introduce some simplifying
notations. First a 4-letter abbreviation will be used to specify the boundary con-
ditions, where each letter corresponds to a specific boundary condition operator in
(2.2)-(2.3). "D" stays for the Dirichlet condition, "N" means the Neumann condi-
tion, while "S" means the boundary condition at a singular point. For example, the
boundary conditions in (2.15) and (2.16) could be referred to as DNDN. In addition,
along with Hy introduced in (2.20), we use the shorthand notation Hp(z,a, ) for
the logarithmic function

1 1 —2xcosa + 2?2
. _ 1y _ 2.2
p(z,a, ) A n<1—2xCOSﬁ+I2) 229

Table 1 contains a number of computer-friendly expressions of Green’s functions
constructed for well-posed boundary-value problems [10, 11]. In cases where the series
in (2.14) cannot be completely summed up, we split the logarithmic singularity, and
leave the regular components R; expressed as uniformly convergent series.

In Figure 3, the superposition of three profiles of the Green’s function is shown for

the Dirichlet boundary-value problem posed in a spherical biangle of radius 1. The
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domain €2 is chosen as {(¢,0)]0 < ¢ < 7,0 <60 <0.37}, the locations of the point
sources are (0.357,0.067), (0.557,0.127), and (0.457,0.277)

Figure 3: The potential field generated by three

point sources in a spherical biangle

Table 1: Green’s functions for boundary-value problems posed on a sphere

# | Boundary conditions G(¢p,0;0, 1

1 DDSD Hp (295, k) = Hp (5. 5.n)

2 DDSN Hp (25, k) = Hp (33, 5.0)

3 DNSD Hy ( ”@‘5“"),5,%) ~ Hy (/35 5.3)
4 DNSN —Hy ( AW %) — Hy (\/35,5.3)
5 DDSS —Hp (5, 5.1)

6 DNSS iy (/39,5.%)




Table 1 (cont.): Green’s functions for boundary-value problems posed on a sphere

# | Boundary G (9,054, 7)
conditions

7| DODD | Hy (M9 s ) — Hp (2O k1)
—Hp (%,Iiﬂ]) + Hp (W%,Ii,n) + Ry

8 | DDDN | —Hp (M2 1, p) + Hp (592, k1)
—Hp (%,n,n) + Hp (W;w),n,n) + Rg

9 | DDND | Hp (M5 k) + Hp (5457 %.m)
—Hp (%,m,n) — Hp (W%,Ii,n) + Ry

10| DDNN | —Hp (292 r ) — Hp (355, 5.0)
—Hp (%,m,n) — Hp (Wi(w),ﬁ,ﬁ) + Ryo

11| DNDD | Hy ( 20)0W) » g) ~ Hy (/395 5.4)

12| DNDN | —Hy ( 2020) &, g) + Hy (/25 5.%)
—Hy < 39 gg) + Hy (\/ 5505w 5 %) + R

13| DNND | Hy ( e g) + Hy (/2955.5.1)
_HN< %39 _HN< @(5‘;(1/,)7%,%) + Ri

| DN |y (s ) (8 8)
~Hx (30 5:3) — H (/s §.3) + P

Three different domain shapes are considered in Table 1, that is:

1. spherical triangle: {¢,0 | 0 < ¢ < 3; 0 < 0 <~} in rows 1-4;

2. spherical biangle: {¢,0 | 0 < ¢ < m; 0 <6 <~} in rows 5-6;

25
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3. spherical rectangle: {¢,0 | a < ¢ < ; 0 <0 <~} in rows 7-14.

The regular components R;, ¢ = 7,14 for the Green’s functions which cannot be

summed up are obtained as

i LA (@ (9) - B) (¥ (1) — A)
Leomy B (0) 8 (1) (B7 — A7)

(cosnn — cosnk) ,

i LA (@ () + B (37 (1) - A™)

v B2@n (¢) (1) (B2 + A7) (cosnn — cosnk),

o0

R — 1 A* (B> — 0% () (9" () + A*")
YT Laomy B2 (¢) &7 () (B2 + A)

L AT (@7 () 4 B2) (D () + A*)
o = Z 2mv BT (¢) @7 (1) (B> — A)

(cosmn — cosnk),

(cosnn — cosnk),

n—

LA BN ) (s
=3 5 e (0~ )\ )
& A”(@”( )+ BY (@ () =AY (s
P = o B T (B s AT )
)

= St An(Bn " (9) (" (¥) + A") cos I cos %
R e e (B A (2 )

and

B 1 A" (D" (¢) + B™) (D" () + A™) nn nk
=Y B e (B A )

Recall another type of boundary conditions for the problem in (2.1)-(2.3), which
is of a practical importance. It simulates the 27-periodicity for the coordinate 6,
when in (2.2) 65 = 0 + 27. This takes place, for example, in the case of boundary

conditions written as
u (¢7 91) —u (¢7 92) =0 (2-24)

and

ou <¢, 91) ou ((b, 92) .
o e =0 (2.25)
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In this case, the complete Fourier series expansions for u (¢,0) and f(¢,0) are

used as
u(p,0) = —uo ®) + Z u,’ (¢) cosné + Z u'® (¢) sinnf (2.26)
and

f(9,0) :—fo +Z £ (@) cosnf + Y 9 (¢) sinn. (2.27)

And the Green’s function for the boundary-value problem in (2.1), (2.3), (2.24), and

(2.25) appears in the form

G(¢,0;,7) = %90 (¢,9) + Zg,(f) (¢,9) cosnb cosnTt

+Zg (¢, 1) sinnf sinnt. (2.28)

The derivation of the above function will be given in detail only for the boundary-
value problem posed on a spherical belt Q = {¢,0 | a < ¢ < 5; 0 <0 <27} with

boundary conditions imposed on boundary lines ¢ = o and ¢ = [ as

ou(B,0)
9¢

Green’s functions for other problems with 27-periodic boundary conditions for ¢

u(a,0) =0 = 0. (2.29)

coordinate could be found in a similar way.

Note that the derivation of the Fourier coefficients g (gb ) and g (p,) is
indifferent to the type of the series, that is why we will omit the superscripts (s) and
(¢) in what follows. Following the standard separation of variables procedure one

reduces the boundary-value problem in (2.1), (2.24), (2.25), and (2.29) to

1 d (. du,(9) n’ B B
a2 sin ¢ d¢b (Slw o > " Zangtn (@ =—f(0), n=123.. (230

Yun (B)
d¢

which results in the following expression of the Green’s function in (2.28)

up () =0 and

= 0. (2.31)

G (6,0:0,7) = 390 (6.0) + 3 g0 (6,0) cosn (6 7). (232
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The cases n = 0 and n > 1 should be considered individually. Note, that for the
case n > 1, the boundary-value problem in (2.30)-(2.31) is identical to one in (2.7),
(2.16), if the parameter v is replaced with n. This allows us to state that

W) _Ag By 25 (¢)
( g <I>8(Ow)) (<I>z;?¢)+ B ) a<yp<o

An Bn o
gn (¢7 w) - 5
( 3 _<I>3(¢>)) («bg(wﬁ By ) p<p<p
(2.33)
where
Dy (§) =tan (£/2), Ap=tan(a/2), and By = tan(5/2). (2.34)

To derive the component gg (¢,%) in (2.32) we find the general solution ug (¢) of

the homogeneous equation corresponding to (2.8) for n = 0

1 d (. du(¢))
a2 sin ¢ d <Sm¢ do )_O’

up (¢) = Cy In <tan (%)) +C,.

Using the method of variation of parameters, one finds the general solution to the

as

corresponding non-homogeneous equation with the right-hand side function fj (¢) as

) -
oy (6) = /a In z‘; %) Fo () dib + Dy In @y (6) + Do, (2.35)

where fo (1) = a?sint) fo ().
The constants of integration D; and Dy could be found by satisfying the boundary

conditions in (2.29) as

8 _ B -
Di= [ fw)ar and Di=- [ (o) fo(w)d.

Substituting the above into (2.35), ug (¢) reads as

¢ ~ B ~
w(@ = [ 2B @+ [0 2O w)a,

0 0

providing us with

2% ifa<g<y

Y iy <o<p

90 (¢, 9) = (2.36)
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To sum up the series in (2.32) with the coefficients defined in (2.33), we recall
another standard summation formula [30]

o0

" 1
Zp—cosnoz = —§1n (1 —2pcosa + p?) (2.37)
n
1
and introduce the shorthand notation of the logarithmic function Hp(z, @)

1
Hp (z,a) = yo In (1 — 2z cosa + z?) (2.38)

The ultimate representation for the Green’s function of the problem in (2.1),

(2.24), 2.25), and (2.29) appears as

G(6,0:,7) = Hp (ﬁ,e-ﬂ —Hp (—%(cb)%(w’eﬁ)

®) ®o B}
Do (o Do (o 20(¥)A
n 252 — Hp (29,0 7) + Hp (35058.0 - 7)
e YR
o (¥) Do (1)) ®o(o
1n0A—O—HP(¢g(¢),9 )+H ( O 0~ )
(2.39)

where the upper branch of the third additive component is valid for the case o <
¢ < 1, while the lower branch represents the case ¥ < ¢ < 3, and the last additive

component R = R (¢, 0;1, 1) is expressed as the series

— 1 AF" (3" (¢) + BE") (93" (v) — AF"
3 (95" (¢) ) (25" (¥) )

R(¢,0,v,7) = ' Sen BBy (6) % (9) (BT + AD) cosn (6 —7) (2.40)

that converges uniformly.

Applying the technique just described, one finds Green’s functions for some other
boundary-value problems posed on a 2m-periodic spherical region. That is, for the
spherical cap Q = {¢,0 | 0 < ¢ < 8; 0 < 0 < 27}, with the Dirichlet conditions im-
posed on ¢ = 3, we obtain

1 B2 (B2 (¢p) — 28 (¢) Do (1) cos (0 — 7) + B2 (v))
47 In (B4 — 2B2®q (¢) ®g (1) cos (6 — 7) + D (p) PE (7/1)) . (2.41)

(¢79 ¢> )_
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The case of spherical belt, @ = {¢,0 | « < ¢ < §; 0 < 0 < 27}, with the Dirichlet

conditions imposed on both edges, results in

A2 Do (¢) Do () )
G(b.0:0,7) = Hp|—"0 v H (—,9—7
o0 = i (gt =)+ 1 (M

(6) |, Gui0) Z0() Bo(1)42

In 25 1n 25— (32490 - 1) — Hp (320580 - 1)
Do (¢ $o(o Do (¢ Do(p)A

In 0B(o)ln f)4(0)_]JP (‘P?)((Qﬁ))’e_T)_HP <<I)(())('¢')B?)7 _T)

+Rpp (2.42)

where

[e.o]

. S L AR (9 ()~ ) (9 () — A)
on = fipo (0.000:7) = ) 5 = By (o g (o) (B - 4y "0

The spherical belt Q2 = {¢,0 | a < ¢ < ; 0 < 6 < 27}, with the Neumann-Dirichlet

conditions, yields

G(6,0:0,7) = —Hp (@A_ 9_7) o (¢0<¢>q>o<w>,9_T)

(¢) @0 (¥)’ B2
Po(9 Po(9 il
In 242 — Hp (555,07 ) + Hp (350580 - 7)
N sw Do(4) o v
In 220 —Hp(q)gw),e—r)+Hp(q)g(w)Bg,e—r)
(2.43)

where

(e o]

R (6 ) S L AR (B 8 (0) (@ (4) + A7)
fixo = o 007 = 2 o~ Bpa @ w0y B A T

An illustrative example for the 27-periodic problem setting is shown below.
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Figure 4: Potential field generated by multiple point sources in a spherical cap

In Figure 4 we depict the potential field generated by four point sources in the
spherical cap

Q={(¢,0)]10< ¢ <057,0<6<2r}

This potential field is simulated by superposition of four profiles of the Green’s
function from (2.41) with point sources located at (0.227,0.247), (0.42m,0.57),
(0.277,1.77), and (0.377, 1.97) .

2.2 Problems on 27-periodic cylindrical surface

The list of surfaces that allow application of our approach is not limited to those we
touched upon so far. To illustrate this point, we consider a boundary-value problem
posed on a fragment Q = {2,0 | 0 <2z <h; 0 <0 <27} of a cylindrical surface of

radius a, shown in Figure 5.
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Figure 5: Closed cylindrical shell of a finite height

Let the two-dimensional Poisson equation

0%u (2,0 1 0%u(z,0 .
8(22 ) T2 (9(92 9 _ —f(z0), inQ (2.44)

written in cylindrical coordinates be subject to the boundary conditions

Ju (z,0) _ ou (z,2m)

u(z,0) =u(z,2m), 50 50 (2.45)
and
B ou(h,0)

To obtain the solution to the above boundary-value problem in terms of the
Green’s function of the homogeneous problem corresponding to (2.44)-(2.46), we refer
to the Fourier series expansions in (2.26) and (2.27), reducing the governing partial

differential equation in (2.44) to the set of ordinary differential equations

— D (2) = —fu(2) (2.47)

~0 (2.48)
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Note that the case of n = 0 should be considered separately, and we will do it
later. A fundamental set of solutions of the homogeneous equation, corresponding to

(2.47), for the case of n > 1, could be chosen as

nz/a —nz/a

e and e

Applying the standard method of variation of parameters, one obtains the general

solution of the non-homogeneous equation in (2.47) as

w, (Z) a /O [en(z—s)/a o efn(zfs)/a] fn (8) ds

e

Dy 4 Dy (2.49)

The first boundary condition in (2.48) yields
Dy + Dy =0 (2.50)
while the second condition in (2.48) results in

h
Dlenh/a . D2€—nh/a — _21/ [en(h—s)/a o e—n(h—s)/a} fn (S) ds (251)
n Jo

The equations in (2.50) and (2.51) form a system of linear algebraic equations in
D; and D,. Solving for the latter we find then the solution for the boundary-value
problem in (2.47)-(2.48) as

() = _% /Oz sinh (nS/;)SZH(l;l]SC(L;L —z)/a) £ () ds
a " sinh (nz/a) sinh (n(h — s) /a) s
_”/Z cosh (nh/a) Ju(s)d (2.52)

which, according to (1.22) (see Chapter 1), provides us with the Green’s function of

the homogeneous boundary-value problem corresponding to (2.47)-(2.48) in the form

a sinh (nz/a)sinh (n(h — s)/a), if0<z<s

 ncosh (nh/a) | ginn (ns/a) sinh (n(h — 2)/a), ifs<z<h (2.53)

gn (Za 5) =

At this point we turn back to the problem setting in (2.47)-(2.48), and consider

the case of n = 0 for which the governing equation reduces to

d*ug (2)
dz?

=—fo(2) (2.54)
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Using our customary variation of parameters procedure, one finds the Green’s

function for the boundary value problem in (2.54), (2.48) as

z, f0<z<s
go(z,8) = (2.55)
s, ifs<z<h

So, with the explicit expressions just obtained for go(z, s) and g,(z, s), the Green’s

function of the boundary-value problem in (2.44)-(2.46) reads as

G (z,0;s,7)= %go (z,8) + Zgn (z,8)cosn (0 — 1) (2.56)

n=1
The above series converges non-uniformly due to the logarithmic singularity of the
Green’s function. To enhance the series computability, we split off its singular and

regular components. But before going any further with this, introduce the function

a | sinh(nz/a)sinh (n(h —s)/a), if0<z<s

gn (Z>S) Dl . . .
| sinh (ns/a)sinh (n(h —z2)/a), ifs<z<h

which reads, in terms of the coefficients g,(z, s) of the series in (2.56), as

Gn (2,8) = gn (2, $) cosh (nh/a)

Thus, the series in (2.56) can be transformed as

Zgnzscosn -7 *QZ In (2, 9) cosn (6 — )

enh/a+e nh/a

S () ) 5. (2. 5) )
— 221—6nh/a+€_nh/acosn(6’ T)+2Zl “wha cosn (0 — )

—QZg" h/’ )Cosn(Q—T)

B gn z, o _
- cosn T)—2 Z 63nh/a + enh/a cosn (0 — )

Notice that while the second of the two series above converges uniformly (allowing

by the way a direct truncation), the first one appears summable. Indeed, application
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of the standard formula shown in (2.37) yields

Z In (i/’ s) cosn (0 —7)
en a
n=1

= a [Hp (e(z+s_2h)/a, 0 — 7‘) + Hp (e(_z_s)/“, 0 — 7‘)

—Hp (e(z_s)/“, 0 — 7') — Hp (e(_2+3_2h)/“, 0 — 7')] (2.57)

where Hp(z, ) was introduced earlier in (2.38).
Hence, we finally arrived at an ultimate computer-friendly representation of the

Green’s function that we are looking for. That is

G(z,0;s,7) = a [Hp (e(z+s’2h)/“, 0 — 7') + Hp (e("z’s)/“, 0 — 7')} + R(z,0;s,7)
2)2 — a[Hp (/0,0 — 7) 4 Hp (el-=++-20/0 g _

N T)](2.58)
s/2—a[Hp (e*t9)/e 0 — 1) + Hp (e==s72M/e g — 7)]

where

R(z,0;s,7) = ZZegnh/a+enh/acosn(9—T).

and the z/2 containing branch of the last additive component in (2.58) is valid for
0 < z < s, while the s/2 containing branch stays for s < z < h.
In Figure 6 we show superposition of five Green’s function profiles for the boundary-

value problem posed in (2.44)-(2.46). The region € is chosen to be
{2,010 < 2<3.0,0<60 <27}

and the point sources are located at (0.8,0.127), (0.8,0.487), (1.6,0.077) , (1.6,0.537) ,
and (2.4,0.357) .
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Figure 6: Field generated by multiple point sources

in thin closed cylindrical shell

The described technique was used to find Green’s functions for a number of
boundary-value problems posed in various regions on a cylindrical shell. Table 2
summarizes all the results we obtained. We use the 4-letter abbreviation similar to
that introduced earlier in the previous section to specify the boundary conditions:
"D" stays for the Dirichlet condition, while "N" stays for the Nuemann condition,
"I" is used, when the boundedness condition is imposed at infinity. In the case of
2m-periodicity, the "P" character is used. We present only the branches valid for
0 < z < s, and the other branches could be obtained by interchanging the variables
z and s. The functions Hp, Hy, and Hp, as well as the parameters x and 7 were

introduced earlier (see (2.23), (2.20), (2.38), and (2.21)).



Table 2: Green’s functions for problems posed on a cylinder

# | Boundary Green’s function
conditions
1 DDII —aHp (e“(z_s)/‘w, K, 7])
2 DNII —aHy (eW(Z—S)/%v 5 121)
3 DDDI | aHp (e"r(z+5)/“”/ n) —aHp (eﬂ(z—S)/ow’ K1)
4 DNDI | aHy (e ™=Fo)/2a7 & 1) — g Hy (eW(Z—S)/%w’ £ 1)
5| DDDD | aHp (e"&+s=2/® k. n) —aHp (e"=/"7 K, n)
—aHp (eﬂ(—z+s—2h)/a’\/ K 7]) +aHp (6—7r(2+5)/a'y’ K, 77) T Rs
6 DNDD | aHy (e™=Fs=2)/2ey £ 1) _ )y (em==%)/207 £ 1)
—aHy (em(—stem2/20n £ 1) 4 g (emre)/20r 5 1) 4 Ry
7 | DDDN | —aHp (e"G+s=20/e7 5 ) — aHp (e~ )
+aHp (en —2z+s—2h) /aw 777) +aHp (eﬂr(zﬂ)/m’ 777) 1+ R,
8 DNDN | —aHp (e"G+s=20/207 5 1) _ [, (en(=9)/2a7 = 1)
+aHp ( 7(—z+5—2h)/2ay 8, g) +aHp (e—ﬁ(z—i—s)/QaW’ 5 g) + Ry
9 | PDD |aHp(eCrs=M/a g 1) —aHp (=) 0 — 1)
~aHp (eI 0 1) 4 aly (400 7) + By
10 PDN z—aHp (eETs=2/a g — 1) — aHp (e==9/2 0 — 7)
+aHp (e==Hs72M/a 9 — 1) + aHp (e"T9/2 6 — 1) + Ryg
11| PDI | aHp(e &/ 60— 1) —aHp (=920 — 1)

37

Table 2 provides the Green’s functions for problems posed on five different cyl-

indrical fragments:

1. Infinite cylindrical shell {z,0 | — 0o < z < oc0; 0 < 0 < v} for problems in rows
1-2;

2. Semi-infinite cylindrical shell {z,0 | 0 < z < o00; 0 < 6 <~} in rows 3-4;

3. Cylindrical rectangle {z,0 | 0 < z < h; 0 < 60 < v} in rows 5-8;
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4. Finite cylindrical shell {z,0 | 0 < z < h; 0 <0 < 27} in rows 9-10;

5. Semi-infinite cylindrical shell {z,0 | 0 < z < o0; 0 <6 < 27} in row 11.

The regular components R; = R; (z,60;s,7), i =5, 10 are found as

> inh inh —h
R, — Z 2a sinh (nmwz/va) sinh (n7(s — h)/va) (cos iy — cos i) |

£ 2mn e2mnh/vaginh (nwh/vya)
. a sinh (n7rz/2va)sinh (nn(s — h)/2va) nn nk
- ot -t
0 ; 21 enmh/ve ginh (nmh/2va) 8Ty T

(cosnn — cosnk) ,

R — i 2a sinh (n7z/7va) cosh (nw(s — h)/va)

= 2mn e2nmh/va cosh (nwh/va)
2. a sinh (n7z/2ya)cosh (nm(s — h)/2va) nn nk
- - eo),
s ; 2mn enh/va cosh (nmh/2va) 8Ty TR

e2nh/aginh (nh/a) cosn (6 —7),

> a sinh (nz/a) sinh —h)/a
g /a)sinh (n(s — h)/a)

and

Ry — Z 2(1 sinh (nz/a) cosh (n(s — h)/a) cosn (0— 7).

™m e2nh/a cosh (nh/a)

As another illustrative example, the potential field generated by three point sources

in a cylindrical rectangle, with Dirichlet boundary conditions, is shown in Figure 7.

The Green’s function presented in row 5 of Table 2 is employed. A half of cylindrical

shell of radius a = 1.0, and height h = 2.0 is considered. The locations of the point
sources are (0.9,0.077), (0.7,0.657) , and (1.5,0.757) .
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Figure 7: Three point sources in a cylindrical quadrilateral

The results obtained so far are for problems with Dirichlet and Neumann boundary
conditions imposed on different fragments of regions’ boundaries. In what follows, the
derivation of Green’s functions for boundary-value problems with Robin conditions
are presented.

Consider the two-dimensional Poisson equation in (2.44) posed on a closed cyl-
indrical region of height h, subject to the boundary condition

A@u (0,0)

u(0,0) — 5,

=0, u(h,6) =0 (2.59)

where ) is a positive constant representing the thermal conductivity of the material
of which the shell is made. We aim at finding the Green’s function for the boundary-
value problem in (2.44), (2.45), and (2.59). Since the region is closed (0 < 6 < 27),
the Green’s function is looked for in the form of (2.56). Following the standard
separation of variables procedure, we use the series expansions in (2.26) and (2.27).

This reduces the governing boundary-value problem to

d*u, (2) n?

Uy (0) — Adug—z(o) —0, wu,(h)=0 (2.61)

in the coefficients w,(z) of the trigonometric Fourier series.
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Consider the case of n > 0, while the case n = 0 is to be treated separately. The

general solution of the above equation is already found in (2.49) as

a

up (2) = m

[ [ e g () ds o il Dyt (262
0

Satisfying the boundary conditions in (2.61) one comes up with the system of

linear algebraic equations

1—Xnj/a 1+ In/a D, 0

eh/a e—nh/a D, —al/n

in D; and D5, which results in
a A a A
Di=—\14+-—n)I, Di=——|(1——-n|I
T A < * an) ot nA ( an)

I— /0 sinh (n (h — s) /a) f, (s) ds

A = (1 — én) e~"hla _ (1 + én) enh/a
a a

Substituting the above into (2.62) one obtains

where

and

un (2) = % Ozsinh (n(h— 2) /a) {(1 + 271) ensla _ (1 - 2n) ens/a] fo(s)ds

vt [Csmnn— s /o) [(14 2n) e (1 2) ] g oy

The Green’s function for the homogeneous boundary-value problem corresponding

to that in (2.60) and (2.61) is found as

a sinh (n(h — s)/a) [(1 — nA/a) e ™/* — (1 + nX/a)e"/?], f0<z<s

gn (2, 8) = A
n sinh (n(h — z)/a) [(1 — nA/a) e™™/* — (1 + nA/a)e™/] | if s <z <h
(2.63)
For the case of n = 0, the equation in (2.60) reduces to
d*ug (2
02 _ _po) (2.64)

dz?
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Applying the standard method of variation of parameters, one finds the solution

for the problem in (2.61) and (2.64) as

[T (A +s)(h—2) PN+ 2)(h—s)
uo(z)—/o N fg(s)ds~|—/z N1k fo(s)ds

which results in

A+2)(h—s), f0<2<
go(z,8) = o (A+z)(h=s), i °=0 (2.65)
At h A+s)(h—2), ifs<z<h

Note, that the two branches of the Green’s functions in (2.63) and (2.65) are
symmetric, hence, the further analysis may be provided only for the case z < s, since
the other case could be treated by formal interchange of the variables z and s. After the
substitution of (2.63) and (2.65) into (2.56) we obtain the series which converges non-
uniformly and cannot be completely summed up. Following the procedure described

earlier, we set apart its logarithmic and regular components as

G(z,0;s,7)= %go (z,8)+ L(z,0;s,7)+ P(z,0;s,7)

where
Z 0 s 7_ Z a 1 — n)\/aen(—z—s)/a . 1 - n)\/aen(—z—l-s—Qh)/a
“— 2mn 1+n/\/a 1+nM\a
te(zFs=2h)/a _ e”(zfs)/“] cosn (6 — ) (2.66)
and
2. a a—n\
Pz0:s7) =S -1 P, (2 o — 2.67
(2,0;s,7) > S (z,8)cosn (0 — 1) ( )
with

sinh (n(h — s)/a) [(a —n\) e—nzla _ (a4 n\) enz/a]
(a + n) e3nh/a — (g —n)\) enh/a

It appears that, the last two of the four additive components in (2.66) allow a

P,(z,s) =

complete summation. In order to achieve high computational efficiency for the first
two components, some algebra should be applied. We show in detail the transform-

ations for just one of them implying that the second component can be transformed
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in a similar way. That is

0 1=nMa i agga _ O nimsja_ A (i)
2mn 1+ nA/a 2mn 7 (1+n\/a)
a A a a
_ n(—z—s)/a _ n(—z—s)/a v oon(—z—s)/a _ ¥ _n(—z—s)/a
omn " 7T(1+n>\/a)€ T P
a a
- n(—z—s)/a % n(—z—9)/a
omn +7m(1+n/\/a)e

If we substitute the above into (2.66), the second component of the above has the
convergence rate of 1/n? while the first one falls into the standard summation formula
in (2.37) territory. With all this in mind, we ultimately obtain a computer-friendly
form of the Green’s function for the boundary-value problem in (2.44), (2.45), and
(2.59) as

A+ 2)(h—s)
A+ h

G (z,0;s,7) = +aHp (e(z+8_2h)/“, 0— 7') —aHp (e(_z_s)/“, 0 — 7')

+aHp (e(_z+s_2h)/“, 0 — T) —aHp (6(2_5)/“, 0 — T) + R(z,0;s,7)

where

a en(fzfs)/a _ en(fz+sf2h)/a

™m (1+n)/a)

R(z,0;s,7) = cosn (0 —7)+ P (z,60;s,7)

n=1
and the term P (z,6;s,7) is presented in (2.67).

To illustrate the computability of the representation of the Green’s function to
the problem setting in (2.44), (2.45), and (2.59) (that we just obtained), we depict
in Figure 8 the potential fields generated by a point source located at (0.66,0.427)
in the closed cylindrical shell of radius @ = 1.0 and height h = 1.0. Three different
values 0.0, 1.0, and 10.0 have been chosen for the parameter A in (2.59).
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Figure 8: A point source in a cylindrical shell with Dirichlet and Robin

boundary conditions imposed

Note that in the case of A = 0.0 (fragment (a)), the first of the boundary conditions
in (2.59) reduces to the Dirichlet type, whilst the fragment (c) reduces practically to

the Neumann type condition.

2.3 Problem posed on a toroidal surface

For another problem setting, illustrating our approach, consider the quadrilateral

Q={p, 0] go <o <p; 0<0<7},

on a toroidal surface with radii R and r (see Figure 9).

Figure 9: The toroidal surface (axial cross-section and a quadrilateral §2)
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The nonhomogeneous equation that simulates potential-type phenomenon in a
fragment () of a toroidal shell reads as

1 9 (D(¢)au(¢,9))+ r2 9%u(p,0)

D () 9p Oy D2(p)  00°

which we subject to the Dirichlet boundary conditions

——fp.6)  (268)

u (907 O) =0, u (Spa 7) =0 (2-69)
and
u(g,0) =0, u(p,0)=0 (2.70)

The function D (¢) in (2.68) is defined in terms of the radii R and r of the

considered toroidal surface as
D(p) =R+ rsine.

To construct the Green’s function for the homogeneous boundary-value problem
corresponding to (2.68)-(2.70) we follow the strategy implemented earlier in Sections
2.1 and 2.2, and express the solution u (¢, #) of the problem in (2.68)-(2.70) and the

right-hand side f (¢, ) of the governing equation in the Fourier series

u(p,0) = Zun (¢) sin v (2.71)
and o
F(8.0) = fu(¢)sinvo (2.72)

where v = nm /. This reduces the partial differential equation in (2.68) to the set of

ordinary differential equations

1d duy (p)\ = rv? y _ 7
r o (D (P) =4, ) D () n(9) = —fa(¥) (2.73)

subject to the boundary conditions

Un (09) =0,  uy (1) =0 (2.74)
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in the coefficients u,, (¢) of the series in (2.71), where

D (p)

ﬁz(%p) = Tfn (¢) .

The fundamental set of solutions of the homogeneous equation corresponding to

(2.73) could be chosen [31] as

@) and  e—re®)

where

(2.75)

() = —2"_ arctan (r + Rtan (90/2))

R2 _ 12 R2 _ 2
Proceeding with the standard variation of parameter routine, we arrive at the
general solution to (2.73) as

1 [¥ ~
Un, () / (e'j(w(v)*w(f)) _ e*l/(w(@*w(f))) fn (€) dE + Dleuw(go) 4 Dgeﬂjw(‘p)

2v %o

The following system of linear algebraic equations in D; and Ds

e (po)  p—vw(vwo) D, 0
e’/w(‘ﬂl) e_Vw(‘Pl) D2 F (@07 901)
where
1 ¥1 . ~
Flpoen) =, [ sithv(wie) -w(©) Fa (€)ds
¥o

appears when the boundary conditions in (2.74) are recalled. It reveals the constants

D; and D5 in the form

o—v(%0)

D= S [ sinhy () o €) T de

and

ereleo) o1
Dy= x| s o) (€ T (O

where

A =sinhv (w (py) — w (¢1))
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After substituting the above expressions for D; and D into (2.73), we present the
solution of the boundary-value problem in (2.73)-(2.74) as

w o) = | [ s O~ w () sinh (0 () 0 (D) Fo (€)dg

0

+ / ™ sinh (v (w () — w (120))) sinh (v (@ (1) — w (€))) T (€) dé

from which the kernel function g, (¢, ) of the above representation

w )= [ " g (0.6) o (€) de

0

follows as

2 [ sinh (v (w () — w () sinh (v (@ () — w () Py <E<

n( 75) = TN
" VA | sinh (v (w () — w () sinh (v (w (1) —w (€)@ <E< gy
(2.76)

With this, the Green’s function for the homogeneous boundary-value problem

corresponding to (2.68)-(2.70) appears as

G(¢,0;0,7) = % Zgn (p, &) sinvlsinvr

n=1
We partially sum up the above series with the coefficients shown in (2.76). In

doing so we use the standard summation formula [30]

o0 n

1
Zp—cosna = —§1n (1 —2pcosa +p?) (2.77)
n
n=1
that is valid for p < 1 and 0 < o < 2.

After setting apart the logarithmic and the regular components of the series rep-

resenting the Green’s function, the latter appears as

Hy, (eg(w(w)*w(f)+2‘*’(<ﬁo)*2‘*’(%’1))’ 7, /<;> +Hp <6s(w<s)fw<so))m’ K)
Hy, (62(w(£)—w(so)+2w(<ﬂo)—2wwl))7n7 K) +Hp (63(W(¢>‘w(5>),n, ,i)
+Hp, (eaw(so)w(s)fzw(«pl))’n? K) +H, (63(2w(soo>fw<<p>—w<a)7,7’ m) TR

(2.78)

G(gO,(%S,T) = -
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where 1 and k have earlier been defined in (2.21), while the function Hp (z, a, )
can be found in (2.23). The upper branch corresponds to the case ¢, < ¢ < &,
whilst the lower branch represents the case £ < ¢ < ;. The regular component

R = R (p,0;&, 1) is presented in the series form as

=Y gn (9,€) A
Rlp0:67)=2 5 (e3(@le)—w(r0)) — grl@len—w(zo))

n=1

sin v@ sin vt

Mlustrating the computational efficiency of the form in (2.78), we present in Figure
10 a field generated by two point sources in the region representing a quarter of the
closed toroidal shell. The field is obtained as superposition of two Green’s function

profiles, with the sources located at (0.337,0.227) and (0.677,0.777).

Figure 10. The field generated in a fragment of the toroidal shell

In Table 3 we present the list of Green’s functions obtained for different boundary-
value problems stated in regions on toroidal surface. The Table is organized a manner
similar to that of Tables 1 and 2, with the functions Hp, Hy, Hp, as well as parameters

n and k introduced earlier in (2.23), (2.20), (2.38), and (2.21).
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Table 3: Green’s functions for problems posed on a toroidal surfaces

# | Boundary Green’s function

conditions

1| DDDD | Hp (er@etl@—w@1 1 ) 1 Hp (@@= g p)
_HD (ew(w(w)—w(ﬁ))/W, K, 77) . HD (en(w(ﬁ)—w(¢)+2w(%00)—2w(%01))/’Y’ K, 77) + Rl

9 | DNDD | Hy (@) -w(o)-w(@)/2y n>+ Hy (em@@re@-200)/2 & 1)

—Hy (7@ -@)/2 5 1y _ ( m((©)—wle)+2li0)20(e1)/20 & 1) 4 R,
3| DDDN | Hp (ew@w(wo)—w(w S g5 ) — Hp (em@@ @200/ 15 )
—Hp (7@ 5 1) + Hp (em@@O-@) 2060200/ 1 1) + Ry

4| DNDN | Hy (em(eo-e(e)=w(@)/21 5 1) _ f (ool re©-20(e))/2r &

7272 )

—Hy (e7r(w(<p)*w(£))/2"v7 5, g) + Hy (efr(w(é)*w(w)ﬂw(sﬁo)*?w(sol))/27’ 5, g) + Ry

MI:)

5 PDD Hp (€2w(soo)fw(sc))ﬂu(ﬁ)7 0 — 7-) + Hp (ecv(so)JrW(é)72w(901)7 0 — 7-)
—Hp (ew(<p)—w(&“)7 0 — T) — Hp (6w(5)—w(so)+2w(soo)—2w(<p1), H — T) + Rs
6 PDN Hp (62w(soo)fw(so)fw(£)’ 9 — T) — Hp (ew(w)er(E)f?w(eol)7 9 — 7)
—Hp (ew(so)—w@)7 0 — 7—) + Hp (ew(ﬁ)—W(w)+2w(@o)—2W(w1), 0 — 7—) + R

Two toroidal regions are present in Table 3. For the first four rows, the toroidal
rectangle Q = {¢,0 | v, < ¢ < ¢y; 0 <0 <~} is considered, while for the last 2 rows
the closed in the longitudinal direction fragment Q@ = {,0 | v, < p < ¢y; 0 <0 < 27}
of torus is presented. The regular components R; = R; (¢,0;&,7), i = 1,6 are found
as

1 sinh (n7 (w(€) —w(ypy)) /7) sinh (n7 (w(ey) — w(e)) /7)
= ; 2mn e2nm(@le)=w(v0)/vsinh (n7 (w(py) — w(wy)) /7)

(cosnn — cosnk),

= 1 sinh(n7 (w(&) — w(py)) /27) sinh (n (w(g) — w
R2—z_:127m enm(w(e1)=w(20)/7 sinh (n (w(ipy) — w(g))

) — /
2. 1 cosh(nm(w(é) —w 1 sinh (nm (w(yy) — w
Ry=Y" (nm (w(§) — w(py)) /7)sinh ( ; % ; ) /)

) —
2mn e2nm(w(e1)—w(vo))/Y cosh ( ni (W(901 w((po)) )

. 1 cosh (nm(w(€) — w(p,)) /27) sinh (n7 (w nn nK
- (o (41) ) 2 o () )21 (70 )

— 21N enm(w(p1)—w(¥o))/7 cosh (nﬂ' ( 901) — w(gpo)) /27) STy

(2 ))) /27) (cos% — COS %) )

(cosnn — cosnk) ,
n=1

2
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1 sinh (n (@(€) — wlgy)sinh (n (w(gy) — w(9))
R5 o Z 2N 62"(01(901)_‘“(%00)) sinh (n ((,u(gpl) — w(goo)))

1 cosh (n (w(§) — w(epy))) sinh (n (wlpy) — w(p)))
2mn e2n(w(#1)=w(%0)) cosh (n (w(ey) — w(wy)))

cosn (0 — 7).

Considering the same geometry and the location of point sources, as in Figure 10,
we show, in Figure 11, the potential field in the toroidal shell with one-side Dirichlet

and three-side Nuemann boundary conditions imposed.

Figure 11: Potential field generated in toroidal region with

Dirichlet and Neumann boundary conditions imposed

Potential fields generated by point sources in joint shell structures of various geo-

metry will be considered in the next Chapter.
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3 Potential fields in joint shell structures

3.1 Matrices of Green’s type

Since a direct implementation of the Green’s function formalism to the case of joint
surfaces is problematic, the matrix of Green’s type concept [49] comes to the picture
instead. We begin our presentation in this chapter with introduction of the matrix of
Green’s type formalism for the case of two joint surfaces. In doing so, we target the
potential field generated by a point source in a thin joint shell structure comprised
of two fragments 2; and €2y, with I';,, representing their interface line. Assume that
the lateral surfaces of the structure are insulated and the shell fragments are made of
different homogeneous isotropic materials with their individual conductive properties
spelled out by the constants A; and A,.

In each of the surface fragments 2; and €2, that form the composed region 2 =

Q1 U s, we consider the Poisson equation
Vu; (P)=—~fi(P), PeQ; i=1,2 (3.1)
subject to the homogeneous boundary conditions
Blu; (P)] =0, PeTl.,, i=1,2 (3.2)

on the exterior component I'., of () region’s boundary. In addition, the conditions of

ideal thermal contact

and
Ouy (P) | Oug (P)
A1 o, =\ s , Pely, (34)

are imposed on the interface line T';,,. Here V2 is the two-dimensional Laplace operator
written in geographical coordinates that are specific for each surface fragment, while
ny and ngy represent the normal directions to I';, in ; and (s, respectively.

Assume that the boundary-value problem in (3.1)—(3.4) is well-posed provid-

ing a unique solution. This implies that the corresponding homogeneous problem



o1

(f: (P) =0) has only the trivial solution. To make the matrix of Green’s type form-
alism applicable to the problem setting of (3.1)—(3.4), we introduce the two vector-
functions

U (P) = (U (P))i:m and F(P) = (F; (P))i:1,27

defined in © in the way that their components U;(P) and F;(P) are defined in pieces

as
U1<P), PGQZ
Ui (P) =
0, P e Q\Q;
and
s (P), Peq,
Rpy =g
0, P e Q\Q,

A specific strategy is required for obtaining the matrix of Green’s type of the homo-
geneous boundary-value problem corresponding to that in (3.1)—(3.4). The strategy
is based on the fact that if, for any integrable in 2 vector-function F(P), the solution-

vector U(P) is expressed in the domain integral form
ue) - [[erQrQa. (35
0

then the 2 x 2 kernel-matrix G(P, Q) in (3.5) represents the required matrix of Green’s
type.

Hence, in light of the above statement, it is crucial to aim at not just solving the
problem in (3.1)—(3.4) by any means, but the objective must rather be in selecting
such an approach that allows us to obtain the problem solution in the form of (3.5)
that delivers an explicit expression for G(P, Q).

Note that the arguments of the element G,;(P, Q) of G(P, () belong to different
fragments of 2. That is, P and () are the points in {2; and €2, respectively, in the sense
that in the element G12(P, @), for example, P is the point in 2y, while ) belongs to
Qs. Later in this chapter, we will describe our approach in full detail while obtaining
the matrix of Green’s type for one particular problem setting of the type in (3.1)—

(3.4). The derivation of matrices of Green’s type for other boundary-value problems
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is not presented but ultimate representations of their components are provided for a

number of problem settings.

3.2 Matrix of Green’s type for a sphere-torus structure

As an illustrative example, we consider a particular case of the boundary-value prob-
lem in (3.1)—(3.4). Let the region Q = Q; U {2y represent a compound surface of
revolution, which is comprised of two coaxial fragments, one of which is spherical of

radius a, occupying the region
O ={(0,0) |0< ¢ <¢p; 0<6<2r},

while another fragment is circular toroidal of radii R and r, occupying the region
Qo ={(p,0) o <o <p; 00 <2}

The axial cross-section of the considered compound thin-walled structure is presen-
ted in Figure 12. Clearly, the relation asin ¢, + 1 cos ¢, = R holds for the radii of the

structure.

Yo
|

=0
/l =0,
T )
|
R
Figure 12: Axial cross-section of the sphere-torus assembly

The compound structure is set up in such a way that the parallel ¢ = ¢, of the
spherical fragment and the parallel ¢ = ¢, of the toroidal fragment represent the

same circle, which is, in fact, the interface line I';, of the two surfaces.
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For the compound region 2 = €} U )y just introduced, the problem setting in
(3.1)—(3.4) reads explicitly as

;g (sin gbaUI (¢, €)> + 1 d%uy (9,0) =—f (¢, 9) (3.6)

a2 sin ¢ O¢ Rl a?sin®¢  06*
s (P 222D Tl ) G
tim s (6. 6)] < 00, (4, 0) = 0 (38)
s (6,0) = s (6, 27), 24 a(j’ 0) _ dm gz;’ 2r) (3.9)
s (9,0) = us (5, 27), 242 55’0) _ Ouz gpe’ 2n) (3.10)
1 (69, 6) = 13 (90,) 8“1§§f’9>::,x9“2éi§>9> (3.11)

where D (¢) = R+ rsing, and A = Ay /).

For notational convenience, we will use the single notation

gb in Ql
g =
@ in
for the latitudinal coordinate of a point in the compound surface structure.
Since the assembly is closed in the longitudinal direction, the conditions of
(3.9) and (3.10) are included in the above setting to simulate the 27-periodicity of the

solution of the problem with respect to the variable . Given the above, the functions

u; (¢,0) and f; (s, 0) can be expanded in the Fourier series

u; (,0) = —uZ 0(s) + Z ul®) o (¢)sinnd + Z ufiﬁ () cosnb (3.12)
and
fi(s,0) = _sz )+ Z fl(n )sinnfd + Z fl(fl) (¢) cosnd (3.13)
n=1

Upon substituting these into (3.6)—(3.11), we arrive at a three-point-posed boundary-
value problem in the coefficients wu;, (¢) and us, (¢) of the series in (3.12). The

governing differential equations of that problem appear in the self-adjoint form as

d (. dui,(9) n? -
d_(b(m 96 )‘siw“lm(@——fl,nw) (3.14)
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and
Ld dugp, (9) rn? s
rdy (D ) =3, ) ~ Bigten (V)= ~fa () (3.15)
where
Fin(6) = @1 (9)sin g, and o (o) = 21 1 (0),

while the boundary and contact conditions of (3.8) and (3.11) yield

lim fun (6)] < 00,z (1) = 0 (3.16)
and
Ul,n (¢0) - u2,n (QDO) ) dULZlL(;QﬁO) == )\dU2’gl:0(<p0) (317)

It is worth noting that at the current stage in the development the sine and the
cosine components of the series in (3.12) can be treated similarly. That is why we
omit the superscripts (s) and (¢) on uy , () and us, (<) in the setting of (3.14)—(3.17).

To approach the boundary-value problem in (3.14)—(3.17) for n > 1 (the case of
n = 0 will be considered specifically later), we proceed with the standard variation

of parameters method which yields the general solutions to (3.14) and (3.15) in the

form
1 (7 /o Pp =
w0 = o [ (B SO F v+ L85 0)+ 0857 (0) - (315)
and
1 /% ~
Uy = ﬁ/ sinhno (,€) fon (§) d + Loe™ @) 4 Mye () (3.19)
®o

where Ly, My, Lo, and M represent arbitrary constants which will be determined by
virtue of the uniqueness conditions of (3.16) and (3.17). The single-variable functions

®g () and w (o) are defined as

Dy (¢) =tan (¢/2) and w(p)= o arctan <

R2 — 2

r+ Rtan (¢/2)
R2 — 2 ’

while the double-variable function o («, 5) reads as

o (a,f) =w(a)—w(p).
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The conditions of (3.16) and (3.17) transform the expressions for wu;, (¢) and
Us, (@) in (3.18) and (3.19) into

RS ORI AOREACS,
w0 = TR ) 3 (00 K@s(%) @3<¢>>QC"<“"“%)
( 25 (9) , 26 (%)) s <sol7soo>} Fom () d

(95 @) | P5(e0) } N
(cbg (@) T 1 (0) Sn (@15 %0) | frm (¥) dip
2Q [ 25 (9) -
o /q;o o (%)S" (1,€) S (€) dE (3.20)
and
9 [¥ -
U2 n (QO) = M/ Sn (Qplﬁo) [Sn (900, f) — QCn (@07 5)] f2,n (5) df
®o
SD ~
o / 51 (£1€) 50 (0:9) = QCa (0. )] o ()
2 [% @, (¢) ~
_M/o B (g (P1#) fin (W) 0 (3.21)
where
Q = D)(\;U) sin <¢0) s A = (1 + Q) ena(@p‘ﬂo) _ (1 _ Q) e—na(@l,gpo),

Sy (o, f) = sinhno (o, 5), and C, («, ) = coshno (a, f),

In view of the development that follows, it appears convenient to reiterate the
expressions from (3.20) and (3.21) in a more compact form
o ~ ®1 ~
wn @)= [ 91a00) Fra@dot [ o000 R @ (322)
0 %0
and

¢0 - Y1 .
tn () = / Gorn (0, 0) Fom (@) dip + / Gorn (0.6) Fow (E)dE (3.23)

®o



o6

with the kernel functions of the above integrals defined as

( Pp() d5(¢)  PB(%0)
S | (#9 - B 0Cu (p1.00) 0< <o
_ <<1>3(¢) n @3(%)) S, (o1, 0 >] -
6.9) 1 Tp(d) T @p(e) ) Pn\FP1Po 3.2
9110 \ P, = —x ) .
nA o7 (¢) [(¢>g<w) B @3(%)) QC, (1, 0,)
op(d0) |\ 25(d0)  25(¥) n{¥1 %o b<p<d
_ <<I>3<¢> n @3(«50)) S, ( )] -
{ Belde)  @p(w) ) O (P %o
2Q f (0) 2 @ (v)
n(0,8) = — Sn (¢1,€), n () = —— S, . (3.25
g12, (¢,€) nA op (60) (¢1,¢) g1, (@, 1) nA o7 (60) (901,80) ( )
and

Sn Sn ) - Cn ) S S
oz (90,5) _ i (901,@) [ (‘Po 5) Q (‘Po f)] P <6< (3.26)

nA S, (91.6) [Su (90, ) — QCu (90, 0)] © <E< ¢

Note that the summation index n of the series in (3.12) and (3.13) appears as
a parameter in the operators of the governing differential equations in (3.14) and
(3.15) of the boundary-value problem of (3.14)—(3.17), affecting, subsequently, their
fundamental sets of solutions.

As long as the solution to the problem in (3.14)—(3.17) is already obtained for
the case of n > 1, we have to turn now to the particular problem setting of n = 0,
which ought to be considered separately, and in which case the governing differential
equations as of (3.14) and (3.15) reduce to

d d ~
10 (Sin ¢%@> = —f10(9)

(0@ ™) —fue)

Following the standard procedure of the method of variation of parameters, we

and

express the general solutions for the above equations as

[ B (0) +
o () = /0 In 1 o () i+ Ly @ (6) + 0y (3.27)
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and

uso (p) = /@ 0 (0,€) fo0 (€) dE + Low () + My (3.28)

0

Clearly enough, the boundary and contact conditions of (3.16) and (3.17) are
not affected by the summation index n of the series in (3.12). Thus, applying these

conditions to the forms in (3.27) and (3.28), we arrive at

lons ~ ¥1 ~
umwwaﬁgmm¢Wﬁﬁwm¢+/ G120 (6,€) oo (€) dt (3.20)
©

0
and

®1

b0 . -
WﬂwzlngWMMww+/ng@ﬁM&ﬁ (3.30)

0

where the kernel-functions in the above integrals are expressed as

®o(¢)
Ingoes 0<¢ <o

1
910 (9, 9) = 6‘7 (0, P1) + )
Qo (¥
ln#(%)) ¢ <Y < ¢

g12,0 <¢7 5) = =0 (@la f) ) g21,0 (907 1/}) = %O- (9017 90) ;

and
o(p, 1) 9o <E<L g
o(&p) e<E<yp

At this point in the development, we substitute the expressions for the functions

uin (), presented in (3.22), (3.23), (3.29), and (3.30), into (3.12), and express then

9220 (¢, 6) =

the coefficients f;, (¢) and fa,, () of the Fourier series from (3.13) in terms of the
right-hand side functions f; (¢, 6) and f (¢, 0) of the governing differential equations
of the boundary-value problem in (3.6)—(3.11). This allows us to ultimately obtain

the solution of the problem in the vector form as
ue) - [[eror@iQ.
Q
revealing, in light of (3.5), the matrix of Green’s type

G(5,0;¢,7) = [Gij (.0, ¢, T)]gs (3.31)



where

o8

’QD in Ql
f in QQ

(=

to the homogeneous boundary-value problem corresponding to that in (3.6)—(3.11).

For the elements Gj; (s, 8; ¢, 7) of the above matrix we arrived at the series expansions

Gij(5,0;¢,7)

1 = . .
= 390 (s, Q)+ ;gijm (¢, ) sinnf sinnr
+ Z Gijn (s,C) cosnb cosnt
n=1
1 o0
= 590 (s, Q) + Z Gijm (s, ) cos (0 —7) (3.32)
n=1

The form in (3.32) appears efficient for immediate computer implementations for

the peripheral elements of G, since the observation point (¢, ) and the source point

(¢, 7) are, for the peripheral elements, located in different fragments of 2. This

implies that just some partial sums of the series can be used to attain an accuracy

level required in this or that case. In the diagonal elements of G, on the other hand,

the observation and the source points belong to the same fragment of 2, making the

convergence of the series in (3.32) non-uniform due to the logarithmic singularity that

these elements possess. Hence, the convergence of the representation in (3.32) ought

to be improved, if the diagonal elements of G are to compute. We accomplish such

an improvement by splitting apart the terms of the series that are responsible for

logarithmic and regular components. Omitting details, we present just the ultimate

expressions

Gn (¢, 05, T) = %911,0 (¢7 w) -

1-Q Do (¢) Do (1)
WHP( 23 (4,) ’9”)

+HP (MQQU(%)#H), 0 —r1 -+ Rll ((b, 97 1/}7 7-)

+

5 (¢)
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and

1
Gos (0,0;6,7) = 5922,0 (0, )+ Hp (60(%%)”(&%), 0 — T)

1— Q o o
+1 n QHP (e (900799)+ (‘PO?&)’ 9 _ 7—) + R22 (SO, 9’ 6’ 7') ,
- Hp (ea(g,go)’ 0 — ) %HP (GU(<P7§)+2U(<P0’<P1)7 0 — 7—)
HP (eo'(‘Pug)’ 9 — 7—) -+ %HP (60(51@)"720’(@001@1)’ 0 — 7—)

for the diagonal elements of G. The two-variable function Hp(z,a) was introduced
earlier in Chapter 2 (see equation (2.38)).

The regular additive components R;; (¢,0;(,7), i = 1,2 in the above representa-
tions for the diagonal elements are expressed in a form of the uniformly convergent

series

R“ (g GC 7_) _ o gji,n (gy C) (1 — Q) ena(gaO’(pl)
11 \5yr YV 5 o (1 + Q)2 €2n‘7(‘P17§00) — (1 ~ QZ)

where g;; . (¢, () are defined in terms of g;;, (¢, () available in (3.24) and (3.26) as

cos (0 — 1)

gii,n (ga g) = Giin (gv C) A

This makes the representations just presented for the diagonal elements of the
matrix of Green’s type efficiently computable. To illustrate this point, in Figure 13
we show the field induced in the considered thin-walled structure by point sources
acting at three distinct locations. The parameters specifying the problem setting are
chosen as: a = 1.0, r = 0.5, R = 1.5, ¢y = 7/2, ¢y = 0.0, ¢, = 7, the locations of
the point sources are (0.267,0.427) in the spherical fragment, and (1.057,0.57) and
(0.67,1.827) in the toroidal fragment.
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Figure 14: Field generated by a point source in the toroidal fragment of the structure

In Figure 14 we depict the potential field generated by two point sources where one
is located in the spherical fragment of the sphere-torus shell structure, while another
one is in its toroidal fragment. The parameters specifying the problem setting are
chosen as: a = 1.5, r = 1.4, ¢, = 0.8, ¢, = —0.27, p; = —0.87, R = asin¢, +
rcosy, ~ 2.02, the location of the point source is (0.35m,0.757) in the toroidal

fragment.
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3.3 Cylindrical-toroidal shell structure

In this section, a thin-walled structure is considered as composed of two coaxial shells
of revolution, one of which is semi-infinite cylindrical of radius a whilst another is
toroidal of radii R and r. The axial cross-section of the structure is shown in Figure

15.

\
\
¢
|
|
|

Figure 15: Axial cross-section of the cylinder-torus assembly

Middle surfaces of the shells are referenced to different geographical coordinates,

and occupy the regions
Q) ={(2,0)0<2<o00; 0<6<2r}

and

Qo ={(p,0)] vy <o <¢; 0<0 <27},

respectively. This problem setting gives rise to a set of two Laplace equations written

in the corresponding coordinates as

OPuy (z,0) 1 0%y (2,0)
Gt =0 (3.33)

and

10 Jus (¢, 0) r Q%us(p,0)
rdyp (D ¥ 5, > D (334
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where D(p) = R+ rsing. The above equations are subject to the following set of

boundary and contact conditions

lim |uy (z,0)] < oo, wusz(py,0) =0, (3.35)

Ou; (5,0)  Ou; (s, 2m)

. — w (c.2 = =1,2 .
u; (5,0) = u; (s, 2m), 20 TR ,2, (3.36)
and
duy (0,0) dus (g, 0)
uy (0,0) = us (¢y,6) and e A 8300 : (3.37)
Similarly to the development in the previous section, we introduce the latitudinal
coordinate
zZ, in Ql
g =
®, in QQ:

of the observation point for either fragment of the structure.
Upon implementing the procedure described in the previous section to the problem

in (3.33)-(3.37), we obtain the matrix of Green’s type

G(<,0,¢,7) =[Gij (5,0, ¢, T)]gnn
that we are looking for. The single variable ( is introduced in the above as

s, in

67 in Q27

to stay for the latitudinal coordinate of the source point for either fragment of the
structure.

Skipping quite tedious but rather straightforward algebra, we present below just
ultimate computer-friendly form of the elements Gj; (s,60;¢,7) of G(s,6;(, 7). Its
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first main diagonal element was found as

1 -1
G (z,0;8,7) = —gnol(z )+ ¢ aHp (e_(s+z)/a, 0 — 7')

2 Q+1

2a
20 [, (e2eleeen (/e g o
Q+1°° ( )
- a —n(s+=z)/a
+ Z ESn (¢1,90) € (st2)/ P, (¢, 1) cosn (0 —7)
n=1
Hp (e(s_z)/“,Q —T) , 0<s<z
—a

Hp (e(z_s)/“,H—T), z2 <8< 00

where, along with already accepted earlier S, («, 3), we introduce some other short-
hand notations. The parameter @) reads as () = Ar/a, and the two-variable function
P, (a, 8), which depends upon the summation index n of the series in the above

expression, is introduced as

(1 — Q) en(voer)
(1+Q)" erroleran) (1 - Q?)

P (g, 1) =

)

The function g1 (2, ) reads as

a s O0<s<z

d11,0 (2,8) = @‘7 (¢1,%0) —
z z<s<oo.

For the second element of the first row of G (s,0;(, ), we obtained

1 2
G12 (279;5,7') = §g12’0 (Z,g) — Q leP (eU(WOuf)—z/a70 o 7_)

2Q)
H (1) t+o(&p1)—2/a 6 —
+Q —l— 1 P (6 ) 7—)

= Q —nz/a
+ E zSn (p1,€)e / Py (¢, 1) cosn (0 — 1),
n=1

where

G120 (2,§) = 0 (§, 1) -



The first element of the second row of G (s, 6;(, ) was found as

2a
Q+1

1
Gar (p,0;8,7) = Sg210(p,s)+ Hp (60(%’@)78/&, 0 — 7')

2
2a

4 H 60(9007501)4‘0(%07‘»01)—3/“7 0 —r1
Q+1°" ( )

> a —ns/a

+Zﬁsn (@7901)6 / Pn (QOC)?SOI)COS”(Q_T)?

n=1

where
O- )
g21,0 (% 3) = % :

And, finally, for the second main diagonal element of G (s, ;(,7) we have

1
Gaz (0,055,7) = =gao(0, &)+ Hp (60(%%)“(6’%), 0 — T)

2
+1 _1__ ng (e7tpoetoleol) 9 — 7) 4 il % cosn (0 — )
- Hp (ea(é,@)7 0 — 7-) + %HP (€U(¢:E)+2‘7(4P07<P1)’ 0 — T)
Hp (e”(‘P’@, 0 — T) + %HP (eo(ﬁ,@)ﬂo(saoml)’ f — T) ’
where
g0 (0, 6) = o(p, 1), Po<E<

(& e1), €<y,

[(@+1) e + (@ = 1) "] 5, (1, 0),

022,71 =
[(Q +1) e (o) 1 (Q—1) @U(WO#P)] S, (04,8),

64

As to the last additive term in the above expression for Ga (i, 0; s, 7), which is defined

in two pieces, its upper component is valid for ¢, < £ < ¢, whilst the domain of the

lower one is p < & < ;.

To illustrate the computational potential of the expressions just presented for the

elements of the matrix of Green’s type, we depict in Figure 16 the field induced by

a set of two point sources in the considered assembly of thin shells. The parameters

specifying the problem setting are chosen as: a = 2.0, 7 =15, R=a+71 = 3.5, ¢,

0.0, ¢, = 2m/3, the locations of the point sources are (0.01,0.27) in the cylindrical

fragment, and (0.137,0.57) in the toroidal fragment.
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Figure 16: Field generated in the composition of cylindrical and toroidal shells

3.4 A three-fragment shell structure

The approach that we efficiently implemented so far to construct matrices of Green’s
type can readily be used for composition of more then two shell fragments. To il-
lustrate this point, we consider the shell structure composed of three fragments each
made of an individual material (A, Ay and A3), whose axial cross-section is depicted
in Figure 17. Set up Poisson equations each of which is posed in an individual region.

These are, the cylinder
Q) ={(2,0)0< 2<00; 0<6 <A},

the toroidal shell
Qy ={(g,0)] o <o < py; 0<6 <7},

and the circular plate

Clearly, the radii a., R, and a, are equal each other.
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Figure 17: Cross-section of the cylinder-torus-plate composition
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The three Poisson equations are considered in €2 = ; U Q5 U )3 as

2 1 2 -
8u1(2,9) —aul(Z’e):—fl(Z,e), ian

19,2 0.  0F
10 us (0, 0) r 0%us (p,0) ~ .
~~ (D = — 0 Q
r a(p ( (90) 8g0 D ((,0) 892 f2 (QO, ) 9 1 dig
9 [ Ous(p,0) 1 0%us (p, 0) ~ .
— | p———= —_— = — 0 Q
ap (p ap + P 892 f3 (p7 ) ) m 843
subject to the boundary conditions on the external boundary
lim |u; (2,0)] < oo and 1iII[1) lug (p,0)| < o0,
Z—00 p—
u; (¢,0) =0 and w;(s,7)=0,1i=1,2,3,
and ideal thermal contact conditions on the interfacial lines
Ouq (0,0 ou ,0
u1 (0,0) = uz (¢y,0), —18<z ) = )\12—2((9? )
and
dus (ap, ) dus (g, 0)
uz (ap, 0) = uz (¢g,0), 8pp = Aa3 &'00
where
= _ = _ Dy > _
fl(Zve)_acfl<270)7 f2(§079>_ f2(9079)7 f3<p79)_pf3(p76)

r
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(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)
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Z, in Ql

¢=19 ¢, in )y

P in Q3
Ao Ao
dot =2 and Mgy = =
21 N an 23 s

Following the separation of variables procedure, one obtains a boundary-value

problem for the following ordinary differential equations

d*uy, (2) V2

g gt (3) = —fu(2) (3.45)
1d dusy, (¢) B rv? . S
rdp (D (%) do ) D () (0) = —fon (¥) (3.46)
i dU3n(p) _V_Qu :_N V:n_ﬂ'
dp (p dp ) ) an (P) = —fan (p), S (3.47)

in the Fourier series coefficients of the functions u; (z,60), us (,0), and usz (p, ).

The general solutions for the equations in (3.45)-(3.47) are found in the form

h

U (2) = % / sinh (v (z — ) /ac) fin (3) ds + Dy1e"*/% + Do/ (3.48)

0
1 (¢ -

Usy (@) = - / sinh v (w (¢) — w (€)) fan (€) d€ + Dyge”?) 4 Dyge™(?)  (3.49)

%Yo
P v v -
uzn (p) = %/0 K%) - (g) } fan (@) dq + Dizp” + Dazp™ (3.50)

For the sake of simplicity, we limit ourself to the case where the coefficients of

thermal conductivity of the materials of which the fragments are made are related as
)\1 = 27”)\2 = )\3

By satisfying the conditions resulting from (3.41) it can be shown that

1 [ ~
Dy = —— e v fi (s)ds and Dy =0
27/ 0
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The conditions that follow from (3.43) and (3.44) yield the system of linear algeb-

raic equations

1 _euw(gol) _e—VW(Wl) 0 Doy M,
—1 —ewlp)  pmvw(er) 0 D M.
2o 2 (3.51)
0 eyw(apo) e—VW(SDO) —ag Doys M
0 euw(cpo) _e—’/wWo) _ag D13 M4
in Doy, D12, Daa, and D3, where
1 * —vsfac T 1 T f;
M= [T e oyas s [ s wten) — i) B 01
vV Jo v Po
1 0 s . 1 #1 rs
M, = 2—/ e fin (8) ds + —/ cosh (v (w(epy) — w(§))) fan (§) d€
vV Jo v Yo

=g |G) -(2) e

e (2 (3]

Solving the system in (3.51), one obtains

and

1 ®1

Dy = -5 WO F, (€) de
v Yo

1 ap v
L L eten) o) / (i> fan (4) da
0

2v ap

1 o0 —~

Dy, = _—e-WW/ e "% fin (5) ds
2v 0 ! ( )
1 ®1

[T @7, (¢) de

2v ¥o

1 ap q V~
Do L uw(m/ LY 7 o(q)d
22 2V€ ; (ap) f3n (q) dg

1 o =
Dz = — e””(%)”“’(@l)/ efus/acfln (s)ds
0

1%
2VCLp

and

1 / YO, (6) de

v
2yap ¥o

b (3) Fan (@) dg

2v 0
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Substituting the above values into (3.48)-(3.50) we obtain

o)

h _ — p ~
Uiy (2):/0 G11n (2, 8) fin (S)d3+/ G12n (2,€) fon (f)d§+/0 913n (2,9) f3n (q) dg

0

@

h _ — p ~
iz () = / Gorn (225) Fon () ds + / o (0,€) Jon (€) dE + / goim (2, 0) Fon (0) dg

0

©

s (p) = / " gotn (pr5) Fon () ds + /

where g;; (¢, () are the elements of the matrix

gom (92 €) Fon (€) dE + / gam (9, 9) Fon (2) da

0

1 giin <Z78) J12n (Z7§) 913n (Z7Q)
g (C, C) = E 921n (QO, 8) G22n (907 g) 923n (907 Q) (352)
9320 (p,€)  g3an (p: Q)

and the parameter ( is defined in different fragments of domain ) as

J31n (,07 5)

S, in Ql
C — f, n QQ
q, in Q3

The elements g;;,, of the matrix in (3.52) are found as

eu(zfs)/ac, 0<z2<s
g1in (Z7 5) = )
ev=2)/ae g < 2 < 00

J12n (Z, é“) = ey(w(f)*w@h)*z/ac),
913n (Z, C]) = e”(w(%)*w(tpl)fz/ac) (q/ap)y ’
Goin (p, 8) = _evwlp)—w(pr)—s/ac)

Y

e? WO @)y < <

922n (QD, g) = ’
ey(w(cp)*w(é)), SOO S ('0 S ¢

Go3m (% q) — eV (Wlpo)—w(¥)) (q/%)y7
gorn (p,5) = —e e mle) 0 (p/a,)
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and

(r/a)". 0<p<gq

(/o) a<p<a,

The entries of the matrix of Green’s type for the problem in (3.38)-(3.44)

933n (Pa Q) =

G (§, 07 Cv T) = [GZ] (§, 97 C’ 7-)]3><3

are found in the series form

G'LJ (§707C77—) :Zg’bj,n (§7C)SiHVQSiHVT, Z:ma j:17_3
n=1
After substituting the expressions of g;;, (s, () into the above series, transforming
the product of sines into difference of cosines, and using the standard summation

formula in (2.77) (see Chapter 2.) one obtains the following representations of the

entries of G (s,0;(,7)

Gij (5,66, 7) = Hp ( (g1 (<.€)'"" s ) (3.53)

where the function Hp(x, «r, 8) and the parameters x, and 1 were defined in preceding

chapters as

1 1 —2xcosa + 22
H —
plz;a,f) 4 n<1—2:ccosﬁ+x2)

and

7T T
k=—0+T1), =—(0-7
7( ), 7( )

In what follows, we are going to present some illustrations of the computer-friendly
nature of the form in (3.53). To do so, in Figure 18 we depict the potential field in-
duced by multiple sources in the considered shell structure. Superposition of profiles
of the matrix of Green’s type in (3.53) is depicted as seen from two different view
angles. The parameters specifying the problem setting are chosen as: a. = 2.0,
r=15 ¢, =—n/4, o =7/2, R = a. —rcosy; = 2.0, a, = R+ rcosy, ~ 3.06,
the locations of the point sources are (1.25,0.837) and (0.5,0.127) in the cylindrical
fragment, (0.017,0.727) in the toroidal fragment, and (1.9,0.387) in the plane frag-

ment.



71

Figure 18: Multiple point sources in the three-fragment shell structure

The matrices of Green’s type, which either have already been obtained in the cur-
rent work or those which are potentially accessible within the scope of our approach,
can be used in the development of efficient computational routines aiming at potential
fields generated by point sources in joint shell structures weakened with apertures.

Problems of that class will be investigated in the following chapter.
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4 Green’s functions for multiply-connected regions

4.1 Single fragments weakened with apertures

The Green’s functions and matrices of Green’s type constructed in Chapters 2 and
3, as well as many others, that could be similarly obtained, can be employed to
accurately compute potential fields generated by point sources in perforated thin shell
structures. This chapter is designed to describe an efficient semi-analytical procedure
that allows us to do so. The procedure is based on the modification [12, 13, 47] of
the classical [18] boundary integral equation method.

Let Q) represent a double-connected region on a spherical surface bounded with
piecewise smooth closed contours S; (exterior) and Sy (interior). On €2, we consider

the well-posed boundary-value problem

0 (. w60 1 Puls)
7 (sm(b 96 ) + sno 08 0, inQ (4.1)
Bilu(¢,0)] =0, on S (4.2)

u(¢p,0) =0, on Sy (4.3)

Let, also, Gg (¢, 0;1, ) represent the Green’s function to the problem in (4.1)-
(4.2) set up on the simply-connected region bounded with S;. The latter problem
is also assumed well-posed. In what follows we will refer to Gy (¢, 60;1,7) as the
resolving Green’s function.

If for an arbitrarily fixed location (0", 7*) € Q of the source point, the profile of
the Green’s function G(¢, 0; 9", 7*) of the problem setting in (4.1)-(4.3) is expressed

as

then the additive component ¢g* (¢, ) must be a solution of the governing equation
in (4.1) that satisfies the boundary condition of (4.2). As far as the condition on Sy

is concerned, g* (¢, 0) has to nullify the trace of the resolving Green’s function on Ss.
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This implies that g* (¢, #) has to represent the solution of the problem

o (. 09 (9,0) 1 g (¢,0) :
¢ (SmCZS 0¢ ) + sing 96> =0, m&
B, [9* (¢a 9)] =0, on 5
g* (¢7 0) = _GO <¢7 07 ¢*7 T*) , on SZ (45)

We express the solution of the above problem in the form

g (6,0) = / Go (6, 0:0,7) j (1, 7) Sy (. 7) . (,6) in © (4.6)

S2
where the kernel represents the resolving Green’s function, and S, is a smooth closed
curve entirely embraced by S;. This makes S, laying out of £2. We will refer to Sy as
the fictitious contour. Note that the density function u (¢, 7) in (4.6) is supposed to
be integrable on Ss.

It is evident that the two-variable function of ¢ and 6 in (4.6) is harmonic in
and satisfies the boundary condition of (4.2) for any density function (¢, 7). To
make the form in (4.6) complying with the boundary condition of (4.5), we take the
limit as (¢, ) approaches the actual interior contour Sy. This leads to the regular
functional (of integral type) equation

[ Go0.050.7) (6.7 455 (0.7) = ~Gif6. 01077 (47)
>
in the density function p (¢, 7).

The regularity of (4.7) follows from the fact that the curves S and S, have no
common points. This makes a numerical solution of (4.7), for a fixed location of
the fictitious contour §2, a routine procedure, for any location (1", 7*) of the source
point. From our experience, it also follows that the regularizing shape and location of
the fictitious contour S, can appropriately be determined through a straightforward
numerical experiment conducted on a case-by-case basis. It appears, in particular,
that the shape of Sy ought to somewhat resemble the shape of S;. The fictitious
contour has to be located close enough to S; to provide a required accuracy level.

But, on the other hand, the fictitious contour should stay quite apart of the actual
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contour Ss, providing a stability of the process. We have determined that the distance
between S, and §2 has to be within the range of 3-4% of the local radius of curvature
of Ss.

To investigate the practicality of the proposed approach to the semi-analytical
construction of Green’s functions for regions of irregular configuration on spherical
surfaces, and to justify its computational efficiency, we present some illustrative ex-
amples. For the first of those, we consider a double-connected region §2; representing

a quarter of the spherical surface of radius a (a spherical biangle)
% ={(¢,0)0<p<m 0<0<m/2} (4.8)

which is weakened with an aperture having a contour S. The latter is a circle which
represents the intersection of the spherical surface and a circular cylinder of radius
0.25a, whose axis passes through the center of the sphere.

Let the two-dimensional Laplace equation in (4.1) be considered in €2; and subject

to the Dirichlet boundary conditions

w($,0)=0, u <¢, g) ~0 (4.9)
w(®,0)=0, (4,0)€S (4.10)

in addition to which, the boundedness conditions

tim [ (6,0)] < 00, Jim [u (6,6)] < o (4.11)

must be imposed at the poles of the spherical surface to make the above problem
setting well-posed. The boundedness conditions are required due to the fact that
the poles represent the points of singularity for the governing differential equation in
(4.1).

The potential field depicted in the left fragment of Figure 19 is generated in €2,
by three unit sources located at (0.37,0.27), (0.67,0.17), and (0.757,0.37). The axis
of the cylinder, that creates the aperture passes through the center of the sphere and

the point (0.57,0.257) on it. Clearly, the shown potential field can be interpreted as



[6)

the superposition of three profiles of the Green’s function computed for the problem
in (4.1), (4.9)-(4.11). To illustrate the effect that the aperture provides, we showed in
the right fragment the field that would be generated by the same set of unit sources

acting in the simply-connected region (see (4.8)).

Figure 19: The fields induced by multiple sources in the perforated

and the simply-connected spherical biangle

The developed approach can be applied to any boundary-value problem posed on
a multiply-connected region, if the Green’s function for the corresponding simply-
connected region is known. For example, in Figure 20 and Figure 21 the potential
fields generated by point sources are shown for other two spherical shells weakened
with apertures. The corresponding resolving Green’s functions are available in Table
1 (see Section 2.1). The parameters specifying the problem setting in Figure 20
are chosen as: a = 1.0, § = 7/2, the circular aperture of radius 0.2 is located at
(0.47,0.37) . The locations of the point sources are (0.33m,0.257), (0.387,0.357),
(0.287,0.477), (0.127,0.157) , and (0.127, 0.457).
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Figure 21: Potential field in a spherical quadrilateral with two-side Dirichlet

and two-side Neumann boundary conditions imposed

The field generated in a spherical rectangle {¢, 8/0.156m < ¢ < 0.57,0 < 0 < 0.57}
weakened with a circular aperture centered at (0.37,0.37) . The radius of the spherical
surface 1.0, whilst the radius of the aperture is 0.4. Point sources are located at

(0.2m,0.17), (0.457,0.127) , and (0.337,0.427) .
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So far in this section, we have dealt with Green’s functions of boundary-value
problems stated in multiply-connected regions. Note that by definition, Green’s func-
tions satisfy homogeneous boundary conditions on every piece of the boundary of the
considered region. In many practical problems in engineering and science, potential
fields are not, however, kept at zero level on each and every piece of the boundary.

The approach that has been used earlier to construct Green’s functions can be
efficiently implemented for computing potential fields occurring in multiply-connected
thin-walled structures where some of the boundary pieces are not necessarily kept at
zero potential. To illustrate this point we consider the following problem setting.
Let a potential field be generated by N point sources located at points (s}, 7)) in a

M
multiply-connected cylindrical region Q = Qg\ |J §2; where
i=1

Q=1{2,0]0<2<h; 0<0<2r1}

whilst the apertures’ €; contours S;, i = 1, M, are smooth closed curves. Homogen-
eous boundary conditions are imposed on the outer boundary of €2, whereas some
non-homogeneous conditions are imposed on the contours S; of the apertures.

The potential function u (z, ) determined by the described problems setting can

be obtained by the governing differential equation

Pu(z,0) 1 0%u(z,0) N . . ‘
072 +? 002 __;5(2_31'79_7}), in 2 (4.12)

subject to the boundary conditions

Ou(z,0)  Ou(z,2m)

u(z,0) =u(z,2m), (4.13)

o0 00
By [u(0,0)]=0, Balu(h,0)]=0 (4.14)
and
u(z,0) =w;(z,0), (z,0)€S8;, j=1,M (4.15)

where w; (2, 0) represent continuous functions.

We look for the solution of the problem in (4.12)-(4.15) in the form

N

u(z,0) =Y Go(z,0;57,77) + g (2,0)

=1
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where Gy (z, 0; sf, 7f) is the resolving Green’s function (the one of the boundary-value

problem in (4.12)-(4.14)), with the source points fixed at (s, 7). It can be found in

Table 2 (Chapter 2). The corrector-function ¢g* (z, 6) will be expressed as
M ~
g (z,0)=> / Go (2,0;5,7) ; (s,7) dSi (s,7), (2,0) € Q
i=1 75

where §, are fictitious contours, one for the corresponding S; located entirely within

Q;, hence outside of 2. The following system of functional equations

M
Z/~ Go (2,0;5,7) iy (s,7)dS; (s,7) =
i=1 7S

N
wj(z,Q)—ZGo(z,H;sf,T;‘), (2,0) € S;; j=1,M (4.16)

i=1
appears when we determine the density-functions y;, (s, 7), by means of the boundary
conditions in (4.15).

The system of functional equations in (4.16) reduces to a system of linear algebraic
equations by approximating the integrals in it by quadrature formulas. This system
is supposed to have a unique solution for the fixed shape and location of the fictitious
contours g@ Some numerical experiments are required to properly locate §Z These
experiments have to be conducted on a case-by-case basis.

As an illustrative example for the problem setting in (4.12)-(4.15) we depict in
Figure 22 (a) the potential field determined in Q by the following set of initial data:
a =05 h=2 N=3 M =2 (s,77) = (0.8,0.257), (s5,75) = (1.4,0.557),
(s5,75) = (0.2,0.47), wy (2,0) = 50.0, and wy (2,0) = 1.0. The identity operators
By = I and By = I define the boundary conditions on the outer contours z = 0 and
z = h. The apertures are circular of radii 0.1 and 0.2 centered at (1.6,0.257) and

(0.6,0.67) , respectively.
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Figure 22: Potential fields induced by multiple point sources

in perforated cylindrical shells

The potential field depicted in Figure 22 (b) is specified by another set of initial
data in the problem setting of (4.12)-(4.15). That isa =2, h =4, N =3, M = 2,
(s5,7%) = (3.65,0.127), (s3,75) = (0.25,0.67), (s3,73) = (2.6,21/3), wi (2,0) = 1.0,
and ws (z,0) = 10.0. The boundary operators are: B; = [ and By = 9/0z. The
apertures are circular of radii 0.5 and 0.3 centered at (3.4,0.457) and (0.6,0.457) .

4.2 Assemblies of thin shells with apertures

The technique described in the preceding section could be extended for the case of
assemblies of shells [14, 15]. Consider again the thin spherical-toroidal shell assembly
similar to that we had earlier dealt with in Chapter 3 (see Figure 23).
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Figure 23: Axial cross-section of the sphere-torus assembly

Let the assembly be weakened with an aperture whose contour S represents inter-
section of the middle surface of the spherical fragment with a cylinder whose diameter

is smaller than the radius of the sphere (see Figure 24).

Figure 24: The assembly of spherical and toroidal fragments weakened with an aperture

This makes double-connected the fragment € (¢, 0) of the middle surface 2 =
Q1 (¢,0) U Qs (p,0) of the shell assembly, whereas the fragment {2, remains simply-
connected.

To determine a potential field generated by a point source acting in either €); or

5, we consider the Laplace equations
V2uy (¢,0) =0, (6,0) € (4.17)

and

V2u2 (Q07 0) - 07 (907 0) S 927 (418)
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referenced to the corresponding geographical coordinates and subject to the boundary

and contact conditions
gﬂ(l)lul (¢,0)] < 00, uz(py,0) =0 (4.19)

Juy (¢,0) _ Ouq (¢, 2m)

 (6,0) =i (,27), 2100 © (4.20)
w (5.0) =y (p,2m), 2280:0) _ Oa (020) (a.21
 (60,0) = s (g0, 0), P E0E) e L) (1.2

In addition, let the function u; (¢, ), whose domain is 4, be subject to the condition
uy (6,0) =0, (¢,0)€S (4.23)

Clearly, the potential field generated by a point source, acting at a point ((*,7*) €

Q) can be simulated with corresponding profiles of the elements of the matrix of Green’s
type G (s,6;¢,7)

G(5,0:¢",7") = |Gy (5,057, 7] (4.24)

2x2

of the problem in (4.17)—(4.23). Similarly to what was done in Chapter 3, we introduce

the common notations

, in ) , in Q
¢ L ¢ = (0 1
@, in Qy § in

e
I

already accepted in (4.24) for the latitudinal coordinate of an observation and source
points in either fragment of the structure.

To efficiently compute the elements of G (s, 0; ¢, ) within the scope of the Green’s
function modification [47] of one of the versions of the boundary integral equation

method, we take advantage of the matrix of Green’s type

G (§, 0; Ca 7—) = [GZJ (gu 9; Cu T)]QXQ )

which was earlier obtained in (3.31) for the homogeneous boundary-value problem
corresponding to (4.17)-(4.22) stated in the compound (simply-connected) region 2.

As we have already agreed on, G (s, 8; (, 7) will be referred to as the resolving matrix.
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For a fixed in Q location (¢*,7*) of the source point, we express the matrix of

Green’s type G (c,0;¢*, 7*) in terms of the resolving matrix as
G(6,6;¢,7) = G(,6:¢", 7) + W7(c,0). (4.25)

Clearly, the resolving matrix, as an additive component to G (c,0;C*, "), provides
the latter with the logarithmic singularity. As to the second component in (4.25), it

represents a two-by-two matrix

implying that its elements wj,(¢,0) and wi,(¢,0) are defined in €, whereas the
domain for the elements w3, (¢, 0) and wi, (v, 0) is Q5. Hence, the elements of W*(, 9)
have to be harmonic in their domains. In addition, to make the first row elements of
é(g, 0; ", 7*) vanishing on S, the elements wj; (¢, 0) and wi,(¢, ) of W*(c, ) have
to compensate the traces of the first row elements of the resolving matrix on S. All
the elements of W*(¢, ) are to comply with the boundary and contact conditions of
(4.19)—(4.22) that they are relevant to.

The Green’s function version of the functional equation method, introduced earlier
in Section 4.1, will be used to accurately compute the elements of W*(s,6). To be
specific, we focus on the potential field generated by a unit source placed at a point
(¢*,7*) located in the double-connected spherical fragment of the considered shell
structure. Since (¢*,7*) is located in €, the elements of the first column of the
matrix in (4.25) simulate the required potential field. To efficiently determine them,

we introduce the vector-function

V(e.0) = Vi(¢,0) ’

Va(p, 0)

with components defined in terms of the elements of W*(¢, 0) as

wi(¢,0), in Q 0, in €2
Vi(,6) = “(j b Jad e = o .
9 m 3ig Wor (P, , 11 dZg
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Introducing also the vector-function

Ml(,lvba/r)
M(¢, 7) = :
M2(€7T>
whose components are defined as
(Y, 7), in Q 0, in
M r) = TR ) = b
0, inQ ps(€,7), in Qy

we express the vector V (g, ) in a form of the line integral

dSo(¢,7),  (4.26)

‘/1(¢>6) / G11(¢,93¢77’) G12(¢79;w77—> le,T)
‘/2(3070) So G21(3070;§77-) GQQ((,O,Q;f,T) M2(£77-)

where the fictitious contour S represents a smooth closed line embraced with the
actual aperture contour S.
From (4.26), it follows that the first component of the vector-function V (g, )

reads

Vi(.0) = / Gua(6,0: b, 7) My (1, 7)dSo (8, )

So

n / o6, 0:0, 7)Mo (16, 7)dSo (0, 7). (6,0) in Q. (4.27)
So

Due to the way the vector-functions V (s, #) and M((,7) were introduced, the

above representation reduces to

w, (¢,0) = /Gu (0, 0; 0, 7) p1 (4, 7)dSo (¥, 7),  (¢,0) € (4.28)

So
It is evident that the integral form in (4.28) is a harmonic function of ¢ and 6
in Q; regardless of the density function (1, 7), which is of course supposed to be
integrable on Sy. Clearly, the harmonic nature of wj; (¢, ) in (4.28) is guaranteed by
the kernel-function Gy (¢, 0;, 7).
Taking the limit in (4.28) as the field point (¢, #) approaches the actual contour S

of the aperture, we arrive, in view of the boundary condition of (4.23) and the form
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of G (c,0;9",7%) in (4.25), at the regular functional equation

/Gn (¢, 60;0,7) 1 (0, 7)dSo (¥, 7) = = G (9, 0;47,77), (9,0) €5, (4.29)

So
in the density function (¢, 7). Due to the regular nature of the above equation, its
numerical solution is not expected to be problematic (for a fixed fictitious contour
So). But finding optimal shape and location of Sy is another issue representing a
regularizing stage of our algorithm. It has to be addressed on the case-by-case basis.
Our experience provides us with data ensuring a confidence in the efficiency of the
suggested approach.

Once an accurate approximation of the density function pj(i,7) is found, the
form in (4.28) gives us an explicit expression for the component wj; (¢,6) of the
potential field generated in the double-connected region §2; by a unit source at a
point (1", 7*) also located in ;. To obtain the second fragment w3, (¢, ) of the
potential field generated in the simply-connected region €2 by the unit source located
at (¢¥*,7%) € Qy, we turn to the integral representation of (4.26), from which the

second component of the vector-function V(c, ) appears in the form

Va(p. ) = / Gor (2,05 &, 7) My (8, 7)dSo (0, 7)

So

+ / Gon(9.0:00, 7)Mo, 7)dSo (4, 7). (12, 0)€ D
So

which yields the integral representation
w;l (907 9) = / G21 (()07 ‘9; wa T) /Jj{ (% T)dso(?/f, 7—)7 (()07 6) € Q2
So

for the required fragment of the potential field.

In Figure 25, one finds a potential field induced by point sources in the considered
spherical-toroidal joint shell structure perforated with a circular aperture whose con-
tour is held at zero potential. The field was accurately computed within the scope of

the described numerical procedure. The parameters specifying the problem setting



85

are chosen as: a = 0.6, r = 0.7, ¢y = /2, vy = 0.0, p, = 7/2, R=a+1r = 1.3,
the locations of the point sources are (0.47,0.187) in the spherical fragment, and
(0.457,0.527) and (0.427,0.287) in the toroidal fragment. The circular aperture of
radius 0.2 is centered at (0.357,0.57) of the spherical fragment.

Figure 25: Potential field induced by multiple point sources

in a double-connected compound shell structure

The following comments are appropriate as to the computational specifics making
our procedure efficient:

. the regularizing effect is achieved by choosing the fictitious contour Sj as a
concentric with S circle of radius 0.98 of the latter;

° the functional equation in (4.29) was numerically solved by the quadratures
method (the regular trapezoid rule with 40-50 grid points);

. the series-containing components of the matrix of Green’s type were trun-

cated to the tenth partial sum.

During the past several decades, the classical boundary integral equation method
[18] is considered as one of the most efficient approaches to partial differential equa-
tions. Its key feature is the reduction of a considered boundary-value problem to
boundary integral equations.

Our experience [16] reveals high computational potential of numerical schemes
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based on the incorporation of matrices of Green’s type into the boundary integral
equation method scheme. To illustrate this point, we are going to consider a problem
simulating potential field that is induced in a thin-walled structure, comprised of two
cylindrical shells shown in Figure 26. Both fragments (€2; and 25) represent closed

finite cylindrical shells.
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Figure 26: Geometry of the assembly of two cylindrical shells

Let \; and A, represent thermal conductivities of the materials of which the frag-
ments (2; and )y are made. Potential field induced by a point source acting in €y, is
simulated by a set of two Poisson equations each of which is written in the individual

coordinate system (z1,61) and (zq,03). We write them in a vector form as

U (z,0) 162U (z,0) - -
i T@ g P06, 0 =12 (4:30)
where
0 0(z1 =501 =
U(e6) = uy (21,01) L F(20) = (21— 8,60 —7)
U2(22,92) 0
, inQ 01, inQ
z = oA and 6= b
29, n QQ 92, in QQ

and a; is the radius of the corresponding cylinder.
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The boundary conditions are imposed on the outer boundary as

U (z,0)  0U (z,27)

U(z,0) =U(z,2m), 50 50 (4.31)
Ouy (1,0
un (0,0,) =0, 2alho) g (4.32)
00,
and the ideal contact conditions are imposed on the interfacial line L as
ouy (z1,0 Ous (22,0
Uy (Z1,91) = U2 (22792), 157111) = —AngQQQ)7
(Zi, Hl) € LcC Qi, 1= 1, 2 (434)

where n;, ¢ = 1,2 is the normal vector to L in €;, and A = A\y/\;. Note that the
contour L has to be defined in two coordinate systems individually, i.e. L (z1,6;)
and L (z9,0,). Before we proceed any further, let us pay special attention to the
analytic geometry behind the shell configuration. First, we describe the contour L
in both coordinate systems. As shown on Figure 26, the contour L appears as the
intersection of two cylindrical surfaces with mutually perpendicular axes. In ; L is

parametrically defined as

21 (t) = c+agsint
6, (1 arctan (y (¢) /= (t))  y(t) /z(t) >0
1 =
7+ arctan (y (t) /x () y(t) /z(t) <O
where
z(t) = y/a? — a3 cos? t cos o — ay cost sin
y (t) = 1/a? — a3 cos? tsin o + ay cost cos a
and t € [0,27) .

On the other hand, in €25, L reads as

2 (t) = h+a;—/a} —a3cos?t

0,(t) = t
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Note that parameter ¢ must be the same for both regions.

Next, the normal derivatives in (4.34) are defined in terms of the local coordinate

O _ (na v g2 = 1,2
8ni_ nZiaZl‘ nel@é’z T

The normal derivative in region {25 is fairly trivial

systems as

n, = (1,0)

while in the case of n;, after some algebra, one obtains
( 1 1 dz>
n=|———
Uy | |y | 26
dz\?
= 1 —
|Il1’ + <d9)

dz
0= \/a? — a3 cos?tcott

Note that, when cot ¢ is undefined, we have

where

and

(0,1), t=0
0,-1), t=m

n;, =

Clearly, the potential field generated by a point-source, located at a point (s*,7%)
in €y, is simulated by the matrix of Green’s type for the boundary-value problem in

(4.30)-(4.34). Since the point-source is located in €27, the 2 x 1 matrix

Gn (21,91;3*77'*)

Ga (22,92§3*,T*)

G(z,0;s",77) =

is targeted, where Gy (2, 0;; s*, 7) represents the field induced in the corresponding

region €2;, 1 = 1,2. We look for the elements of the above matrix in the form
Gh1 (21,0155, 7%) = Go (21,015 8%, 77) + wy (21,01)

Go (2’2, 92) = w;‘ (227 92)
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where Gy (z1,01;s*,7%) is the Green’s function for the boundary-value problem in

(4.30)-(4.32) whose representation

GO (Zl, 91, 5*77'*) = 2 —aHp (6(21+s*,2h)/a7 91 . T*) + aHp (e,(zlJrS*)/a’ 01 B 7—*) R
7 —aHp (e® 759/ 0, — 1) + aHp (et =2M/a g, — %)
s* — aHP (e(*zl+3*)/a, 91 _ 7—) + aHp <e(zlfs*72h)/a’ 01 N 7_*)

+

can be found in Table 2 of Chapter 2. The upper branch of the last additive component
in the above formula corresponds to 0 < z; < s*, while the lower branch takes place

if s* < z; <. The regular component R = R (z1,01;s*,7*) reads as

2. @ sinh (nz/a)cosh (n(s* —1)/a
R:ZQ (nz1/a) (n( )/a)

9 _ *
™ e2n/a cosh (nl/a) cosn (61 =)

n=1

The functions w} (z,0), i = 1,2 are expressed as

wy (2’1, 91) = / Go (21, O155,7) py (377_> dzl (57 T)

L
and

w3 (2, 02) = / Go (20, 00: 5.7) iy (5,7) Lo (5,7)

Lo

So, our strategy in finding the regular components wj (21,6;1) and w} (zq,02) is
similar to that we used earlier. That is, the fictitious contours Zl and Zg are intro-
duced, where each of them is defined in the corresponding coordinate system and lies
outside of the corresponding region €;. In order to find the density-functions p, (s, 7)
the conditions in (4.34) are to be employed. In doing so, we arrived at the system of

functional equations

-G (217 01; 5", T*) = / Go (2’1, 01; 577') Hq (3; 7') ds,TZI

Ly
— /~ Go (22,09;8,7) iy (8,7) dsng (4.35)
Lo
—D[Go(21,01;8",7%) = | DI[Go(21,01;5,7)] py (s,7) dmzl
L1
+A iGO (22,008, 7) iy (5, 7) ds s Ly (4.36)

Lo 07y
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where
(ZZ,HZ) S L, 1= ]_,2

and

0 0

D= nz16_Z1 —1—71918—01

After reducing the system in (4.35) and (4.36) to a system of linear algebraic
equations (in the way described earlier in Section 4.1) and solving it numerically,
one obtains elements of the matrix of Green’s type for the problem in (4.30)-(4.34).
To illustrate high computational potential of the proposed algorithm, we present in

Figure 27 the potential field obtained for a particular problem setting.
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Figure 27: Potential field generated by a point-source in the shell structure

The parameters specifying the problem setting are chosen as: a; = 1.0, as = 0.3,
[ =2.0,h=12,¢=0.6, a =0.8m, the location of the point source is (0.7,0.57) in

the first cylinder.
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5 Computational Aspects

This Chapter is designed to highlight just a few aspects relevant to the computer
algorithms created and repeatedly utilized in the present study. We plan to briefly
discuss, in particular, the validation issue for the numerical methods used herein and
present some arguments verifying actual results obtained. Parallelism in the com-
puter routines developed in this manual represents another aspect which is supposed
to be superficially discussed. In addition, as to the possibility of tackling inverse
problem settings, we are going to bring to the readers attention the issue of poten-
tial implementation for this purpose of the algorithms that have been developed in
the preceding Chapters for solution of direct boundary-value problems for partial

differential equations.

5.1 Validation and verification

To make sure that the computational algorithms developed in the present study could
form a solid and reliable background for implementation in engineering and science,
they have to go through a process of validation and verification. Note, however,
that as far as the materials of Chapters 2 and 3 are concerned, the validation and
verification do not constitute pressing or urgent issues of any kind. Indeed, either
closed forms or computer-friendly representations are obtained in those chapters for
a vast number of Green’s functions and matrices of Green’s type for boundary-value
problems simulating potential fields induced in thin shells and their assemblies. And
since Green’s functions deliver either exact analytical or easy-controlled approximate
but still analytical solutions for considered problems, there is no need for special effort
towards their verification.

A quite different situation takes place in Chapter 4, where we have developed
and widely used some numerical algorithms based on our Green’s function version of

the classical boundary integral equation method for an important class of problems.
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Those problems are stated in multiply-connected regions of irregular configuration,
and this is why they do not allow exact analytical solution. Computational efficiency
of our algorithms does really represent an issue for such problems and ought to be
closely monitored.

To present some arguments and data verifying the results of Chapter 4, a par-
ticular problem setting is recalled of the type repeatedly analyzed over there. That
is, consider a boundary-value problem where the two-dimensional Laplace equation,
written in spherical coordinates,

L0 (n42u0.0) L Pu(0.6) _
a?sin ¢ 0¢ (sm¢ ¢ )+a25in2¢ 96> =0, (¢,0)e (5.1)

is posed in the region
Q={p.0la<d<p 0<0<2r)

that represents a spherical belt. Let the governing equation be subject to the bound-

ary conditions
ou(¢,0)  Ju(e,2m)
o0 00

u(p,0) = u(p, 2m), (5.2)

and

u(@,0) =0, u(B,0) =0 (5.3)
The Green’s function for the above problem setting was obtained in Section 2.1
of Chapter 2 (see equation (2.42)). It appears in the form

G600 = Hp (Gt ) o (202000 )

) b
In —(I)?B(f) In _<I>(1)4(;/J)

20(9) Do ()42
. Hp (@3(@79_7) —Hp (@2(¢>B§’9_7)
Do(v) 1 Po(@) Do(1) Do(6)42
In 200) 1y #00) _ g, <¢g(¢),9 —7) _ Hp (Qg(w)B%,e—T)
+Rpp (5'4)

where the uniformly convergent series term of the regular component reads as

B ' B oo 1 A2n ((I)Zn (gb) o BZn) (@271 (Q,U) o A2n)
Rop = Bop(@.0:6.7) = 3 5o = b 6 85 (0) (B8 — A7)

n=1

cosn (6 — 1)
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and the upper branch of the last additive term in (5.4) stays for a < ¢ < 1, whereas
for the lower branch we have ¢y < ¢ < f.

Clearly, the form in (5.4) is ready for immediate computer implementation. Thus,
one can employ this form to accurately compute a potential field generated in €2 by
either a single point concentrated source or a finite set of distinct point concentrated
sources.

On the other hand, the formulation in (5.1)-(5.3) might be considered as a boundary-
value problem posed in a double-connected region that arises if a circular aperture,
whose contour L represents the coordinate line ¢ = «, is cut out from the spherical
cap

Qo ={p,010< <5, 0<60<2rm}. (5.5)

In this case a profile G(¢,0;1*, 7*) of the Green’s function shown in (5.4) could

be expressed, for an arbitrary location (1", 7*) of the source point, in the form

G(¢7 0? ¢*, 7_*) = G0(¢7 97 ¢*, 7_*) + /[: G0(¢7 97 ¢> T)M(@D, T)dZ(w, T) (56)

where Go(¢, 0;1, 1) is the Green’s function to the boundary-value problem

ou(¢,0)  Ou(e,2m)
e 00

u(9,0) = u(¢, 2m), (5.7)

and

iiir(l)u(gbﬁ) < oo, u(f,0)=0 (5.8)

posed in €2, and L is a fictitious contour embraced with the actual aperture boundary
L. We refer to Go(¢,0;1, 1) as the resolving Green’s function. Its closed analytical

representation

1 BRER() ~ 200 (0) B (1) cos (0 — 1) + B (1)
Gol#,8:,7) = 1(Bﬁ—ﬂ%@ﬂ@@uwmww—wu+¢m@¢aw9 (5:9)

s
can be found in Section 2.1 (see equation (2.41)).
The density function u(t,7) in (5.6) can be obtained upon satisfying the first

boundary condition of (5.3) at ¢ = . This yields the regular functional equation

é%@ﬁ%ﬂmwﬂﬁwﬂz—%@ﬁWJW (6.0)€L (5.10)
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in p(e, 7).

Clearly, after a regularizing location of the fictitious contour L is found, and
the functional equation in (5.10) is numerically solved, we substitute the density
function p(t,7) in (5.6). This completes our numerical procedure and provides us
with approximate values of the profile G(¢, 0; 1", 7*) of the Green’s function that we
are looking for. Comparing then the found approximate values of G(¢, 6; ", 7%) with
their corresponding exact values directly computed by (5.4), we can obtain data that
actually verify the efficiency of the used numerical procedure.

In Figure 28 and 29, we depicted the relative error for a particular problem setting
with the parameter’s values chosen as: a = 1, a = 7n/4, f = 7/2, " = 3n/8,
7% = 27/3. Figure 28 shows the relative error in the entire domain €2, whilst Figure

29 focuses on the relative error on the aperture’s contour.

Relative errar

Figure 28: Relative error for the problem in (5.1)-(5.3)

computed by (5.6) in 2



95

w10

Relative errar
]
m

Figure 29: Relative error for the problem in (5.1)-(5.3)
computed by (5.6) on L

To proceed further with our effort on collecting data that might be used to justify
the results presented in our manual, another sample problem will be considered of
the type that we have repeatedly dealt with. In doing so, we recall first, from Table
2 (see Chapter 2), the Green’s function

Go(z,0;s,7) = aHp (e”(z+s_2h)/“7, K, 7}) —aHp (e”(‘z_s)/‘”, K, 7])

—aHp <e7r(*z+sf2h)/a’y7 K, 77) 1+ aHp (6*71'(24“8)/047’ K, 77) + R5.11)

of the boundary-value problem

0*u(z,0) N 1 Ou(z,0)

922 2 o 0, (z,0)€Q (5.12)
u(0,0) =0, wu(h,0)=0 (5.13)

and
u(z,0) =0, wu(z,m)=0 (5.14)

posed in the rectangular region

Ny =1{2,010<z2<h, 0<0<7}
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which represents a finite fragment of a cylindrical surface of radius a and height h.
The Green’s function in (5.11) is presented for the case where 0 < z < s, whilst the
the case for s < z < h could be obtained by interchanging variables z and s, the
regular component R = R (z,0;s,7) is defined as

a sinh (nmz/va)sinh (nw(s — h)/va)
™m e2mh/va ginh (nwh/va)

R:R(Z,H;s,r)zz2

n=1

(cosnn — cosnk)

where function Hp (z, «r, §) and parameters 7 and x where defined in Chapter 2 (see
(2.23) and (2.21)).

Consider now the double-connected region 2 representing the just recalled €2
weakened with a circular aperture whose contour is L. Let the Laplace equation in
(5.12) be stated in Q and subject to the boundary conditions in (5.13), (5.14), and
the condition

u(z,0) =¥(z,0), (z,0)eL. (5.15)

Let the right-hand side function ¥(z, ) in (5.15) represent trace that the profile
Go(z,0;s*,7*) of the Green’s function in (5.11) leaves on L (with the source point
(s*,7*) arbitrarily fixed inside of L). If so, then Gg(z,0;s* 7*), as a function of z
and 6, represents the exact solution to the boundary-value problem in (5.13)-(5.15)
stated in © for the Laplace equation of (5.12).

So, with the exact solution Gy(z, #; s*, 7*) of the problem in (5.13)-(5.15) at hand,
we can apply our version of the classical boundary integral equation method to com-
pute its approximate solution . (2,0) . All the above creates a convenient situ-
ation where the accuracy level attained in computing g, (2,6) can be directly con-
trolled. To illustrate the point, we depicted in Figures 30 and 31 the relative error
for the boundary-value problem with the following parameter’s values: a =1, h = 1,
s* =0.35, 7" = 0.457, the aperture of radius 0.5 is located at (0.35,0.57) . Figure 30
shows the relative error in the entire domain €2, whilst Figure 31 provides the relative

error along the contour of the aperture.
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Relative errar

Figure 30: Relative error of the solution of the problem
in (5.12)-(5.15) in Q

x10®

Relative errar
ra

Figure 31: Relative error of the solution of the problem

in (5.12)-(5.15) on L

The accuracy level shown in Figures 28-31 reveals computational efficiency of the
technique proposed in this manual, and assures that our approach can be recommen-

ded for use in applied mathematics.
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5.2 Parallelism in computer algorithms

Role of the parallelism in accelerating computational processes cannot be overestim-
ated in nowadays, it has been recognized for decades. The scalable performance and
lower cost of parallel algorithms is reflected in a vast variety of applications. The
original desire for fast and efficient computation has been declared in a wide number
of contexts involving initial and boundary-value problems for partial differential equa-
tions. This is so because there are heavy and extremely time consuming numerical
computations that ought to be performed in this area of applied mathematics.

That is why, when an algorithm for solving a partial differential equation is de-
signed in nowadays, it is highly desirable and recommended that it is parallelizable.
We will show that our numerical routines based on the Green’s function version of
the boundary integral equation method represent a rather productive area for this
contemporary and very efficient trend that in many cases allows to radically cut of
the computational cost.

To illustrate the above mentioned point, we focus on just a single problem setting
of a vast number of those we were dealing with in this volume. That is, we recall
the boundary-value problem that has been tackled in Section 4.1. The problem is
posed on a spherical biangle weakened with a circular aperture, and a potential field
was computed in that region as induced by a set of point concentrated sources. It
worth noting that the most expensive part of our computer algorithm was the image
generation in high resolution depicted in Figure 19. To generate that figure, we were
required to create, roughly saying, about one million images — one for each targeted
grid-point (¢, #) in the considered region. Taking into account that for each of those
points, the Green’s function G(¢, 6; 1", 7*) value (that simulates the field) is expressed

in the integral-containing form

G(¢,0; 0", 77) :G0(¢79;¢*77’*)+/ZG0(¢, 0, 7)(w, 7)AL(Y, 7), (5.16)

where the line integral has to be computed numerically after the density function

is precomputed, the computational cost just for this part of our algorithm appears
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extremely high. Note, however, that, contrary to other numerical routines (based
on the finite difference or the finite element methods, for instance, that could be
considered as possible alternatives to our strategy), and where the field value at a
single targeted grid-point (¢, #) depends upon some information taken from a number
of next-door grid-points, field values in our routine are completely independent and
can be computed simultaneously. And this is what creates a perfect atmosphere for
a possibility for the parallelism in, at least, this part of our algorithm.

The parallelism could be extended even further in our algorithm. Indeed, the
integral operator in (5.16) might also be computed in parallel. To go this way, we
parametrize first the fictitious contour L (introducing the polar angle parameter t),

and transform then the line integral in (5.16) in the definite integral form as

/0 WG0(¢’95Wt)ﬁ(t))u(tﬁ(t)m(t))dt

At the next stage, an approximate value of the above definite integral, at each
and every required field point (¢, #) is computed by means of the standard trapezoid
rule with N uniform grids. This yields

" Go(6, 8, 0(8), T(B) (b (8), () dt

0

Y G060 () () 7 (0)
+ Go(0,0; ¢ (tiv1), 7(tis1)) (p (tig), 7(ti41))] -

It is evident that each additive term in the above sum could potentially be com-
puted independently in parallel. This implies that after all the additive terms in
(5.12) are computed, a background for the ultimate summation is prepared and it
can be conducted revealing the approximate value of the integral.

The chart in Figure 32 exhibits the speedup that we managed to achieve upon

implementation of the parallelism strategy just described.
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Figure 32: Computational speedup

Note that this brief section has not, of course, aimed at the detailed exploration
of the possibility to parallelize all the numerical algorithms developed in the present
study. Our goal was far less ambitious — we wanted to present just a single illustration
of the fact that our algorithms represent a quite appropriate territory for that efficient

computational modernism.

5.3 Inverse problems

Very important observation naturally arises from the analysis of our extensive research
aiming at the incorporation of Green’s functions and matrices of Green’s type into
traditional numerical algorithms of the classical boundary integral equation method
and its numerous versions proposed more or less recently. From the available extens-
ive data it follows that we can pretty much guarantee high accuracy level in solving
direct boundary-value problems that simulate potential fields induced in complex
thin-walled structures. And what sounds to users especially attractive and quite
convincing that the Green’s function-based numerical schemes, developed and intens-

ively used in the preceding sections of this manual, allow us to obtain accurate enough
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solutions at a low computational expense.

All this creates a supportive atmosphere and opens a door to the realm of a cer-
tain class of inverse problems that are, on one hand, in huge demand in engineering
and science, but represent, on another hand, extremely computationally expensive
problem settings. Indeed, since one of the most widely implemented and efficient
approaches to inverse problems is based on the method of successive approximations
(where at each iteration we solve a direct problem, and the number of such itera-
tions is often really massive counting in most cases hundreds and even thousands), a
prospective of our approach to inverse problems looks really promising.

To provide some arguments verifying the above point, we are going to consider
just one illustrative example of an inverse problem. That is, consider an inverse
formulation of a boundary-value problem that arises as simulation of a potential field

occurring in a thin shell. In doing so, consider a region {2 representing the fragment

{0.0]¢g < ¢ < ¢,;0 <0 < 27}

of the middle surface of a spherical shell of radius a weakened with a circular aperture
whose contour is defined by intersection of the shell with a cylinder of radius  which
is smaller than the shell diameter. The axis of the cylinder passes through the point
(¢, 0) on the shell and the shell’s center.

Let, in the triple-connected region €, u (¢, §) be the solution to the boundary-value

problem
10 (. 0u(0) 1 u(e,60)
a? sin ¢ O (Slw By, ) T aae o 0 #fef (5.17)
u(¢,0) =u(g,2m), au((;/;, 0 _ (gé%) (5.18)
ou(¢y,0) B
and
u(¢,0) =U, (¢,0)€lL (5.20)

Here U is a given constant and L represents the aperture’s contour.
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The above formulation can, for instance, be interpreted as a simulation of the
steady-state heat conduction field induced in the described fragment of a spherical
belt-shaped shell perforated with a circular hole whose contour L is kept at a pre-
scribed temperature level U. The edges ¢ = ¢, and ¢ = ¢, of the shell are kept at
zero heat flux and zero temperature, respectively.

To present a possible inverse formulation of the problem in (5.17)-(5.20), we as-
sume that some of its initial data are not available but ought to be determined to
meet some constraints that are put on the solution we are looking for. To be more
specific, let the size of the shell be given (implying that the parameters a, ¢,, and
¢, are fixed). Let also the value of U in (5.20) be fixed. Given that, we aim at the
determination of the location and the size of the aperture (the values of r and ¢, are
to be found) for which the following conditions hold

< ou (¢, 0)

max u (¢, 0) < A, ma 96

<B (5.21)

where A and B are fixed constants.

It is not surprising that the above stated inverse problem is not, generally speak-
ing, well-posed. Indeed, it quite might happen that for some combination of initial
data it has no solution, and moreover in a case when existence is not an issue, the
problem might allow multiple solutions. We leave, however, aside the existence and
uniqueness issue and focus on the finding just a single possible solution of the prob-
lem. This kind of approach to inverse problems is quite customarily accepted and
usually implemented in engineering practice.

Our strategy of handling the described inverse problem is based on an efficient
Green’s function-oriented algorithm to solve the direct problem in (5.17)-(5.20). First,
with all the parameters (a, ¢, ¢,, 1, ¢., and U), specifying the statement of the direct
problem in (5.17)-(5.20) fixed, we follow the approach developed in Chapter 4. That
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is, recall the Green’s function

Go (6,0;0,7) = Hp (M,Q_T) oy (q)o(% 9_7)

B2 ) @o (¥)
By ®o(¢) p Po(P)AT 4
In g6 — He (@3@)’9 T) +Hp (‘1>0(¢)B§’9 T) R
By oY) o Po(¢)AF o
In g6y — Hr (@2@)’9 T) + Hp («bow)Bé’e T)

where

B . B o 1 A2n ((I)Zn (¢) _ BZn) (@271 (¢) + A2n)
R RO00T) = ) 5™ By (018 (0) (B + A7)

n=1

cosn (6 — )

of the boundary-value problem in (5.17)-(5.19) that we dealt earlier in Section 4.1,
and express the solution to the problem in (5.17)-(5.20) in terms of the modified

potential
u(6,0) = / Go (60,0, 7) (4, 7) AL (,7), (,6) €O (5.22)

where L is a fictitious contour embraced by L. The density function y (¢, 7) for the
representation in (5.22) can be found by satisfying the boundary condition in (5.20).
Namely, if the field point (¢,0) in (5.22) is taken to the actual contour L of the

aperture, one arrives at the regular functional (of integral type) equation
U= [ G0 @ dLw.). (@)L (5.23)
L
inpu (7).

Thus, the solution of the inverse problem just stated reduces to the system of

non-linear equations

fl (T‘, ch) =
fa(r.¢.) = B (5.24)

in r and ¢,, where

ou (¢, 0
For60) = maxu 6,0), - (r:0,) = ma 2000

The intricate point in solving the above system is that both functions f (7, ¢,)

and fy (r,¢.) depend on their arguments implicitly. Hence, the standard techniques
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for solving systems of non-linear equations are problematic to directly apply. How-
ever, studying behavior of the functions fi (r,¢,.) and fs (7, ¢.), we discovered their
remarkable properties that are helpful in the development of our strategy. That is,
both of these functions increase if the variable r increases, whereas f (1, ¢,.) decreases
whilst fs (r, ¢.) increases if the variable ¢, increases.

These properties allow us to use the following instruments in the iterative proced-

ure to achieve an appropriate approximate solution of the system in (5.24):

1. if both f (r,¢,) and f5 (7, ¢.) need to be increased, we increment the value of

r;

2. if f1(r,¢.) has to be increased, whilst f; (7, ¢.) must decrease, we decrement

the value of ¢_;

3. if f1 (1, ¢,) is required to drop, and f; (1, ¢,) has to go up, then the value of ¢,

grows; and

4. if both fi (r,¢.) and fs (7, ¢.) must decrease, then the value of r goes down.

The procedure should roll until a required accuracy level is achieved.

Following the described procedure, we solved the inverse problem stated earlier
in this section. The parameters are set as a = 1.0, ¢, = 0.17, ¢, = 0.57, U = 1.0,
A = 0.8, B =2.0. The recovered solution of the inverse problem is shown in Figure
33. The approximate values for the targeted parameters were found as r ~ 0.1297,
¢. ~ 1.0226. It took 36 iterations with initial parameters’ values of » = 0.05 and

¢, = 0.27 to achieve the accuracy level of order 10~* for both parameters A and B.
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Figure 33: The recovered solution of the inverse problem

Our near future plan is to develop iterative procedures to tackle a wider class of
inverse problems, where the computational algorithms created in the present study

can be in help.
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CONCLUDING REMARKS

An efficient half analytical-half numerical approach to the solution of boundary-value
problems is proposed for the two-dimensional Laplace and Poisson equations stated
in multiply-connected regions of irregular configuration on various surfaces of revolu-
tion. Solution of such problems is vitally critical for engineering and natural sciences
because those mathematical problems simulate potential fields generated in thin shell
structures made of conductive materials. The point is that shell structures represent
widely used elements and fragments of contemporary machines and devices.

Governing differential equations in the boundary-value problems considered in
the present work are written in geographical coordinates specific for every particular
surface. This makes non-trivial the targeted problems which in turn requires the
development of some non-trivial numerical schemes for their solution. Our approach
to those problems implements a modification of the classical boundary integral equa-
tion method allowing us to achieve high potential of the developed computational
algorithms.

The key stage of the approach to the solution of problems formulated on multiply-
connected regions is the construction of readily computable representations of Green’s
functions and matrices of Green’s type for some relevant simply-connected regions.
Those functions and matrices are referred to as resolving Green’s functions. They are
utilized then to build up some integral representations of solutions of the targeted
problems. A vast number of computer-friendly forms of resolving Green’s functions
and matrices is actually obtained, and their applicability is thoroughly tested.

Two important features stay behind the efficiency of our approach to problems
stated in multiply-connected regions. First, since the resolving Green’s functions are
used as kernels in the integral representations of the solutions, the governing equa-
tions as well as most of boundary conditions in a considered problem are exactly
satisfied prior to the computational stage of our algorithms. Second, all the factually

required numerical work touches upon some regular one-dimensional functional equa-
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tions where integral operators are to be approximated. This feature of our numerical
algorithms provides a basis for attaining high accuracy level, which is repeatedly
illustrated in this manual.

High computational potential of our Green’s function-based approach to direct
problems opened for us a door of inverse problems which we have proposed to tackle
with the aid of iterative numerical procedures. At each successive approximation of
the latter we run a corresponding algorithm developed in the present study for a
relevant direct problem. Some explicit illustrations of the efficiency of the proposed
strategy are presented.

To outline possible directions for extension of the present work, we focus on a
few scenarios representing our objective in the near future. First, note that lateral
surfaces of the shell structures considered herein are supposed to be thermally in-
sulated which is not the case in many practical situations. Hence, development of
workable algorithms for solution of problems simulating potential type fields induced
in thin-walled structures whose lateral surfaces are not insulated looks quite prom-
ising if the reliable algorithms already tested in the present study are appropriately
adjusted for that purpose. Another possible application of the results obtained herein
could be associated with potential type phenomena occurring in thin shells made of
either nonhomogeneous or anisotropic materials. One might also take a close look
at an extension of the present study results to problems dealing with shells made of

physically nonlinear materials.
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