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ABSTRACT

PubMed keyword based search often results in many citations not directly relevant to the

user information need. Personalized Information Retrieval (PIR) systems aim to improve the

quality of the retrieval results by letting the users supply information other than keywords.

Two main problems have been identified for the current PIR systems developed for PubMed:

(1) requiring the user to supply a large number of citations directly relevant to a search topic,

and (2) producing too many search results, with a high percentage being false positives. This

study developed a Personalized Article Retrieval System (PARS) for PubMed to address

these problems. PARS uses two main approaches to find the relevant citations to the given

information need: (1) Extending the PubMed Related Article (PMRA) feature and (2) Text

classification based Multi Stage Filtering (MSF) method. Both approaches require only a

small set of citations from the user, and reduce the search output size by eliminating the

false-positive citations in the search output. PARS has been experimentally evaluated using

the TREC 2005 dataset, and empirically evaluated by subject experts from the biomedicine

field. Results show the PARS system is able to produce retrieval results of better quality

than the existing PIR systems for PubMed.
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CHAPTER 1

INTRODUCTION

Scientific literature databases had an exponential growth over the past decade. Google

Scholar [1], PubMed [2], The SAO/NASA Astrophysics Data System [3] and CiteSeerX [4]

are some of the popular citation databases on the internet. These online databases open a

new way of accessing and searching for the information for the scientific community. Before

this era, scientists need to go to the library and search through the library catalogs to find

the relevant citation manually. Now, researchers routinely find literature and information by

providing a few keywords to the online databases.

PubMed is the largest and most comprehensive literature database in the field of

biomedicine. Biomedicine researchers use PubMed as their primary tool to search for

published articles matching their research interests. PubMed is developed and maintained

by the National Center for Biotechnology Information (NCBI) at the National Library of

Medicine (NLM) [5]. NLM started to index biomedical and life science journal articles in

1960’s. The indexed citations were kept in the Medline citation database. Currently, Medline

provides access to over 21 million citations dating back to 1946 [6]. In 1996, NCBI at NLM

introduced PubMed citation database. PubMed provides access to over 24 million citations

in the field of biomedicine [2]. Primarily, it allows free access to Medline citation database

via its web interface. PubMed contains more citations than the Medline database, covering

the in-progress Medline citations, out of scope citations, “Ahead of Print” citations, and

NCBI bookshelf citations.

Typical users of PubMed search for relevant articles to their specific research interests

by entering query terms at the PubMed web interface. Often times, too many citations were

returned as a result of the query with many of the returned citations not directly relevant

to the information need. For example, over one-third of PubMed queries returned 100

or more citations [7]. Sifting through these citations to locate the ones that represent the
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most relevant articles for one’s query can be a tedious and time-consuming process. This

problem is becoming more challenging due to the rapid growth of the size of the PubMed

database. To improve the quality of information retrieval from PubMed, NCBI and other

academic and industry groups have recently developed many tools to enhance the traditional

keyword-based information retrieval method [8, 10, 15, 16].

Two main approaches have been used to enhance the information retrieval in PubMed.

The first approach builds supplementary tools for the original PubMed search interface.

These supplementary tools are focused on different aspects of the PubMed web search

interface. For example, PubMed Advanced Search Feature [8, 9] PubMed Auto Query

Suggestions [10], PubMed Automatic Term Mapping (ATM) [11] and Medical Subject

Headings (MeSH) [12] are some of the PubMed supplementary tools developed to assist the

users to express their information need accurately and wisely. PubMed filters sidebar in the

PubMed web interface provides varies types of filters to narrow down the PubMed search

output [13]. PubMed Related Article (PMRA) [14] feature is another supplementary tools

can be found in the PubMed web interface. It helps the users to find additional citations

relevant to those they have selected from the search results. Even though NCBI has been

continually improving the PubMed web interface and its features, still, the majority of users

found it difficult to find information they really look for from the PubMed search output due

to information overload [7, 10].

A number of search tools complementary to the PubMed web interface have been built

to enhance the information retrieval task. Some popular approaches in building complemen-

tary tools are based on text classification methods [15, 16, 17], semantic based methods

[18, 19] and special input (set of genes or set of protein names) based methods [20, 21].

MedlineRanker [15], MScanner [16], PubFinder [17], Caipirini [20] and MedEvi [18] are

examples in this category. These complementary search tools have shown tremendous

improvement in PubMed information retrieval as opposed to the PubMed web interface.
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Most of the complementary search tools for PubMed captures the user information need

using an extensive input other than keywords. For example, a text paragraph, a set of

documents, a set of relevant gene names and organism names are some of the extensive

inputs. This type of input method will feed additional information to the search tools.

Also, the PubMed complementary tools are capable of delivering a relatively small search

output compared to the PubMed interface. These types of complementary search tools are

referred as Personalized Information Retrieval (PIR) tools within the information retrieval

community [78, 79].

PIR tools are capable of capturing each user’s unique research interest and returning a

smaller set of citations of the truly relevant articles from large literature databases such as

PubMed. PIR systems consist of two main tasks. The first task is to capture and understand

a user’s information need accurately and more thoroughly. The second task is to find the

citations closest to the user information need and present these citations in a meaningful

manner.

For the traditional Information Retrieval (IR) systems, user information needs are pro-

vided as user queries consisting of keyword terms. However, it is often difficult to fully

capture and identify user information need precisely using only the query terms. Additional

information about the intention of the user query is required for the PIR systems to deliver

more personalized results. There are two main approaches to gather the individual user

interest for the PIR systems. The first approach is to capture the user interest explicitly

[20, 15, 16]. The second approach collects information about the intention of the user query

implicitly; for example, in terms of the click-through links in the search history [23, 24, 25].

Either explicit or implicit information provides a deeper understanding about the user infor-

mation need to the PIR systems. The second stage of the PIR system carefully filters and

sorts the relevant information to the user information need using more sophisticated text

mining algorithms. Text classification [15, 16], text clustering [26, 27], relevance ranking
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[22, 28] and semantic based methods [18, 19] are some of the text mining techniques used

in the PIR systems.

PubMed’s Advanced Search Feature [8] can be considered as the simplest PIR system

in PubMed towards personalized retrieval. With PubMed’s Advanced Search Feature, user

may explicitly enter the area of interest, publication period, journals or authors of interest,

Medical Subject Heading (MeSH) [12] terms along with the query terms. This additional

information about the user query helps to state the information need more clearly in the

search tools. Also it helps further filter the search output, thus reduces the size of the search

output. The assumption for this approach is that the user has proficient knowledge and

vocabulary in the search area to state the advanced search accurately. Otherwise, it may lead

to search results less relevant than those from the basic PubMed search.

It is possible to get more explicit information about the user’s query intent in an attempt

to deliver more personalized results. For example, explicit PIR systems allow the users

to enter a text paragraph or the abstract of a research article, instead of few keywords, to

explain his or her information need. eTBLAST [22] is an explicit PIR tool for PubMed based

on free text inputs. This form of inputs leads to better results compared to the traditional

keyword based method and advanced search method. However, eTBLAST is mainly focused

on ranking the search output according to the text similarity to the input. It is not directly

addressing the problem of reducing the size of search results in the context of personalized

information retrieval.

Free text input such as a couple of sentences may not be the optimal way to gather the

user information need for a PIR system. Instead, user input in the form of a number of

abstracts is a more efficient way to get an extensive input for a PIR system. In practice, most

researchers, even beginners, in the biomedicine field know a few or couple dozen articles

directly pertinent to their current study. Therefore, for both expert and non-expert users, it

is easier to form the information need using these articles when using PubMed. Currently,
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a few systems have been built based on this approach, namely, PubFinder [17], MScanner

[16] and MedlineRanker [15].

PubFinder [17] is one of the earliest PIR systems that uses text mining and ranking

approach. First, a reference dictionary is created which contains the most frequent 100,000

words in the PubMed abstracts. PubFinder takes a set of representative PubMed abstracts

from the user as an input. Then a word-list is obtained from the abstracts the user provides.

Next, a likelihood value for each abstract in PubMed is calculated using the mutual words

in the reference dictionary and the derived word-list. Finally, it sorts the search output

according to the likelihood values. PubFinder can be used without expert knowledge and it

is not required to specify any special keyword to explain the information need. However,

it needs the user to provide a sufficiently large set of abstracts to produce accurate results.

Also, it is not focused on filtering or refining the search output by incorporating the user’s

personalized information. PubFinder mainly aimed at providing a ranking of the search

output. Moreover, PubFinder needs a lot of computations to produce an output and its

reference dictionary has to be updated frequently.

MScanner [16] is PIR tool that takes a set of user supplied abstracts as input. Figure 1

shows the web interface of MScanner. It first extracts the Medical Subject Heading (MeSH)

[12] annotations attached to the input abstracts. Next, a set of abstracts is selected using

the cross validation technique and labeled as the background set – Naive Bayes classifier

is trained using the input set and the background set. Then it finds more relevant abstracts

from PubMed using the trained Naive Bayes classifier. Finally, it sorts the output according

to the likelihood probabilities. MScanner uses MeSH annotations to represent the abstracts

rather than words in the abstracts. Because of this, MScanner is much faster than PubFinder

[17]. However, it cannot handle abstracts with missing or incomplete MeSH annotations.

MScanner also requires a large amount of user-defined abstracts in order to produce accurate

results.
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Figure 1: The web interface of MScanner. The user is required to provide PubMed IDs of
relevant citations in the first text box. In the next option, the user can select the number of
citations in the search output.

MedlineRanker [15] was built based on the MScanner [16] approach, but it uses words

appearing in the abstract rather than the MeSH annotations. Therefore, MedlineRanker is

able to handle abstracts with missing or incomplete MeSH annotations. Figure 2 shows the

web interface of MedlineRanker. It also needs more than 100 abstracts to produce reasonable

results. Moreover, MedlineRanker is slower than the MScanner search tool.

1.1 Motivation for the Thesis Work

Most of the current PIR systems require a large set of user-defined abstracts as input

[15, 16]. However, in practical situations, it may not be feasible for a user to find hundreds

of abstracts directly relevant to his or her information need. It is desirable for a researcher to

work with a Personalized Information Retrieval (PIR) system that can learn from a small

set of input citations. Also, it should limit the search output size by eliminating the false-

positives in the search output using the small set of input citations.
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Figure 2: The web interface of MedlineRanker. A user needs to provide a list of relevant
PMIDs and the test set as the input.

Few of the current PIR systems for PubMed; for example, Anne O’Tate [26], McSyBi

[27] and GOPubMed [29] focus on reducing the search output size, by clustering the search

outputs into meaningful categories. Clustering the search output provides a quick way for

users to navigate through the search output. However, finding and locating the correct cluster

of citation is not a trivial process. It is time consuming and requires proficient domain

knowledge. Therefore, PubMed can be greatly enhanced with a PIR tool that directly focuses

on reducing the search output size solely based on the initial user input.

In addition to the explicit PIR systems for PubMed discussed above, there are few

implicit systems developed for PubMed personalized information retrieval [30, 31]. Implicit

PIR tools need a lot of implicit data about the user profile to produce an accurate result.

These systems infer the user query intention through browsing history, click-through links or

by previous search entries. In order for the user profile data to be useful, it often requires the

collection of one or two month of user behavioral data, which may not be readily available.
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1.2 Objectives

The goal of this study is to build an efficient Personalized Article Retrieval System

(PARS) for PubMed that can be used by both expert and non-expert users:

• It learns from user input with a small number of relevant articles.

• It enhances search output quality by removing the irrelevant citations from the search

output purely based on the small set of citations and no additional information from

the user.

The system is designed with the following considerations:

1. Uniquely infer and represent user information need in terms of a small set of user

input citations.

2. Expand training data based on the user input citation set automatically.

3. Find the relevant citations to the user information need by applying text-mining

algorithms.

4. Reduce and refine the relevant citations derived using the additional filtering processes.

5. Present the final search output ranked according to each citation’s similarity value to

the user information need.

Figure 3 shows a high-level architectural view of the system developed based on these

considerations.

The first consideration of the proposed PARS system is that it can be trained based

on a small set of citations such as between 5 and 20 citations – provided by the user. We

refer to this set as “the seed documents.” The PARS system gathers the information about

the user query intention based on this small set of seed documents. This process is critical

for the overall performance of PARS. Typically, a user will enter the PubMed IDs of the
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Figure 3: Abstract view of the proposed Personalized Article Retrieval System (PARS).

seed documents in the PARS interface. Based on the seed PubMed IDs, PARS extracts the

citation title, abstract and all the meta-data attached to the PubMed citation such as MeSH

terms. Then PARS uses this information collectively to represent the information need.

In the next step, PARS trains its text mining and text similarity algorithms to find the

relevant documents to the information need. It is well known to the text mining community,

it is difficult to train text-mining algorithms with good accuracy based on small data set.

Therefore, the second consideration of the proposed system is to develop an automated

procedure to expand the training data based on user seed citations. The current approach to

this problem is to allow for interactive user inputs. That is, system will initially present some

citations to the user. Then the user is asked to pick relevant citations to his or her information

need from the presented citations. The user selected citations are added to the training

set. This process is repeated several iterations until PIR tool get sufficient training data.

The search tool RefMed [32] was developed based on this multi-level relevance feedback
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with the RankSVM [33] learning method. However, this approach is time consuming and

tiresome and requires proficient knowledge about the topic being searched. In addition,

users need to be cautious about the feedback inputs. Less relevant abstracts admitted into

the data set may decrease the accuracy of the classifier learned. After multiple iterations

of inaccurate feedbacks, the classifier may produce final results irrelevant of the initial

information need. When designing the proposed PARS system, we decided that this process

is to be automated using the text mining algorithms without any intermediate user input.

The third consideration of the proposed PARS system is to adapt and develop text

classifiers or other text mining methods to find the relevant citations from PubMed. When

the PARS system finds new articles from PubMed, a properly trained text classifier can

differentiate the relevant articles from the irrelevant ones. Currently, MedlineRanker [15]

and MScanner [16] use Naive Bayes text classifier in their search tool.

Typically, a single text classifier produces a large set of relevant citations as a result

of the large volume of citations in PubMed. Therefore, the fourth consideration for the

proposed PARS system is to develop a process to refine and reduce the search output by

removing false-positives in the search output. A multi-stage filtering procedure is developed

for this purpose.

The search output from the proposed multi-stage filtering process is a much-improved

set of highly relevant citations to the user information need. However, it may still contain

some of the false-positives. Therefore, the final and fifth consideration of the proposed

system is to develop an efficient ranking procedure to rank the search output. This process

ranks the search output citations according to relevance value to the user initial information

need. Finally, the top ranked citations are presented as the final retrieval results.
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1.3 Roadmap

Chapter 2 covers the related work in medical information retrieval and describes back-

ground theories and methods used in this study. First, it introduces different information

retrieval models. Then it explains the medical information retrieval using PubMed. PubMed

Web Interface, PubMed Query Suggestions and Automatic Term Mapping (ATM), PubMed

Advanced Search Feature, Medical Subject Headings (MeSH), PubMed Filters, PubMed

Relevance Sort and PubMed Related Article (PMRA) feature are presented in the first

section in Chapter 2. Then PIR concepts are introduced in Chapter 2. Next, it presents the

different text classification methods namely; Naive Bayes, k- Nearest Neighbor (kNN) and

Support Vector Machines (SVM). Document representation, feature selection and similarity

measures are also presented in Chapter 2.

Chapter 3 presents the PARS methodology of finding the relevant citations for the user

information need by extending the PMRA method in the PIR context. First it presents the

user input for the PARS system. Then it presents the methodology of extending the PMRA

method in the personalized retrieval context.

Chapter 4 discusses the classification based filtering approach in the PARS system. It

presents the user input for the method, procedure of expanding the training set and Multi-

Stage Filtering method of finding new unseen citations for the given information need.

Chapter 5 presents the evaluation procedure in this study. It discusses two approach to

evaluate the proposed PARS. First it presents the procedure of evaluating PARS using the

TREC (Text REtrieval Conference) 2005 Genomics track ad-hoc retrieval task data. Then it

presents an empirical study with real PARS users.

Chapter 6 presents the results of this study. It first presents the results of both methods

in PARS with the small TREC dataset. Then it presents the results of the real world users

empirical study.

Chapter 7 presents the conclusions and future directions of this study.
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CHAPTER 2

BACKGROUND

With the rapid advances in internet technology and developments, more and more elec-

tronic documents, images and videos have been produced and added to World Wide Web

(WWW) and made available online. For example, currently Google web index contains

over a trillion web pages [34]. This makes finding the relevant information from a large

collection of information source, such as Web, a challenging task. Information Retrieval

(IR) is relatively new field of Computer Science addressing this problem.

Formally, Information Retrieval (IR) can be defined as “finding materials from an un-

structured nature that satisfies an information need within large collections” [35]. Therefore,

the goal of IR can be expressed as finding the relevant resources to a user’s information need

and helps the user to complete a task. The web search engines are the most common and

visible information retrieval systems. IR community has developed new set of algorithms

and methods to build and enhance information retrieval from the Web and other domains.

The Boolean Information Retrieval (BIR) model and the Vector Space Model were the

earliest information retrieval model developed by the IR community.

2.1 Boolean Information Retrieval (BIR) Model

The interaction with an information retrieval systems starts by the user stating his or

her information need. The most common way an information need is stated is through

keywords. The keywords a user provides form a query, which is then submitted to the

information retrieval system. IR system finds the relevant information to the user query from

its defined domain. This domain could be a collection of web pages, scientific literature,

audio files, video files, images, etc. Early IR systems focused on retrieving information to

user query from domain of relative small size. The Boolean Information Retrieval (BIR)

model [35] was developed to find documents or audio/video files having text or description
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containing the exact matches of the query terms within its domain. In the early days of

computing, when the search domain is small, the BIR model was adequate in finding the

relevant information. However, with the rapid growth of information and domains, the BIR

model is no longer a viable Information Retrieval tool in terms of accuracy and efficiency.

As the size of the information search domain scales up, a more efficient methodology is

needed. The vector space based information retrieval methods were developed to efficiently

retrieve relevant information from large data source [35].

2.2 Vector Space Based Information Retrieval

Figure 4: Three-dimensional feature space. The features could be terms or phrases extracted
from a document set. All the documents (files) in the domain are represented in this feature
space as vectors. The user query is also plotted in the same feature space.

In the vector space model, each data file is represented as a vector in a multidimensional

vector space [35]. All the possible terms in the information collection form the dimensions

of this space. Once a user submits a query to a vector space based IR system, it transformed

the query into a multidimensional vector. Then, it plots the query into the same vector space

as showing in Figure 4. The IR system finds the similar files to the query vector from the
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multidimensional vector space using similarity measures such as the Cosine similarity [36],

Jaccard Model [36] or Overlap model [36]. Euclidean distance [37], Manhattan distance

[38] and Hamming distance [39] measures can be used inversely to calculate the similarity

between the query vector and the file vectors. Finally, the vector space model produces a

search output containing files that are the most similar to the user query. Figure 5 shows an

abstract view of information retrieval using the vector space model. With introduction of

vector space models, relevancy is introduced to the information retrieval. Because of this,

search output of an IR system is a ranked list of relevant entities to the query. Therefore,

IR systems based on vector space model are able to produce efficient search output from

medium size datasets compared to those from the BIR model. Another group of computation

models used by the IR systems is the probabilistic models [40, 41], inference networks

[42, 43] and language models [44, 45]. However, IR systems developed based on these

models were unable to show significant success in information retrieval from large datasets.

Figure 5: An overview of the information retrieval process based on vector space model.
This model produces a ranked list of relevant documents or files (audio/video) as the search
result for a query.
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With the introduction of the PageRank algorithm [46] in the late 1990s, information

retrieval has redefined and evolved dramatically. The PageRank algorithm aimed to improve

the information retrieval efficiency from the Web. It captures the relevancy and importance

of each document in the Web. It was the first algorithm used by the Google search engine

[47, 48] and led to huge success in the information retrieval from the Web. The PageRank

algorithm and its further development have enhanced the information retrieval from unstruc-

tured text.

The most common IR application is the web search engines, but there are many other

applications in information retrieval for different domains. For example, E-mail search [49],

searching the content in a personal computer [50, 51], searching information in a corporate

knowledge bases [52], legal information retrieval [53] and medical information retrieval

[54] are some of the applications of information retrieval. This thesis work mainly focuses

on medical information retrieval.

2.3 Medical Information Retrieval

With the advancement of scientific fields, the scientific research community produced

tremendous amount of research articles. Initially, scientific literature was kept in libraries

and standard alone computer systems in universities, research organizations and national

laboratories. Due to popularity and ease of access, many government and industry publishers

opened their citation databases to general public via internet. Google Scholar [1], PubMed

[2], CiteSeerX [4], Science.gov [55] and Astrophysics Data System (ADS) [3] are some of

the popular scientific literature databases over the internet.

PubMed is the largest and most comprehensive citation database in the biomedicine

field. It is developed and maintained by the National Center for Biotechnology Information

(NCBI) at the National Library of Medicine (NLM) [5]. Primarily, PubMed provides free

access to NLM’s Medline citation database. Medline contains citations from many different
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fields of medicine, health care systems, nursing, podiatry, veterinary, etc. In addition to

Medline database, PubMed provides many other life science and out-of scope citations.

Currently, PubMed contains more than 24 million citations [2]. Therefore, most of the

practitioners and researchers in the field of medicine and biomedicine use PubMed as their

primary information source.

Figure 6: PubMed search interface. For the query gene expression profiling it returns
155,257 citations in the search results.

PubMed web interface is the primary way of accessing and searching literatures in the

PubMed database. It provides a traditional keyword based search interface for its users as

shown in Figure 6. Due to continued growth of the size of the medical citations, retrieving

the relevant citations from PubMed for one’s information need is becoming a challenge.

The average search output size for a PubMed query is about 10,000 citations [56]. The

PubMed search suffered from an information overload due to its volume. There is an

increasing need to improve the information retrieval system for PubMed. In response to

this, NCBI has introduced many features to enhance the information retrieval for PubMed.

PubMed Advanced Search [8, 9], PubMed Filters [13], PubMed Auto Query Suggestions
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[56], PubMed Automatic Term Mapping (ATM) [11] and Medical Subject Headings (MeSH)

[12] are some of the features introduced by NCBI to perform a more efficient and accurate

retrieval from PubMed.

2.3.1 PubMed Query Suggestions and Automatic Term Mapping (ATM)

PubMed Query Suggestions help users in formulating their information need in the

PubMed interface [2]. PubMed automatically suggests queries to the users by using the

previous popular queries in PubMed logs and the initial user query terms [56]. Then, users

can modify their queries to better formulate their information needs. PubMed Automatic

Term Mapping (ATM) [11] is another feature developed by the NCBI to automatically find

the related terms to the user input keywords. It maps the Medical Subject Headings (MeSH)

terms [12], journals and authors to the user input query terms to build a robust query without

additional user information. This tool also helps to retrieve the highest relevant citations

to the user by automatically enhancing the query. Both PubMed Query Suggestions and

ATM are developed to assist the users to express their information need precisely. Both tools

have achieved some success, but many users are still having difficulties in succinctly and

accurately expressing their information need in PubMed, which leads to less than desirable

search results.

2.3.2 PubMed Advanced Search

To further improve the quality of the search results of the original PubMed, NCBI

developed an Advanced Search Builder [8, 9] to refine and limit the search output. The

PubMed Advanced Search Builder allows the users to specify additional information about

their information need along with the query terms. For example, a user can specify the

interested journal, authors, and MeSH terms as shown in Figure 7. Additional information

from the users help to reduce the search output size from the PubMed. Therefore, this
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answers the information overload issue in PubMed up to certain extent. However, to compose

an advanced search query in PubMed requires expert knowledge in the biomedicine field

and PubMed search strategies. The expertise may not be present to a novice in the field, or

to experts exploring a new research area in biomedicine.

Figure 7: PubMed Advanced Search Builder. In this query, in addition to the keyword “gene
expression profiling”, it specified journal and MeSH Major topic fields to limit the search
output.

2.3.3 Medical Subject Headings (MeSH)

Medical Subject Headings (MeSH) [12] terms are the important feature in the PubMed

Advanced Search Builder. The Medical Subject Headings (MeSH) was introduced by the

United States National Library of Medicine (NLM) to help in searching and indexing the

Medline citations. Basically, it is a comprehensive controlled vocabulary thesaurus. MeSH

vocabulary includes four different types of terms namely, MeSH Headings (MeSH Descrip-

tors), MeSH subheadings (qualifiers), Supplementary Concept Records and Publication

Characteristics [57]. MeSH descriptors are organized in a hierarchical structure called MeSH

tree. In MeSH tree, MeSH descriptors are organized in 16 categories. In each category,
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MeSH descriptors are arranged from most general to most specific using 12 hierarchical

levels. Figure 8 shows an example view of the organization of MeSH terms in the tree.

Subject experts in the NLM updated this MeSH tree annually.

Figure 8: A slice of the MeSH tree. It shows how MeSH terms are arranged from most
general to more specific. At the top, it has the most general Body Regions and Head MeSH
terms. At the bottom of the tree more specific MeSH terms namely Eyelids and Eyelashes,
are listed.

When a user expresses information need in the PubMed Advanced Search Builder [8],

MeSH terms can be used to limit the search output in a systematic way. However, even the

experienced researchers in the biomedicine field are reported having difficulties in using

the MeSH terms effectively in their PubMed searches [80]. Because of this, NCBI has

introduced PubMed filters [13] to the PubMed web interface as a different approach to refine

and limit the original PubMed search output.

2.3.4 PubMed Filters

PubMed search results page includes the PubMed filters [13] sidebar on the left as shown

in Figure 9. These filters can be used to narrow down the search results. A wide variety of
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filters have been made available in the sidebar. For example, article type filters, publication

date filters, species filters and text availability filters are some of the PubMed filters available

in the PubMed filters sidebar. Users can select one or more filters from the sidebar to narrow

down their search results. Because of this, users can find the relevant citations easily from

the narrowed search output, however applying the right filter to refine the search output

requires expert knowledge in the field of biomedicine. In addition to these features, there

are two other important features provided in the PubMed interface, namely the PubMed

Relevance Sort [58] and the PubMed Related Article (PMRA) [14].

Figure 9: PubMed Filters sidebar on the PubMed search results page.

2.3.5 PubMed Relevance Sort

Originally, PubMed search output is sorted according to the reverse chronological order.

Recently PubMed introduced the Relevance sort [58] as a new feature in the web interface.

Relevance sort calculates the relevancy as a weight for each citation in the search output

according to the common words between the query and the citation [58]. Then, it sorts the

search output according to the relevancy value. This puts the most relevant citations on top
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of the search output and is a more desirable search result.

2.3.6 PubMed Related Article (PMRA) Method

The purpose of the PMRA feature [14] is to find the articles that are similar to a chosen

PubMed citation from the entire PubMed database. When a user selects a citation from

the PubMed search results, PubMed also displays the citations having the highest PMRA

similarity values, e.g., the closest matching, to the chosen citation in the similar article

panel of PubMed web interface as shown in Figure 10. The list of the most similar citations

forms the related citation list for the selected citation. The related citation list for each

article in PubMed is pre-calculated, and pre-sorted according to the PMRA values [59]. The

calculation and sorting of PMRA lists are done at the back-end and PubMed is updated

periodically with the new PMRA scores. The calculation of PMRA documents for a given

citation is performed with the following procedure.

Figure 10: PubMed Related Articles for the citation “Dissecting the polysaccharide-rich
grape cell wall changes during winemaking using combined high-throughput and fractiona-
tion methods” are showing in the right hand panel of PubMed web interface.
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Given that document d is deemed related to one’s information need, PMRA computes

the relatedness of document q in terms of the posterior probability P(q|d), where q can

be any document in PubMed. Assuming a document can be decomposed into a set of N

mutually exclusive and exhaustive “topics” {s1,s2, .,sN}. P(q|d) is computed as shown in

Equation 1.

P(q|d) =
N

∑
j=1

P(q|s j)P(s j|d) (1)

Expanding P(s j|d) using the Bayes theorem, we obtained Equation 2.

P(q|d) =
∑

N
j=1 P(q|s j)P(d|s j)P(s j)

∑
N
j=1 P(d|s j)P(s j)

(2)

For a user selected document d, the denominator of Equation 2 remains constant for any

document q. Therefore, for comparative purposes, the denominator of Equation 2 can be

ignored and the following criteria can be used to rank documents based on their relatedness

or similarity.

P(q|d) ∝

N

∑
j=1

P(q|s j)P(d|s j)P(s j) (3)

Here P(q|s j) is the probability that the user finds an interest in document q, given an

interest in topic s j. Similarly, P(d|s j) is the probability that the user finds an interest in

document d, given an interest in topic s j. P(s j) is the prior probability of the topic s j i.e.,

the fraction of all documents that discuss the topic s j. Therefore, relevance of a document q

to the given document d can be computed by summing up the product of P(q|s j), P(d|s j)

and P(s j) across all the topics [14].

In order to estimate P(q|s j), P(d|s j) and P(s j), PMRA introduced a concept called

eliteness [14]. Eliteness explains whether a given document d is about a particular topic

s j or not. The original PMRA method assumes that each word in the PubMed citation

(title, abstract and MeSH term list) represents a topic (s j). Moreover, each word (term)

in the PubMed citation represents an idea or concept in the document. A term ti is elite
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for document d if it represents the topic s j. Otherwise, term ti is non-elite for document

d. Equation 4 can be derived using the eliteness concept and Bayes theorem [14]. Let E

represent the eliteness of a term in document d, and Ē represents the non-eliteness of a term

in document d. The probability a term is elite in a document is conditioned on the number

of times, k, that term appears in the document:

P(E|k) = P(k|E)P(E)
P(k|E)P(E)+P(k|Ē)P(Ē)

=

(
1+

P(k|Ē)P(Ē)
P(k|E)P(E)

)−1

. (4)

P(k|E) and P(k|Ē) are calculated using the Poisson distributions as shown in Equations 5

and 6.

P(k|E) = λ ke−λ

k!
(5)

P(k|Ē) = µke−µ

k!
(6)

where λ is the mean of the Poisson distribution of the elite case for the given term, and µ is

the mean of the Poisson distribution of the non-elite case for the given term. First, substitute

Equation 5 and 6 values into Equation 4. Then applying document length normalization and

algebraic manipulations to Equation 4, we derived Equation 7.

P(E|k) =
(

1+
µke−µP(Ē)
λ ke−λ P(E)

)−1

=

[
1+η

(
µ

λ

)k
e−(µ−λ )l

]−1

(7)

where l is the length of the document and η = P(Ē)/P(E).

Then, we combine the concept of eliteness with the relatedness concept of two documents.

P(E|k) is used to estimate P(q|s j) and P(d|s j) in the P(q|d) model. To efficiently calculate

the similarity values, P(s j) is estimated using the inverse document frequency of a term

(topic) t j, id ft j . Inverse document frequency (idf) calculates the important of a term within

a document collection. Then, the following weighting function and the similarity function
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are derived to calculate the similarity of the two documents.

P(q|d) ∝ sim(q,d) =
N

∑
j=1

[P(E|k)]t j,q · [P(E|k)]t j,d · id ft j (8)

sim(q,d) =
N

∑
j=1

[
1+η

(
µ

λ

)k
e−(µ−λ )l

]−1

t j,q
·
√

id ft j ·
N

∑
j=1

[
1+η

(
µ

λ

)k
e−(µ−λ )l

]−1

t j,d
·
√

id ft j

(9)

wt =

[
1+η

(
µ

λ

)k
e−(µ−λ )l

]−1

·
√

id ft (10)

sim(q,d) =
N

∑
j=1

wt j,q ·wt j,d (11)

where wt calculates the term weight for a given document. Similarity between the two

documents is computed with an inner product of the term weights as in Equation 11.

Parameter Estimation in PMRA

PMRA similarity calculation requires that a number of parameters, λ , µ , η be estimated.

A simplifying assumption has been made for the elite and non-elite Poisson distributions:

half of the terms in the document are elite and the other half of the terms are non-elite. This

assumption leads to Equation 12, a model similar to the maximum entropy models used in

Natural Language Processing [14, 60].

η

(
µ

λ

)
=

P(Ē)µ
P(E)λ

= 1 (12)

The weighting scheme expressed in Equation 10 can then be re-written as:

wt =

[
1+
(

µ

λ

)k−1
e−(µ−λ )l

]−1

·
√

id ft (13)

This way, PMRA reduces the number of parameters to be estimated from three to two.

Medical Subject Heading (MeSH) [12] information in Medline was used to estimate λ and

µ . MeSH descriptors to each PubMed indexed citation are assigned manually by experts
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in the field of biomedicine. Therefore, terms in the MeSH descriptors can be considered

as elite terms for the citations. The terms in the citation that do not appear in the MeSH

descriptors are considered non-elite terms for the citation. The average appearance of a

given elite term (λ ) or a given non-elite term (µ) can be calculated based on a collection of

PubMed citations.

To give developers and researchers full advantage of information stored at PubMed,

NCBI has opened up their database and programming utilities to the public by allowing

them to develop application specific and enhanced information retrieval system for PubMed.

As a result, many academic and industry groups have developed IR systems to enhance

different aspects of PubMed; for example, ranking the search output [15, 16], clustering the

search output [26, 29], finding relevant materials using semantic based method [18, 19] and

visualize the retrieval results [61].

The main goals of these enhanced IR systems is to capture a user’s information need

uniquely and broadly and return a small set of truly relevant citations as the search output

from PubMed. This type of IR systems is more broadly referred to as Personalized Informa-

tion Retrieval (PIR) systems.

2.4 Personalized Information Retrieval

PIR systems consist of two main tasks:

• The first task is to capture and understand a user’s information need accurately and

efficiently.

• The second task is to find the citations closest to the user information need and present

these citations in a meaningful manner.

For the traditional IR systems, user information needs are provided as user queries

consisting of keyword terms. However, it is often difficult to fully specify and capture the

user information need precisely using only the query terms. Additional information about
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the user query intention is required for the PIR systems to deliver more personalized results.

There are two main approaches to gather individual user interest for the PIR systems. The

first approach is to capture the user interest explicitly [22, 15, 16]. The second approach

collects information about the user query intention implicitly; for example, in terms of the

click-through links in the search history [23, 24, 25]. Either explicit or implicit information

provides a deeper understanding about the user information need to the PIR systems. The

second stage of the PIR system carefully filters and sorts the relevant information to the

user information need using more sophisticated text mining algorithms. Text classification

[15, 16], text clustering [26, 27], relevance ranking [22, 28] and semantic based methods

[18, 19, 20] are some of the text mining techniques used in the PIR systems. This study

focuses on building a PIR system based on text classification approach. The next subsection

discusses the text classification based PIR systems.

Figure 11: Overview of text classification based Personalized Information Retrieval (PIR)
systems.
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2.4.1 Information Retrieval as Classification

Data required to train the text classifiers in a PIR system consists of a set of relevant

citations and non-relevant citations. The relevant set consists of citations deemed relevant by

the user to his or her information need. The non-relevant set consists of irrelevant citations

to the user information need. In many cases, the relevant set is provided by the user and

the irrelevant set is randomly selected from the entire dataset by the PIR system. Figure 11

presents an abstract view of a text classification based PIR systems.

Both relevant and non-relevant citation sets are used to build the training set for the text

classifiers in the PIR system. Then, PIR system trains the text classifiers in the system using

the training set of data. The trained text classifiers are used to classify the documents in the

collection into two classes: documents relevant to the user information need and documents

non-relevant to the user information need. Finally, the PIR system presents a partial or full

list of relevant citations as the search result. There are many different text classification

algorithms available to employ for this type of PIR system [15, 16, 35]. The following

section presents an overview of the different methodologies developed in text classification.

2.5 Text Classification

Over the past two decades, many different text classification approaches have been de-

veloped including the Naive Bayes (NB) method [35], the Support Vector Machines (SVM)

[35], the Rocchio method [35], the regression based models [62], the k-Nearest Neighbour

(kNN) method [35], and the Neural Networks [62]. Text classification consists of two major

phases, the learning or training phase and the classification phase. The objective of the

learning phase is to derive the classification model from the training examples provided.

Once the training (learning) phase has finished, the classification phase starts where the

learned classifier is used to determine the class label for new, unseen documents. The

following sections briefly explain the theory behind the Naive Bayes classification, the kNN
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text classification and the Support Vector Machine (SVM) approaches, which have been

used as base classifiers in the PIR system developed in this thesis work.

2.5.1 Naive Bayes (NB) Text Classifier

The Naive Bayes classification method is fast, robust and easy to implement. It is

based on the posterior probability model derived using the Bayes theorem [35]. Given a

document d, its probability of belonging to a class c is P(c|d). The goal of the Naive Bayes

classification is to find the optimal class for a given document, i.e., the class that gives the

maximum posterior probability, P̂(c|d) [35]. This is expressed as:

Cmap = argmaxc∈CP̂(c|d) (14)

where, Cmap is the class with the maximum posterior probability, c ∈ {c1,c2,c3, ....,cn}=C

is the set of class labels and d is the given document. Applying the Bayes theorem, Equation

14 can be re-written as:

Cmap = argmaxc∈C
P̂(d|c)P̂(c)

P(d)
(15)

The term P(d) has the same value for all the classes and it does not affect the argmax

decision. Therefore, P(d) can be dropped from the above Equation 15. Then, assuming

{t1, t2, t3, ..., tnd} is the set of terms in document d, and nd is the total number of terms in

the document, Equation 15 can be written as:

Cmap = argmaxc∈CP̂(t1, t2, t3, ..., tnd|c)P̂(c) (16)

To efficiently compute P̂(t1, t2, t3, ..., tnd|c), the Naive Bayes Conditional Independence

assumption is made: the terms in the documents are conditionally independent from each
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other given the class information. Using this assumption Equation 16 becomes:

Cmap = argmaxc∈CP̂(t1|c)· P̂(t2|c)· · · P̂(tnd|c)P̂(c) (17)

Cmap = argmaxc∈CP̂(c)
nd

∏
i=1

P̂(ti|c) (18)

During the training stage, the probabilities, P̂(c) and P̂(ti|c), are estimated from the training

data.

P̂(c) =
Nc

N
(19)

where, Nc is the number of documents in class c and N is the total number of documents in

the training set.

To calculate P̂(ti|c), the Naive Bayes Positional Independence assumption is made

where the conditional probability of a term is independent of the position of the term in the

document. Therefore, P̂(ti|c) can be computed as:

P̂(ti|c) =
Tcti
Nct

(20)

where, Tcti is the total number of occurrence of term ti in class c including multiple occur-

rences, Nct is the total number of terms in class c including multiple occurrences.

At the classification stage, given terms {t1, t2, t3, ..., tnd} for a document d, Equation

18 is used to compute the posterior probability of the document for each possible class,

c∈C. The class assigned to the document is the one having the highest posterior probability.

2.5.2 k-Nearest Neighbor (k-NN) Text Classifier

k-Nearest Neighbor (kNN) [35] algorithm is also known as instance-based learning or

lazy learning. The kNN algorithm does not have an explicit training step. During classifica-

tion, it examines the class labels of k nearest neighbors that are the most similar to the test
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object, and classifies the test object with the majority label from its k neighbors. A similarity

measure is used to find the k nearest neighbors from the training set. Cosine Similarity [36]

is used here to find the nearest neighbors. In this study, kNN training set consists of equal

number of positive (relevant) and negative (non-relevant) training examples. We need to

predefine a value for k in the kNN text classifier. In order to break ties in majority vote,

an odd integer for k such as 1,3,5,7... is often used. The best value of k depends on the dataset.

2.5.3 Support Vector Machine (SVM) Text Classifier

Support Vector Machines is another very popular and powerful machine learning al-

gorithm for text classification. It is originally a binary classification system developed

by Vapnik and his colleagues [63]. The goal of the Support Vector Machine is to find N

dimensional hyperplane that optimally separates data into regions. Let us consider the

example in Figure 12. It has two categories of data and the data can be represented in a two

dimensional space. A line can be easily drawn to separate the data into two non-overlapping

regions. In fact, an infinite number of lines can be drawn to separate those data, as shown in

Figure 12. Support Vector Machines method gives a formal explanation to find the optimal

hyperplane to separate data. According to Figure 13, Support Vector Machines find the

optimal hyperplane which maximize the margin between two data regions. The data points

lie on the margins are called support vectors.

According to Figure 14, the optimal separating hyperplane H can be defined as:

wT · x+b = 0 (21)

and marginal (canonical) hyperplanes H1 and H2 as follows;

wT · x+b = 1 (22)
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Figure 12: Two categories of data in a two dimensional space. An Infinite number of lines
can be drawn to separate + and − in the given 2D space.

Figure 13: Graphical representation of Support Vector Machines classification for the two
class problem.

wT · x+b =−1 (23)

where, w is a weight coefficient vector perpendicular to the hyperplanes and b is a bias term.

Once w and b are computed, we can use the following classification criteria to classify

data:
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Figure 14: SVM binary classification. H represents the optimal separating hyperplane and
H1 and H2 represents marginal hyperplanes.

If wT · x+b≥ 1 then classify as +1

Else wT · x+b≤−1 then classify as -1

Take x+ and x− the points which are on the H1 and H2 hyperplanes respectively, Equations

22 and 23 can be written as:

wT · x++b = 1 (24)

wT · x−+b =−1 (25)

The x+ and x− points are called as support vectors for the optimal separating hyperplane.

Equation 24 and 25 lead to:

wT · (x+− x−) = 2 (26)

Since, w is a vector which is perpendicular to the wT ·x+b= 0 plane, we can write (x+−x−)

vector as follows:

(x+− x−) = λw (27)
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Combining Equations 26 and 27, λ can be computed as:

λ =
2

wT ·w
(28)

and the margin M can be computed as:

M = |x+− x−|= λ · |w|= 2
wT ·w

√
wT ·w (29)

where, |w|=
√

wT ·w

M =
2√

wT ·w
(30)

Maximizing M can be achieved by minimizing
√

wT ·w
2 . The minimization function g(w) is

given as:

g(w) =
1
2
(wT ·w) (31)

subject to the constraints: yi[wT · xi +b]≥ 1

where yi is the class label for xi. Now, the problem is reduced to optimization of a quadratic

function subject to linear constraints. This type of problem can be solved by constructing a

dual problem where αi is associated with each constraint yi[wT · xi +b] ≥ 1 in the primal

problem [35].

Find α1,α2,α3, ....,αN such that

∑αi−
1
2 ∑

i
∑

j
αiα jyiy j(xT

i · x j) (32)

is maximized and ∑i αiyi = 0, αi ≥ 0 for all 1≤ i≤ N.

Then the final solution can be expressed as:

w = ∑αiyixi (33)
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b = yk−wT · xk for any xk such that αk 6= 0.

Finally, the classification function for new unseen data ‘z’ can be written as:

D(z) = sign(∑
i

αiyixT
i z+b) (34)

The SVM method works well for linearly separable data. Figure 15 shows an example

where data is not linearly separable. SVM uses kernel trick for data which is not linearly

separable. The main task of a kernel function is to transform the data from the input space

into a higher dimensional feature space where a hyperplane can be used to do the separation.

Figure 16 gives the visual explanation of the task of a kernel function. The kernel trick

Figure 15: Data is not linearly separable in the two dimensional input space. Therefore,
SVM classifier is not directly applicable to this type of data.

of the SVM replaces the (xT
i · x j) dot product in Equation 32 using some well known kernel

functions. With g as the transformation function, (xT
i · x j) can be written as:

xT
i · x j→ g(xT

i ) ·g(x j) (35)
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Figure 16: Process of the kernel function. It transforms low dimensional input data into
higher dimensional feature space.

Then, a kernel function K(xi,x j) can be defined as:

g(xT
i ) ·g(x j) = K(xi,x j) (36)

Here are some common kernel functions:

K(xi,x j) = (xi · x j +1)d - Polynomial,

K(xi,x j) = exp(−γ‖xi− x j‖2) - Radial Basis,

K(xi,x j) = tanh(k(xi · x j)+ c) - Sigmoid.

2.6 Document Preprocessing

Different ways of representing the documents in the text classification system may lead

to significantly different performance in any text classifier. Therefore, it is important to

carefully select a scheme to represent the documents in a PIR system. A vector based

representation is the most common and standard scheme of representing document in an

information retrieval system. With this scheme, each document is represented as a multi-
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dimensional vector. The following section presents the steps used to converting a text

document into a vector representation.

Most of the documents on the web or in scientific citation databases are in the form

of HTML or XML. Therefore, Data preprocessing steps were used to obtain a meaningful

wordlist from the HTML/XML documents. First, the document title and the content can be

extracted from the HTML/XML file. Then, the document title and the content are tokenized

into a list of words. From this list of words, stop words, words containing only numbers,

and words containing only a single character are removed. After that, stemming is applied

to normalize the words. This process converts a HTML/XML document into a list of

normalized words. Next, HTML/XML documents need to transform into a vector-based

representation using this list of words [81].

2.6.1 Document Representation

To further prepare the document into a representation suitable for classification, the

list of words obtained in each document is converted into a feature vector of dimension

K, where K is the size of the dictionary built based on words appeared in the training set.

The set of unique words in the dictionary is referred to as terms. Feature vector values are

represented using the Term Frequency (TF) or Term Frequency Inverse Document Frequency

(TF-IDF) [35] techniques. Term frequency (TF) method counts the number of appearances

of dictionary term t in the document word list of document d as t ft,d , and stores it in the

corresponding dimension of the feature vector. In the TFIDF method, feature vector values

were represented using the TF-IDF weights [35]. TF-IDF weight is computed for each term,

t, in each document, d, as:

wt,d = (1+ log(t ft,d))× log
(

N
d ft

)
(37)
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where, N is the total number of documents in the training set, and d ft is the frequency of

documents where term t appears.

Each document is transformed into a K dimensional vector. K is the total number of

unique words from the training set documents. Usually K is a large number for even a

small training set. For N documents, a N×K matrix may be used to store all the vector

representations of the N documents. This matrix is often a very sparse matrix, since only a

small percentage of words from the dictionary appear in each document. One way to reduce

the sparsity of the matrix is to reduce the dimension size by only retaining the informative

words in the dictionary.

2.7 Feature Selection

Feature selection is the process of finding the most discriminative set of features from

the whole feature set. Mutual Information [35], Chi-square method [35] and Correlation

coefficient [64] are common feature selection measures. Best first [35], Greedy forward

selection [65], Genetic algorithms [66] and simulated annealing [67] have been developed

for text mining problems. However, applying a sophisticated feature selection procedure in

a PIR system would lead to longer response time. Also, most of the time, a training set in a

PIR system is a small set of citations. Applying an advanced feature selection procedure to

a small set is not efficient. Therefore, in this study we proposed a simple feature selection

procedure based on document frequency values in the training set.

2.7.1 Feature Selection Procedure

The following list of steps are used to select features in this study:

1. The dictionary is created by collecting all the unique terms in the training set docu-

ments.

2. Calculate the document frequency (df) values for each term in the dictionary. That is,
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for each term in the dictionary, count how many documents in the training set contain

that term.

3. Select all terms appearing in two or more documents from the dictionary and stored as

a Feature Dictionary (FD). That is, selecting df ≥ 2 terms from the original dictionary.

4. Represent the document-to-vector conversion scheme in the PIR system using the

reduced feature vector.

Using this procedure, the size of the new Feature Dictionary (FD) is smaller than the

original dictionary built based on all the terms appearing in training set documents. The

sparse representation of document vectors can be eliminated. This leads to a significant im-

provement in the text classification performance and the execution time of the classification.

2.8 Similarity Measures

As a final step, the PIR system ranks the search output according to the similarity of

each citation to the user information need. Therefore, a similarity measure is required to

rank the search output in the PIR system. The following section describes the similarity

measure used in this study.

Similarity measures are used to find how close two instances are in the data space.

The closer two instances are to each other, the larger the similarity value between them.

Similarity measures are inversely related to the distance measures. Similarity measures can

be divided into two main categories: probability based and vector based similarity measures.

Fidelity similarity [68], Hellinger affinity [68] and bm25 [69, 70] are some of probability

based similarity measures. Person correlation coefficient [68], Jaccard coefficient [68] and

cosine similarity [36] are some of the distance based similarity measures.

This study uses cosine similarity algorithm to find the similarities between the documents.

Cosine similarity is heavily used in the information retrieval and text mining community.
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A previous study showed that the cosine similarity and the overlap model out-performed

many other similarity measures in the TREC dataset [71]. The following section provides a

theoretical explanation about the cosine similarity measure.

2.8.1. Cosine Similarity

Cosine Similarity provides a simple and effective method to compute the similarity

between two vectors. It measures the angle between two vectors as the similarity value.

Let’s assume A and B are n dimensional vectors in the data space. The dot product of the A

and B vectors can be written as in equation 38.

A ·B = ‖A‖‖B‖cos(θ) (38)

Then, angle between A and B vector (similarity) is expressed in the equation 39.

similarity = cos(θ) =
A ·B
‖A‖‖B‖

=
∑

n
i=1 AiBi√

∑
n
i=1(Ai)2

√
∑

n
i=1(Bi)2

(39)

where, A = {A1,A2,A3, ....,An} and B = {B1,B2,B3, ....,Bn}.
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CHAPTER 3

EXTENDING PMRA FOR PERSONALIZED RETRIEVAL

To produce reasonably accurate results, most of the current PIR systems for PubMed

require that, at the beginning of an IR process, a user needs to provide 100 or more citations

that have been screened to be relevant to the information need [15, 16]. This set of citations

play a central role in these PIR systems where they form the basis of the training data to

learn the classification models. However, in real applications, this is not a requirement

that can be easily satisfied. In fact, it is not easy for a user to provide just 50 citations

that are directly relevant to his information need. To eliminate the need for this unrealistic

requirement in a PIR system, in this chapter, we propose our PARS system for PubMed that

is capable of learning (training) from a much smaller set of citations provided by user.

Two different approaches to develop PARS for PubMed are discussed:

• The first approach adapts from the PubMed Related Article (PMRA) feature [14]

developed in PubMed, and

• The second approach implements a text classification based filtering method.

Chapter 3 discusses the PARS using the extended PMRA feature and Chapter 4 discusses

the PARS with a text classification based filtering method.

PMRA [14] is a useful tool in PubMed. Given a PubMed citation, PMRA finds all its

relevant citations from the PubMed database. Due to the amount of computation involved,

the PMRA lists for individual citations in PubMed are calculated and updated on the back-

end, at the time when each new citation is indexed and added to the database [59]. We would

like to know:

1. “Is it possible to extend the existing PMRA feature in the personalized information

retrieval context?”
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2. “What is the best way to extend PMRA feature in the personalized information

retrieval setting?”

We answer these questions by developing a PARS system with an extended PMRA

feature [14]. Figure 17 gives an overview of the system. It consists of the input module,

and PMRA tree crawling module, and the EPMRA method. Details of how PMRA was

extended to work with the PARS system and the methodologies developed in this PARS

system will be discussed in detail.

Figure 17: The overall system architecture of the PARS system with EPMRA.

3.1 User Input

There are different ways for a user to express his information need in an IR system.

The most common way of expressing an information need is using a query in the form of

multiple keywords or terms [1, 2]. Other ways of expressing information needs include

using a text paragraph [22], using multiple documents [15, 16], and using multimedia input
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(image or voice input) [72, 73]. In the proposed PARS system, user information need is

expressed by providing a small set of citations, for example 5-10 PubMed citations that

discuss a specific brain cancer treatment procedure. These citations are considered highly

relevant to one’s information need. These citations provide a more detailed representation

of the user’s information need than that expressed using keywords. It also provides more

information to the PARS system.

Figure 18: User input to the PARS consists of a set of relevant PubMed IDs and a subset of
PubMed for which the user is interested in finding citations. This subset is defined using the
existing PMRA feature in PubMed.

Figure 18 shows the two types of input required from the users in PARS. In addition to

the citations, a user is required to select a subset of the PubMed database from which to find

new and unseen relevant citations. Two different ways have been provided for a user to enter

the relevant PMRA citations in the PARS system. Figure 19 shows the web interface of the

first method of composing an information need in PARS. The PubMed ID (PMID) of the

relevant citations can be entered through the text box in PARS web interface as shown in

Figure 19. PMID is a unique identifier for individual citation in the PubMed database. The

relevant citations entered by the user are referred to as the seed documents in PARS.



43

Figure 19: The user interface of the proposed PARS system. This web page shows the first
method of entering citations in PARS. It will take a list of PubMed citation IDs and the
Level of Search (LOS) value. The default LOS value is set to 3.

Then, the user needs to specify the Level of Search (LOS) value in PARS. LOS defines

how deep in the PubMed database the user chooses to crawl. A tree crawling module is

developed to systematically search through all the citations in PubMed.

3.2 Tree Crawling Module

The original PubMed search output is sorted according to the chronological order of

published date [74]. However, PARS ranks the search output according to the relevance of

the citations to the user’s information need. In order to do that efficiently, PARS is designed

to crawl the PubMed database using a tree structure based on the PMRA related citation lists

as shown in Figure 20. To build the PMRA tree, first, the system retrieves the PMRA list for



44

Figure 20: The PMRA Tree structure is used for crawling the PubMed database in PARS.
First level includes citations from the PMRA lists of the seed documents. The second level
consists of citations of all the PMRA lists of citations used in the first level crawling. The
nth level covers the entire PubMed database.

each seed citation. The first level of the PMRA tree consists of all the PMRA documents

for the user seed citations. If a user needs to retrieve only a small set of citations from the

system, he or she can specify a small LOS value for the information need. For example,

when the LOS value is 1, PARS finds the relevant documents from the entire seed document

PMRA lists. When the LOS value is set to 2, PARS finds the new relevant citations from

PMRA list of seed documents and PMRA list of each citation in the first level. If a user want

to find citations from the entire PubMed databse, then user can specify the wildcard value

“n”. Then, PARS finds the relevant citations from the entire PubMed database. The default

value for the LOS is set to 3. This LOS value indirectly specifies a subset of the PubMed
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database the user is interested in. After specifying the LOS value in the web interface, the

user can submit his or her information need to the PARS system.

Figure 21: The procedure of expressing the information need in PARS using the existing
PubMed Search interface.

In the second method of expressing the information need, the existing PubMed search

feature is adapted to allow the users to express their information need. Figure 21 illustrates

the steps in this method. This method is mostly suitable for beginners or the researchers

who start a new branch in their research. Because, in these situations, the user of PARS

does not have a pre-defined set of relevant articles for their information need. Therefore, a

relevant article set may be found using the standard PubMed search based on keywords.

With this method, a user expresses his information need using multiple keywords in the

search box as shown in Figure 22. The standard PubMed search is performed and a list of

citations is output to the user. The user can examine the citations in the search output and

form a seed set by selecting the most relevant citations from the search output. In the next

step, the user can limit the document set from which to search for the relevant articles by

specifying the Level of Search (LOS) value as explained in the previous section.
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Figure 22: The second option of composing an information need in PARS. First, user does a
traditional key-word search using original PubMed search. Then, from the search output
user can choose some of the citations that are relevant to his or her study.

3.3 Extending the PMRA Similarity Measure

With the user input entered using the methods discussed above, PARS proceeds to find

the unseen relevant documents from the subset of PubMed specified by the user using the

Extended PMRA (EPMRA) method. The following sections explain the EPMRA method

and related methodologies on finding more relevant citations to a given information need.

The original PMRA was developed to find the relevant citations for a given citation.

Currently, PMRA method is not directly applicable to finding the relevant citations for

multiple user selected citations.
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Figure 23: Building PARS using only the existing PMRA lists. All the PubMed related
citations from the seed documents are collected to form a potentially relevant citation set.
Then, the citations are ranked according to the relatedness to the information need. Finally,
the citations most relevant to the information need are presented to the user. we refer this
method as the Basic Method.

The straightforward way of extending PMRA for multiple citations is to combine the

PubMed Related Article (PMRA) lists obtained from the individual seed citations, and

sort all the derived articles according to their PMRA similarity values. We refer to this

method as the Basic method. Figure 23 shows the procedure of building the PIR system

based on this Basic methodology. The PMRA related article list for individual citations is

pre-calculated in PubMed. Therefore, the Basic method can be completed in a very short

time. However, this method is not good at capturing the overall user concept or idea of

the information need expressed through multiple citations, i.e., the individual citations are
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considered independently. Also, the citations that are not indexed in PubMed do not have a

PMRA list. Retrieval results using this method are not accurate.

The second approach is to combine multiple citations into a single citation and to find

the relevant citations to this newly-formed citation. This method is slower than the first

approach because the newly-formed citation is not present in the PubMed database, therefore

no pre-computed list is available. But, this approach gives a better representation of the

particular user information need by taking into account information present in all the user-

defined citations. This is the approach taken by the proposed PARS system.

The combined citation is referred to as the Master Citation. There are multiple ways of

combining the set of seed articles into a single citation (Master Citation):

• The first method, the All-Inclusive method, simply combines the terms from all the

seed citations;

• The second method, the Intersection method, forms the new citation by only including

terms that simultaneously appeared in every single seed citation, i.e., intersection of

all seed citations;

• The third method, the At-Least-Two method, forms the new citation by including

terms appearing in at least two seed citations.

In this study we experimentally compare the effectiveness of these four methods: the

Basic method, the All-Inclusive method, the Intersection method, and the At-Least-Two

method.

Figure 24 gives an overview of the methodology PARS uses to compute the list of related

citations to the Master Citation using the EPMRA method. In this approach, the PMRA

similarity value between the Master Citation and each citation in the database needs to be

estimated. In order to calculate the PMRA similarity values, the parameter values, i.e., the

λ and µ values in Equations 5 and 6 in Chapter 2, in the original PMRA method need to
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Figure 24: Methodology of developing PARS based on the PMRA feature. In this method,
seed documents are combined in to a single Master citation.

be recalculated. The following section discusses the process of estimating the λ and µ

parameters in the PARS system.

3.3.1 Estimating the Parameters in the EPMRA Method

In PMRA calculation, the λ and µ parameters represent the elite and non-elite frequen-

cies of a given term in all the citations in the dataset. To estimate these two parameters for

the dataset, one may choose to use the entire PubMed database, a random sample from the

PubMed, or a biased sample from the PubMed (e.g., a subset provided by user, results of a

PubMed search) as the random sample population. Due to computation concerns, a scaled

down, stratified random sample [75] based on the Medical Subject Headings (MeSH) [12]

is used to estimate the parameters. This random sample is referred to as the Background Set
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in the PARS system. The next section discusses the procedure used to build the Background

Set.

3.4 Building the Background Set

The Medical Subject Headings (MeSH) [12] was introduced by the United States Na-

tional Library of Medicine (NLM) to help with searching and indexing the Medline citations.

It is a comprehensive controlled vocabulary thesaurus. MeSH vocabulary includes four

different types of terms namely, MeSH Headings (MeSH Descriptors), MeSH subheadings

(qualifiers), Supplementary Concept Records, and Publication Characteristics. MeSH de-

scriptors are organized in a hierarchical structure called the MeSH tree. In the MeSH tree,

MeSH descriptors are organized in 16 categories. In each category, MeSH descriptors are

arrayed from the most general to the most specific using 12 hierarchical levels. Subject

experts in the NLM update this MeSH tree annually. In 2015, there are 27,455 MeSH

descriptors in the MeSH tree [12]. The Background Set in PARS is built based on the 2014

MeSH tree descriptors.

To ensure that the λ and µ parameters estimated from the Background Set are a close

to those estimated from the entire set of citations from PubMed, it is important that the

Background Set constructed mimics the entire PubMed data. This is achieved by ensuring

that the Background Set constructed covers all the concepts in the MeSH tree. First, for

each MeSH descriptor in the MeSH tree, apply the Advanced PubMed search to retrieve the

PubMed articles. Among these retrieved articles, only those having their MeSH Major topic

matching the given MeSH descriptor will be kept for further consideration. Next, 20 unique

citations are randomly selected and added to the Background Set. This process is repeated

for the 27,455 MeSH descriptors and the final Background Set contains a total of 549,100

articles.
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3.5 Finding and Displaying the Results

To find the relevant citations, PARS examines each citation in the subset of PubMed

specified by the user. PARS calculates the relatedness between each citation and the Master

Citation using the EPMRA method. After the EPMRA calculation is completed, all the

citations are ranked according to the EPMRA relatedness value, and the top 100 most

relevant citations are presented to the user. The top citations are presented with information

including the citation title, PMID, authors and the EPMRA relatedness value. The EPMRA

relatedness value can be used as a “goodness” indicator for the search output. A significant

drop of the relatedness value indicates that the remaining citations in the output are much

less related to the information need. If the relatedness value is low for all the output citations,

then the user may want to modify the initial seed documents or the LOS value and perform

a new search in order to get a better search output. If the user wishes to see more than 100

citations from the search output, he can request the next 100 citations from the system. As

explained above, PARS with EPMRA is more efficient and effective in producing search

output for the user information need than the other competitive systems.
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CHAPTER 4

PARS WITH CLASSIFICATION BASED FILTERING

Chapter III presents the PARS system developed using an extended PMRA method. This

chapter discusses the PARS system developed based on the text classification methodology.

Text classification approaches automatically classify documents into two or more categories

based on its content. Text classification have been used in applications such as spam filtering,

news or web document classification, email routing and sentiment analysis [82, 83]. Text

classification has recently been used in the field of information retrieval.

Text classification and PIR share many commonalities. For two class text classification,

a training data set consists of positive and negative examples is required to train the text

classifiers. In PIR, a set of relevant and non-relevant documents is needed to represent the

user’s information need. Once a text classifier is trained, during the classification step, it

is used to classify the test documents into positive and negative classes. Similarly, a PIR

system identifies the relevant citations by eliminating the non-relevant citations in the data.

Information retrieval tools developed based on text classification have been used in

some citation database. For example both MedlineRanker [15] and MScanner [16] find

relevant citations from PubMed using text classification. There are two main drawbacks

in these systems. First, both systems require a user to input a large set (more than 100) of

relevant citations as the input. Secondly, these systems produced large search output for the

information need. The proposed PARS system addresses both issues using text classification

based multi-stage filtering methodology. The Mutli-Stage Filtering (MSF) methodology

only requires a user to provide a small set of relevant documents as the input. Also, MSF

method returns a small set of highly relevant citations to the user’s information need. Figure

25 gives an overview of the PARS system built using the MSF method.

The rest of this chapter discusses the details of the modules developed in this PARS

system for user input, training data construction, the MSF procedure for eliminating false
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Figure 25: The overall approach of the PARS Multi-State Filtering (MSF) method.

positive citations, and the ranking procedure used for the search output. For information

retrieval systems, the initial user input is very critical to its success.

4.1 User Input for the MSF Method

The user input for the MSF based PARS system is similar to that of the EPMRA based

PARS system. A user is required to provide a small set of relevant citations to represent the

user’s information need. These initial relevant documents are referred to as the positive seed

documents in the MSF approach. There are two ways of forming the positive seed document

set in the MSF approach. A user can directly enter the relevant PubMed IDs, as shown in

Figure 19, or he can choose a subset of the citations returned from a PubMed search when

given keywords, as shown in Figure 22.
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In addition, a user may choose to specify a set of PubMed citations that are considered

not relevant to the information need. These citations will be used by the PARS system

in forming the negative training examples during the training stage. If these non-relevant

citations are not properly selected, they may negatively affect the quality of the final output

of the PARS system. If the user is an expert in the subject area, then selecting non-relevant

citations is recommended. Otherwise, a user may choose not to select any non-relevant

citation, in which case, the non-relevant citations will be selected by the system. The

non-relevant citations may be entered by specifying their PMIDs or by selecting from the

set of non-relevant citations provided by the PubMed search output. These non-relevant

citations are referred to as the negative seeds in the MSF method.

Finally, a user needs to specify the test set for the PARS. The test set can be the entire

PubMed database or a subset of the PubMed database specified by the user. For example, if

the user is interested in only retrieving the relevant citations published in the last five years,

then the test set includes only the citations published in those five years. Typically, both

the positive and the negative seed sets include 5 to 20 citations. It is a known fact that it

is difficult to train text classifier with good accuracy based on a small data set. Therefore,

an important step of building the text classifier based PARS system is to identify a proper

technique to expand the training set based on the small set of citations (user seeds) provided

by the user. Using an expanded training set, text classifier can be applied efficiently to find

relevant citations from PubMed. The following section presents the procedure of expanding

the training set based on the user seeds.

4.2 Expanding the Training Set Size

To increase the size of the training data based on seed citations supplied by a user, a

similarity-based approach has been developed to find the citations that are the most similar to

the seed citations from the entire database. However, given the size of the PubMed database,
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to perform a real time similarity computation between each of the seed citation and every

citation in the database is not practical. Therefore, PARS uses the PMRA feature [14] to

build a smaller Target Set, based on which the training data set is to be expanded. For each

citation in PubMed, its PMRA list is pre-calculated. To build the Target Set, first the PMRA

list for each user seed is retrieved, then these PMRA lists are combined into a single citation

list. This unique citation list is referred to as the Target set.

The idea is to form a Master Citation that combines the information needs presented

in all the user seed citations. Merging all the seed citations into a single citation forms

the Master Citation. Then, compute the cosine similarity values [36] between this Master

Citation and each of the citations included in the Target Set. The citations in the Target Set

having the highest similarity values are the citations closest to the user seed citations, thus

the best candidates for expanding the test data. Together, the newly added citations and the

user seeds form the positive (relevant) training examples. A similar size document set is

randomly selected from the entire PubMed database and labeled as negative (irrelevant)

training examples along with the negative user seeds entered by the user.

Next, a text classifier based Multi-Stage Filtering process takes place to gradually refine

or reduce the test set citations. Given a large test set, e.g., the entire PubMed database as

test set, one common problem with most text classification methods is that the classifiers

identify many false positives. The main objective of this filtering process is to systematically

remove the false positives from the final retrieval results.

4.3 Multi-Stage Filtering Using Text Classifiers

First, a Three-Stage Filtering procedure is presented in this section. At the beginning of

the Three-Stage Filtering process, three classifiers are learned from the expanded training

data set. In this study, Naive Bayes (NB) [35], Support Vector Machines (SVM) [35] and

k-Nearest Neighbor (kNN) [35] text classifiers are used as the three base text classifiers.
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The three learned classifiers are applied in 3 stages in refining and filtering of the retrieval

results.

Stage 1 text classifier (TC1) is first used to classify the test set into two categories:

relevant (positive) and irrelevant (negative). The set of citations predicted as positive by

TC1 is often quite large, including many false positives.

To remove the false positives from the retrieval results, citations classified as positive by

TC1 undergo two more classification steps using stage 2 Text Classifier (TC2) and stage 3

Text Classifier (TC3) in a pipeline fashion. Only the citations classified as positive from the

previous stage are fed into the next classification stage for further refinement.

PARS uses three-stage text classifier based filtering to refine the set of retrieved citations.

A different choice of the base classification scheme at each of the three stages can lead to

a slightly different final retrieval results. We take a conservative approach in choosing the

classification schemes: apply classification schemes having high recalls in the early stages

of the filtering pipeline. And apply classifiers that are most susceptible in incorrectly remove

true positives in later stages in the filtering pipeline, i.e., to preserve the true positives in the

retrieval results as much as possible.

This approach is different from the standard voting schemes used for classification

ensembles [84], where the accuracy of the voting schemes does not depend on the order

of the classifiers used. This approach is also different from the active learning methods.

While most active learning methods focus on improving the classification accuracy by

incrementally modifying the training data, in PARS, the training data is improved just once

through expansion. All the text classifiers are trained using the same expanded training data.

After that, PARS focuses on reducing the false-positives in the search output rather than

improving the accuracy of the text classifiers.

The three-stage filtering method may be generalized into a filtering pipeline with more

or less stages, i.e., Multi-Stage Filtering. For example, one may use two-stage or four-stage
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filtering with two or four classifiers respectively. Classification schemes other than Naive

Bayes, kNN, and SVM may be used in each stage of the process. The conservative na-

ture of the classifiers should be considered when ordering the classifiers in the filtering stages.

4.4 Ranking the Search Output

The classification results from TC3 represent a much-improved set of highly relevant

citations to the user information need. However, it may still contain some of the false-

positives. As the final step, PARS ranks the resulting set of citations based on the Cosine

Similarity [36] of each against the Master Citation. The top ranked citations are presented

as the final retrieval results.
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CHAPTER 5

EVALUATION PROCEDURE FOR PARS

The previous two chapters presented the methodologies of building the PARS system.

How effective are those methods in retrieving the relevant information from PubMed?

Which of these techniques is more suitable for personalized retrieval? Does PARS produce

better search output than its competitive systems? To answer these questions, a formal

procedure is needed to measure the effectiveness and efficiency of the PARS system in this

study.

The effectiveness of the PARS system has been evaluated using both a controlled test

data and with an empirical study that analyzes the feedbacks from the real PARS users.

With the controlled test data, for each information need, gold standard for relevant vs.

non-relevant citations are available as they have been previously determined by a panel

of domain experts. Therefore, it is straightforward to compare the retrieval results from

the PARS system to those gold standard results. With empirical study, the retrieval results

from the PARS system need to be validated with the individual users assuming their domain

expertise. The details of the two evaluation procedures are discussed below.

5.1 Testing PARS Using a Test Collection

A test collection to measure the effectiveness of the PARS system needs to satisfy the

following three main requirements:

1. The document collection is sufficiently large,

2. A set of pre-defined information needs is available, and

3. For each information need, there are gold standards concerning relevant vs. non-

relevant citations labeled by domain experts.

TREC 2005 genomic track ad-hoc retrieval task dataset [71] is test data that satisfies all
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these requirements, and is chosen as the test collection to measure the effectiveness of PARS.

5.1.1 TREC 2005 Dataset

A subset of TREC 2005 genomic track [71] was used in this study. In particular, Ad-Hoc

retrieval task dataset from the TREC 2005 genomic track was used. This is the same dataset

used in the original PMRA experiment study [14]. It contains 50 different information needs

(topics) from biologists. Information needs in the TREC 2005 dataset are referred as topics

ranging from number 100 to 149. The entire document collection for the 50 topics contains

34,633 unique PubMed citations. Each topic corresponds to a different subset of documents

ranging in size from 290 to 1356 documents. Relevance of each document to the given topic

was judged by a group of scientists. According to their opinion all the documents in the

document pool were labeled as: Definitely Relevant (DR), Possibly Relevant (PR) or Non

Relevant (NR). Table 1 shows the document distribution of the ten topics having the highest

number of relevant documents (DR+PR) in the TREC 2005 Dataset [71].

Table 1: Ten topics (information needs) that contain the highest number of relevant docu-
ments (DR- Definitely Relevant documents, PR- Possibly Relevant documents, NR- Not
Relevant documents).

Topic ID # DR (Defi-
nitely Rele-
vant)

# PR (Possibly
Relevant)

# NR (Non
Relevant)

Total # docu-
ments

117 527 182 385 1094
146 370 67 388 825
114 210 169 375 754
120 223 122 182 527
126 190 117 1013 1320
142 151 120 257 528
108 76 127 889 1092
111 109 93 473 675
107 76 114 294 484
109 165 14 210 389

To better suit the evaluation of PARS, we made the following modifications to the TREC
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2005 data:

1. We have combined the DR and PR document sets to one Relevant set for each

information need.

2. We have replaced the explicit description of an information need with a set of seed doc-

uments randomly selected from the Relevant set of documents from that information

need.

After the modification, the two PARS methodologies have been evaluated using the

unranked retrieval setting and the ranked retrieval setting.

In the unranked retrieval setting, measuring the effectiveness of PARS using the retrieved

document set without considering the order of the retrieved documents. Evaluation measures,

including precision, recall and F1−Score have been used.

Precision measures the fraction of the citations returned that are actually relevant.

Precision =
# Relevant citations in the search out put

Total number o f citations in the search out put
(40)

Recall measures the fraction of all the relevant citations in the dataset that are found and

returned to the user.

Recall =
# Relevant citations in the search out put

Total number o f Relevant citations in the dataset
(41)

F1−Score gives a balanced measure of precision and recall. Precision and recall are

standalone measures to quantify the quality of an information retrieval system. However,

F1− Score measures the weighted average of the precision and recall. To maximize the

information retrieval efficiency, both the precision and recall values need to be maximized.

The higher F1−Score indicates a high precision and recall values. Therefore, we can easily
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measure the success of an information retrieval system using a single measure (F1−Score).

F1−Score =
(2 · precision · recall)

precision+ recall
(42)

In the ranked retrieval setting, users are interested in the accuracy of the top N retrieved

citations. If a user can see more relevant citations in the top N citations, then the system

performance is considered better. “Precision at N” measure, as shown in Equation 43 is

used to evaluate the ranked citations.

Precision at N =
Relevant citations within the f irst N citations in the search out put

N
(43)

Equation 43 can be used to calculate any “Precision at N” measure for any given N. For

example, “Precision at 10” measures how many relevant documents are present in the top

10 documents in the PARS search output. Finally, Mean Average Precision (MAP) values

have been used to measure the overall accuracies of search results for the information needs.

MAP is the arithmetic mean of multiple “Precision at N” values for the given information

need.

5.2 Evaluating PARS with the Real Users (Scientists)

This section discusses the recruiting process for the real world users of the PARS system.

It also presents the procedure used to evaluate the performance of the PARS system with

real world users and the evaluation methods that compare the performance of the PARS

system with the performance of the MedlineRanker [15] and the MScanner [16] PIR systems.

Figure 26 presents the procedure of the experiment setup.

All the participants of this empirical study are from MTSU (Middle Tennessee State

University). The institution IRB approval was obtained before the start of the study. Partici-

pants mostly were recruited from the department of biology and department of chemistry.
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Figure 26: Real-world experiment procedure to evaluate the PARS methodologies.

Participants include undergraduate students, graduate students and faculty members. The

participants were recruited through personal interviews. No advertisements or flyers were

used in this study. Twenty users participated in this study.

The following 5 steps can describe the procedure used to recruit and conduct the empiri-

cal study:

1. Schedule personal interviews with potential users and explain the study, the expecta-

tions and the study goals to each user. If they agree to participate the study, they are

asked to sign the consent to participate form.

2. Each participant is asked to formulate a research topic related to his research work.

Based on the research topic, the participant is asked to provide 5-10 PubMed citations
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closely related to the topic. These citations are used as the seed documents by PARS

for retrieval. When performing comparative study with MedlineRanker [15] and

MScanner [16], these seed documents were used to present the information need in

those systems as well.

3. The two PARS methodologies, MedlineRanker [15] and MScanner [16] were then

used to retrieve relevant citations from PubMed. The top 20 citations from each

system were collected as the search output.

4. The top citations from each system, together with an abstract for each citation, were

presented to the participants without specifying which system was used to retrieve the

citations. The participants labeled each citation according to whether they think it is

relevant to their research topic based on reading the abstract.

5. Finally the P10 and P20 measures were computed for each system, and the results

were compared across different systems.

In this study, the participants were required to provide the initial seed documents, read

the four sets of abstracts returned from the systems, and to provide explicit feedbacks for the

search output. Each participant volunteered at least 3 hours of his or her time for this study.
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CHAPTER 6

RESULTS AND DISCUSSION

In this study, we evaluate the performance of PARS using two approaches, one with

a test collection and one with a real world information retrieval experiment with subject

experts.

The TREC 2005 Genomics track ad-hoc retrieval task dataset [71] is used as the test col-

lection in this study. It consists of 50 information needs. Each information need in the TREC

dataset contains a document pool labeled as Definitely Relevant (DR), Possibly Relevant

(PR) and Not Relevant (NR). To perform a binary assessment of the retrieved documents,

we combine the DR and PR documents into a single class, the relevant documents to the

given information need.

To mimic the real world information retrieval using the TREC dataset [71], it is necessary

to form an information need in the form of a small set of input citations, referred to as the

seed documents. Since the seed document set is not readily available in the TREC dataset,

we created the seed document sets for each information need using the “Relevant” document

set in the TREC dataset. To form the seed citation set for the given information need, n

citations were randomly selected from the “Relevant” citation set and labeled as the user

seeds for a given TREC information need. In this study, the number of user seed citations

(n) varies corresponding to the values in the set {5,10,15,20,25}. Since the maximum seed

citation set size is 25, the size of the “Relevant” documents for the given information need

must be greater than 25. 21 out of 50 information needs in the TREC dataset has 30 or fewer

relevant citations. We did not perform information retrieval for these information needs due

to lack of relevant documents in the dataset. The rest of the 29 information needs in the

TREC dataset were used in this study.

The experimental results from this study are presented in three sections. The first sec-

tion presents the results of EPMRA based PARS methodology performed using the TREC
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dataset. The second section presents the results from the Multi-Stage Filtering method using

the TREC dataset. Finally, the experimental results of the PARS methodologies in a real

world information retrieval setting are presented. In this section, it compares the results

from the PARS methodologies with those from the two existing PIR systems namely the

MedlineRanker [15] and the MScanner [16].

6.1 Experiment Results in EPMRA Method

The following procedure is used to test the EPMRA method in PARS using the TREC

2005 dataset.

Experiment Procedure:

1. Randomly select n seed citations from the “Relevant” document set of the given

information need.

2. Combine multiple seed citations into a single citation (Master Citation). There are

multiple ways of combining the set of seed citations into a single citation:

• The first method, the All-Inclusive method, simply combines the terms from all

the seed citations;

• The second method, the Intersection method, forms the new citations by only

including terms that simultaneously appeared in every single seed citation, i.e.,

intersection of all the seed citations;

• The third method, the At-Least-Two method, forms the new citation by including

terms appearing in at least two seed citations.

We experimentally compared these three methods using the Basic method. That is,

combine the PubMed related article lists obtained from the individual seed citations,

and sort all the derived articles according to their PMRA similarity values.
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3. n user seeds are first combined using the three methods discussed above. Then

the relatedness between the combined citation and all the other citations in TREC

dataset is computed using the PMRA method. Then, all the citations are sorted in

descending order based on their PMRA values. The precision is computed in terms

of the percentage of the top citations in the sorted list that were originally labeled as

Definitely Relevant (DR) or Possibly Relevant (PR). Each experiment for the given

information need is repeated 10 times by randomly choosing different seeds from the

DR and PR set.

6.1.1 Experiment Results

The ten topics having the highest number of relevant documents (DR and PR) were

used in the first set of experiments. Table 2 shows results from the three seed combination

methods and the Basic method. It is seen that the Intersection method and At-Least-Two

method out-perform the Basic and the All-Inclusive methods. The boldface values show

the highest P10 result for the given information need. In fact, the Intersection method and

At-Least-Two method were able to produce citation lists that are 15% or more accurate than

those produced by the other two methods. Also, the Basic method produced the worst results

in terms of P10 measure. This validates the approach to extend the basic PMRA approach

in the context of personalized information retrieval. If a user provides multiple citations

to an IR system, then it is advantageous to combine these citations when representing the

information need in the IR system. This is because each citation represents a different

aspect of the user information need. Combined citation, on the other hand, provides a more

complete representation of the user need. Relevant citations found using the combined

citation are of a higher quality than those found using individual citation.

Figure 27 shows the change of P10 values for different seed sizes for four different infor-

mation needs. Intersection and At-Least-Two methods outperformed the Basic method and

the All-Inclusive method. Moreover, P10 values for the Intersection and the At-Least-Two
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Table 2: Average P10 values for ten information needs. The average was calculated using
five different seed sizes i.e, 5, 10, 15, 20, 25. For each seed size, the experiment was repeated
10 times by randomly selecting different seeds from the “Relevant” set of the information
need.

Topic ID Basic method All-Inclusive
method

Intersection
method

At-Least-Two
method

117 0.255 0.720 0.875 0.915
146 0.220 0.400 0.885 0.930
114 0.225 0.260 0.790 0.815
120 0.365 0.520 0.855 0.885
126 0.130 0.385 0.475 0.545
142 0.455 0.360 0.480 0.650
108 0.275 0.085 0.615 0.635
111 0.085 0.285 0.750 0.725
107 0.180 0.350 0.695 0.655
109 0.550 0.490 0.990 0.970

methods are more stable than those of the other two methods. These results show that the

At-Least-Two and the Intersection methods are less sensitive to seed document choices in

the initial user citation set. According to Figure 27, in most cases, providing a larger seed

citation set corresponds to a higher P10 value. This means that providing more seed citations

has the effect of increasing the efficiency of retrieval.

In the next step, we compare the At-Least-Two and Intersection method more thoroughly

using the P10, P100 and P1000 measures. Table 3 shows the 95% confidence interval and the

mean for the P10, P100 and P1000 values for the At-Least-Two and Intersection methods for

the top ten information needs from the TREC 2005 dataset [71]. To calculate the confidence

interval, we assumed that standard deviation (σ ) for the average “Precision at N” values

are unknown. Also, sample size for the confidence interval is less than 30 observations.

Therefore, we used t-distribution based confidence interval for the mean P values.

According to the Table 3, all the mean P10, P100 and P1000 values of the At-Least-Two

methods are greater than those of the Intersection method. However, 95% Confidence

Interval (CI) for the mean precision values for the two methods overlapped. For the At-
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Figure 27: Distribution of P10 values for different seed set sizes for 117, 146, 142 and 111
information needs (topics).

Table 3: Mean and 95% confidence interval for P10, P100 and P1000 values. Confidence
Intervals were calculated using the t-distributions assuming unknown standard deviation of
P values.

“Precision at N”
Intersection Method At-Least-Two method

Mean 95 % CI Mean 95% CI
P10 0.741 (0.617, 0.865) 0.773 (0.668, 0.881)
P100 0.640 (0.494, 0.787) 0.655 (0.521, 0.790)
P1000 0.256 (0.160, 0.352) 0.265 (0.169, 0.361)

Least-Two method, all the lower bounds of the confidence intervals are higher than those of

the Intersection method. Also, upper bound of CI’s for the At-Least-Two method are greater

than those of the Intersection method. Therefore, by considering all the values one can say

that the At-least two method performed better than the Intersection method. Therefore, in
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the next set of experiments, the performance of PARS with the At-Least-Two method is

singled out to compare against the original results from the TREC conference.

Figure 28: P10 values for PARS with the EPMRA method compared against the TREC con-
ference results for 29 information needs. The value in the parenthesis shows the “Relevant”
set size for each information need.

Figures 28, 29 and 30 show the P10, P100, and P1000 values for PARS with the EPMRA

method compared against the TREC 2005 conference results for the 29 different information

needs respectively.

It is observed that the results from PARS with the EPMRA are mostly comparable with

those from the original TREC conference. In Figure 28, for 14 out of 29 topics, PARS with

the EPMRA outperforms the TREC conference results. In Figure 29, PARS performed better
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Figure 29: P100 values for PARS with the EPMRA method compared against the TREC con-
ference results for 29 information needs. The value in the parenthesis shows the “Relevant”
set size for each information need.

in 13 topics when measured with P100 measure. Similarly, for 18 out of 29 topics, PARS

with the EPMRA produced higher P1000 values than those from the TREC conference

results.

For PARS with the EPMRA, the P10, P100 and P1000 values were calculated by varying

the size of the initial user set to 5, 10, 15, 20 and 25. For each size, the experiment was

repeated 10 times, where a different randomly selected set of seed documents were used

each time. Therefore, PARS with the EPMRA method replicate the PubMed information

retrieval in a more systematic approach.
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Figure 30: P1000 values for PARS with the EPMRA method compared against the TREC
conference results for 29 information needs. The value in the parenthesis shows the “Rele-
vant” set size for each information need.

6.2 Experiment Results for the MSF Method

In this experiment, we present the experimental results of the Multi-Stage Filtering

(MSF) method in PARS. In particular, a Three Stage Filtering (TSF) method is employed to

find the relevant citations for the given information need. First, the experimental procedure

of the TSF method is described. Then, the results of the TSF method tested using the 10

topics having the highest number of relevant documents (Definitely Relevant and Possibly

Relevant) from the TREC data [71] are discussed.
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6.2.1 Experiment Procedure

For each chosen information need (topic), TSF uses the following steps to form the

user information need and to retrieve the relevant citations. Steps 1-5 are used to form the

expanded training data to be used to train the text classifiers. Steps 6-9 perform the three

stage filtering to select the ”relevant” citations. Step 10 ranks the final set of citations to

present to the user:

1. n (n = {5,10,15,20,25}) citations are randomly selected from the Definitely Relevant

(DR) and Possibly Relevant (PR) set of the topic. These n citations are labeled as the

user seeds for the current topic;

2. The PMRA lists for the seeds are retrieved and combined to form the Target Set;

3. The seeds are pre-processed into terms and used to form the Master Citation;

4. N (N = 50) citations that have the highest cosine similarity to the Master Citation are

computed from the Target Set; The highest similar citations and the original n seeds

form the positive training examples;

5. Randomly select n+N citations from the TREC data to form the negative examples.

These negative examples together with the positive training examples derived in step

4 form the expanded training data;

6. Train the three base Text Classifiers using the expanded training data; This results in

three trained text classifiers: TC1, TC2, and TC3;

7. Classify the TREC data using TC1; TC1 classifies a subset of citations as “relevant”;

8. Apply TC 2 to refine and reduce the set of the “relevant” citations;

9. Apply TC3 to further refine and reduce the set of the “relevant” citations;
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10. Compute the Cosine similarities between each of the “relevant” citations (from step

9) and the Master Citation. Rank the “relevant citations” according to the Cosine

similarity values computed.

Each experiment is repeated 10 times by randomly selecting the seeds from the given

information need. Seed set size (n) ranges from 5 to 25 with an increment of 5. Results for

the 10 information needs are presented in the results section.

6.2.3 Experiment Results

The following experiments were designed to evaluate the effectiveness of the three main

components in the TSF approach; (1) expanding training set size by building Target Set

and forming Master Citation, (2) Three-Stage Filtering process, and (3) ranking of the final

output.

Expanding the Training Data

If the size of the initial user seeds, n, equals 5, after adding n negative training examples,

the size of the initial training data is 10. After expanding the training data, a larger training

set size of size 110 is obtained. This larger training set is used to train the three base

classifiers. For kNN, three nearest neighbors are used to classify the new instances. Linear

SVM method from the LibSVM [76] in WEKA [77] is used as the SVM text classifier. The

classification accuracies obtained using the expanded training data are compared against

those of the original training data (seed only training data). Equation 44 calculates the

improvement of accuracy for a topic:

AI =
(AET S−AST S)

AST S
∗100 (44)

Where, AI = Accuracy Improvement, ASTS= Accuracy with the Seed only Training Set

(Initial Training Set) and AETS= Accuracy with the Expanded Training Set). The average
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improvement computed based on the results obtained from five different training sets is

reported in Table 4. It shows the average improvement of classification accuracies for the 10

information needs. From Table 4, it is clear that expanding the training set using the Target

Set and Master Citation lead to a big improvement of the classification accuracies of the

base text classifiers across all 10 information needs. The PMRA feature helps to build a

high quality small Target Set, and Cosine Similarity is effective in identifying the citations

having the highest similarity to the Master Citation from the Target Set.

Table 4: Improvement of classification accuracy for the three base classifiers using expanded
training data.

Average Improvement (%)
Topic ID NB 3-NN SVM
117 + 61.20 + 184.81 + 60.92
146 + 82.26 + 155.81 + 14.86
114 + 73.82 + 158.35 + 68.80
120 + 150.31 + 334.95 + 61.13
126 + 150.31 + 110.65 + 11.75
142 + 182.62 + 190.39 + 150.09
108 + 67.37 + 131.71 + 27.42
111 + 89.73 + 225.86 + 139.93
107 + 66.96 + 104.96 + 24.58
109 + 67.20 + 82.81 + 9.74

Three-Stage Filtering Results

To select the classification schemes for each of the three stages for the PARS with TSF

approach is to select classification schemes that are less likely to eliminate the true positive

citations in early stages of the filtering process. Since Naive Bayes (NB) classifier has a

higher recall value than that of SVM and 3-NN classifiers, NB classifier is used in the first

stage filtering process. The 3-NN classifier is used in the second stage filtering, and SVM is

used in the final stage of the filtering process.

For comparison purposes, two-stage filtering process using the NB and the 3-NN classifi-

cations, as well as three one-stage filtering processes with just the NB, the 3-NN, or the
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SVM were also performed. Figure 31 shows the F1−Scores using the five different filtering

methods for four topics. F1− Scores are calculated using Equation 42. The F1− Score

provides a balanced measure of both recall and precision.

Figure 31: F1−Scores computed for topics 117, 146, 120 and 114 using Three-stage (NB,
3-NN, SVM) filtering, Two Stage (NB, 3-NN) filtering, and NB, SVM and 3-NN only
methods.

As shown in Figure 31, the F1−Scores of the classification results from the Three-Stage

Method (NB, 3-NN, SVM) are higher than the other four methods across all four topics.

The final search output is dependent on the order of the text classifiers chosen for the

three stages. For example, a three-stage filtering with the three classifiers in the order: (1)

NB, (2) 3-NN, and (3) SVM produced a different result than one with the three classifiers in

the order: (1) NB, (2) SVM and (3) 3-NN. The first ordering produced a better result with
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a higher F1− Score. This is because the NB text classifier generates classifications with

high recall for a given topic. In the second stage, the 3-NN is used, followed by the SVM

text classifier. Since the SVM outperformed the other two text classifiers in the one-stage

method, SVM is used in the third stage to get an accurate final output.

Ranked Retrieved Results

PARS ranks the set of predicted relevant citations from the three-stage process against

the Master Citation using cosine similarity. The top N ranked citations are considered the

final retrieval results to be presented to the user. The retrieval accuracy is computed in terms

of the percentage of the top N citations having the label Definitely Relevant (DR) or Possibly

Relevant (PR) to the information need. Figure 32 shows the retrieval accuracy of the top 10

citations (P10) and Figure 33 shows the retrieval accuracy for the top 100 citations (P100)

in the final search output for the 29 topics.

It is observed that P10 and P100 values for the PARS with TSF method are mostly

comparable with the TREC results. In addition, for 14 out of 29 topics the P10 values are

higher than those of the TREC results. Similarly, for 18 out of 29 topics the P100 values of

the PARS with TSF method are higher than those of the TREC results. Considering that

the percentage of the citations relevant to each topic is rather small in the entire database,

these results are very encouraging. However, a much lower accuracy is observed for few

topics. This may be attributed to the fact that there are too few positive citations for the

topic. For each experiment n (n = 5,10,15,20,25) positive citations were selected to form

the seed citation set. The number of remaining positive citations is very small compared

to the size of the TREC dataset. This makes the retrieval tasks extremely hard if only the

top 100 citations are to be returned. However, the average of P100 measure from the PARS

system present 17% improvement over the results reported by the systems competed at the

TREC conference [71]. These results show that the PARS MSF approach is very effective
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Figure 32: P10 values for PARS with the TSF method compared against the TREC confer-
ence results for 29 information needs.

for personalized information retrieval.

Next, we compared the EPMRA and TSF method results together with the TREC confer-

ence results. Figure 34 shows the P10 values for the EPMRA method, the TSF method and

the TREC conference results. Similarly, Figure 35 shows the P100 values for the EPMRA

method, TSF method, and the TREC conference results. According to the Figure 34 and

Figure 35, one can clearly see that both methods in PARS produced similar results for

most of the topics. In Figure 34, the P10 values in the EPMRA method outperformed the

TSF method for 16 topics in TREC data. Moreover, P10 values for 17 topics in PARS

outperformed the TREC results. According to the Figure 35, P100 values for 17 topics

outperformed TREC results. Therefore, one can say that PARS produced better results than
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Figure 33: P100 values for PARS with the TSF method compared against the TREC
conference results for 29 information needs.

the existing TREC results. Then we summarized the EPMRA, TSF and TREC results for 29

information needs.

Table 5: Average P10 and P100 values for EPMRA, TSF and TREC for 29 information
needs. Information needs (topics) were divided into three groups based on their relevant set
size.

TREC topic group
P10 P100

EPMRA TSF TREC EPMRA TSF TREC
1-10 0.7725 0.7612 0.7355 0.6551 0.6593 0.5345
11-20 0.4270 0.4078 0.3946 0.2283 0.2110 0.1774
21-29 0.3178 0.3915 0.4469 0.1139 0.1442 0.1578
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Figure 34: P10 values for PARS with the EPMRA method and the TSF method compared
against the TREC conference results for 29 information needs.

According to the Table 5, one can clearly see that the PARS results for first 20 topics

outperformed TREC conference results. However, the last nine topics do not produce good

results compared to TREC results. This may be attributed to the fact that there are too few

positive citations for the topic. For example, topic 132 has a total of 30 positive citations.

For each experiment n (n = 5,10,15,20,25) positive citations are selected to form the seed

citation set. The number of remaining positive citations is very small compared to the size

of the TREC dataset. This makes the retrieval tasks harder in this experiment setting.

In the next section, both PARS with EPMRA and PARS with MSF were tested in a real

world personalized information retrieval task. In this experiment, researchers in the field of

biology and chemistry were recruited to participate in the experiment. Results from the two
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Figure 35: P100 values for PARS with the EPMRA method and the TSF method compared
against the TREC conference results for 29 information needs.

PARS approaches were compared with the two competitive PIR systems: the MedlineRanker

[15] and the MScanner [16].

6.3 Experiment Results with the Real Users (Scientists)

An experimental study was conducted to evaluate the effectiveness of the PARS system

in a real world personalized information retrieval application. The 23 researchers in the

fields of biology and chemistry agreed to participate in the study. Due to various reasons, 15

participants (10 from department of Biology and 5 from the department of Chemistry) were

able to complete the study.

First, a set of seed citations were collected from each participant as the input to the
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PIR system. The seed citations from each participant closely relates to his or her specific

information need. Table 5 shows the distribution of the sizes of the seed set used in this

study. Many participants provided a small set of seed citations to define their information

need. This observation reinforces the need of IR system such as PARS, which is capable of

finding the relevant citations from a small set of input citations.

Table 6: The distribution of seed set size for 15 participants in the empirical study.

Number of seed citations
for the information need

Number of Participants

1 2
2 2
3 4
4 1
5 3
6 2

10 1

Based on the seed citations provided by the participants, the information need for each

participant was constructed for the MedlineRanker [15], the MScanner [16], and the two

versions of the PARS system; PARS with EPMRA and PARS with TSF. Retrieval results

from each of these four systems were collected and ranked. The top 20 citations from each

system were presented to the participants for verification, i.e., whether each is considered

relevant to their information needs. Figure 34 shows the example search output given to the

user to evaluate the search results.

Each citation in the user search output is presented with the journal information, author

information, citation abstract, and the PMID information. The participants need to go

through each citation returned from each of the four systems, and specify whether each

citation is relevant to the information need. The three options are: Definitely Relevant,

Possibly Relevant, and Non-Relevant.

Figure 37 shows the distribution of the P10 values for the top 10 citations returned to the

15 participants. Figure 38 shows the distribution of the P20 values for the top 20 citations
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Figure 36: Sample search output given to the participant to receive their feedback about the
search results.

returned to the participants for each of the four PIR systems.

Figure 37: Distribution of the P10 values for the participants for the MedlineRanker, the
MScanner, PARS with EPMRA, and PARS with TSF. Each participant seed set size is given
in parenthesis.
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Figure 38: Distribution of the P20 values for the participants for the MedlineRanker, the
MScanner, PARS with EPMRA, and PARS with TSF. Each participant seed set size is given
in the parenthesis.

Figure 37 and 38 show that the P10 and P20 values for MedlineRanker are the lowest

compared to the other three systems, i.e., it has the worst performance in retrieving the

relevant citations. The poor performance of MedlineRanker can mainly be attributed to the

current experimental setup, where MedlineRanker searches from a subset of the PubMed

database for the relevant citations. On the other hand, the other three methods search for the

relevant citations for an information need from the entire PubMed database.

From results shown in Figure 37, the performance of the MScanner, PARS with EPMRA

and PARS with TSF are comparable in finding the relevant citations to the information need.

For 5 of the 15 participants, the retrieved results are the same using all three methods. For

the remaining 10 participants, results from MScanner is better for two participants and PARS

is better for the other 8 participants. From the results in Figure 38, one can observe that

the two PARS methods clearly outperform the MScanner search results. For 13 of the 15

participants, the P20 values for the two PARS values tied or are higher than that of MScanner.

Moreover, MScanner can only find the PubMed citations when the MeSH information is

presented. However, the PARS methods can handle citations even with missing MeSH
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annotations. Therefore, one can say that PARS methods perform better than MScanner.

Table 7 shows the initial target set size and the predicted relevant set size from each

classifier in the PARS TSF method. It is observed that PARS with TSF method is able

to dramatically reduce the search output size by eliminating the false positives citations.

However, for some topics, after three filtering steps, there are still over 20,000 predicted

relevant citations. One possible solution to this is to increase the number of filtering steps to

eliminate more false positive citations in the final result.

Table 7: Predicted Relevant document set size from each classifier in the TSF method for
each participant in the study

Participant ID Target Set Size
(LOS=3)

NB Predicted
set size

KNN Pre-
dicted set
size

SVM Pre-
dicted set
size

P1 55667 38629 19227 12973
P2 105254 59128 25179 13099
P3 16414 13951 12327 11104
P4 94683 62526 33943 10744
P5 98443 42157 18713 4407
P6 168464 51929 28498 10927
P7 86292 63803 25479 4890
P8 12232 10228 5838 3563
P9 68937 28620 20314 12826
P10 99615 84497 58794 39982
P11 41047 33115 9643 3210
P12 322755 160183 60879 21785
P13 138344 65171 8130 3772
P14 64015 35209 10336 2654
P15 108026 76081 52174 26573
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CHAPTER 7

CONCLUSIONS

The main objective of this thesis work is to build a PIR system to help the PubMed users

in searching for citations in PubMed that are relevant to their information need. The main

assumption we made about the users of this system is that they are able to provide a small

set of input citations directly related to their research topic of interest. This eliminates the

need for the user to thoroughly articulate their information need as keywords at the search

prompt. One main goal of this PIR system is to be able to retrieve and present to the user a

small set of “highly relevant” citations as opposed to a long list of citations containing many

false-relevant citations.

One of the main difficulties with the PIR system is to try to achieve high retrieval quality

by training a PIR system using only a small training data supplied by the user. In this study,

two approaches have been developed to address this difficulty. In the first approach, an

Extended PMRA (EPMRA) based probability similarity measure was developed to better

utilize the information presented in seed citations provided by the user to search for citations

that are similar to a more comprehensive representation of the user’s information need. In

the second approach, a classification based multi-stage filtering procedure was developed to

gradually eliminate false positive citations from the search results in order to improve the

quality of the final set of citations.

Both approaches have been evaluated using the TREC 2005 Genomic track dataset in

a controlled experiment setting. For the EPMRA approach, three different methods have

been developed to extend the PMRA measure, the All-inclusive, the Intersection, and the

At-Least-Two methods. The experimental results show that simply combining the PMRA

lists derived from individual citations is not an appropriate method to find the relevant

citations for the given information need. The At-Least-Two method is the best method to

extend PMRA when a user provides multiple seed citations. This method best captures the
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important terms and discards the less important terms from the seed documents. In contrast,

the Intersection method uses only the terms appearing in all the seed documents, leading to

a representation with few terms. The small number of terms from the combined citation is

insufficient in accurately computing similarities between pairwise citations.

For the multi-stage filtering approach, the training set is first expanded to a reasonably

large dataset based on the seed citations. Including citations considered highly similar to the

Master Citation based on the PMRA similarity measure expands this small training data.

With this expanded data, the NB, kNN and SVM text classifiers are better trained, leading to

classifiers of higher quality. Experimental results show that the procedure of expanding the

training set is successful in producing better quality classifiers. These trained classifiers are

used in the three-stage filtering method, which successively remove the citations incorrectly

classified as relevant from the results. For all the information needs, the F1−Scores of the

three-stage method improved dramatically over the base text classifiers. Also, there is a

significant improvement in P100 measure for a majority of the information needs over the

TREC conference results. Therefore, one can conclude that the three-stage filtering method

improves the quality of the final retrieval results.

Empirical evaluation with the biology and chemistry researchers in the real world ap-

plications show that the two PARS approaches are able to produce information retrieval

results that are of better quality than those returned from the existing PIR systems, the

MScanner and the MedlineRanker. Also, the PARS approaches are able to handle citations

with missing MeSH annotations, while the MScanner is unable. In summary, PARS provides

better information retrieval results for PubMed compared to the existing systems.

For future study, we would like to expand the TSF method to approaches with more

than three filtering stages and to perform more extensive empirical evaluations of such

approaches. We would also like to apply the TSF approach to other information retrieval

applications, such as IR in an online document collection, such as Google Scholar, or IR
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in the more general web applications. Developing schemes to combine the two PARS

approaches for a better information retrieval experience is also a topic of further study.
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