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ABSTRACT 

 Stephen Wolfram suggested cellular automata may be a good candidate for 

generating suitable encrypted data. His work recommends that rule thirty was good 

enough for data encryption. The production of strong data encryption is the goal of 

anyone who desires the means of transmitting secure messages. Studies worldwide has 

generated numerous volumes of research. However, these studies are based on the use of 

computational machinery to produce these results. This project goes beyond the 

computational method of pseudo-random number generation. Through the use of VHDL, 

a working pseudo-random number generator can be designed and programmed into a 

FPGA device. A pseudo-random number generator (based around elementary cellular 

automation) has been implemented and it was installed into a FPGA device. This working 

device produced results that matched the computational methods of a similar pseudo-

random number generator. 

   



v 
 

TABLE OF CONTENTS 

           Page 

LIST OF TABLES………………………………………………………………… vii 

LIST OF FIGURES……………………………………………………………… viii 

LIST OF ABBREVIATIONS……………………………………………………. x 

INTRODUCTION………………………………………………………………… 1 

LITERATURE REVIEW………………………………………………………… 6 

 Early History……………………………………………………………… 6 

 Earlier Research at MTSU………………………………………………… 7 

THEORY………………………………………………………………………… 9 

PREPARATION AND DESIGN FLOW………………………………………… 19 

GRAPHIC DESIGN IMPLEMENTATION……………………………………… 27 

VHDL DESIGN IMPLEMENTATION………………………………………… 35 

DATA COLLECTION AND TRIALS…………………………………………… 49 

FINDINGS AND RESULTS…………………………………………………… 58 

CONCLUSIONS………………………………………………………………… 60 

REFERENCES…………………………………………………………………… 61 



vi 
 

APPENDICES…………………………………………………………………… 62 

 APPENDIX A: Taps Table for Up to 67 LSFR Bits…………………… 63 

 APPENDIX B: Pen and Paper Results for 4 and 8 Bits………………… 64 

 APPENDIX C: Program Flow…………………………………………… 66 

 APPENDIX D: The 16 Chaotic and Balanced Rules…………………… 68 

 APPENDIX E: Iterations and Quarters Table…………………………… 69 

 APPENDIX F: Resources Used Table…………………………………… 70 

 APPENDIX G: Results for ECA One Rule……………………………… 71 

 APPENDIX H: Results for Dual Rules…………………………………… 75 

   



vii 
 

LIST OF TABLES 

1. Taps Table for Up to 67 LSFR Bits……………………………………… 63 

2. The 16 Chaotic and Balanced Rules……………………………………... 68 

3. Iterations and Quarters Table……………………………………………. 69 

4. Resources Used Table…………………………………………………… 70 

5. Results for ECA One Rule……………………………………………… 71 

6. Dual Rule 31 Bits……………………………………………………….. 75 

7. Dual Rule 127 Bits……………………………………………………… 75 

8. Dual Rule 113 Bits……………………………………………………… 76 

   



viii 
 

LIST OF FIGURES 

1. Linear-Shift Feedback Register System………………………………….. 2 

2. Encryption/Decryption Message Flow…………………………………… 3 

3. Basic Layout and Logic Flow……………………………………………. 4 

4. Von Neumann and Moore Neighborhoods………………………………. 9 

5. Cell Layout……………………………………………………………….. 10 

6. 3-Bit Cellular Automata Basic Layout…………………………………… 11 

7. Layout of an ECA System……………………………………………….. 12 

8. Elementary Cellular Automation………………………………………… 13 

9. Rule 254 Layout…………………………………………………………. 14 

10. How Rules 15 and 30 Look……………………………………………… 14 

11. Before and After Time Step Example of Rule 15……………………….. 15 

12. Simplified Rule Patterns…………………………………………………. 16 

13. Homogenous Class Using Rule 160……………………………………… 17 

14. Periodic Class Using Rule 108…………………………………………… 17 

15. Chaotic Class Using Rule 30…………………………………………….. 17 

16. Complex Class Using Rule 110………………………………………….. 18 

17. Screen Shot of the CA Tabs Program……………………………………. 21 

18. Illustration of an Alternating Bits Layout Using Rules 30 and 45………. 22 

19. Illustration of Alternating Rows Layout Using Rules 30 and 45………... 23 

20. Simplified DE-2 board…………………………………………………… 25 

21. Communication Flow Between DE-2 Board and PC (Simplified)………. 26  



ix 
 

22. 3:8 Multiplexer…………………………………………………………… 27 

23. Simplified 3 Cell Design…………………………………………………. 28 

24. Basic Cell Layout Using Rule 30………………………………………… 30 

25. Quartus II Basic Cell Layout - Graphic Design File……………………... 31 

26. Graphic Design - Four Bit Layout……………………………………...... 32 

27. Graphic Design of an Eight Bit System Layout…………………………. 33 

28. Simplified CA Bits Unit…………………………………………………. 36 

29. Basic NIOS Processor (Simplified)……………………………………… 40 

30. Basic NIOS system (Simplified)………………………………………… 41 

31. Simplified Diagram of a 32-Bit 2-1 Multiplexer………………………… 43 

32. 64-Bit Data Exchange……………………………………………………. 44 

33. Simplified View of the Complete System……………………………….. 45 

   



x 
 

LIST OF ABBREVIATIONS 

ASCII  American Standard Code for Information Interchange 

CA  Cellular Automata 

DOD  Department of Defense 

ECA  Elementary Cellular Automata 

FPGA  Field Programmable Gate Array 

HDL  Hardware Description Language 

IEEE  Institute of Electrical and Electronic Engineers 

LFSR  Linear-Feedback Shift Register 

LSB  Least Significant Bit 

MSB  Most Significant Bit 

MTSU  Middle Tennessee State University 

USB  Universal Serial Bus 

VHDL  Very High Speed Integrated Circuit Hardware Description Language 

 

 



1 
 

INTRODUCTION 

 Cryptography has been a time honored tradition of anyone trying to convey 

information (through various codes) to their allies. However, as history has proven, codes 

can be broken. The English cracked Germany’s ENIGMA code during World War II [1]. 

The United States also deciphered Japans secret messages [2]. This gave the Allies an 

advantage because they knew what the Axes were planning. 

 To encrypt messages require methods that the sender (and intended receiver) uses 

to convey sensitive information. The main method usually used is the use of pseudo-

randomly generated numbers. The major difference between a true random number 

generator and the pseudo-random number generator is that the true random number 

generator is non-periodical. While a non-periodical random number generator has a 

desirable quality for things like lotteries and games, it is completely unusable for 

cryptology. If a true random number generator encrypted a message, it would be 

impossible to decrypt the message. In this case, a pseudo-random number generator has 

to be used. Because pseudo–random numbers are periodic, they are excellent for 

cryptology. This section will discuss a method used for transmission of secure messages 

momentarily, but first a method used at Middle Tennessee to generate random numbers. 

At Middle Tennessee State University (MTSU), numerous projects are 

incorporated that require the use of randomly generated numbers. One such project is a 

dice game that the students have to implement. Usually, the students utilize a linear-

feedback shift register system (LFSR) and (for course purposes) this is suitable for 

generating the random numbers needed for their projects. However, for Cryptography, 
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this is not good enough for producing acceptable pseudo-random numbers (discussed 

later). 

lsb 1 2 3 4 P N-2 N-1 msb...

Linear Feedback Shift Register System

Figure1: Linear-Shift Feedback Register System. 

 

 The LFSR, in figure 1, uses an exclusive-or (XOR) gate(s) attached to specially 

selected output registers. The taps selected usually come from a LFSR taps table. 

Appendix A provides a small taps table that recommends the best register selection for up 

to sixty-seven bits [3]. For example, if a 31-bit system is desired, the selected taps would 

come from registers 31 (the MSB) and 28. The two registers have outputs that is applied 

to a XOR gate and the output of the XOR gate is determined by the value of these inputs. 

The output of the XOR gate(s) is fed directly back into the shift register. The individual 

registers also provide an output that is combined with other registers to produce a binary 

output. External logic circuitry converts this binary number into a usable number that the 

system displays to the user. This system is adequate for academia purposes. However, for 

real world applications (like cryptology), this system is not good enough. 

 Cryptology involves the communication of data that only the intended receiver 

can understand. As an example (figure 2), the sender creates a plain text version of the 
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message they want to send to the receiver. The sender encrypts the message using an 

encryption key. 

Sender

Message XOR

Key

Receiver

Encrypted 
Message

MessageXOR

Key

Encrypted 
Message

Figure 2: Encryption/Decryption Message Flow. 
 

This message (in encrypted form) is delivered to the receiver. The receiver 

(through pre-arranged procedures) places the encrypted message through an identical 

encryption key and decrypts the message that can be read by the receiver. However, if an 

unauthorized individual somehow manages to intercept the encrypted message, the 

protection scheme, hopefully, will be difficult enough to discourage any attempts to try 

and decrypt the message.  

There are several methods of producing pseudo-random numbers. While 

(presently) not used at MTSU, one such method is through the use of cellular automation. 

Cellular automation, through the usage of various rules, may provide acceptable pseudo-

random numbers. Consider having several blocks lined up in a row as displayed in figure 

3. The number is not important for this discussion. Like the LSFR, the outputs from these 

blocks provide the feedback to the other blocks. The inputs are applied to the logic and, 
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through the use of the selected rule that is chosen, these cells will update to their new 

values. 

Figure 3: Basic Layout and Logic Flow. 

 

The chosen rule is applied to this data to create the encryption key that is used to generate 

the cypher text of the encrypted message. Using the three cells in figure 3, as an example, 

if rule fifteen was selected, and the output of the cells, initially, is 1 0 0 (binary 4), then 

the output of the next cycle is 1 0 1 (5). The next cycle is 0 0 1 (1). Further progressions 

give us 0 1 1 (3), 0 1 0 (2), 1 1 0 (6), and back to 1 0 0 (4). However, if we have 0 0 0 (0) 

or 1 1 1 (7), we cycle between 0 and 7 indefinitely. Not starting off with binary 0 or 7, 

this 3-bit pseudo-random number generator could possibly be used for the dice game, as 

mentioned previously, since a six-sided die has only values one through six. 
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As such, cellular automata may hold promise as a pseudo-random number 

generator. This research will attempt to develop a suitable pseudo-random number 

generator, with strong encryption schemes, that can be programmed into a FPGA. 

 

   



6 
 

LITERATURE REVIEW 

Early history 

John Von Neumann originally proposes formal models of self-reproducing robots 

[4]. Suggestion by Stanislaw Ulam, Von Neumann theorizes two-dimensional mesh of 

finite state machines (called cells) interconnected with each other. Cells outputs change 

based on the conditions of neighboring cells [5].  

Stephen Wolfram continues independent work on cellular automata. Publishes A 

New Kind of Science in 2002. A New Kind of Science details one and two dimensional 

CA and attempts to classify rules into four categories [6]. Wolfram suggests that CA rule 

30 may be good for data encryption [7]. 

Further examination of additional past works provide only experiments and 

results of software generated projects. During this time, there has been nothing mentioned 

about the actual development of a hardware based system using Field Programmable 

Gate Array (FPGA) devices until 2006. As a result, the majority of this research had been 

provided by the earlier works of previous MTSU’s students using software based 

techniques of pseudo-random number generation. Prior research by Asfaw Estub and 

Christopher Stocker provided initial methods used to determine the success/failure of 

Cellular Automata as an acceptable pseudo-random number generator. 

 In 2006, Students from the University of North Texas [8] develop a two-

dimensional system. However, this system was developed primarily for Conway’s Game 

of Life with CA using both the Von Newman and Moore neighborhoods. This project is 
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centered on a two-dimensional system. This particular system does not meet the 

requirements of this project. However, for future projects involving multi-dimensional 

systems, these findings may prove beneficial.  

Earlier Research at MTSU 

In 2007, Asfaw Estub [9] provided the initial research of this project. His 

reference to Stephan Wolfram’s work in the use of cellular automata as a possible 

pseudo-random number generator was worth pursuing. However, Estub’s work presented 

various boundary conditions for the generation of pseudo-random numbers using rule 30 

exclusively. He designed the initial CA_TABS program using Microsoft’s VISUAL 

BASIC©. His program confirmed Wolfram’s work that rule 30 is suitable for strong 

encryption. Estub’s conclusion was that further work in this study was needed. But, a 

one-dimensional cellular automata machine using rule 30 was worth pursuing. 

 In 2010 Christopher Stocker [10] continued Asfaw Estub’s work. Stocker added 

additional capabilities to Estub’s program. Stocker later rewrites CA_TABS using 

Microsoft’s VISUAL C++©. The use of a C++ program increased the operational speed 

of the CA_TABS program. While the CA_TABS program originally written by Estub 

limited users to use rule 30 only, Stocker’s work added the additional ability of allowing 

the user the choice of any rule from 1 to 255. Stocker’s results found that the added 

complexities of the additional updates did not negatively affect randomness. But, for our 

purposes, this work derives the foundation for a one-dimensional cellular automata 

machine for both software and hardware. 
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 This work is a continuance of Christopher Stocker’s work. Follow on with the 

design, and implementation, of a one-dimensional cellular automata machine that could 

be programmed into a FPGA device. This device was used to generate pseudo-random 

numbers that were compared with a software generated pseudo-random number 

generator. The hardware generated results had to match the software generated results. If 

these results matched, then this experiment was successful in developing a working 

device that could provide pseudo-random numbers that have strong encryption 

capabilities. The possibilities of generating better encrypted messages will be achieved.  
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THEORY 

Before the details of this research can be discussed, a proper definition of cellular 

automata, and how it applies to this project, is needed. One accepted definition is stated 

by Stephan Wolfram on mathworld - “A cellular automaton is a collection of (colored) 

cells on a grid of specified shape that evolves through a number of discrete time steps 

according to a set of rules based on the states of neighboring cells. The rules are then 

applied iteratively for as many time steps as desired.” [11] Cellular Automation, by this 

definition, can be very complex. To illustrate, there are two general neighborhoods – Von 

Neumann and Moore (fig 4). 

Von Neumann Neighborhood Moore Neighborhood

Figure 4: Von Neumann and Moore Neighborhoods 

 

The Von Neumann cell has four neighbors (N, S E and W) plus itself. The Moore 

cell also has these neighbors and additionally NW, NE, SE, and SW cells (along with 

itself). For this research, this project will use the elementary cellular automata (ECA). 
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This is a simple, one-dimensional system. The elementary system holds cells in a 

singular, one-dimensional array. This is the Von Neumann design only using the E and W 

neighbors. To maintain consistency throughout this section, additional terminologies and 

definitions have to be addressed now. The cell is identified by the upper-case C. C is the 

index number for a finite CA of span ሺܭ ∈ Գ, 0 ൑ 	ܥ ൑  ሻ. There is a super-scriptܭ

identified with lower-case t along with the sub-script designated with the lower-case 

letter k. The super-script t represents the time-step where t is at this time. t+1 signifies the 

next time step and t-1 represents the previous time step. The sub-script k defines the 

individual cell. For example, if there were six cells, then the cells (from left to right) k 

values are designated as 5 down to 0 and would look like figure 5.  

C
2

t

C
1

t

C
0

t

C
3

t

C
4

t

C
5

t

Figure 5: Cell Layout 
 

There are two requirements for the individual CA cell. First, its output must 

change to a value determined by the inputs that is compared with an established rule 

(explained later). Second, the output must maintain this state and only change when the 

next discrete time step is initiated. Logically, this is done by using a memory device such 

as a D-type flip-flop or a D-type latch.  

The absolute minimum number of cells required for an ECA system is two. This 

is due to the fact that certain rules (like sixty) only require two cells to determine that 

bit’s next output. However, three cells will be required for the remaining rules (like 
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thirty). In fact, there can be any number of cells to work with and the higher the better. 

To clarify this statement, consider a three cell system. Three cells give		2ଷ ൌ 8	. This 

means there are only eight combinations. On a four cell system, this gives 	2ସ ൌ

16		combinations. If there are 5 cells, there are 	2ହ ൌ 32	combinations.  

To gain a better understanding of how a cell changes to its’ next value, figure 6 

outlines a general block diagram of a three cell system. The output of the main cell (C) is 

applied to one input of a logic unit that is going to determine the next output of this cell. 

The logic unit also requires additional inputs from Cell C’s adjacent neighboring cells 

(C+1 and C-1). The logic unit acts on the outputs of these three cells and produces a 

binary number from zero (0 0 0) to seven (1 1 1). This number is compared to the 

established rule (explained later), and the output of the logic unit is returned to the input 

to update the cell at the next time step.  

 
Figure 6: 3-Bit Cellular Automata Basic Layout 
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To see how the bits are arranged in a one-dimensional relationship, figure 7 

details the layout of an ECA system. 

C... ...t

k
C

t

k ‐ 1
C

t

k + 1
C

t

K ‐ 1
C

t

K ‐ 2
C

t

1
C

t

0

K

 
0	 ൑ ݇	 ൑ ,ܭ  Ժ	߳	ݐ						,Գ	߳	ܭ

Fig 7: Layout of an ECA System 
 

The number of bits involved is represented by the upper-case K. This is the total 

bits used for the experiments. Usually this will be a prime number. Extensive testing 

revealed that composite numbers (even or odd) tend to cause occurrences of short cycles. 

Because short cycles are undesirable for cryptology, prime numbers were chosen to avoid 

composite numbers. 

Earlier, the minimum cell size stated was two (however, three is used to 

accommodate all of the rules) and the ceiling is theoretically infinite in number. But, the 

real limitation imposed on the maximum size is going to be governed by the hardware 

itself. Using an example of a system that is 32 bits in length, Figure 8 shows how 

additional cells are added to increase the possible number of outputs. The maximum 

possible outputs from a three-cell system return eight different values	ሺ2ଷ ൌ 8ሻ. The 

maximum possible outputs from a system that is 32 cells provide over 4 billion (2ଷଶ	 ൌ

4,294,976,296) possible values. The maximum cell length is fixed by the number K. The 

individual bit (k) has two immediate neighbors (identified as k+1 and k-1). The output of 

this bit (k) is determined by the selected rule chosen and the binary number created by the 
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bit patterns of the three cells (k+1, k, k-1). Every cell is built identically so all 32-bits will 

be interconnected with their neighboring cells. The exceptions are the two end cells. Cell 

K’s cell-next input (k+1) must come from cell 0. Cell 0‘s cell-previous input (k-1) must 

come from cell K - 1. This interconnection scheme maintains a circular looping group of 

cells. 

Rule X

Ck @ 
t+1

C... ...t

k
C

t

k ‐ 1
C

t

k + 1
C

t

K ‐ 1
C

t

K ‐ 2
C

t

1
C

t

0

K

 
Figure 8: Elementary Cellular Automation 

 

Consideration of a two, or three, dimensional system raises the complexity of 

these systems and, therefore, makes them non-elementary systems. However, for our 

purposes, these designs will go beyond the scope of what we are initially attempting. 

Future work along these lines are planned if this experiment proves successful. 

A rule is a verbal representation of the desired output by means of a binary code. 

In Stephan Wolfram’s work (A New Kind of Science), he uses several examples in 

chapter two to define how an output is generated. His example (using rule 254) in verbal 

form is: “A cell should be black in all cases where it or either of its neighbors were black 

on the step before.” [Wolfram. P. 24] [6]. Figure 9 shows how rule 254 is laid out (in 
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binary form) along with the accompanying diagram (taken from Wolfram p. 24) [6] that 

illustrates how the output will look after five iterations.  

Rule 254 pattern

After 5 Iterations
Figure 9: Rule 254 Layout 

 

The binary eight-bit pattern of rule 254 equates to 1 1 1 1 1 1 1 0. By looking at figure 

10, two examples of rules 15 and 30 are displayed.  

Figure 10: How Rules 15 and 30 Look 
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The min-terms (identified by the m-number in fig 10) also have a binary representation. 

These binary terms range from m0 (0 0 0) to m7 (1 1 1) and are the inputs that the rule 

requires to generate a new output that is returned to the cell. Using the example provided 

in the introduction, rule fifteen is chosen. This specifies the bit selection to be three (0 1 

1), two (0, 1, 0), one (0, 0, 1), and zero (0, 0, 0) (Figure 11). If the initial condition of 

these three cells are C + 1 = 1, C = 0, C – 1 = 0 (Figure 11), then a binary value of four 

(as viewed by cell C) is generated. Figure 11 shows a before and after representation 

(along with rule 15) as viewed by the individual cells. Cell C+1’s view would be a 

(binary) two and cell C-1’s view would be a (binary) one. Figure 10’s table reveals cell 

C’s new output from m4 = 0 and cell C remains zero. Cell C+1 output (m2) is still one 

and C+1 remains one. However, cell C-1’s output (m1) will update the output of this cell 

from zero to one. After the next time step, the updated output from all three cells would 

be C + 1 = 1, C = 0, C - 1 = 1 (binary 5) as displayed in figure 11. 

C + 1C ‐ 1 C CC + 1 C ‐ 1 C ‐ 1C C + 1

C + 1C ‐ 1 C CC + 1 C ‐ 1 C ‐ 1C C + 1

Initial Condition

After Time Step

Rule 15

 
Fig 11: Before and After Time Step Example of Rule 15. 
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The ECA works on one of two hundred and fifty-six rules. This number comes 

from two facts. First, there are only two possible outputs (zero or one). Second, there 

have to be three cells that have only two outputs (2ଷ). This produces a result of	ሺ2ଶ
య
ൌ

2଼ 	ൌ 256ሻ. Figure 12 shows how the individual rules, along with the cells, provide these 

outputs from the logic unit. The present state from cells C+1, C, and C-1 produces a 

binary number from zero to seven. The next states output is determined by the binary 

input and compared with the rule, and this result is returned to the input of cell C. 

Figure 12: Simplified Rule Patterns 

 

Finally, Stephan Wolfram, through his research, found that the ECA rules (0 – 

255) produced results that fell into one of four classes [12]. 
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Class 1: (rules 0, 32, 160, and 250 are some examples) called the homogenous 

class, produces results that eventually die. Figure 13 provides a display of a homogenous 

class. The starting number eventually decays to zero and remains that way. 

 
Figure 13: Homogenous Class Using Rule 160 

 

Class 2: (rules 4, 108, 218, and 232 are some examples) called the periodic class, 

produces results that, after some initial value, will repeat as a pattern in space 

(horizontally), in time (vertically), or both. Figure 14 shows an example of a periodic 

class result. The pattern repeats indefinitely.  

Figure 14: Periodic Class Using Rule 108 
 
 

Class 3: (rules 30, 60, 90, and 150 are some examples) called the chaotic class, 

produce results in a chaotic pattern. Figure 15 displays an example of rule 30.  

Figure 15: Chaotic Class Using Rule 30 
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Class 4: (rule 110 for example) called the complex class, produces patterns that 

will grow in a complicated way. Rule 110 is picture below (figure 16).  

Figure 16: Complex Class Using Rule 110 
 

 

In the introduction, the Linear-Feedback Shift Register system (LFSR) was used 

as an example. It was described as a poor candidate for pseudo-random number 

generation (for encryption). The reason this system is not suitable is that the LFSR (for 

example with 31 bits in length) can be expanded to twice its length (of 62 bits) and, 

algorithms like the Berlekamp-Massey, can determine which taps are in use. This 

knowledge gives unauthorized individuals the ability to decrypt and read the message. 

[13] 

Previous studies revealed that the third class (chaotic) is the best choice for 

producing pseudo-random numbers that are effective enough for strong encryption. This 

experiment will attempt to create, in hardware (through the use of a FPGA device), a 

system that uses class three rules (of varying sizes) to generate suitable pseudo-random 

numbers with strong encryption. 
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PREPARATION AND DESIGN FLOW 

The development of a working prototype of a cellular automata device required a 

thorough understanding of the previous research conducted by Asfaw Estub [9] and 

Christopher Stocker [10]. Their development of the various CA_TABS programs allowed 

them to obtain valuable data using elementary cellular automata. CA_TABS (version 12) 

is a program created by MTSU Graduate Students for testing pseudo-random numbers 

through the use of elementary cellular automata. CA_TABS had shown that strong 

encryption could be developed with various chaotic rules (like rule 30 for instance). What 

had to be done was to determine if a working pseudo-random number generator could be 

developed that met the criteria of strong encryption in hardware. This meant 

implementing a working device that could generate pseudo-random numbers. How this 

was to be done had to satisfy the question - How would success be defined? For success, 

the results of this device had to match the results of an identical run created by the 

CA_TABS program. 

In order to match the results of the CA_TABS program, a brief discussion of how 

the CA_TABS program works is necessary. CA_TABS works in one, two, or three 

phases. Initially, the user creates a filename that CA_TABS will create when it begins 

generating the pseudo-random numbers. The first phase starts with the generation of 

pseudo-random numbers. Once this process is complete, the second phase begins by 

converting this ASCII text file to a binary file. After the binary file is created, the third 

and final phase begins the diehard battery of tests. The diehard battery of tests is a series 
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of tests developed by George Marsagila at Florida State University [14]. The results of 

these tests (if any) are saved to a file for review by the user. 

When CA_TABS begins, a window is displayed for the user (figure 17). The 

main window holds ten tabs, one of which the user selects, for the desired test to perform. 

The first tab is the default tab and is the main “work horse” of the CA_TABS program. 

The two main tabs this research would use is tabs one (CA) and four (CA Alternate Bit 

and Row). The first tab provides the location for the user to enter the filename that 

CA_TABS will store the results to. The user also provides the seed length and rule to use. 

Normally, file sizes of 80MB is used so a convenient method to generate the proper 

number of iterations is provided. The 80MB file size is necessary because the Diehard 

Battery of Tests program requires a binary data file 10MB in length minimum. The 

pseudo-random number generators create the data of ones and zeros, but it is stored in a 

text file. The text file stores these values as ASCII ones and zeros which are eight bits in 

length for each character.  
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Figure 17: Screen Shot of the CA Tabs Program 

 

To ensure enough data is generated for the binary file, the 10MB binary data file is 

multiplied by eight. The upper-right quadrant (Figure 17) gives the option to choose a 

random seed number, or let the user provide a unique seed value. For this experiment, the 

seed is unique in that the MSB is set to one while the remaining bits are set to zero. The 

lower-right quadrant would not be used for this experiment and the values remain in their 

default position. The lower-left quadrant provides what functions are desired. The run 

button just creates a text file (the first phase only) with the parameters specified by the 

user. Usually the text file is an 80MB file. This file will be compared with the hardware 

generated file (also in ASCII). The Character to bin button (performs the second phase 

only) converts the specified file (supplied from the user) to a binary file. The hardware 

generated file would be converted to a binary file and the converted data would be ready 
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for the Diehard Battery of Tests. The Diehard Results performs these tests and returns 

how many tests passed. Also, the p-values (if there were any) are returned. The Run All 

button has the program perform all three phases of generating an ASCII file of data, 

converting this file to a binary data file, and performing the diehard battery of tests. 

 The next tab (Alternate Bit and Row) would be utilized (time allowing) for 

alternating two rules for a trial. The primary difference between this tab and CA is the 

addition of the second rule select box. There are two methods of alternation: 1. Bits and 

2. Rows.  

 The alternating bits (Figure 18) alternates the applied rule to each bit specified. 

Usually one rule is applied to all even-bits while the other rule is applied to all the odd-

bits. 

30 45 30 45
Alternating Bits Layout
Even Bits use rule 45
Odd Bits use rule 30

 
Figure 18: Illustration of an Alternating Bits Layout Using Rules 30 and 45 

 

 The alternating Row differs by using one rule for each bit during the even 

iterations and the second rule on the odd iterations (figure 19). During the first iteration 
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(odd) rule 30 is selected, and applied to every bit. When the next iteration (even) occurs, 

rule 45 is applied to each bit. 

30 30 30 30

Alternating Rows Layout
Even Rows use rule 45
Odd Rows use rule 30

45 45 45 45

t1

t2

t2 30 30 30 30

 
Figure 19: Illustration of Alternating Rows Layout Using Rules 30 and 45 

 

To save resources and money, existing equipment already in use at MTSU would 

be utilized. The primary development board used was Altera©1’s DE2 board. This is the 

same board that is used for the digital labs. The DE2 board contains a field-

programmable gate array (FPGA) device that is reprogrammable. The software necessary 

to utilize this board (commonly known as QUARTUS II) is also provided by Altera. The 

primary computers that were used operated on Windows©2 XP. The LINUX OS would 

                                                            
1 © 2010 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, 
QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off. and or trademarks of Altera Corporation in the U.S. and other countries. 

 
2 ™ Windows is a registered trademark of Microsoft Corporation in the United States and other countries. 
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also work with this project, but the majority of our computers uses the XP operating 

system. 

This project was done in three phases. The initial phase involved the use of 

graphically designed files. The second phase begins with the usage of a hardware 

descriptive language file. The final phase is the actual trial runs with data collection and 

results comparison. 

Phase one was to use graphically designed files to begin the project. These files 

would determine if the project would be feasible or not. This phase would be restricted to 

development of the initial design and simulations. The maximum design size was limited 

to eight bits. 

Phase two was to utilize hardware description files. These files were used for the 

actual trials generated for this project. Successful pre-trials (file smaller than 80MB) at 

this phase meant the project would continue to the actual full trials (generate file sizes of 

80MB) and data collection. 

The final phase was to conduct the full-size trials (80 MB files), collect and store 

the data, and compare this data with identical data generated by the CA_TABS program. 

Again the 80 MB file is the size the text file has to be when generated. The text is eight-

bit ASCII and needs to be converted to a 10 MB data file before the Diehard Battery of 

Tests can be performed. 

A simplified version of the DE2 board is illustrated in figure 20. For 

communications, the DE2’s on board switches and LEDs was used. The user will 
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determine the rule desired. The rule has to be a binary representation so the on-board 

switches are used to input this rule number to the processor. The LEDs were used to 

visually confirm the switch positions of the rule transmitted to the NIOS processor. The 

USB port on the DE2 board was the primary means of data transfer for storage from the 

DE2 board to the host PC. The DE2 board was designed to act like a USB device that had 

to be recognized by the XP OS, and the data sent from the DE2 board would be saved in 

a file on the PC. 

 

 
Figure 20: Simplified DE-2 Board 

 Both the pre (initial test file less than 80MB in length) and full trials (80 MB in 

length) required a custom processor that QUARTUS II provided. This processor (the 

NIOS II) is a LINUX based processor. It was to handle the random number generation, 

communication between the PC and the DE2 board, and results storage. One of the push 

buttons is used as a master reset to the NIOS processor (when installed) in the FPGA. 
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The primary communication means from QUARTUS II to the DE2 board comes from the 

USB port. This port will be used for the two way communications (and data transfer) 

between the NIOS processor and the PC (figure 21). The memory for the NIOS II 

processor comes from the on-board SDRAM. This device houses the NIOS processor, the 

necessary additional hardware, and the programming code that will run the NIOS 

processor. During initial development, the SRAM memory and LCD module provides 

visual feedback to the user troubleshooting information during failures or success if 

everything was correct. 

NIOS 
Processor

CA Pseudo 
RNG

SDRAM

USB USB
CA Tabs 
Program

DE 2 PC

Figure 21: Communication Flow Between DE-2 Board and PC (Simplified) 
 

 The final phase will be data generated, data collection, and results comparison. 

The first part of the comparison was the comparison (bit by bit) of the last line of each 

run generated by both the hardware text file and CA_TABS text file. If these results 

matched, both files would be converted into binary data files and final comparisons 

would use Marsagila’s Diehard Battery of Tests [14]. The Diehard Battery of Tests was 

incorporated into the CA_TABS program and used for determination of strong pseudo-

random numbers.  
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GRAPHIC DESIGN IMPLEMENTATION 

This phase required the creation of a cell along with the interconnection to its 

neighbors. The cell has two parts. The first is a combinational circuit that consists of 

logic units. The second is a storage (memory) device. 

The first part consists primarily of combinational circuits. This circuit requires an 

input for the rule desired. This input is eight-bits wide to provide one of 256 rules chosen. 

The second input has to select the desired output from the rule provided. This input is 

three-bits wide and will determine the output of this unit. The device chosen for this task 

is a 3:8 multiplexer. By placing the rule on the eight-bit inputs, the three-bit select input 

will determine the output. Figure 22 illustrates a 3:8 multiplexer. QUARTUS II provides 

the user with a way to create unique multiplexers that will be programmed into the 

FPGA. 

 

  
Figure 22: 3:8 Multiplexer 

 

The multiplexer detailed in figure 22 highlights the two inputs and output. The 

inputs to the left of the multiplexer comes from the rule selected. This is an eight-bit 
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number. Each individual bit applied to the input from the most significant bit (input 

seven) down to the least significant bit (applied to input zero). These eight bits form a 

binary number that ranges from zero to two hundred fifty-five. Using rule 30, as an 

example, the equivalent is 0 0 0 1 1 1 1 0. These inputs are assigned to the eight inputs of 

the multiplexer’s eight-bit input. The second input is the return inputs from this and both 

neighbors’ outputs. These inputs form a three-bit binary number from zero to seven. If, 

for example, a value returned was a binary four, the fourth input is selected and, what is 

on this input line (a one), will be the output from the multiplexer. 

 At a minimum, three multiplexers are required. How these three cells are 

interconnected is shown in figure 23. 

 
Figure 23: Simplified 3 Cell Design 

 

Cell C’s output is applied to a logic unit. This logic unit follows the rule (not shown) set 

forth by the user. The neighboring cells (C+1 and C-1) provide the remaining inputs to 
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the unit. The three inputs form a binary number that the logic unit understands and 

generates the output based on this input. The output is returned to cell C and forms the 

new binary number. 

 Placing three of these multiplexers in a schematic file and interconnecting them 

can be done but, the logic unit will turn into an out of control free running oscillating 

device. This condition is caused by the feedback of the outputs directly into the inputs. 

These inputs are immediately acted upon and this output is again fed back into the logic 

unit. The speed of this free running device is determined by the propagation delays 

associated with the internal logic units. The second part (storage unit) prevents this 

condition from happening. This part is another logic unit configured to preserve its output 

until an update to change it is received from the controlling source. The D-type flip-flop 

is the device chosen for this task. 

Figure 24 illustrates the complete cell. The storage unit is the D-type flip-flop. 

The inputs are the set, clear, clock (clk) and enable (ena). The set and clear inputs 

immediately forces the output to change to the required value regardless of the control 

signals. During normal operations, the output can only change during the clock cycle. 

The enable input allows the clock signal to update the output based on the input. The 

output from the multiplexer is applied to the input of the D-FF (labeled D). If the enable 

signal is activated, and the clock is cycled, the output from the multiplexer is stored in the 

flip-flop. The set (or clear) signal lets the user manually pre-set the output to a known 

condition (setting the seed). Setting the seed is the placement of all registers to a fixed, 

known condition.  
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With rule 30 as the illustrated example (figure 24), the outputs from the cell C+1 

are placed on the ‘next’ input, C is fed back to the ‘this’ input, and C-1 is routed to the 

‘prev’ input. These three inputs form a binary number that ranges from zero to seven and 

are usually referred to as the select lines. Whatever binary number is present at the select 

lines, the output from the multiplexer will be one of these eight values. This output is sent 

to the input of the D-FF. When the controlling signals command the D-FF to update to a 

new value, this value, at the input, is now stored in the D-FF. This value will remain until 

the controlling signals command the D-FF to change to its new value. 

 
Figure 24: Basic Cell Layout Using Rule 30 
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Figure 25: Quartus II Basic Cell Layout – Graphic Design File 
 

Figure 25 is a graphical designed file created in QUARTUS II. This file becomes 

a block symbol file that can be reused in other files. The block symbol is a box symbol. 

This box symbol replaces the detailed circuit of figure 25. Using block symbols allows 

the user to create simplified diagrams and is a convenient method to place as many cells 

into a new project, and test them as shown in figure 26. 

Four symbols are placed into a new project as shown in figure 26. Figure 25 

illustrates the internal view of each Cell_Bit blocks and interconnects the blocks as 

required. Note: some connections do not require a connection and were left unconnected. 

Once this schematic was completed, simulations began. These simulations are critical and 

determine if this experiment is generating the correct results. Failure at this point would 

mean starting over and trying something new. To determine success, the pen and paper 

results in Appendix B are compared with the simulations. The results matched and a cell 

size of eight bits began. 
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Figure 26: Graphic Design - Four Bit Layout 

 

The eight-bit system was just as simple to create; following the same procedure as 

in the four bits design, only this time using eight bits (figure 27). Eight bits were placed 

in a new schematic file. It was immediately apparent how tedious interconnecting this 

design would be. Again, an incorrectly wired design results in failure. The simulations 

were checked against the pen and paper results in Appendix B, and they matched.  
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Figure 27: Graphic Design of an Eight Bit System Layout 

 

 If there was going to be a greater number of bits used, a better way was needed to 

do this. Fortunately, there were no errors made linking these eight bits. However, there 

was no guarantee that mistakes could not be made in future projects with differing bit 

sizes. Every effort was used to provide clear and descriptive naming conventions. This 

was to ensure interconnecting each bit would be as simple as possible. However, 

mistakes could have been made anyway. 

 Also, the four-bit system illustrated in figure 26 could be made into a block 

symbol project. Then an eight-bit system could get created by just placing two of these 

four-bit block into the drawing. Then this project could be converted into a symbol 

project. Then, new projects based on multiples of eight bits could be built. 
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 Another problem with the eight-bit graphic designed system involved timing 

issues. During initial development, there were problems uploading the projects in the DE-

2 board due to timing issues between the Cyclone II device and the SDRAM memory. To 

get around these issues, the on-board memory contained internally in the Cyclone II 

device was used. However, given the size and complexity of future projects, the on-board 

memory of 4k would not be enough. The DE2’s SRAM was also limited with 512KB of 

memory. While the SRAM was suitable for the smaller projects, there would not be 

enough memory for the larger projects. The 8MB SDRAM would have to be used for the 

larger projects. The problem with the graphic designed files was the NIOS processor 

would not load properly onto the Cyclone II device if the SDRAM was used. The delay 

associated between the Cyclone II device and the SDRAM memory amounts to -3 Nano 

seconds. Attempts were made to vary the delay times ranging from +5 Nano Seconds to -

5 Nano Seconds. Nothing worked. At this point, the graphic design was scrapped 

(because there was little choice) and continued research using a hardware description 

language (HDL) approach began. 
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VHDL DESIGN IMPLEMENTATION 

The main question was, which HDL (Verilog or VHDL) would be chosen? 

VHDL was selected. VHDL stands for VHSIC (very high-speed integrated circuit) 

hardware description language. Around the 1980’s the U.S. Department of Defense 

(DOD) sponsored a program for describing the structure and function of integrated 

circuits (IC’s). In time, the DOD transferred this program to IEEE (Institute of Electrical 

and Electronics Engineers) [15] [16]. This choice (VHDL) was made because this was 

the only material initially available at MTSU. In prior basic digital courses, the textbook 

used employed VHDL as the programming language for the examples. The language 

seemed easy enough to follow and there were numerous documentation and examples 

available on the web. The final decision that forced the utilization of VHDL was the 

previously mentioned timing issues. Altera provided a tutorial for the NIOS processor. 

This tutorial used a VHDL generated file, along with the properly created clock unit, 

solved the -3 Nano second delay issue with the SDRAM.  

 As with any new language, there is a learning curve associated with VHDL. With 

numerous information (examples, lecture notes, and e-books) available on the web, a 

basic understanding of the language (syntax) developed. Initial cell development began. 

 Modularity was the main goal. This meant the same code was reused with other 

projects. The basic design would not differ from the graphic design files previously 

mentioned. VHDL can implement the multiplexer and flip-flops necessary. But a change 

in the procedure was needed. The main section had to be as generic as possible. This one-

size fits all concept will save time when the number of bits are increased in future 
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experiments. A change of one line in the code produced units of any bit-length desired. 

This also meant the design had to be broken into two parts – 1: up to 32 bits, and 2: 

Greater than 32 bits. 

Up to 32 bits design would be simple enough. Because the NIOS processor is a 

32-bit processor, modifications won’t be needed to connect the CA_Bits unit to the NIOS 

Processor. However, CA_Bits units greater than 32 bits will require modifications and 

shall be discussed later.  

A simplified diagram of the CA_Bits unit is provided in figure 28. The clock 

(CLK) and enable (ENA) inputs are there to iterate the output (from Word Bits (X)). The 

seed input will set the initial condition of the output to a known condition. The SW inputs 

(eight total) are the (binary) rule number inputs.  Within this unit the two VHDL files are 

contained. The first sub-file contains the multiplexer and a D-type flip-flop. The second 

sub-file repeatedly calls the first sub-file and provides interconnection. Internally, this has 

the same look and operation as the graphic one-bit cell (figure 25). The operation is the 

same. 

 
Figure 28: Simplified CA Bits Unit 
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 Appendix I (is the VHDL representation of the CA_Bits unit) contains all the 

information that creates the self-contained file. The first section defines and creates the 

multiplexer and flip-flop. The entity of this section contains the inputs (clock, enable, 

cells (next, this, previous), clear, set, and the rule number) and output (q) of the 

multiplexer. To eliminate confusion, this first part is called CA_Bit. The second part is 

called CA_Bits. 

The second part of the file immediately follows the first parts completion. This 

section (called CA_Bits) uses the first part to create the number of bits to experiment 

with. This section has its own unique I/O. The output (word_out) is a buffered I/O. This 

buffered I/O provides two-way data flow to this section. The set word sets the outputs to 

the seed value. For this experiment, the MSB is set to a logic one, while the remaining 

bits are set to a logic low. The clock and enable provide the external control signals to 

update the data. The second part repeatedly calls the first section each time it wants to 

create a new bit. After the new bit is created, the second part proceeds to interconnect this 

bit with the previously created bits. There are two unique bits that have to be handled 

separately; the first and last bits. These bits have to interconnect to each other, and this 

second part provides the specific instructions to complete this requirement. The 

remaining bits interconnection are identical and connect the same way with the creation 

of every new bit. Once this process is compiled, a unique unit is created with the proper 

number of bits to test. The generic statement in the code allows for changing the number 

of bits desired. This is a convenient method because only one line in the code needs to 

change. A four-bit unit was created. If this trial was successful, the results would match 
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the four bits graphical designed trials. They did! The ability to create one file, generate 

the desired number of bits to test, simulate the results, and run the hardware version in 

real-time was achieved. 

Next an eight-bit unit was developed and the results were compared with the 

graphic designed results. They matched. Because of these successes, the project could 

continue using the units of the desired bit lengths. 

Previous work by MTSU graduate students suggested that prime numbers should 

provide the best results in generating pseudo-random numbers. Composite numbers tend 

to produce short cycles and these short cycles produce poor results. The prime numbers 

chosen for this experiment are 31, 61, 127, 223, 383, 479, 541, 607, 733, 827, 991, and 

1021 (2039 was added later to determine the amount of resources used by the Cyclone II 

device previously mentioned). For simplicity, several different folders of each cell size 

was created. The modified cell size units were given unique filenames and saved into 

their respective folders. When the trials were ready to begin, all that was required was to 

load these projects into the DE2 board and run the test. The amount of resources was 

recorded whenever the cell count increased. This data would be used to approximate the 

maximum number of cells that could be used on the DE2 board. In the end, 24% on-

board resources were used with the cell size of 1023 bits. 42% on-board resources were 

required with the cell size of 2039 bits. Appendix F lists the resources used for each cell 

size. 

With the size of bits determined, what rules would be ones chosen? Cellular 

Automata has four classes (homogenous (I), periodic (II), chaotic (III), and complex 
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(IV)). The rules chosen need to be both chaotic (class III) and balanced. The chaotic class 

produces results in a chaotic pattern. To further clarify balanced rules, even though some 

rules fell into the chaotic (III) class, the rules need to be balanced. Balanced (for our 

purposes) holds an equal number of ones and zeroes in the rule number. For example, 

rule 30 (in binary) has an equal number of ones and zeroes (0 0 0 1 1 1 1 0). For the eight 

bits, there are four zeroes and four ones. Appendix D shows the rules that meet both the 

chaotic and balanced criteria (there are 16). There are other rules that are balanced, but 

they do not fall into the chaotic class (III). For example, rule 170 (1 0 1 0 1 0 1 0) is 

balanced but it falls into class 2 (Periodic). The total number of actual balanced rules is 

determined by the formula	
଼!

ସ!∗ሺ଼ିସሻ!
ൌ 70. Rules: 30, 45, 90, and 150 met both 

conditions. With four DE2 boards available, individual tests were run simultaneously 

using these rules (30, 45, 90, and 150).  

 Individually, the CA_Bits unit will work on its own. However, control will be 

required when the CA_Bits unit operates. This will require the use of a processor. The 

processor chosen is the NIOS II processor. The NIOS II processor is Altera’s custom 

definable self-contained processor that embeds into a FPGA device like the Cyclone II 

chip installed on the DE2 board. The custom NIOS processor has to have only what is 

needed for this project. A simplified version of this design is shown in figure 29. 
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Figure 29: Basic NIOS Processor (Simplified) 

 
 

 Looking at figure 29, inputs are needed for the rule (SW (8), clock (CLK), system 

reset (RESET), and the word generated by the CA Bits unit (Word Bits (32)). The outputs 

(visual display of the rule switches (LEDs G (8)), individual connections to memory 

(Memory), a controllable clock signal (Rule CLK), a signal to set the CA Bits to a known 

condition (SEED), an enable signal to allow clock to update the output, and a special 

output to a multiplexer (WORD SEL) that will only be used with bits greater than 32. 

This special multiplexer and select unit will be discussed later in the section for greater 

than 32 bits. 

Creation of a NIOS II Basic system requires the creation of a processor with 

external I/O ports. This creation process is done with Altera’s software (SOPC Builder) 

that is specifically designed to create customizable NIOS II processors and integrates 

with the user’s project. These ports, along with the logic required for data flow through 

these ports, has to be defined and generated. Figure 30 displays a simplified schematic 

and external interconnections of the NIOS II processor. 
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Figure 30: Basic NIOS System (Simplified) 
 

Each processor required an extensive test to determine the operability of this 

processor. The toggle switches had to be read correctly, and the LEDs had to display 

properly. This required a program to be written and included when the system is loaded 

up onto the DE2 board. Testing this part required the use of another Altera program 

(NIOS IDE). This program allows the user to run, step-by-step, the C program developed 

by the user. This code (for this example) looks at the individual ports, sees any changes to 

the ports, and displays the appropriate results. To use this processor and the CA Bits unit 

together, a new project has to be created and the VHDL representation of these files has 

to be included.  

 With both modules installed, several programs (in C) were written to test the 

results. The main routine consists of clearing all displays, reading the switches, setting 

the green LEDs (to display the selected switches) accordingly, setting the seed pulse to 

one and back to zero (placing the CA_Bits unit to a known starting condition), displaying 

the four separate bits to four separate LEDs (this shows the output of the CA_Bits unit), 
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setting the enable bit to one and setting the clock to one, then resetting the clock to zero 

(this should have iterated the CA_Bits unit), and finally resetting the enable bit back to 

zero.  

These results were compared with the pen and paper results. The results were 

identical. This meant further experimentation could be used for this design. 

 The next test was trying to run a simplified test to include saving the data to the 

PC. Initially, the main problem was interfacing the ISB-1362 IC (USB HOST/DEVICE 

controller) that is integrated with the DE2 board. In time, some basic communication 

with the host PC was made. However, a program that runs on the host PC to 

communicate with the DE2 board could not be developed. Several months of trial and 

failures reduced this project to using the host file-system included with the tutorials 

provided by Altera. Using the host file-system meant that the programs could only run 

through the NIOS IDE in debug mode only. This killed the self-containment part (a self-

contained, stand-alone unit) which was one of the requirements. It does not mean this 

experiment fails, but additional research would be needed to complete this requirement.  

Before a full trial could begin, a CA_Bits module 31-bits in length was created. 

The NIOS processor required no modifications. A general program was written that 

would read the user selected rule to run, seed the CA_Bits unit, create and open a file, 

complete enough iterations that generates enough data (making a file 80MB in size), save 

this data line-by-line, and when done, close the file and properly terminate the program.  
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Running this experiment with 32 bits (or less) ran as designed, however, a problem 

was discovered when units greater than 32 bits in length were to be tested. The problem 

is that the NIOS processor is a 32-bit processor. As such, all data has to be 32 bits in 

length. The question was how to get data greater than 32 bits to fit into a 32-bit system? 

The solution to this problem was to use a specially designed multiplexer (Figure 31).  

 
Figure 31: Simplified Diagram of a 32-Bit 2-1 Multiplexer 

 

This multiplexer takes the entire data and reduces it into 32 bit chunks of data. Half of the 

data is applied to one input of the multiplexer. The other half is applied to the other input. 

The select input decides which half of the data is sent to the output of the multiplexer. 

 

Figure 32 details a simplified version of a system that handles 64 bits of data. 
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Figure 32: 64-Bit Data Exchange 

 

The NIOS processor has an added output to this multiplexers select input. For simplicity, 

the CA_Bits unit is inside the NIOS processor. The data from the CA_Bits is sent out as 

64 bits of data. To process this data, the returning data has to be returned 32 bits at a time. 

For this to happen, the select out chooses the high-order bits (63-32) and these bits are 

returned to the NIOS processor and handled. The select line then picks the low-order bits 

and the process is repeated. 

 The full version system (figure 33) has three major components: the NIOS 

processor, the CA_Bits unit, and the wide multiplexer. The NIOS processor controls the 

operation of the three components. The CA_Bits unit contains and iterates the data. The 

wide multiplexer separates the data stream into 32 bit chunks of data. Basic operations 

are similar to the smaller unit. The main difference is how the data will transfer to the PC. 
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Figure 33: Simplified View of the Complete System 

 

The NIOS processor holds the code for program execution. This code is the same 

as the smaller system except, additional instructions to control the wide mux. Again the 

code resets the processor and CA_Bits. Remember, the NIOS processor is a 32-bit 

system. In order to get the data to the PC, the data stream has to be no greater than 32 

bits. The processor sets the iterate command and the CA_Bits unit makes one iteration of 

the data. This data is the full length bits. In order to separate these bits, the wide 

multiplexer has these bits sent to its input. The inputs are 32 bits wide each. Using the 64-

bit example, the first 32 bits are applied to input group 1. The remaining bits are applied 

to group 2. Each group is 32 bits in length. The select line is either one or zero. The NIOS 

processor commands the wide multiplexer to send the first 32 bits of data by setting the 
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select line to one. This data is returned to the NIOS processor and the processor transmits 

(bit-by-bit) this data to the PC to be saved. Once all these bits are saved, the processor 

sets the select line to zero. The remaining data is returned and this data is stored. After all 

64 bits of data is transferred, the processor instructs the CA_Bits unit to iterate the CA 

Bits unit and the process repeats. 

 The CA_Bits component had to be an internally generated file. This component 

could be used externally. However, for the Cyclone II device; there is a limit to the 

amount of pins that could be used. The Cyclone II device has almost 400 external pins; 

therefore, the only components that could be built would be limited to 400 bits. Internally 

connectable devices, for all intents and purposes, have an unlimited amount of pins. 

These internal pins are really interconnecting wires. This interconnect capability provides 

the ability to make a unit virtually any size desired. 

The wide multiplexer is the key for splitting up the data into 32 bit chunks. The 

choice of the prime numbers chosen is because of the wide multiplexer. The select lines 

are based on powers of two. If each group of inputs is 32 bits wide, special multiplexers 

just wide enough to hold all of the data could be made. The maximum numbers for 

additional select lines are calculated as: 2ଵ ൌ 64 bits, 2ଶ ൌ 128 bits, 2ଷ ൌ 288 bits, 2ସ ൌ

	511 bits, and 2ହ ൌ 1024 bits. As long as a multiplexer (large enough to handle the data) 

existed, data could be broken down into 32 bits of data that could be saved on file. 

What the maximum number of bits that could realistically be used had to be 

determined. Ideally, there could be an unlimited number of bits, but the amount of 

resources available on the FPGA devices is going to limit how big the device could be 
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made. During each compilation, the resources used was tabulated (Appendix F) (for each 

increased bit size) during the creation of each project. Initially 1023 bits was the stopping 

point. For the size of 1023 bits, the compiler used 24% of the Cyclone II’s resources. If 

that was the case, then trying 2039 bits should use under 50% of the resources. One more 

project was generated with the size of this unit increased to 2039 bits. The compiler 

generated this unit using 42% of the resources. Therefore, an estimated maximum size 

(using the DE2’s Cyclone II device) of 4096 bits could be created. 

Initial trials were set to run 100 iterations of data and save these results. Next the 

CA_TABS program was also used to generate 100 iterations of data. The last lines of 

both data files was placed in a text file and a one-for-one-bit comparison of these last 

lines was performed. For this experiment’s successful conclusion, these results must 

match. They did! The next phase of this experiment requires a complete run that 

generates an 80MB data file.  

A final experiment was to the usage of two rules. This meant modifying the 

CA_Bits source code to include a second rule input. A final modification of the C source 

code had to ignore the read switch function and have the program insert the rules itself. 

Trial began using three K-sizes of 31, 113, and 129 bits. The four rules (30, 45, 60, and 

90) in all possible combinations (ten) were determined and the 80MB data files were 

generated. 

For encryption of data, the source code has to be modified by removing the 

hardwired latching signals to the cells. Initially, the MSB is set to one while the 

remaining bits are set to zero. This condition makes the system a pseudo-random number 
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generator. The code needs to have a seed value for each cell to follow an external input 

from the user/program. The only requirement is that the seed value never starts out with 

all zeros. Since the seed will comprise ones and zeros, this condition will (in all 

likelihood) never happen.  
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DATA COLLECTION AND TRIALS 

The final runs have to generate files 80MB in size. Marsaglia’s Diehard Battery of 

Tests of Randomness [14] requires a binary file size of 10MB. The PC stores characters 

(ones and zeros) in an eight-bit format. Therefore, the file needs to store eight-times the 

10MB requirement (making the total file size 80MB). This requires enough iterations to 

generate enough data. The main loop counter is the number of iterations required to 

produce a file size greater than 80MB. To produce this number, the file size had to be 

divided by the number of bits. For example, to produce the proper iterations for a trial 

that is 31 bits wide is (
଼଴,଴଴଴,଴଴଴

ଷଵ
ൌ 258045.161). As long as iterations greater 

than 258046 is used, trials completed with a file size greater than 80MB should be 

completed. Appendix E shows the minimum iterations table. 

Appendix C details a (simplified) program flow the NIOS II processor uses during 

this experiment. The detailed operation of this file is as follows: The preprocessor routine 

defines and initializes (if necessary) the ports. It also declares data, constants, and 

function declarations. There is only one necessary include file and that was the iostream 

file. This file holds all the operations the compiler requires for I/O operations. The first 

declarations are the global declarations. The global declarations defined in this file details 

the pointers to the NIOS ports. In order to pass information into and out of the NIOS 

processor, the information must transfer through the NIOS ports. Access of these ports is 

controlled by the program through the use of pointers to these locations. The constants 

declared are: the main iterations, register size, MSB size, two registers to hold data, two 
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masks for data comparison, and a file pointer for data transfer to the PC. The last things 

defined are the user created functions. These functions will do things like read in words, 

cycle a clock pulse, set seed … Additional information about these functions is explained 

in the following paragraphs. 

The main function has the job of controlling the overall program flow. All the 

data that requires initialization has to be done first. Additional registers are created (and 

initialized) at the start of program execution. These registers are a loop counter, the rule 

number, a loop counter for rerunning loops and one for how many runs to perform 

(usually set to one). The filename of the file the PC is going to save is defined and 

created here. The data is stored as a string of characters, and, when called for, transfers 

this information to the PC. The last two items completed are calling the read switches 

function to get rule number selected by the user. The rule number is also saved in a 

special register for later use. 

The main program loop begins and cycles until the program is finished. The first 

part of the loop prepares the filename. Confirmation of the filename is returned to the 

user in message form. File I/O operations begin. A new file is opened and a pointer to 

this file is created here. Failure to open this file pointer results in an error message. The 

next part displays a message notifying the user what rule number is set and calls 

individual functions to set the seed, reads in a word to the processor, displays the word, 

prints an end of line character and sends the data to the PC. Once this is done, another 

loop is entered. This loop calls functions that cycles a clock pulse, reads the new word, 

displays it, appends an end of line character, and sends the updated data to the PC. 
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Throughout this loop, the count is compared and messages are generated displaying the 

programs progress. If the main loop count reaches a number greater than the desired 

iteration, then a message is displayed showing the progress of the program in quarterly 

outputs (	14	,	
1
	2	 , and  

ଷ

ସ
 complete). 

Immediately after exiting the loop, the program sends the final line of data to the 

PC, the final end of line character is generated, and sends the final character to the PC. 

The final part initiates the shutdown procedure (if no more runs are needed). After exiting 

this loop, a message states the program has finished and halts. 

The user functions (8) are described below. 

Read in a word. This function takes in all the data from the CA_Bits unit. Since 

this data is greater than 32 bits in length, this function stores the data in 32 bit chunks. 

For example, if there are 64 bits of data, this function stores these bits in two 32 bit 

registers. 

Display the word. This function prepares the data for display. The function does a 

bit-by-bit comparison with a special mask. The registers are compared against this mask. 

If the result matches the mask, the display bit function is called to send a character one to 

the PC. If the result does not match the mask, then the display bit function is called to 

send a character zero to the PC. 
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Display bit function. This function sends a command to the PC to append the file 

with a one or zero. Additionally, this function could have this bit displayed on the 

monitor to see the results. Initially, this secondary function was used for debugging. 

Cycle clock function. This function calls the set enable function, send a logic one 

to the clock port, then sends a logic zero to the clock port, and finally calls the clear 

enable function. This special clock pulse controls when the CA_Bits unit updates its data. 

Read switch function. This function examines the port the user selectable switches 

(from the DE2 boards on board switches) are set to. The setting of these switches 

determines what the user defines the rule to be. The eight switches form an eight-bit 

binary value. This value is converted to the rule number and is stored in the rule number 

register for further use later. 

Set seed function. This function transmits the signal to the CA_Bits unit to set the 

registers to a known condition. In this case, the MSB is set to one while the remaining 

bits are set to zero. 

Set (and clear) enable functions. These function transmit a logic one (zero) to the 

CA_Bits unit for control of a controlled clock cycle generated by the cycle clock 

function. 

 A word of note about the clock pulse generated. The main clock pulses come 

from the phase lock loop generator created for the NIOS processor. However, there could 

be problems using this clock. Some instructions might require two or more clock cycles 

to execute that instruction.  The CA_Bits unit must iterate one time (and one time only) 



53 
 

and ensure the data does not change until another iteration is requested. The machine 

language code required to just run this part is going to definitely be more than one clock 

cycle. Generating a manual clock pulse by software ensures that the CA_Bits unit will 

cycle only one time. The added enable bit is an additional safeguard that prevents 

possible spurious clock generation signals. In this case, the enable must be set and a clock 

pulse must be generated by the NIOS processor. Failure of either signal will result in no 

iterations of the CA_Bits unit. 

To test each project, four DE2 boards were setup. Each board had one rule that it 

was going to run (30, 45, 90, and 150). Now the NIOS processor could be loaded, run the 

trial, obtain the results, and then prepare tomorrows trials to run the next day. For 

example, by running a test batch of 31 bits. Four DE2 boards would have a 31-bit 

program in them. Each DE2 board would run different rules however. One would run rule 

30. The remaining boards would run rules 45, 90, and 150. The next day, repeat this 

process only using the next size (63 bits). 

The biggest problem of transmitting all this data (regardless of length), is the time 

it took to transfer from the NIOS processor, through the USB port, and save on the PC. 

As of this writing, the USB standard is version two. This meant that data transfer is fairly 

slow. The transfer of data flows as – after the CA_Bits iterates, the data is returned to the 

NIOS processor. Then the processor, bit-by-bit, transmits the data through the USB port 

to the PC. The PC stores each bit in the file and waits for the next bit (or end of line 

character). The CA_Bits unit will keep iterating and generating new data until the process 

is complete. The complete process generates enough data to create an 80MB file. This is 
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a slow process, but it was the only one that could be worked with. The initial time (using 

the DE2 board’s on-board 50MHz clock) for generating an 80MB file would have taken 

over 12 hours. Increasing the clock speed of the system to 100MHz, reduced the run-time 

to a little over 6 hours. Unfortunately, this posed a problem. When a trial using the prime 

number of 863 was attempted, somehow this particular unit did not want to run at 

100MHz. Reduction to the prime number (827) produced a unit that would run at 

100MHz. Every other prime number originally chosen ran at 100MHz. 

 In mid-June 2013, full trials began, starting with 31 bits. Trials continued until 

mid-July 2013. The final trial concluded with a test size of 2039 bits. All runs were 

completed with a clock speed of 100MHz and took just over 6 hours to complete. With 

the exception of 863 bits, all original prime number values selected, loaded, and ran 

completely (827 bit was the size that replaced 863 bits). The data was collected and 

transferred to a central location. These results would be compared with the CA_TABS 

program. 

 For a successful conclusion, the results generated have to match the results 

generated by the CA_TABS program. For confirmation, two tasks had to be completed. 

The first is a bit-by-bit comparison of the last lines of each run along with the CA_Tabs 

generated version. The last task is to compare the file’s results with each other using the 

Diehard Battery of Tests. The Diehard Battery of Test results were tabulated and 

transcribed to a spread sheet. These results will also have the CA_TABS programs 

Diehard Battery of Test results tabulated and stored in the same spread sheet. If the 

results do not match, the experiment fails and further testing need not be done. 
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 The first task involves copying the last iteration (of the run) and pasting it into a 

text file. Then take the last iteration (of a CA_TABS generated run) and paste it directly 

below the first iteration. By placing the bits over each other, discrepancies in the data 

streams are easier to find. If all bits are the same, then the data streams match. Again, if 

the data streams did not match, the experiment failed. The results did match, the next 

phase of the experiment began. 

 The next phase of this experiment required that both of the software and hardware 

results were compared using the Diehard battery of tests. The first run was completed 

with the seed included in the data. The first trial (in software) was completed, and the 

results were both saved and placed into a spreadsheet table for comparison with the 

hardware trials later. The hardware trials were completed, and the results are stored in the 

central location along with the spreadsheet results (appendix G). 

 The very last thing was to repeat these runs, only this time, remove (absorb) the 

seed. Prior experimentation revealed that if the seed is not absorbed, the p values (along 

with the overall results) are not as good as with the seed absorbed. To remove the seed, 

the first K-size iterations have to be removed from the beginning of the file. For example, 

if the K-size was 31 bits, then the first 31 iterations had to be removed (using a text 

editor) from the file. This modified file was run using the Diehard Battery of Tests. The 

results (p value and overall) were also saved and placed in the spreadsheet for later 

comparison.  

 In June 2016 trials on dual rules began. Like the single rules, the results were 

collected. However, there was a problem with the CA_Tabs dual rule generation 
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program. This meant that the results could not be compared with the CA_Tabs program. 

The data could still be tested with the Diehard Battery of Tests to determine if the 

hardware generated data produced strong encryption results. 

 In continuance of further testing, trials began using two rules. The source code 

was modified to provide the rules and ignore the single rule input by the external 

switches that the user entered manually, renaming of the filenames and placement into a 

special folder unique to this trial, and a specialized counter to alternate the rule based on 

even-odd iterations. 

Initially, the modifications to the code worked. However, numerous problems 

cropped-up during run-times of the project. Specifically, the files were not saving 

correctly. The data would seed correctly, but the only data being generated with each 

iteration was zeros. The problem was the external switches were still being read. After 

removing the read switches function in the source, the correct data was saved into the 

file.  

The 31-bit runs were completed and the data saved and stored. This data will have 

the diehard tests performed when all data had been collected. New runs were generated 

for a 127-bit machine. The results were saved and tested with the CA Tabs program and 

the results was placed into a spreadsheet for later comparison. 

The final step was to remove (absorb) the seed. Initially, Quartus’s text editor had 

to be used. This provided line numbers for each line. For 31 bits, the first 31 lines had to 

be removed. For 127 bits, the first 127 lines had to be removed. While Quartus provided 
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editing capabilities, a freeware text editor program (ConTEXT) was obtained. This text 

editor had line numbers built into the text file. This made removing the proper amount of 

line numbers easier.  

With the seed removed, the results improved. However, no p-values were 

generated with any of the trials. After discussing these findings with the project advisor, 

another trial using 113 bits was recommended. Prior research suggested that this value 

should provide satisfactory results. All trials using 113 bits were conducted and the 

results were tabulated. The results are displayed in the appendix H also. These results are 

much better than the original trials (31 and 127 bits). P-values were generated. 
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FINDINGS AND RESULTS 

 

The first batch was completed with the seed included in the data. The first trial (in 

software) was completed, and the results were saved and placed into a spreadsheet table 

for comparison with the hardware trials later. The hardware trials were completed, and 

the results are stored in the central location along with the spreadsheet results (appendix 

G). 

 The very last thing was to repeat these test, only this time, remove (absorb) the 

seed. Prior experimentation revealed that if the seed is not absorbed, the p values (along 

with the overall results) are not as good as with the seed absorbed. The results (p value 

and overall) were also saved and placed in the spreadsheet for later comparison. Findings 

revealed that the absorbed seed produced better results. 

When a trial using the prime number of 863 was attempted, somehow this 

particular unit did not want to run at 100MHz. Reduction of one prime number less (832) 

resulted with the same problem. One further reduction to the next lower prime number 

(827) produced a unit that would run at 100MHz. Every other prime number originally 

chosen ran at 100MHz. 

The trials using dual rules were tabulated and the two initial bit sizes of 31 and 

127 produced dismal results. Even with the seed removed, there was some improvement 

but the results were unsatisfactory. A third rule was chosen that should produce 

satisfactory results. The trial, for this size (113) produced acceptable results. The results 

were tabulated and stored in a spreadsheet. These results are detailed in Appendix H. 
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There was limited success with independent USB communication. The DE2 

provides a USB controller chip that will become (depending on the programmer) a USB 

host or USB device. The tutorial (included) did not work with this version of QUARTUS 

(9.0). There were numerous problems trying to even get the board to recognize the 

ISP1362 controller device. Eventually, communication with the PC host controller was 

established. Due to the limited time left, this portion of the experiment was abandoned. 

Eventually, a different controller had to be used. This would establish communications 

and even have the PC save the data. However, this meant that the system had to run in 

debug mode with the NIOS IDE. Running this in the debug mode meant the project 

would not be self-contained. Despite this limitation, a system that met the criteria of 

generating pseudo random numbers was developed. 

 Another time consuming problem worth mentioning had to be overcome, creating 

a driver. The driver is (for all intents and purposes) a translator between the PC and the 

new hardware trying to connect to it. The driver tells the PC how to communicate with 

this piece of hardware. Even though Microsoft made available a driver development kit, 

it still took close to a year to get a (somewhat) working driver. 
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CONCLUSIONS 

A working elementary cellular automata device has been implemented, and can be 

installed into a FPGA device, provided that the FPGA is large enough for the system to 

be installed. For this project, the seed was fixed to set the MSB to one while the 

remaining bits were set to zero. This limitation was removed to allow the user to provide 

variable seeds that meets their requirements. 

Additional work produced a second system that allowed the use of two rules. This 

system offered the user the added ability to alternate between two rules for each iteration. 

This study lays the basic foundation for additional development of more complex 

cellular automata of two and three dimensional designs. Additional research pursuing the 

development of these devices will provide future systems with stronger encryption 

capabilities.    
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APPENDIX A 

Table 1: Taps Table for Up to 67 LSFR Bits 
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APPENDIX B 

Pen and Paper Results for 4 Bits 

Iteration Cell 3 Cell 2 Cell 1 Cell 0 0 0

0 0 0 0 1 1 1 1

1 1 0 1 1 B 2 1

2 0 0 1 0 2 3 1

3 0 1 1 1 7 4 1

4 0 1 0 0 4 5 0

5 1 1 1 0 E 6 0

6 1 0 0 0 8 7 0

7 1 1 0 1 D

8 0 0 0 1 1

9 1 0 1 1 B

10 0 0 1 0 2

11 0 1 1 1 7

12 0 1 0 0 4

13 1 1 1 0 E

14 1 0 0 0 8

15 1 1 0 1 D

16 0 0 0 1 1

17 1 0 1 1 B

18 0 0 1 0 2

19 0 1 1 1 7

20 0 1 0 0 4

21 1 1 1 0 E

22 1 0 0 0 8

23 1 1 0 1 D

24 0 0 0 1 1

For Rule 30 Rule 30
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Pen and Paper Results for 8 Bits 

Iteration Cell 7 Cell 6 Cell 5 Cell 4 Cell 3 Cell 2 Cell 1 Cell 0 0 0

0 1 0 0 0 0 0 0 0 80 1 1

1 1 1 0 0 0 0 0 1 C1 2 1

2 0 0 1 0 0 0 1 1 23 3 1

3 1 1 1 1 0 1 1 0 F6 4 1

4 1 0 0 0 0 1 0 0 84 5 0

5 1 1 0 0 1 1 1 1 CF 6 0

6 0 0 1 1 1 0 0 0 38 7 0

7 0 1 1 0 0 1 0 0 64

8 1 1 0 1 1 1 1 0 DE

9 1 0 0 1 0 0 0 0 90

10 1 1 1 1 1 0 0 1 F9

11 0 0 0 0 0 1 1 1 07

12 1 0 0 0 1 1 0 0 8C

13 1 1 0 1 1 0 1 1 DB

14 0 0 0 1 0 0 1 0 12

15 0 0 1 1 1 1 1 1 3F

16 1 1 1 0 0 0 0 0 E0

17 1 0 0 1 0 0 0 1 91

18 0 1 1 1 1 0 1 1 7B

19 0 1 0 0 0 0 1 0 42

20 1 1 1 0 0 1 1 1 E7

21 0 0 0 1 1 1 0 0 1C

22 0 0 1 1 0 0 1 0 32

23 0 1 1 1 1 1 1 1 6F

24 0 1 0 1 1 0 0 0 48

25 1 1 1 1 1 1 0 0 FC

26 1 0 0 0 0 0 1 1 83

27 0 1 0 0 0 1 1 0 46

28 1 1 1 0 1 1 0 1 ED

29 0 0 0 0 1 0 0 1 09

30 1 0 0 1 1 1 1 1 9F

31 0 1 1 1 0 0 0 0 70

32 1 1 0 0 1 0 0 0 C8

33 1 0 1 1 1 1 0 1 BD

34 0 0 1 0 0 0 0 1 21

35 1 1 1 1 0 0 1 1 F3

36 0 0 0 0 1 1 1 0 0E

37 0 0 0 1 1 0 0 1 19

38 1 0 1 1 0 1 1 1 B7

39 0 0 1 0 0 1 0 0 24

40 0 1 1 1 1 1 1 0 7E

41 C1

For Rule 30 Rule 30

Cycle repeats here  
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APPENDIX C 

Program Flow Page 1 
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Program Flow Page 2 
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APPENDIX D 

Table 2: The 16 Chaotic and Balanced Rules 

Rule MSB 6 5 4 3 2 1 LSB

30 0 0 0 1 1 1 1 0

45 0 0 1 0 1 1 0 1

60 0 0 1 1 1 1 0 0

75 0 1 0 0 1 0 1 1

86 0 1 0 1 0 1 1 0

89 0 1 0 1 1 0 0 1

90 0 1 0 1 1 0 1 0

101 0 1 1 0 0 1 0 1

102 0 1 1 0 0 1 1 0

105 0 1 1 0 1 0 0 1

135 1 0 0 0 0 1 1 1

149 1 0 0 1 0 1 0 1

150 1 0 0 1 0 1 1 0

153 1 0 0 1 1 0 0 1

165 1 0 1 0 0 1 0 1

195 1 1 0 0 0 0 1 1  

These rules fall into Class 3 (Chaotic) and have an equal number of zeros and ones 
(Balanced). 
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APPENDIX E 

Table 3: Iterations and Quarters Table 

Bits Max Iter Min Iter Tot Iter 1/4 1/2 3/4 Expected Size Actual Size Difference Was Iterations Enough

31 2645161.29 2580645.161 2600000 650000 1300000 1950000 80600000 85800035 5200035 Y

61 1344262.295 1311475.41 1320000 330000 660000 990000 80520000 83160065 2640065 Y

127 645669.2913 629921.2598 640000 160000 320000 480000 81280000 82560131 1280131 Y

223 367713.0045 358744.3946 365000 91250 182500 273750 81395000 82125227 730227 Y

383 214099.2167 208877.2846 214000 53500 107000 160500 81962000 82390387 428387 Y

479 171189.9791 167014.6138 171000 42750 85500 128250 81909000 82251483 342483 Y

541 151571.1645 147874.3068 151000 37750 75500 113250 81691000 81993545 302545 Y

607 135090.6096 131795.7166 135000 33750 67500 101250 81945000 82215611 270611 Y

733 111869.0314 109140.5184 111869 27967 55934.5 83901.8 81999977 84224452 2224475 Y

827 99153.56711 96735.18742 99153 24788 49576.5 74364.8 81999531 82198668 199137 Y

991 82744.70232 80726.53885 82744 20686 41372 62058 81999304 82165787 166483 Y

1021 80313.41822 78354.55436 80313 20078 40156.5 60234.8 81999573 82161224 161651 Y

2039 40215.79205 39234.91908 40215 10054 20107.5 30161.3 81998385 82080858 82473 Y
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APPENDIX F 

Table 4: Resources Used Table 

Bits Total Logic Elements Used Total Memory Resources Used

31 2349 /33216 (7%) 141312 of 483840 (29%)

61 2484/33216 (7%) 141312 of 483840 (29%)

127 2837/33216 (9%) 141312 of 483840 (29%)

223 3478/33216 (10%) 141312 of 483840 (29%)

383 4400/33216 (13%) 141312 of 483840 (29%)

479 4946/33216 (15%) 141312 of 483840 (29%)

541 5314/33216 (16%) 141312 of 483840 (29%)

607 5723/33216 (17%) 141312 of 483840 (29%)

733 6448/33216 (19%) 141312 of 483840 (29%)

827* 6955/33216 (21%) 141312 of 483840 (29%)

991 7897/33216 (24%) 141312 of 483840 (29%)

1021 8064/33216 (24%) 141312 of 483840 (29%)

2039 13863/33216 (42%) 141312 of 483840 (29%)  
Total resources used for the DE‐2 board by logic and memory used to generate project. 

 

Note: bit size 863 was the original trial size. However, this size did not work and bit reductions were 

implemented until a new size was found that would work. The selected size that worked was 827 

bits. 
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APPENDIX G 

Table 5: Results for ECA One Rule Page 1 

Rule

CA Tabs CA Tabs Hardware Hardware End of File

Bit Size Overall p val Overall p val Compared

31 32 out of 229 0 32 out of 229 0 Good

61 120 out of 229 0 120 out of 229 0 Good

127 123 out of 229 0 123 out of 229 0 Good

223 148 out of 229 0 148 out of 229 0 Good

383 153 out of 229 0 153 out of 229 0 Good

479 154 out of 229 0 154 out of 229 0 Good

541 168 out of 229 0 168 out of 229 0 Good

607 151 out of 229 0 151 out of 229 0 Good

733 156 out of 229 0 156 out of 229 0 Good

827 146 out of 229 0 146 out of 229 0 Good

991 96 out of 229 0 87 out of 229 0 Good

1021 87 out of 229 0 50 out of 229 0 Good

Rule

CA Tabs CA Tabs Hardware Hardware End of File

Bit Size Overall p val Overall p val Compared

31 30 out ot 229 0 30 out of 229 0 Good

61 123 out of 229 0 123 out of 229 0 Good

127 127 out of 229 0 127 out of 229 0 Good

223 178 out of 229 0 178 out of 229 0 Good

383 211 out of 229 0 211 out of 229 0 Good

479 210 out of 229 0 210 out of 229 0 Good

541 228 out of 229 0.643535 228 out of 229 0.643535 Good

607 213 out of 229 0 213 out of 229 0 Good

733 228 out of 229 0.418168 228 out of 229 0.418168 Good

827 229 out of 229 0.789072 229 out of 229 0.789072 Good

991 217 out of 229 0 217 out of 229 0 Good

1021 229 out of 229 0.036327 229 out of 229 0.036327 Good

30

30

Without Seed Removed

With Seed Removed
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Results for ECA One Rule Page 2 

Rule

CA Tabs CA Tabs Hardware Hardware End of File

Bit Size Overall p val Overall p val Compared

31 15 out of 229 0 15 out of 229 0 Good

61 117 out of 229 0 117 out of 229 0 Good

127 107 out of 229 0 107 out of 229 0 Good

223 140 out of 229 0 140 out of 229 0 Good

383 138 out of 229 0 138 out of 229 0 Good

479 135 out of 229 0 135 out of 229 0 Good

541 167 out of 229 0 167 out of 229 0 Good

607 127 out of 229 0 127 out of 229 0 Good

733 157 out of 229 0 157 out of 229 0 Good

827 130 out of 229 0 130 out of 229 0 Good

991 73 out of 229 0 97 out of 229 0 Good

1021 97 out of 229 0 48 out of 229 0 Good

Rule

CA Tabs CA Tabs Hardware Hardware End of File

Bit Size Overall p val Overall p val Compared

31 16 out of 229 0 16 out of 229 0 Good

61 120 out of 229 0 120 out of 229 0 Good

127 114 out of 229 0 114 out of 229 0 Good

223 166 out of 229 0 166 out of 229 0 Good

383 199 out of 229 0 199 out of 229 0 Good

479 202 out of 229 0 202 out of 229 0 Good

541 226 out of 229 0.006984 226 out of 229 0.006984 Good

607 201 out of 229 0 201 out of 229 0 Good

733 227 out of 229 0.021466 227 out of 229 0.012966 Good

827 228 out of 229 4.00E‐06 228 out of 229 4.00E‐06 Good

991 200 out of 229 0 200 out of 229 0 Good

1021 226 out of 229 0.05517 226 out of 229 0.05517 Good

45

45

Without Seed Removed

With Seed Removed
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Results for ECA One Rule Page 3 

Rule

CA Tabs CA Tabs Hardware Hardware End of File

Bit Size Overall p val Overall p val Compared

31 Fails Fails Fails Fails Good

61 33 out of 229 0 33 out of 229 0 Good

127 Fails Fails Fails Fails Good

223 5 out of 229 0 5 out of 229 0 Good

383 Fails Fails Fails Fails Good

479 0 out of 229 0 0 out of 229 0 Good

541 0 out of 229 0 0 out of 229 0 Good

607 Fails Fails Fails Fails Good

733 Fails Fails Fails Fails Good

827 Fails Fails Fails Fails Good

991 Fails Fails Fails Fails Good

1021 Fails Fails Fails Fails Good

Rule

CA Tabs CA Tabs Hardware Hardware End of File

Bit Size Overall p val Overall p val Compared

31 Fails Fails Fails Fails Good

61 35 out of 229 0 35 out of 229 0 Good

127 Fails Fails Fails Fails Good

223 4 out of 229 0 4 out of 229 0 Good

383 Fails Fails Fails Fails Good

479 0 out of 229 0 0 out of 229 0 Good

541 0 out of 229 0 0 out of 229 0 Good

607 Fails Fails Fails Fails Good

733 Fails Fails Fails Fails Good

827 Fails Fails Fails Fails Good

991 Fails Fails Fails Fails Good

1021 Fails Fails Fails Fails Good

90

90

Without Seed Removed

With Seed Removed
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Results for ECA One Rule Page 4 

Rule

CA Tabs CA Tabs Hardware Hardware End of File

Bit Size Overall p val Overall p val Compared

31 0 out of 229 0 0 out of 229 0 Good

61 51 out of 229 0 51 out of 229 0 Good

127 Fails Fails Fails Fails Good

223 19 out of 229 0 19 out of 229 0 Good

383 0 out of 229 0 0 out of 229 0 Good

479 1 out of 229 0 1 out of 229 0 Good

541 2 out of 229 0 2 out of 229 0 Good

607 1 out of 229 0 1 out of 229 0 Good

733 0 out of 229 0 0 out of 229 0 Good

827 0 out of 229 0 0 out of 229 0 Good

991 0 out of 229 0 0 out of 229 0 Good

1021 Fails Fails Fails Fails Good

Rule

CA Tabs CA Tabs Hardware Hardware End of File

Bit Size Overall p val Overall p val Compared

31 0 out of 229 0 0 out of 229 0 Good

61 51 out of 229 0 51 out of 229 0 Good

127 Fails Fails Fails Fails Good

223 14 out of 229 0 14 out of 229 0 Good

383 0 out of 229 0 0 out of 229 0 Good

479 2 out of 229 0 2 out of 229 0 Good

541 0 out of 229 0 0 out of 229 0 Good

607 0 out of 229 0 0 out of 229 0 Good

733 0 out of 229 0 0 out of 229 0 Good

827 0 out of 229 0 0 out of 229 0 Good

991 0 out of 229 0 0 out of 229 0 Good

1021 Fails Fails Fails Fails Good

150

150

Without Seed Removed

With Seed Removed
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APPENDIX H 

Results for Dual Rules Page 1 

Table 6: Dual Rule 31 Bits 

b31             b31 
Seed 

Removed       

Rule 
1 

Rule 
2 

#Passed out of 
229  Overall  

Rule 
1  Rule 2 

#Passed out of 
229  Overall

30  45  42  0    30  45  36  0 

30  60  40  0    30  60  42  0 

30  90  43  0    30  90  39  0 

30  150  48  0    30  150  49  0 

45  60  39  0    45  60  41  0 

45  90  0  0    45  90  0  0 

45  150  62  0    45  150  61  0 

60  90  Fails  Fails    60  90  Fails  Fails 

60  150  Fails  Fails    60  150  0  0 

90  150  0  0    90  150  0  0 

 

Table 7: Dual Rule 127 Bits 

B127             b127
Seed 

Removed       

Rule 
1 

Rule 
2 

#Passed out of 
229  Overall  

Rule 
1  Rule 2 

#Passed out of 
229  Overall

30  45  129  0    30  45  131  0 

30  60  134  0    30  60  138  0 

30  90  135  0    30  90  138  0 

30  150  136  0    30  150  140  0 

45  60  136  0    45  60  139  0 

45  90  Fails  Fails    45  90  Fails  Fails 

45  150  137  0    45  150  145  0 

60  90  Fails  Fails    60  90  Fails  Fails 

60  150  Fails  Fails    60  150  Fails  Fails 

90  150  0  0    90  150  0  0 
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Results for Dual Rules Page 2 

Table 8: Dual Rule 113 Bits 

b113             b113
Seed 

Removed       

Rule 
1 

Rule 
2 

#Passed out of 
229  Overall   

Rule 
1  Rule 2 

#Passed out of 
229  Overall 

30  45  196  0    30  45  226  0.001614

30  60  225  1.80E‐05    30  60  229  0.277377

30  90  225  0.149298   30  90  229  0.208124

30  150  225  0.000364   30  150  229  0.250332

45  60  226  0.035638   45  60  228  0.553137

45  90  223  0    45  90  229  0.271481

45  150  225  0.082326   45  150  229  0.421195

60  90  1  0    60  90  0  0 

60  150  9  0    60  150  8  0 

90  150  42  0    90  150  39  0 
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Appendix I 

VHDL Source Code of CA_Bits Unit 

--CA_Bits.vhd 
--Programmer William Schenck 
--Middle Tennessee State University 
-- 
-- Cellular Automata Logic Unit 
-- 
-- This VHDL file defines a standard CA cell 
-- and then uses it it the main entity. The 
-- main entity creates the cell count defined 
-- by the user in the generic clause. The cells 
-- are then generated. 
-- 
-- The rule input is set by the user. This is an 
-- eight bit binary rule number.  
-- Example: Rule 30 = 0X1E. 
-- 
-- The set input sets the msb to 1 and all  
-- others to 0. 
-- 
-- To increase cell bit size, user must change 
-- the generic number on line number 81 to the 
-- desired number. 
-- 
-- At present the generic number is set to 128 
-- change the above number when you change the 
-- generic number. 
 
-- Define CA_Bit 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_unsigned.all; 
entity CA_Bit is 
port( 
 clk, ena, prev_cell, this_cell, next_cell : in
 std_logic; 
 clr, set : in std_logic; 
 rule : std_logic_vector(7 downto 0); 
 q : out std_logic 
); 
end CA_Bit; 
architecture cell of CA_Bit is 
 signal sel : std_logic_vector(2 downto 0); 
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 signal y : std_logic; 
begin 
 sel(2 downto 0) <= next_cell & this_cell & prev_cell; 
 
 process(rule, sel) 
 begin 
  case sel is 
   when "000" => y <= rule(0); 
   when "001" => y <= rule(1); 
   when "010" => y <= rule(2); 
   when "011" => y <= rule(3); 
   when "100" => y <= rule(4); 
   when "101" => y <= rule(5); 
   when "110" => y <= rule(6); 
   when "111" => y <= rule(7); 
  end case; 
 end process; 
  
 process(clk, ena, set, clr, y) 
 begin 
  if(clr = '1') then 
   q <= '0'; 
  elsif(set = '1') then 
   q <= '1'; 
  elsif(clk'event and clk = '1') then 
   if(ena = '1') then 
    q <= y; 
   end if; 
  end if; 
 end process; 
end cell; 
 
-- Define CA_Bits 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_unsigned.all; 
entity CA_Bits is 
generic (cell_size : integer := 128); -- defines num of 
bits 
port( 
  clock, enable, set_word : in std_logic; 
  rule_in : in std_logic_vector(7 downto 0); 
  word_out : buffer std_logic_vector(cell_size -1 
downto 0)  
); 
end CA_Bits; 
architecture logic of CA_Bits is 
component CA_Bit 
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port( 
 clk, ena, prev_cell, this_cell, next_cell, clr, set : in
 std_logic; 
 rule : std_logic_vector(7 downto 0); 
 q : out std_logic 
); 
end component; 
begin 
cell_lsb: CA_Bit 
 port map( 
  clk => clock, 
  ena => enable, 
  next_cell => word_out(1), 
  this_cell => word_out(0), 
  prev_cell => word_out(cell_size -1), 
  clr => set_word, 
  set => '0', 
  rule(7 downto 0) => rule_in(7 downto 0), 
  q => word_out(0) 
 ); 
  
cells: 
 for i in 1 to cell_size - 2 generate 
 cell: CA_Bit port map ( 
  clk => clock, 
  ena => enable, 
  next_cell => word_out(i +1), 
  this_cell => word_out(i), 
  prev_cell => word_out(i -1), 
  clr => set_word,  
  set => '0', 
  rule(7 downto 0) => rule_in(7 downto 0), 
  q => word_out(i) 
 ); 
 end generate; 
  
cell_msb: CA_Bit 
 port map( 
  clk => clock, 
  ena => enable, 
  next_cell => word_out(0), 
  this_cell => word_out(cell_size -1), 
  prev_cell => word_out(cell_size -2), 
  clr => '0', 
  set => set_word, 
  rule(7 downto 0) => rule_in(7 downto 0), 
  q => word_out(cell_size -1) 
 ); 
end logic; 
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