
BIFURCATION ANALYSIS IN APOPTOSIS (RECEPTOR CLUSTERING)

SCIENCES DEPARTMENT THESIS FORMAT

A Thesis

Presented to the Faculty of the Department of Mathematical Sciences

Middle Tennessee State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Mathematical Sciences

by

Genesis Amelia Spears

June 2018



ABSTRACT

BIFURCATION ANALYSIS IN APOPTOSIS (RECEPTOR CLUSTERING)

Genesis Amelia Chavez Spears

Apoptosis is a designed cell death mechanism involved in biological processes. Apop-

tosis can either be activated by extrinsic pathway or by the intrinsic pathway. A major

part of the external apoptosis pathway is the death receptor Fas which, on binding to

its associated ligand FasL, they eventually form the death-inducing signaling complex.

FasL promotes clustering for open Fas and activates open stable Fas, forming locally

stable signaling platforms through neighborhood-induced receptor interactions. The

model exhibits a bifurcation called hysteresis, providing an upstream mechanism for

bistability and robustness to decide if the cell lives or dies. At low receptor concen-

trations, the bistability depends on three states of FasL. The irreversible bistability,

representing a committed cell death decision, emerges at high receptor concentra-

tions. Furthermore, the model suggests a mechanism by which cells may function

as bistable life/death switches which are independent of their downstream dynamic

components. This will be illustrated by simulations.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Apoptosis is a systematic cellular process of destroying cells in physiological and

pathological conditions. It plays a significant role in many biological processes. The

purpose of apoptosis is to remove unneeded cells, for example, cells with damaged

DNA. Normal apoptosis plays a major role in development, tissue homeostasis, cell

termination, and immune response. An abnormal apoptosis has been associated with

a variety of diseases such as development defects, neurodegenerative disorders, au-

toimmune disorders, and cancer, see [8, 19, 24, 28, 29]. Because of its biological

importance, much work has been devoted in understanding the biological pathways

responsible for apoptosis. Recently, this has led to growth of mathematical models

(mechanistic and integrative) to study apoptosis, see [1, 2, 3, 4, 7, 9, 18, 22]. These

mathematical models have contributed new insights into understanding underlying

molecular interactions involved in apoptosis. The current work takes a mathematical

approach also. The mathematical analysis of our model will shed some more light

into understanding apoptosis.

Apoptosis can be activated by one of two pathways: the extrinsic pathway (receptor-

mediated signals from other cells) and the intrinsic pathway (mitochondrial-mediated

signals within the cell). Because apoptosis is irreversible, it is a highly regulated

process[15]. This work focuses on the central part of the extrinsic pathway (See Fig.

1) which is the death signal initiated from other cells such as FasL, a ligand that binds

to its associate transmembrane death receptor, Fas. These clusters the intracellular



2

receptor death domains and promotes the connection of the Fas Associated Death

Domain (FADD) to form the death-inducing signaling complex (DISC). The DISC

causes the activation of caspases, the active caspases activate other inactive caspases

in a chain reaction, to initiate apoptosis [12].

Apoptosis is viewed as a bistable system, with an all-or-nothing switch between lo-

cal stable life and death equilibrium states[16]. Bistability plays an important role in

the robustness of apoptosis. Computational models have emerged as tools to identify

and study sources of bistability in apoptosis. For example: positive caspase feed-

back [7], inhibition of DISC by cFLIP [4], cooperativity in apoptosome formation [3],

double-negative caspase feedback through XIAP [18], and double-negative feedback

in Bcl-2 protein interactions [6]. In this work, we assume that bistability may be

induced upstream by open and stable death receptors.

Figure 1: Extrinsic Pathway of Apoptosis
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1.2 A review of mathematical models for clustering

The model by Lai and Jackson of death ligand-receptor dynamics assumes that FasL

activates Fas by a direct link, then produces a DISC concentration that changes

smoothly in relation to ligand input [17]. But the structural data by Scott and

others[26] does not support the above assumption since Fas receptors were found in

both closed and open forms. The open form allowed FADD binding and hence trans-

duction of the apoptotic signal. Furthermore, open Fas receptors were observed to

pair-stabilize through stem helix interactions. This allows a mechanism for bistability

which resembles one observed in the Ising model[14]. In this model, once a certain

threshold density of open Fas receptors is achieved, these open Fas receptors are

able to sustain their conformations even after removal of the initial stimulus which

promoted receptor opening. This produces hysteresis in the concentration of active,

signaling receptors and therefore in apoptosis.

Our model assumes that FasL activates open and stable Fas receptors which drives

the apoptotic signaling and the close Fas receptors is at equilibrium. The above model

is represented by a scalar ordinary differential equation, which does produce the mech-

anism proposed by Ho and others[12]. Our assumption leads to these simplification

of a system of equation use by Ho and other’s model [12] to a scalar ordinary differen-

tial equation. The main idea is that FasL acts as a clustering platform for Fas, then

induces contacts with other Fas through pairwise and higher-order interactions to

form units capable of hysteresis. At low receptor concentrations, the model exhibits

bistability provided that the number of receptors that each ligand can coordinate

is at least three. Hence a theory for the trimeric character of FasL. Moreover, at

high concentrations, irreversible bistability is achieved, implementing a permanent

cell death decision. Therefore, the model supports a primary role for death receptors
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in deciding cell fate. Additionally, our findings offer additional functional interpre-

tations of ligand trimerism and receptor pre-association and localization within the

unified context of bistability using bifurcational analysis.

1.3 Summary

Cancer may arise from disparity between the rates of cell growth and death in the

body. The disparity can be triggered by mutations and hence disrupts apoptosis.

We study the extrinsic pathway of apoptotic activation which is initiated upon de-

tection of an external death signal, encoded by a death ligand, by its corresponding

death receptor. Using the tools of mathematical analysis, we find that a model of

death ligand-receptor interactions possesses the capacity for bistability. Therefore,

the model supports threshold-like switching between life and death states and hence

define a characteristic of an effective cell death mechanism. We thus describe the

significant role of death receptors, the first component along the apoptotic pathway,

in deciding cell fate. Furthermore, the model gives an explanation for a diverse bio-

logically observed phenomena such as the trimeric character of the death ligand and

the tendency for death receptors to occur together, in terms of bistability. The result

quantifies the molecular basis of the apoptotic point-of-no-return.

Like in Ho’s and others model[12], we assume the presence of both open and closed

forms of Fas but only open and stable Fas receptors allows for FADD binding and

promotion of apoptotic signaling. The closed form is the stable form and the open

form is the unstable form of the Fas, see [25]. The Open Fas could pair up through

stem helix interaction to self-stabilize.

Next, we describe Ho’s and others model denoting each cluster by the tuple

(L,X, Y, Z), L is FasL, and X, Y , and Z are three suggested forms of Fas: X
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representing closed, Y representing receptors that are open and unstable, and Z

representing receptors that are open and stable. Within each cluster, we define the

reactions:

X
ko←→
kc

Y, Z
ku−→ Y, (1)

jY + (i− j)Z k
(i)
s−−→ (j − k)Y + (i− j + k)Z,



i = 2, . . . ,m,

j = 1, . . . , i,

k = 1, . . . , j,

(2)

L+ jY + (i− j)Z
k
(i)
l−−→ L+ (j − k)Y + (i− j + k)Z,



i = 2, . . . , n,

j = 1, . . . , i,

k = 1, . . . , j.

(3)

With the nondimensionalizations

ξ =
x

ρ
, η =

y

ρ
, ζ =

z

ρ
, λ =

l

ρ
, τ = kc t, (4)

following the convention that lowercase letters denote the concentrations of their

uppercase counterparts, and where ρ is a characteristic concentration and t is time,

and

κo =
ko
kc
, κu =

ku
kc
, κ(i)s =

k
(i)
s si−1

kc
, κ

(i)
l =

k
(i)
l s

i

kc
. (5)

Using Law of mass action, the following ordinary differential equations are ob-

tained:
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dξ

dτ
= −νo,

dη

dτ
= νo + νu − νs − νl,

dζ

dτ
= −νu + νs + νl

(6)

where

νo = κoξ − η,

νu = κuζ,

νs =
m∑
i=2

κ(i)s

i∑
j=1

ηjζ i−j
j∑

k=1

k,

νl = λ
n∑
i=2

κ
(i)
l

i∑
j=1

ηjζ i−j
j∑

k=1

k.

(7)

For convenience, lets rename the nondimensional variables ξ, η, ζ, λ, and τ as x,

y,z, l, and t respectively. For now, x, y, z, l, and t are considered nondimensionalized.

It translates as follows:

dx

dt
= −νo,

dy

dt
= νo + νu − νs − νl,

dz

dt
= −νu + νs + νl,

(8)

where
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νo = κox− y,

νu = κuz,

νs =
m∑
i=2

κ(i)s

i∑
j=1

yjzi−j
j∑

k=1

k,

νl = l
n∑
i=2

κ
(i)
l

i∑
j=1

yjzi−j
j∑

k=1

k.

(9)

Using our hypothesis, which says close Fas is at the equilibrium. Then the first

equation in Equation (8) reduces to an algebraic equation,

κox− y = 0, (10)

and using the assumption that x + y + z = σ. Ho and others model, Equation (8,9)

reduces to our model which is a scalar ordinary differential equation

dz

dt
= −νu + νs + νl = P (z). (11)

In chapter two, we talk about what the mathematical definition and mathematical

preliminaries are about: linear and nonlinear equations, linearization, equilibrium

points, bifurcation of equilibrium points, stability, invariant sets, hysteresis and Cen-

ter Manifold Theorem. In chapter three, we analyze various cases of the model using

stability analysis on the system. We show that the solutions are located in the posi-

tive cone and compute the number of possible positive solutions. In chapter four, we

present the numerical simulations of the model. In chapter 5, we discuss our results

and their conclusions.
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CHAPTER 2

MATHEMATICAL PRELIMINARIES

In this chapter, we present definitions and mathematical preliminaries[23] that are

relevant to chapter three.

The mathematical analysis of biological systems studies the stability of equilibria

of the systems. In the apoptosis model(8,9) the stability conditions indicate the con-

ditions where death and life states are feasible.

There are two methods of determining the stability of any system, Lyapunov

stability analysis and linearization stability analysis. In this work, we use the lin-

earization stability analysis in conjunction with phase plane analysis. To linearize is

to approximate a function by a first-order Taylor series expansion about the equilib-

rium state. We linearize because we want the nonlinear system to behave more like

a linear system, which makes it easier to determine stability in the neighborhood of

the equilibrium point. We use the linearization method and deduce the stability of

each equilibrium point.

The first thing to note is that system (8-9) has a well defined derivative. The

vector field f of (8-9) is given by:

dx

dt
=



dx

dt

dy

dt

dz

dt


=


−νo,

νo + νu − νs − νl,

−νu + νs + νl


= f(x, θ), (12)

where θ = (σ, l) is the bifurcation parameter vector, and κ0, κ
i
s, κ

i
l are fixed. The
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Jacobian matrix A of the vector field f is given by:

A =
∂f

∂x
=


−κo 1 0

κ0 −1− νys − ν
y
l 1− νzs − νzl

0 νys + νyl −1 + νzs + νzl

 ,
where

νyl =
∂νl
∂y

, νys =
∂νs
∂y

, νzl =
∂νl
∂z

, νzs =
∂νs
∂z

.

The matrix elements of A are defined and continuous for all x ∈ R3. Hence f is

continuously differentiable, and the system of equations is well posed by Picards ex-

istence and uniqueness theorem, which at the minimum requires Lipschitz continuity.

Next, we define an equilibrium point of equation system (8-9): the derivatives about

the equilibrium point are given as

Definition 1 If f(x0, θ)=0 then x0 is an equilibrium point (also called a critical point

or an equilibrium state solution) of the system equation (12).

The equilibrium solutions of the system equation (12) are given by:

x? =
σ − z?
1 + κo

, y? = κox?,

where σ = x + y + z, and z? is given by solving d z
d t

= 0 with (x, y) 7→ (x?, y?), a

polynomial, P in z? of degree max{m,n}.

To decide if each equilibrium point is stable or unstable, we first find the Jacobian

of the matrix of the system (12). We linearize the nonlinear system (12) about the

given equilibrium point, x∗ = (x∗, y∗, z∗),

dx

dt
= A(x?, θ)(x− x∗). (13)

Here A denotes the Jacobian of f and θ is a vector of parameters. Using the Jacobian

enables us to linearize the non-linear systems around the equilibrium point.
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If x∗ is stable, the solution tends to move toward the equilibrium point, otherwise

it is unstable. If the eigenvalues of the Jacobian are negatives, then it is stable.

Otherwise, it is unstable.

The linearization of the vector field at an equilibrium point gives the following unique

solution:

x(t) = exp(tA)x(0)

Here exp(tA) =
∑∞

n=0
tnAn

n!
. We say a non-zero vector v is an eigenvector of A with

eigenvalue λ if Av = λv. It is often the case that we can find a basis of eigenvectors

v1, ...,vn with eigenvalues λ1, ..., λn. In this basis the matrix exp(tA) becomes then a

diagonal matrix with eigenvalues etλk and we can read the behavior of the solutions

of the linearized equation just by looking at the sign of the real parts of λk. Those

with negative real parts, corresponding to special solutions with decay to zero with

increasing time, are known as stable. Those with real parts equal to 0 correspond

to constant or periodic solutions (depending on whether or not the imaginary part is

zero or non-zero). Those with positive real parts, corresponding to solutions which

diverge with increasing time, are known as unstable.

The eigenvalues of the jacobian from (12) are

0,
A1 −

√
A2

1 + 4A2

2
,
A1 +

√
A2

1 + 4A2

2

where

A1 = −κo − 2− a+ b

A2 = −aκo + κob− 1− b

and

a = νys + νyl , b = νzs + νzl
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In the next Chapter, we will show that the equilibrium solutions are in the positive

cone if the polynomial P has a negative leading coefficient.

2.1 Invariant set

One of main goals of this work is to show the existence of an invariant set C ⊂ R3
+.

The existence assumes some additional conditions on the parameters.

Since the set C is a subset of the positive region of R3, we consider the flux of the

system over the boundaries of the first octant in

R3, (ie.{(i, j, k)|i, j, k ≥ 0}),

where the flux is given by the vector field f in (12). Introducing the hyperplanes

(x, y, 0), (x, 0, z), (0, y, z, ) with outward directed unit normal vectors

nz=0 = (0, 0,−1), ny=0 = (0,−1, 0), nx=0 = (−1, 0, 0),

respectively, one finds the outward flux over these surfaces is given by:

f · nx=0 = −y,

f · ny=0 = −κox− κuz,

f · nz=0 = −νs − l
n∑
i=2

κ
(i)
l y

i

i∑
k=1

k.

The set C is clearly invariant with respect to the flow defined by the model if there

is no outward flux. This imposes the conditions:

x ≥ 0, y ≥ 0, z ≥ 0. (14)
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Note that the above condition gives us an unbounded region. We want conditions

so that C is enclosed by a compact set. Since x+y+ z = σ for a solution x = (x, y, z)

of Equation (8,9).

Therefore, the compact set {(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0, x+ y + z = σ} encloses

the volume element C. The unit normal vector to the surface x + y + z = σ is given

by

n = (
1√
3
,

1√
3
,

1√
3

),

and the flux over these planes is given by:

f · n = − νo√
3

+
νo + νu − νs − νl√

3
+
−νu + νs + νl√

3
= 0. (15)

The results are summarized in the following theorem.

Theorem 2.1 There exists an invariant set C with respect to the flow of system (12)

given by

{(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0, x+ y + z = σ}.

2.2 Hysteresis

Hysteresis is a phenomenon that occurs in many processes [20]. We will show in the

next chapter that the Equation (8,9) has an number of stable equilibrium points.

The existence of multiple stable equilibria is closely related to hysteresis. This is a

phenomenon that is often characterized by a looping behavior; however, the existence

of a loop is not sufficient to identify hysteretic systems. We demonstrate that Equation

(8,9) exhibits hysteresis. It is difficult to define hysteresis precisely but there is a

common theme in defining hysteresis by identifying a looping behavior displayed
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in the input-output map. There are many definitions of hysteresis available in the

literature[20]. We consider hysteresis from a dynamical systems perspective.

Definition 2 [20, Definition 3] A system exhibits hysteresis if it has

(a) multiple stable equilibrium points and

(b) dynamics that are considerably faster than the time scale at which inputs are

varied.

Condition (b) corresponds to the speed at which a controlled input is changed. In

a lot of cases, hysteresis is present but is rate-dependent [20].

Definition 2 corresponds to the looping behavior which is often linked with hys-

teresis. Let us consider a system with two stable equilibria and suppose we start at

the left equilibrium, see Figure 2a. If the input increases, the system will tend to stay

in equilibrium, see Figure 2b, with only a small upward move along the hysteresis

curve. When the input increases enough such that the equilibrium disappears, the

system moves to the right equilibrium, see Figure 2c. This corresponds to moving

along the steepest portion of the hysteresis loop. The system stays at the right equi-

librium, see Figure 2d. If the input decreases enough so that the right equilibrium

disappears, see Figure 2e, the system moves back to the left equilibrium, see Figures

2f and 2g. If the system moves to equilibrium faster than it changes in the input, the

transition from one equilibrium to the other is nearly instantaneous and the system

behavior can appear to be rate independent[20].

In our model for m = 2, n = 2, we show in Chapter 3 that Equation (12) has

exactly one equilibrium, therefore the system for this case does not exhibit hysteresis

by Definition 2.
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The existence of a loop in the input-output map is not sufficient to define a system

as hysteretic. In [20], they illustrate this by looking at a simple example of a damped

second-order system

y′′(t) + cy′(t) + ky(t) = u(t).

Differential Equation (16) satisfies Definition 2’s requirement to exhibit hysteretic

behavior.

Next, we investigate the following example

dx

dt
= c+ x− x3 = f(x). (16)

Lets find the equilibrium points by finding the roots of the equation f(x) =

c+ x− x3 = 0. We can conclude that if the parameter c is positive or negative, there

is exactly one root, r(c). Now lets take the derivative when c = 0, which tells us

that f ′(x) = −3x2 + 1 with respect to x at this root is negative, so this is a stable

equilibrium point. Now lets take the derivative when c < 0 and c > 0. The derivative

is negative with respect to x, so this is a stable equilibrium point. However, for the

parameter c ∈ (−2
√

3/3, 2
√

3/3) there are three equilibrium points. The middle point

c = 0 is unstable, and the other two, r(c)− < r(c)+ are stable.

Let c have an initial value −100 at time 0. As c changes over time from −100 to 100,

it follows one path, and as c changes over time from 100 to −100 it follows a different

path.

2.3 Bifurcations of Equilibrium Points

Our system is dependent on a continuous parameter θ. Slight changes in θ result in

slight changes to our system. When our system changes, the locations of equilibrium
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points and their eigenvalues will also change. We will first illustrate this by tracking

the movement of an equilibrium point xθ by solving this equation, given by

Definition 1:

f(xθ, θ) = 0 (17)

The implicit function theorem, see [11, 23] gives conditions for these solutions to

exist for a small value of θ. We can differentiate the equation with respect to θ at

θ = 0 to obtain:

∂θF (x0) + A∂θx = 0 (18)

where the derivatives are evaluated at θ and the Jacobian matrix A is invertible. By

the implicit function theorem the solution xθ is unique for small θ. Now the condition

that A is invertible can be stated as a condition that A not have zero as an eigenvalue,

and so the only time that the number of equilibrium points can change is when the

Jacobian matrix has 0 as an eigenvalue. The parameter values where the qualitative

behavior of solutions changes are referred to as critical thresholds.

2.4 Center Manifold Theorem

Next, we discuss Center Manifold Theorem.

Theorem 2.2 [23] Let f be a Cr vector field on Rn (i.e. it is continuous up to it’s

rth derivative) which vanishes at the origin (here the origin has been shifted to the

equilibrium points). Suppose f(0) = 0 and let A = Df(0) have k eigenvalues with a

negative real part, j eigenvalues with a positive real part, and m = n−k−j eigenvalues

with a zero real part. Let the stable, center and unstable invariant subspaces be Es,

Ec, and Eu respectively. Then there exists Cr stable and unstable invariant manifolds
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W s and W u tangent to Es and Eu at 0 and a C(r−1) center manifold W c tangent to

Ec at 0. The manifolds W s, W c, and W u are invariant for the flow of f .

Furthermore, the stable and unstable manifolds are unique but the center manifold

need not be.

For an illustration of Center Manifold Theorem, we consider a simple non-linear

system:

ẋ1 = x21, (19)

ẋ2 = −x2, (20)

(21)

which we can rewrite as:

A =

[
0 0
0 −1

]
,

Its eigenvalues are λ = 0, λ = −1 and corresponding eigenvectors

[
1
0

]
and

[
0
1

]
; and

f(x1, x2) =

[
x21
−x2

]
.

Note that because j = 0, k = 1, n = 2, we determine that there are m = n−k− j = 1

eigenvalues with zero real part, and that there exists a center manifold W e(0) of class

Cr tangent to the center subspace E.
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Figure 2: Dynamics of a system with two stable equilibria for a range of input values,

and associated hysteresis loop.
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CHAPTER 3

MATHEMATICAL MODEL

There are many mathematical models representing the interaction of Fas [26, 21]. As

a reminder, our mathematical model is a simplification of Ho and other’s model [12].

3.1 The Model

For convenience of the reader, we present again Equation (8-9) from Chapter 1. The

main assumption in the model is that Fas exists in two forms: open and closed. In

Ho’s model [12], it was assumed that only open Fas allow for FADD binding and

promote apoptotic signaling and this is supported by data. The closed form is the

stable form and the open form is the unstable form of the Fas, see [25]. The open Fas

could pair up through stem helix interaction to self-stabilize. We assume open stable

Fas promote apoptotic signaling and close Fas is equilibrium state.

We label each cluster by the tuple (L,X, Y, Z), where L is FasL, and X, Y , and

Z are three suggested forms of Fas: denoting closed receptors, open and unstable

receptors, and open and stable receptors, respectively.

The parameters that m represents receptor density and n measures the coordina-

tion capacity of FasL. The concentration of molecules L,X, Y, Z are l, x, y, z respec-

tively.

dx

dt
= −νo,

dy

dt
= νo + νu − νs − νl,

dz

dt
= −νu + νs + νl

(22)



19

where

νo = κox− y,

νu = κuz,

νs =
m∑
i=2

κ(i)s

i∑
j=1

yjzi−j
j∑

k=1

k,

νl = l
n∑
i=2

κ
(i)
l

i∑
j=1

yjzi−j
j∑

k=1

k.

(23)

Since x, y, z are concentrations of molecules X, Y, Z, therefore, x, y, z ≥ 0. Then the

concentration values are in the non-negative octant which is known as the positive

cone.

R3
+ ∪ {0, 0, 0} = {(x, y, z)|x ≥ 0, y ≥ 0, z ≥ 0, } (24)

If we impose the assumption that Fas closed form is in equilibrium state equations

(22,23) reduces to

dz

dt
= −νu + νs + νl = P (z), (25)

where P is a polynomial in z.

Definition 3 A surface set S ⊂ R3 of dx
dt

= f(x, θ), x(t0) = x0 where f is continu-

ously differentiable is called an invariant set of the system, if for all x0 ∈ S and for

all t ≥ 0,x(t) ∈ S.

From Chapter 2, we know the positive cone is invariant under the system (22-23)

and that there exists a compact invariant C set of the system in the positive cone.

Hence R+∪{0} is invariant under the Equation (25) and there is a compact invariant

set of the Equation (25) in R+ ∪ {0}.

Remark 1 Note that the solution of the system (22-23) is non-negative and bounded

in R3. Hence the solution of the scalar system is non negative and bounded in R.
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3.2 Equilibria and Linear Analysis

In this section, we show the existence of equilibrium solutions in the positive cone of

system (22-23), then this implies the existence of equilibrium solutions in R+ ∪ {0}

of our scalar system (25).

Let x∗ = (x∗, y∗, z∗) be an equilibrium of the system (22, 23). Then x∗ is a solution

the following algebraic system:

−νo = 0,

νo + νu − νs − νl = 0,

−νu + νs + νl = 0.

(26)

Note that

x∗ + y∗ + z∗ = σ. (27)

Hence

x∗ =
y∗

κo
,

y∗ =
κo(σ − z∗)

1 + κo
,

(28)

and z∗ is a root of the polynomial P , where

P (z) = −κuz +
m∑
i=2

κ(i)s

i∑
j=1

yjzi−j
j∑

k=1

k + l
n∑
i=2

κ
(i)
l

i∑
j=1

yjzi−j
j∑

k=1

k, (29)

where

y =
κo(σ − z)

1 + κo
.

Note that the degree of the polynomial P is max{m,n} and

P (0) =
m∑
i=2

κ(i)s

i∑
j=1

(
κoσ

1 + κo
)i

i∑
k=1

k + l
n∑
i=2

κ
(i)
l

i∑
j=1

(
κoσ

1 + κo
)i

i∑
k=1

k > 0.

We need only to show that the polynomial P has at least one positive root with

the help of Theorem 3.3 and Theorem 3.4.
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Theorem 3.3 [10] Let P be a polynomial of degree greater than 1 with the leading

term negative and P (0) > 0, then the number of sign changes is odd.

Proof: The proof follows from Descarte’s rule .

Theorem 3.4 Let P be a polynomial that satisfies Theorem 3.3, then the number of

positive solutions is at least one and at most equal to the number of sign changes.

Proof: The proof follows directly from Theorem 3.3.

The equilibrium solution of (22-23) is obtained by solving the follow algebraic

system.

−νo = 0, (30)

−νu + νs + νl = 0, (31)

x+ y + z = σ. (32)

By Equation (30), we obtain

x =
y

κo
. (33)

Then by using Equation (32), where σ is constant, we replace x with Equation (33)

to obtain:

y =
(σ − z)κo

1 + κo
. (34)

We obtain a polynomial in terms of z,

P (z) = −κuz +
m∑
i=2

κ(i)s

i∑
j=1

yjzi−j
j∑

k=1

k + l

n∑
i=2

κ
(i)
l

i∑
j=1

yjzi−j
j∑

k=1

k. (35)

where y is as in Equation (34). Then the degree of the polynomial is max(n,m). We

assume the leading coefficient of this polynomial is negative. Note that P (0) > 0



22

follows by the structure of the polynomial. Hence by Theorem 3.4, P (z) has at least

one positive solution and at most a number of positive solutions equal to number of

sign changes.

We discuss in detail four different cases of our model, where (m,n) = (2,2), (3,2),

(2,3), (3,3). We stop there because no new information will be obtained for cases

where m or n are greater than three. Regardless, we discuss solutions of our model

where (m,n) = (4,4) and (5,5) to create a stronger case for our hypothesis. This will

be illustrated in Chapter 4. Let A1 be the leading term and P (0) is a constant term

of the polynomial P . The parameters values are

k0 = 0.002, ku = 0.001, k(2)s = 0.1, k
(2)
l = 1, k(3)s = 0.5, k

(3)
l = 5

Model 1: m = 2 and n = 2

Given: x+ y + z = σ, where σ is a constant and

x =
y

κo
.

we obtain

y =
(σ − z)κo

1 + κo
.

Then, we can write the polynomial P,

P (z) = −κuz +
m∑
i=2

κ(i)s

i∑
j=1

yjzi−j
j∑

k=1

k + l

n∑
i=2

κ
(i)
l

i∑
j=1

yjzi−j
j∑

k=1

k.
(36)

Using Maple, we find the leading coefficient A and the constant term C.

A1 = −(−2κo + 1)κoκs
(2)

(1 + κo)2
− l(−2κo + 1)κoκ

(2)
l

(1 + κo)2
,

C = P (0) =
3κ2oσ

2κ
(2)
s

(1 + κo)2
+

3κ2olσ
2κ

(2)
l

(1 + κo)2
.

(37)
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Clearly, we see that A < 0 and that C = P (0) > 0. Therefore, using Theorem 3.4, the

number of positive solutions of the polynomial P (z) = Az2 + Bz + C are as follows

in the table below:

A B C Number of Positive Solutions
- + + 1
- - + 1

Model 2: For m = 3 and n = 2 the polynomial P can be written as:

P (z) = −κuz +
m∑
i=2

κ(i)s

i∑
j=1

yjzi−j
j∑

k=1

k + l
n∑
i=2

κ
(i)
l

i∑
j=1

yjzi−j
j∑

k=1

k.
. (38)

Using Maple, we find the leading coefficient A and the constant term D.

A = −κ
(3)
s (4κ2o − κo + 1)κo

(1 + κo)3
,

D = P (0) =
3σ2((lκ

(2)
l + 2σκ

(3)
s + κ

(2)
s )κo + lκ

(2)
l + κ

(2)
s κ2o)

(1 + κo)3
.

(39)

Again, we see that the leading coefficient A < 0 and the constant term D = P (0) > 0.

Therefore, using Theorem 3.4, the number of positive solutions of the polynomial

P (z) = Az3 +Bz2 + Cz +D are as follows in the table below:

A B C D Number of Positive Solutions
- + + + 1
- + - + 3, 1
- - + + 1
- - - + 1

Model 3: For m = 2 and n = 3 the polynomial P can be written as follows:

P (z) = −κuz +
m∑
i=2

κ(i)s

i∑
j=1

yjzi−j
j∑

k=1

k + l

n∑
i=2

κ
(i)
l

i∑
j=1

yjzi−j
j∑

k=1

k.
(40)
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Using Maple, we find the leading coefficient A and the constant term D.

A = − lκoκ
(3)
l (4κ2o − κo + 1)

(1 + κo)3
,

D = P (0) =
3κ2oσ

2(2κolσκ
3
l + κolκ

2
l + κoκ

2
s + lκ2l + κ2s)

(1 + κo)3
.

(41)

We see that the leading coefficient A < 0 and the constant term D = P (0) > 0.

Therefore, using Theorem 3.4, the number of positive solutions of the polynomial

P (z) = Az3 +Bz2 + Cz +D are as follows in the table below:

A B C D Number of Positive Solutions
- + + + 1
- + - + 3, 1
- - + + 1
- - - + 1

Model 4: For m = 3 and n = 3 the polynomial P can be written as follows:

P (z) = −κuz +
m∑
i=2

κ(i)s

i∑
j=1

yjzi−j
j∑

k=1

k + l
n∑
i=2

κ
(i)
l

i∑
j=1

yjzi−j
j∑

k=1

k.
(42)

Using Maple, we find the leading coefficient A and the constant term D.

A = −(4κ2o − κo + 1)κo(lκ
(3)
l + κ

(3)
s )

(1 + κo)3
,

D =
6κ2o(((lκ

(3)
l + κ

(3)
s )σ +

lκ
(2)
l

2
+ κ

(2)
s

2
)κo +

lκ
(2)
l

2
+ κ

(2)
s

2
)σ2

(1 + κo)3
.

(43)

We see that the leading coefficient A < 0 and the constant term D = P (0) > 0.

Therefore, using Theorem 3.4, the number of positive solutions of the polynomial

P (z) = Az3 +Bz2 + Cz +D are as follows in the table below:
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A B C D Number of Positive Solutions
- + + + 1
- + - + 3, 1
- - + + 1
- - - + 1

Therefore, the table above shows that there exists at most three positive solutions

and at least one positive solution.

Model 5: m = 4 and n = 4 the polynomial P can be written as follows:

P (z) = −κuz +
m∑
i=2

κ(i)s

i∑
j=1

yjzi−j
j∑

k=1

k + l
n∑
i=2

κ
(i)
l

i∑
j=1

yjzi−j
j∑

k=1

k.
(44)

Using Maple, we find the leading coefficient A and the constant term E.

A =
(6κ3o − 3κ2o − 1)κo(lκ

(4)
l + κ

(4)
s )

(1 + κo)4
,

E = P (0)
1

(1 + κo)4
(10(((lκ

(4)
l + κ(4)s )σ2 + (

3lκ
(3)
l

5
+

3κ
(3)
s

5
)σ +

3lκ
(2)
l

10
+

3κ
(2)
s

10
)κ2o

+((
3lκ

(3)
l

5
+

3κ
(3)
s

5
)σ +

3lκ
(2)
l

5
+

3κ
(2)
s

5
)κo +

3lκ
(2)
l

10
+

3κ
(2)
s

10
)σ2κ2o).

We see that the leading coefficient A < 0 and the constant term E = P (0) > 0.

Therefore, using Theorem 3.4, the number of positive solutions of the polynomial

P (z) = Az4 +Bz3 + Cz2 +Dz + E are as follows in the table below:

A B C D E Number of Positive Solutions
- + + + + 1
- + + - + 3,1
- + - + + 3,1
- + - - + 3,1
- - + + + 1
- - + - + 3,1
- - - + + 1
- - - - + 1
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Therefore, the table above shows that there exists at most three positive solutions

and at least one positive solution.

Model 6:

m = 5 and n = 5 the polynomial P can be written as follows:

P (z) = −κuz +
m∑
i=2

κ(i)s

i∑
j=1

yjzi−j
j∑

k=1

k + l
n∑
i=2

κ
(i)
l

i∑
j=1

yjzi−j
j∑

k=1

k.
(45)

We see that the leading coefficient A < 0 and the constant term F = P (0) > 0.

Therefore, using Theorem 3.4, the number of positive solutions of the polynomial

P (z) = Az5 +Bz4 + Cz3 +Dz2 + Ez + F are as follows in the table below:

A B C D E F Number of Positive Solutions
- + + + + + 1
- + + + - + 3,1
- + + - + + 3,1
- + + - - + 3,1
- + - + + + 3,1
- + - + - + 5,3,1
- + - - + + 3,1
- + - - - + 3,1
- - + + + + 1
- - + + - + 3,1
- - + - + + 3,1
- - + - - + 3,1
- - - + + + 1
- - - + - + 3,1
- - - - + + 1
- - - - - + 1

Therefore, the table above shows that there exists at most five positive solutions and

at least one positive solution.
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The Jacobian matrix of the system below:

dx

dt
= −κox+ y,

dy

dt
= κox− y + κuz −

m∑
i=2

κ(i)s

i∑
j=1

yjzi−j
j∑

k=1

k − l
n∑
i=2

κ
(i)
l

i∑
j=1

yjzi−j
j∑

k=1

k,

dz

dt
= −κuz +

m∑
i=2

κ(i)s

i∑
j=1

yjzi−j
j∑

k=1

k + l

n∑
i=2

κ
(i)
l

i∑
j=1

yjzi−j
j∑

k=1

k,

(46)

at the equilibrium point (x∗, y∗, z∗) is

Jf(x∗, y∗, z∗) =

−κo 1 0
κo −1 + a1 κu + a3
0 a2 −κu + a4

 , (47)

where

a1 = −
m∑
i=2

κ(i)s

i∑
j=1

(j)yj−1∗ zi−j∗

j∑
k=1

k − l
n∑
i=2

κ
(i)
l

i∑
j=1

(j)yj−1∗ zi−j∗

j∑
k=1

k,

a2 =
m∑
i=2

κ(i)s

i∑
j=1

(j)yj−1∗ zi−j∗

j∑
k=1

k + l
n∑
i=2

κ
(i)
l

i∑
j=1

(j)yj−1∗ zi−j∗

j∑
k=1

k,

a3 = −
m∑
i=2

κ(i)s

i∑
j=1

yj∗(i− j)z(i−j)−1∗

j∑
k=1

k − l
n∑
i=2

κ
(i)
l

i∑
j=1

yj∗(i− j)z(i−j)−1∗

j∑
k=1

k,

a4 =
m∑
i=2

κ(i)s

i∑
j=1

yj∗(i− j)z(i−j)−1∗

j∑
k=1

k + l
n∑
i=2

κ
(i)
l

i∑
j=1

yj∗(i− j)z(i−j)−1∗

j∑
k=1

k.

Note that a2 = −a1 and a4 = −a3.

The eigenvalues are found by solving Equation (48):∣∣∣∣∣∣
(−κo)− λ 1 0

κo (−1 + a1)− λ κu + a3
0 −a1 (−κu − a3)− λ

∣∣∣∣∣∣ = 0. (48)

Then Equation (48) becomes

(−κo − λ)

∣∣∣∣(−1 + a1)− λ κu + a3
−a1 (−κu − a3)− λ

∣∣∣∣− 1

∣∣∣∣κo κu + a3
0 (−κu − a3)− λ

∣∣∣∣ = 0. (49)
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Hence,

(−κo−λ)[(−1 + a1−λ)(−κu− a3−λ) + a1(κu + a3)]− κo(−κu− a3−λ) = 0. (50)

We rewrite Equation (50) and get

−λ3 + λ2[−κo − 1 + a1− κu − a3] + λ[a1κo − κuκo − a3κo − κu − a3] = 0. (51)

Lets factor λ out of Equation (51) to obtain

−λ2 + λ[−κo − 1 + a1− κu − a3] + [a1κo − κuκo − a3κo − κu − a3] = 0. (52)

Equation (52) is a quadratic equation

aλ2 + bλ+ c = 0, (53)

where a = −1, b = −κo − 1 + a1 − κu − a3, and c = a1κo − κuκo − a3κo − κu − a3.

Then the roots of this cubic polynomial are

λ = 0,
b±
√
b2 − 4ac

2
. (54)

Note that a1 < 0 and a3 > 0. Then b < 0 and c < 0. Since ac > 0, the

discriminant D = b2 − 4ac is either smaller than b2 or it is negative. If negative,

solutions are complex with real part b, which is negative. Otherwise
√
|D| must be

still smaller |b| = −b, so that the two eigenvalues must still be negative. Either way,

real parts of both non-zero eigenvalues must be negative. Thus the linearized system

has one zero eigenvalue, and the other two eigenvalues have negative real parts.

The presence of a zero eigenvalue makes it impossible to apply linear stability

analysis to the system. The nonlinear terms left out determine the stability. Hence
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this requires the use of a nonlinear stability analysis theory such as the Lyapunov

function. The characterization of equilibrium points will require using the Lyapunov

function on the system. This is a challenging task in higher dimensions [23].

We know that linear stability analysis describes how a system behaves near an

equilibrium point. But if we combine phase-plane analysis with linear stability analy-

sis we can characterize the equilibrium points and hence the system dynamics. How-

ever, this approach is very difficult or impossible to implement in higher dimensions.

Looking at the structure of our model, we see that it is equivalent to a one dimensional

problem. Therefore, we study the equivalent one dimensional system

dz

dt
= P (z) (55)

where

P (z) = −κuz +
m∑
i=2

κ(i)s

i∑
j=1

yjzi−j
j∑

k=1

k + l
n∑
i=2

κ
(i)
l

i∑
j=1

yjzi−j
j∑

k=1

k,

and

y =
(σ − z)κ0

1 + κ0
.

We find the equilibrium points by solving dz
dt

= 0 such that P (z∗) is a polynomial in

z∗ of degree max{m,n}. Note that the model is bistable only if max{m,n} ≥ 3, since

two stable nodes must be separated by an unstable node as our model is effectively

one-dimensional z.

We interpret z as a measure of the apoptotic activation of a cluster. We will

illustrate this one dimensional problem in Chapter 4 using linear stability analysis

and phase-plane analysis to characterize equilibrium states and hysteresis.
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CHAPTER 4

NUMERICAL SIMULATION

For all the simulation in this Chapter, we use the following baseline parameter values

σ = 1, κo = 2× 10−3, κu = 103

κ(si) = (2i− 3)× 10−1, i = 2, 3, ...m

κ(si) = (2i− 3)× 101, i = 2, 3, ..., n.

and appropriate parameters l ∈ [0, 0.5] and σ ∈ [0.0, 4.0] to characterize the dynamics

of the system producing apoptotic signaling. For m = 2, n = 2, the coefficients of the

polynomial P are:

A = −0.0001984055840− 0.001984055840(l),

B = −0.001 + 0.0001972103697(σ) + 0.001972103697(l)(σ),

C = P (0) = 1.195214362x10−6(σ)2 + 0.00001195214362(l)(σ).

From results in Chapter 2 and 3, we see that P has one positive root. Hence

z∗ > 0 has one equilibrium point, Z∗ > 0 of the one dimensional ordinary differential

equation system dz
dt

= P (z).

Next, we calculate equilibrium state activation curves for the Model for case m =

n = 2. These curves exhibit monostability (see, Figures 3). This case does not capture

the bistability mechanism and hysteresis since it has only one stable equilibrium.

Figure 4 gives a more intuitive view of the dependence of the model’s qualitative

structure on l and σ.
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Figure 3: Equilibrium-state activation curves.

The equilibrium (steady)-state active Fas concentration z∗ shows monostability as a

function of the FasL concentration l. All parameters are set at baseline values.
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Figure 4: Equilibrium state diagram for the case m = n = 2.

In this simulation, we identify the regions of parameter space supporting

monostability (colored) or bistability (gray) as a function of the FasL and total Fas

concentrations l and σ, respectively. The monostable region is colored as a heat

map corresponding to the equilibrium-state active Fas concentration z∗.
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4.1 Classification Equilibrium-states

For cases of the model where max(m,n) ≥ 3, calculation of the equilibrium state

activation curves shows that the model indeed exhibits bistability (see Figures 5-10)

for suitable values of σ and l.

In all these cases, we confirm the bistability mechanism in extrinsic apoptosis. The

associated hysteresis enables threshold switching between well separated low and high

activation states. Biologically, this a programmed signal of life and death. These are

integrated at the cell level to compute the overall apoptotic response.
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Figure 5: Equilibrium-state activation curves for the case m = 3,m = 2.

The equilibrium-state active Fas concentration z∗ shows bistability and hysteresis as

a function of the FasL concentration l (stable, solid lines; unstable, dashed lines).

At low receptor concentrations σ, the bistability is reversible, but irreversibility

emerges for σ sufficiently high, representing a committed cell death decision. All

parameters are set at baseline values unless otherwise noted.
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Figure 6: Equilibrium-state activation curves for the case m = 2,m = 3.

The equilibrium-state active Fas concentration z∗ shows bistability and hysteresis as

a function of the FasL concentration l (stable, solid lines; unstable, dashed lines).

At low receptor concentrations σ, the bistability is reversible, but irreversibility

emerges for σ sufficiently high, representing a committed cell death decision. All

parameters ask set at baseline values unless otherwise noted.
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Figure 7: Equilibrium-state activation curves for the case m = n = 3.

The equilibrium-state active Fas concentration z∗ shows bistability and hysteresis as

a function of the FasL concentration l (stable, solid lines; unstable, dashed lines).

At low receptor concentrations σ, the bistability is reversible, but irreversibility

emerges for σ sufficiently high, representing a committed cell death decision. All

parameters are set at baseline values unless otherwise noted.
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Figure 8: Equilibrium-state activation curves for the case m = n = 4.

The equilibrium-state active Fas concentration z∗ shows bistability and hysteresis as

a function of the FasL concentration l (stable, solid lines; unstable, dashed lines).

At low receptor concentrations σ, the bistability is reversible, but irreversibility

emerges for σ sufficiently high, representing a committed cell death decision. All

parameters are set at baseline values unless otherwise noted.
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Figure 9: Equilibrium-state activation curves for the case m = n = 5.

The equilibrium-state active Fas concentration z∗ shows bistability and hysteresis as

a function of the FasL concentration l (stable, solid lines; unstable, dashed lines).

At low receptor concentrations σ, the bistability is reversible, but irreversibility

emerges for σ sufficiently high, representing a committed cell death decision. All

parameters are set at baseline values unless otherwise noted.
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Figure 10: Equilibrium-state activation curves for the case m = n = 6.

The equilibrium-state active Fas concentration z∗ shows bistability and hysteresis as

a function of the FasL concentration l (stable, solid lines; unstable, dashed lines).

At low receptor concentrations σ, the bistability is reversible, but irreversibility

emerges for σ sufficiently high, representing a committed cell death decision. All

parameters are set at baseline values unless otherwise noted.
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Figures 11-16 give a more intuitive view of the dependence of the model’s quali-

tative structure on l and σ.

Figure 11: Equilibrium state diagram for the case m = 3, n = 2.

In this simulation, we identify the regions of parameter space supporting

monostability (colored) or bistability (gray) as a function of the FasL and total Fas

concentrations l and σ, respectively. The monostable region is colored as a heat

map corresponding to the equilibrium-state active Fas concentration z∗.
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Figure 12: Equilibrium state diagram for the case m = 2, n = 3.

In this simulation, we identify the regions of parameter space supporting

monostability (colored) or bistability (gray) as a function of the FasL and total Fas

concentrations l and σ, respectively. The monostable region is colored as a heat

map corresponding to the equilibrium-state active Fas concentration z∗.
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Figure 13: Equilibrium state diagram for the case m = n = 3.

In this simulation, we identify the regions of parameter space supporting

monostability (colored) or bistability (gray) as a function of the FasL and total Fas

concentrations l and σ, respectively. The monostable region is colored as a heat

map corresponding to the equilibrium-state active Fas concentration z∗.
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Figure 14: Equilibrium state diagram for the case m = n = 4.

In this simulation, we identify the regions of parameter space supporting

monostability (colored) or bistability (gray) as a function of the FasL and total Fas

concentrations l and σ, respectively. The monostable region is colored as a heat

map corresponding to the equilibrium-state active Fas concentration z∗.
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Figure 15: Equilibrium state diagram for the case m = n = 5.

In this simulation, we identify the regions of parameter space supporting

monostability (colored) or bistability (gray) as a function of the FasL and total Fas

concentrations l and σ, respectively. The monostable region is colored as a heat

map corresponding to the equilibrium-state active Fas concentration z∗.
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Figure 16: Equilibrium state diagram for the case m = n = 6.

In this simulation, we identify the regions of parameter space supporting

monostability (colored) or bistability (gray) as a function of the FasL and total Fas

concentrations l and σ, respectively. The monostable region is colored as a heat

map corresponding to the equilibrium-state active Fas concentration z∗.
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4.2 Hysteresis Curves

We now focus on the activation and deactivation thresholds l+ and l− respectively

which define the bistable system. These are points at which the equilibrium state

switches discontinuously from one branch to the other, and are given by values of l

at which the hysteresis curve turns. These turns occur when dl
dz∗

= 0 (see Figures

17-21).

Figure 17: Bistability thresholds for the case m = 2, n = 3.

The activation (red) and deactivation (blue) thresholds l± characterizing the

bistable regime (green) are defined as the concentrations l of FasL at which the

equilibrium-state active Fas concentration z∗ (black) switches discontinuously.
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Figure 18: Bistability thresholds for the case m = n = 3.

The activation (red) and deactivation (blue) thresholds l± characterizing the

bistable regime (green) are defined as the concentrations l of FasL at which the

equilibrium-state active Fas concentration z∗ (black) switches discontinuously.
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Figure 19: Bistability thresholds for the case m = n = 4.

The activation (red) and deactivation (blue) thresholds l± characterizing the

bistable regime (green) are defined as the concentrations l of FasL at which the

equilibrium-state active Fas concentration z∗ (black) switches discontinuously.
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Figure 20: Bistability thresholds for the case m = n = 5.

The activation (red) and deactivation (blue) thresholds l± characterizing the

bistable regime (green) are defined as the concentrations l of FasL at which the

equilibrium-state active Fas concentration z∗ (black) switches discontinuously.
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Figure 21: Bistability thresholds for the case m = n = 6.

The activation (red) and deactivation (blue) thresholds l± characterizing the

bistable regime (green) are defined as the concentrations l of FasL at which the

equilibrium-state active Fas concentration z∗ (black) switches discontinuously.
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We see that no new significant behaviors of the equilibrium-state activation curves

are observed for either m > 3 or n > 3 (See Figures 5-10). Similarly, we can observe

where equilibrium states are bistable (See Figures 4, 11-16). But when visualizing

these systems by their thresholds, we do observe significant behaviors of bistability

thresholds (See Figures 17-21).
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CHAPTER 5

CONCLUSIONS AND DISCUSSIONS

We showed using the one dimensional equivalence of the model using linear stabil-

ity analysis and phase-plane analysis of a nonlinear system of ordinary differential

equations that receptor clustering does support bistability and hysteresis in apopto-

sis through a higher-order counterpart of biologically observed Fas pair-stabilization.

The model also suggests that the signal processing activities are induced by receptor

clustering. The results show that bistability plays a major functional role by enabling

threshold switching between life and death states. Significantly, the analysis of the

model indicates potential key roles for ligand trimerism and receptor pre-association.

Thus, we can characterize insightful interpretations for these phenomena within the

unified context of bistability. The model suggests an additional cell death decision,

supplementing those that have been studied in the literature.

Critically, the proposed decision is implemented upstream at the very death recep-

tors that initially detect the death signal encoded by FasL. This decision is therefore

at the top in that it precedes all others in the system. Consequently, it operates

independently of all intracellular components and so offers a general mechanism for

bistability. Thus, receptor cluster-activation may explain how an effective apoptotic

decision is implemented in such cells.

We believe that the model provides an interesting hypothesis for experimental

biologists to test threshold of open Fas to induce apoptosis in a cell. The model

does provide a real qualitative level. The significance of this work hence lies in its

capacity to provide a hypothesis to test in future research. Also, looking at the Ho

and other’s model we see that the presence of the eigenvalues when we take Jacobian
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of the system may be an artifact of having an incomplete model. We think that it is

missing another hypothesis. We therefore readily invite experimentation which can

support or add to our hypothesis.
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