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Abstract

Language and music, two of the most unique human cognitive abilities, are combined in song, rendering it an ecological
model for comparing speech and music cognition. The present study was designed to determine whether words and
melodies in song are processed interactively or independently, and to examine the influence of attention on the processing
of words and melodies in song. Event-Related brain Potentials (ERPs) and behavioral data were recorded while non-
musicians listened to pairs of sung words (prime and target) presented in four experimental conditions: same word, same
melody; same word, different melody; different word, same melody; different word, different melody. Participants were
asked to attend to either the words or the melody, and to perform a same/different task. In both attentional tasks, different
word targets elicited an N400 component, as predicted based on previous results. Most interestingly, different melodies
(sung with the same word) elicited an N400 component followed by a late positive component. Finally, ERP and behavioral
data converged in showing interactions between the linguistic and melodic dimensions of sung words. The finding that the
N400 effect, a well-established marker of semantic processing, was modulated by musical melody in song suggests that
variations in musical features affect word processing in sung language. Implications of the interactions between words and
melody are discussed in light of evidence for shared neural processing resources between the phonological/semantic
aspects of language and the melodic/harmonic aspects of music.

Citation: Gordon RL, Schön D, Magne C, Astésano C, Besson M (2010) Words and Melody Are Intertwined in Perception of Sung Words: EEG and Behavioral
Evidence. PLoS ONE 5(3): e9889. doi:10.1371/journal.pone.0009889

Editor: Antoni Rodriguez-Fornells, University of Barcelona, Spain

Received August 19, 2009; Accepted February 26, 2010; Published March 31, 2010

Copyright: � 2010 Gordon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by a grant from the Human Frontier Science Program ‘‘An interdisciplinary approach to the problem of language and
music specificity’’ (HFSP#RGP0053) to M. Besson and was conducted at the Institut de Neurosciences Cognitives de la Méditerranée, while R.L. Gordon was a
graduate student. D. Schön and C. Astésano were supported by the HFSP grant; C. Magne benefitted from a ‘‘Cognitive Science’’ Fellowship from the French
Ministry of Research; and R.L. Gordon benefited from a Fellowship from the American Academy of University Women. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: reyna.gordon@alumni.usc.edu

Introduction

Strong arguments have been made for both the opposing

frameworks of modularity versus shared resources underlying

language and music cognition (see reviews [1–5]). On the one

hand, double dissociations of linguistic and musical processes,

documented in neuropsychological case studies, often point to

domain-specific and separate neural substrates for language and

music [3,6–9]. On the other hand, results of brain imaging and

behavioral studies have often demonstrated shared or similar

resources underlying, for instance, syntactic and harmonic process-

ing [10–14], auditory working memory for both linguistic and

musical stimuli [15], and semantic or semiotic priming [16–21].

These conflicting results may stem from the use of different

methods, but also from other methodological problems. The main

disadvantage to comparing language and music processing by

testing perception of speech and musical excerpts is that the

acoustic properties, context, and secondary associations (e.g.,

musical style or linguistic pragmatics) between even the most

carefully controlled stimuli may vary greatly between the two

domains. One ecological alternative is to study the perception of

song [22]. In this case, linguistic and musical information are

contained in one auditory signal that is also a universal form of

human vocal expression. Furthermore, a better understanding of

the neural basis of song is surely germane to the ongoing debate on

the evolutionary origins of language and music, especially in view

of propositions that the protolanguage used by early humans was

characterized by singing [23,24] and that vocal learning was a key

feature governing the evolution of musical and linguistic rhythm

[25]. While most studies of music cognition have used non-vocal

music stimuli, everyday music-making and listening usually involve

singing. Moreover, from a developmental perspective, singing is

also quite relevant for parent-infant bonding, as indicated by

studies showing that babies prefer infant-directed singing to infant-

directed speech [26,27].

Early studies of song cognition used dichotic listening paradigms

to reveal lateralization patterns of left-ear (right hemisphere)

advantage for melody recognition and right ear (left hemisphere)

advantage for phoneme recognition in song [28] and in the recall

of musical and linguistic content of sung digits [29]. Despite the

lateralization tendencies, melody and lyrics appear to be tightly

integrated in recognition [30] and priming experiments [31].

Indeed, the melody of a song may facilitate learning and recall of

the words [32,33], though this advantage appears to be diminished
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when the rate of presentation is controlled for, such that spoken

lyrics are presented at the same rate as sung ones [34].

Furthermore, the segmentation of a pseudo-language into relevant

units is facilitated for sung compared to spoken pseudowords [35],

and infants learn words more easily when sung on melodies rather

than when spoken [36].

The extent to which semantics and emotions are conveyed by

song lyrics remains a controversial issue. One study showed that

when participants were asked to listen to songs from a variety of

popular music genres, they performed only at chance level when

attempting to interpret the singer’s intended message of each song

[37]. Thus, while explicit literary interpretations of song lyrics do

not appear consistent in this study, other work has suggested that

sung lyrics have a greater influence over listeners’ mood than the

same melody played on an instrument [38]. However, this effect

was amplified when the lyrics were sung with piano accompani-

ment, showing that the musical dimension retains importance. It

has also been reported that lyrics intensify emotional responses to

sad and angry music, yet mitigate the response to happy and calm

music [39].

A key feature of several recent studies is the use of attentional

focus to examine the interaction or independence of words and

melodies in song, either by directing listeners’ attention to

language and music simultaneously [40–42], or to language only

[41,43–47], or to music only [41,43]. Some of these studies have

demonstrated interactive effects between the linguistic and musical

dimensions of song, thereby suggesting that common cognitive

processes and neural resources are engaged to process language

and music. Bigand et al. [44] showed that a subtle variation in

harmonic processing interfered with phoneme monitoring in the

perception of choral music sung with pseudowords. In a follow-up

study, the authors used a lexical decision task on sung sentence

material to demonstrate that harmonic processing also interfered

with semantic priming [46]. These observed interactions between

semantics and harmony, measured through the implicit processing

of the musical dimension, suggest that language and music in song

are perceptually interwoven. Interestingly, data recently obtained

by Kolinsky et al. [43] using a Garner paradigm [48] provides

evidence that, while consonants remain separable from melody,

vowels and melody are strongly integrated in song perception.

This interaction may stem from integration of vowel and musical

pitch in initial stages of sensory processing [49]. Sung sentences

were also used by Fedorenko et al. [47] to demonstrate that the

processing of syntactically complex sentences in language is

modulated by structural manipulations in music, thereby indicat-

ing that structural aspects of language and music seem to be

integrated in song perception.

By contrast, other studies of song perception and memory have

shown evidence for independent processing of the linguistic and

musical dimensions of song. Besson et al. [40] used the Event-

Related brain Potential (ERP) method to study the relationship

between words and melodies in the perception of opera excerpts

sung without instrumental accompaniment. When musicians were

asked to passively listen to the opera excerpts and pay equal

attention to lyrics and tunes, results showed distinct ERP

components for semantic (N400) and harmonic (P300) violations.

Furthermore, the observed effects were well accounted for by an

additive model of semantic and harmonic processing (i.e., results in

the double violation condition were not significantly different from

the sum of the simple semantic and melodic violations). Additional

behavioral evidence for the independence of semantics and

harmony in song was provided by a second experiment utilizing

the same stimuli [41] and a dual task paradigm. When musician

and non-musician listeners had to detect semantic and/or

harmonic violations in song, results showed that regardless of

musical expertise, there was no decrease in performance when

listeners simultaneously attended language and music, compared

to attending only one dimension at a time. These results contrast

with those recently obtained by van Besouw et al. [42], showing a

detriment to performance in recalling pitch contour and recalling

words when listeners had to simultaneously pay attention to the

words and pitch in song, as well as a similar detriment when they

were asked to pay attention to the words and pitch contour of

speech. Singing was also used innovatively in a series of

experiments by Levy et al. [50,51] that highlighted the influence

of task demands and attentional focus on the perception of human

voices in a non-linguistic context; the oddball paradigm generated

a task-dependent positive ERP component (P320) in response to

sung tones compared to instrumental tones.

The present study was developed to further investigate the

interaction or independence of the linguistic and musical dimensions

by examining the electrophysiological and behavioral correlates of

words and melody in the perception of songs by individuals without

formal musical training (and who are thus most representative of the

general population). The choice to test non-musician participants

was motivated by compelling evidence reviewed by Bigand &

Poulin-Charronnat [52], in support of the idea that day-to-day

normal exposure to music teaches non-musicians to implicitly

process the structural aspects of music according to similar principles

(although less explicitly) as individuals who have received extensive

musical training. Results obtained with behavioral measures on non-

musician participants demonstrate that pseudowords and intervals

are processed interactively in song perception, regardless of whether

listeners attend to the linguistic or to the musical dimensions [43].

Our goal was to determine whether the interactions between lyrics

and tunes would also be observed when the linguistic and musical

complexity of the sung stimuli was increased by using real words

sung on short melodies.

The specific aim of the present experiment was two-fold: to

determine the nature of the relationship (independent or

interactive) between the linguistic and musical dimensions of sung

words, and to specify how attention influences the dynamics of

that relationship. To achieve these goals, we presented listeners

with prime-target pairs of tri-syllabic words sung on 3-note

melodies and recorded behavioral and electrophysiological data

while they performed a same/different task. Compared to the

prime, the melody and words of the sung target was manipulated

orthogonally to create four experimental conditions: Same Word/

Same Melody (W = M = ); Same Word/Different Melody

(W = M?); Different Word/Same Melody (W?M = ); Different

Word/Different Melody (W?M?; see Figure 1 for examples).

On the basis of previous findings that the N400 component is

elicited by semantically unexpected or unrelated words in pairs of

words [53,54], read and spoken sentences [55–57], and sung

sentences [40], and from results showing decreased N400

amplitude with repetition [58], we predicted that different targets,

semantically unrelated to the prime (W?), would elicit larger

N400 components, slower Reaction Times (RTs) and higher error

rates than same, repeated targets (W = ) [59,60].

Besson et al. [40] also showed that an opera excerpt ending on

an incongruous pitch evoked a positive component, P300/P600,

typically associated with surprising events such as melodic

incongruities [61–64]. Thus, we predicted that different melodies

(M?) would also elicit larger P300/P600 components, and slower

RTs and higher error rates [65], compared to same melody (M = ).

Finally, if the perception of words and melodies in songs call

upon independent processes, the Word effect (different – same

word) should be similar, in behavioral measures and N400

Melody Modulates N400 in Song
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amplitude, for same and different melodies. Likewise, the Melody

effect (different – same melody) should be similar, in behavioral

measures and P300/P600 amplitude, for same and different

words. If the perception of words and melodies in sung words rely

instead on interactive processes, the Word effect should be

different for same and different melodies (interference effects) and

vice-versa for the Melody effect. In addition, the use of an

orthogonal design allows us to test the additive model following

which the ERP in the double variations condition (W?M?)

should be equivalent to the sum of the ERPs in the simple

variations conditions (W?M = plus W = M?).

In order to determine how attention to one dimension or another

modulates the processing of words and melody in song, we asked

participants to perform a same/different task on the same set of

stimuli and to focus their attention either on the linguistic

dimension (Linguistic Task: are target words same or different as

prime words?) or on the musical dimension (Musical Task: are

target melodies same or different as prime melodies?). The same-

different task has been used extensively in the literature to

investigate the relationship between two dimensions of a stimulus

in various modalities (e.g., melody recognition [66]; letter

recognition [67]; meaningful environmental sounds [68]), and is

particularly effective when participants are asked to attend to only

one dimension at a time (see Thomas [69] for a review and

in-depth analysis of the same-different task).

Methods

A. Participants
Twenty-one volunteers (15 females; mean age = 25 years old;

age range 18–32) were paid 16 euros to participate in this

experiment that lasted for about 90 minutes including preparation

time. Informed consent was obtained from all participants, and the

data was analyzed anonymously. Verbal consent was used because

at the time of data collection, the local ethics committee did not

require written consent for experiments using behavioral or ERP

methods in healthy adult individuals. This study was approved by

the CNRS - Mediterranean Institute for Cognitive Neuroscience

and was conducted in accordance with local norms and guidelines

for the protection of human subjects. All participants had normal

hearing, no known neurological problems, and were native

French-speaking, right-handed non-musicians (all had less than

two years of formal music lessons).

B. Stimuli
We created a set of 480 different pairs of stimuli (primes and

targets). First, a list of 120 pairs of French tri-syllabic nouns was

established. In each pair, the prime and target words were

different and semantically unrelated. The phonological and

phonetic characteristics of the words were controlled and we

limited the use of certain phonemes with intrinsically longer

durations (e.g. fricatives [70]), as well as consonant clusters, so that

syllabic duration would be as consistent as possible between words.

To increase task difficulty and to homogenize the linguistic and

musical dimensions, the first syllable and the first note of the prime

and target within a pair were always the same.

Next, 120 pairs of different 3-note isochronous melodies were

created while controlling the harmonic content and using all 12

keys. All intervals up to the major sixth were used except the

tritone. The melodic contour was also balanced across the stimuli.

One quarter of the melodic pairs (30 melodies) consisted of a

prime with rising contour (defined as two successive ascending

intervals) paired with a target with falling contour (defined as two

successive descending intervals) and vice versa for another J of

the pairs. The other half of the pairs consisted of ‘‘complex’’

contours: J of the pairs had a prime made up of an ascending

interval plus a descending interval, followed by a target with a

descending plus an ascending interval, and vice-versa for the last

J of the pairs. These different types of contours were evenly

distributed among the experimental conditions. No melody was

used more than three times, and any melody appearing more than

once was always transposed into a different key and paired with a

different prime melody. The melodies were written in a vocal

range that was comfortable for the singer.

Finally, the pairs of melodies were randomly assigned to the

pairs of words. Once the 120 different pairs had been created, they

were distributed evenly over the four experimental conditions:

W = M = ; W = M?; W?M = and W?M? with 30 trials per

condition (see Figure 1 and supporting materials Audio S1, Audio

S2, Audio S3, Audio S4 for stimulus examples, and the Appendix

S1 for a list of stimuli used). In order to control for specific stimulus

effects, 4 lists were constructed so that each target appeared in all 4

conditions across the 4 lists (Latin square design).

The 120 targets and 480 primes were sung a capella by a

baritone. Recording sessions took place in an anechoic room. In

order to prevent listeners from making judgments based solely on

lower-level acoustic cues, two different utterances of the sung

words were selected to constitute the pairs in the W = M =

conditions (in natural speech/song no two pronunciations of a

segment by the same speaker are ever identical, but listeners

normalize over perceived segments [71]). Although the singer sung

at a tempo of 240 beats per minute to control syllable duration,

natural syllabic lengthening always occurred on the last syllable/

note, giving rise to an average duration of all stimuli of 913 ms

(SD = 54 ms). All words were normalized in intensity to 66 dB (SD

across items = 1 dB).

C. Procedure
Participants listened, through headphones, to 120 pairs of sung

words from the four experimental conditions presented in

pseudorandom order. The same pairs were presented twice in

two attentional tasks: Linguistic and Musical. In the Linguistic

task, participants were instructed to pay attention only to the

language in order to decide, by pressing one of two response keys

as quickly and accurately as possible, if the two words were the

same or different. In the Musical Task, participants were

instructed to pay attention only to the music in order to decide,

Figure 1. Stimuli examples. Examples of stimuli in the four
experimental conditions: same word, same melody (a); same word,
different melody (b); different word, same melody (c); different word,
different melody (d).
doi:10.1371/journal.pone.0009889.g001
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as quickly and accurately as possible, if the two melodies were the

same or different.

Each session began with a block of practice trials. Each trial

consisted of a prime sung word followed by a target sung word,

with an SOA of 1800 ms. Participants were asked to avoid

blinking until a series of X’s appeared on the computer screen at

the end of each trial. Response keys, order of tasks, and stimuli lists

were counterbalanced across participants. The software Presenta-

tion (Neurobehavioral Systems, Albany, CA) was used to present

stimuli and record behavioral responses (RTs and % errors).

D. Data acquisition
EEG was recorded continuously from 32 ‘‘active’’ (pre-

amplified) Ag-AgCl scalp electrodes (Biosemi, Amsterdam) and

located according to the International 10/20 system. The data

were re-referenced offline to the algebraic average of the left and

right mastoids. In order to detect eye movements and blinks, the

horizontal electrooculogram (EOG) was recorded from electrodes

placed 1 cm to the left and right of the external canthi, and the

vertical EOG was recorded from an electrode beneath the right

eye. The EEG and EOG signals were digitized at 512 Hz and

were filtered with a bandpass of 0.1–40 Hz (post-analysis data

were filtered with a lowpass of 10 Hz for visualization purposes

only). Data were later segmented in single trials of 2200 ms

starting 200 ms (baseline) before target onset. Trials containing

ocular or movement artifacts or amplifier saturation (determined

by visual inspection) were excluded from the averaged ERP

waveforms (i.e., on average 12% of the trials, thereby leaving

approximately 26 out of a possible 30 trials in each condition per

participant). Individual data analysis and grand averages were

computed using the Brain Vision Analyzer software (Brain

Products, Munich).

E. Data Analyses
Behavioral data (RTs and arcsin-transformed Error Rates) were

analyzed using a three-way ANOVA with within-subject factors:

Attentional Task (Linguistic vs. Musical), Word (same vs.

different), and Melody (same vs. different). A four-way ANOVA

with factors Task Order, Attentional Task, Word, and Melody was

computed to determine if results were influenced by the order in

which participants performed the two tasks: Linguistic task first or

Musical Task first. Although a main effect of Order was found,

showing that the second task (whether Linguistic or Musical) was

performed better than the first task (thereby reflecting increased

familiarity with the experimental procedure), no significant

interactions of Order with other factors were found, so this factor

was not considered further.

Mean amplitude ERPs to the target words were measured in

several latency bands (50–150, 150–300, 300–500, 600–800, 800–

1000 ms) determined both from visual inspection and from results

of consecutive analyses of 50-ms latency windows from 0 to

2000 ms. Eight regions of interest were defined by first separating

the electrodes into two groups: midlines (8) and laterals (24), and

then defining subsets of electrodes for analysis. The midlines were

divided into two regions of interest: fronto-central: (Fz, FC1, FC2,

Cz) and parieto-occipital (CP1, CP2, Pz, Oz). The lateral

electrodes were separated into 6 regions of interest: left frontal

(FP1, AF3, F3, F7), left temporal (FC5, T7, CP5, C3), left parietal

(P3, P7, PO3, O1), right frontal (FP2, AF4, F4, F8), right temporal

(FC6, T8, CP6, C4) and right parietal (P4, P8, PO4, O2). For the

midline electrodes, an ANOVA with factors Attentional Task

(Linguistic vs. Musical), Word (same vs. different), Melody (same

vs. different) and Region (fronto-central vs. parieto-occipital) was

computed on the mean amplitudes of the ERPs in each latency

band. A similar ANOVA was computed for the lateral electrodes,

with Attentional Task, Word, Melody, Hemisphere (left vs. right)

and Region (frontal vs. temporal vs. parietal) as factors. Results of

the ANOVAs are reported only when significant at p,0.05. All p

values for ERP results were adjusted with the Greenhouse-Geisser

epsilon correction for nonsphericity when necessary. For both

behavioral and ERP results, when interactions between two or

more factors were significant, pairwise post-hoc comparisons

between relevant condition pairs were computed and thresholded

by Bonferroni correction. When post-hoc analysis revealed that

none of the simple effects constituting an interaction reached the

threshold for Bonferroni significance, the interaction was not

considered further.

Results

Behavioral data
Mean Reaction times and Error rates are reported in Table 1.

The ANOVA on RTs showed that participants were slower in

the Musical Task (1040 ms) than in the Linguistic Task (761 ms;

main effect of Task [F(1,20) = 72.26, p,0.001]). Moreover, RTs

were slower for W? (952 ms) than W = (849 ms; main effect of

Word [F(1,20) = 88.46, p,0.001]). Finally, the Task x Word

interaction was significant [F(1,20) = 22.76, p,0.001]: in the

Musical Task participants were slower for W? (1119 ms) than for

W = (961 ms; simple effect of Word: posthoc p,0.001) but this

difference was not significant in the Linguistic Task. The Task x

Melody interaction was not significant but the Word x Melody

interaction was significant [F(1,20) = 18.44, p,0.001]: RTs were

slower for M? (879 ms) than for M = (818 ms) only when words

were same (W = ; posthoc p,0.001). By contrast, RTs were slower

for W? than for W = regardless of whether melodies were same

(M = ) or different (M?, both posthoc p’s,0.001).

The ANOVA on Error rates showed that participants made

more errors in the Musical Task (4.21%) than in the Linguistic

Task (0.87%) [main effect of Task: F(1,20) = 20.95, p,0.001].

Moreover, both the Task x Word and the Task x Melody

interactions were significant [F(1,20) = 9.53, p = 0.006 and

Table 1. Behavioral data.

Linguistic Task Musical Task

Condition W = M = W = M? W? M = W? M? W = M = W = M? W? M = W? M?

RTs 718 (151) 756 (162) 786 (131) 783 (153) 919 (168) 1003 (153) 1129 (221) 1109 (255)

% Err 0.8 (1.5) 0.6 (1.3) 1.0 (2.1) 1.1 (1.9) 0.8 (1.8) 3.7 (5.3) 3.5 (4.5) 8.9 (9.1)

Mean Reaction Times (RTs) and errors rates (in %) for each of the 4 experimental conditions (W = M = : same word, same melody; W = M?: same word, different melody;
W?M = : different word, same melody; W?M?: different word, different melody), in the Linguistic and Musical tasks. SD is indicated in parentheses.
doi:10.1371/journal.pone.0009889.t001
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F(1,20) = 9.21, p = 0.006, respectively]. In the Musical Task

participants made more errors for W? (6.19%) than for W =

(2.22%; simple effect of Word: posthoc p,0.001) and for M?
(6.27%) than for M = (2.14%; simple effect of Melody: posthoc

p,0.001), but these differences were not significant in the

Linguistic Task. The Word x Melody interaction was not

significant.

ERP data
Results of the ANOVAs on ERP data in the different latency

ranges are presented in Table 2. When the main effects or relevant

interactions were significant, results of pairwise posthoc compar-

isons are reported in the text (except for posthoc results of the

Word by Melody interaction, which are reported in Table 3). The

Word effect and the Melody effect in each task are illustrated on

Figures 2 and 3, respectively.

Between 50 and 150 ms, different words (W?) elicited a larger

N100 component than Same words (W = ) over the right frontal

region (Word x Hemisphere x Region interaction; p,0.001). This

effect was larger in the Linguistic Task than in the Musical Task at

lateral electrodes (p = 0.021; see Figure 2), but this result did not

reach significance after Bonferroni correction.

Between 150 and 300 ms, W? elicited a smaller P200 component

than W = (main effect of Word at both midline and lateral

electrodes). This effect was more prominent over bilateral frontal

and left parietal regions (Word x Hemisphere x Region; all

p,0.001). Again, this effect was larger in the Linguistic than in the

Musical Task at lateral electrodes (p = 0.011; see Figure 2) but this

result was only marginally significant with the Bonferroni

correction.

Between 300 and 500 ms, W? elicited a larger N400 component

than W = at both midline and lateral electrodes (main effect of

Word), with larger differences over parieto-occipital than fronto-

central midline electrodes (Word x Region interaction: both

p,0.001), and over parietal and temporal lateral regions (Word x

Region, both p,0.001), with a slight right hemisphere predom-

inance (Word x Hemisphere x Region, both p,0.001). The N400

effect (W? minus W = ) was larger at lateral electrodes in the

Linguistic (p,0.001) than in the Musical Task (p = 0.004; Task x

Word) and at midlines (both p,0.001), with a centro-parietal scalp

distribution in the Linguistic Task and a parietal distribution in the

Musical Task (Task x Word x Region at midline and lateral

electrodes, all p,0.001).

M? elicited larger N400-like components than M = (main

effect of Melody at midline and lateral electrodes; see Figure 3).

Moreover, the Word x Melody interaction was significant at

midline and at lateral electrodes: the Melody effect (M? vs. M = )

Table 2. ANOVA results on mean amplitudes of ERPs.

Latency (ms)

50–150 150–300 300–500 600–800 800–1000

Factors df F p F p F p F p F p

Midlines W 1,20 5.89 0.025 50.10 ,0.001 5.51 0.029

M 1,20 6.78 0.017 10.99 0.004 7.58 0.012

T6W 1,20 4.9{ 0.039{ 5.53 0.029

W6R 1,20 21.31 ,0.001

M6R 1,20 6.52 0.019

W6M 1,20 7.14 0.015

T6W6R 1,20 4.65 0.044

Laterals W 1,20 4.40 0.049 28.08 ,0.001

M 1,20 7.06 0.015 6.08 0.023

T6W 1,20 8.85{ 0.008{ 4.90{ 0.039{ 15.60 ,0.001 4.52{ 0.046{

W6R 2,40 26.01 ,0.001

W6M 1,20 7.19 0.014

W6H 1,20 5.79 0.026

W6H6R 2,40 6.33 0.007 4.76 0.018 3.88 0.036

T6W6R 2,40 3.98 0.046

T6M6R 2,40 3.58 0.048

Results of ANOVAs computed on midline and lateral electrodes for main effects, 2-way and 3-way interactions. Only significant effects (p,0.05) are shown.
Abbreviations: df, degrees of freedom; T, Attentional Task; W, Word; M, Melody; H, Hemisphere; R, Region.
{ Pairwise comparisons of interest did not meet the criteria for Bonferroni significance and thus the interaction is not discussed further in the text.
doi:10.1371/journal.pone.0009889.t002

Table 3. Posthoc comparisons for Word x Melody interaction.

Pairwise Comparison Midlines Laterals

W = M = vs. W = M? 0.006* 0.004*

W = M = vs. W?M = ,0.001* ,0.001*

W = M = vs. W?M? ,0.001* ,0.001*

W = M? vs. W?M = 0.004* 0.032

W = M? vs. W?M? 0.02 0.092

W?M = vs. W?M? 0.493 0.596

Results of pairwise posthoc comparisons for the Word x Melody interaction, in
the 300–500 ms latency band. Pairs that meet the criteria for significance with
the Bonferroni threshold (p = 0.0083) are indicated with *.
doi:10.1371/journal.pone.0009889.t003
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was only significant when Word was same (W = ) but not when

Word was different (W?; see Table 3 for all posthoc p-values for

the Word x Melody interaction). Likewise, the Word effect was

only significant when Melody was same (M = ) but not when

Melody was different (M?; see Figure 4, which shows the four

orthogonal conditions averaged over both tasks). Furthermore,

negative components in the W = M?, W?M = , and W?M?
conditions were larger than in W = M = condition. At the midline

electrodes, negative components were also larger in the W?M =

than in the W = M? conditions.

To further test the Word by Melody interaction, difference

waves were computed (on mean amplitudes) for each of the

following comparisons: d1 = W?M = minus W = M = (effect of

Word when Melody is same); d2 = W = M? minus W = M =

(effect of Melody when Word is same); d3 = W?M? minus

W = M = (effect of different Word and different Melody). If words

Figure 2. Word effect. Grand average ERPs timelocked to the onset of targets with the same word as the prime (solid line) or a different word than
the prime (dashed line), in the Linguistic Task (A) and Musical Task (B). Selected traces from 9 electrodes are presented. In this figure, amplitude (in
microvolts) is plotted on the ordinate (negative up) and the time (in milliseconds) is on the abscissa.
doi:10.1371/journal.pone.0009889.g002

Figure 3. Melody effect. Grand average ERPs timelocked to the onset of targets with the same melody as the prime (solid line) or a different
melody than the prime (dashed line), in the Linguistic Task (A) and Musical Task (B). Selected traces from 9 electrodes are presented. In this figure,
amplitude (in microvolts) is plotted on the ordinate (negative up) and the time (in milliseconds) is on the abscissa.
doi:10.1371/journal.pone.0009889.g003
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and melodies are processed independently, then d1+d2 should be

equal to d3. ANOVAs with factor Data (double variation condition

[d3] vs. additive model [d1+d2]) together with the other factors of

interest (for midlines: Attentional Task and Region and for

laterals: Attentional Task, Hemisphere, and Region) were carried

out. Results showed that the sum of the ERP effects of the simple

variations (d1 + d2) was significantly larger than the ERP effects in

the double variations condition [d3; midline electrodes,

F(1,20) = 7.14, p = 0.015; lateral electrodes, F(1,20) = 7.19,

p = 0.014]; see Figure 5.

Between 600 and 800 ms, W? still elicited more negative ERPs

than W = (main effect of Word at midline electrodes) but M?
elicited larger late positive components than M = (main effect of

Melody at midline and lateral electrodes, see Figure 3). At the

midline electrodes, this effect was larger over the fronto-central

region than the parieto-occipital region (both p,0.001; Melody x

Region); furthermore, at lateral electrodes, the effect was larger

over temporal and parietal regions (both p,0.001) in the

Linguistic Task but was larger over frontal regions (p,0.001) in

the Musical Task (Task x Melody x Region).

Between 800 and 1000 ms, W? still elicited larger negativities

than W = over the right hemisphere (p = 0.002; Word x

Hemisphere). This effect was larger in the Linguistic than in the

Musical Task (p = 0.017) but this difference did not reach

significance with the Bonferroni correction. Finally, M? still

elicited larger positive components than M = (main effect of

Melody at midline electrodes).

Scalp distribution of the N1, P2, and N400 components
(Word effects)

ERPs in the N1, P2, and N400 latency bands were more

negative for different word than for same word. These effects may

consequently reflect an early onset of the N400 effect, or three

distinct components. Since different scalp distributions were found

in each of the three latency bands tested separately, it was

therefore of interest to directly compare the Word effect (W?
minus W = ) across latency bands. To this end, we conducted

additional ANOVAs on the difference waves, with factors: Latency

Band (50–150 ms vs. 150–300 ms vs. 300–500 ms), Hemisphere

(left vs. right), and Region (frontal vs. temporal vs. parietal).

Results showed a significant Latency band x Region interaction

[F(4,80) = 43.15, p,0.001]. While there were no significant

differences in scalp distribution between the effect of Word in

the 50–150 ms (N1) and in the 150–300 ms (P2) latency bands, the

topography of the N400 (300–500 ms) was different from both the

N1 and the P2. Pairwise posthoc comparisons showed that the

N400 had a more parietal distribution compared to the N1

(p,0.001) and the P2 (p,0.001). The Latency x Hemisphere x

Region interaction was not significant.

In order to prevent the topographical shape of the ERPs from

being potentially confounded by the amplitude of ERP effects, the

same statistical analysis was then repeated on data that had

undergone vector scaling (c.f. [72], but see also [73] for a

Figure 4. Word by Melody interaction. (A) For each of the 4 experimental conditions (averaged across both tasks because there was no Task x
Word x Melody interaction): the reaction time in milliseconds (gray bars, left Y-axis) and the magnitude (mV) of the mean amplitude of the ERPs in the
300–500 ms latency range, averaged across all electrodes (black bars, right Y-axis). (B) ERPs associated with the 4 experimental conditions (averaged
across both tasks because there was no Task x Word x Melody interaction) for electrodes Cz (top) and Pz (bottom). Solid line: same word, same
melody; dotted line: same word, different melody; dashed line: different word, same melody; dashed-dotted line: different word, different melody.
doi:10.1371/journal.pone.0009889.g004

Figure 5. Additive model test. Mean amplitude (in mV) of ERP
difference waves in the 300–500 ms latency band, for double variations
observed (W?M? minus W = M = ) and the modeled sum of simple
variations (W?M = minus W = M = ) + (W = M? minus W = M = ), at
midline electrodes (dark gray bars) and lateral electrodes (light gray bars).
doi:10.1371/journal.pone.0009889.g005
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discussion of the limitations of this method). The Latency x Region

interaction was again significant [F(4,80) = 21.22, p,0.001], and

pairwise posthoc tests showed the same pattern of results as in the

unscaled data. This analysis therefore confirmed that the frontal

distribution of the early negativities (N1/P2 complex) is signifi-

cantly different from the parietal distribution of the N400.

Discussion

Processing the words
As predicted on the basis of several results in both the

behavioral (e.g., [59]) and neurolinguistic literatures (e.g.,

[40,54,55,57]), sung word targets that were different from sung

word primes (W?) were associated with lower levels of

performance (more errors and slower RTs) and with larger

N400 components than same words (W = ). Thus, as noted in [40],

similar processes seem to be involved in accessing the meaning of

spoken and sung words. One could argue that access to word

meaning was not necessary to perform the Linguistic Task and

that participants could have based their decision on phonological

cues. However, this is unlikely as previous work on spoken words

has demonstrated that word meaning is processed automatically in

phonological tasks [74,75], prosodic tasks [76–78], during passive

listening in the waking state [74,75], and even during sleep [79].

Moreover, the finding that an N400 word effect also developed

in the Musical Task, with similar onset latency and duration (until

around 800 ms post-target onset), and a similar scalp distribution

in the 300–500 ms latency range as in the Linguistic Task (centro-

parietal for language and parietal for music; see Figure 2), also

provides evidence in favor of the automatic processing of sung

word meaning regardless of the direction of attention. The smaller

size of the N400 effect in the Musical than in the Linguistic Task

was most likely due to fewer attentional resources being available

for processing words in the Musical Task (attention focused on the

melody) than in the Linguistic Task (attention focused on words),

as has been argued previously [75,76,78].

Early Word effects were also found with larger N100

components in the 50–150 ms latency band and smaller P200

components in the 150–300 ms latency band over frontal regions

to different (W?) than same words (W = ; see Figure 2). Even

though both same and different words started with the same first

syllable, which lasted for 250 ms on average, subtle articulation

differences (in particular, in vowel quality and pitch of the sung

syllable) were most likely present in the first syllable of different

target words (e.g., the ‘‘me’’ in ‘‘messager’’ does not sound

identical to the ‘‘me’’ in ‘‘mélodie’’). Moreover, even though the

post-hoc comparison for the Task by Word interaction was not

significant after Bonferroni correction between 50–150 ms and

between 150–300 ms (probably because task differences were too

small), it is clear from Figure 2 that the N100 and P200 effects

were primarily present when participants attended to the words.

Attending to the linguistic dimension may have amplified

participants’ sensitivity to small differences in co-articulation,

which in turn influenced the early perception of sung words, just as

subtle phonetic differences modulate the N100 in speech

perception [80]. This interpretation is supported by the vowel

harmony phenomenon described by Nguyen & Fagyal [81], in

which the pronunciation of the vowel of the first syllable

assimilates to the anticipated vowel of the second syllable, which

was indeed different in the W? conditions. We also considered the

idea that the early N100 and P200 effects were the leading edge of

the N400 component, in light of previous reports demonstrating

the early onset of the auditory N400 effect [82], possibly reflecting

the fact that lexico-semantic processing starts before the spoken

word can be fully identified [83]. However, this interpretation

seems unlikely in view of the results of the scalp distribution

analysis that demonstrated a significant difference between the

frontally-distributed early negativities and parietally-distributed

N400.

Processing the melody
Different melodies (M?) compared to same melodies (M = )

elicited larger negative components between 300 and 500 ms,

followed by larger late positive components in the 600–1000 ms

latency band.

The P600 component was expected based on previous reports

showing that unexpected melodic/harmonic variations (e.g.,

[61–64,84]) elicit effects belonging to the P300 family of

components. These effects are generally interpreted as reflecting

the processing of surprising and task-relevant stimuli [85–87] and

are indicative of the allocation of attention and memory resources

(see Polich [88] for a recent review and discussion of functionally

divergent P3 subcomponents). The longer onset latency of the

positive effect in the present experiment than in previous studies is

probably due to the fact that the first note of the melody was the

same in both the M? and M = conditions, with the second note

being sung at around 250 ms post-onset of the target. Interest-

ingly, the task did influence the scalp distribution of the late

positivity, which was frontal when the melodies were explicitly

processed (Musical Task) and parietal when the melodies were

implicitly processed (Linguistic Task). The frontal scalp distribu-

tion of the positive component in the Musical Task is consistent

with the scalp distribution of the P3a component reported for

chord sequences ending with dissonant harmonies [84] and

harmonically acceptable chords with deviant timbre [89]. The

parietal scalp distribution of the positive component in the

Linguistic Task is consistent with previous results when partici-

pants were asked to pay attention to both lyrics and tunes [40].

Finally, it is interesting to note that late positivities, i.e., the late

positive potential (LPP), have also been observed during the

evaluation of affective stimuli [90,91], such as tones sung with a

sad voice presented simultaneously with sad pictures [92]. In the

present study, the musical dimension of the sung words, although

minimal, may have called upon emotional processes, reflected by

the late positivities. Further work on the emotional response to

singing may clarify these issues.

One of the most interesting findings of the present study is that,

prior to the late positive components, M? also elicited widely

distributed, larger negative components than M = in the 300–

500 ms latency band in both the Linguistic and Musical tasks (see

Figure 3). This negativity bears the scalp distribution and peak

latency typically seen for the N400 component. Indeed, N400’s

have been recently associated with musical incongruities related to

memory and emotional meaning, such as in familiar melodies

containing an unexpected but harmonically congruous note [66],

or when a mismatch ensues between musical chords and emotion

words (e.g., a dissonant chord target primed by the visually

presented word ‘‘love’’) [18]. However, the N400 Melody effect in

the present study was slightly smaller in amplitude than the N400

Word effect at the midline electrodes. The difference between

these effects may be due to an overlap with the subsequent late

positive component generated in the M? but not in the W?
condition, but could also result from greater intrinsic salience of

the linguistic dimension in songs [30,31].

Thus, in both attentional tasks, words sung on different

melodies (M?) were associated with larger N400 components

than words sung on same melodies (M = ). Since the intonational

contour of lyrics in song is provided by the musical melody, it has
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been suggested that the variations in prosodic-like effects for sung

lyrics could explain why words in song are better recognized with

their original melodies than with a different melody [93]. In fact,

several recent studies show that words spoken with prosodically

incongruous patterns are associated with increased amplitudes of

the N400 component followed by late positivities [78,94,95]. Thus,

words sung on different melodies may hinder lexical access in a

similar manner as unexpected prosodic patterns in spoken

language. If familiarity is established through repeated listening

to a song, which may reinforce prosodic representations of the

words that are created by the melody, then the present findings

may be better understood in light of results obtained by Thompson

& Russo [45]. They showed that participants perceived the

meaning of song lyrics as enhanced when familiarity with the songs

was increased (see section 6.4 in [5] for an interesting discussion of

those results). We could thus speculate that our participants’ lexico-

semantic expectations for sung words were violated not only when the

target word was different from the prime (W?M = condition) but

also when the target melody was different from the prime

(W = M?). This interpretation accounts for the N400 effects

associated with differences on each dimension as they stand in

contrast to the tight perceptual combination of repeated words and

melodies (W = M = ). Further work is needed to differentiate how

variations in the musical dimension of songs affect lexical access

[96], general semantic memory [97], and conceptual relatedness

[20,21,98]. For instance, future studies using pairs of sung words

that are semantically related to each other, or sung word targets

primed by other meaningful stimuli (e.g. pictures, environmental

sounds, or meaningful musical excerpts), could elucidate the

dynamics of the N400 component in song.

Overall, results showed that N400 components are generated

when the target does not match the prime in pairs of sung words

on either dimension (linguistic or musical). It must be emphasized

here that these results were found regardless of the direction of

attention, thereby reflecting the automatic processing of the

linguistic and musical dimensions when words are sung. This

pattern of results may also reflect the inability of participants to

selectively focus their attention on the words or on the melodies,

precisely because the two dimensions cannot be separated. We

explore this possibility next.

Interactive processing
Both behavioral and ERP data in the N400 latency band clearly

revealed interactive processing of the linguistic and musical

dimensions in song, which occur simultaneously in sung words.

This interaction was found independently of the direction of

attention (i.e., in both the Linguistic and Musical tasks and

furthermore in the absence of a Task by Word by Melody

interaction). Moreover, results of an ANOVA on the difference

waves did demonstrate that the theoretical sum of the ERPs for

simple linguistic and musical variations was significantly larger

than the actual ERP in the double variation condition (see also

Figure 5). Therefore, an additive model did not account for the

data reported here. Furthermore, the pattern of interaction is

strikingly symmetric between the two dimensions. The N400 word

effect (different vs. same words) only occurs when melodies are the

same; likewise, the N400 melody effect (different vs. same

melodies) and the effect on RTs (slower for M? than M = ) only

occur when words are same but not when words are different, as

illustrated in Figure 4. These findings coincide with previous

studies of sung and spoken language that have documented an

influence of the musical dimension on linguistic processing, even

when attention is directed to the linguistic aspect [43,44,46,47,99].

Thus, the main conclusion that can be drawn from these results is

that words and melody are closely interwoven in early stages of

cognitive processing. This outcome is compatible with a recent

report by Lidji et al. [49] of ERP evidence for interactive

processing between vowel and pitch in song perception. The

spatio-temporal brain dynamics of this integrated response could

be responsible for interactive effects between word and melody in

song, observed in a growing number of behavioral studies on

perception [43,44,46,47], learning [35,36], and memory [30–33].

Some important differences between our protocol using sung

word pairs and previous studies using opera excerpts [40,41] can

provide an explanation for why we did not find the same tendency

toward independence of neural and behavioral correlates

associated with the perception of words and melodies. First, the

type of same-different task employed in the present study on

stimulus pairs, but not in [40] and [41], has been previously used

by Miranda & Ullman [66] to show that notes that are tonally

congruous (in-key) but incorrect in familiar melodies elicit both the

N400 and P600 components, even when participants’ attention

was directed away from pitch. Furthermore, the violation

paradigm used by Besson et al. [40] and Bonnel et al. [41], in

which the last note of the sung phrase of the opera excerpt was not

only unexpected in the context but also out-of-key, may have

made wrong notes more salient for the listener than the more

subtle different melody targets used in the present experiment.

Indeed, even when the target melody was different than the prime,

it contained tonal intervals in a reduced harmonic context. In fact,

subtle stimulus variations have been used in several studies

reporting interaction of linguistic and musical processing, such as

the interference of harmony on phonological and semantic

processing [44,46] or the interaction of semantics and harmony

[17].

Nevertheless, it should be noted that the present results also

provide some evidence for separate effects associated with the

linguistic and musical dimensions. First, RTs were slower for

different than same words regardless of whether melodies were

same or different (but, as mentioned above, RTs were slower for

different than for same melodies only when words were same).

This slightly asymmetric pattern of interferences may be related to

the fact that our non-musician participants were less accustomed

to making explicit judgments about melodic information than

linguistic information, as demonstrated by slower RTs in the

Musical Task than in the Linguistic Task. These results

correspond to those obtained in the first of a series of experiments

on non-musicians by Kolinsky et al. [43] showing slower reaction

times in the melodic than phonological task, in addition to an

enhanced interference effect between phonology and intervals in

the melodic task.

Second, while early differences were found in the 50–150 and

150–300 ms latency bands were found between same and different

words (independently of the melodies), no such early differences

were observed between same and different melodies. As discussed

above, these early differences mostly likely reflect an effect of co-

articulation caused by phonetic differences already present in the

first syllable of different words rather than an early onset of the

N400 word effect.

Finally, differences in the late positivity were found between

same and different melodies but not between same and different

words. As mentioned above, results of several experiments have

shown increased P3 components to unexpected variations in

melody or harmony [40,61–64,84,89], typically interpreted as

reflecting the allocation of attention and memory resources to task-

relevant stimuli [85–88]. The late positivity in the present study

may also be related to the LPP, which is associated with the

processing of affective stimuli [90–92]. Based on these accounts,
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the absence of a difference in late positive components for words

may reflect the fact that they were easier to process than melodies

(thereby requiring fewer attentional and memory resources) or that

they did not elicit an emotional response. This last interpretation

could be tested in further experiments by using affective sung

words as targets.

To summarize, the present results show that N400 compo-

nents were elicited not only by different words but also by

different melodies, although the effect of melody began later

and was followed by a late positive component. Moreover, the

effects of melody and word were interactive between 300 and

500 ms, thereby showing that lyrics and tunes are intertwined

in sung word cognition. A companion study conducted in our

lab with the fMRI method, using the same stimuli and

attentional tasks, also yielded robust interactions between

words and melody in songs in a network of brain regions

typically involved in language and music perception [100].

These results are consistent with a growing number of studies

establishing that language and music share neural resources

through interactive phonological/semantic and melodic/har-

monic processing (cf. [5]).

The present findings, along with other recent work on song

perception and performance, are beginning to respond to the

question of why song is, and has been since prehistoric times

[23,24], so prevalent in the music perception and performance

activities occurring in most humans’ daily lives. Intrinsic shared

mechanisms between words and melody may be involved in a

number of song-related behaviors that have shaped human nature,

although we do not yet know if the linguistic-musical interactions

are the cause or effect of these tendencies. For example, it appears

that infants’ preference for singing over speech [26] cannot be

merely attributed to the presence of the musical dimension [27]

and may reflect a specific proclivity for singing-based mother-

infant interactions. In early humans, adding melody to speech may

have fostered parent-infant bonding and thus given an evolution-

ary advantage to individuals possessing more highly developed

musical traits [101]. Singing to children fosters language

acquisition, perhaps because exaggerated prosody aids segmenta-

tion [102] and the added musical information provides redundant

cues for learning [35,36]. Melody in song may also serve as a

mnemonic for storage of words in long-term memory (e.g., [33]).

Research along these lines may also begin to shed light on the

mechanisms responsible for the benefits of Melodic Intonation

Therapy and other singing-based music therapy techniques in the

speech rehabilitation process [103].

Supporting Information

Audio S1 Example of stimulus pair in condition same word/

same melody (W = M = ).

Found at: doi:10.1371/journal.pone.0009889.s001 (0.22 MB

WAV)

Audio S2 Example of stimulus pair in condition same word/

different melody (W = M?).

Found at: doi:10.1371/journal.pone.0009889.s002 (0.22 MB

WAV)

Audio S3 Example of stimulus pair in condition different word/

same melody (W? M = )

Found at: doi:10.1371/journal.pone.0009889.s003 (0.22 MB

WAV)

Audio S4 Example of stimulus pair in condition different word/

different melody (W? M?).

Found at: doi:10.1371/journal.pone.0009889.s004 (0.22 MB

WAV)

Appendix S1 Pairs of sung words in each of the four

experimental conditions, in one list of the Latin Square design

(the first author can be contacted to obtain the other three lists),

with each trisyllabic French word and the 3-note melody on which

it was sung (one note per syllable). The melodies are represented in

standard MIDI codes, where: C4 = 60, C#4 = 61, D4 = 62,

D#4 = 63, E4 = 64, F4 = 65; F#4 = 66; G4 = 67; G#4 = 68;

A4 = 69; A#4 = 70; B4 = 71, C5 = 72, and so on.

Found at: doi:10.1371/journal.pone.0009889.s005 (0.24 MB

DOC)
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