
Tail Conditional Expectations for

Extended Exponential Dispersion Models

A Thesis

Presented to the Faculty of the Department of Mathematical Sciences

Middle Tennessee State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Mathematical Sciences

by

Ye(Zoe) Ye

Committee: Dr. Qiang Wu, Dr. Don Hong, Dr. Rebecca Calahan

August 2014



Copyright c© 2014, Ye(Zoe) Ye

ii



ACKNOWLEDGMENTS

I would like to express my special thanks of gratitude to Dr. Qiang Wu, who

offered a lot of patience and guidance to help me in this thesis. Also, I want to

thank Dr. Don Hong, who gave me the good opportunity to do this research and Dr.

Rebecca Calahan, who is willing to be my defense committee member. I have learned

so many new things about research.

Secondly I would also like to thank my parents and friends who helped me a lot

in finishing this thesis within the limited time.

iii



ABSTRACT

For a loss that can be incurred in a given period, the tail conditional expecta-

tion, also termed as tail value-at-risk, is the conditional average amount of loss, given

that the loss exceeds a specified value. This measurement helps insurance companies

to determine the amounts of capital to pay out claims resulted from catastrophic

event when premium revenues are insufficient. In this paper, we extend the exponen-

tial dispersion models and derive tail conditional expectation forms of the extended

models.
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CHAPTER 1

INTRODUCTION

1.1 Tail Conditional Expectation

Insurance companies often set aside amounts of capital from which they can draw in

the event that premium revenues become insufficient to pay out claims. Determin-

ing these amounts needed is not an easy process. We need to be able to determine

the probability distribution of the losses that it is facing. More importantly, we

should determine the best risk measurement [Artzner,Delbaen,Eber and Heath 1999]

to find the amount of loss to cover the claims. Tail conditional expectation (TCE)

has become increasingly popular for measuring this kind of risk, especially the ad-

equacy of existing capital and the possibility of financial ruin [Society of Actuaries,

Klugman,Panjer,and Willmot 2008, Bowers,Gerber,Hickman,Jones and Nesbitt 1997].

It is one of the newest risk modeling techniques adopted by the insurance industry.

Assume for the moment that an insurance company faces the risk of losing an

amount X for some fixed period of time. This generally refers to the total claims for

the insurance company. We denote its distribution function by FX(x) = Pr(X ≤ x),

the probability of the event {X ≤ x}, and its tail function by SX(x) = Pr(X > x).

The function SX(x) is also called survival function in probability literature. Note

that although the setting applies to insurance companies, it is equally applicable for

any institution confronted with any risky business. It may even refer to the loss faced

by an investment portfolio. The tail conditional expectation of X is defined as

TCEX(x) = E(X | X > x). (1)

It gives an average amount of the tail of the distribution. We can interpret this
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risk measure as the mean of worst losses beyond certain level. The formula used to

evaluate TCE is

TCEX(x) =
1

SX(x)

∫ ∞
x

xdFX(x), (2)

provided that SX(x) > 0, where the integral is the Lebesgue-Stieltjes integral.

The value of x is usually set based on the potential value of the loss xq of the

distribution with the property

SX(xq) = 1− q,

where 0 < q < 1. With a small value of q, the value xq is considered to be the amount

of loss that is unlikely to happen in normal situation while it may ruin the business

once it happens. It is important for a company to monitor and prepare for such an

extreme situation. TCE provides a good measure for this purpose.

1.2 Exponential Dispersion Models

The class of exponential dispersion models has served as “error distributions” for

generalized linear models in the sense developed by [Nelder,Wedderburn 1972]. This

includes many well known discrete distributions like Poisson and Binomial as well

as continuous distributions like Normal, Gamma and Inverse Gaussian. It is not

surprising to find that they are becoming popular to actuaries. For example, cred-

ibility formulas for the class of exponential dispersion models preserve the property

of a predictive mean [Kaas,Danneburg and Goovaerts 1997, Nelder and Verrall 1997,

Landsman and Makov 1998, Landsman 2002]. A thorough and systematic investi-

gation of exponential dispersion models was done by Jorgensen [Jorgensen 1986,

Jorgensen 1987, Jorgensen 1997].
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A random variable X is said to belong to the Exponential Dispersion Family

(EDF) of distributions if its probability measure Pθ,λ is absolutely continuous with

respect to some measure Qλ and can be represented as follows: for some function

κ(θ) called the cumulant:

dPθ,λ = eλ[θx−κ(θ)]dQλ(x). (3)

The parameter θ is named the canonical parameter belonging to the set

Θ = {θ ∈ R | κ(θ) <∞}.

The parameter λ is called the index parameter belonging to the set of positive real

numbers Λ = {λ | λ > 0} = R+. The representation in (3) is called the reproductive

form of EDF and is denoted by X ∼ ED(θ, λ) for a random variable belonging to

this family. Another form of EDF is called the additive form which can be obtained

by the transformation Y = λX. Its probability measure P ∗θ,λ is absolutely continuous

with respect to some measure Q∗λ which can be represented as

dP ∗θ,λ = e[θy−λκ(θ)]dQ∗λ(y). (4)

If the measure Qλ in (3) is absolutely continuous with respect to a Lebesgue measure,

then the density of X has the form

fX(x) = eλ[θx−κ(θ)]qλ(x). (5)

The same can be said about additive model, ED∗(θ, λ), and Y has the density

fY (y) = e[θy−λκ(θ)]q∗λ(y). (6)

Consider the loss random variable X belonging to the family of exponential dis-

persion models in reproductive or additive form. We will denote the tail probability
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function by S(· | θ, λ). This simplifies the notation by dropping the subscript when

no confusion can happen and emphasizes its dependence on the parameters θ and λ.

In [Landsman and Valdez 2005], the TCE is given for both reproductive form and

additive form of exponential dispersion models. Suppose that the random variable X

belongs to EDF. If the survival function has partial derivative with respect to θ, κ(θ)

is a differentiable function, and one can differentiate the survival function S(·|λ, θ) in

θ under the integral sign, then

• For X ∼ ED(µ, λ), the reproductive form of EDF,

TCEX(x) = µ+
h

λ
, (7)

where

h =
∂

∂θ
logS(x | θ, λ).

• For X ∼ ED∗(µ, λ), the additive form of EDF,

TCEX(x) = µ+ h. (8)

In this thesis, we will extend the formulas of exponential dispersion models and

investigate their properties. The first generalization we would consider is to replace

the multiplier θ in EDF by a function of θ. Such a family of models will be referred to

Type I generalized exponential dispersion family (GEDF). This is motivated by the

linear exponential family (LEF) [Brown 1987] which takes the form

f(x | θ) =
er(θ)xq(x)

p(θ)
. (9)

With this generalization, the GEDF includes LEF as a special case.

The second generalization is to replace the term λκ(θ) by a general bivariate

function of λ and θ. Such a family of distributions is called Type II generalized
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exponential dispersion family. Note that

λκ(θ) = log

(∫
R
eλθxdQλ(x)

)
(10)

for the reproductive form of EDF and

λκ(θ) = log

(∫
R
eθydQ∗λ(y)

)
(11)

for the additive form of EDF. For general distributions Qλ or Q∗λ, the functions on

the right of (10) or (11) should be a general bivariate function, not necessarily able to

be written in the form of λκ(θ). Therefore, in EDF the choice of the distributions Qλ

or Q∗λ are restricted. The Type II generalization removes the restriction and allows

to consider more general distributions.

In Chapter 2 we will study the Type I generalized exponential dispersion family,

investigate its properties, and derive the formula for its tail conditional expectation.

In Chapter 3, we will study the Type II generalized exponential dispersion family.

Finally, we close in Chapter 4 with conclusions and discussions.
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CHAPTER 2

TYPE I GENERALIZED EXPONENTIAL DISPERSION FAMILY

We consider the Type I generalization of the reproductive form of the exponential

dispersion model which takes the form

dPθ,λ = eλ[r(θ)x−κ(θ)]dQλ(x). (12)

If the measure Qλ is absolutely continuous with respect to the Lebesgue measure,

then the density of X has the form

fX(x) = eλ[r(θ)x−κ(θ)]qλ(x). (13)

2.1 Mean and Variance of Type I GEDF

For the reproductive form of Type I GEDF, we can deduce the formulae for its mean

and variance.

Theorem 2.1. Suppose that a random variable X belongs to the Type I GEDF whose

reproductive form is given by (12). If its probability measure Pθ,λ is absolutely contin-

uous with respect to the measure Qλ, both r(θ) and κ(θ) have the second derivatives

and r(θ) is invertible, then the mean value of X is

µ = µ(θ) =
κ′(θ)

r′(θ)
(14)

and the variance of X is

Var(X) =
µ′(θ)

λr′(θ)
. (15)
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Proof. We compute the cumulant generating function as follows:

KX(t) = logE(eXt) = log

{∫
R
exteλ[r(θ)x−κ(θ)]dQλ(x)

}

= log

{∫
R
ext+λ[r(θ)x−κ(θ)]dQλ(x)

}

= log

{∫
R
eλ[(r(θ)+t/λ)x]−κ(θ)dQλ(x)

}
.

Let ξ be the number such that r(θ) + t/λ = r(ξ). Since r(θ) is invertible, we have

ξ = r−1(r(θ) + t/λ). Then

KX(t) = log

{
eλ[κ(r

−1(r(θ)+t/λ))−κ(θ)]
∫
R
eλ[(r(θ)+t/λ)x−κ(r

−1(r(θ)+t/λ))]dQλ(x)

}

= log

{
eλ[κ(r

−1(r(θ)+t/λ))−κ(θ)]
∫
R
eλ[r(ξ)x−κ(ξ)]dQλ(x)

}

= log
{
eλ[κ(r

−1(r(θ)+t/λ))−κ(θ)]
}

= λ [κ(r−1(r(θ) + t/λ))− κ(θ)] .

It follows that its moment generating function is

MX(t) = E(eXt) = eλ[κ(r
−1(r(θ)+t/λ))−κ(θ)]. (16)

Knowing that (f−1(x))′ = 1/f ′(f−1(x))) for an invertible differentiable function, we

can find the first order derivative of the moment generating function:

M ′
X(t) = eλ[κ(r

−1(r(θ)+t/λ))−κ(θ)]λκ′ (r−1(r(θ) + t/λ)) (r−1(r(θ) + t/λ))
′

= eλ[κ(r
−1(r(θ)+t/λ))−κ(θ)]κ

′ (r−1(r(θ) + t/λ))

r′ (r−1(r(θ) + t/λ))
.



8

When t = 0, we obtain

µ = M ′
X(0) = eλ[κ(r

−1(r(θ)))−κ(θ)]κ
′ (r−1(r(θ)))

r′ (r−1(r(θ)))
=
κ′(θ)

r′(θ)
.

To derive the formula for the variance, we compute the second order derivative of

the moment generating function:

M ′′
X(t) = (M ′

X(t))′

=
{
eλ[κ(r

−1(r(θ)+t/λ))−κ(θ)]
}′ κ′ (r−1(r(θ) + t/λ))

r′ (r−1(r(θ) + t/λ))

+eλ[κ(r
−1(r(θ)+t/λ))−κ(θ)]κ

′′ (r−1(r(θ) + t/λ))

r′ (r−1(r(θ) + t/λ))

+eλ[κ(r
−1(r(θ)+t/λ))−κ(θ)]κ (r−1(r(θ) + t/λ))

[
r′ (r−1(r(θ) + t/λ))

−1
]′

= eλ[κ(r
−1(r(θ)+t/λ))−κ(θ)]

[
κ′ (r−1(r(θ) + t/λ))

r′ (r−1(r(θ) + t/λ))

]2

+eλ[κ(r
−1(r(θ)+t/λ))−κ(θ)] κ′′ (r−1(r(θ) + t/λ))

λ [r′ (r−1(r(θ) + t/λ))]2

+eλ[κ(r
−1(r(θ)+t/λ))−κ(θ)]κ′ (r−1(r(θ) + t/λ))

×−r
′′ (r−1(r(θ) + t/λ))

[r′ (r−1(r(θ) + t/λ))]2
(r−1(r(θ) + t/λ))′

= eλ[κ(r
−1(r(θ)+t/λ))−κ(θ)]

[
κ′ (r−1(r(θ) + t/λ))

r′(r−1(r(θ) + t/λ))

]2

+eλ[κ(r
−1(r(θ)+t/λ))−κ(θ)] κ′′ (r−1(r(θ) + t/λ))

λ [r′ (r−1(r(θ) + t/λ))]2

+eλ[κ(r
−1(r(θ)+t/λ))]κ′ (r−1(r(θ) + t/λ))

−r′′(r−1(r(θ) + t/λ))

λ [r′ (r−1(r(θ) + t/λ))]3
.



9

When t = 0 , we have

E(X2) = M ′′
X(0) =

[
κ′(θ)

r′(θ)

]2
+

κ′′(θ)

λ[r′(θ)]2
− κ′(θ)r′′(θ)

λ[r′(θ)]3
.

Then we can get the variance as

Var(X) = E(X2)− µ2

=
κ′′(θ)

λ[r′(θ)]2
− κ′(θ)r′′(θ)

λ[r′(θ)]3

=
1

λ[r′(θ)]2

[
κ′′(θ)− κ′(θ)r′′(θ)

r′(θ)

]

=
1

λ [r′(θ)]

(
κ′(θ)

r′(θ)

)′

=
µ′(θ)

λr′(θ)
.

where we have used the fact µ = µ(θ) = κ′(θ)
r′(θ)

obtained above. This complete the

proof of the theorem.

When λ = 1 and κ(θ) = log(p(θ)), the Type I GEDF reduces to the LEF (9).

Theorem 2.1 gives

µ = µ(θ) =
κ′(θ)

r′(θ)
=

p′(θ)

r′(θ)p′(θ)
.

and Var(X) = µ′(θ)
r′(θ)

. These coincide the results for linear exponential family in

[Klugman,Panjer,and Willmot 2008].

2.2 TCE of Type I GEDF

Theorem 2.2. Under the assumptions of Theorem 2.1, if one can also differenti-

ate the tail function S(·|θ, λ) in θ under the integral sign, then the tail conditional
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expectation is given by

TCEX(x) = µ+
h

λr′(θ)
, (17)

where

h =
∂

∂θ
logS(x | θ, λ).

Proof. Recall the tail function is

S(x | θ, λ) =

∫ ∞
x

eλ[r(θ)x−κ(θ)]dQλ(x).

We have

h =
∂

∂θ
logS(x | θ, λ) =

1

S(x | θ, λ)

∫ ∞
x

∂

∂θ

{
eλ[r(θ)x−κ(θ)]dQλ(x)

}
=

1

S(x | θ, λ)

∫ ∞
x

λ [r′(θ)x− κ′(θ)] eλ[r(θ)x−κ(θ)]dQλ(x)

=
λ

S(x | θ, λ)

{∫ ∞
x

r′(θ)xeλ[r(θ)x−κ(θ)]dQλ(x)

−
∫ ∞
x

κ′(θ)eλ[r(θ)x−κ(θ)]dQλ(x)

}

=
λ

S(x | θ, λ)

[
r′(θ)

∫ ∞
x

xdPθ,λ − κ′(θ)S(x | θ, λ)

]

= λ [r′(θ)TCEX(x)− κ′(θ)] ,

with dPθ,λ = eλ[r(θ)x−κ(θ)]dQλ(x). This gives

TCEX(x) =
κ′(θ)

r′(θ)
+

h

λr′(θ)
.

The conclusion follows by noticing that µ = κ′(θ)
r′(θ)

.
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CHAPTER 3

TYPE II GENERALIZED EXPONENTIAL DISPERSION FAMILY

In this chapter we consider the Type II generalization of EDF. This time we focus

on the additive form. The additive form of Type II GEDF is given by

dP ∗θ,λ = e[θy−κ(λ,θ)]dQ∗λ(y) (18)

or

fY (y) = e[θy−κ(λ,θ)]q∗λ(y) (19)

3.1 Mean and Variance of Type II GEDF

Theorem 3.1. Suppose that a random variable Y belongs to the Type II GEDF whose

distribution is given by (18). If its probability measure P ∗θ,λ is absolutely continuous

with respect to some measure Q∗λ and κ(λ, θ) has the second partial derivative to θ,

then the mean value of Y is

µ =
∂κ(λ, θ)

∂θ
, (20)

and the variance of Y is

Var(Y ) =
∂2κ(λ, θ)

∂θ2
. (21)

Proof. The generating function can be derived as follows:

KY (t) = logE(eY t) = log

{∫
R
eyteθy−κ(λ,θ)dQ∗λ(y)

}
= log

{∫
R
e(θ+t)y−κ(λ,θ)dQ∗λ(y)

}
= log

{
eκ(λ,θ+t)−κ(λ,θ)

∫
R
e(θ+t)y−κ(λ,θ+t)dQ∗λ(y)

}
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= κ(λ, θ + t)− κ(λ, θ).

Then the moment generating function is MY (t) = eκ(λ,θ+t)−κ(λ,θ). Thus,

M ′
Y (t) = eκ(λ,θ+t)−κ(λ,θ)

∂κ(λ, θ + t)

∂t
= eκ(λ,θ+t)−κ(λ,θ)

∂κ(λ, θ + t)

∂θ
.

When t = 0, we have the mean value

µ = M ′
Y (0) =

∂κ(λ, θ)

∂θ
.

The second order derivative of MX(t) is

M ′′
Y (t) = eκ(λ,θ+t)−κ(λ,θ)

(
∂κ(λ, θ + t)

∂θ

)2

+ eκ(λ,θ+t)−κ(λ,θ)
∂2κ(λ, θ + t)

∂θ2
.

When t = 0, we have

E(Y 2) = M ′′
Y (0) =

(
∂κ(λ, θ)

∂θ

)2

+
∂2κ(λ, θ)

∂θ2
.

Then we get the variance of extended addtive model

Var(Y ) = E(Y 2)− µ2 =
∂2κ(λ, θ)

∂θ2
.

This completes the proof.

3.2 TCE of Type II GEDF

Theorem 3.2. Under the same assumptions as in Theorem 3.1, if one can differen-

tiate S(·|θ, λ) in θ under the integral sign, then

TCEY (y) = µ+ h. (22)
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Proof. The proof is similar to that of Theorem 2.2. The tail function is

S(y | θ, λ) =

∫ ∞
y

eθy−κ(λ,θ)dQ∗λ(y).

Then

h =
∂

∂θ
logS(y | θ, λ) =

1

S(y | θ, λ)

∫ ∞
y

∂

∂θ

{
eθy−κ(λ,θ)]dQ∗λ(y)

}
=

1

S(y | θ, λ)

[∫ ∞
y

yeθy−κ(λ,θ)dQ∗λ(y)

−∂κ(λ, θ)

∂θ

∫ ∞
y

eθy−κ(λ,θ)dQ∗λ(y)

]

=
1

S(y | θ, λ)

[∫ ∞
y

ydP ∗θ,λ −
∂κ(λ, θ)

∂θ

∫ ∞
y

eθy−κ(λ,θ)]dQ∗λ(y)

]

= TCEY (y)− ∂κ(λ, θ)

∂θ
.

This together with (20) proves the conclusion.
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CHAPTER 4

CONCLUSION AND DISCUSSION

This thesis examines tail conditional expectations for loss random variables that

belong to the class of generalized exponential dispersion models. For the exponential

dispersion models in [Landsman and Valdez 2005], it has both reproductive form and

additive form. We extended the exponential dispersion families based on these two

forms. Two types of generalization are considered. The representations for their

means and variances are derived. The tail conditional expectations are characterized.

By comparing our results with those in [Landsman and Valdez 2005] we see they share

great similarity.

In Chapter 2 and Chapter 3 we have considered the two types of generalization

separately. One can also consider them simultaneously to derive even more general

and complicated distributions. In this case the reproductive form of the distribution

is

dPθ,λ = eλr(θ)x−κ(λ,θ)dQλ(x),

and the additive form is

dP ∗θ,λ = er(θ)y−κ(λ,θ)dQ∗λ(y).

Similar results can be derived using the same techniques and more complicated com-

putations.

• For the reproductive form, there are

µ = µ(θ) =
∂2κ(λ, θ)

λr′(θ)
, Var(X) =

µ′(θ)

λr′(θ)
, and TCEX(x) = µ+

h

λr′(θ)
.

• For additive form, there are

µ = µ(θ) =
∂2κ(λ, θ)

r′(θ)
, Var(Y ) =

µ′(θ)

r′(θ)
, and TCEY (y) = µ+

h

r′(θ)
.
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Finally, we remark that the EDF contains a couple of special distributions that

are commonly seen in probability theory and used in loss modeling. These special

distributions are clearly also examples of generalized exponential dispersion models.

Although it seems that no commonly seen special distributions belong to GEDF but

not to EDF, it is not difficult to theoretically construct such distributions. The

generalization allows more freedom to model loss variables which may be beneficial

when the losses cannot be well modeled using commonly seen special distributions.
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