

Toward Microscopic Equations of State for Core-Collapse Supernovae

from Chiral Effective Field Theory

THESIS

Presented to the Faculty of the Department of Physics and Astronomy
in Partial Fulfillment of the Major Requirements

for the Degree of

BACHELOR OF SCIENCE IN
PHYSICS

© 2018 Middle Tennessee State University
All rights reserved.

The author hereby grants to MTSU permission to reproduce

and to distribute publicly paper and electronic
copies of this thesis document in whole or in part
in any medium now known or hereafter created.

ii

Toward Microscopic Equations of State for Core-Collapse Supernovae from Chiral

Effective Field Theory

Signature of Author:

Department of Physics and Astronomy
May, 2018

Certified by:

Dr. Jeremy W. Holt
Professor of Physics & Astronomy

Thesis Supervisor

Accepted by:

Dr. Ronald Henderson
Professor of Physics & Astronomy

Chair, Physics & Astronomy

iii

ABSTRACT

Chiral effective field theory provides a modern framework for understanding

the structure and dynamics of nuclear many-body systems. Recent works have had

much success in applying the theory to describe the ground- and excited-state

properties of light and medium-mass atomic nuclei when combined with ab initio

numerical techniques. Our aim is to extend the application of chiral effective field

theory to describe the nuclear equation of state required for supercomputer simulations

of core-collapse supernovae. Given the large range of densities, temperatures, and

proton fractions probed during stellar core collapse, microscopic calculations of the

equation of state require large computational resources on the order of one million CPU

hours. We investigate the use of graphics processing units (GPUs) to significantly

reduce the computational cost of these calculations, which will enable a more accurate

and precise description of this important input to numerical astrophysical simulations.

iv

TABLE OF CONTENTS

Abstract …………………………………………………………………………….. iii

List of Figures ………………………………………………………………………. v

I. Introduction ……………………………………………………………………... 1

II. Methods …………………………………………………………………………. 4

III. Results and Conclusions ………………………………………………………... 11

IV. References ……………………………………………………………………… 13

v

LIST OF FIGURES

Figure 1: First-, second-, and third- order diagrammatic contributions to the ground

state energy density of nuclear matter. The wavy lines indicate the (antisymmetrized)

density-dependent NN interaction derived from chiral two- and three-body forces [1]

…………………... 2

Figure 2: Comparison between CPU and GPU performance....................................... 3

1

I. INTRODUCTION

The mass of a star is a fundamental factor that determines its evolution. More

massive stars burn through their fuel more quickly than less massive ones. Stars live

by maintaining a balance between gravity, which acts to make the star collapse on itself,

and pressure from the heat release by fusion in the core of the star, where hydrogen

atoms are fused together to produce helium atoms. Stars that are 10 – 30 solar masses

are able to fuse nuclei up to iron. However, the fusion process stops at iron because

fusing iron is not energetically favorable. It requires the input of energy instead of

releasing energy. After reaching an iron core, these 10 – 30 solar mass stars end their

life in a violent and spectacular event we call a supernova [3].

 Initially, the iron core in the star is supported against gravitational collapse by

electron degeneracy pressure. Once the iron core reaches the Chandrasekhar limit, 1.4

solar masses, the star becomes unstable and gravity takes over and causes the star to

collapse. Short-range nuclear forces halt the collapse of the star, which creates a

shockwave that rebounds outward. In the core, electron capture occurs, where an

electron and a proton come together to make a neutron and electron neutrino. These

neutrinos carry the majority of the energy from the core outward and leave behind a

dense core full of neutrons. A combination of the shockwave and the neutrinos

travelling outward could yield to a potentially successful supernova. What remains

behind is a neutron star or, in an extreme case, black hole [3].

 The conditions that yield a successful supernova are still not well understood.

We are not able to directly examine the physical processes inside the core of a star that

2

produce a supernova. To gain a better understanding of these processes, we need to rely

on accurate and efficient numerical simulations of core-collapse supernovae.

Fortunately, we have achieved great advancement in numerical algorithms and

computational resources that will help achieve accurate and efficient simulations. In

our present time, graphics processing units (GPUs) are being used to optimize and

speedup programs and simulations that require a long runtime.

 Producing accurate simulations of core-collapse supernovae requires the input

of many ingredients that are often very computationally intensive, such as neutrino

transport, electron capture during core-collapse, etc. One important ingredient is the

microphysical equation of state of nuclear matter. Simulations that use realistic nuclear

equations of state have demonstrated promising results, which indicate the importance

of these equations of state to the physics of core-collapse and even to times after the

collapse. Microscopic calculations of the equation of state require large computational

resources due to the large range of densities, temperatures, and proton fractions that

need to be considered during stellar core collapse. To date, this has prohibited the use

of microscopic equations of state in core-collapse simulations, and instead only

phenomenological equations of state have been implemented [4].

In this study, we aim to extend the application of chiral effective field theory to

describe the nuclear equation of state required for supercomputer simulations of core-

collapse supernovae. Chiral effective field theory is an approximation to quantum

chromodynamics, which provides a modern framework for understanding the structure

3

and dynamics of nuclear many-body systems. We use sophisticated nuclear two- and

three-body forces to calculate the equation of state in many-body perturbation theory.

4

II. Methods

In this study, we investigate the use of GPUs to speed up codes for computing

the third order perturbative contribution to the ground state energy density of nuclear

matter. This is one of the inputs needed to generate an accurate equation of state of

nuclear matter for simulations of core-collapse supernovae. The code before our study

ran serially on central processing units (CPUs). It was optimized to utilize all the

computing power CPU processing offers, but faster computational methods are more

desirable.

 GPU processing is explored in this project to potentially offer a significant

speedup to the current best optimized version of the serial code. The main reason why

GPUs could offer the speed up needed lies in the way that they differ from CPUs in

processing computational tasks. CPUs consists of a few cores that are intended to

process tasks sequentially, which could potentially take a very long time when dealing

with millions of calculations. On the other hand, GPU’s consist of many small cores

that are designed to do tasks in parallel. This allows for multiple tasks to be executed

simultaneously. However, GPUs are inefficient at accessing memory. Whereas CPUs

can quickly access hundreds of Mbytes of RAM, GPUs are limited to the Kbytes of

easily accessible memory. Here, we attempt to harness the potential speedup offered

by the parallelism feature of GPUs to execute large amounts of computations needed

for our serial code.

 We are able to compute the energy density of nuclear matter using perturbation

theory. Unlike simple systems such as the hydrogen atom and the harmonic oscillator,

5

either there is not a Hamiltonian which we could use to find the eigenvalues and

eigenstates of an interacting system, or the Hamiltonian for the system is too

complicated to solve. In some cases, the interacting system is very close to a system

whose Hamiltonian we know, such as the hydrogen atom. We are then able treat the

small differences between the two systems as perturbations and approach them in a

systematic way. The Hamiltonian of the system will then consist of two parts, the

perturbed and unperturbed Hamiltonian. The eigenvalues and the eigenstates of the

system could then be described as a power-series expansion, and for the expansion to

be useful, successive terms in the series must grow smaller [5]. In our case, we know

the Hamiltonian associated with the nuclear force. The problem is that the Hamiltonian

is too complicated to solve for the eigenvectors and eigenvalues of an interacting many-

body system. Therefore, we start with a system we can solve, noninteracting Fermions,

and perturbatively build in the nuclear force as corrections. We then get the following

free energy perturbation series

𝐹"(𝑇, 	𝜌, 𝛿) = 	𝐹"+(𝑇, 𝜌, 	𝛿) + 𝜆𝐹".(𝑇, 𝜌, 	𝛿) + 𝜆/𝐹"/(𝑇, 𝜌, 	𝛿) + 𝜆0𝐹"0(𝑇, 𝜌, 	𝛿) + 𝒪(𝜆2)

where 𝑇 is temperature, 𝜌 is the total nucleon density, and 𝛿 is the isospin-asymmetry

parameter [2]. The diagrammatic contributions to the ground-state energy density of

isospin-symmetric nuclear matter is shown below

6

 The code for computing the third order perturbative contribution to the ground

state energy density of nuclear matter needs to compute a lot of integrals using

Gaussian Quadrature Numerical Integration Method. This method involves using many

nested for-loops to compute the integrals, which could potentially make the code run

for hours. The amount of time the code runs depends on the precision desired for the

integrals being computed. We aim to develop a basic algorithm that will offer a

considerable computational speedup.

 The serial program contains thousands of lines of code. We were only interested

in a group of nested for-loops, that were used within the code. These nested for-loops

needed to traverse and perform computations on arrays that were up to six dimensions,

and each array could have hundreds of thousands of elements. This is the type of

problem that GPUs could handle efficiently. Our algorithm needs to parallelize nested

for-loops, which would allow access to thousands of elements at the same time and

performing mathematical operations on them simultaneously.

 CUDA, a parallel processing platform invented by NVIDIA, is used to

parallelize portions of the code. Our aim is to create a subroutine in CUDA that contains

Figure 1: First-, second-, and
third- order diagrammatic
contributions to the ground
state energy density of nuclear
matter. The wavy lines indicate
the (antisymmetrized) density-
dependent NN interaction
derived from chiral two- and
three-body forces [1].

7

the parallelization algorithm. This subroutine could then be called in the serial code by

passing the right parameters into it. In doing so, we have a generalized subroutine that

could be called in any program we want with the appropriate modifications.

Most of this project focused on parallelizing Guassian Quadrature Numerical

Integration Method. We wanted to approach parallelizing the numerical integration

method by starting with a simple case and then gradually move on to more complicated

cases. This allowed us to enhance our understanding of how the CUDA platform works,

and the program was easier to troubleshoot. These troubleshooting skills were then

extended to more complicated versions of the Gaussian Quadrature Numerical

Integration Method.

The first and easiest case we investigated was numerically integrating a one-

dimensional function. This simply means that we had to only worry about a function

that depended on only one variable, which in computer language means that we only

needed a one-dimensional array. This simplified parallelizing the integration method

since the parallelization process was reduced from being multidimensional to only one-

dimensional.

As mentioned before, parallelization is about how to use the GPU memory

available to accomplish a task in an efficient manner. The CUDA memory structure

consists of grids which contain blocks of memory, which contain memory threads.

Now, the grids could be two-dimensional, x- and y- dimensions. The blocks in each

grid could be three-dimensional, x-, y-, and z-dimensions. This corresponds to having

8

three different types of threads in a block, x-, y-, and z-threads. This leads to a very

intricate way of accessing data on the GPU and carrying out the calculations needed.

The above brief layout of the memory structure in CUDA will allow us to

understand what a one-dimensional parallelization of the integration method entails.

Since we are only dealing with an array that has one-dimension, we only need memory

blocks that are one dimensional to access the data within the array. So, once the array

of interest is copied on the GPU, we could access its element via threads. This is

possible by using functions that are pre-defined in the CUDA platform. For example,

in the one-dimensional case, we could use blockIdx.x and threadIdx.x to traverse

through the one-dimensional array. BlockIdx.x tells us which memory block we are

accessing, and the threadIdx.x tells us which thread has access to which element in the

memory block we are accessing.

Theoretically, the one-dimensional algorithm is sufficient enough to be

implemented in the program of interest. There are two main reasons why we would

want to expand our algorithm to more than one-dimension. The first reason is that the

program with which we are working has up to six-dimensional arrays. It would be a

much easier implementation if we are able to handle multidimensional arrays. The

second reason is that by using all the available dimensions in a block, we might be able

to get a much more efficient algorithm. As of right now, we are only using the x-

dimension and there are two more dimensions available for us to use.

We started to investigate implementing a two-dimensional algorithm for the

numerical integration method. This was a challenging task, since now we have to also

9

worry about a y-dimension in addition to the x-dimension. It took a lot of time to figure

out how to properly traverse a two-dimensional array on GPU. This requires thinking

about how to make thread and block indices of each dimension communicate with each

other and read information from the array properly and in the necessary order. Many

ideas were attempted and finally we were able to accomplish the goal of developing a

two-dimensional algorithm. The next thing was to introduce a new dimension to the

algorithm. At this point things started to get a little abstract and thinking about the

memory structure became more complex and less intuitive. A three-dimensional

algorithm was developed, but the third dimension was computed serially. So, we did

not anticipate a large speedup in the code.

The serial code contained up to six dimensional arrays, which allowed for better

efficiency when run on CPU. As mentioned above, our parallelization algorithm could

only handle three dimensional arrays, with the third dimension computed serially. We

faced difficulty when we tried to implement our three-dimensional algorithm after

reducing the arrays in the serial code to a maximum of three dimensions. Dr. Jeremy

Holt flattened all array to only one dimension, which allowed for a much easier

implementation of our one-dimensional algorithm.

10

III. Results and Conclusions

 The results of the parallelized program vs. the serial program are summarized in figure

3. The plot shows the time it takes a program to run on CPU vs. GPU as a function of mesh

points. These mesh points could be thought of as precision points. The more precise you would

like the final answer to be, the more mesh points you need. Also, the higher precision points

require more computational time. We could see that the GPU code performs much better than

the CPU code at any given number of mesh points, and especially when we get to larger mesh

points. This is partially due to the fact that GPU can accommodate to higher memory demand

than CPU can.

Toward the end, we tried to see if we can make the program more efficient by using more

sophisticated parallelization algorithms. These algorithms were complicated, and a lot of time

would have been needed to understand them. We were approaching the end of our research

Figure 3: Comparison between CPU and GPU
performance

11

time, so we decided that the results we obtained were good, and future optimization to the code

would be needed.

12

IV. REFERENCES

1. J. W. Holt and N. Kaiser, “Equation of State of Nuclear and Neutron Matter at
Third-Order in Perturbation Theory from Chiral Effective Field Theory”,
Physical Review C 95 , 034326 (2017).

2. C. Wallenhofer, J. W. Holt, and N. Kaiser, “Thermodynamics of Isospin-
Asymmetric Nuclear Matter form Chiral Effective Field Theory”, Physical
Review C 92, 015801 (2015).

3. Müller B., Hüdepohl L., Marek A., Hanke F., Janka HT. (2012) The SuperN-
Project: Neutrino Hydrodynamics Simulations of Core-Collapse Supernovae. In:
Nagel W., Kröner D., Resch M. (eds) High Performance Computing in Science
and Engineering '11. Springer, Berlin, Heidelberg

4. Hix W. R., Lentz E. J., Endeve E. et al 2014 AIPA 4 041013

5. “Time-Independent Perturbations.” A Modern Approach to Quantum
Mechanics, by John S. Townsend, University Science Books, 2012, pp. 381–382.

