
A Duality between hypergraphs and cone lattices

A Thesis

Presented to the Faculty of the Department of Mathematical Sciences

Middle Tennessee State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Mathematical Sciences

by

Zack French

May 2018

Thesis Committee:

Dr. James Hart, Chair

Dr. Medha Sarkar

Dr. Dong Ye



I would like to dedicate this work to Minerva, without whose favor none of this

would be possible. May I continue to garner her favor in my future endeavors.

ii



ACKNOWLEDGMENTS

More than anyone I would like to thank Dr. Hart. His seemingly infinite pa-

tience has kept me on path despite despite complications near the end. I am also

very appreciative that he took the time in the beginning of my career into theoret-

ical mathematics to explain (very slowly at times) many of the concepts I would

need. Moreover, I would like to thank Dr. Hart for allowing me to contribute to

some of his work. I hope to one day approach a degree of competency as a re-

searcher and mentor that will do him honor. Furthermore, may my whiteboard

writing be a quarter as neat.

iii



ABSTRACT

In this paper, we introduce and characterize the class of lattices that arise as the

family of lowersets of the incidence poset for a hypergraph. In particular, we show

that the following statements are logically equivalent:

1. A lattice L is order isomorphic to the frame of opens for a hypergraph en-

dowed with the Classical topology.

2. A lattice L is bialgebraic, distributive, and its subposet of completely join-

prime elements forms the incidence poset for a hypergraph.

3. A lattice L is a cone lattice.

We conclude the paper by extending a well-known Stone-type duality to the cate-

gories of hypergraphs coupled with finite-based HP-morphisms and cone lattices

coupled with frame homomorphisms that preserve compact elements.
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CHAPTER 1

PARTIALLY ORDERED SETS AND LATTICES

In this and the succeeding chapter, our intention is to establish the basic tenants

of order- and lattice-theoretic notions that are crucial in establishing the results

in chapters 4 and 5. The exhibition of this material is routine, and the interested

reader can find a broader introduction to this material in several sources. For in-

stance, similar exhibitions can be found in Davey and Priestley [9], Gratzer [13],

and Birkhoff [3]. While these resources were used in developing the theory used

throughout, the proofs provided are the author’s own unless specifically stated

otherwise. A reader interested in a modified Moore-method approach to this ma-

terial is encouraged to visit the Journal of Inquiry Based Learning in Mathematics,

No. 44 for an appropriate set of notes.

In this section, we will introduce some definitions and concepts about posets

that will play a key role in the development of the subject in subsequent sections. It

stands to reason that we should begin with a few definitions; and that is primarily

what this section consists of.

A partially ordered set (or poset for short) is a system P = (P,≤) consisting of a

set P and a binary relation ≤ on the set P satisfying the following conditions:

1. For all x ∈ P , we have x ≤ x (reflexivity).

2. If x ≤ y and y ≤ x, then x = y (antisymmetry).

3. If x ≤ y and y ≤ z, then x ≤ z (transitivity).

The binary relation ≤ defined above is called a partial ordering on the set P .

Note that we are using a convention customary with binary relations — we write

x ≤ y to mean (x, y) is a member of ≤.
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The set Su(X) of all subsets of a set X is partially ordered by set inclusion. That

is, the binary relation ⊆ defined by

A ⊆ B ⇐⇒ a ∈ B for all a ∈ A

is a partial ordering on Su(X). The relation is partial in the sense that not all mem-

bers of Su(X) are related under subset inclusion. For example, if X = {x, y, z},

then the subsets A = {x, y} and B = {y, z} are not related by subset inclusion.

Two elements x, y of a poset P = (P,≤) are said to be comparable provided x ≤ y

or y ≤ x. We sometimes say that x is below y (or that y is above x). If this is not the

case, we say that x and y are incomparable and write x ‖ y. (Note: The notation for

incomparability is not universally used.)

In a poset P we write x < y to mean that x ≤ y but y 6≤ x. In this case, we say

the inequality is strict. It is acceptable to write x ≥ y when y ≤ x, though we will

not often have need of this convention.

A poset P is said to be a chain (or totally ordered) provided every element is

comparable to every other element in P ; that is, for all x, y ∈ P , we have x ≤ y or

y ≤ x. The positive integers under their natural ordering is an example of a chain.

At the other extreme, we say a poset P is an antichain provided x ≤ y only when

x = y. Note that the empty set and singleton sets are the only sets which are both

a chain and an antichain under any partial ordering.

Definition 1.1. Let P = (P,≤) be any poset. The order dual of P is defined to be the

system Pop = (P,≤op) where x ≤op y ⇐⇒ y ≤ x. We usually denote the order

dual of a poset P by simply writing P op.

Given any “statement” Φ about a poset P, we can obtain its “dual” simply by

replacing every occurrence of ≤ in the statement with ≥. This simple fact gives

rise to an important feature of order theory known as the duality principle:
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A statement Φ is true of all posets if and only if its dual is also true of all posets.

This simple observation will often be used to shorten proofs, particularly when

the conjecture to be proved consists of two parts, one part the dual of the other. In

such cases, we will prove one part and state that the other “follows by duality”.

Any subset Q of a poset P may be regarded as a poset in its own right under

the restriction to Q of the partial ordering on P. When viewed in this manner, we

say the subset Q is a subposet of P. There are two particularly important examples

of subposets we will be using:

Definition 1.2. Let P = (P,≤) be a poset and let L ⊆ P . We say that L is a lowerset

(or order ideal) of P provided, whenever x ∈ P is such that x ≤ y for some y ∈ L,

then x ∈ L. An upperset (or order filter) of P is defined to be a lowerset of Pop. We

let Low(P) denote the set of all lowersets for P, partially ordered by set inclusion,

and let U(P) denote the set of all uppersets of P partially ordered by reverse set

inclusion (that is, A ≤ B in U(P) if and only if B ⊆ A).

Definition 1.3. Let P = (P,≤) be a poset and let X ⊆ P . The set

↓X = {p ∈ P : p ≤ x for some x ∈ X}

is called the lower set generated by X in P. Likewise, the set

↑X = {p ∈ P : x ≤ p for some x ∈ X}

is called the upperset generated by X in P.

A lowerset generated by a singleton is called a principal lowerset; it is often

denoted by ↓x instead of ↓{x}.



4

Definition 1.4. Let P = (P,≤) be a poset. We say that x ∈ P is minimal in P

provided ↓x = {x}. A maximal element in P is a minimal element in Pop.

Definition 1.5. Let P = (P,≤) be a poset. We say P has a least element provided

P has exactly one minimal element. We say that P has a greatest element provided

Pop has a least element. We use ⊥ and > to denote the least and greatest elements,

respectively, of P (when they exist).

A poset which has a least element is said to be lower-bounded. A poset which

has a greatest element is said to be upper-bounded. A bounded poset has both a least

and a greatest element.

Definition 1.6. Let P = (P,≤) be a poset and let X ⊆ P . We say that X is bounded

below (or has a lower bound in P provided there exist y ∈ P such that y ∈ ↓x for

all x ∈ X . We say that X is upper-bounded in P provided it is lower-bounded in

Pop. We let m(X) and j(X) denote the set of all lower-bounds and upper-bounds,

respectively, for X .

1.1 Some Important Classes of Posets

In this section, we introduce a few of the fundamental classes of posets that will

play a role in all of the work to follow.

Definition 1.7. Let P be a poset and let X ⊆ P . We say that X has an infimum (or

greatest lower-bound) in P provided m(X) has a greatest element. This element is

known as the meet of X in P and is denoted by
∧
X . Likewise, we say that X has

a supremum (or least upper bound) in P provided j(X) has a least element. This

element is known as the join of X in P and is denoted by
∨
X .

When X = {x1, ..., xn} has a meet in a poset P, we often denote it by
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∧
X = x1 ∧ ... ∧ xn

and likewise denote the join of X in P by

∨
X = x1 ∨ ... ∨ xn

Note the use of the logic operations of conjunction and disjunction to denote the

finite meets and joins.

Proposition 1.8. If P = (P,≤) is any poset, then P is lower-bounded if and only if
∨
∅

exists in P.

Proof. If we suppose P is lower bounded, there exists an element ⊥ ∈ P such that

⊥ ≤ p for every p ∈ P . We observe that ⊥ is an upper bound for ∅, and is therefore

the least such element, hence
∨
∅ = ⊥. On the other hand, if the equation holds,

we observe that such an element must be the least such element of P and therefore

serves as a lower bound.

Definition 1.9. A poset J is called a join semilattice provided every pair of elements

in J has a join in J. We say that a poset P is a meet semilattice provided Pop is a join

semilattice.

The notion of a join-semilattice can easily be extended to closure under finite

joins using mathematical induction.

Definition 1.10. A poset L is said to be a lattice provided it is both a join and a meet

semilattice.

An identity for a lattice is a particular equation which holds true for all elements

in a given lattice. We will look at several identities, some enjoyed by all lattices;
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other enjoyed only by certain lattices. These identities will prove useful in much

of the work to follow.

Proposition 1.11. Let L be a lattice, and let x, y, z ∈ L. The following identities hold.

1. x ∨ y = y ∨ x

2. x ∧ y = y ∧ x

3. (x ∨ y) ∨ z = x ∨ (y ∨ z)

4. (x ∧ y) ∧ z = x ∧ (y ∧ z)

5. x ∨ x = x

6. x ∧ x = x

7. x ∨ (x ∧ y) = x

8. x ∧ (x ∨ y) = x

Proof. We will prove claims 1,3,5, and 7. Claims 2,4,6, and 8 follow by duality.

1. One consideration we make is

x ∨ y =
∨
{x, y} =

∨
{y, x} = y ∨ x

To better illustrate, we demonstrate the uniqueness of the supremum in-

duced by the antisymmetry of ≤. We observe that if x ≤ y, then x ∨ y =

y ∨ x = y. Similarly, if y ≤ x, then x ∨ y = y ∨ x = x. If x || y, then there

exist z1, z2 ∈ L such that x ∨ y = z1 and y ∨ x = z2. Since L is a lattice, we

know there exists w = z1 ∧ z2. If w, x, y are each distinct elements of L, we

must have x, y < w since w is the greatest lower bound for z1 and z2. But this

contradicts the claim that z1 and z2 are least upper bounds. If w = y, then

y is the greatest lower bound for z1 and z2. This implies x ≤ y, contrary to

assumption. A similar contradiction occurs if w = x, so we must conclude

z1 = z2.
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3. It is sufficient to observe that x ∨ (y ∨ z) =
∨
{x, y, z} = (x ∨ y) ∨ z.

5. We observe that x is certainly an upper bound for itself. Indeed, if x were not

the least upper bound when compared to itself, then there must exist some

x0 < x such that x0 is an upper bound for x. This notion is absurd, so we

conclude that the inequality holds. It also suffices to note that since ≤ is

antisymmetric, it is reflexive, hence x ∨ x = x.

7. First, we recognize that x ≤ (x ∨ z) and (x ∧ z) ≤ x for any x, z ∈ L. Suppose

z = x ∧ y. Then

x ≤ x ∨ z = x ∨ (x ∧ y) ≤ x ∨ x = x

We may therefore conclude claim 7 holds.

Viewed as binary operations on L, Claims 1.11 (1) - (4) tell us that ∧ and ∨ are

commutative and associative. Claim 1.11 (5)-(6) tell us that ∧ and ∨ are idempotent.

Identities (7) and (8) in Claim 1.11 are called the absorption laws.

We can think of meets and joins in a lattice L as defining binary operations on

the underlying set:

1. Define ∨ : L × L −→ L by ∨(x, y) = x ∨ y

2. Define ∧ : L × L −→ L by ∧(x, y) = x ∧ y

Let L be a set equipped with binary operationsm and j which are commutative,

associative, idempotent, and satisfy the absorption laws. Define binary relations

on L as follows:

1. x ≤ y ⇐⇒ m(x, y) = x

2. x w y ⇐⇒ j(x, y) = y
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We begin by making the following observations: since m and j are commuta-

tive, associative, idempotent, and satisfy the absorption laws, we must have

x = m(x, j(x, y)) = j(x,m(x, y))

y = m(y, j(x, y)) = j(y,m(x, y))

for any x, y in L. If x ≤ y, then x = m(x, y). Then

y = j(y,m(x, y)) = j(y, x) = j(x, y)

hence x w y. Similarly, is x w y, then j(x, y) = y. It follows that

x = m(x, j(x, y)) = m(x, y)

and x ≤ y. From here we define j(x, y) := x ∨ y and m(x, y) := x ∧ y and observe

that

x ≤ y ⇐⇒ x = x ∧ y ⇐⇒ y = x ∨ y

Since L is endowed with the absorption property, we know each element in L

can be expressed as the composition of the join (or meet) of that element with the

meet (join) of that element with any other in L. This implies that the join (and

meet) of each pair of elements exists; indeed if it failed in a single instance then the

resulting absorption relation would be undefined. Therefore, it follows that L is a

lattice under ≤.

In light of the previous paragraphs, we can think of a lattice L either as a poset

in which every pair of elements has a meet and a join, or we may think of a lattice

as a triple L = (L,∧,∨), where L is a set, ∧ and ∨ are binary operations which

are commutative, associative, idempotent, and satisfy the absorption laws. Both

viewpoints are useful.

Definition 1.12. Let L = (L,∨,∧) be a lattice. A subset S of L is said to be a

sublattice of L provided S is closed under the restrictions of ∨ and ∧ to S.
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Definition 1.13. Let P be a poset. A subposet D of P is directed provided every

finite subset of D has an upper bound in D. A directed lowerset of P is called an

ideal of P.

Directed sets are sometimes called up-directed, but this is not standard. Note

that directed sets are by definition nonempty. A directed set in Pop is said to be

filtered (or down-directed) in P.

Let P be a poset and suppose D ⊆ P is directed. Since D is directed, we know

that any finite F = {f1, f2, . . . , fn} ⊆ D has an upper bound df ∈ D. Similarly,

any finite subset of Dx will be of the form Fx = {x ∧ f : f ∈ F} for some finite

F ⊆ D. Since x ∧ f ≤ x ∧ df for all f , we know every finite Fx has an upper

bound in Dx, hence Dx is directed. This tells us that if x ∈ P , we observe that

Dx = {x ∧ d : d ∈ D} is directed, provided Dx is nonempty.

Our next result characterizes a very important class of posets:

Lemma 1.14. Let P be a poset. The following statements are equivalent:

1. Every subset of P has a meet in P .

2. Every subset of P has a join in P .

3. P is both a lower-bounded join semilattice and a DCPO.

Proof. In all that follows, let S ⊆ P .

1⇒ 2 Suppose P satisfies (1) and let SU be the set of all upper bounds of S in P . We

know that SU is nonempty since
∧
∅ = > acts as an upper bound for P . By

definition,
∧
SU ≤ y for every y in SU . We also observe that every x ∈ S is a

lower bound for SU , and consequently x ≤
∧
SU for every x ∈ S since

∧
SU

is the greatest lower bound for SU . This means that
∧
SU is an upper bound

for S, hence
∧
SU ∈ SU . This means that

∧
SU is the least upper bound for

S; that is
∧
SU =

∨
S, and since our choice of S was arbitrary, we have the

desired implication.
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2⇒ 3 Suppose P satisfies (2); that is, P is closed under arbitrary joins. Note that

this implies that P is bounded below since
∨
∅ = ⊥ acts as a lower bound for

P . Clearly, (2) guarantees that P is a join semilattice. Furthermore, (2) tells

us that every directed subset of P has a join in P , hence P is a DCPO.

3⇒ 1 Suppose P satisfies (3) and let SL be the set of all lower bounds for S. We

know that SL is nonempty since P is lower bounded. We claim that SL is

directed. To see this, consider X ∈ Fin(SL). Since X is finite,
∨
X ∈ P .

Furthermore, since every element of S is an upper bound for X ,
∨
X is a

lower bound for S, hence
∨
X ∈ SL, and SL is therefore directed.

Since SL is directed, it follows that
∨
SL ∈ P . By the way we defined SL,

every member of S is an upper bound for SL. That is
∨
SL ≤ x, ∀x ∈ S. This

shows
∨
SL ∈ SL, and by definition of join, this means that SL has a greatest

element. That is,
∨
SL =

∧
S, which is what we intended to show.

Definition 1.15. A poset P is complete provided every subset of P has a meet

(equivalently, a join) in P. Complete posets are often called complete lattices.

Every finite lattice is necessarily complete. Note that the real numbers under

their natural ordering form a chain which is not complete. Also, whenever S is

an infinite set, the collection Fin(S) of finite subsets of S is not a complete lattice

under the partial ordering of subset inclusion.

Definition 1.16. We say that a poset P can be order embedded in another poset Q

provided there exists an isotone injection f : P −→ Q.

Suppose P is a poset. One important example of an order embedding is the

mapping p 7→ ↓p, which embeds P into L; consequently every poset can be em-

bedded into a complete lattice.
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Definition 1.17. Let P be any poset. An ideal of P is a directed lowerset of P, and

a filter of P is a directed lowerset of Pop. Let Idl(P) denote the family of all ideals

of P, partially ordered by set inclusion. Let Fil(P) denote the family of all filters

of P, partially ordered by reverse set inclusion.

It should be noted that a filter F in a poset P is an upperset that is down directed.

That is, if A ⊆ F is finite, then A has a lower bound in F . It should also be noted

that Fil(P) is the order dual of Idl(Pop). (Thus, we consider G ≤ F in Fil(P )

provided F ⊆ G.)

Let L = (L,≤) be a join semilattice and let I ⊆ L be nonempty. The notion that

I is a lowerset of L with the property that x∨ y ∈ I whenever x, y ∈ I is equivalent

to claiming I is a directed lowerset (i.e. an ideal). Of course, the dual of this notion

tells us that if M = (M,≤) is a meet semilattice and F ⊆ M , then F is a filter of M

if and only if F is an upperset with the property that x ∧ y ∈ F whenever x, y ∈ F .

1.2 Zorn’s Lemma and the Axiom of Choice

No discussion of basic order theory would be complete without an investigation

of Zorn’s Lemma (which is neither a lemma nor attributable solely to Max Zorn,

one of its early defenders).

Let P be a nonempty poset. If every chain in P has an upper bound in P, then P has a

maximal element.

The previous, rather innocuous-looking statement is what has come to be known

as Zorn’s Lemma. It is generally taken as an axiom for order-theorists and plays

a vital role in transfinite induction, as well as many existence proofs. As a quick

example, recall that a basis for a vector space V over a field is a maximal, linearly in-

dependent subset. We can use Zorn’s Lemma to prove that every nontrivial vector

space has a basis.
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To see how, let V be any nontrivial vector space over a field F . Since the under-

lying set V is not a singleton by assumption, we may select a vector ~v in V which

is not the zero-vector. Clearly this vector is linearly independent when viewed as

a singleton; hence, V contains linearly independent subsets. Now, let P (V ) denote

the set of all linearly independent subsets of V , partially ordered by set-inclusion,

and let C ⊆ P (V ) be any chain. Since every member of C is a linearly independent

subset of V , it follows that S =
⋃
C is also a linearly independent subset of V (the

fact that C is a chain under set-inclusion is critical here). The set S clearly serves

as an upper bound for C in P (V ); hence we know that P (V ) contains a maximal

member by Zorn’s Lemma. Any such member is the basis we seek.

Lemma 1.18. The following statements are equivalent for any nonempty poset P :

1. If every chain in P has an upper bound in P, then P has a maximal member.

2. If every chain in P has a least upper bound in P, then P has a maximal member.

3. P contains a maximal chain.

Proof. In order the show the equivalence of these statements, we will show

(1) ⇒ (2), (2) ⇒ (3), and (3) ⇒ (1). (1) ⇒ (2) is trivial, because if (1)

holds and every chain in P has a least upper bound, then every chain in P is

bounded and therefore has a maximal element.

To see that (2)⇒ (3), we proceed by contraposition. To that end, assume that

no chain in P is maximal. Then for any chain C ⊆ P , we can find a chain

C ′ ⊆ P where C ⊂ C ′. This implies that for any c ∈ C, there exists c′ ∈ C ′

where c < c′. Consequently P has no maximal element.

In order to see that (3) ⇒ (1), suppose (3) holds and that every chain in P

has an upper bound. Let C be a maximal chain in P and suppose p ∈ P is an

upper bound of C. Then, for any c ∈ C, we know c ≤ p.
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We claim that p ∈ C. If not, then C ∪ {p} is a chain in P where C ⊂ C ∪ {p},

contradicting maximality.

Similarly, we claim that p is maximal in P . If not, then there exists p′ ∈ P

where p < p′. But then C ∪ {p′} is a chain in P where C ⊂ C ∪ {p′}, again

contradicting maximality. Hence p is maximal in P .

The previous lemma gives two axioms equivalent to Zorn’s Lemma. The fol-

lowing claim gives several more.

Theorem 1.19. Let P be a nonempty poset. An element p ∈ P is proper provided p 6= >.

If P has no greatest element, then every element of P is proper. The following statements

are equivalent.

1. If every chain in P has an upper bound in P, then P has a maximal element.

2. If every chain in P has a proper upper bound in P, then every chain is contained in

a maximal chain.

3. If every chain in P has a proper upper bound in P, then every chain has a maximal

upper bound in P.

4. If F is a partially ordered family of sets with the property that
⋃
C ∈ F for every

chain C ⊆ F , then F has a maximal element.

5. If F is a partially ordered family of sets with the property that a set U is a member of

F if and only if every finite subset of U is a member of F , then for all A ∈ F , there

exists a maximal member of F containing A.

Proof. In order the show the equivalence of these statements, we will show (1) ⇒

(2), (2)⇒ (3), (3)⇒ (4) , (4)⇒ (5), and (5)⇒ (1).

(1)⇒ (2) We will show (1) ⇒ (2) by contraposition. Suppose we have a chain

C ⊆ P that is not contained in a maximal chain. But this implies that C itself
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is not maximal, and since it is not contained in a maximal chain, we must

have an unbounded chain, hence condition (1) does not hold.

(2)⇒ (3) Now suppose (2) holds, with the condition that every chain has a proper

upper bound, and let C ⊆ P be a chain. We know we can find a maximal

chain C ⊆ P where C ⊆ C. We also know we can find a proper p ∈ P where p

is an upper bound of C.

We claim p ∈ C. If not, then c < p for all c ∈ C. But then C ∪ {p} ⊆ P is a

chain where C ⊂ C ∪ {p}, which contradicts the maximality of C. This also

implies that p is maximal in P . To see why, suppose there is a q ∈ P where

p < q. We may assume q is proper, because C ∪ {q} is a chain. But then

C ⊂ C∪{q}, again contradicting maximality. Since p is an upper bound for C,

it is an upper bound for C, and (3) directly follows from here.

(3)⇒ (4) Let F be a partially ordered family of sets with the property that
⋃
C ∈

F for every chain C ⊆ F . Suppose (3) holds. If F itself is a chain, then⋃
F ∈ F would be maximal, so suppose F is not itself a chain. Then we

are not guaranteed that F has a top element. If
⋃
F /∈ F , we know we have⋃

C ∈ F for every chain in C ⊆ F , and, since F is ordered by set inclusion,⋃
C is a proper upper bound for C. Since we assume that (3) holds, we know

that F has a maximal element, and (4) follows from here.

(4)⇒ (5) Suppose (4) holds and let F be a partially ordered family of sets with

the property that a set U is a member of F if and only if every finite subset of

U is a member of F . Let A ∈ F and suppose that G ⊆ F is the family of all

sets in F containing A. Let C ⊆ G be a chain and suppose
⋃
C /∈ G.

By construction, A ⊆
⋃
C since all elements of G contain A. Furthermore, G

is the family of all sets in F containing A, so it follows
⋃
C /∈ F . This means

that there exists a finite C ⊆
⋃
C that is not in F . But C ⊆

⋃
C means that
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there exist some C ∈ C such that C ⊆ C, and C /∈ F violates the finite set

membership property of F , hence no such C exists. Therefore we must have⋃
C ∈ F and, since A ⊆

⋃
C,
⋃
C ∈ G.

Since our choice of C ⊆ G was arbitrary, we may conclude that there exists a

maximal M ∈ G. We know that A ⊆M , and (5) follows from here.

(5)⇒ (1) Suppose (5) holds and let P be a poset where every chain in P has an

upper bound in P . Observe that a subset C ⊆ P is a chain if and only if every

finite subset of C is a chain, and by (5) there exists a maximalAC ∈ Su(C) such

that ↓Cc ∈ AC (where ↓Cc is a descending chain in C), for all c ∈ C. Since by

hypothesis C has an upper bound, we must have a ∈ AC such that C = ↓Ca;

that is a is maximal in C.

Applying Zorn’s Lemma is sometimes whimsically referred to as Zornication.



16

CHAPTER 2

LATTICES

2.1 Modular and Distributive Lattices

In this chapter, we will explore some of the major properties that lattices can sat-

isfy. We begin with what is likely one of the most important properties from an

historical perspective. The property takes the form of an identity and is inspired

by one of the fundamental properties relating set union and set intersection, as

well as a related property enjoyed by all rings.

Definition 2.20. Let L = (L,∧,∨) be a lattice. We say that P is distributive provided

joins distribute over meets and vice-versa. That is, for all x, y, z ∈ L, we have

• x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

• x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

The concept of distributivity is self-dual; that is, a lattice is distributive if and

only if its order dual is distributive. Interestingly enough, we can say even more

than this — the two distributive conditions are actually equivalent, as the following

result shows.

Lemma 2.21. Let P be a lattice and let x, y, z ∈ L. Then x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

if and only if x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

Proof. Assume the first equation, then observe that the absorption laws give us
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(x ∨ y) ∧ (x ∨ z) = [(x ∨ y) ∧ x] ∨ [(x ∨ y) ∧ z]

= x ∨ [(x ∨ y) ∧ z]

= x ∨ [(x ∧ z) ∨ (y ∧ z)]

= [x ∨ (x ∧ z)] ∨ (y ∧ z)

= x ∨ (y ∧ z)

Hence, the first equation implies the second. The fact that the second equation

implies the first follows by duality.

Under their natural ordering, the integers form a sublattice of the lattice of real

numbers, as do the rational numbers. Given any set S, the set Fin(S) of all finite

subsets of S forms a (distributive) sublattice of Su(S).

One useful observation about distributivity is that the inequality

(x ∧ y) ∨ (x ∧ z) ≤ x ∧ (y ∨ z)

holds in any lattice. First, observe for any x, y, z ∈ L (where L = (L,≤) is distribu-

tive), x∧y, x∧z ≤ x, which implies (x∧y)∨(x∧z) ≤ x. On the other hand, x∧y ≤ y

and x ∧ z ≤ z, so (x ∧ y) ∨ (x ∧ z) ≤ y ∨ z. We have shown that(x ∧ y) ∨ (x ∧ z) is

a lower bound for both x and (y ∨ z). It is therefore a lower bound for x ∧ (y ∨ z),

hence (x ∧ y) ∨ (x ∧ z) ≤ x ∧ (y ∨ z) holds in any lattice. Hence, to prove that a

lattice is distributive, one need only establish the reverse inequality.

Let S5 = {⊥, a, b, c,>} and let N5 = (S5,≤), where a ∨ b = b ∨ c = >, a ∨ b = b,

a ∧ c = ⊥. We observe that every pair of elements has a meet and a join, and since

N5 is finite, it follows that it is a complete lattice. Now consider

(a ∧ b) ∨ (b ∧ c) = a ∨ ⊥ = a
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while

b ∧ (a ∨ c) = b ∧ > = b

In this case (a ∧ b) ∨ (b ∧ c) < b ∧ (a ∨ c), which shows N5 is a lattice that is not

distributive.

Now suppose M5 = (S5,≤), where a∨ b = b∨ c = a∨ c = > and a∧ b = a∧ c =

b ∧ c = ⊥. We observe this is also a lattice. Now consider

(a ∧ b) ∨ (b ∧ c) = ⊥ ∨⊥ = ⊥

while

b ∧ (a ∨ c) = b ∧ > = b

In this case (a∧ b)∨ (b∧ c) < b∧ (a∨ c), which showsM5 is also a lattice that is not

distributive.

The lattice M5 is called the nondistributive diamond; the latticeN5 is simply called

the pentagon. These substructures play a crucial role in identifying distributive lat-

tices. However, in order to do so, we must identify precisely when these substruc-

tures appear in relation to distributive lattices.

Definition 2.22. A lattice L is said to be modular (or weakly distributive) provided,

for all x, y, z ∈ L, z ≤ x implies that

x ∧ (y ∨ z) = (x ∧ y) ∨ z

Let L be a distributive lattice and suppose, for x, y, z ∈ L we have z ≤ x. Then

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) = (x ∧ y) ∨ z

Hence L is modular. The lattice M5 is also modular, but it is not distributive. Let

x, y, z ∈M5 such that z ≤ x. If z = x, we have

x ∧ (y ∨ x) = (x ∧ y) ∨ x = x
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by the absorption laws. We may therefore assume that z < x. If x ∈ {a, b, c}, then

z = ⊥ and

x ∧ (y ∨ ⊥) = x ∧ y = (x ∧ y) ∨ ⊥

If x = >, then

> ∧ (y ∨ z) = (y ∨ z) = (> ∧ y) ∨ z

In any case, the equality holds and M5 is indeed modular. We will verify that there

exist lattices which are not modular. In particular, consider N5. Observe that

a ∧ (b ∨ c) = a ∧ > = a

while

(a ∧ b) ∨ c = a ∨ c = >

and the non-distributive pentagon is not modular. Though this is a particular ex-

ample, we shall now see that it can be extended generally.

Theorem 2.23. A lattice is modular if and only if it does not contain the pentagon as a

sublattice.

Proof. Let L = (L,∧,∨) be a lattice, and suppose that J is a sublattice of L. If J is

not modular, then there exist x, y, z ∈ J such that z < x but x∧ (y∨ z) 6= (x∧ y)∨ z.

Since x, y, z ∈ L, it follows that L is not modular. Consequently, if L is modular,

we see that L cannot contain the pentagon as a sublattice.

On the other hand, suppose that L is not modular. Then there exist x, y, z ∈ L

such that z < x but (x ∧ y) ∨ z < x ∧ (y ∨ z). We will use this fact to construct a

pentagon in L. Let a = z ∨ y, b = x ∧ y, c = (x ∧ y) ∨ z and d = x ∧ (y ∨ z). We will

prove that {a, b, c, d, y} forms a pentagon.

By assumption, c < d. Also, we must have b < y < a. To see why, notice first

that clearly b = x∧ y ≤ y. If b = y, then we have y ≤ x. However, if this is the case,

then
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(x ∧ y) ∨ z = y ∨ z

Thus, by assumption, we have y ∨ z < x ∧ (y ∨ z) — an impossibility. Thus, we

must have b < y. To see that y < a, again first note that y ≤ y ∨ z = a. If y = a, then

we must have z ≤ y. Therefore,

x ∧ (y ∨ z) = x ∧ y

Thus, by assumption, we have (x∧ y)∨ z < x∧ y — an impossibility. We therefore

must have y < a.

Now, suppose y ≤ c. By assumption, we know

y < d = x ∧ (y ∨ z)

This implies that y ≤ x. That means c = (x ∧ y) ∨ z = y ∨ z = a, and by

assumption c = y ∨ z < x ∧ (y ∨ z) = d — an impossibility.

On the other hand, if c = (x ∧ y) ∨ z ≤ y, then z ≤ y. It follows that d =

x ∧ (y ∨ z) = x ∧ y = b. This means d ≤ c — contrary to assumption.

From here, it is easy to see that c ∧ y = b, d ∨ y = a, and we have the pentagon.

Lemma 2.24. For a lattice L, the following statements are equivalent.

1. The lattice L is modular.

2. For any x, y, z ∈ L we have (x ∧ y) ∨ (x ∧ z) = x ∧ (y ∨ (x ∧ z)).

3. For any x, y, z ∈ L we have (x ∨ y) ∧ (x ∨ z) = x ∨ (y ∧ (x ∨ z)).

Proof. We will show (1) is true if and only if (2) is true; the equivalence of (3) follows

by duality. Suppose L is modular, and observe that x∧z ≤ x for any x, z ∈ L. From

here we have

(x ∧ y) ∨ ((x ∧ z) = x ∧ (y ∨ (x ∧ z))
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by modularity.

Conversely, if the inequality holds and z ≤ x, we have

(x ∧ y) ∨ z = (x ∧ y) ∨ ((x ∧ z) = x ∧ (y ∨ (x ∧ z)) = x ∧ (y ∨ z)

and L is modular.

Let L be a lattice which satisfies the following identity:

(D1) For all x, y, z ∈ L, (x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z) = (x ∨ y) ∧ (y ∨ z) ∧ (x ∨ z)

We can use the absorption laws to show that every lattice that satisfies this identity

is modular. Indeed, if we suppose x, y, z ∈ L, we may assume z < x. Otherwise, if

x = z, (D1) reduces to x = x by the absorption laws (the other cases are identical).

Observe that

(x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z) = (x ∨ y) ∧ (y ∨ z) ∧ (x ∨ z) ⇔

(x ∧ y) ∨ (y ∧ z) ∨ z = (x ∨ y) ∧ (y ∨ z) ∧ x ⇔

(x ∧ y) ∨ [z ∨ (y ∧ z)] = [x ∧ (x ∨ y)] ∧ (y ∨ z) ⇔

(x ∧ y) ∨ z = x ∧ (y ∨ z) ⇔

Hence L is modular. We can actually say more than that, which the next lemma

will demonstrate.

Lemma 2.25. A lattice L is distributive if and only if it satisfies Identity D1.
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Proof. Suppose L is distributive. Observe that

(x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) = [x ∨ (y ∧ z)] ∧ (y ∨ z)

= (y ∧ z) ∨ [x ∧ (y ∨ z)]

= (y ∧ z) ∨ (x ∧ y) ∨ (x ∧ z)

= (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)

Hence (D1) holds.

Conversely, suppose (D1) holds. Then for any x, y, z ∈ L, there exists ω ∈ L

such that

ω = (x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z) = (x ∨ y) ∧ (y ∨ z) ∧ (x ∨ z)

If we consider x ∨ ω, we observe

x ∨ ω = [x ∨ (x ∧ y)] ∨ (x ∧ z) ∨ (y ∧ z)

= [x ∨ (x ∧ z)] ∨ (y ∧ z)

= x ∨ (y ∧ z)

On the other hand, by modularity we have

x ∨ ω = x ∨ (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z)

= x ∨ (x ∨ y) ∧ (y ∨ z) ∧ (x ∨ z)

= x ∨ [x ∨ [y ∧ (y ∨ z)]] ∧ (x ∨ z)

= [x ∨ x] ∨ y ∧ (x ∨ z)

= (x ∨ y) ∧ (x ∨ z)

That is, x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z), for any x, y, z ∈ L and L is distributive.
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Let L be a modular lattice. Let x, y, z ∈ L and let

• u = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z)

• v = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)

• a = (y ∧ z) ∨ [x ∧ (y ∨ z)]

• b = (x ∧ z) ∨ [y ∧ (x ∨ z)]

• c = (x ∧ y) ∨ [z ∧ (x ∨ y)]

We claim a ∨ b = a ∨ c = b ∨ c = u; will prove the case for a ∨ b.

a ∨ b = (y ∧ z) ∨ [x ∧ (y ∨ z)] ∨ (x ∧ z) ∨ [y ∧ (x ∨ z)]

= [(y ∧ z) ∨ x] ∧ (y ∨ z) ∨ [(x ∧ z) ∨ y] ∧ (x ∧ z)

= (y ∧ z) ∨ [x ∧ (y ∨ z) ∨ (x ∧ z) ∨ y] ∧ (x ∧ z) (By associativity)

= (y ∧ z) ∨ (y ∨ z) ∧ x ∨ y ∨ (x ∧ z) ∧ (x ∨ z) (By communitivity)

= (y ∨ z) ∨ (y ∧ z) ∧ x ∨ y ∨ (x ∧ z) ∧ (x ∨ z) (By communitivity)

= (y ∨ z) ∨ (y ∧ z) ∧ x ∨ y ∨ (x ∧ z) ∧ (x ∨ z) (By communitivity)

= [(y ∨ z) ∨ (y ∧ z)] ∧ [(x ∨ y) ∨ (x ∧ z)] ∧ (x ∨ z) (By associativity)

= (y ∨ z) ∧ (x ∨ y) ∧ (x ∨ z) (Since x ∧ z ≤ x ≤ x ∨ y and y ∧ z ≤ y ∨ z)

= u
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The cases for a ∨ c and b ∨ c are similar. We observe that

aop = [(y ∧ z) ∨ [x ∧ (y ∨ z)]]op

= (y ∨ z) ∧ [x ∨ (y ∧ z)]

= [(y ∧ z) ∨ x] ∧ (y ∨ z) (By communitivity)

= (y ∧ z) ∨ [x ∧ (y ∨ z) (By associativity)

= a

This tells us that a is its own order dual. The cases for bop and cop are similar.

We also observe that v is the order dual of u, hence a ∧ b = a ∧ c = b ∧ c = v

(note uop = (a ∨ b)op = a ∧ b, so this claim is dual to that found above). Now, if

χ ∈ {a, b, c}, idempotency assures that χ = χ ∧ χ = χ ∨ χ. Since each χ is its order

dual, we may conclude if u = χ ∨ χ, then

v = χ ∧ χ = χ = χ ∨ χ = u

If L is distributive, then Lemma 2.25 tells us L satisfies (D1). That is, u = v, for

every u, v ∈ L. On the other hand, if L is not distributive, there exist u, v ∈ L such

that v < u. It is worth noting that in this case a, b, c ∈ L are distinct. We are now

ready to establish the main result from this section.

Theorem 2.26. A lattice is distributive if and only if it does not contain the pentagon N5

or the non-distributive diamond M5 as a sublattice.

Proof. Suppose L is distributive. Note this is true if and only if every sublattice of

L is also distributive, hence L cannot contain the pentagon or the non-distributive

diamond as a sublattice.

Conversely, if L does not contain the pentagon as a sublattice, we know that

L is modular by Theorem 2.23. If L is not distributive, we will use the preceding
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paragraph to prove that L contains the non-distributive diamond as a sublattice.

To that end, let x, y, z ∈ L be distinct and let

• u = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z)

• v = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)

• a = (y ∧ z) ∨ [x ∧ (y ∨ z)]

• b = (x ∧ z) ∨ [y ∧ (x ∨ z)]

• c = (x ∧ y) ∨ [z ∧ (x ∨ y)]

. Since L is not distributive, we know v < u and a,b, and c are distinct elements.

Suppose χ, γ ∈ {a, b, c} such that χ < γ. Then

χ ∨ γ = u = γ

and

χ ∧ γ = v = χ

However, there remaining element ζ ∈ {a, b, c} satisfies

χ ∧ ζ = v = χ

so χ < ζ , and

ζ ∨ γ = u = γ

But then χ < ζ < γ means ζ ∧ γ = ζ , contradicting the condition that χ∧ γ = ζ ∧ γ,

so it follows that a, b, and c are incomparable. This also implies v < χ < u for

each χ ∈ {a, b, c}, and {a, b, c, u, v} ⊆ L forms the non-distributive lattice. By

contraposition, we conclude a modular lattice is distributive if and only if it does

not contain the non-distributive lattice, which finishes the proof.
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From here, we have established one of the most fundamental properties of dis-

tributive lattices. Indeed, we shall make use of the forbidden substructures ofM5

and N5 to verify that certain properties are exclusive to distributive lattices. We

end this section with the following lemma, which gives a kind of “cancellative”

property that characterizes distributive lattices.

Lemma 2.27. A lattice L is distributive if and only if, for all x, y, z ∈ L, x ∨ y = x ∨ z

and x ∧ y = x ∧ z together imply that y = z.

Proof. Suppose L is a distributive lattice and, for x, y, z ∈ L we have x ∨ z = x ∨ y

and x ∧ y = x ∧ z. Observe

y = y ∨ (x ∧ y)

= y ∨ (x ∧ z)

= (x ∨ y) ∧ (x ∨ z)

= x ∨ y (idempotency)

= x ∨ z

= x ∨ (z ∧ (y ∨ z))

= (x ∨ z) ∧ (y ∨ z)

= z ∨ (x ∧ y)

= z ∨ (x ∧ z)

= z

On the other hand, consider the case where M5 or N5 is a sublattice of L. Recall

that in both cases, > = a ∨ c = b ∨ c and ⊥ = a ∧ c = b ∧ c. However, a < b in N5,

and a || b in M5, therefore if L is not distributive, there exist x, y, z ∈ L such that
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we have x ∨ y = x ∨ z and x ∧ y = x ∧ z while y 6= z. Therefore, by contraposition,

our claim holds.

2.2 Prime and Maximal Ideals

In this section, we introduce the notion of prime and maximal ideals. Although

the results later in this paper makes little direct use of these objects, they lay the

necessary groundwork for the results to come. As such, we will establish some

important results regarding these particular classes of ideals.

Definition 2.28. Let L be a lattice. A ideal I 6= L of L is said to be prime provided

a ∧ b ∈ I always implies that a ∈ I or b ∈ I .

Claim 2.29. The following statements are equivalent for a proper ideal I of a lattice L :

1. I is a prime ideal of L.

2. L− I is a filter of L.

3. L− I is a prime filter of L.

4. For all ideals J,K of L, if J ∩ K ⊆ I, then J ⊆ I or K ⊆ I.

Proof. (1)⇒ (2) Suppose I ∈ Idl(L) is prime. This implies that L− I is nonempty.

If we let x ∈ I and y ∈ L− I, we observe that since I is closed under join that

we either have x < y or x || y. If x < y then x ∨ y = y. If x || y, then y < x ∨ y.

Suppose that x ∨ y ∈ I. Then

y = y ∧ (x ∨ y) ∈ I

contradicting the fact that these sets are disjoint. So x ∨ y ∈ L− I and L− I is

closed under outside join.
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Now, if we have y1, y2 ∈
∧
{y1, y2}, we note that

∧
{y1, y2} exists since L is a

lattice. In fact
∧
{y1, y2} ∈ L− I since y1, y2 /∈ I and I is prime. It follows from

here that L− I is closed under meet, and L− I is therefore a filter of L.

(2)⇒ (3) Suppose that L − I is a filter of L. Since ideals are nonempty we know

that L− I ⊂ L. Suppose that x∨y ∈ L− I and x /∈ L− I. This means that x ∈ I,

and if y ∈ I, then x∨ y ∈ I. But this is impossible since L− I and I partition L,

hence y ∈ L− I. It follows from here that L− I is prime.

(3)⇒ (4) Suppose that (3) holds and let J,K ∈ Idl(L)) where J ∩ K ⊆ I and

K * I . We may assume that J ∩K is nonempty. To that end, we must have

j ∧ k ∈ I for every j ∈ J and k ∈ K.

Suppose we have j? ∈ L−I for some j? ∈ J . Since K * I , then K−I ⊆ L−I

is nonempty. Since L− I is a filter, it is closed under meet. That is, for every

k− ∈ K − I and l− ∈ L − I , we have k− ∧ l− ∈ L − I . This also implies that

for every k− ∈ K − I , we have j? ∧ k− ∈ L − I . But j? ∧ k− ∈ J ∩ K since

j? ∈ J and k− ∈ K, and since J ∩K ⊆ I , this implies I ∩ (L− I) 6= ∅, which

it absurd. Hence no such j? exists and we may conclude that J ⊆ I .

(4)⇒ (1) We assume that (4) holds and suppose the we have an ideal I . Assume

that x, y ∈ L are such that x∧ y ∈ I . It follows that (x]∩ (y] ⊆ I ; hence, either

(x] ⊆ I or (y] ⊆ I . It follows that x ∈ I or y ∈ I , hence I is prime.

Another useful characterization of prime ideals in distributive lattices is that a

proper ideal P of a lattice L is prime if and only if for any I, J ∈ Idl(L), I ∩ J = P

implies I = P or J = P . In order to do so, we make use of the fact that Idl(L) is

distributive precisely when L is distributive (consider the order embedding p 7→

↓p; Idl(L) will containM5 orN5 as a sublattice if and only if L contains one or the

other). First, we assume that I ∩ J = P implies I = P or J = P and suppose I, J are
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such that P ? = I ∩ J ⊆ P and consider I∗ = I ∪ P and J∗ = J ∪ P . Since Idl(L) is

distributive, we observe

I∗ ∩ J∗ = (I ∪ P ) ∩ (J ∪ P )

= (I ∩ J) ∪ P

= P ? ∪ P

= P

By assumption we have I∗ = P or J∗ = P , and by extension of the absorption

property of ∪we have I = P or J = P .

To see that the converse is true, we proceed by contrapositive. That is, we

suppose that P = I ∩ J for some I, J ∈ Idl(L) where P 6= I and P 6= J . This

means there exist i ∈ I and j ∈ J where i, j /∈ P . Since I and J are ideals, i ∈ I and

j ∈ J implies i∧ j ∈ I and i∧ j ∈ J . This means that i∧ j ∈ I ∩ J = P . But i, j /∈ P

implies that P is not prime. We may therefore conclude that a proper ideal P of L

is prime if and only if I ∩ J = P implies I = P or J = P for all ideals I, J of L.

A proper ideal of a lattice L is maximal provided it is a maximal element of

Idl(L)− {L}. If L has a greatest element, we can use Zorn’s Lemma to prove that

every proper ideal of L is contained in a maximal ideal of L. Let I ∈ Idl(L) be

proper and let I ⊆ Idl(L) be the family of all proper ideals containing I . Note that

> /∈
⋃
I, so any member of this family is a proper ideal of L.

Suppose we have a chain C ⊆ Idl(L). Since C is ordered by set inclusion, we

know that for any distinct Jx, Jy ∈ C we have either Jx ⊂ Jy or Jy ⊂ Jx. We observe

that
⋃
C = {x : x ∈ Ji, Ji ∈ C}, so for any arbitrary xα ∈ Jα and xβ ∈ Jβ where

Jα ⊂ Jβ in C, we have xα ∨ xβ ∈ Jβ ⊆
⋃
C. Furthermore, since every ideal in C

is closed under outside meet, if x ∈
⋃
C, we must have x ∧ l ∈ J , for all l ∈ L for

some J ∈ C, hence
⋃
C is also closed under outside meet. This shows that

⋃
C is

itself an ideal. Furthermore, since C ⊆ I, we know > /∈
⋃
C, hence

⋃
C is proper.
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We may therefore conclude that every chain in I has a proper upper bound in I.

By Zorn’s Lemma, this means that each chain has a maximal upper bound in I.

That is, every chain in I is contained in a maximal ideal, which proves our claim.

If L is distributive, the notion of maximal and prime ideals coincide. To see

why, suppose that I ∈ Idl(L) is proper but not prime.

We know there exist J,K ∈ Idl(L) where I = J ∩ K while I 6= J and I 6= K.

This means I ⊂ J and I ⊂ K, and since J 6= K, we know J ⊂ L or K ⊂ L. This

means we have I ⊂ J ⊂ L or I ⊂ K ⊂ L, hence I is not maximal. Therefore, by

contraposition, if I is maximal, we have I is prime.

We conclude this section with one of the most important results regarding

prime ideals. The existence of prime ideals coincides directly with the existence

of join- and meet-irreducible elements (see section 2.7), which will be key to estab-

lishing our main result.

Theorem 2.30 (Prime Ideal Theorem). Let L be a distributive lattice. For every ideal I

and filter F of L with empty intersection, there exists a prime ideal P of L disjoint with F

such that I ⊆ P .

Proof. Since a filter is a directed lowerset of Lop, it follows that no filter is empty.

Hence, we note that I must be proper if it is disjoint with a filter F . Let X denote

the set of all ideals in L that contain I and are disjoint with F . A simple application

of Zorn’s Lemma guarantees thatX has a maximal member P . We must prove that

P is prime.

Suppose that a, b ∈ L are such that a∧L b ∈ P , but suppose by way of contradic-

tion that neither a nor b is a member of P . The fact that P is maximal in X implies

that (P∨ ↓ a)∩F 6= ∅ and (P∨ ↓ b)∩F 6= ∅, where the join is taken in Idl(L). Now,

it follows that there exist p, q ∈ P such that a ∨L p ∈ F and a ∨L b ∈ F . Since F is a

filter, it follows that x = (a ∨L p) ∧L (b ∨L q) ∈ F . Distributivity therefore implies

that
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x = (p ∧L q) ∨L (p ∧L b) ∨L (q ∧L a) ∨L (a ∧L b) ∈ F

However, since every join above is also a member of P , it follows that x ∈ P as

well — a contradiction.

2.3 Relatively Complemented Lattices

In this section, we will introduce one of the most important families of distribu-

tive lattices. Virtually any branch of mathematics that deals with partially ordered

objects will at some point deal with structures introduced in this section.

Let P be a poset and let a, b ∈ P . Throughout this section, we will let [a, b] =

↑a ∩ ↓b. This subset of P is called an interval in P; and, of course, is nonempty if

and only if a ≤ b.

Definition 2.31. Let L be a lattice and let [a, b] ⊆ L. An element x ∈ [a, b] has a

relative complement in [a, b] provided there exist y ∈ [a, b] such that x ∧ y = a and

x∨y = b. We say that [a, b] is relatively complemented provided every element in [a, b]

has a relative complement in [a, b]. A lattice in which every interval is relatively

complemented is called a relatively complemented lattice.

If L is a bounded lattice, then L = [⊥,>], and relatively complemented ele-

ments of L are said to be complemented. A complemented, distributive lattice is

called a Boolean lattice in honor of George Boole, a prominent nineteenth century

mathematician. (Notice that Boolean lattices are necessarily bounded.) Motivated

by this classical definition, relatively complemented, distributive lattices are called

generalized Boolean lattices. A generalized Boolean lattice is a Boolean lattice if and

only if it is bounded.

It is easy to verify that the nondistributive diamond M5 and pentagon N5 are
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both complemented lattices. Furthermore, there are elements in both lattices that

have multiple complements. Consequently, relative complements need not be

unique.

Lemma 2.32. Let L be a distributive lattice, and let a, b ∈ L. An element of [a, b] can have

at most one relative complement in [a, b].

Proof. Let x ∈ [a, b] be complemented and let y1, y2 ∈ [a, b] both be complements of

x. This means

x ∧ y1 = x ∧ y2 = a

and

x ∨ y1 = x ∨ y2 = b

By Lemma 2.27 we must have y1 = y2, which is what we wanted to show.

Let L be a lower bounded, distributive lattice. If a, b ∈ L and a has a relative

complement in [⊥, a ∨ b], then it is unique; and we denote it by b \ a. Note that a

and b \ a are orthogonal.

Proposition 2.33. Let L be a lower bounded, distributive lattice. The following statements

are equivalent.

1. The lattice L is a generalized Boolean lattice.

2. The element b \ a exists for all a, b ∈ L.

Proof. We observe that (1) =⇒ (2) by the way we define generalized Boolean lat-
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tices. To see the converse, let y = (b \ x) ∨ (a \ x) ∨ a for x ∈ [a, b] and observe

x ∨ y = [x ∨ (b \ x)] ∨ [(a \ x) ∨ a] x ∧ y = x ∧ [(b \ x) ∨ (a \ x) ∨ a]

= (x ∨ b) ∨ (x ∨ a) = (x ∧ (b \ x)) ∨ (x ∧ (a \ x)) ∨ (x ∧ a)

= x ∨ b = ⊥ ∨⊥ ∨ a

= b = a

This means L is a generalized Boolean lattice, and the two statements are equiva-

lent.

If B is a Boolean lattice, we observe that since B is bounded below, there exists

⊥ ∈ B that serves as a least element. Note {⊥} ∈
⋂
Idl(B). Suppose I ∈ Idl(B)

and let a, b ∈ I . By the property of ideals, we know a ∨ b ∈ I , and [⊥, a ∨ b] ⊆ I

since I is a lowerset. Since B is a Boolean lattice, we know there exists a unique

b \ a ∈ [⊥, a∨ b], and since our choice of a and b were arbitrary, we may conclude I

is a generalized Boolean lattice because of Proposition 2.33.

Lemma 2.34. Every prime ideal of a relatively complemented lattice L is maximal.

Proof. Let P be a prime ideal of L, let x ∈ L − P , and consider I = (P ∪ {x}]. We

will prove that I = L. To this end, suppose that y ∈ L − P is distinct from x. Let

z ∈ ↓x ∩ P . Since L is relatively complemented, there exist d ∈ [z, x ∨ y] such that

x ∧ d = z and x ∨ d = x ∨ y. Now, since P is a prime ideal and x 6∈ P , we must

conclude that d ∈ P . However, this implies that x ∨ d ∈ I ; consequently, we may

conclude that y ∈ I , as desired.

Proposition 2.35. Let L be a distributive lattice and let a, b ∈ L.

1. The set F = {x ∈ L : b ≤ x ∨ c} is a nonempty filter of L.
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2. Let G = [↑c ∪ F ). If a ∈ G, there exist u ∈ F such that u ∧ c ≤ a. The element

d = a ∨ (u ∧ b) is the relative complement of c in [a, b].

Proof. First, we recognize that b ≤ b ∨ l for any l ∈ L, hence b ∈ F . To verify that

F is a filter, suppose x ∈ F and x ≤ y for some y ∈ L. Since b ≤ x ∨ c, and x ≤ y

implies x ∨ c ≤ y ∨ c, it follows that b ≤ y ∨ c, hence y ∈ F , and F is indeed a filter

of L.

For the second claim, we recognize that a ≤ c, d ≤ b and that L is distributive.

By assumption, u∧c ≤ a, and since u ∈ F we have b ≤ u∨c. From here we observe

the following:

c ∧ d = c ∧ [a ∨ (u ∧ b)] c ∨ d = c ∨ [a ∨ (u ∧ b)]

= (c ∧ a) ∨ [c ∧ (u ∧ b)] = (c ∨ a) ∨ (u ∧ b)

= (c ∧ a) ∨ (c ∧ b ∧ u) = c ∨ (u ∧ b)

= (c ∧ a) ∨ (c ∧ u) = (c ∨ u) ∧ (c ∨ b)

= a ∨ (c ∧ u) = (c ∨ u) ∧ b

= a = b

We may therefore conclude that c and d are relative complements in [a, b].

Let L be a distributive lattice that is not a generalized Boolean lattice. There

exist a, b ∈ L and c ∈ [a, b] such that c has no relative complement, and we know

a ≤ c ≤ b. In fact, we may assume that a < c < b, since if we must have distinct

a and b, and since both are relative complements in [a, b], c cannot be either. With

that in mind, we observe that ↑ c is a filter containing c but not a. Since (a]∩ ↑ c = ∅,

we know there exists a prime P ∈ Idl(L) where (a] ⊆ P and ↑ c ∩ P = ∅ by the

prime ideal theorem. Hence a ∈ P while c /∈ P . In what follows, let F and G be
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the same filters defined in Proposition 2.35. We observe that if a ∈ G, then [a, b]

is relatively complemented, contrary to our initial assumption. We may therefore

conclude (a] ∩ G = ∅, hence there exists a prime P ∈ Idl(L) disjoint with G that

contains (a]. Without loss of generality, we may assume this is the same P from

part (2). We observe that since b ∈ G, we have b /∈ P , and since c < b it follows that

b /∈↓ c. Since P is disjoint with G, and therefore F , we know that for every p ∈ P

we have either p ∨ c < b or p ∨ c || b. More to the point, there is no p in P such that

p∨ c = b. We may therefore conclude that b /∈ I , which is what we wanted to show.

Since b /∈ I , it follows that ↑ b∩ I = ∅. Again, by the prime ideal theorem, we must

have a prime Q ∈ Idl(L) where I ⊆ Q not containing ↑ b. We observe that since

c ∈ Q and P ⊆ Q, we must have P ⊂ Q.

Notice that Lemma 2.34 tells us that the prime ideals of a relatively comple-

mented lattice form an antichain. The previous paragraph, along with Proposi-

tion 2.35 and Lemma 2.34, tell us that among distributive lattices, the generalized

Boolean lattices are precisely the ones whose prime ideals form antichains.

Let L be a bounded lattice. Whenever x ∈ L has a unique complement, it is

customary to let xc denote that element. Other common symbols for this element

include x and ¬x.

Theorem 2.36. Let B be a Boolean lattice and let x, y, z ∈ B. The following statements

hold:

1. x ∧ y = ⊥ ⇐⇒ x ≤ yc

2. x = (xc)c

3. x ∧ y ≤ z ⇐⇒ y ≤ xc ∨ z

4. (x ∨ y)c = xc ∧ yc

5. (x ∧ y)c = xc ∨ yc
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The last two properties in the previous claim are known as De Morgan’s Laws.

The proof of Theorem 2.36 is established via routine calculations and is left to

the reader.

Corollary 2.37. Let L be a Boolean lattice and x, y, z ∈ L. Then

x ∨ y = > ⇐⇒ yc ≤ x

z ≤ x ∨ y ⇐⇒ xc ∧ z ≤ y

Proof. We recognize these equations are simply the order dual of items (1) and (3)

of Theorem 2.36.

Definition 2.38. A lattice L is said to be join continuous if for all y ∈ L and X ⊆ L

such that
∨
X exists, then

∨
{y ∧ x : x ∈ X} exists also; and we have

y ∧
∨

X =
∨
{y ∧ x : x ∈ X}

If we suppose L is a Boolean lattice, there is a top element > ∈ L. Then for

every x ∈ X we have x = > ∧ x ≤ z. That is, z is an upper bound for X . Since

x0 is the least upper bound for X , we must have x0 ≤ z. It therefore follows that

y ∧ x0 ≤ z for any y. We may therefore conclude that every Boolean lattice is join

continuous.

Definition 2.39. Let P be a lower-bounded poset. We say that an element a ∈ P is

an atom of P provided⊥ ≺ a. Likewise, an element c of an upper-bounded poset P

is a co-atom of P provided c is an atom of Pop. We say that a lower-bounded poset

P is atomic provided ↓x contains an atom for all ⊥ < x ∈ P .

Lemma 2.40. Let L be a uniquely complemented lattice and let a ∈ L be an atom. The

element ac is a co-atom in L (that is, an atom in Lop).
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Proof. Observe that for any ⊥ < x ∈ L, we either have a || x or a ≤ x. If a || x,

then a ∧ x = ⊥, and by Theorem 2.36 part (1) we have x ≤ ac. On the other hand,

if a ≤ x, then by Corollary 2.37 we have ac ∨ x = >. In either case, this precludes

the existence of an x∗ such that ac < x∗ < >, hence ac ≺ >.

Let L be a Boolean lattice. By definition, every Boolean lattice is a relatively

complemented distributive lattice. We observe that Lemma 2.32 guarantees that

complements are unique. Furthermore, we note that Lemma 2.40 guarantees that

atoms and co-atom complements occur in pairs. We may therefore conclude L is

atomic if and only if its order dual Lop is atomic.

We also observe that ↑ x contains at least one co-atom; call this element ac. Since

x ≤ ac, we have x∧a = ⊥where a ∈ L is the atomic complement of ac by Theorem

2.36 part (1). This means a || x, hence x < x ∨ a. We can also show that L is atomic

if and only if the top element is a join of atoms. Let A = {a ∈ L : ⊥ ≺ a}. That is,

A is the atomic set of L. If > =
∨
A, then for any x ∈ L we have

x = x ∧ > = x ∧
∨

A =
∨
{x ∧ a : a ∈ A}

Therefore, for every ⊥ < x ∈ L, there exists a ∈ A such that a ≤ x. Hence L is

atomic.

Conversely, suppose L is atomic. Clearly, A is bounded since L is bounded.

That is, > is an upper bound for A. However, for any x < > ∈ L, we observe that

there exists a ∈ A such that x < a ∨ x. Consequently, any such x cannot be an

upper bound for A, hence> is the least upper bound for A. Hence
∨
A = >, which

verifies our claim.

Theorem 2.41. Let L be a complete, atomic Boolean lattice. Every element of L is the join

of a set of atoms.
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Proof. In all that follows, let A = {a ∈ L : ⊥ ≺ a}. That is, A is the atomic set of L.

We know that> =
∨
A. Furthermore, we observe that

∨
∅ = ⊥, and ∅ ∈ Su(A). Let

⊥ < x < > ∈ L; we may assume that x /∈ A since there would be nothing to show

otherwise. We know that for every a ∈ A, either a || x or a < x. We may therefore

partitionA intoA = A<∪A|| whereA< = {a ∈ A : a < x} andA|| = {a ∈ A : a || x}.

Observe that

x = x ∧ >

= x ∧
∨

A

=
∨
{x ∧ a : a ∈ A}

=
∨{
{x ∧ a|| : a|| ∈ A||} ∪ {x ∧ a< : a< ∈ A<}

}
=
∨{
{⊥} ∪ {x ∧ a< : a< ∈ A<}

}
(If a || x, then x ∧ a = ⊥)

=
∨
{x ∧ a< : a< ∈ A<} (If a < x, then x ∧ a = a)

=
∨
{a< : a< ∈ A<}

Hence x may be expressed as the join of a set of atoms.

We shall end this section with a classic exhibition. It is well known that a com-

plete Boolean lattice is atomic if and only if it is order isomorphic to the powerset

of some set. To demonstrate this, first let L be a complete atomic Boolean lattice

and let A = {a ∈ L : ⊥ ≺ a} be its atomic set. Define f : Su(A) −→ L by the

map f(S) =
∨
S for S ∈ Su(A). We have that f is surjective from Theorem 2.41.

Suppose we have x ∈ L where x = f(S1) = f(S2). From the proof of Theorem 2.41

we must have S1 = S2 = {a< : a< ∈ A<} where A< = {a ∈ A : a < x}, hence f is

bijective. Furthermore, if we have Sa ⊆ Sb in Su(A), it follows that f(Sa) ≤ f(Sb)

in L, hence f is an isomorphism.
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On the other hand, if L is isomorphic to the powerset of some set; we may

call this set X . We observe that every powerset is bounded and also a field of

sets, and is therefore uniquely complemented and distributive under set inclusion.

Since L is isomorphic to Su(X), there must exist some map g : L −→ Su(X); and

there must be LA ⊆ L such that LA =
{
l ∈ L : g(l) = {x},∀x ∈ X

}
. That is,

LA is the preimage set of all the singletons in Su(X). From here we observe that⋃{
{x} : x ∈ X

}
= X , which by hypothesis is order isomorphic to the top element

of L. That is,
∨
LA = >L and we may conclude that L is an atomic Boolean lattice.

2.4 Adjunctions and Heyting Lattices

In this section, we will explore another important class of distributive lattice — the

Heyting lattices. These lattices are inspired by a branch of mathematics known as

intuitionistic logic. We begin with a concept which will have far-reaching implica-

tions in other sections.

Definition 2.42. Let P = (P,≤) andQ = (Q,v) be posets, and let f : P −→ Q and

g : Q −→ P be functions. We say that f and g form an adjunction provided

f(p) v q ⇐⇒ p ≤ g(q)

for all p ∈ P and q ∈ Q. We will use the symbol (f, g) : P � Q to indicate

that an adjunction exists between the posets P and Q and to label the component

functions.

When working with adjunctions, we will usually dispense with distinct sym-

bols for the partial orders on the posets P and Q unless special care is needed.

Adjunctions are often called residuations. If (f, g) : P � Q, then we call f a left

adjoint for g and call g a right adjoint for f . The functions f and g are often called

left and right residuals, but we shall stick to the term “adjoint” .
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Lemma 2.43. Suppose (f, g) : P � Q is an adjunction between posets P = (P,≤) and

Q = (Q,�). The following statements are true:

1. f(g(q)) � q and p ≤ g(f(p)) for all p ∈ P and q ∈ Q.

2. Both f and g are order homomorphisms.

Proof. Observe that f(p) ≤ f(p) and g(q) ≤ g(q) is always true, hence f(g(q)) � q

and p ≤ g(f(p)) for all p ∈ P and q ∈ Q.

Suppose x, y ∈ Q such that x � y. Since g is the right adjoint of f , we know by

(1) we have f(g(x)) � y and by the definition of adjunction we have g(x) ≤ g(y).

We may therefore conclude that g is isotone. The proof that f is isotone mirrors

this argument.

If (f, g) : P � Q is an adjunction between posets P and Q, then it is well known

that f preserves all existing joins and g preserves all existing meets. To see why

this is true, suppose F ⊆ P and G ⊆ Q such that pF =
∨
P F and qg =

∧
Q G exist.

Observe that since both f and g are isotone, f(pF ) and g(qG) are upper and lower

bounds for f(F ) and g(G), respectively. The fact that these maps are isotone also

ensures that if pl and qu are any lower and upper bounds for g(G) and f(F ) we

must have f(pl) ≤Q qg(qg ∈ G) since p ≤P g(qg)(qg ∈ G). That is, f(pl) is a lower

bound for G whenever pl is a lower bound for g(G). Since g is isotone, we may

therefore conclude f(pl) ≤Q qG, hence
∧
g(G) = g(qG). Similarly, if g(qu) is an up-

per bound for F , we have pf (pf ∈ F ) ≤P g(qu), hence g(pf )(pf ∈ F ) ≤Q qu and so∨
f(F ) = f(pF ).

It is also well known that g ◦ f ◦ g = g and f ◦ g ◦ f = f . We will prove that

f ◦ g ◦ f = f ; the proof that g ◦ f ◦ g = g will mirror this one. Let p ∈ P and observe

that since f is a function, there exists a q ∈ Q such that f(p) = q. By Lemma 2.43
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we have f(g(q)) ≤Q q. That is f(g(f(p))) ≤ f(p). Since f is isotone and p ≤ g(q),

we must have f(g(f(p))) = f(p), hence f ◦ g ◦ f = f .

Theorem 2.44. Let P and Q be posets and let f : P −→ Q and g : Q −→ P be functions.

The following statements are equivalent:

1. The mappings f and g form an adjunction.

2. The mapping g is isotone, and for all p ∈ P , g−1(↑p) = ↑f(p)

3. The mapping f is isotone, and for all q ∈ Q, f−1(↓q) = ↓g(q).

Proof. First, suppose (f, g) : P � Q is an adjunction. We know f is isotone,

and for all q ∈ Q we know f ◦ g(q) ≤ q, hence g(q) ∈ f−1(↓q). Conversely, if

x ∈ f−1(↓q), it follows that f(x) ≤ q, hence x ≤ g(q) and
∨
f−1(↓q) = g(q).

This tells us (1) implies (3).

On the other hand, if for all q ∈ Q we have f−1(↓q) = ↓g(q), then suppose

x ∈ P and y ∈ Q such that f(x) ≤ y. It follows that x ∈ f−1(↓y) which

implies x ≤ g(y). If we had initially assumed x ≤ g(y), then again we find∨
f−1(↓y) = g(y) and f(x) ≤ y. This proves (3) implies (1). The equivalence

of (1) and (2) is similar and left to the reader as an exercise.

Let (f, g) : P � Q be an adjunction. Claim 2.44 tells us that f uniquely deter-

mines g and vice-versa. Indeed, we know that, for all q ∈ Q and all p ∈ P ,

• g(q) =
∨
P f
−1(↓q), and

• f(p) =
∧
Q g
−1(↑p).

Hence, we are justified in referring to g as the right adjoint of f and to f as the left

adjoint of g.
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Lemma 2.45. Whenever P is a complete lattice and Q is a poset, then a mapping f : P →

Q has a right adjoint if and only if f preserves arbitrary joins.

Proof. First, suppose g : Q −→ P is the right adjoint of f . This implies (f, g) : P �

Q forms an adjunction. Since P is complete, we know P is closed under arbitrary

joins, therefore f must preserve arbitrary joins.

Conversely, suppose f preserves arbitrary joins. Note that this is sufficient to

claim that f is isotone. Define a map g : q 7→
∨
P f
−1(↓ q) for all q ∈ Q. Since f

is isotone, we note ⊥P ∈ f−1(↓ q) for every q ∈ Q. If f−1(↓ q) = {⊥P}, we have

⊥P =
∨
P f
−1(↓ q). That is, g(q) = ⊥P . This means ↓ g(q) = {⊥P} = f−1(↓ q).

Note that if py ∈ f−1(↓ qx) for some qx ∈ Q, then py ∈↓
∨
P f
−1(↓ qx) =↓ g(qx),

hence f−1(↓ qx) ⊆↓ g(qx). On the other hand, suppose py ∈↓ g(qx). Then we

observe

f(py) ≤ f(g(qx))

= f(
∨
P

f−1(↓ qx))

=
∨
Q

f(f−1(↓ qx))

= qx

This means f(py) ∈↓ qx, hence py ∈ f−1(↓ qx). This means ↓ g(qx) ⊆ f−1(↓ qx),

hence ↓ g(qx) = f−1(↓ qx). Therefore, by Theorem 2.44, (f, g) : P � Q forms an

adjunction.

Likewise, whenever Q is a complete lattice and P is a poset, a mapping g :

Q → P has a left adjoint if and only if g preserves arbitrary meets. Both of these

statements require completeness.
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However, if P is not a complete lattice, the preservation of all existing joins

is not sufficient to guarantee that f has a right adjoint. Consider N = N ∪ {0}

and consider f : N −→ {0}. We observe that since N is a chain, the join of any

two elements is simply the maximum function. That is
∨
{x, y} = max(x, y). It

therefore follows that for any finite subset S ⊆ N , we have max(S) = n for some

n ∈ S (namely the largest member), and since every element maps to 0, f trivially

preserves these joins. However, we observe f−1(↓ 0) = f−1(0) = N , and
∨
N does

not exist, hence there is no function g : {0} −→ N such that g(0) =
∨
f−1(↓ 0); that

is, f has no right adjoint.

One very useful example of an adjunction that which exists when two posets

are order isomorphic. If f : P −→ Q is a bijection between posets and both f and

f−1 are order preserving, then we have

f(p) ≤Q q ⇐⇒ p ≤P f−1(q)

Hence (f, f−1) : P � Q is an adjunction. However, if either f or f−1 is not order

preserving, then there exists

f(p) ≤Q q where p �P f
−1(q) or f(p) �Q P where p ≤P f−1(q)

and an adjunction does not exist between f and f−1. This shows that order iso-

morphisms are adjunctions, hence they preserve arbitrary meets and joins.

Definition 2.46. Let L be a bounded lattice. We say that L is a Heyting lattice (or a

Brouwerian lattice) if for all a, b ∈ L, there exists an element c ∈ L such that, for all

x ∈ L,

a ∧ x ≤ b ⇐⇒ x ≤ c.

In a Heyting lattice, it is easy to see that the element c is uniquely determined

by a and b. The element c is usually denoted by a → b and is called the relative
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pseudocomplement of a with respect to b. In this context, the arrow is known as the

Heyting arrow, or implication.

Let L be a Heyting lattice and let a, b ∈ L. We note that if a ∧ x ≤ b ⇐⇒ x ≤ c,

we have a ∧ c ≤ b. Idempotency tells us that c is the largest value that satisfies this

claim, so c is an upper bound for {x ∈ L : a∧x ≤ b}. Observe that if y is any upper

bound for {x ∈ L : a∧ x ≤ b}, we must have c ≤ y, hence c =
∨
{x ∈ L : a∧ x ≤ b}.

This tells us that we can characterize the Heyting arrow in the following manner:

for any x ∈ L, a→ b =
∨
{x ∈ L : a ∧ x ≤ b}.

Heyting lattices are very common structures. For example, all Boolean lattices

are Heyting lattices — take a→ b = ac ∨ b, where ac denotes the complement of a.

Let L be a Heyting lattice and let a ∈ L be fixed. We can define maps

m(x) = a ∧ x i(x) = a→ x

For any x, y ∈ L we observe that a ∧ x ≤ y ⇐⇒ x ≤ a → y. In other words,

m(x) ≤ y ⇐⇒ x ≤ i(y). Therefore (m, i) : L� L forms an adjunction by definition.

Suppose S, T ⊆ L such that
∨
S,
∧
T ∈ L. Since (m, i) : L� L forms an adjunction

for a fixed a ∈ L, we know m preserves existing joins and i preserves existing

meets. This means

a ∧
∨

S = m(
∨

S) =
∨

m(S) =
∨
{a ∧ s : s ∈ S}

and

a→
∧

T = i(
∧

T ) =
∧

i(T ) =
∧
{a→ t : t ∈ T}

Therefore the following properties hold:

1. The lattice L is join continuous (and in particular is distributive).

2. Whenever X ⊆ L is such that
∧
X exists, then

a→
∧

X =
∧
{a→ x : x ∈ X}.
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Definition 2.47. A complete, join continuous lattice is called a frame.

Note that every complete Heyting lattice is automatically a frame. The converse

is also true. To see why, let F be a frame and let a, b, x ∈ F . Let C = {c ∈ F : a∧ c ≤

b}; from here we observe a → b =
∨
C. If a ∧ x ≤ b, then x ∈ C. This implies

x ≤
∨
C. On the other hand, if x ≤

∨
C, then

x = x ∧
∨
C =

∨
{x ∧ c : a ∧ c ≤ b}

hence

a ∧ x = (a ∧ x) ∧
∨
C =

∨
{(a ∧ x) ∧ c : a ∧ c ≤ b}

We observe that b is an upper bound for a ∧ x ∧ c since a ∧ c ≤ b, hence a ∧ x =∨
{(a ∧ x) ∧ c : a ∧ c ≤ b} ≤ b. This shows that a ∧ x ≤ b if and only if x ≤ a → b

and F is a Heyting algebra.

Let L be a Heyting lattice and observe that we have

c ≤ x→ b ⇐⇒ c ∧ x ≤ b ⇐⇒ x ≤ c→ b.

Define two maps λb : L→ Lop and ρb : Lop → L by

λb(x) = x→ b = ρb(x),

Observe that if x, y, b ∈ L we have

y ≤ x→ b⇐⇒ x ∧ y ≤ b⇐⇒ x ≤ y → b

This is equivalent to the statement

λb(x) ≤op y ⇐⇒ x ≤ ρb(y)

Hence (λb, ρb)L� Lop forms an adjunction.
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1. We recall that

x→ b =
∨
{c ∈ L : c ∧ x ≤ b} y → b =

∨
{c ∈ L : c ∧ y ≤ b}

Suppose x ≤ y. Let F = {c ∈ L : c ∧ x ≤ b} and G = {c ∈ L : c ∧ y ≤ b} and

suppose z ∈ G. This means that z ∧ y ≤ b, therefore z ∧ x ≤ b and z ∈ F . This

shows us that G ⊆ F , therefore we must have
∨
G ≤

∨
F . That is, if x ≤ y,

then y → b ≤ x→ b.

2. Since (λb, ρb)L � Lop forms an adjunction, we know λb preserves existing

joins. This means

λb(
∨

X) =
∨
op

λ(X)

=
∨
op

{λ(x) : x ∈ X}

=
∨
op

{x→ b : x ∈ X}

=
∧
{x→ b : x ∈ X}

We have therefore established the following result:

1. The Heyting arrow is order-reversing in its left argument; that is, if x ≤ y,

then y → b ≤ x→ b.

2. Whenever X ⊆ L is such that
∨
X exists, then∨

X → b =
∧
{x→ b : x ∈ X}.

Hence we often say that the Heyting arrow is self-adjoint.
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2.5 Closure Operators

In the last section, we briefly introduced adjunctions between posets and looked at

one important application — Heyting lattices. In this section, we continue our look

at adjunctions by taking advantage of another important property they possess.

Definition 2.48. Let P be a poset. A function ϕ : P −→ P is called a closure operator

on P provided ϕ is isotone, idempotent, and enlarging. That is, provided, for all

x, y ∈ P , we have the following:

• x ≤ y =⇒ ϕ(x) ≤ ϕ(y) (The mapping is isotone.)

• ϕ(ϕ(x)) = ϕ(x) (The mapping is idempotent.)

• x ≤ ϕ(x) (The mapping is enlarging.)

Definition 2.49. Let P be a poset. A function ψ : P −→ P is called a kernel operator

on P provided ψ is isotone, idempotent, and reducing. That is, provided, for all

x, y ∈ P , we have the following:

• x ≤ y =⇒ ψ(x) ≤ ψ(y)

• ψ(ψ(x)) = ψ(x)

• ψ(x) ≤ x

Lemma 2.50. Let P and Q be posets and let (f, g) : P � Q. The map ϕ = g ◦ f is a

closure operator on P and ψ = f ◦ g is a kernel operator on Q .

Proof. We observe that both ϕ and ψ are isotone by the properties of adjunctions.

Furthermore we have

ϕ ◦ ϕ = g ◦ f ◦ g ◦ f = g ◦ f = ϕ
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and

ψ ◦ ψ = f ◦ g ◦ f ◦ g = f ◦ g = ψ

and both are idempotent. By Lemma 1.4.2, we know that for p ∈ P and q ∈ Q, we

have ψ(q) ≤ q and p ≤ ϕ(p) for every p ∈ P and q ∈ Q, hence ψ is reducing and ϕ

is enlarging. Therefore, ϕ is a closure operator and ψ is a kernel operator.

Lemma 2.51. Let P be a poset and let θ : P −→ P be a function. Let Q be the image of P

under θ. Let g : Q −→ P be the inclusion map g(q) = q.

1. If θ is a closure operator, then (θ, g) : P � Q.

2. If θ is a kernel operator, then (g, θ) : Q� P .

Proof. Suppose θ is a closure operator. Since θ is enlarging, we have p ≤ θ(p).

Suppose θ(p) ≤ q for some q ∈ P . Since θ is isotone, we know this is true if and

only if p ≤ q = g(q), hence (θ, g) : P � Q forms an adjunction. A dual argument

of the above argument proves this claim.

Let P be a poset and let ϕ : P −→ P be a closure operator. By Lemma 2.51 we

know that (ϕ, g) : P � Q forms an adjunction; in our case where Q = P is the

image set under ϕ and g(q) = p. This is sufficient to claim that ϕ preserves existing

joins.

Lemmas 2.50 and 2.51 tell us that there is an intimate connection between ad-

junctions and closure (or kernel) operators. This connection tells us some impor-

tant facts about closure and kernel operators. For example, as in the previous

claim, suppose that θ : P −→ P is a closure operator and let Q = θ(P ). The fact

that the inclusion map g : Q −→ P is the right adjoint to θ tells us that whenever

X ⊆ Q is such that
∧
QX exists, then

g(
∧
Q

X) =
∧
P

{g(x) : x ∈ X} =
∧
P

X
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The converse of this statement is also true; that is, whenever X ⊆ Q is such that∧
P X exists, then

∧
QX also exists and

∧
QX =

∧
P X .

To see why this is so, let x0 =
∧
P X . Suppose z ∈ Q is such that z ≤ θ(x) for all

x ∈ X . (Note that such z exist by assumption, since θ(x0) has this property.) Then,

the fact that (θ, g) : P � Q tells us that

z ≤ θ(x) ⇐⇒ z = g(z) ≤ x(∀x ∈ X)

⇐⇒ z = g(z) ≤ x0

⇐⇒ z ≤ θ(x0)

Thus, θ(x0) is the greatest lower bound of the set θ(X) in Q. However, since

X ⊆ Q by assumption, we know that θ(X) = X . Consequently, we know

∧
Q

θ(X) =
∧
Q

X = θ(x0)

It only remains to prove that θ(x0) = x0. Since θ is a closure operator, we know at

once that x0 ≤P θ(x0). However, since θ(x0) is itself a lower bound in P for the set

X , it follows that θ(x0) ≤P x0 as well.

We can summarize the previous discussion in the following way: If P is a poset

and θ : P −→ P is a closure operator, then the set Q = θ(P ) is completely meet

faithful in P ; that is, for all X ⊆ Q, we have

1.
∧
P X exists ⇐⇒

∧
QX exists, and

2.
∧
P X =

∧
QX

Let P be a poset and suppose θ : P −→ P is a kernel operator. We can claim

that Q = θ(P ) is completely join faithful in P ; that is, for all X ⊆ Q, we have

1.
∨
P X exists ⇐⇒

∨
QX exists, and
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2.
∨
P X =

∨
QX

Suppose that θ : P −→ P is a kernel operator and let Q = θ(P ). The fact that

the inclusion map g : Q −→ P is the left adjoint to θ tells us that whenever X ⊆ Q

is such that
∨
QX exists, then

g(
∨
Q

X) =
∨
P

{g(x) : x ∈ X} =
∨
P

X

The converse of this statement is also true; that is, whenever X ⊆ Q is such that∨
P X exists, then

∨
QX also exists and

∨
QX =

∨
P X .

To see why this is so, let x0 =
∨
P X . Suppose z ∈ Q is such that θ(x) ≤ z for all

x ∈ X . (Note that such z exist by assumption, since θ(x0) has this property.) Then,

the fact that (g, θ) : Q� P tells us that

θ(x) ≤ z ⇐⇒ x ≤ z = g(z)(∀x ∈ X)

⇐⇒ x ≤ z = g(z)

⇐⇒ θ(x0) ≤ z

Thus, θ(x0) is the greatest lower bound of the set θ(X) in Q. However, since

X ⊆ Q by assumption, we know that θ(X) = X . Consequently, we know

∨
Q

θ(X) =
∨
Q

X = θ(x0)

It only remains to prove that θ(x0) = x0. Since θ is a kernel operator, we know at

once that θ(x0) ≤P x0. However, since θ(x0) is itself an upper bound in P for the

set X , it follows that x0 ≤P θ(x0) as well.

Definition 2.52. Let P be a poset and let X ⊆ P be a subposet of P. We say that

X is a closure retract of P if, for all p ∈ P , the set U(p) = {x ∈ X : p ≤ x} has
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a least element. We say that X is a kernel retract of P if Xop is a closure retract in

Pop. Members of a closure retract are often called closed elements; those of kernel

retracts are sometimes called open elements.

Let P be a poset. The lattice Low(P) of lowersets of P is a closure retract of the

powerset of P . To see why, suppose S ∈ Su(P ) and consider the set U(S) = {↓ T ∈

Low(P ) : S ⊆↓ T}. We observe that ↓ S ∈ U(S), and that it is the least such element

of Low(P ) with this property for any S ∈ Su(P ). It follows from here that Low(P ) is

a closure retract of Su(P ).

Of course, we are left with the question, “How are closure operators and closure

retracts related?” First, we make a proposition:

Proposition 2.53. Let P be a poset and suppose that ϕ : P −→ P is a closure operator of

P. The set ϕ(P ) is a closure retract of P.

Proof. Since ϕ is a closure operator, it is enlarging. That is, p ≤ ϕ(p) for all p ∈ P .

We know ϕ is also isotone, so for any p, the set U(p) = {ϕ(x) ∈ ϕ(P ) : p ≤ ϕ(x)}

has a least element; namely ϕ(p). It is worth noting that this implies ϕ(p) =
∧
U(p).

Therefore ϕ(P ) is a closure retract on P .

Suppose P be a poset and suppose that X ⊆ P is a closure retract. Define a

mapping ϕX : P −→ P by ϕX(p) =
∧
U(p) and let Ran(ϕ) denote the range of ϕ. By

definition, Ran(ϕ) ⊆ X , and for any p ∈ X , we have ϕ(p) =
∧
{x ∈ X : p ≤ x} = p,

hence p ∈ Ran(ϕ) and equality follows from here.

It is worth noting that the previous sentence demonstrates that if p ∈ X , then

ϕ(p) = p. This means that if q ∈ P such that ϕ(q) = p, we have ϕ(ϕ(q)) = ϕ(p) = p.

Furthermore, if q1 ≤ q2 ∈ P , we must have
∧
U(q1) ≤

∧
U(q2) ∈ X , hence ϕ is

isotone. We observe the definition of U(p) guarantees that ϕ is enlarging, hence
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ϕ is a closure operator. Proposition 2.53 demonstrated that ϕ(p) = ϕX(p). This

implies ϕ(P ) = X , hence ϕ = ϕX . This tells us that the closure retracts of a poset

P are precisely the images of P under its closure operators; moreover, the closure

retracts of P uniquely determine the closure operators on P and vice-versa.

2.6 Compact Generation

Definition 2.54. Let P be a DCPO. An element c ∈ P is compact provided, when-

everD ⊆ P is directed and such that x ≤
∨
D, then c ≤ d for some d ∈ D. Compact

elements are sometimes called isolated or finite elements. We will let Com(P) repre-

sent the subposet of compact elements from P.

Observe that we can characterize compact elements by the notion of being in-

accessible by directed joins. For each x ∈ P for a poset P = (P,≤), we shall denote

the set Kx = ↓x ∩ Com(P ) as the set of all compact elements of P less than or equal

to x; note that Kx is necessarily directed.

It is worth noting that if L is a complete lattice, then Com(L) is a join sub-

semilattice of L. Suppose x, y ∈ Com(L) such that x || y and suppose D is a directed

subset of L such that
∨
D = x ∨ y. If we consider the sets

Dx = {x ∧ d : d ∈ D}

and

Dy = {y ∧ d : d ∈ D}

we observe that Dx and Dy are directed. Since L is complete,
∨
Dx = l ∈ L exists.

Since x is an upper bound for L, we have l ≤ x. If l < x, then x ∧ d < x for every

d ∈ D. But then
∨
D ≤ x, contrary to the hypothesis that

∨
D = x ∨ y. Since x is

compact, we have x ∈ Dx. A similar argument shows us that y ∈ Dy. This implies

that there exist dx, dy ∈ D such that x ≤ dx and y ≤ dy. It follows that x∨y ≤ dx∨dy,
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and since
∨
D = x∨ y, we must have dx ∨ dy = x∨ y. Since D is directed, we know

that {dx, dy} has an upper bound in D, which implies x ∨ y ∈ D, hence x ∨ y is

compact.

Since the main result of this paper pertains to characterizing certain classes

of complete lattices, we make the following observations. Suppose L is a join-

continuous lattice. If element c ∈ L is compact and D is directed, then c ≤
∨
D

always implies c ≤ d for some d ∈ D. Furthermore, if c ≤
∨
S for any S ⊆ L, then

c ≤
∨
T for some finite T ⊆ S. To see why, let S ⊆ L such that c ≤

∨
S. We observe

that Fin(S) is always directed. This means that we can extract a finite Fs ∈ Fin(S)

such that c ≤
∨
Fs, which implies

c = c ∧
∨

Fs

=
∨
{c ∧ si : si ∈ Fs}

Since c = (c ∧ s1) ∨ (c ∧ s2) ∨ · · · ∨ (c ∧ sn), for some finite Fs = {s1, s2, . . . , sn}, it

follows that c ≤ si for some si ∈ Fs ⊆ S. If we restrict our focus to join-continuous

lattice we find an element c is compact in a lattice L if and only if whenever X ⊆ L

is such that c ≤
∨
X , then there exist finite F ⊆ X such that c ≤

∨
F .

Observe that the converse is not necessarily true if P is not join-continuous. Con-

siderQ = N∪{ω}where z < ω for every n ∈ N. Let B be the four-element Boolean

lattice with top element >, bottom element 0. Construct P by letting

• 0 < 1

• > < ω

• > || n for every n ∈ N

We observe that > is compact, but > fails the given conditions.
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Definition 2.55. A poset P is said to be compactly generated provided it is a DCPO

and every element of P is the join of a directed family of compact elements in P.

Compactly generated posets are often called algebraic posets.

To illustrate compact generation, let X be any set. It is routine to show that

(Su(X),⊆) is compactly generated with Com(Su(X)) = Fin(X). Indeed, we ob-

serve that any finite set is compact since they are inaccessable by directed joins.

That is, Fin(X) ⊆ Com(Su(X)). On the other hand, we observe that any infi-

nite set is accessible by directed joins (i.e. the union of its finite subsets), hence

Fin(X) = Com(Su(X)). For any Y ∈ Su(X), we let F = {F ∈ Fin(X) : F ⊆ Y }

and observe that F is directed with
∨
F =

⋃
F = Y , hence Su(X) is compactly

generated.

Similarly, if P is any poset, we can let F = {↓ F : F ∈ Fin(P )}. We note that

any finitely generated lowerset is inaccessible by directed joins in Low(P ), hence

F ⊆ Com(Low(P )). On the other hand, if S ∈ Su(P ) is infinite, we note that ↓ S =⋃
{↓ F : F ∈ Fin(P ) ∩ S}. This tells us that F = Com(Low(P )), and demonstrates

that Low(P ) is compactly generated. We have thus proved the following result:

Lemma 2.56. Let P be any poset. The lattice (Low(P),⊆) is compactly generated with

Com(Low(P)) = {↓F : F ∈ Fin(P )}.

Before we leave this section, we make the following observation regarding al-

gebraic distributive lattices and frames:

Lemma 2.57. Every lower-bounded, algebraic distributive lattice is join continuous (and

thus a frame).

Proof. LetL be a compactly generated distributive lattice and let x, y ∈ L. We know

there exists a directed Fy ⊆ Com(L) such that y =
∨
Fy, and since L is complete, we
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know
∨
{x ∧ f : f ∈ Fy} = z exists. We have z ≤ x ∧ y since

∨
{x ∧ f : f ∈ Fy} ≤

x ∧
∨
Fy is always true.

Let c ∈ Fx∧y where Fx∧y ⊆ Com(P ) is such that
∨
Fx∧y = x ∧ y. This implies that

c ∈ Fx ∩ Fy (where Fx is similarly defined), which in turn implies c ≤ f0 for some

f0 ∈ {x ∧ f : f ∈ Fy}. This means that z is an upper bound for Fx∧y, hence

x ∧ y = x ∧
∨

Fy =
∨
{x ∧ f : f ∈ Fy} = z

and L is join continuous.

In light of Lemma 2.57, we have the following characterization of compact ele-

ments as a corollary:

Corollary 2.58. If L is a lower-bounded, algebraic distributive lattice, and c ∈ L, then the

following statements are equivalent:

1. The element c is compact in L.

2. Whenever X ⊆ L is such that c ≤
∨
X , then there exist finite F ⊆ X such that

c ≤
∨
F .

Before we leave this section, we provide a remark regarding meets of compact

elements. We cannot assume that the meet of two compact elements is compact,

even in a complete lattice. Consider the lattice L = (N ∪ {ω, u, v,>},≤), where

1. We have u, v 6∈ N.

2. The partial order ≤ is the natural order on N.

3. The element ω is the first transfinite ordinal.

4. We have ω < u and ω < v and ω = u ∧ v.

5. The element > satisfies l ≤ > for all l ∈ L.
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First, we note that
∨
N = ω while ω /∈ N, so ω is not compact. We also observe that

both u and v are both maximal in P , and we have ω ≺ u and ω ≺ v. Consequently,

for any S, T ⊆ P such that
∨
S = u and

∨
T = v, we must have ω, u ∈ S and

ω, v ∈ T , hence both u and v are compact.

2.7 Irreducible Elements in Lattices

Representing a given structure (such a a group, ring, lattice, etc.) in terms of a

“canonical” set of elements under a specific operation is a natural problem that

arises in the study of algebra. Usually this canonical set consists of those elements

which are “irreducible” with regard to the specified operation. An elementary

example would be the representation of positive integers as products of primes

(which are irreducible with regard to multiplication).

Definition 2.59. Let L be a meet semilattice. An element p ∈ L is meet irreducible

if, for all F ∈ Fin(L), p =
∧
F always implies p = f for some f ∈ F . An element j

of a join semilattice L is join irreducible provided it is meet irreducible in Lop.

Note that the greatest element of a meet semilattice (if it exists) cannot be meet

irreducible. The concepts of completely meet irreducible and completely join irre-

ducible elements can be defined in a (complete) meet or join semilattice by remov-

ing the restriction that the set F be finite.

Let L be a lower-bounded, compactly generated lattice and let a, b ∈ L be such

that a 6≤ b. We will first verify that Ka − Kb is nonempty. Since L is compactly

generated, there exist Fa, Fb ⊆ Com(P ) such that
∨
Fa = a and

∨
Fb = b. If b < a, it

follows that Fb ⊂ Fa, and if a || b, there exist ca ∈ Fa−Fb and cb ∈ Fb−Fa. In either

case, there exists ca ∈ Fa − Fb, hence Ka −Kb is nonempty.
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Let c ∈ Ka − Kb and let X = {x ∈ L : b ∈ ↓x and c 6∈ ↓x}. We may assume∨
X = q and let Fq ⊆ Com(X) be a directed subset such that

∨
X =

∨
Fq. Clearly,

c /∈ Com(X), hence q ∈ X , and q is maximal. Suppose q =
∨
X =

∧
S for some

S ⊆ L. By the definition of X and the maximality of q, we have q < l ∈ L implies

c, b ∈↓ l. Clearly, this means b ∈↓ s for every s ∈ S. Since
∧

= q and c /∈ Kq, there

must be some sq ∈ S such that c /∈ Ks. This would imply sq ∈ X ; this means sq = q

and q is completely meet irreducible. We have proved the following claim:

Claim 2.60. Let L be a compactly generated lattice and let a, b ∈ L be such that a 6≤ b.

1. We have Ka −Kb is nonempty.

2. Let c ∈ Ka−Kb and let X = {x ∈ L : b ∈↓ x and c 6∈↓ x}. Then X has a maximal

member.

3. If q is a maximal member of X then q must be completely meet irreducible.

We now prove a well known result:

Theorem 2.61. Let L be a complete lattice, let a ∈ L, and let Q ⊆ L.

1. Suppose that, for all b ∈ L such that a 6≤ b, there exist q ∈ Q such that a ≤ q and

q � b. We have a =
∧
Q.

2. Every element of a lower-bounded, compactly generated lattice is the meet of a set of

completely meet irreducible elements.

Proof. To prove (1), we let Q = {q ∈ L : a ≤ q and q � b}. From here we observe

that, by the way we define Q, we have a is a lower bound of Q and a ∈ Q, hence∧
Q = a. For (2), suppose l ∈ L and let M ⊆ L such that

M = {m ∈ L : l ≤ m and m is completely meet irreducible}
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Since L is complete,
∧
M = ml exists and l ≤ ml. If we suppose l < ml, we know

there exist Fl ⊂ Fml
⊆ Com(L) such that l =

∨
Fl <

∨
Fml

= ml. This implies

that there exists c ∈ Fml
− Fl, and we therefore know the set Xl = {x ∈ L : l ∈↓

x and c /∈↓ x} is nonempty and
∨
Xl = ql is completely meet irreducible. By the

way we defined M , we have ql ∈ M , hence ml ≤ ql. But this implies c ∈↓ ql; a

contradiction. We may therefore conclude l =
∧
M = ml as desired.

Part (2) of the last theorem is a famous result due to Garrett Birkhoff. It will

have important implications in much of our later work.

Definition 2.62. Let L be a meet semilattice. An element p ∈ L is meet prime if, for

all F ∈ Fin(L), p ≥
∧
F always implies p ≥ f for some f ∈ F . An element j of a

join semilattice L is join prime provided it is meet prime in Lop.

The concepts of completely meet prime and completely join prime elements can

be defined in a (complete) meet or join semilattice by removing the restriction that

the set F be finite. It should be noted that every meet prime element is meet irre-

ducible. To see why, let L be a meet semilattice and suppose m ∈ L is meet prime.

For any F ∈ Fin(L), we know that there exists f ∈ F such that f ≤ m whenever∧
F ≤ m. This means that if m =

∧
F we have m = f ; otherwise m fails to be

a lower bound. Of course, if we remove the condition that F must be finite we

can extend this notion to completely meet irreducible and completely meet prime

elements.

This of course raises the question whether meet irreducible and meet prime

elements are equivalent. It turns out that a meet irreducible element in a lattice

need not be meet prime and that a meet irreducible element in a complete lattice

need not be completely meet irreducible or meet prime. In the finite case, consider

M5 = {⊥, a, b, c,>}, i.e. non-distributive diamond. We observe that x ∈ {a, b, c} is

meet irreducible, since they are each covered only by > and therefore must be in
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any F ⊆ M5 such that
∧
F = x. However, we note that for any such x, we have

y, z ∈ F = {a, b, c}− {x}where
∧
F = y ∧ z = ⊥ < x, hence any such x is not meet

prime.

We can extend this argument to an infinite complete example as follows: let

M5∞ = {⊥,Q1,Q2,Q3,>} where Qi =
{
Ni ∪ {ωi}

}
. Further suppose that Ni is

ordered under the usual ordering, with ωi the appropriate first transfinite element

for each copy of N. Finally, suppose that ωi ≺ > and ⊥ ≺ 1i for each i and qi || qj
when i 6= j for every appropriate q ∈ Q. We observe that this and its dual form a

complete, non-distributive modular lattice. We observe that any finite F ⊆ M5∞

such that
∨
F = ωi, we must have ωi ∈ F , hence ωi is join irreducible. However,

we know that
∨
Ni = ωi, and ωi /∈ Ni, hence ωi is not completely join irreducible.

We also observe that for any i, j, k such that {i, j, k} = {1, 2, 3}, we have ωi∨ωj =

ωi ∨ ωk = ωj ∨ ωk = >, and since each of these elements are incomparable we note

that each are not join prime. We have shown that each ω is join irreducible, but not

completely join irreducible nor join prime. Our claim comes from observing these

elements inMop
5∞ .

Observe that the examples given above are both non-distributive. Since our

work in upcoming chapters deals with meet-irreducible elements in distributive

lattices, it will be useful to understand precisely when these elements coincide

with meet prime elements.

Lemma 2.63. In a distributive lattice, every meet irreducible element is meet prime.

Proof. Let L be any lattice and let x ∈ L be meet irreducible but not meet prime.

This means that there exists y, z ∈ L such that y ∧ z = α < x, but y � x and

z � x (this also implies y || z). Since L is a lattice, there exists
∨
{x, y, z} = ω ∈ L,

which is strictly larger than each of the three elements. We know that x is not
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strictly less than both, so x is incomparable to at least one of the two elements. If

x < y and x || z, we observe {α, x, y, z, ω} ∼= N5. Similarly, if x || y and x || z,

then {α, x, y, z, ω} ∼=M5. This shows that if an element is meet irreducible but not

meet prime in a lattice L, then L either contains the nondistributive diamond or

pentagon as a sublattice. Our claim follows by contraposition.

It is worth noting that even in a complete distributive lattice, a completely meet

irreducible element need not be completely meet prime. We observe that the open

set lattice of the usual space on the real line (R,ΩU) is a complete, distributive

lattice (indeed, a frame); ordered under set inclusion. Observe that A = R− {0} =

(−∞, 0) ∪ (0,∞) is completely meet irreducible. If we let F =
{

(−1
i
, 1
i
) : i ∈ I

}
where the index I is infinite, we observe that

⋂
F = {0}. Since singletons aren’t

open under ΩU , it follows
∧
F = ∅. This means

∧
F ⊆ A. However, we have 0 ∈ fi

for every fi ∈ F hence A is not completely meet prime.

Lemma 2.64. Let L be a complete lattice. If j ∈ L is completely join prime, then ↓j is

co-atomic; in particular, j is compact in L.

Proof. Let F = ↓j − {j}. We observe that if there exists >F ∈ (F ,≤), then F =

↓>F and >F ≺ j. We proceed under the assumption that no such element exists.

Suppose C ⊆ F is a chain. Since j is join-prime, we observe that since f < j for

every f ∈ F , we know j is an upper bound for every chain C. This means
∨
C < j,

hence
∨
C ∈ F . That is, every chain F has a proper upper bound in F , which

means every chain has a maximal upper bound in F by Zorn’s Lemma. IfM⊆ F

is the set of all such maximal elements, it follows by the way F is defined that

m ≺ j for all m ∈ M. This implies j is inaccessible by directed joins; that is, j is

compact.

Theorem 2.65. Let L be a lower-bounded, compactly generated, distributive lattice. The

following statements are equivalent:
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1. The lattice Lop is algebraic (lower-bounded and compactly generated);

2. Every completely meet irreducible element of L is completely meet prime;

3. Every element of L is the join of a set of completely join prime elements;

4. The lattice L is order isomorphic to Low(P) for some poset P.

Proof. 1 =⇒ 2 Suppose L is bialgebraic and let x ∈ L be completely meet irre-

ducible such that x =
∧
Kx for Kx ⊆ Com(Lop). This means x = kx for some

kx ∈ Kx. Suppose
∧
S = s ≤ x for some S ⊆ L. It follows that s =

∧
Ks

for some Ks ⊆ Com(Lop). It is worth noting that this means Kx ⊆ Ks, which

implies there exists ks ∈ Ks such that ks ≤ x, which in turn implies that there

exists sk ∈ S such that ks ∈ Ksk . This means sk ≤ x, hence x is meet prime.

Observe that by duality we have every join irreducible element in L is meet

irreducible and therefore meet prime in Lop. This implies that every join irre-

ducible element is also join prime in L, and vice-versa.

2 =⇒ 1 SupposeL is an algebraic, distributive lattice that satisfies (2). By Birkhoff’s

Theorem, for every x ∈ L we have x =
∧
M where M is the set of all meet

prime elements satisfying M ⊆↑ x. It is worth observing that M is directed

in Lop. Since every mx is completely meet prime in L, it is completely join

prime in Lop. Consequently, if D is directed in Lop where
∧
D =

∨
opD = mx,

we must have mx = d for some d ∈ D. This means that every mx is compact

with respect to Lop, hence Lop is algebraic.

1⇐⇒ 2⇐⇒ 3 Since Lop is algebraic, Birkhoff’s Theorem guarantees every x ∈ Lop

we have x =
∧
opM where M is the set of all meet prime elements satisfying

M ⊆↑op x. Our claim follows by observing the order duals of these sets in

L. Consequently, if there exists an element of L that is not the join of a set

of completely join prime elements, Lop is not algebraic, so (1), (2), and (3) are

equivalent.
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3⇐⇒ 4 Let P be the set of all completely join prime elements in L and define

ϕ : L −→ Low(P ) as the map ϕ(x) =↓ x ∩ P . Since x1 ≤ x2 if and only if

↓ x1 ∩ P ⊆↓ x2 ∩ P , we know ϕ is isotone. If we define ψ : Low(P ) −→ L as

the map ψ(↓ X) =
∨
↓ X , we note that x =

∨
↓ X ≤

∨
↓ Y = y if and only if

↓ X ⊆↓ Y , hence ψ is isotone. If we let S ⊆ P such that
∨
S = x, we observe

ψ(ϕ(x)) = ψ(↓ x ∩ P ) = ψ(↓ S) =
∨

S = x

and

ϕ(ψ(↓ S)) = ϕ(
∨

S) = ϕ(x) =↓ x ∩ P =↓ S

This tells us that ϕ and ψ are mutually inverse, and therefore L ∼= Low(P ).

Incidentally, if (3) does not hold, then ϕ and ψ are not mutually inverse, so

we may therefore conclude that (3) and (4) are equivalent.

We will say that a lattice L is bicompactly generated provided both L and Lop are

lower-bounded, compactly generated posets. (In keeping with the fact that com-

pactly generated posets are often called algebraic posets, such lattices are often said

to be bialgebraic.) We observe that Theorem 2.65 guarantees that bialgebraic lattices

are precisely the ones where completely meet-irreducible elements and completely

meet prime elements coincide.
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CHAPTER 3

BASIC CATEGORY THEORY AND DUAL EQUIVALENCE

This chapter is intended to be a very brief primer on the basics of category

theory. Our focus is to introduce the basics concepts necessary to establish our

intended duality. Since we do not need much more than the basics, and the re-

mainder is not germane to this paper, this chapter will be relatively brief. The

material from this chapter can also be found in Mac Lane [20], as this text remains

the authority in all things categorical.

3.1 Category Theory

Category theory is a relatively new branch of mathematics that has far reaching

consequences. It arose in the early- to mid-twentieth century, largely out of trends

in algebraic topology and the study of homology and homotopy group theory. One

broad notion that emerged is that seemingly unrelated mathematical objects (such

as topological surfaces and group theory) have surprising relationships, largely

through the morphisms defined on those objects. Category theory has developed

as a foundational tool to establish these relationships.

Definition 3.66. Suppose we have two collections (not necessarily sets or func-

tions) Ob = {a, b, c, . . . } and Ar = {f, g, h, . . . }. We sayM = (Ob, Ar, dom(), cod()) is

a metagraph provided

• For every a ∈ Ar, there exists od, oc ∈ Ob such that dom(a) = od and cod(a) = oc.

We shall say dom(a) is the domain of a and cod(a) is the codomain of a.

• We may denote the above property as a : od −→ oc or as the following dia-

gram:

od
a

- oc
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We say M is the metagraph on the collection of objects Ob and the collection of

arrows (or morphisms) Ar.

If we suppose that M = (Ob, Ar, dom(), cod()) is a metagraph and, for every

object o ∈ Ob, there exists an arrow ao ∈ Ar such that dom(ao) = o = cod(ao), we

say o has identity ao and designate ao = Ido. If we suppose that for every f, g ∈ Ar

such that dom(g) = cod(g), we have a map h ∈ Ar where

• We have dom(h) = dom(f).

• We have cod(h) = cod(g).

• The diagram below commutes:

dom(f)
h
- cod(g)

dom(g) = cod(f)

f

?

g

-

We say h is the composition of g and f and denote this map h = g ◦ f . We say a

metagraphM is a metacategory provided Ar is closed under composition, for every

o ∈ Ob, there exists Ido ∈ Ar, and the following axioms are satisfied:

Associativity of Composition If A,B,C,D ∈ Ob with arrows f, g, h ∈ Ar such that

A
f

- B
g

- C
h

- D

we also have h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Existence of Unit If f : A −→ B and g : B −→ C, and IdB : B −→ B is the

identity map on B, then IdB ◦ f = f and g ◦ IdB = g. This relationship can be
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illustrated as the following diagram.

A
f

- B

B

f

? g
-

Id
B

-

C

g

?

To demonstrate the utility of the notion of a metacategory, an interested reader

could easily verify that if we define ObS as the collection of all sets and ArS as the

collection of all functions between sets, the quadruple S = (ObS, ArS, dom(), cod())

forms a metacategory. We recall that the notion of a “set of all sets” leads to a

logical paradox (namely Cantor’s paradox). This tells us that ObS and ArS , while

collections of objects, are not sets and cannot be examined via the axioms of set

theory. However, our focus will be directed on constructions that are consistent

with our notions of set theory (these constructions are sometimes referred to as

being concrete).

We say a directed graph is a set G = (Ob ∪ Ar) where Ob is a set of objects, and Ar

is a set of morphisms, with two functions dom : Ar −→ Ob and cod : Ar −→ Ob that

assigns each arrow a domain and a codomain. If A,B ∈ Ob, we denote the class of

all morphisms from A to B to be the collection

hom(A,B) = {ϕ : A −→ B}where hom(A,B) is a subclass of Ar

In this graph, the vertices are the objects and the edges are the arrows.

In a directed graph G = (Ob ∪ Ar), we say the product over Ob is the set ΠOb ⊆

Ar× Ar such that

ΠOb = {(g, f) : cod(f) = dom(g)}

We say a directed graph is a category provided there exists an embedding Id :

Ob −→ Ar where Id(A) = IdA and an embedding ◦ : ΠOb −→ Ar where ◦((g, f)) =
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g ◦ f , provided IdA and g ◦ f define the identity and composition arrows (respec-

tively) and G satisfies the axioms of metacategories previously defined.

3.2 Functors, Natural Transformations, and Categorical

Equivalence versus Dual Equivalence

We will switch now our focus to comparing categories. Recall from algebra that

the notion of homomorphism in either a group or a ring is a way to compare the

structural relation between two of these objects. In categories, we would like a

similar way of comparing two categories; this immediately implies preserving re-

lationships between objects and arrows.

Definition 3.67. Let C = (ObC ∪ ArC) and D = (ObD ∪ ArD) be categories. A functor

F ⊆ C× D is a map

F : C −→ D

such that F(ObC) ⊆ ObD and F (ArC) ⊆ ArD that preserves arrows in the following

manner:

• When A,B ∈ ObC and

A
f

- B

then we have

F(A)
F(f)

- F(B)

• When A ∈ ObC we have F(IdA) = IdF(A).

• If f, g ∈ Ar we have F(g ◦ f) = F(g) ◦ F(f).
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A
g ◦ f

- C F(A)
F(g ◦ f)

- F(C)

C
F

- D

B

f

?

g

-

F(B)

F(f)

?

F(
g)

-

Figure 1: Commuting diagrams for functors.

We shall now illustrate the previous definition. Suppose C is a category with

three objects and three nonidentity arrows, and let D be another category. Then a

functor F : C→ D could be represented by the following diagrams:

Functors also compose in the expected manner; that is if C, D, and E are cate-

gories and F : C −→ D and G : D −→ E are functors, then for every A ∈ ObC and

f ∈ ArC , we have G(F(A)) ∈ ObE and G(F(f)) ∈ ObE . The diagram for composition

of functors is identical (save for the names of objects and arrows) to that described

for metacategories.

We will now focus on a few definitions describing certain classes of functors.

These will mirror similar notions from algebra, such as injective and surjective ho-

momorphims. Suppose C and D are categories and F : C −→ D is a functor between

them. We say F is full provided for every c1, c2 ∈ ObC and g : F(c1) −→ F(c2) ∈ ArD,

there exists f : c1 −→ c2 ∈ ArC such that F(f) = g. On the other hand, if for every

parallel arrows f1 : c1 −→ c2 and f2 : c1 −→ c2 in ArC where F(f1) = F(f2) we

have f1 = f2, we say F is faithful. We say a full and faithful functor F is an isomor-

phism provided F is a bijection on both objects and arrows. It is worth noting that

a categorical isomorphism exists if and only if there exist functors F : C −→ D and

G : D −→ C where G ◦ F = IdC and F ◦ G = IdD. In this case, we have an equivalence of

categories.
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A
g ◦ f

- C F(A) �
F(g ◦ f)

F(C)

C
F

- D

B

f

?

g

-

F(B)

F(f)

6

�

F(
g)

Figure 2: Commuting diagram for a contravariant functor. Note how the arrows

are reversed in the codomain. Compare this with the commuting diagram for func-

tors (Figure 1).

In category theory, there is another type of equivalence: that of the dual equiv-

alence. The main result of this paper seeks to establish just such a relationship.

Unlike an equivalence of categories, a dual equivalence establishes an equivalence

between a category and the dual of another (that is, a category where all arrows are

reversed). An interested reader would do well to consult Clark and Davey [6]; this

is one of the most comprehensive texts on the subject of categorical dualities and

where they are found.

Definition 3.68. Suppose C and D are categories and F : C −→ D is a functor. We say

F is contravariant provided the following properties hold:

1. For any A,B ∈ ObC and any f : A −→ B ∈ ArC , we have F(f) : F(B) −→

F(A) ∈ ArD.

2. We have F(IdA) = IdF(A) for every A ∈ ObC .

3. If A,B,C ∈ ObC and f : A −→ B, g : B −→ C ∈ ArC , then F(g ◦ f) =

F(f) ◦ F(g) : F(C) −→ F(A) ∈ ArD.

A contravariant functor, as defined above, satisfies the following diagrams:
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C A
f

- B

F(A)
F(f)

- F(B)

D

F

?

G

?
G(A)

τA

? G(f)
- G(B)

τB

?

Figure 3: Commuting diagram for a natural transformation.

In a certain sense, a dual equivalence is almost like finding a “mirror-image” of

a category rather than finding a (mathematically) identical construction. As such,

we shall be interested in a finding a pair of contravariant functors F : C −→ D and

G : D −→ C which are in a very general sense inverse to one another. However, in

order to define precisely when this happens, we need a way to compare functors.

It is frequently said that category theory is all about the arrows. As such, we

have seen that in a category, the arrows between objects determine the structure of

a category. Similarly, we have seen that functors act as arrows between categories

themselves. It should come as no surprise that there exist arrows between functors

as well; these arrows are known as natural transformations.

Definition 3.69. Suppose C and D are categories and F : C −→ D and G : D −→ C

are functors. A natural transformation is a function τ : F −→ G such that for every

ObC , there exists an arrow τA = τ(A) : F(A) −→ G(A) ∈ ArD where every arrow

f : A −→ B ∈ ArC yields the following commuting diagrams:
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A
ϕ

- B X
ψ

- Y

G ◦ F(A)

eA

? G ◦ F(ϕ)
- G ◦ F(B)

eB

?

F ◦ G(X)

εX

? F ◦ G(ψ)
- F ◦ G(Y )

εY

?

Figure 4: Commuting diagram for Condition (1) of Definition 3.70. Observe that

e : ObC −→ G ◦ F(ObC) and ε : ObD −→ F ◦ G(ObD) form natural transformations.

The arrows τA, τB ∈ ArD are called the components the natural transformation τ ;

whenever this relationship holds we say the arrow τA is natural in A.

If every component of a natural transformation has a definable inverse τ−1
A :

G(A) −→ F(A), then τ is a natural isomorphism. A natural isomorphism is sometimes

denoted τ : F ∼= G.

Definition 3.70. Suppose C and D are categories and F : C −→ D and G : D −→ C are

a pair of contravariant functors with the property that, for A ∈ ObC and B ∈ ObC

there exist morphisms

eA : A −→ G ◦ F(A) and εB : B −→ F ◦ G(B)

We say 〈F, G, e, ε〉 forms a dual adjunction between C and D, and F and G are dually

adjoint if the following conditions hold:

1. For every ϕ : A −→ B ∈ ArC and ψ : X −→ Y ∈ ArD, the diagrams in Figure

4 commute; that is eB ◦ ϕ = G ◦ F(ϕ) ◦ eA and εY ◦ ψ = F ◦ G(ψ) ◦ εX .

2. For everyA ∈ ObC andX ∈ ObD, there exists a bijection between hom(A, G(X)) ⊆

ArC and hom(X, F(A)) ⊆ ArD associating ϕ and ψ where we have ϕ = G(F(ϕ ◦

εX))◦eA and ψ = F(G(ψ◦eA))◦εX . That is, the diagrams in Figure 5 commute.
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A
ϕ
- G(X) X

ψ
- F(A)

G ◦ F(A)

eA

?

G(
ϕ)

-

F ◦ G(X)

εX

?

F(
ψ)

-

Figure 5: Commuting Diagram for Condition (2) of Definition 3.70

When a dual adjunction as described above exists, we say 〈F, G, e, ε〉 is a dual

representation provided e : A −→ G ◦ F(A) is an isomorphism for every A ∈ ObC .

Similarly, we say a dual representation 〈F, G, e, ε〉 constitutes a dual equivalence if

εX : ObD −→ F ◦ G(X) for every X ∈ ObD is an isomorphism as well. Indeed, in this

case 〈G, F, ε, e〉 constitutes a dual representation as well. We will end this section

with a theorem which characterizes dual equivalences, demonstrating how the

two categories are related when such a relation exists.

Theorem 3.71 (Clark and Davey). Suppose 〈F, G, e, ε〉 is a dual equivalence between

categories C and D. Let A,B ∈ ObC and X, Y ∈ ObD, and suppose ϕ : A −→ B ∈ ArC

and ψ : X −→ Y . The following statements are true:

1. There is an object X ∈ ObD, namely X = F(A), such that A ∼= G(X).

2. There is an object A ∈ ObC , namely A = G(X), such that X ∼= F(A).

3. Both F and G are full and faithful.

4. The arrow ϕ ∈ ArC is an isomorphism if and only if F(ϕ) is an isomorphism, and

A ∼= B if and only if F(A) ∼= F(B).

5. The arrow ψ ∈ ArD is and isomorphism if and only if G(ψ) is an isomorphism, and

X ∼= Y if and only if G(X) ∼= G(Y ).
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Proof. Observe that (1) and (2) follow directly from Definition 3.70. To prove (3),

we will prove that F is full and faithful in ; the fact that 〈G, F, ε, e〉 is a dual represen-

tation proves the case for G. If we suppose u, v ∈ ArC such that dom(c) = A = dom(d)

and cod(c) = B = cod(d) for A,B ∈ ObC where F(u) = F(v), we use the hypothesis

that eB is an isomorphism to obtain

u = e−1
B ◦ G ◦ F(u) ◦ eA = e−1

B ◦ G ◦ F(v) ◦ eA = v

We may therefore conclude F is faithful. To see that F is full, suppose θ : F(B) −→

F(A) ∈ ArD. By part (2) of Definition 3.70 we set X = F(B), and observe that

F(eB) ◦ εF(B) = IdF(B) since G(IdF(B)) = IdG◦F(B) and therefore εF(B) = F−1(eB). From

here we observe that

θ = F(G(θ) ◦ eA) ◦ εF(B)

= F(G(θ) ◦ eA) ◦ F−1(eB)

= F(G(θ) ◦ eA) ◦ F(e−1
B )

= F(e−1
B ◦ G(θ) ◦ eA)

= F(v) for some v ∈ ArC

From here we see that F is full as well. Observe that the fact that (3) holds forces us

to conclude that (4) and (5) hold as well since both functors are full.
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CHAPTER 4

HYPERGRAPHS AND CONE LATTICES

4.1 The Graph Topology

For the most part, the concepts and methods used in this study are standard to

the arenas of graph theory and order theory; however, because these are some-

what disparate realms, we take care to provide careful definitions and background

information for those notions specific to one area or the other. We begin the the

concept of “hypergraph.”

There are many constructs that come under the general heading “graph”, and

these constructs fall into a loose hierarchy. It seems fitting therefore to open this

exploration with a brief explanation as to what we will mean when we speak of

a graph. Perusing the literature, one soon learns that all definitions of the term

“graph” strive to capture the notion of a set of “vertices” coupled with “edges”

that convey “adjacency” between vertices. The results appearing in the sections

below apply to a number of these constructs; therefore, it is useful introduce a

single definition that encompasses them all.

In all that follows, we will let Su(X) denote the powerset of any set X ; and we

will let Su(X)′ = Su(X)− {∅}.

Definition 4.72. Let G and I be disjoint, nonempty sets and consider the set I ×

Su(G)′. Let πG : I × Su(G)′ −→ Su(G)′ denote the projection map. A hypergraph on

the set G is a pair G = (G,E), where E ⊆ I × Su(G)′ is nonempty. The members of

G are called vertices or nodes, and the members of E are called edges. Two vertices

x and y are adjacent provided the following condition is met.

• There exist e ∈ E such that x, y ∈ πG(e).
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Observe that given the previous definition we have a vertex v ∈ V is adjacent to

itself if and only if (i, {x}) ∈ E. An edge e is incident to a vertex x provided x ∈

πG(e). We will say that e, f ∈ E are coincident provided e 6= f but πG(e) = πG(f).

Readers familiar with hypergraphs will notice that our definition appears some-

what nonstandard, since the edge-set of a hypergraph is usually defined to be a

nonempty collection of multisets of G (See Berge [2] for example.) However, our

definition of “edge” is merely a formal approach to describing multisets that makes

coincident edges easily distinguishable as objects. (Hypergraphs with coincident

edges are sometimes called multi-hypergraphs.) A hypergraph is simple provided it

contains no coincident edges.

In a hypergraph G = (G,E), we say that e ∈ E is a loop provided πG(e) is a

singleton. It is worth noting that a vertex x ∈ G is adjacent to itself if and only if

there is a loop incident to x.

Some authors also require that every vertex be adjacent to a distinct vertex so

that no vertex is “isolated.” (See for example Berge [2].) We will not make that

restriction in general. Indeed, we will refer to a hypergraph G = (G,E) as social

when no vertex is isolated.

A hypergraph G = (G,E) is called a graph provided provided πG(e) contains at

most two elements for every edge e. Note that graphs may contain loops as well

as coincident edges.

Some authors reserve the term “graph” for simple hypergraphs in which πG(e)

always contains exactly two elements and use the term “multigraph” to allow the

possibility of loops and coincident edges. However, use of the term “multigraph”

is far from uniform in graph theory circles. Some authors require that at least one

pair of vertices in a multigraph be adjacent via multiple edges — see Skiena [25]

for example.) Others use the term “pseudograph” when discussing multigraphs

with loops (for example, see Chartrand and Zhang [5]) while others use the term
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“multigraph” to refer to graph-constructs containing loops or containing coinci-

dent edges (see Tutte [32] for example). Some authors recommend that the term be

abandoned (see West [34] for example); following this recommendation, we will

avoid using the term altogether.

Definition 4.73. Let G = (G,E) by a hypergraph. For x ∈ G, let

E(x) = {e ∈ E : x ∈ πG(e)} and B(x) = {x} ∪ E(x)

We call E(x) the edge-neighborhood of the vertex x, and we call B(x) the edge-ball

generated by x.

Suppose that G = (G,EG) andH = (H,EH) are graphs. In the literature, a graph

homomorphism from G toH is defined to be a mapping f : G −→ H that preserves

adjacency and does not identify adjacent vertices unless the image vertex contains

a loop. The following definition translates this concept into our context.

Definition 4.74. Suppose G = (G,EG) and H = (H,EH) are hypergraphs. A func-

tion f : G ∪ EG −→ H ∪ EH is an HG-morphism provided

1. We have f(G) ⊆ H and f(EG) ⊆ EH .

2. If x ∈ G, then f(B(x)) ⊆ B(f(x)).

Lemma 4.75. Suppose G = (G,EG) and H = (H,EH) are hypergraphs, and suppose

f : G ∪ EG −→ H ∪ EH satisfies conditions (1) and (3) of Definition 4.74. The function

f is an HG-morphism if and only if, for all e ∈ EG, we have f(πG(e)) ⊆ πG(f(e)).

Proof. Let f : G ∪ EG −→ H ∪ EH be such that f(G) ⊆ H and f(EG) ⊆ EH and

first suppose that for all e ∈ EG, we have f(πG(e)) ⊆ πH(f(e)). If ex ∈ EG such

that ex ∈ B(x), observe that x ∈ πG(ex), and by hypothesis we have f(πG(ex)) ⊆

πH(f(x)). Since f(x) ∈ f(πG(ex)), it follows that f(ex) ∈ B(f(x)). which proves
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that the hypothesis is sufficient to show that f is an HG-morphism.

In his 2005 Ph.D. dissertation, Antoine Vella described a novel topology on hy-

pergraphs based on edge-balls and identified a number of its properties (see Vella

[33]).

Definition 4.76. Let G = (G,E) be a hypergraph. A subset X of G∪E is graph-open

provided one of the following conditions is met.

• We have X ⊆ E.

• If x ∈ X ∩G, then E(x) ⊆ X .

We include the openness of edge-only sets as Condition (1) purely for emphasis

since it is actually implied by Condition (2). It is easy to see that the collection Ω(G)

of graph-open sets forms a topology on G ∪E. This topology is called the graph or

classical topology on G.

It is worth noting that the family

B(G) = {{e} : e ∈ E} ∪ {B(x) : x ∈ G}

forms a compact-open basis for the graph topology on any hypergraph G = (G,E).

In the work to follow, we will let

JS(B(G)) = {
⋃

F : F ∈ Fin(B(G))}

where Fin(B(G)) denotes the set of all finite subsets of B(G). It is clear that JS(B(G))

is a lower-bounded join-semilattice under set inclusion. It is also clear that JS(B(G))

serves as another compact-open basis for the graph topology on G. We will refer

to JS(B(G)) as the join-semilattice generated by the basis B(G).
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It is also worth noting that the graph topology is an example of an Alexandroff

topology; that is, one in which the intersection of any family of open sets is open.

In light of this fact, the poset (Ω(G),⊆) is a complete, distributive lattice. The join

(supremum) for any subset of Ω(G) is simply its union ; likewise, the meet (infi-

mum) of the set is simply its intersection. We will have much more to say about

this lattice in Section 4.3

Theorem 4.77. Every HG-morphism is continuous with respect to the graph topology.

Proof. Suppose G = (G,EG) and H = (H,EH) are hypergraphs, and suppose f :

G ∪ EG −→ H ∪ EH is an HG-morphism. Let y ∈ H and suppose x ∈ f−1(B(y)).

Observe that if x ∈ G, we necessarily have f(x) = y and f(B(x)) ⊆ B(y) since f

is an HG-morphism. This immediately implies B(x) ⊆ f−1(B(y)). Furthermore,

if x ∈ EG, we know {x} ∈ Ω(G). In either case, every element in f−1(B(y)) is

contained in an open subset of itself, hence f−1(B(y)) ∈ Ω(G) and f is continuous

with respect to the graph topology.

Theorem 4.78. Let G = (G,E) be a hypergraph, and letG∪E be endowed with the graph

topology. The following statements are true.

1. The set G ∪ E has the T0 separation property under the graph topology.

2. The set G∪E is sober under this topology; that is, if X is a join-prime member of the

lattice Γ(G) of graph-closed subsets of G ∪ E, then X is the closure of a singleton.

3. The set G ∪ E has a basis of compact open sets that forms a lower-bounded join sub

semilattice of Ω(G).

4. If B(x) ∩ B(y) is finite for all distinct x, y ∈ G, then the set G ∪ E has a basis of

compact open sets that forms a lower-bounded sublattice of Ω(G).



78

Proof. To prove (1), it is sufficient to observe that all singleton edges are open,

and if x, y ∈ G are distinct, then y /∈ B(x) (the same is true of x and B(y)).

In order to prove (2), it will be useful to characterize the closure of singletons.

Observe that since every singleton edge is open under the graph topology

and every edge-ball contains a single vertex, no vertices are limit points to

any open set. That is, if x ∈ G we have {x} = {x}. On the other hand, since

an open set contains a vertex always means it contains its adjacent edges, the

closure of any edge will contain all of its adjacent vertices. That is, for any

e ∈ E we have {e} = {e} ∪ πG(e). From here it is evident that (up to equiva-

lence) a closed set will not be the closure of singleton when either it contains

two (or more) vertices or it contains an edge and a non-adjacent vertex.

To see why the closure of multiple vertices fails to be join-prime, observe that

if x, y ∈ G are distinct, we clearly have {x} ∈
⋃
{{x, y}} where {{x, y}} ⊆

Γ(G), but {x} /∈ {{x, y}}, and therefore fails to be join-prime (see Definition

2.62 and consider its dual). Similarly, to see why the second case fails to

be join-prime, consider e ∈ E and x ∈ G − πG(e). Observe that {x, e} =

{x, e} ∪ πG(e), and as we have seen a closed set with multiple vertices cannot

be join-prime. Consequently, contraposition forces us to conclude that any

join-prime closed subset must be the closure of a singleton.

It is sufficient to recall that the family

JS(B(G)) = {
⋃

F : F ∈ Fin(B(G))}

is indeed a basis that satisfies (3), and to prove (4) suppose that B(x) ∩ B(y)

is finite for every distinct x, y ∈ G. If we suppose F ∈ Fin(B(G)), we observe

that if
⋃
F ⊆ E, then F is a finite collection of finite edge-sets. Furthermore,
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if
⋃
F∩G 6= ∅, we know this intersection is finite and if

⋃
F∩G = {x1, . . . , xn}

we must have
⋃n
i=1 B(xi) ∈

⋃
F . This in turn implies

⋂
F ⊆

⋂n
i=1B(xi), and

by hypothesis this must be a finite (possibly empty) collection of edges. This

means
⋂
F ∈ JS(B(G)) in either case. We may therefore conclude JS(B(G)) is

closed under finite intersections, and hence is a sublattice of Ω(G) with the

emptyset serving as a lower bound.

Readers familiar with topological representations of distributive lattices will

recognize that Theorem 4.78 implies every graph topology is the Stone space asso-

ciated with some distributive join semilattice. Indeed, under the mild requirement

that distinct vertices be adjacent via at most finitely many edges, graph topologies

are spectral spaces. For information on the subject of topological representations,

we recommend starting with Gratzer [13].

In the sections to follow, we will establish that the graph topology on a hy-

pergraph G is (homeomorphic to) the Stone space associated with the join semi-

lattice generated by the basis B(G). The road leading to this conclusion is rather

scenic; and along the way we will establish a number of results concerning hyper-

graphs. We begin by examining a well-known construct closely associated with

hypergraphs.

4.2 Hypergraphs and Hypergraph Posets

Graph theorists have long exploited the fact that there is a simple way to associate

a poset with any hypergraph — for a hypergraph G = (G,E), let PG = G ∪ E and

set u v v if and only if one of the following conditions hold:

• We have u = v.

• We have u ∈ E, v ∈ G, and v ∈ πG(u).
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In this approach, the vertex set G and the edge set E are antichains in the poset,

and every member of E is covered by at least one member of G. The pair PG =

(PG,≤) is often called the incidence poset or the vertex-edge poset for the hypergraph

G. (Incidence posets are also called Levi graphs in honor of Frederich Levi, an early

investigator — see Levi [18].) An excellent bibliography on the early development

of posets for simple graphs can be found in Trotter [31].

Definition 4.79. A poset P = (P,≤) is called a hypergraph poset provided the fol-

lowing conditions are met.

1. There exist disjoint nonempty antichains V(P) and E(P) such that P = V(P)∪

E(P).

2. The members of V(P) are maximal inP , and the members of E(P) are minimal

in P .

3. Every member of E(P) is covered by at least one member of V(P). We will let

Cov(y) denote the set of covers for y.

Note that the set V(P) represents the set of all maximal elements in a hyper-

graph poset P . However, it does not have to be the case that E(P) represents the

set of all minimal elements of P . It is possible that some member of V(P) is also

minimal in P ; this is the case for precisely those x ∈ V(P) such that ↓ x = {x}. We

will say that a hypergraph poset P is social provided ↓ x always contains at least

two elements for any x ∈ V(P).

We will say that a hypergraph poset P is a graph poset provided Cov(j) contains

at most two members for any j ∈ E(P).

Let G = (G,E) be a hypergraph. It is clear that the incidence posetPG = (PG,≤)

introduced above is a hypergraph poset that is a graph poset whenever G is a

graph.
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On the other hand, Suppose that P = (V(P) ∪ E(P),≤) is a hypergraph poset.

Let

GP = V(P) and EP = {(e, Cov(e)) : e ∈ E(P)}

It is clear that GP = (GP , EP ) is a hypergraph.

Theorem 4.80. IfP = (V(P)∪E(P),≤) is a hypergraph poset, thenP is order-isomorphic

to PGP
.

Proof. If we define a map ϕ : P −→ GP by the rule

ϕ(x) =

{
x, x ∈ V(P);
(x, Cov(x)), x ∈ E(P).

from P and the induced graph GP . This map is clearly bijective since ϕ|V(P) is

the identity map for V(P) provided its codomain is restricted to its range, and

e1, e2 ∈ E(P) are distinct if and only if (e1, Cov(e1)), (e2, Cov(e2)) ∈ EP are as well.

Since PGP
= GP ∪ EP , it remains to observe that if x v y where x, y ∈ P , we

either have x = y (in which case ϕ(x) = ϕ(y) in PG) or

x <P y where x, y ∈ P ⇐⇒ y ∈ G ∩ Cov(x) and (x, Cov(x)) ∈ E

⇐⇒ (x, Cov(x)) <PG y where (x, Cov(x)), y ∈ PG

We will say that hypergraphs G = (G,EG) and H = (H,EH) are HG-isomorphic

provided there exists a bijection f : G∪EG −→ H∪EH with the property that f and

f−1 are both HG-morphisms. Note that in this case, we have f(B(x)) = B(f(x))

for all x ∈ G.

Theorem 4.81. If G = (G,E) is a hypergraph, then G is HG-isomorphic to the hypergraph

GPG
= (GPG

, EPG
).
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Proof. First, suppose G = (G,E) is a hypergraph and define a map ψ : G −→ GPG

defined under the rule as

ψ(x) =

{
x, x ∈ G;
(x, Cov(x)), x ∈ E.

The argument that this map is bijective mirrors that in the previous proof; we

will proceed to show this map and its inverse are HG-morphisms. To that end,

observe that the first condition for HP-morphisms is satisfied for both ψ and its

inverse since

G = ψ−1(GPG
) and ψ(G) = GPG

Furthermore, Theorem 4.80 guarantees that both ψ and its inverse satisfy the sec-

ond condition of HP-morphisms, hence the claim follows.

This correspondence can be taken further.

Definition 4.82. Suppose that P = (V(P) ∪ E(P),≤) and Q = (V(Q) ∪ E(Q),v) are

hypergraph posets. A mapping f : V(P) ∪ E(P) −→ V(Q) ∪ E(Q) will be called an

HP-morphism provided the following conditions are met.

1. We have f(V(P)) ⊆ V(Q).

2. The function f is a strict order-homomorphism; that is, x < y implies f(x) <

f(y).

Lemma 4.83. If f is an HG-morphism from the hypergraph G = (G,EG) to the hyper-

graphH = (H,EH), then f is also an HP-morphism from PG to PH .

Proof. Suppose f is an HG-morphism. By definition we have f(V(PG)) = f(G) ⊆

H = V(PH), hence the first criterion for HP-morphisms is met.

Now suppose x, y ∈ PG such that x < y. It follows that y ∈ G and x ∈ B(y).

Since f is an HG-morphism, it follows that f(B(y)) ⊆ B(f(y)), which implies
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f(x) ∈ B(f(y)); that is f(y) ∈ Cov(f(x)) This of course means f(x) < f(y).

Finally, we consider the case where x, y ∈ G are distinct where f(x) = f(y)

and e ∈ B(x) ∩B(y). Since f is an HG-morphism, we know that f(B(x) ∩B(y)) ⊆

Loop(f(x)), hence f(e) = (i, {f(x)}). From here it follows that ↑ f(e) = {f(e), f(x)}

in the hypergraph poset PH , and therefore f satisfies that final criterion for HP-

morphisms.

Lemma 4.84. If we suppose f is an HP-morphism from the hypergraph posetP = (V(P )∪

E(P ),≤) to the hypergraph poset Q = (V(Q), E(Q),v), then f ′ is an HG-morphism from

the hypergraph GP = (VP , EP ) to the hypergraph GQ = (VQ, EQ), where

f ′(x) =


f(x) if x ∈ VP

(f(ex), Cov(f(ex))) if x = (ex, Cov(ex)) ∈ EP

Proof. Suppose f : P −→ Q is an HP-morphism and define f ′ as above. By defini-

tion f ′(VP ) = f ′(V(P )) ⊆ V(Q) = VQ. We also observe that f ′(EP ) = {(f(x), Cov(f(x))) :

(x, Cov(x)) ∈ EP} ⊆ EQ, so the first criterion of HG-morphisms is satisfied.

Next, suppose suppose v ∈ VP and suppose f ′(x) ∈ f ′(B(v)). It follows that

either f ′(x) = f ′(v) (in which case x = v) or x ∈ E(v). In the latter case, x ∈ E(v)

implies x < v, and since f is an HP-morphism, we must have f(x) < f(v). We may

therefore conclude f ′ ∈ B(f ′(v)). In either case f ′(B(v)) ⊆ B(f ′(v)) as desired.

Finally, suppose x, y ∈ VP are distinct where f(x) = f(y) and e ∈↓ x∩ ↓ y.

Since f is an HP-morphism, we know that ↑ f(e) = {f(e), f(x)}, and hence f ′(e) =

(f(e), Cov(f(x)) = (f(e), {f(x)}) is a loop in GQ = (VQ, EQ), hence Criterion 3 of

HG-morphisms is satisfied, which completes the proof.
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Definition 4.85. Let HGraph denote the category whose objects are hypergraphs

and whose morphisms are HG-morphisms, and let HPoset denote the category

whose objects are hypergraph posets and whose morphisms are HP-morphisms.

Theorem 4.86. The category HGraph is equivalent to the category HPoset. The equiva-

lence is accomplished via the functors HP : HGraph −→ HPoset and HG : HPoset −→

HGraph defined by

• HP[G] = PG and HP[f ] = f .

• HG[P ] = GP and HG[f ] = f ′.

Proof. Observe that Theorems 4.80 and 4.81 as well as Lemmas 4.83 and 4.84 tell us

we can define natural transformations e : IdHGraph −→ HGHP and ε : IdHPoset −→

HPHG (where IdC is the identity functor for a category C) where each component

is an isomorphism. We may therefore conclude e : IdHGraph
∼= HGHP and ε :

IdHPoset
∼= HPHG and that the following diagrams commute:

G
f

- H PG
g

- PH

HGHP(G)

eG

? HGHP(f)
- HGHP(H)

eH

?

HPHG(PG)

εG

? HPHG(g)
- HPHG(PH)

εH

?

In the work to follow, we find it more convenient to work with hypergraph

posets rather than hypergraphs; however, in light of the previous results, the two

concepts are essentially interchangeable.

4.3 Lowersets of a Hypergraph Poset

If G is any hypergraph, then the following result tells us we may consider the

lattices Ω(G) and Low(PG) to be interchangeable. This should come as no surprise
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given the results in Section 4.2.

Lemma 4.87. Let G = (G,E) be a hypergraph endowed with the graph topology, and

let PG represent its hypergraph poset. For X ⊆ G ∪ E, the following statements are

equivalent.

1. We have X ∈ Ω(G).

2. We have X ∈ Low(PG).

Proof. It will be instructive to characterize that principal lowersets of PG. To

that end, let x ∈ G and observe ↓ x = {x} whenever x ∈ E and ↓ x =

{x} ∪ E(x) = B(x) whenever x ∈ G. From here we observe

U ∈ Low(P) ⇐⇒ U =
⋃
{↓ x : x ∈ U}

⇐⇒ U =
⋃
{{e} ∪B(x) : e ∈ U ∩ E, x ∈ U ∩G}

Recall that B(G) = {{e} : e ∈ E} ∪ {B(x) : x ∈ G} constitutes a basis for Ω(G),

so we have shown that U ∈ Low(P) if and only if U can be expressed as the

union of a family from the basis B((G)) which proves the claim.

Recall that an element a of a lattice L with least element is called an atom of L

provided ⊥ ≺ a. Similarly, an element b of a lattice L with greatest element is a

coatom of L provided it is an atom of the order-dual for L.

Theorem 4.88. Suppose that P = V(P) ∪ E(P) is a hypergraph poset. If we let

B⊥ = {X : X ⊆ E(P)} and B> = {E(P) ∪ Y : Y ⊆ V(P)}

then the following statements are true.

1. Under subset inclusion, B> and B⊥ are complete, atomic Boolean sublattices of

Low(P). Moreover, B⊥ ∩B> = E(P).
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2. The set B⊥ is a lowerset of Low(P), and B> is an upperset of Low(P).

3. The atoms of B⊥ are precisely the singleton subsets of E(P).

4. The atoms of B> are precisely the sets E(P) ∪ {y}, where y ∈ V(P).

5. If y ∈ V(P) is such that ↓ y 6∈ B>, then ↓ y is minimal in Low(P)− (B⊥ ∪B>).

6. If x ∈ E(P) and Cov(x) 6= V(P), then ¬(Cov(x)) = P − (x ∪ Cov(x)) is maximal

in Low(P)− (B⊥ ∪B>).

Proof. To prove (1), it is instructive to recall that every complete, atomic Boolean

lattice is order-isomorphic to the powerset of some set, and conversely. Note that

B⊥ = Su(E(P)), andB> is order isomorphic to Su(V(P) via the map ϕ : Su(V(P) −→

B> defined ϕ(S) = S ∪ E(P) (we leave it to the reader to verify that ϕ is an or-

der isomorphism). Observe that E(P) is clearly the top element of B⊥, and since

ϕ(∅) = E(P), it also serves as the least element of B>. From here it is clear that

E(P) = B⊥ ∩B> as desired.

In order prove (2), suppose U1 ∈ B⊥ and suppose U2 ∈ Low(P) such that

U2 ⊆ U1. Since U2 is a subset of U1, it is a subset of E(P) and consequently U2 ∈ B⊥.

Similarly, if we suppose V1 ∈ B> and V2 ∈ Low(P) such that V1 ⊆ V2, the fact that

E(P) ⊆ V1 guarantees V2 = E(P) ∪ T for some T ∈ Su(V(P), which means V2 ∈ B>,

which verifies the claim.

Both (3) and (4) are easily verified by recalling that the atoms of any power-

set are precisely the singletons, which proves (3) directly and (4) due to the fact

that the sets E(P) ∪ {y} are precisely the images of singletons under ϕ. We prove

(5) by observing that for any ↓ y ∈ Low(P) such that ↓ y /∈ B>, we must have

↓ y = {y} ∪ E(y) where E(y) ⊂ E(P), hence ↓ y 6∈ B⊥. Furthermore, it is the minimal

such lowerset to contain y, and any subset not including y is in B⊥, therefore ↓ y is



87

minimal in Low(P)− (B⊥ ∪B>).

Finally, to prove claim (6), if we suppose x ∈ E(P) is such that Cov(x) 6= V(P),

we note that ¬(Cov(x)) = P − (x ∪ Cov(x)) is necessarily nonempty. In particular,

there exists v ∈ V(P) − Cov(x), hence ¬(Cov(x)) contains at least one vertex. If we

suppose z ∈ P is such that z ≤ y, then either z = y or z ∈ E − {x}; in either case

z ∈ ¬Cov(x) and ¬Cov(x) ∈ Low(P). Furthermore, since x /∈ ¬Cov(x), we must

have ¬Cov(x) ∈ Low(P) − (B⊥ ∪ B>). To see that ¬Cov(x) is maximal in Low(P) −

(B⊥∪B>), observe that E−{x} ⊆ ¬Cov(x), which implies that ¬Cov(x)∪{e} ∈ B>.

Furthermore, if we have U ∈ Low(P) such that ¬Cov(x) ⊆ U and U ∩ Cov(x) 6= ∅,

we must have x ∈ U , hence U ∈ B>. From here we conclude (6) holds.

Corollary 4.89. Suppose that P = V(P) ∪ E(P) is a hypergraph poset, and suppose that

U ∈ Low(P)− (B⊥ ∪B>).

1. There is a maximal member of Low(P)− (B⊥ ∪B>) that contains U .

2. There is a minimal member of Low(P)− (B⊥ ∪B>) that is contained in U .

3. There is a smallest member of B> that contains U .

4. There is a largest member of B⊥ that is contained in U .

Proof. If U ∈ Low(P)− (B⊥ ∪B>), we know that

• The set U can be represented as the union of principal lowersets.

• We have ↓ x ⊆ U for at least one x ∈ V(P).

• We have E(P)− U 6= ∅.

Since there exists e ∈ E(P) − U , we know that for every ↓ v ⊆ U ∩ Low(V(P), we

know v /∈ Cov(e), which in turn implies ↓ v ∈ ¬Cov(e), hence U ⊆ ¬Cov(x) and

(1) is proved. We observe that (2) is satisfied since every such ↓ v ∈ U is minimal
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in Low(P) − (B⊥ ∪ B>). Observe that b> :=
⋃
{↓ v ∪ E(P) :↓ v ⊆ U} is such that

b> ∈ B>, and is clearly the smallest such element of B> by the way b is defined, so

(3) is satisfied. Similarly, b⊥ := {e ∈ E(P) : e ∈ U} is such that b⊥ ∈ B⊥, and is the

largest such member contained in U , hence proving (4).

4.4 Cone Lattices

In the previous section, we described the structure of Low(P) for any hypergraph

posetP . In this section, we will prove that any lattice satisfying the same structural

conditions is order-isomorphic to the lowerset lattice of some hypergraph. We

begin with a definition that summarizes these structural conditions.

Definition 4.90. Let L = (L,≤) be a bialgebraic, distributive lattice. We say that L

is a cone lattice provided there exists an element ⊥ < η < > such that

1. The posets B> =↑ η and B⊥ =↓ η are complete atomic Boolean lattices.

2. The set B⊥ is a lowerset of L, and the set B> is an upperset of L.

3. Every member of L−(B⊥∪B>) has a maximal upper bound in L−(B⊥∪B>).

4. Every member of L− (B⊥∪B>) has a minimal lower bound in L− (B⊥∪B>).

5. If x ∈ L− (B⊥ ∪B>), then B⊥∩ ↓ x has a maximal member, and B>∩ ↑ x has

a minimal member.

We will refer to the sublattice B> ∪ B⊥ as the Boolean cone of L and refer to the

subposet L− (B> ∪B⊥) as the set of suspended elements in L. We will say that L is

a proper cone lattice whenever its set of suspended elements in nonempty.

In light of Theorem 4.88 and Corollary 4.89, we know that cone lattices are

abundant structures. In particular, if P = (V(P) ∪ E(P),≤) is any hypergraph
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poset, then Low(P) is a cone lattice. Our next goal will be to prove that every cone

lattice arises as the lowerset lattice of a hypergraph poset. We accomplish this task

in several steps.

For any poset P , the join-prime elements of Low(P) are precisely the principal

lowersets of P . Consequently, every element of Low(P) is the supremum of a set of

compact, join-prime elements.

Recall that an element p in a complete lattice L = (L,≤) is completely meet-

prime provided it is completely join-prime in the order-dual of L. In other words,

p is completely meet-prime provided, whenever X ⊆ L is such that
∧
X ≤ p,

then there exist x ∈ X such that x ≤ p. We will let CMP(L) denote the subposet

of completely meet-prime members of L. If L is complete, then it is clear that

CMP(L) ⊆ MP(L).

For any complete lattice L, we will let CJP(L) denote the subposet of compact,

join-prime elements. It is well-known that an algebraic,distributive latticeL is bial-

gebraic if and only if L is order-isomorphic to Low[CJP(L)]. Another well-known

quite useful fact about bialgebraic lattices is that every element can be represented

as the join of a family from CJP(P); in particular if x ∈ L, we have x =
∨
Jx where

Jx := { p ∈ CJP(P) : p ≤ x } (see Theorems 2.61 and 2.65). We will make use of

these facts in this section.

Let L be a complete lattice. It is worth noting that j ∈ CJP(L) if and only if,

for every X ⊆ L such that j ≤
∨
X , there exist x ∈ X such that j ≤ x. Compact,

join-prime elements are often called completely join-prime for this reason.

Lemma 4.91. Suppose that L = (L,≤) is a cone lattice, and suppose that j ∈ CJP(L). If

j ∨ η > η, then j ∨ η is an atom of B>.
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Proof. It will be useful to characterize the necessary and sufficient condition(s) for

one element to cover another in a bialgebraic lattice. First, observe that if x, y ∈ L

such that x ≺ y, we must have Jx ⊂ Jy; that is, we necessarily have jy ∈ Jy − Jx.

Now, since L is complete, we know that Jl := Jx∪ {jy} has the property
∨
Jl = l

for some l ∈ L. Since Jx ⊂ Jl, we must have x < l, but since Jl ⊆ Jy we must

have l ≤ y. From here we notice that we must have l = y since we y covers x by

hypothesis, so we see it is also sufficient for Jy to contain precisely one join-prime

element not contained in Jx to cover x. From here it is easy to see that our claim is

a corollary of this result. To see why, observe that if j ∨ η > η, then it must be true

that j /∈ Jη and a = j ∨ η has the property a ∈↑ η = B> and Ja = Jη∪ {j}.

Lemma 4.92. Suppose that L = (L,≤) is a cone lattice. Every minimal member of L −

(B⊥ ∪B>) is completely join-prime in L.

Proof. Suppose x ∈ L− (B⊥ ∪B>) is minimal. Since x ∈ (B⊥ ∪B>), it must be true

that Jx − B⊥ 6= ∅ since B⊥ is a complete sublattice of L. This in turn implies there

exists x0 ∈ Jx − B⊥. Note that we have x0 ≤ x. Observe that if x0 ∈ B>, we have

x ∈↑ x0 ⊆ B>; contrary to hypothesis. This means x0 ∈ L − (B⊥ ∪ B>). However,

since x is minimal in L − (B⊥ ∪ B>), we must have x0 = x and x is completely

join-prime as a consequence.

For any cone lattice L = (L,≤), let MinSus(L) denote the set of minimal sus-

pended elements of L. Note that every member of MinSus(L) is completely join-

prime in L.

Lemma 4.93. Suppose that L = (L,≤) is a cone lattice and let j ∈ L− (B⊥ ∪ B>). The

element j is completely join-prime in L if and only if j ∈ MinSus(L).

Proof. In light of Lemma 4.92 it is sufficient to show that every completely join-

prime element of L in L− (B⊥ ∪ B>) is necessarily minimal. To that end, suppose
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j ∈ CJP(L ∩ [L− (B⊥ ∪ B>)]. We know there exists k ∈ MinSus(L) such that k ≤ j,

and B⊥ is a lowerset of L. It follows η < η ∨ j and η < η ∨ k, and consequently

η∨ j and η∨k are both atoms of B> by Lemma 4.91. But we also observe that k ≤ j

implies η ∨ k ≤ η ∨ j, and since j is completely join-prime we conclude j = k since

j ≤ k ∨ η.

Corollary 4.94. Suppose that L = (L,≤) is a cone lattice.

1. If j ∈ B> is completely join-prime in L, then j must be an atom of B>.

2. An atom a in B> is completely join-prime in L if and only if ↓ a ∩ MinSus(L) = ∅.

Proof. Observe that if j ∈ B> is completely join-prime, Lemma 4.91 guarantees j

is an atom of B> since j ∈↑ η − {η} by assumption. On the other hand, a ∈ B> is

completely join-prime if and only if ↓ a ∩ MinSus(L) = ∅; other wise a = η ∨ j for

some j ∈ MinSus(L).

Theorem 4.95. If L = (L,≤) is a cone lattice, then L is order-isomorphic to Low(P) for

some hypergraph poset P .

Proof. Recall that in the introduction to this section, we highlighted the well-known

fact that L ∼= Low(CJP(L)); we will show that (CJP(L),≤) constitutes a hypergraph

poset. First, it is well known that the atoms of a Boolean lattice are precisely its

completely join-prime elements , and since the atoms ofB⊥ cover the least element

of L it follows that these are completely join-prime in L as well. For convenience,

letA⊥ denote the set of atoms forB⊥. This of course implies CJP(L)−A⊥ ⊆ L−B⊥.

That is, if j ∈ CJP(L)−A⊥, then in light of Lemma 4.93 and Corollary 4.94 we know

either j ∈ MinSus(L) or j is an atom of B> and ↓ j ∩ MinSus(L) = ∅.
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If we let VL = MinSus(L) ∪ A′> where A′> is the set of all the atoms of B> that

are completely join-prime in L, we observe that VL is an antichain. Furthermore,

we find that VL ∪A⊥ = CJP(L), and VL ∪A⊥ = ∅. Note that every member of A⊥ is

minimal since they cover the least element of L, and as a consequence the elements

of VL are maximal.

From here we have established that CJP(L) can be expressed as the union of

two disjoint antichains of minimal and maximal elements; it remains to show that

if a ∈ A⊥ then a < v for some v ∈ VL. Observe that if A′> is nonempty, the result

follows immediately since B⊥ ⊆↓ a whenever a is an atom of B>. If A′> = ∅ we

must have VL = MinSus(L). Since MinSus(L) andA⊥ are disjoint sets of completely

join-prime elements, it will suffice to show
∨
MinSus(L) ∈ B> since

∨
A⊥ = η.

To that end, suppose a ∈ A>. By hypothesis, Ja = A⊥ ∪ S for some nonempty

S ⊆ MinSus(L). But then

a =
∨
Ja =

∨
A⊥ ∨

∨
S = η ∨

∨
S

From here it is easy to see that we must have a =
∨
S, and from here it follows∨

MinSus(L) =
∨
A> = >. This of course means b <

∨
MinSus(L) for every b ∈ A⊥,

and since these elements are completely join-prime, we must have b ≤ j for at least

one j ∈ MinSus(L). That is, every element inA⊥ is covered by at least one member

of VL and (CJP(L),≤) constitutes a hypergraph poset.

In light of Theorem 4.87, we have established the following result.

Theorem 4.96. For a bialgebraic, distributive latticeL, the following statements are equiv-

alent.

1. L is a cone lattice.

2. The compact, join-prime elements of L form a hypergraph poset.
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3. There is a hypergraph G such that L is order-isomorphic to Ω(G).



94

CHAPTER 5

THE DUAL EQUIVALENCE OF THE CATEGORIES HGraph∗ AND Cone

5.1 The Prime Spectrum of a Cone Lattice

We will let MP(L) denote the subposet of meet-prime members of L. If L is alge-

braic, then MP(L) is often called the spectrum of Com(L). It should be noted that in

order theory contexts, the term “spectrum” has traditionally referred to the fam-

ily of prime ideals (or prime filters) of a distributive join semilattice containing at

least two elements (see Gratzer [13] for example). However, since every algebraic

lattice is isomorphic to the ideal completion of its join sub semilattice of compact

elements, the traditional understanding does not conflict with our definition. (Re-

call that the ideal completion of a poset P is the family of directed lowersets of P ,

ordered by set-inclusion.)

With a nod to the term’s origin in ring theory, some lattice theorists use “spec-

trum” to refer to the meet-prime elements of an algebraic lattice only when the

lattice is distributive and its family of compact elements form a sublattice (and

hence a commutative ring).

Recall that a join semilattice J = (J,≤) is distributive provided for all a, b, c ∈ J

such that a ≤ b ∨ c, there exist u ∈↓ b and v ∈↓ c such that a = u ∨ v. It is well-

known that a (lower-bounded) join semilattice is distributive if and only if its ideal

completion is a distributive lattice. (See Gratzer [13].)

The Stone space for a distributive join semilattice containing at least two ele-

ments is a topology defined on its spectrum. In particular, suppose that J = (J,≤)

is a lower-bounded, distributive join semilattice containing at least two elements

and let Idl(J ) represent its ideal completion. For each x ∈ J , let
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σ(x) = {P ∈ MP(Idl(J )) : x 6∈ P}

The collection B = {σ(x) : x ∈ J} forms a basis for a topological space on the set

MP(Idl(J )) known as the Stone space for J . The Stone space for a lower-bounded,

distributive join semilattice J always has the following properties:

1. The space has the T0 separation property.

2. The space has a lower-bounded basis of compact-open sets.

3. Every join-prime closed subset is the closure of a singleton.

In the abstract sense, we will say a topological space is a Stone topology pro-

vided it satisfies these properties. (The definition of Stone space varies somewhat

in the literature; we are following Gratzer [13].) If a Stone topology has a compact-

open basis that is a lower-bounded sublattice of the open set lattice, we will call

this space a spectral topology. It is well-known that every Stone topology is home-

omorphic to the Stone space of some lower-bounded, distributive join semilattice

— namely the Stone space for its lower-bounded compact-open basis.

It is known that CJP(L) and CMP(L) are order-isomorphic for any complete lat-

tice L. (See for example Snodgrass and Tsinakis [26].) The isomorphism is accom-

plished via the mappings φ : CMP(L) −→ CJP(L) and ζ : CJP(L) −→ CMP(L) defined

by

φ(m) =
∧
{x ∈ L : x 6≤ m} ζ(j) =

∨
{y ∈ L : j 6≤ y}

Let us consider what this tells us about completely meet-prime elements in

Low(P) for any hypergraph poset P . Suppose that U is completely meet-prime in

Low(P). This means that U = ζ(↓ p) where ↓ p ∈ CJP(Low(P)), hence

U =
⋃
{I ∈ Low(P) :↓ p 6⊆ I} =

⋃
{I ∈ Low(P) : p /∈ I}
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Now, either p ∈ E(P) or p ∈ V(P). If p ∈ E(P), we know ↓ p = {p}, so it follows that

U = V(P) ∪ E(P)− (↓ p ∪ Cov(p)). For simplicity, let

¬(Cov(p)) = V(P) ∪ E(P)− (↓ p ∪ Cov(p))

On the other hand, if p ∈ V(P) we have U = V(P) ∪ E(P) − {p} since ↓ p is max-

imal in Low(P). In all that follows we can let γ(v) = V(P) ∪ E(P) − {v} whenever

v ∈ V(P). Observe that we have sufficiently proven the following theorem.

Theorem 5.97. Let P be a hypergraph poset. A member U of Low(P) is completely meet-

prime if and only if U = γ(y) for some y ∈ V(P) or U = ¬(Cov(x)) for some x ∈ E(P).

If L is a complete Boolean lattice, then CMP(L) = MP(L). (This result may be

deduced from the well-known fact that the prime ideals of any Boolean lattice are

precisely the maximal ideals of that lattice.) This observation gives us the follow-

ing result.

Lemma 5.98. Let P be a hypergraph poset, and suppose U ∈ B>. If U 6= γ(y) for some

y ∈ V(P), then U is not meet-prime in Low(P).

Proof. First, observe that the hypothesis that U ∈ B> guarantees E(P) ⊂ U . As

a consequence U 6= ¬(Cov(x)) for any x ∈ E(P). A direct result of Theorem 5.97

tells us that if U 6= γ(y) for any y ∈ V(P), then U can’t be completely meet-prime

in Low(P). Of course this means that U is not meet-prime in B>, so it can’t be

meet-prime in Low(P) either.

Suppose that L = (L,≤) is any lattice, and suppose that x, y ∈ L. If x is meet-

prime in L, then either x∧ y = y, or x∧ y is meet-prime in the sublattice ↓ y. To see

why this is so, let z = x ∧ y and suppose z < y. If u, v ∈↓ y are such that u ∧ v ≤ z,

then clearly u∧v ≤ x as well; hence, we know u ≤ x or v ≤ x. Suppose u ≤ x. Since
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u ∧ y = u, it follows that u ≤ z as well; and we may conclude that z is meet-prime

in the sublattice ↓ y. This observation gives us the following result.

Lemma 5.99. Let P = V(P)∪ E(P) be a hypergraph poset. If U ∈ Low(P) is meet-prime,

then U ∩ E(P) = E(P), or U ∩ E(P) = E(P)− {x} for some x ∈ E(P) .

Proof. Clearly U ∩ E(P) ∈ B⊥ in either case. Since U is meet-prime, the above

argument guarantees that either U ∩ E(P) = E(P), or U ∩ E(P) is meet-prime in

Low(P). In the latter case, it must be meet-prime in B⊥, which is true if and only if

U ∩ E(P) is a co-atom of B⊥; that is U ∩ E(P) = E(P)− {x} for some x ∈ E(P).

Theorem 5.100. Let P = V(P) ∪ E(P) be a hypergraph poset. If U ∈ Low(P) is meet-

prime but not maximal, then U = ¬(Cov(x)) for some x ∈ E(P). In particular, U is

completely meet-prime.

Proof. Observe that every (completely) meet-prime element ofB> is maximal. This

means that if U is meet-prime but not maximal, it cannot be a member of B>. It

therefore follows that M = U ∩ E(P) ⊂ E(P), and since M is meet-prime in B⊥,

Lemma 5.99 guarantees that U ∩ E(P) = E(P)− {x} for some x ∈ E(P).

We know that ¬(Cov(x)) ∩ E(P) = E(P) − {x} by definition, which gives us

¬(Cov(x)) ∩ E(P) = U ∩ E(P), which means ¬(Cov(x)) ∩ E(P) ⊆ U . This in turn

implies ¬(Cov(x)) ⊆ U since U is meet-prime. On the other hand, a symmetric

argument guarantees U ⊆ ¬(Cov(x)) since ¬(Cov(x)) is meet-prime as well, hence

the claim is proved.

For any hypergraph posetP , we have now established that MP(Low(P)) = CMP(Low(P)).

Consequently, we know that MP(Low(P)) is a hypergraph poset that is order-isomorphic

to P . In light of this observation, we have the following result.
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Corollary 5.101. If L = (L,≤) is a bialgebraic cone lattice, then Low(MP(L)) is order

isomorphic to L; in particular, CJP(L) is order-isomorphic to MP(L).

This result has important implications for hypergraphs and their associated

graph topologies, since it tells us the incidence poset for any hypergraph may be

viewed as either the family of compact join-prime members or the family of meet-

prime members of its open set lattice under the graph topology.

Suppose that L = (L,≤) is a bialgebraic cone lattice. We may consider the

hypergraph associated with L to be the pair GL = (V(MP(L)), E(MP(L))). A basis for

the graph topology ΩGL
would be the family

B = {{p} : p ∈ E(MP(L))} ∪ {B(q) : q ∈ V(MP(L))}

where m ∈ B(q)− {q} if and only if m is covered by q in MP(L).

Let us see what implications this has for the Stone topology associated with the

join semilattice Com(L) of a bialgebraic cone latticeL. We will let the Stone topology

on Com(L) be represented by the pair StoneL = (MP(L),Ω∗). Since every compact

member of L is the union of a (finite) family of compact join-prime members, it

follows that the collection

B = {σ(u) : u ∈ PL}

constitutes a basis for the Stone space, where σ(u) = {p ∈ MP(L) : u 6≤ p}.

Suppose thatL = (L,≤) is a bialgebraic cone lattice. Suppose that u ∈ CJP(L)

and consider the (completely) meet-prime element

ζ(u) =
∨
{y ∈ L : u 6≤ y}

It is clear that ζ(u) ∈ σ(u). On the other hand, if p ∈ σ(u), then we must have

p ≤ ζ(u).
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Now, suppose that u ∈ E(CJP(L)). It follows that ζ(u) is minimal in MP(L);

therefore, we must conclude that σ(u) = {ζ(u)}.

On the other hand, suppose that u ∈ V(CJP(L)). It follows that ζ(u) is maximal

in MP(L); therefore, those members p of MP(L) such that p ≤ ζ(u) are precisely

those minimal members of MP(L) that are covered by ζ(u). Consequently, we may

conclude that σ(u) = B(ζ(u)).

We have proven the following result.

Corollary 5.102. If L = (L,≤) is a bialgebraic cone lattice, then StoneL is homeomorphic

to the graph topology on GL. Furthermore, if we identify the vertices and edges of GL with

the meet-prime elements of L, then the topologies are equal.

At this point, it is worth noting that a well-known forbidden substructure con-

dition characterizes those bialgebraic cone lattices associated with graphs, and we

conclude this section by introducing this condition.

A lower-bounded, distributive lattice L is relatively n-normal provided every

prime ideal of L is contained in at most n maximal ideals for some fixed positive

integer n. Lattices satisfying the order-dual of this definition were first introduced

in Cornish [7], and relatively 1-normal lattices (usually referred to as “relatively

normal” lattices) have been extensively studied (see for example Mandelker [21]

or Hart and Tsinakis [14]).

Definition 5.103. An algebraic, distributive lattice L = (L,≤) is weakly relatively

n-normal provided every meet-prime element is exceeded by at most n maximal

members of L for some fixed positive integer n. We say L is strongly relatively

n-normal provided it is weakly relatively n-normal and Com(L) is a sublattice of L.

Note that an algebraic, distributive lattice L is strongly relatively n-normal if

and only if Com(L) is relatively n-normal. The following result is a direct conse-
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quence of Corollary 5.101 and Theorem 4.78.

Corollary 5.104. The following statements are true for any hypergraph G = (G,E).

1. G is a graph if and only if Ω(G) is weakly 2-normal.

2. G is a finitely based graph if and only if Ω(G) is strongly 2-normal.

Proof. To prove (1), let G = (G,E) be a hypergraph and let Ω(G) be its correspond-

ing open-set lattice under the graph topology. If we suppose U ∈ MP(Ω(G))

is not maximal. As we have seen, Theorem 5.100 guarantees U = ¬Cov(x) =

G − ({x} ∪ π(x)) for some x ∈ E. From here we observe that G is a graph if and

only if we can assume π(x) = {y1, y2} for every x ∈ E (where y1, y2 ∈ G are not

necessarily distinct). Observe that this is true if and only if U is exceeded by at

most two distinct maximal elements; namely G − {y1} or G − {y2}.

To prove (2) it is sufficient to observe that if G is a graph, it is finitely based if and

only if it satisfies part (4) from Theorem 4.78, which are precisely the conditions

under which Com(L) is a meet-semilattice (and therefore a sublattice of Ω(G)).

5.2 The Categories HGraph∗, and Cone

Let G be a hypergraph. The fact that Ω(G) is the Stone space associated with

the join-semilattice generated by hypergraph poset PG along with the categori-

cal equivalence between HGraph and HPoset strongly suggest the existence of

a Stone-type duality between graphs and cone lattices. In this section, we exploit

the results presented in previous sections to verify that this is indeed the case for a

subcategory of HGraph and a category of cone lattices. This material draws upon

well-known results from the realm of representation theory (see Johnstone [17]).

We begin by summarizing the well-known “big picture” germane to our purposes.
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Suppose that L = (L,≤) is an algebraic frame. For each x ∈ Com(L), let σL(x) =

{p ∈ MP(L) : x 6≤ p}. It is well-known that the set

BL = {σL(x) : x ∈ Com(L)}

forms the basis for a Stone topology StoneL = (MP(L),ΩL) . Moreover, it is a routine

exercise to show that L is order-isomorphic to the lattice (ΩL,⊆).

On the other hand, suppose that S = (S,Ω) is a Stone topology. Since S has a

compact-open basis that is a join-semilattice, it is clear that LS = (Ω,⊆) is an alge-

braic frame. Furthermore, we know that S is homeomorphic to the space StoneLS .

Suppose that L = (L,≤) and M = (M,v) are algebraic frames, and suppose

that f : L −→ M is a frame homomorphism. (That is, f preserves finite meets and

arbitrary joins.) Since L andM are complete lattices, the assumption that f pre-

serves arbitrary joins tells us f has an upper adjoint τf : M −→ L. These functions

satisfy the relationship

f(x) v y ⇐⇒ x ≤ τf (y)

It is well-known that the function τf is defined by

τf (y) =
∨
{x ∈ L : f(x) v y}

Furthermore, it is well-known that the function τf preserves meet-prime ele-

ments. We provide a proof of this critical fact for completeness.

Lemma 5.105. The function τf defined above preserves meet-prime elements.

Proof. Suppose L = (L,≤) andM = (M,v) are algebraic frames and f : L −→ M

is a frame homomorphism. Let m ∈M be meet-prime and consider l = τf (m) ∈ L.

If we suppose F = {x1, . . . , xn} ⊆ L is such that
∧
F ≤ l, we observe that since f
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is a frame homomorphism we have

f(
∧
F) = f(

n∧
i=1

xi) =
n∧
i=1

f(xi) v m

Of course, this means there exists xi ∈ F such that f(xi) v m, and as a consequence

of the isotone nature of adjoints we must have xi ≤ l. This proves l is meet-prime

in L.

Let τ ∗f : MP(M) −→ MP(L) denote the restriction of τf to the meet-prime mem-

bers of M. If we make the additional assumption that the function f preserves

compact elements, then τ ∗f is continuous relative to StoneM and StoneL. To see

why this is so, observe

[τ ∗f ]−1(σL(j)) = {p ∈M∗ : τ ∗f (p) ∈ σL(j)}

= {p ∈M∗ : j 6≤ τ ∗f (p)}

= {p ∈M∗ : f(j) 6≤ p}

= σM(f(j))

Since the inverse image under τ ∗f of a basic-open set is itself basic-open, we may

conclude that τ ∗f is continuous relative to the Stone topologies. Of course, we have

actually proven more than this — we have shown that the inverse image under τ ∗f
of a compact-open set is compact-open. In topological parlance, continuous functions

having this property are called spectral maps.

On the other hand, suppose that S = (S,ΩS) and T = (T,ΩT ) are Stone spaces.

If f : S −→ T is a spectral map with respect to these topologies, then it is easy

to see that the function ϕf : ΩT −→ ΩT defined by ϕf (U) = f−1(U) is a frame

homomorphism that preserves compact elements.

Let AFrame denote the category consisting of algebraic frames coupled with

frame homomorphisms that preserve compact elements, and let Stone denote the
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category consisting of Stone spaces coupled with spectral maps. The stage has now

been set to present a classic categorical duality.

Theorem 5.106. The category AFrame is dually equivalent to the category Stone. The

duality is accomplished via the contravariant functors

• FRM : Stone −→ AFrame defined by FRM[S] = (ΩS,⊆) and FRM[f ] = ϕf

• STN : AFrame −→ Stone defined by STN[L] = StoneL and STN[ϕ] = τ ∗ϕ

The proof is a straightforward category theory exercise; we refer the reader to

Johnstone [17] for details. Let us consider how we may exploit this result in the

context of our study on hypergraphs.

WHAT WE ALREADY KNOW

• The graph topology on any hypergraph G = (G,E) is homeomorphic to the

Stone topology associated with the join-semilattice JS(B(G)).

• For any hypergraph G = (G,E), the algebraic frame that is the ideal comple-

tion of JS(B(G)) is a cone lattice.

• If L = (L,≤) is any cone lattice, then the Stone space associated with Com(L)

is homeomorphic to the graph topology on some hypergraph, namely the

hypergraph whose incidence poset is isomorphic to CJP(L).

Suppose G = (G,EG) and H = (H,EH) are hypergraphs, and suppose that

f : G ∪ EG −→ H ∪ EH is an HG-morphism. What additional conditions must we

place on f in order to guarantee it is spectral with respect to the graph topologies?

Let G = (G,EG) andH = (H,EH) be hypergraphs, and suppose f : G∪EG −→

H ∪EH is an HG-morphism. For any y ∈ H , we will say that ε ∈ EG is an incidence-

orphan relative to y provided y 6∈ f(πG(ε)). (In other words, f(ε) is incident to y,
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but no vertex incident to ε is mapped to y by f .) For any y ∈ H , we will let IO(y)

represent the set of all incidence-orphans relative to y. It is clear that

f−1(B(y)) =
⋃
{B(x) : x ∈ f−1({y})} ∪ IO(y)

Definition 5.107. Let G = (G,EG) andH = (H,EH) be hypergraphs, and suppose

f : G ∪ EG −→ H ∪ EH is an HG-morphism.

• We will say that f is anchored provided IO(y) is finite for all y ∈ H .

• We will say that f is finite-based provided f−1({y}) is finite for all y ∈ H ∪EH .

Theorem 5.108. Suppose that G = (G,EG) and H = (H,EH , ) are hypergraphs. An

HG-morphism from G toH is finite-based and anchored if and only if it is spectral relative

to the graph topologies.

Proof. First, suppose f : G −→ H is a spectral map with respect to the graph

topologies and let y ∈ H ∪ EH . We observe that if y ∈ EH , then we know that

since singleton edges are compact open under the graph topology, by hypothesis

we must have f−1({y}) =
⋃n
i=1{ei} where {ei}ni=1 ⊆ EG. On the other hand, if

y ∈ H and observe that if f−1(y) = ∅, it is vacuously finite-based. If f−1(y) 6= ∅,

recall B(y) ∈ B(H) is compact, so f−1(B(y)) is compact as well since f is a spec-

tral map. This means there is a finite family F := {B(xi)}ni=1 ⊆ B(G) such that

f−1(B(y)) ⊆
⋃n
i=1 B(xi). From here we clearly have f(xi) = y for each i since f is

an HG-morphism, hence f−1(y) = {xi : B(xi) ∈ F} and f is finite-based.

Furthermore, observe that y has no incidence-orphans in this case; indeed if e ∈

EG is such that y ∈ πH(f(e)), we must have f(e) ∈ f(B(xe)) for some xe ∈ f−1(y).

This means that IO(y) is empty. Furthermore, if f−1(y) = ∅, it is vacuously finite-

based, we need only verify IO(y) is finite. Indeed, if IO(y) is nonempty, the fact

that IO(y) ⊆ f−1(B(y)) and f−1(B(y)) ⊆ EG tells us there is a finite {ei}i=1 ⊆ EG
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such that
⋃n
i=1{ei}. We may therefore conclude that f is anchored.

Now suppose that f in not spectral. This means there exists U ∈ Com(ΩH)

such that f−1(U) is not compact under ΩH . Without loss of generality we may

assume U =
⋃n
i=1{ei} ∪

⋃m
j=1B(yj) for some finite collections {e1, . . . , en} ⊆ EH

and {y1, . . . , ym} ⊆ H . It follows from basic set theory that

f−1(U) =
n⋃
i=1

f−1({ei}) ∪
m⋃
j=1

f−1(B(yj))

Since by hypothesis this collection is not compact, the preimage of at least one {ei}

or B(yj) must possess a cover which does not yield a finite subcover. If this is the

case for some {ei}, then f−1({ei}) ⊆ EG is infinite and ei is not finitely based. Simi-

larly, if this is true for someB(yj), then f−1(B(yj)) can be represented as the infinite

union of edge-balls from G; consequently this implies f−1(yj) = f−1(B(yj)) ∩ G is

infinite, hence f cannot be finite-based.

Since U is compact, we may assume that U =
⋃
FE∪

⋃
FH where FE ⊆ EH and

FH ⊆ {B(x) : x ∈ H}. In the first case, the fact that f−1(U) ⊆ EG is not compact

implies that any cover of f−1(U) must be infinite (and therefore not finite-based).

In the second case we may assume U =
⋃n
i=1B(yi) where {yi}ni=1 ⊆ H . In this case

we have

f−1(U) =
n⋃
i=1

f−1(B(yi)) =
n⋃
i=1

{B(xi) : xi ∈ f−1(yi)} ∪
n⋃
i=1

IO(yi)

The hypothesis that f−1(U) forces us to conclude that either BU = {B(xi) : xi ∈

f−1(yi)} or IO(yi) is not finite. The first case is true if and only if {xi ∈ G : xi ∈

f−1(yi)} is infinite (i.e. f is not finite-based) and the second case implies IO(yi) is

infinite for at least one i ∈ {1, 2, . . . , n}. Observe that f fails to be anchored in the

latter case, and the proof is complete.

Definition 5.109. Suppose L andM are cone lattices and ϕ : L −→ M is a frame
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homomorphism. We say the mapϕ is grounded provided for every p ∈ max(MP(M))

there exists a unique j ∈ CJP(L) such that ϕ(j) � p.

In the work to follow, we will let HGraph∗ represent the category whose ob-

jects are hypergraphs and whose morphisms are finite-based anchored HG-morphisms.

Note that HGraph∗ is a subcategory of HGraph but is not a full subcategory of

this category.

Now, if G = (G,EG) andH = (H,EH) are hypergraphs and f : G∪EG −→ H ∪

EH is a finite-based anchored HG-morphism, then it follows from Theorem 5.106

that the function ϕf : Ω(H) −→ Ω(G) is a frame homomorphism that preserves

compact elements.

On the other hand, suppose that L = (L,≤) andM = (M,v) are cone lattices;

and suppose that ϕ : L −→ M is a frame homomorphism that preserves compact

elements. We know that the function τ ∗ϕ : MP(M) −→ MP(L) is spectral with re-

spect to the graph topologies on the hypergraphs GMP(M) and GMP(L). The question

remains, however — is the function an HG-morphism? We answer this question

through the following results.

The next results rely heavily on the fact that, if L and M are cone lattices,

then MP(L) and MP(M) are graph posets that are order-isomorphic to CJP(L) and

CJP(M), respectively.

Lemma 5.110. Suppose that L = (L,≤) is a cone lattice, and suppose that p ∈ MP(L).

1. We have p maximal in MP(L) if and only if there is exactly one CJP element mp such

that mp 6≤ p. This element is necessarily maximal in CJP(L).

2. We have p minimal in MP(L) if and only if there is exactly one CJP element mp such

that mp is minimal in CJP(L) and mp 6≤ p. Furthermore, if p is not maximal in

MP(L), then mp is not maximal in CJP(L).



107

Proof. Recall the order-isomorphisms defined by the maps φ and ζ defined

in the previous section where φ(m) =
∧
{x ∈ L : x 6≤ m}. Observe that p1 is

maximal in MP(L) if and only if φ(p) = jp1 is maximal in CJP(L). Similarly p2

is minimal in MP(L) if and only if φ(p) = jp2 is minimal in CJP(L).

Theorem 5.111. Suppose thatL = (L,≤) andM = (M,v) are cone lattices and suppose

that ϕ : L −→M is a grounded frame homomorphism.

1. If j ∈ CJP(M) is minimal in this poset, then ϕ(τϕ(j)) = j.

2. If p ∈ MP(M) is maximal in this poset, then τϕ(p) is maximal in MP(L).

3. If p, q ∈ MP(M) and p < q, then τϕ(p) < τϕ(q).

4. If p ∈ MP(M) is minimal but not maximal in this poset, then τϕ(p) is minimal but

not maximal in MP(L).

Proof. To prove (1), recall that we have established that ϕ, τϕ : L 
 M defines an

adjunction between L and M . We know this is true if and only if τϕ ◦ ϕ and ϕ ◦ τϕ
form closure and kernel operators, respectively. Since ϕ ◦ τϕ is a kernel operator, it

follows ϕ ◦ τϕ(m) ≤ m for every m ∈ M . If we suppose j ∈ CJP(M) is minimal,

we observe that ϕ ◦ τϕ(j) ≤ j. We also recall that since cone lattices are bialgebraic,

every element can be expressed as the join of completely join-prime elements. This

means there exists j∗ ∈ CJP(M) such that j∗ v ϕ◦ τ(j). Since we chose j to be min-

imal, we must have j∗ = j, hence (1) is established.

To establish (2), if we suppose p ∈ MP(M) is maximal, we know by Lemma

5.110 there exists a unique maximal jp ∈ CJP(M) such that jp 6≤ p. Note that it

is necessarily true that p < >M , and since τ preserves meet-prime elements it fol-

lows that τ(p) < >L, hence there exists jl ∈ CJP(L) such that jl 6≤ τ(p). Of course,

this means ϕ(jl) 6v p. Since ϕ is grounded we may conclude that jl is unique and
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ϕ(jl) = jm. This means there is precisely one jl ∈ CJP(L) such that j 6≤ τ(p), hence

τ(p) is maximal in MP(L).

To establish (3), we observe that if p, q ∈ MP(M) and p < q, Theorems 9 and

10 guarantee that p is minimal (but not maximal) whereas q is maximal in MP(M).

Again, Lemma p < q guarantees there exists a unique minimal jm ∈ CJP(M) such

that jp 6v p. Since jp is minimal but not maximal, we know jp v q. By (1), it

follows ϕ(τϕ(jm)) = jm, and since τϕ is isotone we must have τϕ(jm) 6≤ τ(p). It

follows that there must exist some k ∈ CJP(L such that k ≤ τϕ(jm) but k 6≤ τϕ(p).

Since k ≤ τϕ(q), we must conclude τϕ(p) < τϕ(q). We observe that (4) also directly

follows from the preceding argument.

We will let Cone represent the directed graph whose objects are cone lattices

and whose morphisms are those grounded frame homomorphisms that preserve

compact elements. We will verify that Cone is in fact a category; to do so we need

only verify that ArCone is closed under composition.

Lemma 5.112. Suppose L, M, and N are cone lattices where f : L −→ M and g :

M −→ N are grounded frame homomorphisms. Then g ◦ f : L −→ N is a grounded

frame homomorphism as well.

Proof. Let f : L −→ M and g : M −→ N be grounded maps. If p is maximal in

MP(N ), then Theorem 5.111 guarantees there exists a unique j ∈ CJP(L) with the

property that f(j) 6≤ τg(p). Consequently, this guarantees g(f(j)) 6≤ p and we may

conclude g ◦ f is grounded.

In light of the preceding lemma, we conclude Cone is indeed a category.

SupposeL = (L,≤) andM = (M,v) are cone lattices and suppose ϕ : L −→M

is a grounded frame homomorphism. Let τ ∗ϕ represent the restriction of the upper

adjoint τϕ to the meet-prime elements of M. Theorem 5.111 tells us that τ ∗ϕ is an
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HP-morphism from the hypergraph poset M∗ = (MP(M),v) to the hypergraph

poset L∗ = (MP(L),≤). Consequently, Theorem 4.86 tells us the function HG[τ ∗ϕ] is

an HG-morphism from the hypergraph GM∗ to the hypergraph GL∗ . We have now

proven the following result.

Corollary 5.113. Suppose L = (L,≤) and M = (M,v) are cone lattices and suppose

ϕ : L −→ M is a grounded frame homomorphism. If ϕ preserves compact elements, then

HG[τ ∗ϕ] is a finite-based anchored HG-morphism.

5.3 Dual Adjunction and Equivalence

In order to extend what we have already seen, we need one more result. This result,

which is a minor extension of the work done by Matthew Wiese in his 2016 thesis,

establishes a necessary class of isomorphisms in the category HGraph∗ which we

will use to complete the duality.

Lemma 5.114. Suppose G is a hypergraph and Ω(G) is its associated graph topology open

lattice. Then there exists a hypergraph GΩ(G) associated with Ω(G) such that G is isomor-

phic to GΩ(G).

Proof. If G is a hypergraph and Ω(G) is its associated graph topology open lattice,

then MP(Ω(G)) is a hypergraph poset. Observe that PG is the hypergraph poset

associated with G, and we know that PG is order isomorphic to MP(Ω(G)). Since

MP(Ω(G)) is a hypergraph poset, there exists a hypergraph GΩ(G) where PGΩ(G)
is

order isomorphic to MP(Ω(G)). This in turn implies PG ∼= PGΩ(G)
, and therefore

G ∼= GΩ(G).

In this section, we will establish the dual adjunction between the categories

Cone and HGraph∗. First, we define the maps Co : HGraph∗ −→ Cone and HG∗ :

Cone −→ HGraph∗. Suppose G,H ∈ HGraph∗ are finite-based hypergraphs and
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f : G ∪ EG −→ H ∪ EH is a finite based anchored HG-morphism, we shall de-

fine Co(G) = Ω(G) where Ω(G) is the cone lattice induced by G; Co(H) = Ω(H) is

of course identically defined. From here we define Co(f) = ϕf : Ω(H) −→ Ω(G)

as the compact element preserving grounded frame homomorphism induced by f .

Next, suppose L,M ∈ Cone are cone lattices and ϕ : L −→ M is a grounded

frame homomorphism that preserves compact elements. From here we define

HG∗ : Cone −→ HGraph∗ such that HG∗(L) = GL∗ where GL∗ is the hypergraph

induced by the cone lattice L = (L,≤) via the hypergraph poset L∗ = (MP(L),≤).

Of course, HG∗(M) = GM∗ is again identically defined as the hypergraph induced

by the cone latticeM = (M,v) via the hypergraph posetM∗ = (MP(M),v). If we

suppose ϕ : L −→M is a compact element preserving grounded frame homomor-

phism, we will define HG∗(ϕ) = HG[τ ∗ϕ].

Lemma 5.115. The maps Co and HG∗ define contravariant functors between the categories

HGraph∗ and Cone.

Proof. First, suppose G and H are hypergraphs and f : G −→ H is a finite-based

HG-morphism. As we have seen, Ω(G) and Ω(H) are indeed cone lattices, and

since f is finite-based (and therefore a spectral map) there exists a grounded frame

homomorphism ϕf : Ω(H) −→ Ω(G) that preserves compact elements. This veri-

fies that Co is indeed a functor, and it satisfies the first condition of Definition 3.68.

To verify the remaining conditions, if we suppose G,H,J ∈ HGraph∗ and u :

G −→ H and v : H −→ J are finite-based HG-morphisms, we have v ◦ u : G −→ J
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is also a finite-based HG-morphism. Observe that

Co(v ◦ u) = ϕv◦u : Ω(J) −→ Ω(G)

= ϕu ◦ ϕv

= Co(u) ◦ Co(v)

Consequently, if IdG : G −→ G is any identity map in HGraph∗ and f : dom(f) −→

G and g : G −→ cod(g) are finite-based HG-morphisms, it follows

Co(f) = Co(IdG ◦ f) Co(g) = Co(g ◦ IdG)

= Co(f) ◦ Co(IdG) = Co(IdG) ◦ Co(g)

= ϕf ◦ ϕIdG = ϕIdG ◦ ϕg

= ϕf since Co(f) = ϕf = ϕg since Co(g) = ϕg

From here we conclude Co(IdG) = ϕIdG = IdΩ(G), which completes the proof that

Co is a contravariant functor from HGraph∗ to Cone.

Now suppose L and M are cone lattices and ϕ : L −→ M is a compact ele-

ment preserving grounded frame homomorphism. We have verified that GL∗ and

GM∗ are hypergraphs, and Corollary 5.113 verified that HG∗(ϕ) = HG[τ ∗ϕ] is indeed a

finite-based HG-morphism.

Again, we have verified that HG∗ is a functor that satisfies the first condition

of Definition 3.68. To verify the remaining conditions, observe that if we suppose

L,M,N ∈ Cone and suppose s : L −→M and t :M−→ N are compact element

preserving grounded frame homomorphisms. Lemma 5.115 guarantees that t ◦ s :

L −→ N is also a compact element preserving grounded frame homomorphisms,
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and we observe

HG∗(t ◦ s) = HG[τ ∗t◦s] : GN ∗ −→ GL∗

= HG[τ ∗s ] ◦ HG[τ ∗t ]

= HG∗(s) ◦ HG∗(t)

If IdL : L −→ L is any identity map in Cone and ψ : dom(ψ) −→ L and γ :

L −→ cod(γ) are compact element preserving grounded frame homomorphisms,

it follows

HG∗(ψ) = HG∗(IdL ◦ ψ) HG∗(γ) = HG∗(γ ◦ IdL)

= HG∗(ψ) ◦ HG∗(IdL) = HG∗(IdL) ◦ HG∗(γ)

= HG[τ ∗ψ] ◦ HG[τ ∗IdL ] = HG[τ ∗IdL ] ◦ HG[τ ∗γ ]

= HG[τ ∗ψ] since HG∗(ψ) = HG[τ ∗ψ] = HG[τ ∗γ ] since HG∗(γ) = HG[τ ∗γ ]

From here we conclude HG∗(IdL) = HG[τ ∗IdL ] = IdGL , which completes the proof that

HG∗ is a contravariant functor from Cone to HGraph∗.

If we suppose G ∈ HGraph∗, we observe that as defined above Co(G) = Ω(G),

so it follows from Lemma 5.114 that HG∗Co(G) = HG∗(Ω(G)) is order isomorphic

to G. It therefore follows that for every such G there exists an HG-isomorphism

eG : G −→ HG∗Co(G). Similarly we observe that for L ∈ Cone, since cone lattices

are uniquely determined by their underlying hypergraphs that there exists a sim-

ilar isomorphism εL from L to CoHG∗(L). To see why, suppose L is induced by the

hypergraph H. Observe that, since we know HG∗(L) = HL∗ and H ∼= HL∗ , then it

follows that CoHG∗(L) = Ω(GL∗) ∼= L. From here, we define two natural transfor-

mations e : IdHGraph∗ −→ HG∗Co and ε : IdCone −→ CoHG∗ as e(G) = HG∗Co(G) = eG
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G
f

- H L
ϕ

-M

HG∗Co(G)

eG

? HG∗Co(f)
- HG∗Co(H)

eH

?

CoHG∗(L)

εL

? CoHG∗(ϕ)
- CoHG∗(M)

εM

?

Figure 6: Natural Transformations e and ε.

and ε(L) = CoHG∗(L) = εL. As we have seen, each component of both natural trans-

formations are isomorphisms, hence Definition 3.69 tells us e : Id∗HGraph
∼= HG∗Co

and ε : IdCone
∼= CoHG∗ define natural isomorphisms. The following commuting

diagram illustrates these natural transformations:

From here, it is worth noting that the first condition of Definition 3.70 is ful-

filled. We will verify that the second condition also holds, which will establish the

following theorem:

Theorem 5.116. The contravariant functors Co and HG∗ give a dual-equivalence between

the categories Cone and HGraph∗.

Proof. Suppose G is a finite-based hypergraph and L is a cone lattice and let f ∈

hom(G, HG∗(L)) and ϕf ∈ hom(L, Co(G)) correspond to f . That is, f : G −→ GL∗ is

a finite-based HG-morphism and ϕf : L −→ Ω(G) is the unique compact element

preserving grounded frame homomorphism induced by f .

Let e : IdHGraph∗ −→ HG∗Co be the natural isomorphism defined previously and

observe HG∗(ϕf ) = HG[τ ∗ϕ] : GΩ(G)∗ −→ GL∗ , and since GΩ(G)∗ = HG∗Co(G) ∼=eG G, it

follows that f ◦ e−1
G = HG∗(ϕf ) since ϕf is uniquely determined by f . Naturally, this

implies f = HG∗(ϕ) ◦ eG.
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G
f
- HG∗(L) L

ϕ
- Co(G)

HG∗Co(G)

eG

?

HG
∗ (ϕ

)
-

CoHG∗(L)

εL

?

Co
(f

)
-

Figure 7: Commuting diagrams for Theorem 5.116

Of course, as we have seen, not only does f uniquely determine ϕ, but ϕ

uniquely determines (up to isomorphism) the map f . If we let ε : IdCone −→

CoHG∗ be as previously described, we observe that Co(f) is equal to the map ϕ∗f :

Ω(GL) −→ Ω(G) where Ω(GL) = CoHG∗(L) ∼=εL L and ϕf ◦ ε−1
L = Co(f), we conclude

ϕf = Co(f)◦εL, which verifies that the diagrams in Figure 7 commute. This verifies

that Condition 2 of Definition 3.70 is satisfied, completing the proof.

We have now established 〈Co, HG∗, e, ε〉 is a dual equivalence between categories

HGraph∗ and Cone. Of course, we can say more that this, since Theorem 3.71

guarantees the following:

Theorem 5.117. Let G and H be finite-based hypergraphs and L andM be cone lattices.

If we suppose f : G −→ H is a finite-based HG-morphism and ϕ : L −→M is a grounded

frame homomorphism that preserves compact elements. The following statements are true:

1. There is a cone lattice L, namely L = Co(G), such that G ∼= HG∗(L).

2. There is a finite-based hypergraph G, namely G = HG∗(L), such that L ∼= Co(G).

3. Both HG∗ and Co are full and faithful.

4. The finite-based HG-morphism f is an isomorphism if and only if Co(f) is an iso-

morphism, and G ∼= H if and only if Co(G) ∼= Co(H).
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5. The compact-element preserving grounded frame homomorphism ϕ is an isomor-

phism if and only if HG∗(ϕ) is an isomorphism, and L ∼=M if and only if HG∗(L) ∼=

HG∗(M).
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