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ABSTRACT 

 
 

Chiral effective field theory provides a modern framework for understanding 

the structure and dynamics of nuclear many-body systems. Recent works have had 

much success in applying the theory to describe the ground- and excited-state 

properties of light and medium-mass atomic nuclei when combined with ab initio 

numerical techniques. Our aim is to extend the application of chiral effective field 

theory to describe the nuclear equation of state required for supercomputer simulations 

of core-collapse supernovae. Given the large range of densities, temperatures, and 

proton fractions probed during stellar core collapse, microscopic calculations of the 

equation of state require large computational resources on the order of one million CPU 

hours. We investigate the use of graphics processing units (GPUs) to significantly 

reduce the computational cost of these calculations, which will enable a more accurate 

and precise description of this important input to numerical astrophysical simulations. 
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I.  INTRODUCTION 
 
 

The mass of a star is a fundamental factor that determines its evolution. More 

massive stars burn through their fuel more quickly than less massive ones. Stars live 

by maintaining a balance between gravity, which acts to make the star collapse on itself, 

and pressure from the heat release by fusion in the core of the star, where hydrogen 

atoms are fused together to produce helium atoms. Stars that are 10 – 30 solar masses 

are able to fuse nuclei up to iron. However, the fusion process stops at iron because 

fusing iron is not energetically favorable. It requires the input of energy instead of 

releasing energy. After reaching an iron core, these 10 – 30 solar mass stars end their 

life in a violent and spectacular event we call a supernova [3]. 

 Initially, the iron core in the star is supported against gravitational collapse by 

electron degeneracy pressure. Once the iron core reaches the Chandrasekhar limit, 1.4 

solar masses, the star becomes unstable and gravity takes over and causes the star to 

collapse. Short-range nuclear forces halt the collapse of the star, which creates a 

shockwave that rebounds outward. In the core, electron capture occurs, where an 

electron and a proton come together to make a neutron and electron neutrino. These 

neutrinos carry the majority of the energy from the core outward and leave behind a 

dense core full of neutrons. A combination of the shockwave and the neutrinos 

travelling outward could yield to a potentially successful supernova. What remains 

behind is a neutron star or, in an extreme case, black hole [3]. 

 The conditions that yield a successful supernova are still not well understood. 

We are not able to directly examine the physical processes inside the core of a star that 
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produce a supernova. To gain a better understanding of these processes, we need to rely 

on accurate and efficient numerical simulations of core-collapse supernovae. 

Fortunately, we have achieved great advancement in numerical algorithms and 

computational resources that will help achieve accurate and efficient simulations. In 

our present time, graphics processing units (GPUs) are being used to optimize and 

speedup programs and simulations that require a long runtime. 

 Producing accurate simulations of core-collapse supernovae requires the input 

of many ingredients that are often very computationally intensive, such as neutrino 

transport, electron capture during core-collapse, etc. One important ingredient is the 

microphysical equation of state of nuclear matter. Simulations that use realistic nuclear 

equations of state have demonstrated promising results, which indicate the importance 

of these equations of state to the physics of core-collapse and even to times after the 

collapse. Microscopic calculations of the equation of state require large computational 

resources due to the large range of densities, temperatures, and proton fractions that 

need to be considered during stellar core collapse. To date, this has prohibited the use 

of microscopic equations of state in core-collapse simulations, and instead only 

phenomenological equations of state have been implemented [4]. 

In this study, we aim to extend the application of chiral effective field theory to 

describe the nuclear equation of state required for supercomputer simulations of core-

collapse supernovae. Chiral effective field theory is an approximation to quantum 

chromodynamics, which provides a modern framework for understanding the structure 
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and dynamics of nuclear many-body systems. We use sophisticated nuclear two- and 

three-body forces to calculate the equation of state in many-body perturbation theory. 
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II. Methods 
 
 

In this study, we investigate the use of GPUs to speed up codes for computing 

the third order perturbative contribution to the ground state energy density of nuclear 

matter. This is one of the inputs needed to generate an accurate equation of state of 

nuclear matter for simulations of core-collapse supernovae. The code before our study 

ran serially on central processing units (CPUs). It was optimized to utilize all the 

computing power CPU processing offers, but faster computational methods are more 

desirable. 

 GPU processing is explored in this project to potentially offer a significant 

speedup to the current best optimized version of the serial code. The main reason why 

GPUs could offer the speed up needed lies in the way that they differ from CPUs in 

processing computational tasks. CPUs consists of a few cores that are intended to 

process tasks sequentially, which could potentially take a very long time when dealing 

with millions of calculations. On the other hand, GPU’s consist of many small cores 

that are designed to do tasks in parallel. This allows for multiple tasks to be executed 

simultaneously. However, GPUs are inefficient at accessing memory. Whereas CPUs 

can quickly access hundreds of Mbytes of RAM, GPUs are limited to the Kbytes of 

easily accessible memory. Here, we attempt to harness the potential speedup offered 

by the parallelism feature of GPUs to execute large amounts of computations needed 

for our serial code. 

 We are able to compute the energy density of nuclear matter using perturbation 

theory. Unlike simple systems such as the hydrogen atom and the harmonic oscillator, 
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either there is not a Hamiltonian which we could use to find the eigenvalues and 

eigenstates of an interacting system, or the Hamiltonian for the system is too 

complicated to solve. In some cases, the interacting system is very close to a system 

whose Hamiltonian we know, such as the hydrogen atom. We are then able treat the 

small differences between the two systems as perturbations and approach them in a 

systematic way. The Hamiltonian of the system will then consist of two parts, the 

perturbed and unperturbed Hamiltonian. The eigenvalues and the eigenstates of the 

system could then be described as a power-series expansion, and for the expansion to 

be useful, successive terms in the series must grow smaller [5]. In our case, we know 

the Hamiltonian associated with the nuclear force. The problem is that the Hamiltonian 

is too complicated to solve for the eigenvectors and eigenvalues of an interacting many-

body system. Therefore, we start with a system we can solve, noninteracting Fermions, 

and perturbatively build in the nuclear force as corrections. We then get the following 

free energy perturbation series  

 

𝐹"(𝑇, 	𝜌, 𝛿) = 	𝐹"+(𝑇, 𝜌, 	𝛿) + 𝜆𝐹".(𝑇, 𝜌, 	𝛿) + 𝜆/𝐹"/(𝑇, 𝜌, 	𝛿) + 𝜆0𝐹"0(𝑇, 𝜌, 	𝛿) + 𝒪(𝜆2) 

 

where 𝑇 is temperature, 𝜌 is the total nucleon density, and 𝛿 is the isospin-asymmetry 

parameter [2]. The diagrammatic contributions to the ground-state energy density of 

isospin-symmetric nuclear matter is shown below 
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 The code for computing the third order perturbative contribution to the ground 

state energy density of nuclear matter needs to compute a lot of integrals using 

Gaussian Quadrature Numerical Integration Method. This method involves using many 

nested for-loops to compute the integrals, which could potentially make the code run 

for hours. The amount of time the code runs depends on the precision desired for the 

integrals being computed. We aim to develop a basic algorithm that will offer a 

considerable computational speedup. 

 The serial program contains thousands of lines of code. We were only interested 

in a group of nested for-loops, that were used within the code. These nested for-loops 

needed to traverse and perform computations on arrays that were up to six dimensions, 

and each array could have hundreds of thousands of elements. This is the type of 

problem that GPUs could handle efficiently. Our algorithm needs to parallelize nested 

for-loops, which would allow access to thousands of elements at the same time and 

performing mathematical operations on them simultaneously. 

 CUDA, a parallel processing platform invented by NVIDIA, is used to 

parallelize portions of the code. Our aim is to create a subroutine in CUDA that contains 

Figure 1: First-, second-, and 
third- order diagrammatic 
contributions to the ground 
state energy density of nuclear 
matter. The wavy lines indicate 
the (antisymmetrized) density-
dependent NN interaction 
derived from chiral two- and 
three-body forces [1]. 
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the parallelization algorithm. This subroutine could then be called in the serial code by 

passing the right parameters into it. In doing so, we have a generalized subroutine that 

could be called in any program we want with the appropriate modifications. 

Most of this project focused on parallelizing Guassian Quadrature Numerical 

Integration Method. We wanted to approach parallelizing the numerical integration 

method by starting with a simple case and then gradually move on to more complicated 

cases. This allowed us to enhance our understanding of how the CUDA platform works, 

and the program was easier to troubleshoot. These troubleshooting skills were then 

extended to more complicated versions of the Gaussian Quadrature Numerical 

Integration Method. 

The first and easiest case we investigated was numerically integrating a one-

dimensional function. This simply means that we had to only worry about a function 

that depended on only one variable, which in computer language means that we only 

needed a one-dimensional array. This simplified parallelizing the integration method 

since the parallelization process was reduced from being multidimensional to only one-

dimensional. 

As mentioned before, parallelization is about how to use the GPU memory 

available to accomplish a task in an efficient manner. The CUDA memory structure 

consists of grids which contain blocks of memory, which contain memory threads. 

Now, the grids could be two-dimensional, x- and y- dimensions. The blocks in each 

grid could be three-dimensional, x-, y-, and z-dimensions. This corresponds to having 
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three different types of threads in a block, x-, y-, and z-threads. This leads to a very 

intricate way of accessing data on the GPU and carrying out the calculations needed. 

The above brief layout of the memory structure in CUDA will allow us to 

understand what a one-dimensional parallelization of the integration method entails. 

Since we are only dealing with an array that has one-dimension, we only need memory 

blocks that are one dimensional to access the data within the array. So, once the array 

of interest is copied on the GPU, we could access its element via threads. This is 

possible by using functions that are pre-defined in the CUDA platform. For example, 

in the one-dimensional case, we could use blockIdx.x and threadIdx.x to traverse 

through the one-dimensional array. BlockIdx.x tells us which memory block we are 

accessing, and the threadIdx.x tells us which thread has access to which element in the 

memory block we are accessing. 

Theoretically, the one-dimensional algorithm is sufficient enough to be 

implemented in the program of interest. There are two main reasons why we would 

want to expand our algorithm to more than one-dimension. The first reason is that the 

program with which we are working has up to six-dimensional arrays. It would be a 

much easier implementation if we are able to handle multidimensional arrays. The 

second reason is that by using all the available dimensions in a block, we might be able 

to get a much more efficient algorithm. As of right now, we are only using the x-

dimension and there are two more dimensions available for us to use. 

We started to investigate implementing a two-dimensional algorithm for the 

numerical integration method. This was a challenging task, since now we have to also 
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worry about a y-dimension in addition to the x-dimension. It took a lot of time to figure 

out how to properly traverse a two-dimensional array on GPU. This requires thinking 

about how to make thread and block indices of each dimension communicate with each 

other and read information from the array properly and in the necessary order. Many 

ideas were attempted and finally we were able to accomplish the goal of developing a 

two-dimensional algorithm. The next thing was to introduce a new dimension to the 

algorithm. At this point things started to get a little abstract and thinking about the 

memory structure became more complex and less intuitive. A three-dimensional 

algorithm was developed, but the third dimension was computed serially. So, we did 

not anticipate a large speedup in the code. 

The serial code contained up to six dimensional arrays, which allowed for better 

efficiency when run on CPU. As mentioned above, our parallelization algorithm could 

only handle three dimensional arrays, with the third dimension computed serially. We 

faced difficulty when we tried to implement our three-dimensional algorithm after 

reducing the arrays in the serial code to a maximum of three dimensions. Dr. Jeremy 

Holt flattened all array to only one dimension, which allowed for a much easier 

implementation of our one-dimensional algorithm. 
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III. Results and Conclusions 
 
 

 The results of the parallelized program vs. the serial program are summarized in figure 

3. The plot shows the time it takes a program to run on CPU vs. GPU as a function of mesh 

points. These mesh points could be thought of as precision points. The more precise you would 

like the final answer to be, the more mesh points you need. Also, the higher precision points 

require more computational time. We could see that the GPU code performs much better than 

the CPU code at any given number of mesh points, and especially when we get to larger mesh 

points. This is partially due to the fact that GPU can accommodate to higher memory demand 

than CPU can. 

 

 

 

 

Toward the end, we tried to see if we can make the program more efficient by using more 

sophisticated parallelization algorithms. These algorithms were complicated, and a lot of time 

would have been needed to understand them. We were approaching the end of our research 

Figure 3: Comparison between CPU and GPU 
performance 
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time, so we decided that the results we obtained were good, and future optimization to the code 

would be needed. 
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