

STATISTICAL OPTIMIZATION OF TRAINING DATA FOR SEMI-SUPERVISED
TEXT DOCUMENT CLUSTERING	

By

Cody Newbold

A thesis submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE

in

Computer Science

Middle Tennessee State University

August 2017

Committee: Dr. Joshua L. Phillips, Dr. Chrisila Pettey, Dr. Cen Li

	
	

ii	

ABSTRACT

Unsupervised machine learning algorithms suffer from uncertainty that results are

accurate or useful. In particular, text document clustering algorithms such as Latent

Dirichlet Allocation (LDA) and Latent Semantic Analysis (LSA) give no guarantee that

documents are clustered in a manner similar to human readers. Using a semi-supervised

approach on text document clustering, we show that the selection of training data can be

statistically optimized using LDA and LSA. Using this method, a human reader

categorizes a percentage of the data as an analysis step, then feeds the partially-labeled

data into bootstrap training and testing steps. Using mutual information to discover

which documents were better for training, the algorithm does a post-processing step using

the optimized training set. The results show that mutual information values are higher

when the statistically optimized training set is used and indicate that human-like

performance is better achieved with optimized training data.	

	
	

iii	

TABLE OF CONTENTS

LIST OF FIGURES ... iv

LIST OF SYMBOLS AND ABBREVIATIONS .. vi

Chapter

I. INTRODUCTION ... 1

II. BACKGROUND ... 4

 Topic Modeling .. 4

 The Afghan War Diary ... 5

 Studies on the Afghan War Diary ... 6

 Overview of Latent Dirichlet Allocation .. 9

 Overview of Latent Semantic Analysis .. 10

 Motivation to Compare LDA and LSA .. 10

III. METHODS ... 12

 Reproducing the LDA and Model Tree Study .. 12

 Curating the Dataset ... 14

 Rewriting the LDA Code .. 15

 Implementing Latent Semantic Analysis .. 27

 Comparing the Two Algorithms ... 31

IV. RESULTS ... 33

V. DISCUSSION .. 40

BIBLIOGRAPHY ... 43

	
	

iv	

LIST OF FIGURES

Figure 1 – Overview of the topic modeling approach .. 4

Figure 2 – A sample report summary from the AWD .. 6

Figure 3 – A sample text summary from the AWD represented as a word cloud 8

Figure 4 – Sample LDA output, including the terms returned from a single run 10

Figure 5 – Model tree for the combined fatalities ... 14

Figure 6 – Percentage breakdown of human-labeled topic assignments 15

Figure 7 – The cluster_sort() function in R .. 17

Figure 8 – LDA cluster assignment joint probability distribution function 18

Figure 9 – LDA cluster assignment joint probability distribution function 19

Figure 10 – LDA cluster assignment joint probability distribution function 19

Figure 11 – The alpha values of LDA on 100 documents of the AWD 21

Figure 12 – A diagram of the data structure used to contain the MI values 23

Figure 13 – A portion of the MI vector ... 23

Figure 14 – LDA mutual information box plots for 50 testing documents 25

Figure 15 – Fold_in() function overview .. 28

Figure 16 – An excerpt of LSA output from one run of the algorithm 29

Figure 17 – Program logic for calculating mutual information medians 31

Figure 18 – Line plot of LDA and LSA median mutual information values 34

Figure 19 – Improvement between statistical analysis phase 36

Figure 20 – Line plot of LDA and LSA median mutual information values 37

Figure 21 – Improvement between statistical analysis phase 38

	
	

v	

Figure 22 – LDA and LSA partial labeling box plots ... 39

	
	

vi	

LIST OF SYMBOLS AND ABBREVIATIONS

AWD – Afghan War Diary

JDM – Joint Distribution Matrix

LDA – Latent Dirichlet Allocation

LSA – Latent Semantic Analysis

MI – Mutual Information

PPM – Point Process Modeling

SVD – Singular Value Decomposition

1	

	

CHAPTER I

INTRODUCTION

 In the Information Age, it has become difficult for many fields of study to

adequately process the large amounts of text data that exist [19, 5]. Specifically,

journalists often have trouble when receiving huge datasets that contain unknown

information to be able to report on the topics contained in them. Most people find

information they need either through searching the internet using keywords or by clicking

on relevant links [19]. Data is expanding in such a way that technology needs to enable

everyone to find information in a smarter way. While there are some tools in existence

that allow us to cluster and tag documents for analyses, the methods can be improved

[20].

 No clear solution has emerged that is best for categorizing a large, unsorted

volume of text documents. Much research has been done on topic modeling, and while

methods exist, they are not mainstream [12]. Topic modeling is difficult to accomplish

and must be tailored for each dataset, since it is important that the results be

comprehensible to humans [14]. There are also factors that must be adjusted, such as

model parameters and training data size, to make it work properly [15]. Building on two

methods that have been previously studied, we will focus on improving the ways to

model text and extract data from large datasets.

 The Afghan War Diary (AWD) serves as a prime example of a dataset chosen for

research, due to journalists' inability to gain meaning out of the 77,000 text reports

contained in it, in addition to its being leveraged by past research from others [6, 21].

The AWD is important because although it was processed by many professional data

2	

	

journalists, much information has yet to be extracted from it. Many of the analyses done

on the dataset by journalists were descriptive in nature, whereas the methods utilized by

computer scientists and statisticians obtained predictive results. Research has been done

on the AWD dataset using Latent Dirichlet Allocation (LDA) and point process modeling

(PPM), as well as other algorithms [6, 21].

Latent Semantic Analysis (LSA) is another algorithm that has popularity among

those seeking to gain a better understanding of unorganized text. LSA was first discussed

in a paper by Landauer et al. in 1998 and has been used in a multitude of studies

surrounding text analysis [1, 3, 2, 14]. For example, LSA was used to provide emotional

context of summaries from TV shows to generate user preferences [3]. Another study

used LSA to provide a solution for identifying spam with unsupervised algorithms [2]. In

a study done by Chang et al. that compared human performance to text modeling

algorithms, LSA is mentioned as one of the first topic modeling methods that attempted

to duplicate human selection when analyzing text [14].

While results from previous studies yielded a set of topics for the AWD dataset,

the unsupervised nature of LDA and LSA have introduced significant uncertainty on

whether the topic models produced were reflective of topic models humans might

produce. In most cases, similarity to human-like topic modeling would be preferred, but

efforts to better achieve human-like topic modeling of the AWD using the above

approaches have yet to be implemented.

In this study, we aim to improve the performance of unsupervised algorithms on

topic modeling of the AWD dataset by using a bootstrap statistical augmentation of the

LDA and LSA methods. This statistical analysis is applied to the topic clustering results

3	

	

from the two methods using manually labeled data. Grooming the LDA and LSA

methods using human-labeled data creates a process by which unsupervised algorithms

can be statistically molded to “think” more like humans. This approach is not distinct to

one method or dataset, but can be applied to any system that can be curated by hand.

Executing this semi-supervised technique on uncategorized datasets has potential to shed

much light on previously unexplored raw text.

4	

	

CHAPTER II

BACKGROUND

Topic Modeling

 Topic modeling is a way of distributing topics over documents to obtain a

collection of documents grouped into topics. Figure 1 shows how topic modeling is done

in several steps.

Figure 1. Overview of the topic modeling approach.

Tokenization segments text into a word array, typically breaking on punctuation

or whitespace characters. Removing stop words is done next, which removes words like

“for” and “the”, which do not contribute to the overall meaning of the document.

Stemming, which is the next step, is the process of reducing similar words to their roots.

For example, “planning”, “planner”, and “planned” would all reduce to “plan”. This

allows multiple, semantically-related word forms to be treated equally regardless of how

they are used in the language. Finally, a document-term matrix is created, which maps

each word to how frequently it occurred in the text. Topic modeling algorithms usually

differ in how they subsequently process the document-term matrix.

5	

	

Output from topic modeling algorithms can vary. With LDA, a list of terms by

topic is returned, along with a probability of topic membership for each document. LSA

produces a matrix of documents and terms, where correlated terms are in rows and

documents in columns. Each document is therefore quantified as a vector in a space of

correlated terms, allowing for ease of clustering into topics using a variety of statistical

clustering techniques. The output obtained in this study was a set of documents clustered

into topics, much like the output of data clustering, but using raw text instead of

quantitative data as input.

The Afghan War Diary

 The AWD is a set of nearly 77,000 documents detailing aspects of the

Afghanistan War that were previously unknown to the public, and this dataset has been

too large to be more than descriptively useful to journalists so far. The AWD was made

public on July 25, 2010, but was sent to the New York Times, the Guardian, and Der

Spiegel prior to it being released to the public. The dataset spans the years 2004 to 2009,

and contains time, position, and a brief summary of each event, among other fields. The

documents are one of the most complete looks at the Afghanistan War that is available to

the public [17]. Since the documents are such a massive set of data, many journalists,

including the three newspapers to which the dataset was originally sent, were not able to

adequately sort and analyze them. Although several news sources did analyze the

documents, much of the text data in specific was left uninvestigated, and it has been left

to computer scientists to do much of the processing of the text [21].

Figure 2 shows a sample report summary included in the AWD. This report

discusses a suspicious incident that occurred on a certain date, describing how a white car

6	

	

followed an ambassador’s motorcade. The incident seemingly did not result in any action

taken by the military. Someone wishing to get information on all the incidents of

surveillance during this time period would need to rely on a keyword search of the AWD

reports. Keyword searches, while valuable, require that a human know the exact words,

or at the very least synonyms, of the words they would like to search, as well as an

evaluation of the returned documents after the keyword search has taken place.

Therefore, for this type of large dataset, artificial intelligence becomes crucial for

adequate analysis of the text.

Figure 2. A sample report summary from the AWD.

Studies on the Afghan War Diary

A few studies have attempted to use the data in the AWD to predict the outcome

of incidents that occurred during the Afghanistan War, such as looking at fatalities and

intensity of conflict [16, 21, 17]. These methods succeeded in being useful to not just

7	

	

describe what was in the documents, but to gain more knowledge than was included in

the AWD metadata.

LDA and Model Trees

The LDA and model tree approach described by Rusch et al. was able to show

that fatality rates per incident could be obtained from just the text portion of the

documents [21]. Rusch et al. demonstrated that the AWD text can be modeled into topics

using LDA and model trees [21]. LDA is a process that was presented by Blei et al. in

2012 [18]. Although LDA is not limited to text applications, it is very useful for them

[18, 9, 5, 7]. LDA is a specific version of the broader study of topic modeling, of which

there are many varieties [4, 7].

Many studies have been done on LDA, including topic modeling solutions that

include searching for keywords after LDA preprocessing [11]. Some research used LDA

for automatically tagging short texts [12, 6, 8]. There was even a study done on using

LDA for the prevention of data leaks [10].

In the LDA and model tree approach, the results of the text modeling steps were

then used to create a model tree that contained partitioned topics and the frequency of

words used in them. Figure 3 shows a word cloud that very simply demonstrates how the

sample report summary from Figure 2 might be split into more and less used words.

8	

	

Figure 3. A sample text summary from the AWD represented as a word cloud,
demonstrating the LDA method of finding most-used words.

Point Process Modeling

Point process modeling was used to show that the intensity of conflicts could be

predicted using spatial and temporal data [17]. Zammit-Mangion et al. demonstrated that

by looking at data from 2004 to 2009, they could predict conflicts and intensity of

conflicts for a year after that [17]. Rusch et al. suggested combining the LDA and model

tree approach with the point-process modeling approach using spatial and temporal data

as the node model and partitioning the data based on the generated topics [21].

Continuing to study these documents may give further insight into the value of the

tools used for text modeling and statistical analysis. For example, combining the two

9	

	

methods could potentially improve the accuracy of the PPM model by leveraging the

quantitative summaries provided by LDA.

Overview of Latent Dirichlet Allocation

 Latent Dirichlet Allocation, or LDA, is a probabilistic model. Blei describes a

topic to be “a distribution over a fixed vocabulary” [19]. The method works in a few

steps [18]. First, a number of topics must be supplied to the algorithm. Then, a set of

topics is randomly spread over the document set using a Dirichlet distribution. After that,

for each word in each document, a topic is chosen from the first step, and a word is

chosen from the initial distribution [18]. This step is iterative, and the topic structure is

gradually improved as the algorithm continues over multiple runs. In this way, the topics

contained in the document set are discovered without any prior knowledge of what the

document contained. “The central computational problem for topic modeling is to use

the observed documents to infer the hidden topic structure,” describes the study by Blei et

al. [19]. That is the main idea behind the LDA method, to gather a hidden topic structure.

This can be considered opposite to a keyword search, where the topic structure is

considered known and the documents need to be produced.

 Figure 4 shows a sample run of the code used for the LDA approach described in

this study, where LDA attempts to select topic labels for each document set. The LDA

terms drawn from each topic are listed under the topic number. In this particular set of

documents, there was a high volume of documents that discussed the military having

discovered caches of weapons or ammunition (e.g. topics 4 and 5). In most of the runs of

the LDA code on this document subset, there are multiple topics with the term “cach” as

10	

	

the main term, which is most likely due to that word appearing in so many of the report

summaries.

Figure 4. Sample LDA output, including the terms returned from a single run.

Overview of Latent Semantic Analysis

Latent Semantic Analysis (LSA) is another topic modeling approach. LSA

combines a vector space model with singular value decomposition (SVD). In LSA,

tokenization, stop word removal, and stemming are all done prior to creating the

document-term matrix, where the text is converted into a text matrix, M, which is m x n

in size. SVD is then applied to the text matrix, M. The SVD can be calculated by:

𝑀 = 𝑈∑𝑉&

U is an m x n matrix, ∑ is an m x n matrix and V is an n x n matrix. U and V are

unitary matrices and ∑ is a diagonal m x n matrix containing the singular values of M.

In the code used to run the LSA method in this study, k-means was used to cluster

the documents from the LSASpace, the first k column vectors of the U matrix, into topics.

This provided us with a list of document numbers corresponding to the topic in which

they were placed, allowing us to quantitatively compare the LSA results with the LDA

results.

Motivation to Compare LDA and LSA

 Very few text analysis solutions have been used on the AWD in order to extract

information from the report summaries alone. In this research, we compared LDA and

11	

	

LSA using a bootstrap statistical method to improve them. Although the LDA and LSA

methods have been used separately on other datasets, they have yet to be compared

against each other while being tested on the AWD. Therefore, using these particular

topic modeling algorithms on the AWD dataset is a useful exercise. LDA was selected

due to its leverage in other studies on the AWD, in addition to its being a popular topic

modeling algorithm [21]. LSA was selected due to its having been tested in past studies

against human selection of topics [14].

Additionally, none of the previous studies on the AWD discussed ways in which

LDA and LSA might be modified to gain larger insight into what lies in the 77,000 report

summaries. Quantitatively contrasting LDA and LSA utilizing a statistical measurement

should provide more depth and detail than what researchers uncovered in the past.

12	

	

CHAPTER III

METHODS

The research presented here had five primary steps. The first was to reproduce

the LDA and model tree approach on the AWD as described by Rusch et al. [21]. The

second was to write LDA code that clustered 100 pre-labeled documents into five topics.

Thirdly, an LSA approach was written that created an LSASpace and clustered the 100

documents into five topics using k-means. The fourth step in the process was to compare

the two algorithms by statistically quantifying the topics returned from each one and

performing post-processing with machine-selected training values. After those four goals

were met, further analysis was done. The fifth step was to run both algorithms again

using only 10% of the labeled data and discarding the other 90% of the labels. Using this

partial labeling technique, it was hoped that the algorithms would still produce a training

set for post-processing that would improve the performance of LDA and LSA.

Reproducing the LDA and Model Tree Study

We reproduced the LDA and model tree approach using source code obtained

from the authors of the Rusch et al. study [21]. The code contained three phases and was

written in the R programming language. This code needed several minor edits due to

updates to the R language since the time it was written.

The three phases can be summarized as follows. Phase 1 completed the LDA and

created a document-term matrix with the raw dataset. Then, the rows in the AWD that

did not contain a summary were removed. Phase 2 removed the word “report” out of

each report, since all the summaries contained this word. Then, 100 topics were derived

13	

	

from the dataset, and the 30 most frequent terms from each topic were stored. Phase 3

cleaned the data and stored it to a file. Then, the analysis of the data was done using a

negative binomial S4 statistics model. Results were plotted into a tree based on the latent

topics.

The source code to create the tree was also written by the authors of the Rusch et

al. study [21]. The tree combined the topics discovered by LDA using a negative

binomial model and helped to predict the number of fatalities in the AWD by obtaining

the ten most frequent terms from the topics and the number of documents that were

assigned to them. This approach provided results that predicted the fatalities that

occurred during the span of the dataset.

Unfortunately, we were not able to produce the model tree from the raw AWD

dataset, even though we obtained the source code from the authors. Final data had been

saved at some point and allowed the tree to be created, but we were not able to produce it

by running their full analysis. This was possibly due to the age of the code and the

improvements made to the R language, but it appeared there were missing pieces of the

data and incomplete code fragments in the materials and source code provided by the

authors. Therefore, a full rewrite of the code was necessary to perform an LDA analysis

on the AWD. The model tree from the Rusch et al. study is shown in Figure 5.

The deficiency of the Rusch et al. code led to a manual curation of a 100-

document subset of the AWD. This was done to validate the performance of LDA and

LSA on the data.

14	

	

Figure 5. Model tree for the combined fatalities, created using a negative binomial
model. This figure was recreated for this study with pre-processed data and code

provided by Rusch et al. [21].

Curating the Dataset

To analyze how well the LDA and LSA methods were sorting the dataset, a

random 100-document subset of the Afghan War Diary was first extracted and sorted into

topics by hand for comparison. Figure 6 shows a breakdown of the percentages of human

labeled topics in a pie chart. We see that 54% of documents fell into one topic and 32%

into another.

15	

	

Figure 6. Percentage breakdown of human-labeled topic assignments.

The human labeled topics can be summarized as follows: Topic 1 –

Direct/Indirect Fire, Topic 2 – Cache/Mine/IED Found, Topic 3 – Explosion/Hostile

Action, Topic 4 – Surveillance/Reconnaissance, and Topic 5 – Propaganda. This curated

subset was used as the trusted data against which the remainder of the analysis was

tested. LDA and LSA were compared against the topics chosen by hand to review how

accurately each algorithm was categorizing the report summaries.

Rewriting the LDA Code

Beginning with a simple LDA example found online and code fragments from the

Rusch et al. study, the following LDA method was used for the initial test run of the

algorithm [21, 22]. Like the original source code from the Rusch et al. paper, the code

16	

	

for this research was written in R. The code for all analyses included in this paper is

publicly available online at https://github.com/varali/lda-lsa/.

The documents were read in from a CSV file, which was drawn from the original

AWD dataset. The hand-curated labels were contained in a separate file of two columns:

a document index that corresponded to each of the 100 documents and a topic number

from one to five. Then, the documents were mapped into topics using LDA.

Joint Distribution Matrices and Mutual Information

A heat map plot was created for each run of the program in the initial LDA testing

phase, which showed the confusion of the algorithm between different topics. The plot

was generated from a joint probability distribution, which was a matrix of probabilities

that correlated the machine-selected topic with the human-selected one. The y-axis of

this plot corresponded to the expected topic (human-selected) and the x-axis

corresponded to the topic in which the algorithm placed the document. The grid was

initialized to all zeroes, and was incremented for each testing value in the set, at the x-

value for the machine-selected topic number and the y-value for the human-selected topic

number. For instance, if the human-selected topic was two and the machine placed the

document in topic four, the grid was incremented at the location (4, 2). When all values

in the set had been incremented in their proper locations, the entire matrix was divided by

the total number of testing values, creating a joint probability matrix.

The topics were compared with the original human-labeled topics by passing

them through a function called cluster_sort() [23]. This function used the median value

of the indices of the topics to make sure that a difference in the arbitrary topic labels (i.e.

17	

	

1, 2, 3, 4, 5) per run would not constitute a difference in the logical topic in which the

document was placed. The cluster sort function is shown in Figure 7.

Figure 7. The cluster_sort() function in R. From Phillips, Colvin, and Newsam,
2011 [23].

The plots were constructed in heat map form, showing by color where exactly

LDA differed from the human-labeled choices from topic to topic. Three plots are shown

in Figures 8-10, one containing a low mutual information (MI) value, one a mid-range

value, and one a high value. The colors in the heat maps demonstrate how high the

probability was for all documents being placed in that topic, and the grid allows the

machine-selected topic to be correlated with the expected topic. The legend on the right

side of the graph shows how the probability values map to the colors. See Figures 8-10

for an example of this.

As for the MI values given at the top of each plot, those were calculated by

summing the rows and columns of the joint probability distribution matrix, then

computing the outer product of those vectors. The MI value is achieved by multiplying

the probabilities from the joint distribution matrix times the log2 of the joint distribution

matrix divided by the outer product of the marginal probability vector. The MI value

18	

	

measures the mutual dependence between the human-labeled documents and the

machine-labeled ones. The higher the MI value, the better the machine-selected topics

matched the human-selected topics. Mutual information can be calculated by the

following equation, where p(x, y) is the joint probability distribution and p(x) and p(y) are

the marginal probabilities.

𝐼 𝑋; 𝑌 = 	 𝑝 𝑥, 𝑦 log3
𝑝(𝑥, 𝑦)
𝑝 𝑥 𝑝(𝑦)

6789∈;

	

In Figures 8-10, a perfect match between the machine- and human-labeled choices

would be that all high-value color blocks fall on the upward diagonal of the chart, where

topic one meets one, two meets two, etc. This scenario would also produce the highest

MI.

Figure 8. LDA cluster assignment joint probability distribution function for a mutual
information value of 0.255979.

19	

	

Figure 9. LDA cluster assignment joint probability distribution function for a mutual
information value of 0.718642.

Figure 10. LDA cluster assignment joint probability distribution function for a mutual
information value of 0.944925.

20	

	

For the plot in Figure 8 with the mutual information value of 0.26, the LDA

algorithm aligned with the expected topic decently well for topic one. For the other

topics, however, LDA misclassified nearly all documents, and did not classify anything

correctly for topics three, four, and five. For topic three in particular, LDA put all of

them in topic two. Looking back at the pie chart of manually labeled data (Figure 6), we

see that topics three, four and five comprise only 3%, 5%, and 6% respectively, so it

could be that these topics are data starved, which is why the algorithm did not do well in

classifying them.

For the plot in Figure 9 with the mutual information of 0.72, LDA did better, as

evidenced by the upward diagonal of blue boxes. In this run, it put some of the right

documents into each topic, but it also did not accurately classify most documents that

should have been in topic two.

For the plot in Figure 10 with the highest mutual information value in this set, the

value of 0.94, the algorithm was quite accurate in classifying the documents in topic one

and some of the documents in topic two, but did not do very well in the other topics.

LDA continued to do badly when it came to putting documents into other topics when

they should have been classified in topic two.

As evidenced above, the confusion matrix provided a lot more information about

how LDA was classifying the documents. With better mutual information values, the

image plots tended to look cleaner and have simpler explanations on what went wrong

when the algorithm was run. Mutual information values were used to map how well the

algorithm was doing, while the heat map plots visualize how confused the algorithm was

against the curated topics.

21	

	

Calibrating the LDA Algorithm

After the LDA code was written, the alpha value in the LDA function was

adjusted and the mutual information value for each alpha was plotted. The alpha value is

a free parameter that controls the smoothness of the topic-term distributions, and must be

fit based on performance criteria independently for every dataset. It was shown that for

this dataset, the MI value peaked around the alpha values 5 and 50. A plot is shown

below of the alpha values at each exponential step of 10, where the values are peaking at

5 and 50. Near the 5 and 50 marks, where the algorithm did better, additional values of

alpha were sampled to see if there were better MI values to be gained near those alphas.

We chose to leave the alpha value at 50, since that seemed to be the optimal value for the

AWD dataset.

Figure 11. The alpha values of LDA on 100 documents of the AWD during the initial
study of the LDA algorithm.

22	

	

Training Set Optimization

Since so few of the AWD reports were used (100 out of 77,000), the algorithm

was run 10,000 times to obtain a median MI value for each document. Running the

algorithm so many times helped to make certain the median value would be accurate for

all documents since training/testing sets were chosen from a random sample each time.

For each run of the algorithm, a sample of 50 random documents was taken to be

used for training, while the rest were used in the test set. In the following example, 50

training documents and 50 testing documents were used. The R posterior() function was

used to predict the topics for the test set after the algorithm was trained using the lda()

function. This function calculated the probability that a test document should be in a

certain topic given the prior data that was used for training.

Every time a document was used in the test set, its MI value was calculated and

appended to the end of a vector of 100 lists. For this training/testing slice of 50/50, at the

program's end, there was a list of approximately 5,000 LDA MI values for each AWD

report in the subset. This information was recorded so that the results would show the

median MI value for each document, as well as a distribution of the MI values for each.

Figure 12 shows a diagram of the data structure created, and Figure 13 shows a code

output example of part of the MI vector.

23	

	

Figure 12. A diagram of the data structure used to contain the MI values for each
document.

Figure 13. A portion of the MI vector that was used to obtain medians for each document
in the AWD subset.

Once the data structure of each document’s MI values was obtained, the median

was computed for each document. This list of medians was sorted from greatest to least

24	

	

and the documents with the lowest median values were selected as the training set that

performed the best. This was based on the logic that whenever those documents were not

in the test set, the mutual information values were higher on average, therefore those

documents must be better for training. These selected training documents were used in

the post processing step to attempt to get a higher MI. Figure 14 contains box plots that

show the distribution of medians across the 50 testing documents that were used. This

figure provides a visualization of how a distribution of MI values across 10,000 runs

might result in a median MI value that could be used to gauge how well the document

performed for training.

The post processing step utilized the same code, but it only needed to be run once.

Instead of taking a random sample of 50 documents for training, only the 50 documents

with the lowest mutual information values were used.

The dataset was then sliced into different training and testing sections. The slices

were 10 training, 90 testing; 25 training, 75 testing; 50 training, 50 testing, 75 training, 25

testing; and 90 training, 10 testing. For each slice, the pre-processing step of 10,000 runs

was done, then the post-processing step was done, where the lowest mutual information

values that came from the testing data were used for training in the post-processing step.

In general, the number of training documents that were used in the statistical analysis step

were also used in the post-processing step. For example, if ten training values were used

in the initial statistical analysis step of 10,000 runs, the ten documents with the lowest

medians were taken to be used in training for the post-processing step.

25	

	

Figure 14. LDA mutual information boxplots for 50 testing documents.

LDA Partial Labeling

 The semi-supervised step for LDA required the following changes to the original

LDA statistical analysis code. Before the loop which ran through the algorithm 10,000

times, we drew a random “labeled” sample from the data. Even though all the data was

technically labeled, the 10 random samples we drew were the only labels used to

compute MI during each run. We took the sample before the looping began to simulate a

real life experience, where in a large dataset, a human would desire to label as few

documents as possible. Taking the sample at the beginning ensured that we only counted

the labels for exactly ten percent of the data.

26	

	

 The next consideration was to make sure that there was an adequate number of

labeled test documents. Since only 10 out of 100 documents were labeled and for certain

training/testing slices only 10 testing documents selected, it was necessary to check that

at least two of the documents in the resulting test set were “labeled”. This was due to the

fact that if there was only one testing document selected that was “labeled”, it would

either be in the correct topic or it would not be, completely skewing the MI value. When

a run of the code produced a set where less than two of the testing documents were

“labeled”, we simply skipped this run and calculated a new random sample of

training/testing documents.

 Aside from considering the case where only one testing document was “labeled”,

the partial labeling step was nearly identical to the statistical analysis step from above.

We ran the LDA algorithm 10,000 times, taking a joint distribution matrix plot and an MI

value each time. The difference was in the fact that when the cluster_sort() function was

run, we only considered the documents that were in the “labeled” set. If a testing

document was analyzed, but not in the labeled set, we assigned the MI value that was

computed for only the documents that were in the testing set and also marked as labeled.

For this semi-supervised approach, it was important that we run the LDA algorithm

10,000 times to be certain that the median values evened out if there were any singular

discrepancies in the MI values assigned to testing documents that were not in the labeled

set.

27	

	

Implementing Latent Semantic Analysis

Aside from the differences in the two algorithms, nearly the same path was

followed as was used for LDA to get the LSA method results. First, an initial run of LSA

was done to test the algorithm. Since LSA doesn't have any parameters (e.g. alpha in

LDA) to adjust, the only parameters that were analyzed were the ones that affected the k-

means function. For this, the seed was set to zero using set.seed(0) in R, then the number

of starts was set to ten. The number of starts was set to ten because during initial testing,

this was the lowest value where the same cluster assignments were produced for the same

slice of training and testing documents.

The goal for LSA was to return the same type of output that was returned from the

LDA algorithm, which was why k-means was used for clustering. This allowed us to get

the text data returned in the LSASpace clustered into topics, with 50 random reports

chosen for training each time and the rest of the documents being placed in the test set.

The R fold_in() function was used to calculate the topics for the test set after the

LSASpace was created using the training set. Folding in is typically used in the LSA

method in R to map additional documents (i.e. testing documents) into an existing

LSASpace after SVD has been done on the training set.

Initially, the document-term matrix was created using all the documents and split

into training and testing just prior to the lsa() step being done. This was to assure that all

the terms from both the testing and training sets were mapped into the LSASpace. After

splitting the document-term matrix into training and testing sets and running the lsa()

function, fold_in() was used to apply the testing set to the SVD done on the training set.

28	

	

The two spaces were then mapped back into the same LSASpace at the index where they

originally fell in the document-term matrix. This method is illustrated on a high level in

Figure 15.

Figure 15. Fold_in() function overview.

 Figure 16 shows a snippet of the output LSA produces. This snippet is a few

rows of a single column, or document, returned after the LSASpace was created. The

weight of each element in the figure below corresponds to the number of times it

appeared in the document. What can also be seen in Figure 15 is the stemming of the

words. For instance, the word “locat” below could mean that “locate”, “locating”, or

“located” appeared in the LSASpace.

29	

	

Figure 16. An excerpt of LSA output from one run of the algorithm.

 Then, a distance matrix was computed from a text matrix version of the

LSASpace, and weighting was done using the R function cmdscale(). This function

returned a points matrix of five columns, where the rows contain coordinates of the

points representing similarities in the data. This matrix was put into the k-means

clustering function, which returned a list of documents corresponding to the topics in

which they were placed.

The topics were then put into the cluster_sort() function to ensure the topics

would not vary solely due to different topic values assigned. For example, the topic

numbers (1, 2, 3, 4, 5) would be assigned at random, so there was no guarantee the same

logical topic would be assigned the same topic number each time. See Figure 7 for the

code for cluster_sort().

The joint distribution matrix plots for the LSA algorithm were created as

described above for LDA (see Figures 8-10).

30	

	

LSA Partial Labeling

 When completing the LSA partial labeling code, it was necessary to ensure that

the randomly selected testing data contained at least two instances of “labeled” data,

identical to the method explained in the LDA section above. For LDA, the probability

that the testing documents selected would be in different topics was high, since LDA

tended to choose varied topic assignments. For LSA, however, this was not the case.

LSA tended to group most of the documents into one topic, only assigning a few

documents (usually 4 out of 100) to the other topics. Therefore, the testing documents

that were considered “labeled” and fell into the randomly selected test set needed to be

checked to make sure they were also in different topics. Frequently, all of the testing

documents that were in the “labeled” set were all in the same topic assignment, so those

were skipped and a new random selection was calculated.

 In all other ways, the LSA partial labeling code mirrored the method that was

done in the LDA partial labeling code. The MI values were calculated only from the

human-labeled set that were included both in the randomly selected testing set and in the

preselected labeled set that was done at program start. Whatever value of MI that was

computed for those was applied to all items in the testing set. It was hoped that over

10,000 runs, enough MI values would be calculated for each document that the overall

median would be accurate.

31	

	

Comparing the Two Algorithms

Figure 17 contains the broad program logic that was used for both LDA and LSA.

This was considered to be the statistical analysis step. The number of iterations was

always set to 10,000.

Figure 17. Program logic for calculating mutual information medians for LDA and LSA.

As an overview, after the 10,000 runs of each algorithm were complete, the

documents with lower mutual information values were considered to be better training

documents, since the mutual information values were higher when they were used for

training. With this information, a training set of the best documents were used to do one

32	

	

final run of each algorithm. The median value from this run was put over a boxplot of

the 100 previous median values to gauge performance of the post processing step.

The two algorithms were simple to compare, due to the fact that a single mutual

information value was returned for both. A higher mutual information value meant a

better result when each algorithm was compared to the human-labeled data. In addition

to viewing the MI value, each algorithm output a heat map plot for each run of the

program, showing a five by five grid of the human-labeled data versus the machine-

labeled data (see Figures 8-10).

33	

	

CHAPTER IV

RESULTS

 The method behind the approach used in this study yielded definitive results. For

each run of the post-processing step for both LDA and LSA, the MI value was higher

than in the statistical analysis step that preceded it. In the semi-supervised approach that

followed, this held true as well. A short overview of the results follows.

The full method consisted of analysis on 100 randomly selected documents out of

approximately 77,000 reports from the AWD. The 100 report subset was curated by

hand, each document being placed into one of five topics. The statistical analysis step

was done using all the labels, and median values of MI were gathered. The post-

processing step proved that the MI value over 10,000 runs of the algorithm improved

using training documents selected during the statistical analysis step.

 The semi-supervised step used only ten percent of the human labels. Mutual

information values were assigned by the algorithm to the testing documents, but only

using the ten labels that were pre-selected randomly before the beginning of the program

run. The post-processing step showed that the MI value rose using only ten percent of

the human labels. Using two separate topic modeling algorithms, LDA and LSA, with

the semi-supervised approach, we were able to show that having a human partially label

ten percent of the AWD subset gained significant improvement in MI.

 Figure 18 shows a line plot comparing LDA and LSA median MI values during

the statistical analysis steps and the post-processing steps when all 100 of the labels were

used. The plot shows that median MI values using the statistically selected training

34	

	

documents were always higher. The post-processing MI medians can be seen in the plot

below by viewing the blue line for LDA and the green line for LSA.

Figure 18. Line plot of LDA and LSA median mutual information values during
statistical analysis and post-processing with training sets of 10, 25, 50, 75, and 90

documents.

 Examining the median values on the line plots in Figure 18 yields the following

conclusions. Both algorithms undoubtedly performed better when the 90-slice of training

values was used. LDA in particular had very predictable results with regard to the

median value rising as more training values were utilized. LSA had a dip between the 10

and 25 slices and the line chart resembles a U-curve. After passing the 50-slice of training

data, the median for LSA began to rise again to peak at the 90 slice.

35	

	

 When compared to each other, we see that initially, LSA performed better than

LDA, viewing the orange and green LSA lines in Figure 18. This is likely due to the fact

that when examining the actual topic assignments LSA produced, we saw that LSA

almost always grouped every item into one topic, only assigning a few documents into

the remaining topics. When compared against the human labeled topic assignments, this

aligns moderately well.

Looking back at the pie chart of hand-curated topics (see Figure 6), we recall that

most of the documents fell into topics one and two. If LSA confused the wording in

topics one and two, putting the two groups together, this is highly likely the reason that

LSA achieved such a high mutual information value for the 10-slice training set.

LDA in particular had a high rate of change between the statistical analysis step

and the post-processing step, suggesting it benefitted more greatly from the statistical

bootstrapping than did LSA. Figure 19 shows the improvement in MI in the two steps for

each algorithm.

Regardless of how LDA and LSA performed against one another, the most

important result to consider is how they performed against themselves in the semi-

supervised statistical analysis step versus the post-processing step. There was not a

single case where the post-processing step did not outperform the statistical pre-analysis.

This makes the case that selecting the best training data via quantitative mutual

information values is a viable way to improve performance in these two algorithms.

36	

	

Figure 19. Improvement between statistical analysis phase and post-processing phase for
LDA and LSA.

For the semi-supervised step, LDA and LSA individually performed better than

they had in the partially labeled statistical analysis step, suggesting that using only some

of the labels for these algorithms provides performance much like using all of the labels.

Figure 20 compares LDA and LSA in the partial labeling step versus its post-processing.

It is worthwhile to note that the training slices for LSA do not follow the pattern

established in the previous plots, as only training slices of 10, 25, 50, and 75 are present.

The 90 training slice has been left out due to the way in which LSA tended to categorize

the documents. Since LSA always grouped almost all documents into the same topic

when running the statistical analysis step, it was nearly impossible to generate a sample

of ten testing documents that were in two different topics, which was needed when

37	

	

calculating MI. LSA needed to frequently resample to find such a state, making it

extremely time consuming to run. In 24 hours, LSA had completed less than 100 runs of

the needed 10,000. For this reason, the 90 training slice for the LSA partial labeling step

was not completed.

It is also worthwhile to compare the results from Figure 18 with Figure 20. The

fully-labeled analysis (Figure 18) greatly outperformed the partially-labeled analysis

(Figure 20). This is to be expected, as the algorithm is functioning with only ten percent

of the information in the semi-supervised step as it had in the fully-labeled step.

Figure 20. Line plot of LDA and LSA median mutual information values in the partial
labeling and post processing stages.

38	

	

We also show a bar chart below in Figure 21 of the improvement in LDA and

LSA MI values when run in the post-processing step versus a semi-supervised statistical

analysis that used only 10% of the labels. As a reminder, the 90 training slice for LSA is

not present due to the exorbitant length of time that slice required to run. We see again

that LDA seemed to benefit more greatly than LSA by the used of this approach.

Figure 21. Improvement between statistical analysis phase and post-processing phase for
LDA and LSA during the partial labeling step.

Figure 22 shows the results in boxplot form. These boxplots demonstrate that the

one run done with the training values selected from the partially labeled 10,000 runs has a

median value much greater than any value from the statistical analysis step. The red dot

is the MI value from the post-processing run using the training values from the statistical

39	

	

analysis step of partially labeled values. Boxplots of LDA and LSA for each slice of

training/testing sets are shown, except for the LSA 90/10 training/testing slice, which

took too long to run.

These plots demonstrate the rarity of randomly sampling to get a set of training

documents that produces a high MI value for the 100-document subset. Even the outliers

from each set of values usually do not approach the MI value for the post-processing

represented by the red dot. Only in the 25 training slice of LSA does the MI value from

the post-processing step come close to the highest outlier in the median MI values from

the statistical analysis step.

The boxplots in Figure 22 were generated by taking the median MI for each

document in the statistical analysis step. That means they are generated using 100 values

each, whereas the red dot is the single MI value obtained from the post-processing step.

Figure 22. LDA and LSA partial labeling box plots for all sample training/testing sets.

40	

	

CHAPTER V

DISCUSSION

 Statistical analysis is common among supervised machine learning algorithms, but

in the past has not frequently been able to be used for unsupervised algorithms such as

LDA and LSA. This is due to the difficulty in figuring out a quantitative method by

which unsupervised algorithms can be measured. Our results have shown promise using

a semi-supervised approach. By statistically analyzing the data in the AWD, we have

shown that mutual information values get higher when just ten percent of the data is

labeled by humans. The human labeled data is used as the measure by which the

unsupervised algorithms are calibrated and training set optimization allows the

algorithms to perform in as human-like a manner as possible.

 We have shown that this method is effective on two different text modeling

algorithms, LDA and LSA. Both of these methods have been proven in prior research to

be useful for categorizing unsorted and non-curated data when using them in their

natural, unsupervised states. We have used both of them in a semi-supervised way to

attempt to improve upon their performance.

 LDA seemed to benefit more greatly from the semi-supervised approach. Since it

initially put the documents into more varied topics, we suspect that it was able to better

hone in on which topics were more accurate after the better training documents were

gathered together. Since LSA tended to group most of the documents into one topic, it

had less room to improve.

 LSA initially had higher MI values, but they did not rise greatly as more and better

training documents were selected. The MI values did rise consistently after the post-

41	

	

processing step, but at a less steep rate than LDA. This is likely due to the fact that LSA

was often categorizing most of the documents into the same topic. However, the LSA

also benefitted from the training data being filtered into which documents produced

higher MI values.

 This work should improve the methods used by journalists in the way that data

from data leaks is analyzed and given to the public. By allowing a data scientist to use

unsupervised machine learning algorithms such as LDA and LSA in a semi-supervised

way, more information might be gleaned from the results of the topic modeling.

Combining human curation of datasets with machine learning methods and tracking the

results with statistical analysis provides a way to monitor how well previously

unsupervised algorithms are sorting the data.

 A drawback of this technique is that having humans pre-label the data gives the

potential for the data to be mislabeled. Any mislabeling of the data at the beginning of

the program run would skew the pruning of the algorithm, providing erroneous results.

 In the future, we would like to compare LDA and LSA to a null model to see how

well they are doing against topics that are randomly sorted instead of comparing them to

human sorted documents. This has the potential to validate that the algorithms are

categorizing reports as a human would since performance on randomized data is, by

contrast, hypothesized to be completely random as well.

 In addition, it might be helpful to change the number of topics we ask the

algorithms to use. In particular, the fact that LSA mainly put the documents into one

topic each time could mean one of two things. It could mean that the documents use

similar wording and LSA is accurately putting them into topics, just too broadly. It also

42	

	

could mean LSA needs to be told to use more topics, therefore increasing the granularity

of the clustering.

 Due to the massive amount of report summaries included in the AWD, it was quite

difficult to run this analysis on the full dataset. With enough time, however, it would be

interesting to curate ten percent of the entire dataset, approximately 7000 reports, and let

the analysis run with all of the data to verify that the method holds true. That would most

likely entail adding more topics, as it is not presumed that the 77,000 records contain

only the five topics discussed in this study.

 Future work could also include combining the LDA method with point process

modeling for a predictive approach to the data contained in the AWD. The point process

modeling approach was able to track intensity of conflict in space and time, so choosing

LDA documents that increased the effectiveness of the geospatial and temporal analysis

might glean some interesting results. That could be done using the semi-supervised

method in this study to filter the training data by documents that were shown to be better

at clustering documents based on a certain attribute that was determined to be helpful for

the point process method.

 Another method of combining the two methods would be to access some

quantitative data generated by the LDA step, such as the partitioned topics and add them

to the PP modeling approach. For instance, the PP modeling was done by finding the

distance to each city that was listed as a latitude and longitude point, then mapping the

intensity to that location. Having information included from the LDA step would also

make this process more precise, since modeling the topics in advance gave more details

about the type of fatality that occurred in most instances.

43	

	

BIBLIOGRAPHY

[1] T. K. Landauer, P. W. Folt, and D. Laham, “An introduction to latent semantic
analysis,” Discourse Process., vol. 25, no. 2, pp. 259–284, 1998.

[2] F. Qian, A. Pathak, Y. C. Hu, Z. M. Mao, and Y. Xie, “A case for unsupervised-
learning-based spam filtering,” ACM SIGMETRICS Perform. Eval. Rev., vol. 38,
no. 1, pp. 367–368, 2010.

[3] M. K. Petersen and A. Butkus, “Modeling emotional context from latent
semantics,” ACM Int. Conf. Proceeding Ser. Vol. 291, p. 3, 2008.

[4] V. Ha-Thuc, Y. Mejova, C. Harris, and P. Srinivasan, “A relevance-based topic
model for news event tracking,” Proc. 32nd Int. ACM SIGIR Conf. Res. Dev. Inf.
Retr. - SIGIR ’09, no. 1, p. 764, 2009.

[5] D. Newman, C. Chemudugunta, and P. Smyth, “Statistical entity-topic models,”
Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discov. data Min. - KDD ’06, p. 680,
2006.

[6] E. Diaz-aviles, M. Georgescu, A. Stewart, and W. Nejdl, “LDA for On-the-Fly
Auto Tagging,” Evaluation, pp. 309–312, 2010.

[7] E. Yao, G. Zheng, O. Jin, S. Bao, K. Chen, Z. Su, and Y. Yu, “Probabilistic text
modeling with orthogonalized topics,” Proc. 37th Int. ACM SIGIR Conf. Res. Dev.
Inf. Retr. - SIGIR ’14, pp. 907–910, 2014.

[8] R. Mehrotra, S. Sanner, W. Buntine, and L. Xie, “Improving LDA Topic Models
for Microblogs via Tweet Pooling and Automatic Labeling,” Proc. 36th Int. ACM
SIGIR Conf. Res. Dev. Inf. Retr., pp. 889–892, 2013.

[9] H. Misra, O. Cappé, and F. Yvon, “Using LDA to detect semantically incoherent
documents,” Proc. Twelfth Conf. …, no. August, pp. 41–48, 2008.

[10] D. Du, L. Yu, and R. R. Brooks, “Semantic Similarity Detection For Data Leak
Prevention,” Proc. 10th Annu. Cyber Inf. Secur. Res. Conf. - CISR ’15, pp. 1–6,
2015.

[11] I. Bhattacharya, “Query Classification using LDA Topic Model and Sparse
Representation Based Classifier,” Adv. Intell. Syst. Comput., vol. 469, 2016.

[12] Q. Diao, J. Jiang, F. Zhu, and E. Lim, “Finding Bursty Topics from Microblogs,”
Acl, no. July, pp. 536–544, 2012.

44	

	

[13] T. Rusch, P. Hofmarcher, K. Hornik, and R. Hatzinger, “Modeling Mortality Rates
In The WikiLeaks Afghanistan War Logs,” Knowl. Creat. Diffus. Util., no.
September, 2011.

[14] J. Chang, S. Gerrish, C. Wang, and D. M. Blei, “Reading Tea Leaves: How
Humans Interpret Topic Models,” Adv. Neural Inf. Process. Syst. 22, pp. 288--296,
2009.

[15] H. M. Wallach, D. Mimno, and A. Mccallum, “Rethinking LDA : Why Priors
Matter,” Adv. Neural Inf. Process. Syst. 22, vol. 22, no. 2, pp. 1973–1981, 2009.

[16] J. O ’loughlin, F. D. W. Witmer, A. M. Linke, and N. Thorwardson, “Peering into
the Fog of War: The Geography of the WikiLeaks Afghanistan War Logs,”
Eurasian Geogr. Econ., vol. 51, no. 4, pp. 472–495, 2010.

[17] A. Zammit-Mangion, M. Dewar, V. Kadirkamanathan, and G. Sanguinetti, “Point
process modelling of the Afghan War Diary.,” Proc. Natl. Acad. Sci. U. S. A., vol.
109, no. 31, pp. 12414–9, 2012.

[18] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,” J. Mach.
Learn. Res., vol. 3, no. 4–5, pp. 993–1022, 2012.

[19] D. Blei, L. Carin, and D. Dunson, “Probabilistic topic models,” IEEE Signal
Process. Mag., vol. 27, no. 6, pp. 55–65, 2010.

[20] M. Brehmer, S. Ingram, J. Stray, and T. Munzner, “Overview: The Design,
Adoption, and Analysis of a Visual Document Mining Tool For Investigative
Journalists,” IEEE Trans. Vis. Comput. Graph., vol. 2626, no. c, pp. 1–1, 2014.

[21] T. Rusch, P. Hofmarcher, R. Hatzinger, and K. Hornik, “Model trees with topic
model preprocessing: An approach for data journalism illustrated with the
Wikileaks Afghanistan war logs,” Ann. Appl. Stat., vol. 7, no. 2, pp. 613–639,
2013.

[22] Jurka, Timothy P. "Getting Started With Latent Dirichlet Allocation Using
Rtexttools + Topicmodels". RTextTools: a machine learning library for text
classification. N.p., 2011. Web. 7 June 2016.

[23] J. L. Phillips, M. E. Colvin, and S. Newsam, “Validating clustering of molecular
dynamics simulations using polymer models,” BMC Bioinformatics, 2011.

