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ABSTRACT 

The problem of determining the existence of a path between vertices in problem domains 

with large graphs is outpacing the increases in commonly available processor speeds. 

This presents a growing need for pathfinding algorithms which can capitalize on parallel 

approaches. These approaches are often based on parallelizing the search on a single 

machine. However, some problems may be so large that it becomes appropriate to use 

distributed computing. This research explores the Distributed Fringe Search algorithm as 

a more conducive approach for pathfinding problems over multiple distributed machines. 

The work presented here is novel in its extension of DFS by developing the Distributed 

Computing Fringe Search. Additionally, this research proposes the Hash Distributed 

Fringe Search that utilizes space abstraction techniques for work distribution and a more 

uniform memory requirement. Finally, results are presented to show the impact of the 

approaches in large searches; these results inform suggestions for future work. 
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CHAPTER I 

INTRODUCTION 

Pathfinding is a problem which has an array of applications from the small to the 

extremely large scale. The problems themselves are useful for representing domains in 

which there is a known beginning point and a desired end point which must be reached 

through a series of decisions. These decisions may be movement directions such as in the 

case of a real or virtual agent navigating some space. Alternatively, these decisions can 

be used in puzzle style problems, such as the popular sliding tile puzzle in which pieces 

must be rearranged to form a desired pattern; in this case the decisions yield different 

states to generate a ‘path’ in higher special dimensions. Common applications for 

pathfinding include video games in which one or more non-player character (NPC) must 

be able to traverse the game environment through an effective and efficient route. The 

pathfinding problems posed by these and similar scale applications are designed to be 

solvable by a single machine using tried and tested algorithms which have been 

optimized for such use cases. However, there are an increasing number of applications 

which consider a much larger state space that is impractical at best and infeasible at worst 

to solve on a single machine system, even with a powerful CPU [1-2, 4, 6]. For problems 

such as these, it is desirable to be able to use distributed computing where multiple 

processing elements are connected over some network. However, the distributed nature 

of these systems brings with it considerations that must be accounted for that are 

naturally not present in single machine systems. Such considerations require more 

nuanced approaches for implementing most non-trivial algorithms including those related 

to pathfinding. This is primarily due to the separate memory spaces of such systems and 
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the unique challenges that this presents. These challenges also exacerbate the difficulty of 

attempts to parallelize such algorithms to utilize the clustered processing elements. Given 

these challenges, the research conducted here explores the application of pathfinding 

algorithms that are more adaptable to distributed computing environments. The 

adaptability of such algorithms can then be leveraged to provide an approach that is 

capable of handling larger scale problems than a standard parallel implementation of the 

original pathfinding algorithm. This implies that the efficiency of the solution is not the 

entire goal with the approaches developed here. While it is certainly the intent to make 

effective algorithms for distributed pathfinding applications, it is also focused on the 

ability to potentially handle such large problems that would not even be feasible on a 

single system due to memory limitations. Because of this, the cost of efficiency may be 

considered acceptable since it provides a means of processing much larger problems 

overall. 

The basis for the research conducted here was formed during earlier research into 

the family of current pathfinding algorithms. That work focused on identifying parallel 

and distributed pathfinding algorithms with the goal of extracting the various techniques 

used to achieve the parallelization. This prior exploration resulted in identifying common 

challenges and solutions related to the parallelization of pathfinding algorithms as well as 

discovering certain algorithms that used approaches which allowed for the extension 

from a purely parallel approach to a distributed one. The previous work, although 

unpublished, was also beneficial in focusing the efforts of this study by informing the 

creation of a foundation for the topics studied in this work. Of the approximately 20 

different algorithms that were surveyed, the majority utilized a centralized planning 
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algorithm with synchronous operations within a shared memory environment. In this 

context, centralized planning refers that a single process that is capable of interpreting the 

problem space and planning a route through it. The synchronous nature refers to how the 

algorithm expands through the search space and may communicate with multiple 

‘branches’ of a search; some algorithms may make use of multiple searches executing in 

parallel and then attempt to somewhat stitch them back together for an ultimate, although 

possibly sub-optimal, path [3-6]. Because most of these algorithms were based on a 

symmetric multiprocessor (SMP) system, further investigation was needed to determine 

how some, if any, of these approaches were conducive to being extended to distributed 

environments. This was a somewhat challenging task, considering the fundamental 

differences in design decisions that are required in significantly different processing and 

memory systems. To accomplish this however, each candidate algorithm was reviewed 

individually in order to gain a better understanding of the nuances of the approaches. 

Specifically, the algorithms were studied to determine their potential for scalability to a 

distributed system and any other facets of interest that they may provide. This process 

concluded that the ideal pathfinding algorithm for parallel processing in a distributed 

environment is one that minimized the need for dependency between concurrently 

executing processes throughout the execution of the algorithm. 
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CHAPTER II 

BACKGROUND 

 The following sections will provide background information as it relates to the 

area of pathfinding algorithms, optimization approaches, and the specific algorithms that 

are expanded upon in this research. This section begins with a summary of the general 

pathfinding algorithms that are widely accepted and utilized. It should be noted here that 

the algorithms summarized in this section by no means represent an exhaustive list of 

pathfinding algorithms; instead this should be taken as a selection of those algorithms 

which have proved adaptable and which have provided the basis for other versions 

featuring various optimizations for speed and/or memory usage. Following this, 

information is provided regarding the two architectural differences for memory systems 

that arise when devising algorithms suited to distributed systems. These differences are 

significant in understanding the limitations they impose for the environment in which the 

algorithms will be processed. Finally, this section provides information on the basic 

approaches that are used in the field of parallel processing. In a distributed computing 

environment, a primary concern is the minimization of intra-network communications 

between processing elements. By minimizing these communications, less overhead is 

created and the processing elements can be dedicated to process the algorithm more 

efficiently. This is a significant concern that must be considered when designing the 

parallelization of an algorithm that is suitable for a distributed computing environment. 

These and other concerns that are less relevant in single machine systems will be 

discussed in more detail in the following sections as they are extremely relevant and 

inform the process taken in developing the enhancements that are presented in this study. 



5 

 

Pathfinding Algorithms 

Pathfinding algorithms are designed to find the best possible path from a source to 

a destination within some graph structured environment. This path is usually intended to 

be the shortest or at least very close to it. In the context of pathfinding algorithms, the 

shortest path is said to have the ‘optimal’ cost, in which cost refers typically refers to the 

distance traveled; although cost may be based on other factors, the problems studied here 

are grid based searches and  distance is appropriate. The most basic pathfinding 

algorithms are commonly referred to as uninformed searches. There are two basic 

approaches for these searches, each having their respective strengths and weaknesses. As 

suggested by the name, a depth first search (DeFS) is conducted by visiting a vertex 

followed by subsequently deeper children until a leaf or terminal vertex is reached. A 

benefit of this type of search is that it may find an acceptable solution quickly without 

needing to expand much of the unused space. However, this is not guaranteed to be the 

case and it is in fact common that it may need to search a large amount of the space; 

additionally it is susceptible to sub-optimal solutions where the path identified is not the 

cheapest. Alternatively, a breadth first search (BrFS) visits all of the immediate children 

of a vertex before proceeding to a deeper layer. The benefit of this type of search is most 

notably that it can provide an optimal solution. In terms of processing time, it will find a 

solution as fast as the worst case of a DeFS applied to the same problem. So while it may 

not be any faster than its depth-based alternative, it is no slower and is capable of 

providing better solutions. There have been various attempts at utilizing both of these 

kinds of algorithms for distributed and parallelized versions. There have also been efforts 

at improving these algorithms such as Iterative Deepening Depth First Search (IDDFS) 
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where the depth of the search is increased gradually until the goal is found. IDDFS has a 

smaller memory footprint than the basic BrFS and allows for optimality guarantees. 

However, this requires repetitive processing of nodes due to its iterative nature [2, 5-6]. 

Similar to the BrFS approach, Dijkstra’s algorithm is one of the most established for 

pathfinding and is considered a best first search (BeFS) algorithm [5-10]. A BeFS is 

classified where the most ideal vertices are searched first. In the case of the Dijkstra’s 

algorithm, it operates by selecting the vertex with the cheapest cost to visit at each new 

expansion. Uninformed searches frequently require a large amount of vertex visits in 

order to locate the goal vertex because, by definition, they have no information about 

what areas are best to search. Conversely, informed searches use some additional 

information in the search so as to hopefully guide it to the goal and reduce the amount of 

vertices searched. Arguably the most popular informed BeFS algorithm is the A* 

algorithm, which is itself based on Dijkistra’s algorithm. 

Because the A* algorithm and its characteristics are so commonly applied to and 

borrowed from, they will be examined in more detail here. The A* algorithm improves 

upon the basic pathfinding algorithm by including the notion of a ‘heuristic’ component 

to guide the search of the space. This additional heuristic measurement is used to 

prioritize the assessment of the nodes within the search space where each vertex has a ‘F’ 

cost which is equal to the addition of a ‘G’ cost representing the incurred cost plus the 

‘H’ cost of the heuristically estimated remaining cost. Under certain conditions, a 

heuristic may reduce the amount of space searched. These heuristic measurements can be 

computed in various ways; for grid based problems, the Euclidean and Manhattan are the 

most common methods and the latter can be effectively extended to other problems such 
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as the sliding tile puzzle. The former heuristic is computed as the straight line distance 

between the current point and the goal point whereas the latter is computed as the sum of 

the lateral distances between the two points. For problem domains that are not based in a 

geometric space, such as puzzle solving applications, a heuristic can be developed that 

provides a reasonable approximation of the ‘moves’ remaining until a goal state can be 

achieved. Care must be taken when designing such heuristics however, because if a 

heuristic is allowed to overestimate the actual cost it no longer qualifies as ‘admissible’ 

and therefore can produce sub-optimal solutions. This means that a heuristic has to be 

chosen very carefully in order to provide a reasonable expectation of the total distance yet 

to traverse to the destination. It is desirable that the heuristic provide an approximate 

underestimation of the actual cost remaining to the goal. By doing this, the heuristic 

qualifies as admissible, that is, it should always estimate less than the actual number of 

edges necessary to traverse. With the use of heuristics, if the function computes an 

inadmissible heuristic value, then A* may expand fewer nodes overall but may also 

produce a suboptimal path. Absent a heuristic function being used or in the case that the 

heuristic measurements are all zero, A* becomes a Uniform Cost Search in which nodes 

are expanded based on priority of their G cost. 

The initial step of the A* algorithm is to assess the beginning state of the problem 

space. The beginning state, i.e. the source from which the path is to be found, is queued 

into the open list for processing. This open list represents a container for vertices that are 

in a queue to be processed; this queue is sorted based on the F values of the nodes. From 

this point, there are just a few key actions that are repeated on each element pulled from 

the open list until a goal state is reached; in the event that the open list is emptied before 
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the destination is reached, it signals that no ‘path’ exists between the goal and the start 

state. For each element removed from the queue, it is first compared to the goal state, if 

the end has been reached then it retraces the path using the element’s reference to its 

parent. Otherwise, the element is placed in the closed set and its adjacent elements are 

processed. As each new element is processed, the algorithm expands the vertex by 

looking at its neighbor states; these states represent the potential states that can be 

reached from the current state. Each of these ‘children’ is then assigned their appropriate 

information, much of which is based on their ‘parent’ including a reference back to that 

state. Information about the parent is necessary for reconstructing the path taken to solve 

the problem. At this point, each child is then examined against the closed set. This is 

necessary to prevent the algorithm from falling into cycles and helps prevent unnecessary 

vertex creation. If a child is already in the closed set, this means that it represents a state 

that has already been expanded, and therefore does not need to be examined again. 

Because of the priority sorted open list, once a vertex has been closed it can be 

considered to have found the optimal route to that vertex from the given start; this means 

that if the same state is seen again and has been closed, there is no benefit in reevaluating 

it. Any children that were not in the closed set are then added to the open list where they 

are sorted by priority among the elements already in the list. At this point, the loop can 

then repeat itself by pulling elements from the open list and examining them until the 

goal is reached or the queue is empty.  

The A* algorithm is capable finding paths relatively quickly due to its informed 

nature, assuming an admissible heuristic, and with the assistance of the open and closed 

lists, the former of which is priority sorted to search the most ideal vertex at each 
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iteration. Because open and closed lists are used to retain information about which nodes 

have been visited before, an A* search will essentially ignore nodes that have total cost 

estimates until those costs rise to the front of the priority sorted open list. In this way, the 

informed search is guided through the space and can perform well with a good heuristic. 

Although this assists the search by limiting the area searched, it is associated with two 

significant costs. First is the memory requirement necessary to retain each vertex visited 

in the open list and all expanded nodes in the closed list. This means that for large 

problem domains, the memory requirement will grow significantly even for relatively 

direct paths due to the exponential nature of the search expansion; for extremely large 

searches this could exhaust the memory resources of a single machine system. The 

second main cost associated with A* is that of re-sorting the open list after each iteration. 

As the number of nodes in the open list grows exponentially, the time needed to sort the 

open list after each list grows commensurately; even with optimized sorting routines, this 

is a significant cost to the overall search since it must be performed after each iteration. 

While this sorting can be acceptable for some applications, it is extremely inhibitive to 

parallelization, especially when attempting to use distributed means. 

As a response to these challenges, a modified approach to A* uses the iterative 

deepening technique which operates with A* similar to how IDDFS operates with DeFS. 

This deepening approach is combined with A* to conduct the typical search pattern with 

a depth threshold based on the heuristic estimate of the beginning point. The significant 

difference between this and classic A* is that no supporting open and closed lists are 

used. To account for these complications, IDA* uses the iterative deepening technique to 

gradually expand the search under some threshold cost which is computed by A* in the 
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typical form as the sum of the incurred and estimated costs. Once all nodes have been 

expanded along the search up to the threshold, a single iteration has been completed. If 

the space under that total cost is searched and the end point is found, the search 

terminates. If not, the search restarts from the beginning with the threshold increased to 

the minimum of the estimated next steps; during each iteration, the next highest cost of 

expansion that is above the current threshold is recorded to provide this increase. The 

iterative approach provides for a memory savings since at each iteration, only the nodes 

under the current heuristic estimate need to be stored in memory for processing. Because 

the search is completely restarted with a new threshold for each iteration, the open and 

closed lists are not required since all nodes will be revisited with the addition of those 

between the previous threshold and the newly increased one for the next iteration. 

Additionally, because no open list needs to be maintained, there is no sorting in between 

each iteration. Although this algorithm can function without an entire open list, some 

form of cache is typically used to prevent processing nodes in cycles repeatedly; however 

this can be implemented as a hash table of the states and is still significantly less 

expensive to maintain than an open list and associated sorting. The tradeoff with not 

having the costs of open and closed lists is that the algorithm repeats itself with each new 

iteration, so there is much redundant processing.  

Although it is possible to parallelize A* on a single machine environment, it 

proves non-trivial and frequently requires tuned data structures that are optimized for the 

application. Due to the required tuning, a naïve parallel approach is very likely to prove 

less efficient than a comparable serial one [5, 7-10]. This is primarily due to the 

challenges to parallelization posed by the two aforementioned factors, i.e. maintaining 



11 

 

open and closed lists as well as resorting the former list after each iteration. Intuitively, it 

may seem that a multiprocessor approach could allow each processor to pull an item from 

the open list, process its adjacencies, i.e. determine which vertices are connected to it, 

and update the open and closed lists respectively. However this has two less obvious 

implications that hinder such an approach. First is the common issue with parallel 

approaches in that, if each processor were to expand a vertex and update the open and 

closed lists, access to those data structures must be regulated to prevent data hazards on 

reading and writing the data. For instance, a processor may check the closed list to see if 

a vertex has been processed immediately before another processor marks it as so, 

resulting in redundant processing. A similar and possibly more severe situation can occur 

on the open list side if a processor were to process the adjacencies of a vertex and update 

the open list just after another processor has taken the ‘best’ element from the open list 

because it did not have the newly processed data. The impact of the later situation is a 

possible loss of optimality in the search due to the fact that one processor may find a sub-

optimal end point while the actual optimal end point has yet to be processed. 

Applications in which pure optimality is not required may accept a small sacrifice in 

accuracy or may opt to use a strategy to regain the optimality by requiring a solution to 

be held until it can be guaranteed optimal. Besides the issues of redundant processing to 

loss of, or at least delayed, optimal path finding, the more serious issue is related how 

each processor is allowed to access the lists to actually perform the updates. This relates 

back to the issue of regulating access to the data, which is typically achieved through 

memory locks. Although regulating access to the data structures will ensure that only one 

processor can read from or write to it at a time, there is almost inevitably a significant 
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amount of time spent idle by each processor waiting on acquiring a lock. This is an issue 

that is not solvable by simply allocating more processing elements, since each new 

processor will still need to wait for its turn to access the data as well. Altogether, these 

issues represent the challenges faced when attempting to adapt the A* algorithm directly 

for parallelization. Combined with the high memory requirements for A* searches and 

parallelization perils an interesting opportunity is present for exploring distributed 

computing applications of attempting to accommodating these challenges; this thesis 

explores such attempts further. 

Because the open and closed lists can place a large burden on memory for large 

search space, a natural suggestion would be to use a distributed system where the 

memory of multiple systems can be applied to the problem. Of course, some interface 

must be used to handle the passing of data back and forth, but it seems reasonable that the 

additional memory should make the problem more easily solvable. However, it is the 

sorting requirement of the A* open list that complicates this because, even though it is 

feasible to distribute the open list in memory between separate machines, the sorting 

would require a significant level of cross communication. Additionally, even if a 

mechanism is used to allow each processor access to the open and closed lists, there 

would need to be a significant amount of regulated access to ensure consistent processing 

by each processor; this presents a common issue of parallelized algorithms that suffer due 

to inactivity while a processor waits to acquire and subsequently release a lock. Though 

this is again technically possible, the sheer amount of communication between systems 

would be so costly that it can outweigh the benefit of using multiple machines in the first 

place. As a side note, the author came to this realization a few years ago when attempting 
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an intuitive implementation of A* on a cluster; it was this discovery that prompted what 

eventually resulted in the research presented here. Based on this early discovery, a more 

extensive study was conducted of distributed pathfinding problems. 

After exploring specific approaches to parallelizing pathfinding algorithms, two 

candidate algorithms were identified that appeared viable for conversion into a 

distributed computing environment. One algorithm identified was Asynchronous Hash 

Distributed A* which was designed by Burns et al. in 2010 and utilizes space abstraction 

techniques [6]. This approach uses an abstraction function to create a condensed graph 

that preserves the overall connectivity while reducing the states into coarser blocks; state 

space abstraction is a logical approach for representing large spaces and will be discussed 

later in this work. This algorithm was itself based on a pre-existing distributed 

implementation designed by Kishimoto et al. in 2009 [4]. Because such a distributed 

computing approach had already been proposed, the focus turned to another previously 

identified algorithm titled Distributed Fringe Search (DFS) designed by Brand & Bidarra, 

in 2011 [5-6, 9-10]. This approach is itself based on Fringe Search (FS) which is 

described by Bjornsson et al. in 2005 and is itself an enhancement of IDA* as described 

earlier [3]. FS uses the approach of having unsorted Now and Later lists instead of the 

Open and Closed lists as A* uses. The Now list contains all vertices at the fringe of the 

search and then opens any under a given bound where the bound is the heuristic of the 

beginning vertex which is then increased as the search progresses. The Later list contains 

vertices that are encountered while expanding the fringe that have a cost estimate greater 

than the current threshold. This alleviates the issue of a large sorted open list and 

accompanying closed list used for all vertex expansion operations. In terms of 
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parallelization efforts, the lack of requiring a sorted list means that it can be distributed 

without disrupting some order and that additions to any segment of the list does not 

impact a presorted order; this avoids the need for collecting, resorting, and regulating 

access issues as described earlier. These adaptations are applied directly in DFS in order 

to allow for the distribution the Now list data to available cores. In this approach, the FS 

algorithm expands as it would normally, however the Now list is distributed at the core 

level, with each core being responsible for a section of the list. Load balancing is 

accomplished through pointer manipulation of the list with each core taking nodes from 

the center of the list and growing in either direction. The extension of this approach to a 

truly distributed memory system would involve translating the operations that DFS uses 

to allocate portions of the Now list to the cores to instead allocate to separate processors 

in a distributed system. Although this should be relatively straightforward data 

parallelism, in order to minimize any additional communications, a distributed approach 

may benefit from some pre-computation strategies to help inform the potential 

distribution process. Additionally, while the parallel implementation of DFS showed 

some good results, it was noted by the authors that the load balancing was less than ideal, 

as one core typically handled the most nodes. This is due to the nature of the heuristic 

used in A* which extends the space toward the goal. Any modification that could help 

better distribute the space initially may allow for improved work distribution among the 

processing nodes. 

Memory Architectures 

The implementation of A* or other pathfinding algorithms requires a significant 

amount of memory coordination. Depending on the scale of the pathfinding problem 
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being approached, a parallel implementation typically takes on one of two basic memory 

models. Smaller problems that are capable of being solved by a single machine typically 

operate in the shared memory architecture. Common applications for this type of 

pathfinding can be found within games where some AI agent must navigate an 

environment; it is unrealistic to expect that the player will have the computing resources 

to allow the agent pathfinding to be distributed to other machines. Execution within a 

shared memory environment can be convenient because it typically guarantees uniform 

memory access (UMA) which allows for consistent memory access times; this is 

commonly realized on a modern SMP machine. For pathfinding algorithms such as A*, a 

parallel implementation typically involves having separate threads process the next 

available vertex from the open list. Because of the shared memory, this means that each 

processing element, often cores or chips on the same board, are able to access all of the 

memory simultaneously without requiring additional busses or networks. This is 

desirable during the open list, and to a lesser extent, the closed list operations because it 

is often easier to regulate access to these data structures. However, care must be taken to 

assure there is no contention between processing elements, so memory must be locked to 

prevent concurrency hazards. Although this is a manageable process, excessive locking 

and unlocking can cause the benefits of parallelization to be lost to the processing 

elements waiting on lock acquisition [5-10]. Actual implementations of this kind of 

parallelization are often accomplished through the use of the POSIX threads (Pthreads) 

functionality standard or similar framework that allows for thread coordination. 
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Figure 1. Distributed memory diagram [11] 

 

Implementations of pathfinding algorithms such as A* in distributed computing 

environments are by nature operating within a distributed memory architecture. This is a 

basic extension of shared memory in which multiple combined processing elements and 

memory units are connected over a network. It is important to note that these units 

connected among the network are likely operating individually on a shared memory 

architecture which is essentially nested within a higher distributed memory system. This 

architecture is often referred to as distributed memory due to the distributed nature of the 

memory a CPU may access either local data or must request data that will need to travel 

over the network (see Figure 1). The benefit of these combined layers of memory is that 

each processing element on the network can then subdivide its workload to its own local 

processing elements for increased efficiency [1, 4, 6, 11]. Systems that utilize distributed 

memory architecture are designed to use the combined processing power and are ideal for 

computationally intensive applications. Frequently this includes problems in which it is 

unrealistic to wait for a single processing element to perform the computations and/or the 
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size of the graph is so large that it cannot be retained in memory local to a single 

processing element. In order to resolve these issues however, pathfinding algorithms in a 

distributed environment require a different approach than the somewhat more intuitive 

one possible with shared memory. Specifically, this is often accomplished with a 

Message Passing Interface (MPI) to communicate between the processing elements on 

the network; although MPI refers to a standardized version for message passing, any 

available message passing communication method is feasible. Whereas for A* operations 

in a shared memory model, each processing element is able to access the open list and 

also determine if it is currently locked by another processing element, this approach, 

while technically feasible, is ultimately unrealistic. This is because of the sheer amount of 

overhead that would be required in communicating a single open list between all 

processing elements on the network; these communications would need to occur for each 

operation on the open list from each processing element to all other processing elements. 

As other research has noted, excessive locking and communication can actually reduce 

the performance of a parallel implementation to below that of its serial counterpart [5-

10]. To solve this problem, most methods attempt to break up the need for a consolidated 

open list by distributing a subset of the space itself to different processing elements. The 

prime question here is how best to decompose the space in order to avoid data 

dependencies, maintain data locality to the processing element, and maintain optimality 

of the solution. There is no clear evidence indicating that any or all of these factors exist 

in mutual exclusion. 
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Parallelization Approaches 

 In the general terms of parallelization, approaches generally entail either data 

level parallelism (DLP) or instruction level parallelism (ILP). For DLP, the technique 

involves dividing up a large block of data and distributing the pieces out to separate 

processing elements; it should be noted here that the ‘distributing’ does not necessarily 

imply that this occur within a distributed memory model and instead refers to the 

distribution of the workload to the processing elements which may exist on the same 

machine. In the case of ILP, a similar process of distribution occurs except that instead of 

sharing the data, some set of instructions are executed by different processing elements; 

this can be commonly implemented with some kind of multithreaded model such as 

Pthreads. For both of these approaches to parallelization, they may make use of either 

distributed or shared memory [6]. In either memory architecture, it is desirable and 

increasingly feasible to utilize multithreaded programming, as even most commodity 

processors now have multiple cores [5-10]. Given the choice between distributed and 

shared memory implementation, the most appropriate option depends primarily on the 

intended application for pathfinding; often implied in this is also the type of systems that 

the algorithms are even solving the problem in a realistic timeframe. For instance, in the 

case of game environments with large spaces in which AI agents are expected to traverse, 

the game world typically exists within a shared memory system [7-10]. This implies that 

the algorithm will likely be able to access the necessary environment data as needed with 

minimal memory access times [7-11]. Conversely, distributed memory architectures are 

more often used in applications in which the search space is too large to be maintained on 

a single system [1, 2, 4, 6]. Distributed computing systems also frequently use the Single 
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Program Multiple Data (SPMD) model which allows multiple machines to execute the 

same base program where each processor can work on different data or even have slightly 

different tasks (see Figure 2). This brings with it issues related to accessing memory that 

may not reside on the current processing vertex. Not only can the issue of access latency 

due to the network be a problem, but the sheer communication overhead can be 

overwhelming if the memory locality is not managed appropriately. 

 

 

 

Figure 2. Single Program Multiple Data (SPMD) diagram [11] 

 

 Either approach to parallelism of A* frequently involves the management of the 

open and closed lists and possibly during the adjacency generation phase. A serial 

implementation of the A* algorithm assumes that the open list will be processed greedily 

with respect to the F cost of the queued vertices. The subsequent expansion of the ‘best’ 
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vertex will then generate the adjacencies which are expected to, but not necessarily, have 

improved F cost compared to the other vertices in the open list at the time of their 

creation. When the open list of items is processed sequentially this way, an optimal path 

can be guaranteed. As the open list itself is a collection of distinct vertices with no direct 

interdependencies, this makes it a prime choice for attempted parallelization. However, 

when this effort is realized, the guarantee of optimality cannot be maintained. Although 

there are no dependencies between the elements of the queue themselves, the order in 

which they are processed can influence the result. This is because a parallel execution 

which allows a processing element to pull from the open list may result in the expansion 

of a vertex which is along a sub-optimal path to the goal while a different processing 

element has not yet expanded another vertex which is on the optimal path. Because A* is 

inherently based on a serial processing of its open list, it will accept the first ‘goal’ state 

reached and assume that it has discovered the optimal path  assuming that the open list 

was processed according to the necessary order. Because of this issue with adapting A* 

and other pathfinding algorithms to operate in parallel, the typical resolution is to hold on 

to a solution temporarily for a certain number of expansions or until the open list has 

been exhausted under the temporary solution cost. Although this typically involves more 

vertexes being processed, it does allow for the benefit of pruning once a possible solution 

has been found.  These considerations are most significant in shared memory systems in 

which the processing elements are able to access all of the same memory at any given 

point. However in a distributed computing model, each processing element has its own 

memory that it can access directly but may also occasionally need to access memory 

which resides local to a different processing element.  
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CHAPTER III 

METHODS 

 The following section will provide more details on the development and 

implementation of the selected algorithms as well as the design of experiments and 

selection of related metrics for this study. This research began with a desire to propose an 

approach that is more suitable to a distributed computing environment compared to 

existing algorithms. These algorithms may have been designed with parallelization in 

mind, however they were also intended to be executed on a SMP system; so while these 

previous approaches provided a basis for the current work, the research conducted here is 

novel in its enhancement of some of those concepts to a distributed computing 

environment. Initially, this project used information gathered in previous work conducted 

by the author in reviewing algorithms that were either themselves distributed pathfinding 

algorithms or ones that provided interesting approaches to solving pathfinding related 

problems in parallel. Ultimately, that work was condensed into the identification of the 

Distributed Fringe Search (DFS) developed by Sandy Brand [5]. DFS was selected due to 

the fact that the algorithm which it is based on, namely Fringe Search, is innately more 

adaptable to the alterations needed to work within a distributed computing environment. 

Primarily, this is related to the alleviated need of a sorted queue for processing elements 

in addition to being slightly less memory intensive than its A* relative; please refer to the 

Background chapter for a more detailed description on the operational differences 

between A* and FS. It is these features of FS that allowed Brand to develop DFS for a 

multicore approach. By extension, the work conducted here can be thought of as similar 

in that, instead of distributing work to other cores for processing during execution, the 
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work is instead capable of being distributed to another processor that may be on the same 

machine or connected across the network of a cluster. 

Problem Generation 

A need for a consistent set of problems to compare the potential performance of 

algorithms was identified in the early stages of this research. By identifying a standard 

and varied selection of problems, all algorithms developed through the course of this 

project could be tested equitably. Additionally, by providing some variation on the 

structure of the problems themselves, it is possible to highlight behaviors of the algorithm 

that may not be evident with less varied testing problems. In this work, the domain is 

composed of grid based test problems where the vertices are arranged similar to the 

points in a Cartesian coordinate system. All grids points are the standard one unit apart on 

each axis and √2 apart at the diagonals; diagonal moves are allowed in all algorithms 

implemented here. Euclidean distance is used as the heuristic for all algorithms tested in 

this study. For all problems, the beginning point is considered to be at (0, 0) in the 

conceptual upper left corner of the grid and the end point at the lower right corner. 

Because the algorithms presented here are intended for applications which must find long 

paths through large spaces, these constant beginning and end points are reasonably 

justified; testing with randomized paths could have led to arbitrarily short paths which 

would not accurately represent the performance of these algorithms and the problems that 

they are designed to solve. Rather than test each algorithm against a specific time 

benchmark, statistics were gathered from each permutation of the runs including time and 

data about the actual data processed. For the distributed algorithms, additional data points 

were recorded related to the timing the components of interest, especially as it relates to 
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communication that is not present in the serial algorithm. In generating the actual 

problems, they were designed to illustrate the behavior of each algorithm being tested. 

The problems themselves were composed of 300 randomly generated grids of one million 

points each which were built using custom sum of Gaussians problem generator. This 

generator created the grid with a variable number of Gaussian centers and adjustable ‘C’ 

factor where C is represented in the Gaussian function as: 

𝑎ℯ
−

(𝑥−𝑏)2

2𝑐2  

In the application of this function, C controls the relative ‘width’ of the 

distribution. By adjusting this value, the centers become smaller or larger while still 

maintaining the same relative distribution. It is necessary to adjust this factor when tuning 

the input problems themselves. In order to test on a variety of problems, a failure rate of 

5-15% was considered acceptable, i.e. no path exists from the beginning to the end point. 

The complicating factor that arises when this is combined with a variable number of 

centers is that the width must be reduced as the total number of centers is increased so as 

not to completely obscure the path and to stay within the desired failure percentages. It 

was experimentally obtained that for grids with 2, 11, and 20 center points that the 

corresponding C values were 100, 50, and 25 with their respective failure rates of 5, 11, 

and 7% (see Figure 3). 



24 

 

   

Figure 3. Gaussian example problems 

 

The problems themselves are used in testing against each of the three algorithms, 

FS, DCFS, and HDFS. This provides similar data for the performance of each algorithm 

on a standard set of tests. These tests are used to examine the differences in performance 

of each algorithm and provide information about the related causes and effects. For the 

DCFS and HDFS algorithms, the additional testing factor of how many processes were 

allocated to the algorithm becomes relevant. Both algorithms were tested with 4, 8, 16; 

this equates to running on one, one, and two machines in the cluster respectively which 

will be explained in more detail in the following section on the testing environment. 

Selecting the above number of processes allows for the testing of a distributed setting in 

which the distribution is actually occurring over a single machine or two separate 

machines; testing with 4 processors was included as a base point to be similar to the 

original DFS by Brand [5]. In this way, it is intended to elicit discernable behavior that 

may be more difficult to detect with too few or too many processes; future tests on larger 

problems could consider a higher process count as appropriate. 
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Testing Environment 

To accomplish the distributed communications, the approach developed in this 

project utilizes the Message Passing Interface (MPI) framework, more specifically the 

MPICH 3 implementation [12]. Using MPI, the algorithms developed here are able to 

communicate the necessary data to each process regardless of which machine in the 

cluster it may be on; to use MPI terminology, this is often referred to as the ‘rank’ of the 

process which equates to a single processor that is responsible for some part of the 

program. This illustrates the Single Program Multiple Data (SPMD) model that MPI is 

designed for; that is, a single program is written once and different processors can handle 

different datasets while all running concurrently. For all experiments conducted here, the 

environment consists of machines with eight 64 bit processors available on each. For 

instance, if the program were to be run with eight processes, MPI will coordinate how 

and where each of those processes should be executed on. To extend the previous 

example, if a program were run with 16 processes, the first eight would all be allocated to 

one machine and the others to the next machine; by doing this, there is a slight potential 

for saving for some processes that may communicate over the same machine rather than 

over a slower network, but all still using the same MPI standard for communication. 

Although some machines in this cluster were technically capable of running 16 processes, 

only eight of those would have been on real cores with the others being virtualized. 

Because of this, it was decided to use only the number of real processor available on each 

machine so that each machine had the capability to contribute evenly to the overall 

computations. In terms optimizations, the only features used external to the code itself 

was during compilation. All executables were compiled using g++ or mpicxx as 
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appropriate with the additional O2 flag for some possible assembly level improvements. 

Because this flag is an available standard through the compiler itself, this is not 

considered a significant advantage that would distort the testing results in comparison to 

other potential implementations. 

Design Decisions 

Three algorithms were implemented in this research and each was tested on the 

same set of problems, with only small variation being due to additional testing factors 

possible in the distributed algorithms that were not applicable to a serial algorithm. First, 

the serial FS algorithm was implemented as described by its authors [3]. Based on the 

descriptions and pseudocode provided by its authors, the version of FS tested here is 

comparable in its overall design and operation. FS was completed relatively easily and 

tested against several small problems that confirmed its ability to backtrack correctly. 

Additionally, the preliminary FS output showed that it is correctly expanding nodes in the 

fringe based on the original algorithm. By implementing the serial FS first, it allowed for 

the development of a baseline of the algorithm for debugging and testing as well as 

providing a foundation from which to develop DCFS. Additionally, this provided a serial 

basis for comparisons against the distributed versions. Also, any issues with the base 

algorithm could be corrected more easily without the fringe distribution potentially 

confounding the issues. A significant aspect in the design of this algorithm is the use of 

hash table maps to represent the now, later, and cache lists; these associative containers 

allow a string representation of the state to be indexed to a ‘Node’ structure that contains 

all the pertinent data regarding that vertex in the space. By default, these containers 

would be sorted by their string representation. Because this is only a textual name of the 
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state, a custom sorting rule was applied to preserve some notion of ordering between the 

states. According to this rule, the items in the maps are ‘sorted’ internally based on their 

relative row and column in the grid, with ‘lower’ values having lower row then column 

numbers. For instance with a (row, column) ordering, position (1, 2) is considered ‘less’ 

than (2, 1) and similarly (1, 1) is less than (1, 2). Ordering based on this criteria gives rise 

to a more regular processing pattern than the simple ordering that would be the case with 

only the string representation of the state used as the key in the hash table. It is important 

to note here that, while this is a more intelligent ordering than a simple string 

representation of the state, it comes with a cost. While significant tests were not 

conducted to determine the extent of the impact, a few preliminary tests were conducted 

in which the cache map also used the ordering scheme. Even in these few tests, 

processing times increased approximately 40% on the one grid problem tested. Because 

of this, only the now and later maps are enforced with the sorting, since it is necessary to 

maintain for their subsequent collection and distribution. However, it should also be 

noted that imposing the ordering on the cache likely results in a more significant 

reduction in performance since the cache map is being accessed more frequently than the 

Now list and Later list. In terms of the data structure used, this and all other structures 

were from the C++ Standard Template Library (STL). By using standard structures, this 

work presents a general approach for these implementations without needing to rely on 

extensively customized and tuned data structures or external libraries to support the 

processing. Using this map structure, the FS algorithm is capable of performing all 

necessary operations on the now and Later lists as well as retrieving vertex data from the 

cache map. It is worth noting that the implementation developed here differs slightly 
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from the original FS algorithm description. In this project, a different method is used for 

how all of the hash tables are checked and updated during processing; this deviates from 

the pseudocode provided by the original FS authors. Specifically, this relates to the use of 

the cache lists as it relates to the ‘fringe’ list that they describe. In their implementation, a 

single fringe list holds both the now and Later lists that are conceptually separate. 

Complementary to this, the cache contains all data as it is observed when processing the 

adjacencies of each vertex. Since only visiting a vertex adds it to the cache, this is 

significantly different from similar processes such as in A* where it is the full 

‘expansion’ of a vertex that would add it to the closed list. Although the cache is not a 

closed list per se, it does provide a quick access data structure to check which nodes have 

already been seen; this is of special importance in grid based problems due to the high 

interconnectivity of the vertices such as the ones used for testing here. DFS also uses 

similar techniques for maintaining a set of states that have already been closed. 

DCFS Development 

 The original author of DFS was contacted for any additional implementation 

details of the algorithm. Mr. Sandy Brand provided some additional documentation on 

DFS, however no DFS source code is readily available for direct comparison with the 

work conducted as part of this project. This algorithm is the foundation from which the 

DCFS is based. The primary difference here is that DCFS communication is modeled 

after the multicore DFS approach designed by Brand with the necessary alterations to 

enhance its capabilities to work in a distributed computing environment. In the original 

multicore approach of DFS, load balancing was achieved by distributing the Later list 

between four cores using some pointer manipulations allowing each core to have 
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approximately equivalent work for each new iteration. This would allow the work to be 

distributed to other processes, whether they were on the same machine or over the 

network, using MPI constructs; the process here is analogous to the ‘distribution’ of data 

to available cores in the original algorithm. Because distributed communications have a 

much higher overhead cost however, design decisions were made to allow a single rank, 

specifically the master, to begin computations and continue until the Later list is large 

enough to justify the communication to other nodes. Once the Later list reaches the 

predetermined threshold, the master will evenly distribute the data in the Later list with 

any remainder retained by the master in order to minimize communication costs; DCFS 

as tested here uses a constant 1,000 as its threshold value. After the distributed nodes 

have been processed by their respective ranks, the master gathers all of the generated 

Later lists and merges them. In the meantime, the workers will remain idle while waiting 

for new work. The process can then repeat by scattering the Later list if it is over the 

threshold and the ranks will process their share of the nodes. Once a rank finds the goal, a 

special sentinel value is scattered from the master and processing halts; in the likely event 

that a rank other than the master finds the goal, a sentinel value is sent to the master first 

and then scattered. In the event that no viable path exists in the space, the master detects 

that all ranks contributed zero new elements and stops processing. In this implementation, 

the customary designation of MPI rank 0 as the master is used and all other ranks 

operating as workers including the master when it is not busy distributing work to the 

other ranks. DCFS accomplishes this with considerable effort devoted to orchestrating the 

communication to provide for a clear and consistent set of rules for communication. After 

the Now list is exhausted in each iteration, communications are performed (see Figure 4). 
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If master 

If work previously distributed 

Gather processed data from workers 

If no new data or end found 

Kill all 

If collected data < distribution threshold 

Transform for self-process 

If collected data > threshold 

Transform nodes for distribution 

Scatter work evenly to workers and self 

If worker 

If work processed 

Send data back to master 

Wait for new work 

If found or no path 

Kill self 

Transform data for processing 

 

Figure 4. DCFS communication pseudocode 

 

The ‘transformation’ in the above procedure refers to an additional step 

necessitated by the use of MPI in the algorithm. MPI is capable of handling the difficult 

intricacies of packaging the data and sending it to the correct destination. In order for 

MPI to accomplish this however, it requires that the data to be one of the predefined MPI 

types. Although there is a provision for user defined MPI types, which was used here, the 

container of those types itself is more restrictive. Moreover, it is at odds with the hash 

table maps used by the algorithm in processing the vertex data. Because of this, it 

becomes necessary to have a contiguously allocated container, such as a vector, with the 

MPI data to be sent; this requires a ‘transformation’ process to extract the Later list data 

from the hash map to a vector and then the easier process of inserting received data back 

into the hash map. Despite this seeming like a time intensive process just to allow for the 
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communications, the results empirically show that it is a trivial amount of time, even 

relative to the communication time. Additionally, this can be considered as an associated 

cost of operating in distributed environment and one that may be reduced, but is not 

completely unavoidable. However, it is still valuable to take efforts to maximize the 

effectiveness of each communication when it must occur. Another complication brought 

on by MPI is the additional complexity in the communications required to send 

potentially variable amounts of data to the different worker ranks. Because the work is 

split evenly with the exception of the master who retains any remainder, the number of 

vertices is not constant, nor cannot it be known before the current iteration has actually 

completed since it is based on the growing size of the Later list. In order to adjust for the 

unknown amount of data that will need to be sent, two collective communications are 

actually required. In this context, ‘collective’ implies that all ranks must participate in the 

communication before they will all proceed; this also implies that a rank will block and 

remain idle until all process have reached that point. A priming communication is used to 

inform all ranks of how much data they will be sending or receiving so that each rank can 

allocate the correct amount of local memory. Following this, the actual data is sent or 

received between the ranks. Whereas the regular DFS algorithm is able to distribute work 

relatively cheaply due to the cores in the SMP system, a distributed system requires more 

care to be effective and efficient in its communications of data. To balance this 

communication cost, the threshold value is used for deciding when to actually distribute 

work. By using this, the master will continue working with the data until the Later list 

grows to a length were it can be considered worthwhile to take the effort to distribute the 

work. Setting the threshold value itself requires somewhat of a balancing act. A low 
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threshold will allow work to be distributed relatively ‘sooner’ as the search expands, but 

will also cause more communications overall, which are generally the most expensive 

part of the process; this is due to the packaging costs as mentioned before, where data 

must be packed data structures to be sent via MPI, as well as the inevitable latency 

between processes where one may finish before another and then is idle for some amount 

of time while waiting for the other process(s) to finish and participate in the 

communications. Conversely, a high threshold will allow the master rank to delay the 

expensive communications and work on the problem by itself. However, this provides 

poor utilization of the distributed approach since the other processes will remain idle until 

they are given work by the master. Because the master is also a worker, i.e. that it is 

responsible for all work coordination and also participates in the computations on the 

data, a threshold greater than the total vertex size would essentially be the same as 

running the serial algorithm; practically speaking there exists a threshold value less than 

the total size which will also have the same result, since a search can never have all nodes 

in the Later list simultaneously. For the implementation here, the threshold was set to 

1000 which was low enough to cause distribution when there was adequate work to be 

done, yet not so large that the threshold may never be reached and the master would be 

left to do all the work thereby negating the distribution. Ideally, this value should be a 

function of at least the factors of the size of the space and the number of processes 

allocated to the problem. Since the Later list is divided evenly among the processes, with 

the master retaining any remainder in order to minimize communicated data, a constant 

threshold implies that as the number of processes is increased, each process will receive 

less work and in turn process it faster and require communication of their results. While 
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this is good in terms of utilization, it may place a higher burden on the communication 

costs; ideally the value would allow the master to provide enough work that would keep 

each process reasonably busy to lighten its workload. At this point it is important to note 

that this threshold value is not an immediate trigger to cause the distribution. Because the 

underlying FS algorithm continues placing vertices in the Later list until the Now list is 

depleted, it is possible for the Later list to grow larger than the threshold within a single 

iteration; only after the entire iteration is complete, i.e. the Now list is emptied, will the 

size of the Later list be assessed against the distribution threshold. Despite this seeming 

somewhat counterintuitive, it is actually quite sensible considering that it allows the 

search to continue consuming space so long as nodes are found that are under the 

estimated cost of the current iteration. For instance, consider a perfectly clear space with 

no obstructions. In such a case, only a single iteration need occur since each subsequent 

expansion will produce a vertex along the optimal path. While it may be possible to 

distribute an intermediary Later list, this would likely prove complex and would require 

more communication than before with potentially little if any real benefit. 

A separate issue of the DCFS algorithm has to do with its pattern of distribution 

of the data. As with regular DFS, there is no intuition on which nodes should be 

distributed to which cores other than the natural progression of the search itself. Unlike in 

DFS however, where all cores are able to access the same local memory, albeit through 

some memory regulation, the DCFS algorithm does not operate with a single globally 

accessible view of the data being processed. In fact it is because of this that the algorithm 

is able to scale for larger problems, since each processor only needs to retain the parts of 

the space that it encounters during processing. However, an issue arises when this is 
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considered in light of the blind distribution technique. Because the Later list is simply 

divided among all processes, no way is provided to determine which nodes should be 

delivered to which processes in order to capitalize on their existing cache contents. In 

essence, a processor may work on expanding some part of the space at one point during 

the search, and then a different region later in the search depending on how the frontier 

expands. Although the custom sorting of the hash table that represents the Later list itself 

provides some level of relative grouping based on location in the space, it alone cannot 

guarantee which parts of the Later list will be distributed to which processor during each 

iteration. Because of this, each processor may end up expanding nodes that it has not 

explored before, but that were explored by other processors during a prior iteration. For 

instance, assume vertex A is expanded by rank 0 and generates the child vertices B and C 

to the Later list. Assume that vertex B is processed by rank 0 and vertex C is sent to rank 

1 for processing. When rank 0 expands vertex B, it will have already closed A in its local 

cache and will not reconsider it. However, rank 1 has no prior information about A, so 

when it expands C it may reprocess A during the expansion (see Figure 5). 

 

 

Figure 5. Fringe distribution issue 
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This issue is compounded by the fact that each successive iteration has no 

guarantee about which section of nodes that it will receive; that is to say that for a given 

rank that expands some set of nodes N into a Later list set of set M that after a subsequent 

merge with and redistribution by the master rank, it is not necessarily true that for all 

vertices V in the next set 𝑁 are necessarily a subset of M. Although this may seem to 

imply that all ranks will inevitably reprocess all the same elements and result in the same 

caches, this is not the case due to the incrementally increasing cost threshold which limits 

which nodes are expanded during an iteration. A scheme is necessary that allows for new 

nodes to be cleared against the caches of other ranks. Absent this, there will be significant 

duplication of effort between the ranks. Theoretically, this could be accomplished by 

each rank passing its ‘new’ states around a ring of the ranks and have each rank remove 

any state that it has already checked during previous iterations. While this would 

essentially eliminate the redundant processing, it would also require an inordinate amount 

of communication, since each rank would need to communicate its data to all other ranks 

which would result in a total of 
𝑛 (𝑛−1)

2
 communication per iteration of a rapidly 

increasing cache size. Clearly this is impractical, as even with a distributed computing 

environment the benefits would be lost to communication times rather than actual 

processing; this does not even mention the additional communication complexity it could 

require to have all nodes communicate to all others in a circular manner. Overall, a cache 

clearing mechanism is not only useful, but practically necessary for the sake of 

efficiency. Because of these additional complexities, the approach developed here is to 

check the incoming vertex data against the existing cache data and only insert it for 
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processing if it has either never been seen or has a lower G value than what was last 

recorded for that state. Using this strategy is simple to implement and resembles the same 

check that is used in the core algorithm for deciding if an adjacency should be placed in 

the Now list. Although this does not prevent redundant data from necessarily being 

communicated, it will not be reprocessed by any rank more than once and has the benefit 

of not requiring any additional communications. Additionally, since the check is 

performed by the workers and the master when gathering the Later lists, this further 

reduces the chance for excessive duplicated processing. 

In his original work on DFS, Brand presents the concept of ‘cost relaxation’ as a 

means to allow the search to consume the space faster with the tradeoff being that there 

may be more extraneous processing and potentially suboptimal points up to the difference 

between the optimal and the relaxation amount [5]. Brand sets the cost threshold, which 

determines if a vertex is to be expanded or deferred to the Later list, to be the minimum 

between the two values of the current threshold and the local minimum of the elements in 

the Now list plus some relaxation constant. By doing this, the actual threshold value is 

adjusted if a new local ‘minimum’ is found after an iteration. It seems to suggest that the 

cost relaxation could have a cumulative impact on the threshold value during the course 

of the search. To avoid this potential issue, this approach decided to only allow cost 

relaxation to be factored in during the actual comparison to decide if a vertex is expanded 

or placed in the Later list. In doing so, all threshold values are the same as they would be 

computed in FS or DFS without the cost relaxation factor. Although this factor was added 

in during development for potential inclusion, it was not tested during the course of this 

research. However, a small relaxation value of .01 was used to avoid floating point errors 
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that were observed during some preliminary testing. Technically this is a relaxation 

value, but because it is smaller than the minimum possible traversal cost between any two 

nodes, it does not actually modify how the search will expand through the space. 

HDFS Development 

The HDFS algorithm was designed as a variation of the DCFS algorithm using 

similar MPI constructs but with an altered communication structure with the intent of 

attempting to address the load balancing issues with respect to the cache. This algorithm 

borrows from the concepts proposed by Zho and Hansen in their work on Structured 

Duplicate Detection (SDD) as a means of representing the problem space abstractly and 

then using it to distribute the space [2]. These distributions of the space are based on what 

SDD refers to as the ‘images’ of the space which are said to be the ‘projection’ of an 

individual state; that is, that many states project to a single image.  HDFS differs from 

DCFS in its communication structure in that instead of collecting, combining, and then 

redistributing the Later list after each distribution of work, each state is associated with a 

projection that determines which rank will handle it. In practice, this involves ‘hashing’ 

of the coordinates of a vertex within the space; it is worth noting that the use of this type 

of space distribution is novel in that it has not been combined with any DFS version 

publically available at the time of this writing. By doing this, each processor becomes 

responsible for an image which includes all of the vertices which project or ‘hash’ to it. 

In the HDFS algorithm, each of these smaller spaces become the responsibility of an 

individual rank. That is, a rank will only process data related to states in its image of 

responsibility. By doing this, a single rank only has the memory requirement of the states 

in its own space and will not have to retain states expanded in other areas of the space. 
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Although the search may expand in such a way that one rank receives a vertex from 

another rank multiple times, each rank will necessarily only store one copy of such 

vertex. Because of this, the maximum cache size for any rank can be expressed as 𝐶 =
𝑁

𝑃
 

where C is the cache size, N is the total number of vertices in the space and P is the 

number of processors applied to the problem. An additional benefit of this approach is 

that it does not require the additional cost of custom comparisons to insert vertices in the 

hash map. In order to communicate this state information to the appropriate ranks, when a 

rank expands a state it will determine the projection of each adjacency which identifies 

the corresponding rank to which the state belongs. If the projection of a vertex is a 

different image than the current rank, it is queued for sending at the end of the current 

Now list iteration. This allows for a less centralized system of communication as 

compared to DCFS, since each rank is determining which other ranks to communicate to 

according how the search expands through the space and which ranks are responsible for 

those sets of states. By using such abstraction approaches, a distributed system is able to 

scatter amounts of data in such a way that the various processing elements can search the 

space within their assigned data region with minimal request for data that resides local to 

another processing element and without the barrier of more frequent collective 

communications. Other approaches that actually distribute the space for processing may 

sacrifice efficiency for a potential loss in optimality due to the separate processes not 

communicating relevant cost data amongst themselves [1, 4, 6]. However, because HDFS 

is fundamentally based on FS, the loss of optimality is avoided despite the distributions 

due to the communication of the cost threshold during each iteration to all workers. 

Because of this, each rank will only work on processing data that is less than the 
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minimally increased cost threshold for each iteration. HDFS borrows from the most 

fundamental part of the space abstraction concept and works by assigning each 

processing rank one or more images that it then becomes responsible for. In this way, 

each rank has a constant bound on the amount of nodes that it must process and store in 

memory. 

When a rank begins to process a vertex, if a vertex is expanded and one or more 

of its adjacent states are not strictly within its image, they are sent to the rank who own 

that image. Internally this is maintained by simply adding the external vertex to a vector 

to be sent to its appropriate processor after the current iteration completes; this is 

drastically simpler than the DCFS methods which requires transformation of nodes from 

hash maps to lists and then a more complicated communication structure to actually 

transmit the data. A benefit of the abstracted communication approach is that it ensures 

that no single rank will ever have more than a worst case number of nodes in its cache. 

Contrasted with DCFS, in which the master is responsible for much of the work and 

coordinating the communication, HDFS allows each rank to process its own data and 

only communicate to others when it needs to send or receive data from them. To 

determine the image projection of a state, a ‘hash’ is used based on its position within the 

grid. For grid based problems, the hashing is conceptually simple to visualize in the most 

intuitive way of breaking a rectangular space into smaller rectangles of equal size. While 

the hashing approach would maintains an even distribution of closed list nodes, it would 

necessarily mean that some ranks would sit idle until the fringe expanded into its sector 

and for some paths a rank may never actually work. A possible improvement on this 
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would be to nest the hashing approach resulting in a somewhat checkerboard distribution 

of the space (see Figure 6). 

 

  

Figure 6. Hashing and nested hashing 

 

In the figures above, the number represents which rank would be responsible for 

each portion of the overall space. The first image would work as already described. The 

second image allows each rank to have the same total area of coverage by ‘nesting’ the 

hash distribution inside the subspace, while spreading it out so that the ranks are more 

likely to receive work as the fringe expands. The side effect of this is that although the 

area is the same, the perimeter of each zone has increased which will imply more 

communication between ranks. Although there may be more communications, this may 

be offset by the fact that more ranks doing work sooner, resulting in better utilization. 

Nesting was tested at level one and two for each processor count which is visually 

represented in Figure 6. A minor adjustment was made for the level two nesting with 16 

processors because the test problem dimensions do not evenly divide by 16 twice in order 

to produce even sets of images. To circumvent this issue, that particular set of tests was 

altered to perceive the space as a 1024x1024 space which is appropriately divisible by 16 

at two levels for even sets of image sizes. However, the problems themselves were still 

the standard 1000x1000 problems that were tested on the other algorithms and the end 
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point remained the same. Because of this, the behavior of the search is preserved with the 

only technical issue being the periphery of some nodes would be able to map vertices that 

do not exist in the problem to some images. A visual representation of this is shown in 

Figure 7. In that figure, the light portion represents the complete space with the two 

darkest portions being where the beginning and end point exist, just as with the other 

problems and the lightly shaded region on the border represents what is technically part 

of the image but not actually represented in the space. By using this alteration, even 

though all ranks do not have the same share of the actual space, each rank will still 

process only parts of the usable space. 

 

 

Figure 7. HDFS nested hashing for 16 processors 

 

Initially, the HDFS communication scheme was designed to be asynchronous in 

an attempt to take better advantage of the decentralized structure. Although such a 
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scheme is not impossible, it became significantly more complex to implement due to 

avoiding communication blocking. In that approach, each rank would record a queue of 

items to be sent to each rank and would use a probe to test for incoming messages from 

other ranks. The problem with the probing technique is that, as the number of ranks 

increases, it will be more likely that one rank will probe just before another rank posts the 

message which will cause the posting rank to block until that message is probed for again 

and the communication can be completed. While there are non-blocking message passing 

options, they still require that the sending or receiving buffer be maintained until the 

communication is completed. Because of this, it would be very problematic to move 

things into a software level buffer that then later re-initiates the communication. The only 

potential benefit of asynchronous communication would be a rank could theoretically 

keep searching without being interrupted to check for messages that may not be waiting 

and instead wait for a probe to be signaled. However, even when the probe was signaled, 

it would still require some synchronization between ranks prior to communicating. While 

such communications may be possible, it would require some level of agreement between 

the ranks that they were about to communicate. Such a complex communication scheme 

may be possible, however it is not necessarily central to the HDFS algorithm in itself and 

could be a potential area of future work. Moreover, the potential benefit of some ranks to 

continue processing with only occasionally interrupting to probe is arguably outweighed 

by the complexity required to enable any rank to communicate with any other rank at any 

time; additionally this still runs the risk that the rank may then lose any former efficiency 

gains by waiting for the corresponding rank to probe and begin communicating. The 

revised approach which was developed here retains the decentralized nature for 
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communication between the ranks but is synchronized to allow ranks to determine when 

they should send and/or receive from other ranks. To accomplish this, all ranks now 

participate in a single ‘all to all’ collective communication in which each rank sends a 

count of how many vertices each other ranks should expect from it. From there, each rank 

knows how many items it needs to send to each other rank and how many it should 

expect from each rank. Using this data, each rank begins a non-blocking send of the ranks 

it has data for. It is critical that the sends be non-blocking so that the ranks can send all 

data necessary before posting their blocking receives. If the sends were blocking, it 

would be possible for instance that rank 0 attempts to send data to rank 1 and rank 1 

attempts to send data to rank 0 and both are waiting for each other to post the 

corresponding receive, causing a communication deadlock. Similarly, it is necessary to 

perform the sending before receiving so that all data is ‘sent’ before a rank can receive. 

Because the non-blocking sends may not be immediately ‘sent’ it is possible that they are 

buffered at some level by MPI until the communication channel can complete the 

transmission to the receiving rank. To account for this, it is necessary for the sending 

rank to perform a ‘wait’ on the status variables associated with each send. This allows the 

rank to ensure that the data has been received and the send buffer can be cleared in 

preparation for the next iteration of processing. The wait could potentially slow a rank 

down if there was a particularly large send/receive operations between ranks. However, 

this is minimized by the fact that all ranks are synchronized directly by participating in 

the collective all-to-all just before the sending. Also, if a rank did not send or receive any 

information, it can continue processing and will pause at the next communication.  
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CHAPTER IV 

RESULTS 

 The results of this research review are significant in its adaptation of the 

Distributed Fringe Search for a distributed computing environment as well as its 

application of Structured Duplicate Detection concepts for developing a means to 

distribute a problem space. This research has built upon prior research, both by the author 

and external, and has developed approaches for applying distributed computing systems 

to large pathfinding problems. These approaches prove fairly adaptable to solving such 

problems within a reasonable time and memory environment that may be used on such 

large problems. Results in this section will be examined for each of the three algorithms 

implemented, namely Fringe Search, Distributed Computing Fringe Search, and Hash 

Distributed Fringe Search. Of these, the latter two are original to this work and the former 

is used as a serial algorithm for base comparison. Descriptions of the problems, testing 

environment, and specific design decisions used in the implementation of the tested 

algorithms can be found in the previous chapter. It is worth noting that some of the 

results here may have potentially been impacted by other computational processes 

running outside the control of the research conducted here. Because all tests were 

conducted on a cluster owned and operated by Middle Tennessee State University, other 

researches may have had long running programs that have slightly delayed the processing 

due to system level task switching. Although it is possible that some of the system usage 

factors delayed some tests, the actually data processed during the run would not be 

altered and therefore is still valid for reporting here. Linear regression analysis is 

provided for most figures presented here and include an R2 value where applicable. 
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Fringe Search 

 The FS algorithm was tested on all 300 randomly generated test problems and 

data was gathered for statistical purposes, especially for comparison to the distributed 

algorithms. This data was then compiled and analyzed in order to assess any observable 

trends. These trends could then be used to contrast with the distributed algorithms to 

provide a more in depth explanation for them. Statistical data for the FS tests are 

summarized in Table 1.  

 

Table 1. Fringe Search statistics 

 Pass Fail 

 Cache Iterations Time Cache Iterations Time 

G2C100 104787 2776 9.19 737933 40003 110.20 

G11C50 168466 4374 15.74 393944 24796 62.82 

G20C25 98088 1701 8.30 667826 35389 102.14 

Average 123780 2950 11.08 599901 33396 91.72 

 

 

 Of all the data collected, the cache size with respect to time is of key importance, 

since it is what requires the most memory to maintain for very large searches. For most 

statistics reported here, the focus will be on the successful trials since they are of more 

interest; some statistics on the failed trials will be included for completeness. In terms of 

simple averages, the FS algorithm as implemented performed well on the tested 

problems, with an average solve time of 11.08 seconds for successful tests and over eight 

times longer at 91.72 seconds for unsuccessful ones. In terms of cache size, successful 

tests retained an average of 123,780 vertices in its cache at the end of the search; this 

constitutes approximately 12% of the total search space. For unsuccessful tests, the 
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average number retained was over four times more with 599,901 vertices in cache. The 

FS algorithm itself had to iterate, that is it expanded until no vertices were available 

under the current cost threshold, an average of 2,950 times for successful tests and nearly 

12 times more for unsuccessful tests at 33,396 iterations. The data represent a clear cost 

of expanding through a large complicated space, especially for the failed tests which 

necessarily expanded more nodes. It should be noted that some tests failed relatively 

quickly due to a blockage near the beginning point while in others the blockage was 

closer to the end point. In the latter case, this leaves much more of the space available for 

the search to process while essentially looking for alternate possible routes. Because of 

this, some of the shorter failed attempts expanded considerably less nodes than most. 

Additionally, due to the Gaussian distribution of the centers, the periphery of those 

obstacles is naturally porous like, which complicates the search and results in 

significantly more iterations; this is likely the cause of the dramatically increased number 

of iterations for the failed tests. The nature of what causes difficulty can be observed 

upon inspection of some of the select problem types tested. For the problems with 11 

Gaussian centers with a width value of 50 (G11C50), the problems took longer on 

average than the other two problem types. This is explainable by the fact that those 

problems just happened to have more ‘complexity’ due to the high count of midsized 

obstacles. Evidently from this data, the problems with two large centers were actually 

relatively easier than a space with many small obstacles; this is not unrealistic given such 

a large problem space. For the G2 tests, the longest runtime was just under 50 seconds 

and retained just over 400,000 vertices after execution. The G11 tests took the longest 

overall with a worst case of nearly 60 seconds and retaining almost 500,000 vertices. 
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Fastest of the three types, the G20 tests took only over 30 seconds and retained less than 

300,000 vertices at completion. While there is some slight difference between the 

individual problem types, the trend between processing time and the total number of 

vertices retained appears to be sub-linear in growth. This seems to suggest that FS is 

potentially a good candidate for large scale searches if it can be applied in a distributed 

fashion. The results for all successful tests are compared by problem type in Figure 8.  

 

 

Figure 8. FS successful searches 

 

One interesting point of this graph is that the cache size growth becomes slightly 

erratic after around the 300,000 vertex mark. A possible explanation is that by that point 

approximately a third of the space has been searched and the frontier of the searched 

space could extend through a large portion of the space. It is possible that this achieves 

some sort of ‘critical mass’ of the space at which fewer nodes overall are added to the 
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cache since so much of the space has already been searched. This is at least one potential 

explanation; further testing on larger problems could inspect if cache sizes began to 

increase slower after approximately one third of the space had been processed. 

Distributed Computing Fringe Search 

 The DCFS was tested on all problem and specific data was tracked related to the 

timing of its communication components. This data showed an expected increase in the 

overall processing time compared to the serial version with the tradeoff being the benefit 

of less overall vertices retained in the cache for each processor. These increases for both 

successful and unsuccessful tests can be seen in Table 2. 

 

Table 2. Distributed Computing Fringe Search statistics 

 Pass Fail 

 Cache Comm. Idle Time Cache Comm. Idle Time 

D4G2 40651.88 48.65 23.36 190.46 440309.73 589.36 1707.53 4286.50 

D4G11 65258.43 87.19 32.75 323.57 245465.50 321.11 1179.30 2631.61 

D4G20 37486.45 47.46 17.02 173.99 386809.57 464.94 1748.67 8175.48 

D4 Avg. 47798.92 61.10 24.38 229.34 357528.27 458.47 1545.17 5031.19 

D8G2 30557.49 30.37 18.09 114.47 401052.90 276.85 2699.76 4123.52 

D8G11 47207.75 46.69 24.70 170.42 231905.42 159.38 1554.62 2283.17 

D8G20 28074.36 26.00 12.56 87.57 345785.20 275.34 2786.74 3947.20 

D8 Avg. 35279.87 34.35 18.45 124.16 326247.84 237.19 2347.04 3451.30 

D16G2 27361.90 31.57 24.33 100.27 384760.85 276.30 3835.91 4281.31 

D16G11 40639.93 47.83 33.18 156.35 232675.59 140.16 2306.65 2811.45 

D16G20 25819.81 27.95 41.27 87.03 378623.27 160.95 4381.15 5447.96 

D16 Avg. 31273.88 35.78 32.92 114.55 332019.90 192.47 3507.90 4180.24 

Average 38117.56 43.74 25.25 156.02 338598.67 296.04 2466.70 4220.91 

 

 

 By utilizing the distribution of work between processors, the cache size was 

effectively reduced by almost 70% on average for successful trials. Associated with this 

better distribution of the cache is the cost of communication. In terms of overall time, the 
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DCFS took approximately 14 times longer for successful trials on average. Since FS 

maintains a single cache in memory throughout the search, its size can be considered as 

an upper bound of the minimum number of vertices that should be encountered in a given 

search. As discussed earlier however, DCFS suffers from vertex duplication due to the 

distributed nature of the processing with separate caches for each processor. So while 

each individual processor retains 3.2 times fewer vertices in cache compared to FS, the 

average of combined cache sizes is 2.6 times more than its serial counterpart. Absent 

duplication between processors, it would be expected that the same number of vertices 

would be processed for a given test with an even distribution of the cache space amongst 

the processors. That is to say that if the serial FS algorithm could perfectly distribute its 

cache during processing, each processor would receive an equal share. From this, the 

amount of increase in total cache size suggests that on average 51% of all the vertices are 

duplicated across the processors to some degree. In terms of relative problem difficulty, 

the results are consistent with the result from the FS trials in that the G20 problems were 

the easiest, with the G2 problems being just slightly harder and the G11 problems being 

the hardest. This may appear counterintuitive, however it can be explained by the relative 

density of the Gaussian points; although the number of center points is increased in the 

different problems, recall that the width of the problems is also decreasing which works 

to reduce the complexity of each point of clustered obstacles. The average cache sizes 

with respect to time are represented in Figure 9 for the 11 Gaussian problems. This 

visualizes the clear reduction in overall time with additional processors while maintaining 

a relatively balanced increase in the reduced cache size per processor. However, it is 

noted that there appears to be a diminishing return, since the reduction from using four to 
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eight is approximately 26% whereas the reduction from eight to 16 is only 12%. While 

the reduction in time is not significant when using 16 compared to only eight processors, 

only about 12 more nodes are required in memory per processor per second during the 

search as represented by their different linear regression slopes. Because this is not 

influenced by the means of the work distribution, i.e. whether it is being transmitted over 

a local bus or over a network, it is more likely due to relationship between the 

distribution threshold and the problems that are being used. For instance, it is possible 

that as the frontier of the search is broken up into smaller pieces, the issue of cache 

duplication is exacerbated since more processors have a higher chance of seeing 

unfamiliar vertices during the search. At its extreme, a hypothetical situation where one 

processor received one vertex for each iteration would likely need to retain many 

duplicate vertices since it is only seeing a small portion of the search space at a time. 

 

 

Figure 9. DCFS comparison for 11 Gaussians 
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 The unsuccessful problems, while perhaps not as interesting, did show some 

unique trends. This includes the fact that DCFS was still able to maintain a reduction in 

the number of vertices cached by over 42% on average compared to serial FS. These data 

also showed an extremely high increase in processing times that went from 

approximately 8 times longer for failed FS test to about 27 times longer for failed DCFS 

tests. It is thought that this is possibly exacerbated by the ‘porous’ nature of the Gaussian 

problems which contain many small alternative paths which may complicate the search. 

Although the successful problem are of the primary interest, the unsuccessful problems 

can be used as an indicator to how these algorithms may perform on much larger search 

spaces. If a feasible search were to conducted through a space large enough to actually 

require the level of processing as seen for the unsuccessful trials here, it would take 

approximately just as long and would exhibit similar behavior. In this way, although the 

problems tested here only consisted of one million searchable nodes, the unsuccessful 

tests inform what a similar successful trial may perform like in a larger space than was 

actually tested here. With this generality in mind however, the unsuccessful results will 

not be examined in detail here. 

Hash Distributed Fringe Search 

 The HDFS algorithm was tested under the same problems as the previous two 

algorithms. This set of tests is similar to DCFS with runs of 4, 8, and 16 processors used 

over the cluster. These tests also included an additional factor of ‘nesting’ level as 

described in the Methods chapter. Data collected for all problems is in Table 3.  
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Table 3. HDFS statistics with non-nested hashing 

 Pass Fail 

 Cache Comm. ATA Time Cache Comm. ATA Time 

H4G2 26331.27 5.19 5.01 8.17 184483.25 35.22 32.52 69.64 

H4G11 42135.67 8.50 8.18 13.49 98486.02 21.50 19.93 40.78 

H4G20 24556.17 4.40 4.24 7.15 166956.46 32.45 29.94 65.11 

H4 Avg. 31007.70 6.03 5.81 9.61 149975.25 29.73 27.47 58.51 

H8G2 13267.05 3.63 3.53 5.02 92241.63 27.73 26.11 42.50 

H8G11 21081.53 5.72 5.55 8.03 49243.01 16.25 15.30 24.94 

H8G20 12325.50 2.89 2.80 4.17 83478.23 23.68 22.22 37.70 

H8 Avg. 15558.02 4.08 3.96 5.74 74987.62 22.55 21.21 35.04 

H16G2 6152.98 3.18 3.13 4.13 46120.81 30.16 28.93 37.78 

H16G11 10357.55 5.56 5.46 6.83 24621.51 17.97 17.27 22.18 

H16G20 6150.12 3.22 3.18 3.86 41739.12 26.55 25.48 33.62 

H16 Avg. 7553.55 3.99 3.92 4.94 37493.81 24.89 23.89 31.20 

Average 18039.76 4.70 4.57 6.76 87485.56 25.72 24.19 41.58 

 

 

Utilizing the distribution of vertices to other ranks based on a hash representation 

allowed for an effective processing of the search space. On average, each processor 

stored 85% less than the serial FS implementation tested here and 51% less than DCFS. 

Because each rank processes nodes only as the search extends into its portion of the 

space, it does not suffer from the multiple ranks having different versions of an expanded 

vertex in memory at once. In terms of communication costs, HDFS performed 

considerably better than DCFS, requiring 90% less time. Of the time spent 

communicating, 97% of it is the All to All (ATA) collective call that acts to synchronize 

all processors and causes them to intercommunicate as necessary. Remaining 

communication time is spent performing the send, receive, the additional wait to ensure 

that the sends have been received successfully. Despite the notion of a ‘wait’ seeming 

expensive due to the possibility of processor idle times, it accounted for less than 1% of 

the overall communication times. Overall timing actually showed a 37% decrease in time 
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over serial FS and a drastic 95% decrease over DCFS on average for all successful trials. 

The data for HDFS trials on the 11 Gaussian problems is presented in Figure 10 for a 

visual comparison of the average per processor cache sizes with respect to time. 

 

 

Figure 10. HDFS comparison for G11 tests with non-nested hashing 
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frontier will expand little if any through. By performing this recursive nesting of the 

images, the intent was to allow each rank to have a portion of what would have been a 

H4 = 2724.4x + 5371.4
R² = 0.954

H8 = 2276.2x + 2795
R² = 0.9329

H16 = 1480.2x + 254.8
R² = 0.9086

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

0 10 20 30 40

A
v
e
ra

g
e
 C

a
c
h
e
 S

iz
e

Time (seconds)

H4G11
H8G11
H16G11
H4
H8
H16



54 

 

larger image. The same set of tests were run as with the non-nested hashing and the other 

algorithms with the data being listed in Table 4. 

 

Table 4. HDFS statistics with nested hashing 

 Pass Fail 

 Cache Comm. ATA Time Cache Comm. ATA Time 

H4G2 26568.63 2.83 2.63 5.82 184483.25 33.49 30.61 68.84 

H4G11 50905.05 6.37 5.86 9.91 98486.02 16.04 14.44 35.00 

H4G20 24603.56 3.06 2.89 5.82 95402.19 26.76 24.17 58.72 

H4 Avg. 34025.75 4.09 3.79 7.18 126123.82 25.43 23.07 54.19 

H8G2 13408.88 1.82 1.69 3.18 92241.63 18.21 16.27 33.37 

H8G11 21118.72 3.03 2.80 5.33 49243.01 10.07 8.94 18.55 

H8G20 12353.58 1.51 1.41 2.77 83478.23 15.91 14.16 29.90 

H8 Avg. 15627.06 2.12 1.97 3.76 74987.62 14.73 13.12 27.27 

H16G2 6790.73 1.82 1.71 2.52 46120.81 19.80 17.94 27.18 

H16G11 10574.84 2.92 2.72 4.09 24621.51 11.19 10.07 15.47 

H16G20 6216.65 1.50 1.42 2.14 41739.12 17.52 15.77 24.72 

H16 Avg. 7860.74 2.08 1.95 2.92 37493.81 16.17 14.59 22.46 

Average 19171.18 2.76 2.57 4.62 79535.09 18.78 16.93 34.64 

 

 

 

For these tests, cache sizes increased about 6% on average, representing more 

usage. Due to the increased total perimeter of images belonging to a rank, the expectation 

that the times would increase due to more frequent communication. Surprisingly 

however, times were instead decreased by approximately 41% compared to non-nested 

hashing. Overall times were reduced by just over 31% thanks mostly to the reduced 

communication times compared to HDFS without nested hashing. The data for HDFS 

tests with nested hashing are visually represented for comparison in Figure 11. 

Contrasted with Figure 10 which represents the same data but with non-nested hashing, 

some interesting features can be observed. Specifically, in examining the relative linear 

regression slops for the various plots, non-nested hashing shows a 16% reduction from 
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four to eight processors while nested hashing only shows a 5% reduction. On the other 

hand, going from eight to 16 processors with non-nested hashing shows only a 34% 

reduction while in the nested hashing tests it shows a 66% reduction; future research 

further explore this behavior. 

 

 

Figure 11. HDFS comparison for G11 tests with nested hashing  
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CHAPTER V 

DISCUSSION 

 The algorithms developed through the course of this project are designed to 

provide approaches for distributed computing of pathfinding problems. This work has 

implemented a serial Fringe Search algorithm as well as proposing two new algorithms, 

namely the Distributed Computing Fringe Search (DCFS) and Hash Distributed Fringe 

Search (HDFS). These algorithms have been extensively tested and demonstrated an 

ability to reduce the burden of elements in the supporting cache list of the FS algorithm. 

By utilizing the applied approaches for distributing the cache and the processing of the 

search data, these algorithms provide a more suitable solution for solving large scale 

pathfinding problems that may be otherwise difficult or practically impossible for a SMP 

system. A consistent theme observable in the results presented here is the dichotomy 

between utilization of the allocated processor ranks and the intercommunication between 

them. Communication has been shown to be the most costly element of applying the FS 

algorithm to a distributed system. However, in order for the ranks to actually assist in the 

processing, communications of some kind must occur. If communication must occur, 

ideally it will only be a few small messages. In order to have good utilization however, it 

is desirable to send large amounts of data to other ranks so that it may be processed in 

parallel. DCFS is designed to operate along these lines, where work is sent once a large 

enough set has been generated to essentially ‘justify’ incurring the communication costs. 

Alternatively to sending a few large sets of data, many small sets of data could be sent so 

that each processor may stay relatively busy. In this approach, since the data is being sent 

more frequently, there might not be enough for each processor to work on; this is also 



57 

 

dependent on how the distribution of work is design. HDFS operates more similar to this 

approach, where the work is designed to be distributed to other processors based on 

where the vertex is represented in the space. By doing this, some processors may have 

little to know work the entire duration of the algorithm, meanwhile others may be 

working significantly because the fringe of the search expands more prevalently in their 

region of the space. Overall, the challenge is striking the balance between relatively 

minimal communication and good utilization of the available processors. A comparison 

of all three algorithms can be seen in Figure 12. By comparing the average performance 

on the hardest set of problems, the ones with 11 Gaussians (G11), the performance 

differences in terms of cache size required and time required become apparent. Contrasts 

between FS and DCFS clearly show a significant reduction in processor cache size, 

however at the cost of increased communication time. Contrasting FS with HDFS shows 

an even more significant reduction in cache sizes and without the communication costs of 

DCFS. The comparisons between DCFS and HDFS will be discussed in more detail in 

the following sections. Additionally, the HDFS section will explore the differences 

between HDFS with and without nested hashing. 
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Figure 12. All algorithms compared for G11 tests 

 

DCFS Review 

The DCFS test results provide insight into on an extension of the original DFS 

designed for SMP systems to a distributed system. This implementation is a fairly direct 

translation, with the necessary adjustments made for the communication over a cluster. 

These adjustments however appear to be a significant source of the additional cost 

associated with the distribution. DCFS does succeed in reducing the amount nodes in 

cache for any single processor, therefore allowing for the potential of handling larger 

scale problem overall. However, it pays a high price for the distribution due to the 

complexities of coordinating and packaging the data in order to be sent via MPI. 

Additionally, due to the fixed threshold value, the master must perform some of work 

until the distribution threshold is reached. However, this prevents the costly distribution 

for trivial amounts of work (see Figure 13). 
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Figure 13. DCFS cache comparisons 

 

Examining the communications in more detail shows where the time is actually 
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considered any costs associated outside of the core search processing. Although this 

includes the ‘transformation’ time discussed in the Methods chapter, the timing for these 

components was less than expected, amounting to less than 1% of all communication 

time costs. Because of this insignificance to the time components, those data are not 

analyzed further here. Processors overall spend an average of approximately 28% of their 

time communicating necessary data amongst themselves. Idle time represents 

approximately 16% of the overall time. Because the master rank is constantly working, it 
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scatter or gather time component. Since the master is either processing or 

communicating, the idle times reported here are indicative of the time that the workers 

are waiting to receive work from the master. All workers will incur at least some idle 

time because of the application of a distribution threshold, i.e. the point at which the 

distributed communications take place. One question that is not addressed by the idle 

time data gathered here is what portion of that time is a constant overhead while waiting 

for the initial distribution threshold to be reached and what of it is from idle times 

between communications and processing. Of the time spent communicating to the 

workers, the overall averages showed that about 60% of the time was used during the 

scatter with the remainder being taken up by the gather process. Initially it might seem 

like the gathering process would be prone to take longer since the master must wait on all 

of the workers to complete their work and then participate in the communication. 

Although this can still be occurring, it seems that the fairly even distribution of work is 

allowing most processors to complete at roughly equal rates and does not leave other 

processes idle for significant amounts of time or leave the master waiting on the 

collective communication call. It is likely that the scattering process takes slightly longer 

because it is slightly more involved due to the requirements of determining how much 

work needs to be distributed and then packing that data to be sent. The comparison of 

communication time components can be seen in Figure 14. Note that time values reported 

are only simple averages and do not indicate the extent of overlap between waiting 

processes. Because of this, one process may only wait for a relatively short amount of 

time because it was the last to ‘arrive’ at the point of communication. On the other hand, 

another process may have reached the communication point much earlier and would incur 
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idle time while waiting for the other process(s) required for the communication. 

Additionally, some process may be the first to arrive after one iteration and the last to 

arrive at after another just depending on how their work is processed. Due to this 

potential overlapping of timing components, it would be incorrect to simply add the 

communication and idle times and suggest that the remainder of the time is exclusively 

being used in conducting the core FS algorithm.  

 

 

Figure 14. DCFS timing components 

 

Although DCFS was slower than the serial version, a speedup is observed as more 

processors are applied to DCFS. Increasing the used processes from four to eight resulted 
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speedup. However, this is to be somewhat expectable given the configuration of the 

testing environment. Because MPI was configured to only allow eight processors per 

machine, moving from eight to 16 necessarily causes a jump to separate machine for the 

other processors. Due to this, some of the communication must then happen over a 

network which will be considerably slower than even using MPI to communicate 

between processors on the same local machine. A significant part of this is due to the two 

stage communications that are currently required. Both stages are required since the first 

informs each rank of how much it is about to send in order for the correct buffer space to 

be allocated and the second stage actually performs the exchange of data. A bottleneck 

also exists at this stage since all communications are routed through the master rank. 

Centralizing the communication scheme around the master is somewhat useful since it 

allows for the search to begin and continue processing until enough work is encountered 

to justify performing the more expensive communications. While a decentralized 

approach may be theoretically possible, it is would likely require even more 

communication between the processes in order for each processor to stay synchronized 

during the search and for work to be distributed fairly. A more realistic option that may 

prove beneficial is the use of an independent communication hub that is responsible for 

only the packaging and distribution of work after each iteration. Due to the fact that 

DCFS spends less time on gathers than scatters, this suggests that the work distribution of 

work is fair enough to where processors are not typically spending much time on ‘hold’ 

waiting for a gather to occur. However, the master is still responsible for its own share of 

work in addition to the packaging of the data to be sent to the other workers. If a separate 

rank were responsible for the communication of work, it would free the former master 
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and allow it operate simply as another worker. Doing this would require no additional 

communication calls, it would simply be directed at a different centralized point. Related 

to the issue of work distribution is the item of selecting an appropriate threshold. Results 

show that the threshold allowed for work to be distributed in such a way that all workers 

stayed relatively busy. However, because the tests conducted here used a fixed threshold, 

further testing of DCFS distribution threshold would be useful in determining a value that 

potentially strikes a better balance between communication costs and idle times. Ideally, 

a relationship could be derived between the size of the space and the number of 

processors to be used on the problem; information on the approximate density of the 

problem may also prove useful, however this would likely be difficult to obtain for many 

practical real life problems. 

The communication complications are a significant factor in the time costs of 

DCFS, however any corrections to those alone will not address the cache clearing issue. 

This issue is apparent in the data since the combined size of cache from each processor is 

considerably larger than the total cache size of the serial FS algorithm; although this is 

somewhat more acceptable due to a distributed environment, improvements in this area 

could greatly extend the practicality of the algorithm overall. These improvements to the 

cache clearing strategy may also reduce the communication costs since less duplicated 

vertices are being communicated during the search. However, while it may be possible to 

devise other means for cache clearing between the ranks, it is likely to require a non-

trivial amount of coordinated communication, at which point the benefit of not simply 

recollecting the data may be lost. One possible approach to simply keeping the overall 

cache sizes at each rank reasonable would be to redistribute nodes from the cache to other 
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ranks with smaller cache sizes; this is somewhat similar to how the fringe is distributed at 

each iteration. Although this would require some mechanism for polling of the cache size 

to know how to ‘fairly’ balance an oversized cache, this could be included in some of the 

existing communications relatively simply. This strategy also could be slightly enhanced 

by associating each state with some sort of a ‘hit’ counter that would be relatively cheap 

to maintain. In doing this, the rank could have a better idea of which states are least 

recently used and decide to distribute those out to save space, since the more recently 

used states are more likely to be revisited and should remain with the original rank. The 

communication involved with such an approach is less than a ‘ring’ style approach since 

it only needs to happen on an as needed basis if the cache of a rank becomes too large. 

However, it would still require the expensive collective communications once the cache 

thresholds begin to reach a level to where they need to be distributed throughout the 

system. Additionally, some coordination would likely be necessary which may place 

more work on the master as each rank attempts to balance its cache and must have a way 

to decide which rank it should balance with; the use of an independent coordination point 

as discussed above may also assist with such a scheme. 

While cache clearing may assist in reducing duplicative communication and 

subsequent processing, a true solution would be to address the very nature of how the 

work is distributed to the workers. Because the distribution is currently ‘blind’ which 

entails that the master has no intuition as to which other processors may or may not have 

seen each vertex that is about to be distributed. A primitive solution would be to have the 

master record some level of vertex routing information as it encounters then distributes 

states to other ranks. Although this would be fairly simple to implement, it would also 



65 

 

require additional processing and storage of this routing style information. A question for 

further research into such a technique would be if these additional costs were less 

extensive than the current ones associated without such information available to the 

master. Instead of recording where data has already been sent, the other option is to 

predetermine which ranks should process which vertices. At least one form of this is 

HDFS since it ensures only one rank is responsible for any given vertex in the space; in 

fact it was partially an early realization that such a solution would prevent duplication 

which motivated the design of HDFS. 

Another possible improvement to DCFS would be to have each of the workers 

receive its initial load and then begin working with it and only communicate back to the 

master if it runs out of work. Although this would require less frequent communications 

of collecting and then redistributing the data to be worked with, it is likely to produce 

much redundancy since there is no real opportunity for the cache clearing strategy to be 

in place between the communications. Additionally, the iterations of the FS algorithm 

would then no longer be synchronized since the minimum cost increase would no longer 

be communicated between separate processes; the result of this is that every processors 

were ‘behind’ in the search would likely only examine nodes that were already examined 

by other processors which had already increased their local cost thresholds. In order to 

counter this, it would be necessary for the processor to know not only which vertices had 

been distributed, but also have some idea of their approximate region in order to avoid 

processing in that part of the search space.  
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HDFS Review 

The HDFS test results show a fairly successful approach for adapting the FS 

algorithm to a distributed computing environment. This work has presented data which 

demonstrates the ability of HDFS to significantly reduce the average space required for 

each processor to maintain its cache. These processors are each responsible for a discrete 

portion of the search space, and therefore only require as much space for its portion of the 

total space. Contrasted with DCFS, HDFS has significantly less communication 

overhead, thanks in part due to its decentralized nature. Additionally, the design of 

allowing each rank to perform its non-blocking sends prior to receiving its data proves to 

be an efficient approach to transferring the data between ranks. Because each rank 

‘sends’ all of its data through non-blocking methods and subsequently begins to receive 

its any new data for itself form other ranks, most ranks are able to begin receiving data 

almost immediately after transmitting any data to other ranks. So while the use of non-

blocking sends does necessitate a following ‘wait’ to ensure successful transmission, the 

timing results show that this was an insignificant amount of the communication time. 

Because the amount of data being sent after any given iteration will be small, it will 

require very little transmission time. Also, the wait times are able to remain low since 

data is only transmitted to other ranks if the search expands through the area belonging to 

another rank. While this approach appears to scale well for the varying levels of 

complexity of problems tested here, future research may wish to explore larger problem 

spaces to confirm such scalability. The timing components are visually represented in 

Figure 15 and show that the ATA uses the majority of the communication time. This 
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implies that any possible improvements to this would likely see a reduction in overall 

processing time due to the reduced communications between the ranks during the ATA. 

 

 

Figure 15. HDFS timing components 

 

 At least one possible means of reducing the ATA timing component has been 

demonstrated by this research through the use of nested hashing. By default, only one 

‘level’ of hashing is performed which is over the entire initial search space. Considering 

each of the original images that are generated as a sub-space to be further dividing, a 

second ‘level’ of hashing can be computed recursively, thereby adding a nested hashing 

distribution of the abstract images of the overall search space. Distributing the space in 

this nested hashing does increase the total perimeter of all the images owned by a rank, 

however the speedup suggests that this is not causing a corresponding increase in 

communication (see Figure 16). Explanation for this may be because the vertices on a 
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given border at a time is decreased, resulting in smaller amount of data communicated 

between each ranks; further testing is required to investigate this possibility. 

 

 

Figure 16. HDFS level one and two nesting time components 

 

The issue of utilization is visually represented in Figure 17 which comparison the 
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when applying more processors; the slight increase when moving from eight to 16 

processors is negligible considering that DCFS also contended with a significant increase 

in communication costs for 16 processor tests. The decrease in relative decreases in time 

is explainable by a poor utilization, where HDFS without hashing may create images that 

are responsible for portion of the space that are never searched which leaves some of the 

available ranks under-utilized. This is further corroborated by the fact that enabling the 

nested hashing significantly improved the reductions in time as more processors were 

applied to the problems; by breaking the images of the space into sub-images assigned to 

the available ranks, it was more likely that the ranks would cover part of the space that 

was used during the search. These increased utilization are then nicely complemented by 

the decentralized and synchronous nature of the HDFS communication design which 

structures the transfer of data to require significantly less time than the DCFS approach. 

 

 

Figure 17. Comparison of HDFS for the G11 tests with and without nesting 
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Although the HDFS algorithm performs rather admirably on the problems tested 

here, there is almost always room for improvement. One potential option to improve on 

the work utilization of HDFS is to somewhat borrow from the more direct work 

distribution of regular DFS. In this approach, the fringe could be distributed as in the 

basic DFS, however the cache division would be based on the hashing approach. This 

would mean that other ranks would help process each vertex in their share of the fringe 

and then report its results back to the ranks which are responsible for the respective 

states. Although this would allow for better utilization of the ranks than the regular 

hashing approach, the benefit may be minimal due to the fairly cheap cost of expanding a 

vertex versus the costs of packaging everything for communication. In order for this to 

actually be worth the overhead costs, the expansion of a vertex would likely have to be 

time intensive and/or the problem would need to generate a large volume of nodes at each 

iteration to justify the distribution. 

One potential pathological problem that may have unusually high communication 

costs using HDFS is if a search path were to follow along a boundary between two 

images; this is somewhat of an edge case and not one tested in this study. In this case, 

each rank could expand vertices that belong to the neighboring image and rank and then 

queue those elements to be sent. Although the receiving rank in this situation will clear 

them against its local authoritative cache, it is still redundant communication. A strategy 

that may reduce this is a temporary set of only the state names that have been recently 

sent that could then be cleared at some decay rate. 
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Conclusion 

 The initial goal of this efforts conducted here were to move towards finding a 

solution to using distributed computing resources on large scale pathfinding problems. 

This research has expanded some potential opportunities for further exploration as well as 

provided insight into why such approaches may or may not be successful. Two main 

approaches were employed here, namely the use simple fringe distribution over a cluster 

and using a space abstraction as means of distributing the space over a cluster. Results 

from the testing are promising in that they show a viable means of reducing the cache 

size of a FS algorithm. DCFS provides good resources utilization at each step by ensuring 

that all ranks have data to process. The issue here is that due to the expensive 

communications and vertex duplication amongst the separate processor caches, not all of 

that work is productive toward advancing the search. Although HDFS has less 

communication overhead compared to DCFS, it also has less utilization of the processors 

since it is not concerned with ensuring all ranks are busy during each iteration. But it is 

actually because of this that it allows the search to proceed through the space as it would 

in a serial implementation and then only expand once it reaches the boundary of the a 

given image; these image boundaries are established at run time based on the number of 

processors available and the desired nesting level. Ultimately the data show that the 

approach taken by HDFS was largely more successful, even if it means that the cluster 

resources are underutilized. While the results are mostly positive, further review is 

appropriate to assess these algorithms against other metrics that were not considered here. 

Extensions of this work may also include application to larger pathfinding problems or 

more nuanced problem including non-geometric domains such as puzzle style problems.   
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Future Work 

 The research conducted here has provided a fairly extensive study of Fringe 

Search as well as demonstrated the strengths and weaknesses of two new pathfinding 

algorithms developed here, namely Distributed Computing Fringe Search and Hash 

Distributed Fringe Search. This research can assist further exploration of the subject by 

serving as a reference in developing pathfinding algorithms with similar behavior that is 

desirable to be distributed over a cluster environment. These potential extensions of this 

work may benefit from the methods used by this work to reduce a cache size of a single 

processor and/or the methods used for communicating such data over a distributed 

system. Besides future external work, the algorithms developed here provide a basis for 

many interesting and potentially successful enhancements. Experimentation with the 

framework of tests here would also allow for equitable testing between the new 

enhancements and the algorithms as they were developed originally. 

An aspect that was not tested here due time and scope limitations was that of cost 

relaxation as proposed by Brand [5]. His implementation of DFS was tested with constant 

cost relaxation values. Cost relaxation allows the search to consume the space quicker 

because more nodes are considered under the threshold for expansion; refer to the 

Methods chapter for a more detailed discussion of this behavior. Although cost relaxation 

allows for less optimal paths to be acquired, it may be appropriate for large scale 

problems that can allow for sub-optimal solutions. Somewhat more interesting but also 

less clear would be the use of a cost relaxation to a more dynamic basis that would allow 

the frontier of the search to expand faster in some direction than others. Such an 

application of cost relaxation could allow for more effective processing of the space in 
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such a way that one rank could elect to search its area, such as in HDFS, more 

aggressively rather than searching parts of the space that would induce cross 

communication. Using a dynamic cost threshold to essentially prioritize the search 

through the space in order to reduce communication could prove beneficial to these and 

potentially other similar algorithms.  

Another area of future work would be to use more advanced MPI techniques, such 

as incorporating lightweight POSIX threads with each heavyweight process spawned 

through MPI. Although this may add some complexity to the overall process, it may also 

potentially simplify the communication structure and require less synchronization points 

that cause blocking and idle time. Such techniques could allow a separate communicator 

thread to probe for an incoming messaging signal and then only stop to process it if one 

was being sent. This is likely most effective in HDFS since it does not always have new 

data for all processes at once and could then allow each process to continue expanding in 

its area until more data was sent to it. By reducing the amount of data transferred during 

the ATA or even potentially eliminating the need for that synchronization point, the 

algorithm may see significant enhancement. DCFS may also benefit from such a 

hybridized thread system by letting some of the communication be handled by 

simultaneous thread. While theoretically plausible, it is less clear how this could be 

structured in a significantly beneficial way; therefore this would require more study. 

Adapting these algorithms for non-grid based problems could also serve to 

advance further study into solving large pathfinding like problems in a distributed 

environment. Problems such as the sliding tile puzzle or other similar problems that can 

be represented as a series of decisions from a beginning to an end could adapt these 
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algorithms for larger versions of those problems. Hashing of the tile puzzle problems is 

slightly more abstract than grid based problem. However, it seems reasonable to hash 

states out based on the position of the blank, as subsequent states are derived on that 

information. Additionally, while it would be slightly more conceptually difficult to apply 

the HDFS nesting to such problems, such a method may prove very effective in such a 

problem domain. Even without the addition of nesting, by extending these algorithms to 

other domains, it enhances their generalizability and also provides for more testing on 

different problem types. 

Possibly the most interesting and involved enhancement of the algorithms 

developed here would be to introduce the use of the Asynchronous Dynamic Load 

Balancing (ADLB) framework [13]. ADLB provides a means to send work of user 

defined ‘types’ to a central processor that then acts a server of that that work. Because 

ADLB is optimized for efficiency of extremely large scale jobs, it could very well allow 

pathfinding problems to be scaled well if incorporated into DCFS or HDFS. In particular 

DCFS may stand to benefit from such an approach where a master would send all work 

the ADLB ‘server’ which could then be requested by the other workers on as-needed 

basis. Further, it may be possible to have all workers send their processed data to the 

server, thus relieving the master from that additional overhead and allowing it to focus 

more on processing the search space. Ultimately this has the potential to significantly 

improve its performance. HDFS may also potentially benefit from utilizing ADLB in its 

design. However, HDFS already performs fairly well in its current decentralized but 

synchronized design, so much larger problems would likely be necessary to determine its 

degree of scalability and opportunities to transfer certain components to an ADLB server.   
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APPENDIX A 

SUPPLEMENTAL MATERIALS 

 All source code developed in the course of this research is available upon request. 

 

 

Figure A. DCFS with 4 ranks 
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Figure B. DCFS with 8 ranks 

 

 

Figure C. DCFS with 16 ranks 
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Figure D. HDFS with 4 ranks and non-nested hashing 

 

 

Figure E. HDFS with 8 ranks and non-nested hashing 
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Figure F. HDFS with 16 ranks and non-nested hashing 

 

 

Figure G. HDFS with 4 ranks and nested hashing 

 

G2 = 1376.5x + 471.36
R² = 0.9109

G11 = 1480.2x + 254.8
R² = 0.9086

G20 = 1432.8x + 616.43
R² = 0.9507

0

10000

20000

30000

0 10 20

A
v
e
ra

g
e
 C

a
c
h
e
 S

iz
e

Time (seconds)

H16G2

H16G11

H16G20

G2

G11

G20

G2 = 4077.4x + 2822.7
R² = 0.9646

G11 = 3725.2x + 5265.5
R² = 0.9401

G20 = 3892.9x + 1954.1
R² = 0.9638

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

0 10 20 30 40

A
v
e
ra

g
e
 C

a
c
h
e
 S

iz
e

Time (seconds)

H4G2

H4G11

H4G20

G2

G11

G20



81 

 

 

Figure H. HDFS with 8 ranks and nested hashing 

 

 

Figure I. HDFS with 16 ranks and nested hashing 
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