

DISTRIBUTED COMPUTING APPROACHES TO PATHFINDING PROBLEMS

by

Robert Vital Myers

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Middle Tennessee State University

August 2016

Thesis Committee:

Dr. Joshua L. Phillips, Chair

Dr. Yi Gu

Dr. Salvador Barbosa

ii

ACKNOWLEDGEMENTS

 Thank you to all the people that assisted me with advice and encouragement.

Many thanks to my advisor, Dr. Joshua Phillips, who has provided much insightful

support to the project. Thanks also to my other committee members, Dr. Yi Gu and Dr.

Salvador Barbosa for their input and suggestions throughout the project. It has been a

privilege to work closely with this group who has provided their valuable time in giving

constructive criticism and input that assisted in the efforts of this project.

iii

ABSTRACT

The problem of determining the existence of a path between vertices in problem domains

with large graphs is outpacing the increases in commonly available processor speeds.

This presents a growing need for pathfinding algorithms which can capitalize on parallel

approaches. These approaches are often based on parallelizing the search on a single

machine. However, some problems may be so large that it becomes appropriate to use

distributed computing. This research explores the Distributed Fringe Search algorithm as

a more conducive approach for pathfinding problems over multiple distributed machines.

The work presented here is novel in its extension of DFS by developing the Distributed

Computing Fringe Search. Additionally, this research proposes the Hash Distributed

Fringe Search that utilizes space abstraction techniques for work distribution and a more

uniform memory requirement. Finally, results are presented to show the impact of the

approaches in large searches; these results inform suggestions for future work.

iv

TABLE OF CONTENTS

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

LIST OF SYMBOLS AND ABBREVIATIONS .. viii

Chapter

I. INTRODUCTION ... 1

II. BACKGROUND ... 4

Pathfinding Algorithms .. 5

Memory Architectures .. 14

Parallelization Approaches ... 18

III. METHODS ... 21

Problem Generation .. 22

Testing Environment .. 25

Design Decisions .. 26

DCFS Development ... 28

HDFS Development ... 37

IV. RESULTS ... 44

Fringe Search .. 45

Distributed Computing Fringe Search .. 48

Hash Distributed Fringe Search .. 51

V. DISCUSSION .. 56

v

DCFS Review ... 58

HDFS Review ... 66

Conclusion .. 71

Future Work .. 72

BIBLIOGRAPHY ... 75

APPENDICES .. 76

APPENDIX A – SUPPLEMENTAL MATERIALS ... 77

vi

LIST OF TABLES

Table 1 – Fringe Search statistics ... 45

Table 2 – Distributed Computing Fringe Search statistics ... 48

Table 3 – HDFS statistics with non-nested hashing ... 52

Table 4 – HDFS statistics with nested hashing ... 54

vii

LIST OF FIGURES

Figure 1 – Distributed memory diagram ... 16

Figure 2 – Single Program Multiple Data (SPMD) diagram .. 19

Figure 3 – Gaussian example problems .. 24

Figure 4 – DCFS communication pseudocode ... 30

Figure 5 – Fringe distribution issue .. 34

Figure 6 – Hashing and nested hashing .. 40

Figure 7 – HDFS nested hashing for 16 processors .. 41

Figure 8 – FS successful searches ... 47

Figure 9 – DCFS comparison for 11 Gaussians.. 50

Figure 10 – HDFS comparison for G11 tests with non-nested hashing 53

Figure 11 – HDFS comparison for G11 tests with nested hashing 55

Figure 12 – All algorithms compared for G11 tests ... 58

Figure 13 – DCFS cache comparisons .. 59

Figure 14 – DCFS timing components ... 61

Figure 15 – HDFS timing components ... 68

Figure 16 – HDFS level one and two nesting time components 68

Figure 17 – Comparison of HDFS for the G11 tests with and without nesting 69

viii

LIST OF SYMBOLS AND ABBREVIATIONS

AI – Artificial Intelligence

BeFS – Best First Search

BrFS – Breadth First Search

CPU – Central Processing Unit

DAG – Directed Acyclic Graph

DCFS – Distributed Computing Fringe Search

DeFS – Depth First Search

DFS – Distributed Fringe Search

DLP – Data Level Parallelism

HDFS – Hash Distributed Fringe Search

ILP – Instruction Level Parallelism

MPI – Message Passing Interface

NPC – Non Player Character

NUMA – Non-Uniform Memory Access

OS – Operating System

SDD – Structured Duplicate Detection

SMP – Symmetric Multi-Processor

SPMD – Single Program Multiple Data

UMA – Uniform Memory Access

1

CHAPTER I

INTRODUCTION

Pathfinding is a problem which has an array of applications from the small to the

extremely large scale. The problems themselves are useful for representing domains in

which there is a known beginning point and a desired end point which must be reached

through a series of decisions. These decisions may be movement directions such as in the

case of a real or virtual agent navigating some space. Alternatively, these decisions can

be used in puzzle style problems, such as the popular sliding tile puzzle in which pieces

must be rearranged to form a desired pattern; in this case the decisions yield different

states to generate a ‘path’ in higher special dimensions. Common applications for

pathfinding include video games in which one or more non-player character (NPC) must

be able to traverse the game environment through an effective and efficient route. The

pathfinding problems posed by these and similar scale applications are designed to be

solvable by a single machine using tried and tested algorithms which have been

optimized for such use cases. However, there are an increasing number of applications

which consider a much larger state space that is impractical at best and infeasible at worst

to solve on a single machine system, even with a powerful CPU [1-2, 4, 6]. For problems

such as these, it is desirable to be able to use distributed computing where multiple

processing elements are connected over some network. However, the distributed nature

of these systems brings with it considerations that must be accounted for that are

naturally not present in single machine systems. Such considerations require more

nuanced approaches for implementing most non-trivial algorithms including those related

to pathfinding. This is primarily due to the separate memory spaces of such systems and

2

the unique challenges that this presents. These challenges also exacerbate the difficulty of

attempts to parallelize such algorithms to utilize the clustered processing elements. Given

these challenges, the research conducted here explores the application of pathfinding

algorithms that are more adaptable to distributed computing environments. The

adaptability of such algorithms can then be leveraged to provide an approach that is

capable of handling larger scale problems than a standard parallel implementation of the

original pathfinding algorithm. This implies that the efficiency of the solution is not the

entire goal with the approaches developed here. While it is certainly the intent to make

effective algorithms for distributed pathfinding applications, it is also focused on the

ability to potentially handle such large problems that would not even be feasible on a

single system due to memory limitations. Because of this, the cost of efficiency may be

considered acceptable since it provides a means of processing much larger problems

overall.

The basis for the research conducted here was formed during earlier research into

the family of current pathfinding algorithms. That work focused on identifying parallel

and distributed pathfinding algorithms with the goal of extracting the various techniques

used to achieve the parallelization. This prior exploration resulted in identifying common

challenges and solutions related to the parallelization of pathfinding algorithms as well as

discovering certain algorithms that used approaches which allowed for the extension

from a purely parallel approach to a distributed one. The previous work, although

unpublished, was also beneficial in focusing the efforts of this study by informing the

creation of a foundation for the topics studied in this work. Of the approximately 20

different algorithms that were surveyed, the majority utilized a centralized planning

3

algorithm with synchronous operations within a shared memory environment. In this

context, centralized planning refers that a single process that is capable of interpreting the

problem space and planning a route through it. The synchronous nature refers to how the

algorithm expands through the search space and may communicate with multiple

‘branches’ of a search; some algorithms may make use of multiple searches executing in

parallel and then attempt to somewhat stitch them back together for an ultimate, although

possibly sub-optimal, path [3-6]. Because most of these algorithms were based on a

symmetric multiprocessor (SMP) system, further investigation was needed to determine

how some, if any, of these approaches were conducive to being extended to distributed

environments. This was a somewhat challenging task, considering the fundamental

differences in design decisions that are required in significantly different processing and

memory systems. To accomplish this however, each candidate algorithm was reviewed

individually in order to gain a better understanding of the nuances of the approaches.

Specifically, the algorithms were studied to determine their potential for scalability to a

distributed system and any other facets of interest that they may provide. This process

concluded that the ideal pathfinding algorithm for parallel processing in a distributed

environment is one that minimized the need for dependency between concurrently

executing processes throughout the execution of the algorithm.

4

CHAPTER II

BACKGROUND

 The following sections will provide background information as it relates to the

area of pathfinding algorithms, optimization approaches, and the specific algorithms that

are expanded upon in this research. This section begins with a summary of the general

pathfinding algorithms that are widely accepted and utilized. It should be noted here that

the algorithms summarized in this section by no means represent an exhaustive list of

pathfinding algorithms; instead this should be taken as a selection of those algorithms

which have proved adaptable and which have provided the basis for other versions

featuring various optimizations for speed and/or memory usage. Following this,

information is provided regarding the two architectural differences for memory systems

that arise when devising algorithms suited to distributed systems. These differences are

significant in understanding the limitations they impose for the environment in which the

algorithms will be processed. Finally, this section provides information on the basic

approaches that are used in the field of parallel processing. In a distributed computing

environment, a primary concern is the minimization of intra-network communications

between processing elements. By minimizing these communications, less overhead is

created and the processing elements can be dedicated to process the algorithm more

efficiently. This is a significant concern that must be considered when designing the

parallelization of an algorithm that is suitable for a distributed computing environment.

These and other concerns that are less relevant in single machine systems will be

discussed in more detail in the following sections as they are extremely relevant and

inform the process taken in developing the enhancements that are presented in this study.

5

Pathfinding Algorithms

Pathfinding algorithms are designed to find the best possible path from a source to

a destination within some graph structured environment. This path is usually intended to

be the shortest or at least very close to it. In the context of pathfinding algorithms, the

shortest path is said to have the ‘optimal’ cost, in which cost refers typically refers to the

distance traveled; although cost may be based on other factors, the problems studied here

are grid based searches and distance is appropriate. The most basic pathfinding

algorithms are commonly referred to as uninformed searches. There are two basic

approaches for these searches, each having their respective strengths and weaknesses. As

suggested by the name, a depth first search (DeFS) is conducted by visiting a vertex

followed by subsequently deeper children until a leaf or terminal vertex is reached. A

benefit of this type of search is that it may find an acceptable solution quickly without

needing to expand much of the unused space. However, this is not guaranteed to be the

case and it is in fact common that it may need to search a large amount of the space;

additionally it is susceptible to sub-optimal solutions where the path identified is not the

cheapest. Alternatively, a breadth first search (BrFS) visits all of the immediate children

of a vertex before proceeding to a deeper layer. The benefit of this type of search is most

notably that it can provide an optimal solution. In terms of processing time, it will find a

solution as fast as the worst case of a DeFS applied to the same problem. So while it may

not be any faster than its depth-based alternative, it is no slower and is capable of

providing better solutions. There have been various attempts at utilizing both of these

kinds of algorithms for distributed and parallelized versions. There have also been efforts

at improving these algorithms such as Iterative Deepening Depth First Search (IDDFS)

6

where the depth of the search is increased gradually until the goal is found. IDDFS has a

smaller memory footprint than the basic BrFS and allows for optimality guarantees.

However, this requires repetitive processing of nodes due to its iterative nature [2, 5-6].

Similar to the BrFS approach, Dijkstra’s algorithm is one of the most established for

pathfinding and is considered a best first search (BeFS) algorithm [5-10]. A BeFS is

classified where the most ideal vertices are searched first. In the case of the Dijkstra’s

algorithm, it operates by selecting the vertex with the cheapest cost to visit at each new

expansion. Uninformed searches frequently require a large amount of vertex visits in

order to locate the goal vertex because, by definition, they have no information about

what areas are best to search. Conversely, informed searches use some additional

information in the search so as to hopefully guide it to the goal and reduce the amount of

vertices searched. Arguably the most popular informed BeFS algorithm is the A*

algorithm, which is itself based on Dijkistra’s algorithm.

Because the A* algorithm and its characteristics are so commonly applied to and

borrowed from, they will be examined in more detail here. The A* algorithm improves

upon the basic pathfinding algorithm by including the notion of a ‘heuristic’ component

to guide the search of the space. This additional heuristic measurement is used to

prioritize the assessment of the nodes within the search space where each vertex has a ‘F’

cost which is equal to the addition of a ‘G’ cost representing the incurred cost plus the

‘H’ cost of the heuristically estimated remaining cost. Under certain conditions, a

heuristic may reduce the amount of space searched. These heuristic measurements can be

computed in various ways; for grid based problems, the Euclidean and Manhattan are the

most common methods and the latter can be effectively extended to other problems such

7

as the sliding tile puzzle. The former heuristic is computed as the straight line distance

between the current point and the goal point whereas the latter is computed as the sum of

the lateral distances between the two points. For problem domains that are not based in a

geometric space, such as puzzle solving applications, a heuristic can be developed that

provides a reasonable approximation of the ‘moves’ remaining until a goal state can be

achieved. Care must be taken when designing such heuristics however, because if a

heuristic is allowed to overestimate the actual cost it no longer qualifies as ‘admissible’

and therefore can produce sub-optimal solutions. This means that a heuristic has to be

chosen very carefully in order to provide a reasonable expectation of the total distance yet

to traverse to the destination. It is desirable that the heuristic provide an approximate

underestimation of the actual cost remaining to the goal. By doing this, the heuristic

qualifies as admissible, that is, it should always estimate less than the actual number of

edges necessary to traverse. With the use of heuristics, if the function computes an

inadmissible heuristic value, then A* may expand fewer nodes overall but may also

produce a suboptimal path. Absent a heuristic function being used or in the case that the

heuristic measurements are all zero, A* becomes a Uniform Cost Search in which nodes

are expanded based on priority of their G cost.

The initial step of the A* algorithm is to assess the beginning state of the problem

space. The beginning state, i.e. the source from which the path is to be found, is queued

into the open list for processing. This open list represents a container for vertices that are

in a queue to be processed; this queue is sorted based on the F values of the nodes. From

this point, there are just a few key actions that are repeated on each element pulled from

the open list until a goal state is reached; in the event that the open list is emptied before

8

the destination is reached, it signals that no ‘path’ exists between the goal and the start

state. For each element removed from the queue, it is first compared to the goal state, if

the end has been reached then it retraces the path using the element’s reference to its

parent. Otherwise, the element is placed in the closed set and its adjacent elements are

processed. As each new element is processed, the algorithm expands the vertex by

looking at its neighbor states; these states represent the potential states that can be

reached from the current state. Each of these ‘children’ is then assigned their appropriate

information, much of which is based on their ‘parent’ including a reference back to that

state. Information about the parent is necessary for reconstructing the path taken to solve

the problem. At this point, each child is then examined against the closed set. This is

necessary to prevent the algorithm from falling into cycles and helps prevent unnecessary

vertex creation. If a child is already in the closed set, this means that it represents a state

that has already been expanded, and therefore does not need to be examined again.

Because of the priority sorted open list, once a vertex has been closed it can be

considered to have found the optimal route to that vertex from the given start; this means

that if the same state is seen again and has been closed, there is no benefit in reevaluating

it. Any children that were not in the closed set are then added to the open list where they

are sorted by priority among the elements already in the list. At this point, the loop can

then repeat itself by pulling elements from the open list and examining them until the

goal is reached or the queue is empty.

The A* algorithm is capable finding paths relatively quickly due to its informed

nature, assuming an admissible heuristic, and with the assistance of the open and closed

lists, the former of which is priority sorted to search the most ideal vertex at each

9

iteration. Because open and closed lists are used to retain information about which nodes

have been visited before, an A* search will essentially ignore nodes that have total cost

estimates until those costs rise to the front of the priority sorted open list. In this way, the

informed search is guided through the space and can perform well with a good heuristic.

Although this assists the search by limiting the area searched, it is associated with two

significant costs. First is the memory requirement necessary to retain each vertex visited

in the open list and all expanded nodes in the closed list. This means that for large

problem domains, the memory requirement will grow significantly even for relatively

direct paths due to the exponential nature of the search expansion; for extremely large

searches this could exhaust the memory resources of a single machine system. The

second main cost associated with A* is that of re-sorting the open list after each iteration.

As the number of nodes in the open list grows exponentially, the time needed to sort the

open list after each list grows commensurately; even with optimized sorting routines, this

is a significant cost to the overall search since it must be performed after each iteration.

While this sorting can be acceptable for some applications, it is extremely inhibitive to

parallelization, especially when attempting to use distributed means.

As a response to these challenges, a modified approach to A* uses the iterative

deepening technique which operates with A* similar to how IDDFS operates with DeFS.

This deepening approach is combined with A* to conduct the typical search pattern with

a depth threshold based on the heuristic estimate of the beginning point. The significant

difference between this and classic A* is that no supporting open and closed lists are

used. To account for these complications, IDA* uses the iterative deepening technique to

gradually expand the search under some threshold cost which is computed by A* in the

10

typical form as the sum of the incurred and estimated costs. Once all nodes have been

expanded along the search up to the threshold, a single iteration has been completed. If

the space under that total cost is searched and the end point is found, the search

terminates. If not, the search restarts from the beginning with the threshold increased to

the minimum of the estimated next steps; during each iteration, the next highest cost of

expansion that is above the current threshold is recorded to provide this increase. The

iterative approach provides for a memory savings since at each iteration, only the nodes

under the current heuristic estimate need to be stored in memory for processing. Because

the search is completely restarted with a new threshold for each iteration, the open and

closed lists are not required since all nodes will be revisited with the addition of those

between the previous threshold and the newly increased one for the next iteration.

Additionally, because no open list needs to be maintained, there is no sorting in between

each iteration. Although this algorithm can function without an entire open list, some

form of cache is typically used to prevent processing nodes in cycles repeatedly; however

this can be implemented as a hash table of the states and is still significantly less

expensive to maintain than an open list and associated sorting. The tradeoff with not

having the costs of open and closed lists is that the algorithm repeats itself with each new

iteration, so there is much redundant processing.

Although it is possible to parallelize A* on a single machine environment, it

proves non-trivial and frequently requires tuned data structures that are optimized for the

application. Due to the required tuning, a naïve parallel approach is very likely to prove

less efficient than a comparable serial one [5, 7-10]. This is primarily due to the

challenges to parallelization posed by the two aforementioned factors, i.e. maintaining

11

open and closed lists as well as resorting the former list after each iteration. Intuitively, it

may seem that a multiprocessor approach could allow each processor to pull an item from

the open list, process its adjacencies, i.e. determine which vertices are connected to it,

and update the open and closed lists respectively. However this has two less obvious

implications that hinder such an approach. First is the common issue with parallel

approaches in that, if each processor were to expand a vertex and update the open and

closed lists, access to those data structures must be regulated to prevent data hazards on

reading and writing the data. For instance, a processor may check the closed list to see if

a vertex has been processed immediately before another processor marks it as so,

resulting in redundant processing. A similar and possibly more severe situation can occur

on the open list side if a processor were to process the adjacencies of a vertex and update

the open list just after another processor has taken the ‘best’ element from the open list

because it did not have the newly processed data. The impact of the later situation is a

possible loss of optimality in the search due to the fact that one processor may find a sub-

optimal end point while the actual optimal end point has yet to be processed.

Applications in which pure optimality is not required may accept a small sacrifice in

accuracy or may opt to use a strategy to regain the optimality by requiring a solution to

be held until it can be guaranteed optimal. Besides the issues of redundant processing to

loss of, or at least delayed, optimal path finding, the more serious issue is related how

each processor is allowed to access the lists to actually perform the updates. This relates

back to the issue of regulating access to the data, which is typically achieved through

memory locks. Although regulating access to the data structures will ensure that only one

processor can read from or write to it at a time, there is almost inevitably a significant

12

amount of time spent idle by each processor waiting on acquiring a lock. This is an issue

that is not solvable by simply allocating more processing elements, since each new

processor will still need to wait for its turn to access the data as well. Altogether, these

issues represent the challenges faced when attempting to adapt the A* algorithm directly

for parallelization. Combined with the high memory requirements for A* searches and

parallelization perils an interesting opportunity is present for exploring distributed

computing applications of attempting to accommodating these challenges; this thesis

explores such attempts further.

Because the open and closed lists can place a large burden on memory for large

search space, a natural suggestion would be to use a distributed system where the

memory of multiple systems can be applied to the problem. Of course, some interface

must be used to handle the passing of data back and forth, but it seems reasonable that the

additional memory should make the problem more easily solvable. However, it is the

sorting requirement of the A* open list that complicates this because, even though it is

feasible to distribute the open list in memory between separate machines, the sorting

would require a significant level of cross communication. Additionally, even if a

mechanism is used to allow each processor access to the open and closed lists, there

would need to be a significant amount of regulated access to ensure consistent processing

by each processor; this presents a common issue of parallelized algorithms that suffer due

to inactivity while a processor waits to acquire and subsequently release a lock. Though

this is again technically possible, the sheer amount of communication between systems

would be so costly that it can outweigh the benefit of using multiple machines in the first

place. As a side note, the author came to this realization a few years ago when attempting

13

an intuitive implementation of A* on a cluster; it was this discovery that prompted what

eventually resulted in the research presented here. Based on this early discovery, a more

extensive study was conducted of distributed pathfinding problems.

After exploring specific approaches to parallelizing pathfinding algorithms, two

candidate algorithms were identified that appeared viable for conversion into a

distributed computing environment. One algorithm identified was Asynchronous Hash

Distributed A* which was designed by Burns et al. in 2010 and utilizes space abstraction

techniques [6]. This approach uses an abstraction function to create a condensed graph

that preserves the overall connectivity while reducing the states into coarser blocks; state

space abstraction is a logical approach for representing large spaces and will be discussed

later in this work. This algorithm was itself based on a pre-existing distributed

implementation designed by Kishimoto et al. in 2009 [4]. Because such a distributed

computing approach had already been proposed, the focus turned to another previously

identified algorithm titled Distributed Fringe Search (DFS) designed by Brand & Bidarra,

in 2011 [5-6, 9-10]. This approach is itself based on Fringe Search (FS) which is

described by Bjornsson et al. in 2005 and is itself an enhancement of IDA* as described

earlier [3]. FS uses the approach of having unsorted Now and Later lists instead of the

Open and Closed lists as A* uses. The Now list contains all vertices at the fringe of the

search and then opens any under a given bound where the bound is the heuristic of the

beginning vertex which is then increased as the search progresses. The Later list contains

vertices that are encountered while expanding the fringe that have a cost estimate greater

than the current threshold. This alleviates the issue of a large sorted open list and

accompanying closed list used for all vertex expansion operations. In terms of

14

parallelization efforts, the lack of requiring a sorted list means that it can be distributed

without disrupting some order and that additions to any segment of the list does not

impact a presorted order; this avoids the need for collecting, resorting, and regulating

access issues as described earlier. These adaptations are applied directly in DFS in order

to allow for the distribution the Now list data to available cores. In this approach, the FS

algorithm expands as it would normally, however the Now list is distributed at the core

level, with each core being responsible for a section of the list. Load balancing is

accomplished through pointer manipulation of the list with each core taking nodes from

the center of the list and growing in either direction. The extension of this approach to a

truly distributed memory system would involve translating the operations that DFS uses

to allocate portions of the Now list to the cores to instead allocate to separate processors

in a distributed system. Although this should be relatively straightforward data

parallelism, in order to minimize any additional communications, a distributed approach

may benefit from some pre-computation strategies to help inform the potential

distribution process. Additionally, while the parallel implementation of DFS showed

some good results, it was noted by the authors that the load balancing was less than ideal,

as one core typically handled the most nodes. This is due to the nature of the heuristic

used in A* which extends the space toward the goal. Any modification that could help

better distribute the space initially may allow for improved work distribution among the

processing nodes.

Memory Architectures

The implementation of A* or other pathfinding algorithms requires a significant

amount of memory coordination. Depending on the scale of the pathfinding problem

15

being approached, a parallel implementation typically takes on one of two basic memory

models. Smaller problems that are capable of being solved by a single machine typically

operate in the shared memory architecture. Common applications for this type of

pathfinding can be found within games where some AI agent must navigate an

environment; it is unrealistic to expect that the player will have the computing resources

to allow the agent pathfinding to be distributed to other machines. Execution within a

shared memory environment can be convenient because it typically guarantees uniform

memory access (UMA) which allows for consistent memory access times; this is

commonly realized on a modern SMP machine. For pathfinding algorithms such as A*, a

parallel implementation typically involves having separate threads process the next

available vertex from the open list. Because of the shared memory, this means that each

processing element, often cores or chips on the same board, are able to access all of the

memory simultaneously without requiring additional busses or networks. This is

desirable during the open list, and to a lesser extent, the closed list operations because it

is often easier to regulate access to these data structures. However, care must be taken to

assure there is no contention between processing elements, so memory must be locked to

prevent concurrency hazards. Although this is a manageable process, excessive locking

and unlocking can cause the benefits of parallelization to be lost to the processing

elements waiting on lock acquisition [5-10]. Actual implementations of this kind of

parallelization are often accomplished through the use of the POSIX threads (Pthreads)

functionality standard or similar framework that allows for thread coordination.

16

Figure 1. Distributed memory diagram [11]

Implementations of pathfinding algorithms such as A* in distributed computing

environments are by nature operating within a distributed memory architecture. This is a

basic extension of shared memory in which multiple combined processing elements and

memory units are connected over a network. It is important to note that these units

connected among the network are likely operating individually on a shared memory

architecture which is essentially nested within a higher distributed memory system. This

architecture is often referred to as distributed memory due to the distributed nature of the

memory a CPU may access either local data or must request data that will need to travel

over the network (see Figure 1). The benefit of these combined layers of memory is that

each processing element on the network can then subdivide its workload to its own local

processing elements for increased efficiency [1, 4, 6, 11]. Systems that utilize distributed

memory architecture are designed to use the combined processing power and are ideal for

computationally intensive applications. Frequently this includes problems in which it is

unrealistic to wait for a single processing element to perform the computations and/or the

17

size of the graph is so large that it cannot be retained in memory local to a single

processing element. In order to resolve these issues however, pathfinding algorithms in a

distributed environment require a different approach than the somewhat more intuitive

one possible with shared memory. Specifically, this is often accomplished with a

Message Passing Interface (MPI) to communicate between the processing elements on

the network; although MPI refers to a standardized version for message passing, any

available message passing communication method is feasible. Whereas for A* operations

in a shared memory model, each processing element is able to access the open list and

also determine if it is currently locked by another processing element, this approach,

while technically feasible, is ultimately unrealistic. This is because of the sheer amount of

overhead that would be required in communicating a single open list between all

processing elements on the network; these communications would need to occur for each

operation on the open list from each processing element to all other processing elements.

As other research has noted, excessive locking and communication can actually reduce

the performance of a parallel implementation to below that of its serial counterpart [5-

10]. To solve this problem, most methods attempt to break up the need for a consolidated

open list by distributing a subset of the space itself to different processing elements. The

prime question here is how best to decompose the space in order to avoid data

dependencies, maintain data locality to the processing element, and maintain optimality

of the solution. There is no clear evidence indicating that any or all of these factors exist

in mutual exclusion.

18

Parallelization Approaches

 In the general terms of parallelization, approaches generally entail either data

level parallelism (DLP) or instruction level parallelism (ILP). For DLP, the technique

involves dividing up a large block of data and distributing the pieces out to separate

processing elements; it should be noted here that the ‘distributing’ does not necessarily

imply that this occur within a distributed memory model and instead refers to the

distribution of the workload to the processing elements which may exist on the same

machine. In the case of ILP, a similar process of distribution occurs except that instead of

sharing the data, some set of instructions are executed by different processing elements;

this can be commonly implemented with some kind of multithreaded model such as

Pthreads. For both of these approaches to parallelization, they may make use of either

distributed or shared memory [6]. In either memory architecture, it is desirable and

increasingly feasible to utilize multithreaded programming, as even most commodity

processors now have multiple cores [5-10]. Given the choice between distributed and

shared memory implementation, the most appropriate option depends primarily on the

intended application for pathfinding; often implied in this is also the type of systems that

the algorithms are even solving the problem in a realistic timeframe. For instance, in the

case of game environments with large spaces in which AI agents are expected to traverse,

the game world typically exists within a shared memory system [7-10]. This implies that

the algorithm will likely be able to access the necessary environment data as needed with

minimal memory access times [7-11]. Conversely, distributed memory architectures are

more often used in applications in which the search space is too large to be maintained on

a single system [1, 2, 4, 6]. Distributed computing systems also frequently use the Single

19

Program Multiple Data (SPMD) model which allows multiple machines to execute the

same base program where each processor can work on different data or even have slightly

different tasks (see Figure 2). This brings with it issues related to accessing memory that

may not reside on the current processing vertex. Not only can the issue of access latency

due to the network be a problem, but the sheer communication overhead can be

overwhelming if the memory locality is not managed appropriately.

Figure 2. Single Program Multiple Data (SPMD) diagram [11]

 Either approach to parallelism of A* frequently involves the management of the

open and closed lists and possibly during the adjacency generation phase. A serial

implementation of the A* algorithm assumes that the open list will be processed greedily

with respect to the F cost of the queued vertices. The subsequent expansion of the ‘best’

20

vertex will then generate the adjacencies which are expected to, but not necessarily, have

improved F cost compared to the other vertices in the open list at the time of their

creation. When the open list of items is processed sequentially this way, an optimal path

can be guaranteed. As the open list itself is a collection of distinct vertices with no direct

interdependencies, this makes it a prime choice for attempted parallelization. However,

when this effort is realized, the guarantee of optimality cannot be maintained. Although

there are no dependencies between the elements of the queue themselves, the order in

which they are processed can influence the result. This is because a parallel execution

which allows a processing element to pull from the open list may result in the expansion

of a vertex which is along a sub-optimal path to the goal while a different processing

element has not yet expanded another vertex which is on the optimal path. Because A* is

inherently based on a serial processing of its open list, it will accept the first ‘goal’ state

reached and assume that it has discovered the optimal path assuming that the open list

was processed according to the necessary order. Because of this issue with adapting A*

and other pathfinding algorithms to operate in parallel, the typical resolution is to hold on

to a solution temporarily for a certain number of expansions or until the open list has

been exhausted under the temporary solution cost. Although this typically involves more

vertexes being processed, it does allow for the benefit of pruning once a possible solution

has been found. These considerations are most significant in shared memory systems in

which the processing elements are able to access all of the same memory at any given

point. However in a distributed computing model, each processing element has its own

memory that it can access directly but may also occasionally need to access memory

which resides local to a different processing element.

21

CHAPTER III

METHODS

 The following section will provide more details on the development and

implementation of the selected algorithms as well as the design of experiments and

selection of related metrics for this study. This research began with a desire to propose an

approach that is more suitable to a distributed computing environment compared to

existing algorithms. These algorithms may have been designed with parallelization in

mind, however they were also intended to be executed on a SMP system; so while these

previous approaches provided a basis for the current work, the research conducted here is

novel in its enhancement of some of those concepts to a distributed computing

environment. Initially, this project used information gathered in previous work conducted

by the author in reviewing algorithms that were either themselves distributed pathfinding

algorithms or ones that provided interesting approaches to solving pathfinding related

problems in parallel. Ultimately, that work was condensed into the identification of the

Distributed Fringe Search (DFS) developed by Sandy Brand [5]. DFS was selected due to

the fact that the algorithm which it is based on, namely Fringe Search, is innately more

adaptable to the alterations needed to work within a distributed computing environment.

Primarily, this is related to the alleviated need of a sorted queue for processing elements

in addition to being slightly less memory intensive than its A* relative; please refer to the

Background chapter for a more detailed description on the operational differences

between A* and FS. It is these features of FS that allowed Brand to develop DFS for a

multicore approach. By extension, the work conducted here can be thought of as similar

in that, instead of distributing work to other cores for processing during execution, the

22

work is instead capable of being distributed to another processor that may be on the same

machine or connected across the network of a cluster.

Problem Generation

A need for a consistent set of problems to compare the potential performance of

algorithms was identified in the early stages of this research. By identifying a standard

and varied selection of problems, all algorithms developed through the course of this

project could be tested equitably. Additionally, by providing some variation on the

structure of the problems themselves, it is possible to highlight behaviors of the algorithm

that may not be evident with less varied testing problems. In this work, the domain is

composed of grid based test problems where the vertices are arranged similar to the

points in a Cartesian coordinate system. All grids points are the standard one unit apart on

each axis and √2 apart at the diagonals; diagonal moves are allowed in all algorithms

implemented here. Euclidean distance is used as the heuristic for all algorithms tested in

this study. For all problems, the beginning point is considered to be at (0, 0) in the

conceptual upper left corner of the grid and the end point at the lower right corner.

Because the algorithms presented here are intended for applications which must find long

paths through large spaces, these constant beginning and end points are reasonably

justified; testing with randomized paths could have led to arbitrarily short paths which

would not accurately represent the performance of these algorithms and the problems that

they are designed to solve. Rather than test each algorithm against a specific time

benchmark, statistics were gathered from each permutation of the runs including time and

data about the actual data processed. For the distributed algorithms, additional data points

were recorded related to the timing the components of interest, especially as it relates to

23

communication that is not present in the serial algorithm. In generating the actual

problems, they were designed to illustrate the behavior of each algorithm being tested.

The problems themselves were composed of 300 randomly generated grids of one million

points each which were built using custom sum of Gaussians problem generator. This

generator created the grid with a variable number of Gaussian centers and adjustable ‘C’

factor where C is represented in the Gaussian function as:

𝑎ℯ
−

(𝑥−𝑏)2

2𝑐2

In the application of this function, C controls the relative ‘width’ of the

distribution. By adjusting this value, the centers become smaller or larger while still

maintaining the same relative distribution. It is necessary to adjust this factor when tuning

the input problems themselves. In order to test on a variety of problems, a failure rate of

5-15% was considered acceptable, i.e. no path exists from the beginning to the end point.

The complicating factor that arises when this is combined with a variable number of

centers is that the width must be reduced as the total number of centers is increased so as

not to completely obscure the path and to stay within the desired failure percentages. It

was experimentally obtained that for grids with 2, 11, and 20 center points that the

corresponding C values were 100, 50, and 25 with their respective failure rates of 5, 11,

and 7% (see Figure 3).

24

Figure 3. Gaussian example problems

The problems themselves are used in testing against each of the three algorithms,

FS, DCFS, and HDFS. This provides similar data for the performance of each algorithm

on a standard set of tests. These tests are used to examine the differences in performance

of each algorithm and provide information about the related causes and effects. For the

DCFS and HDFS algorithms, the additional testing factor of how many processes were

allocated to the algorithm becomes relevant. Both algorithms were tested with 4, 8, 16;

this equates to running on one, one, and two machines in the cluster respectively which

will be explained in more detail in the following section on the testing environment.

Selecting the above number of processes allows for the testing of a distributed setting in

which the distribution is actually occurring over a single machine or two separate

machines; testing with 4 processors was included as a base point to be similar to the

original DFS by Brand [5]. In this way, it is intended to elicit discernable behavior that

may be more difficult to detect with too few or too many processes; future tests on larger

problems could consider a higher process count as appropriate.

25

Testing Environment

To accomplish the distributed communications, the approach developed in this

project utilizes the Message Passing Interface (MPI) framework, more specifically the

MPICH 3 implementation [12]. Using MPI, the algorithms developed here are able to

communicate the necessary data to each process regardless of which machine in the

cluster it may be on; to use MPI terminology, this is often referred to as the ‘rank’ of the

process which equates to a single processor that is responsible for some part of the

program. This illustrates the Single Program Multiple Data (SPMD) model that MPI is

designed for; that is, a single program is written once and different processors can handle

different datasets while all running concurrently. For all experiments conducted here, the

environment consists of machines with eight 64 bit processors available on each. For

instance, if the program were to be run with eight processes, MPI will coordinate how

and where each of those processes should be executed on. To extend the previous

example, if a program were run with 16 processes, the first eight would all be allocated to

one machine and the others to the next machine; by doing this, there is a slight potential

for saving for some processes that may communicate over the same machine rather than

over a slower network, but all still using the same MPI standard for communication.

Although some machines in this cluster were technically capable of running 16 processes,

only eight of those would have been on real cores with the others being virtualized.

Because of this, it was decided to use only the number of real processor available on each

machine so that each machine had the capability to contribute evenly to the overall

computations. In terms optimizations, the only features used external to the code itself

was during compilation. All executables were compiled using g++ or mpicxx as

26

appropriate with the additional O2 flag for some possible assembly level improvements.

Because this flag is an available standard through the compiler itself, this is not

considered a significant advantage that would distort the testing results in comparison to

other potential implementations.

Design Decisions

Three algorithms were implemented in this research and each was tested on the

same set of problems, with only small variation being due to additional testing factors

possible in the distributed algorithms that were not applicable to a serial algorithm. First,

the serial FS algorithm was implemented as described by its authors [3]. Based on the

descriptions and pseudocode provided by its authors, the version of FS tested here is

comparable in its overall design and operation. FS was completed relatively easily and

tested against several small problems that confirmed its ability to backtrack correctly.

Additionally, the preliminary FS output showed that it is correctly expanding nodes in the

fringe based on the original algorithm. By implementing the serial FS first, it allowed for

the development of a baseline of the algorithm for debugging and testing as well as

providing a foundation from which to develop DCFS. Additionally, this provided a serial

basis for comparisons against the distributed versions. Also, any issues with the base

algorithm could be corrected more easily without the fringe distribution potentially

confounding the issues. A significant aspect in the design of this algorithm is the use of

hash table maps to represent the now, later, and cache lists; these associative containers

allow a string representation of the state to be indexed to a ‘Node’ structure that contains

all the pertinent data regarding that vertex in the space. By default, these containers

would be sorted by their string representation. Because this is only a textual name of the

27

state, a custom sorting rule was applied to preserve some notion of ordering between the

states. According to this rule, the items in the maps are ‘sorted’ internally based on their

relative row and column in the grid, with ‘lower’ values having lower row then column

numbers. For instance with a (row, column) ordering, position (1, 2) is considered ‘less’

than (2, 1) and similarly (1, 1) is less than (1, 2). Ordering based on this criteria gives rise

to a more regular processing pattern than the simple ordering that would be the case with

only the string representation of the state used as the key in the hash table. It is important

to note here that, while this is a more intelligent ordering than a simple string

representation of the state, it comes with a cost. While significant tests were not

conducted to determine the extent of the impact, a few preliminary tests were conducted

in which the cache map also used the ordering scheme. Even in these few tests,

processing times increased approximately 40% on the one grid problem tested. Because

of this, only the now and later maps are enforced with the sorting, since it is necessary to

maintain for their subsequent collection and distribution. However, it should also be

noted that imposing the ordering on the cache likely results in a more significant

reduction in performance since the cache map is being accessed more frequently than the

Now list and Later list. In terms of the data structure used, this and all other structures

were from the C++ Standard Template Library (STL). By using standard structures, this

work presents a general approach for these implementations without needing to rely on

extensively customized and tuned data structures or external libraries to support the

processing. Using this map structure, the FS algorithm is capable of performing all

necessary operations on the now and Later lists as well as retrieving vertex data from the

cache map. It is worth noting that the implementation developed here differs slightly

28

from the original FS algorithm description. In this project, a different method is used for

how all of the hash tables are checked and updated during processing; this deviates from

the pseudocode provided by the original FS authors. Specifically, this relates to the use of

the cache lists as it relates to the ‘fringe’ list that they describe. In their implementation, a

single fringe list holds both the now and Later lists that are conceptually separate.

Complementary to this, the cache contains all data as it is observed when processing the

adjacencies of each vertex. Since only visiting a vertex adds it to the cache, this is

significantly different from similar processes such as in A* where it is the full

‘expansion’ of a vertex that would add it to the closed list. Although the cache is not a

closed list per se, it does provide a quick access data structure to check which nodes have

already been seen; this is of special importance in grid based problems due to the high

interconnectivity of the vertices such as the ones used for testing here. DFS also uses

similar techniques for maintaining a set of states that have already been closed.

DCFS Development

 The original author of DFS was contacted for any additional implementation

details of the algorithm. Mr. Sandy Brand provided some additional documentation on

DFS, however no DFS source code is readily available for direct comparison with the

work conducted as part of this project. This algorithm is the foundation from which the

DCFS is based. The primary difference here is that DCFS communication is modeled

after the multicore DFS approach designed by Brand with the necessary alterations to

enhance its capabilities to work in a distributed computing environment. In the original

multicore approach of DFS, load balancing was achieved by distributing the Later list

between four cores using some pointer manipulations allowing each core to have

29

approximately equivalent work for each new iteration. This would allow the work to be

distributed to other processes, whether they were on the same machine or over the

network, using MPI constructs; the process here is analogous to the ‘distribution’ of data

to available cores in the original algorithm. Because distributed communications have a

much higher overhead cost however, design decisions were made to allow a single rank,

specifically the master, to begin computations and continue until the Later list is large

enough to justify the communication to other nodes. Once the Later list reaches the

predetermined threshold, the master will evenly distribute the data in the Later list with

any remainder retained by the master in order to minimize communication costs; DCFS

as tested here uses a constant 1,000 as its threshold value. After the distributed nodes

have been processed by their respective ranks, the master gathers all of the generated

Later lists and merges them. In the meantime, the workers will remain idle while waiting

for new work. The process can then repeat by scattering the Later list if it is over the

threshold and the ranks will process their share of the nodes. Once a rank finds the goal, a

special sentinel value is scattered from the master and processing halts; in the likely event

that a rank other than the master finds the goal, a sentinel value is sent to the master first

and then scattered. In the event that no viable path exists in the space, the master detects

that all ranks contributed zero new elements and stops processing. In this implementation,

the customary designation of MPI rank 0 as the master is used and all other ranks

operating as workers including the master when it is not busy distributing work to the

other ranks. DCFS accomplishes this with considerable effort devoted to orchestrating the

communication to provide for a clear and consistent set of rules for communication. After

the Now list is exhausted in each iteration, communications are performed (see Figure 4).

30

If master

If work previously distributed

Gather processed data from workers

If no new data or end found

Kill all

If collected data < distribution threshold

Transform for self-process

If collected data > threshold

Transform nodes for distribution

Scatter work evenly to workers and self

If worker

If work processed

Send data back to master

Wait for new work

If found or no path

Kill self

Transform data for processing

Figure 4. DCFS communication pseudocode

The ‘transformation’ in the above procedure refers to an additional step

necessitated by the use of MPI in the algorithm. MPI is capable of handling the difficult

intricacies of packaging the data and sending it to the correct destination. In order for

MPI to accomplish this however, it requires that the data to be one of the predefined MPI

types. Although there is a provision for user defined MPI types, which was used here, the

container of those types itself is more restrictive. Moreover, it is at odds with the hash

table maps used by the algorithm in processing the vertex data. Because of this, it

becomes necessary to have a contiguously allocated container, such as a vector, with the

MPI data to be sent; this requires a ‘transformation’ process to extract the Later list data

from the hash map to a vector and then the easier process of inserting received data back

into the hash map. Despite this seeming like a time intensive process just to allow for the

31

communications, the results empirically show that it is a trivial amount of time, even

relative to the communication time. Additionally, this can be considered as an associated

cost of operating in distributed environment and one that may be reduced, but is not

completely unavoidable. However, it is still valuable to take efforts to maximize the

effectiveness of each communication when it must occur. Another complication brought

on by MPI is the additional complexity in the communications required to send

potentially variable amounts of data to the different worker ranks. Because the work is

split evenly with the exception of the master who retains any remainder, the number of

vertices is not constant, nor cannot it be known before the current iteration has actually

completed since it is based on the growing size of the Later list. In order to adjust for the

unknown amount of data that will need to be sent, two collective communications are

actually required. In this context, ‘collective’ implies that all ranks must participate in the

communication before they will all proceed; this also implies that a rank will block and

remain idle until all process have reached that point. A priming communication is used to

inform all ranks of how much data they will be sending or receiving so that each rank can

allocate the correct amount of local memory. Following this, the actual data is sent or

received between the ranks. Whereas the regular DFS algorithm is able to distribute work

relatively cheaply due to the cores in the SMP system, a distributed system requires more

care to be effective and efficient in its communications of data. To balance this

communication cost, the threshold value is used for deciding when to actually distribute

work. By using this, the master will continue working with the data until the Later list

grows to a length were it can be considered worthwhile to take the effort to distribute the

work. Setting the threshold value itself requires somewhat of a balancing act. A low

32

threshold will allow work to be distributed relatively ‘sooner’ as the search expands, but

will also cause more communications overall, which are generally the most expensive

part of the process; this is due to the packaging costs as mentioned before, where data

must be packed data structures to be sent via MPI, as well as the inevitable latency

between processes where one may finish before another and then is idle for some amount

of time while waiting for the other process(s) to finish and participate in the

communications. Conversely, a high threshold will allow the master rank to delay the

expensive communications and work on the problem by itself. However, this provides

poor utilization of the distributed approach since the other processes will remain idle until

they are given work by the master. Because the master is also a worker, i.e. that it is

responsible for all work coordination and also participates in the computations on the

data, a threshold greater than the total vertex size would essentially be the same as

running the serial algorithm; practically speaking there exists a threshold value less than

the total size which will also have the same result, since a search can never have all nodes

in the Later list simultaneously. For the implementation here, the threshold was set to

1000 which was low enough to cause distribution when there was adequate work to be

done, yet not so large that the threshold may never be reached and the master would be

left to do all the work thereby negating the distribution. Ideally, this value should be a

function of at least the factors of the size of the space and the number of processes

allocated to the problem. Since the Later list is divided evenly among the processes, with

the master retaining any remainder in order to minimize communicated data, a constant

threshold implies that as the number of processes is increased, each process will receive

less work and in turn process it faster and require communication of their results. While

33

this is good in terms of utilization, it may place a higher burden on the communication

costs; ideally the value would allow the master to provide enough work that would keep

each process reasonably busy to lighten its workload. At this point it is important to note

that this threshold value is not an immediate trigger to cause the distribution. Because the

underlying FS algorithm continues placing vertices in the Later list until the Now list is

depleted, it is possible for the Later list to grow larger than the threshold within a single

iteration; only after the entire iteration is complete, i.e. the Now list is emptied, will the

size of the Later list be assessed against the distribution threshold. Despite this seeming

somewhat counterintuitive, it is actually quite sensible considering that it allows the

search to continue consuming space so long as nodes are found that are under the

estimated cost of the current iteration. For instance, consider a perfectly clear space with

no obstructions. In such a case, only a single iteration need occur since each subsequent

expansion will produce a vertex along the optimal path. While it may be possible to

distribute an intermediary Later list, this would likely prove complex and would require

more communication than before with potentially little if any real benefit.

A separate issue of the DCFS algorithm has to do with its pattern of distribution

of the data. As with regular DFS, there is no intuition on which nodes should be

distributed to which cores other than the natural progression of the search itself. Unlike in

DFS however, where all cores are able to access the same local memory, albeit through

some memory regulation, the DCFS algorithm does not operate with a single globally

accessible view of the data being processed. In fact it is because of this that the algorithm

is able to scale for larger problems, since each processor only needs to retain the parts of

the space that it encounters during processing. However, an issue arises when this is

34

considered in light of the blind distribution technique. Because the Later list is simply

divided among all processes, no way is provided to determine which nodes should be

delivered to which processes in order to capitalize on their existing cache contents. In

essence, a processor may work on expanding some part of the space at one point during

the search, and then a different region later in the search depending on how the frontier

expands. Although the custom sorting of the hash table that represents the Later list itself

provides some level of relative grouping based on location in the space, it alone cannot

guarantee which parts of the Later list will be distributed to which processor during each

iteration. Because of this, each processor may end up expanding nodes that it has not

explored before, but that were explored by other processors during a prior iteration. For

instance, assume vertex A is expanded by rank 0 and generates the child vertices B and C

to the Later list. Assume that vertex B is processed by rank 0 and vertex C is sent to rank

1 for processing. When rank 0 expands vertex B, it will have already closed A in its local

cache and will not reconsider it. However, rank 1 has no prior information about A, so

when it expands C it may reprocess A during the expansion (see Figure 5).

Figure 5. Fringe distribution issue

35

This issue is compounded by the fact that each successive iteration has no

guarantee about which section of nodes that it will receive; that is to say that for a given

rank that expands some set of nodes N into a Later list set of set M that after a subsequent

merge with and redistribution by the master rank, it is not necessarily true that for all

vertices V in the next set 𝑁 are necessarily a subset of M. Although this may seem to

imply that all ranks will inevitably reprocess all the same elements and result in the same

caches, this is not the case due to the incrementally increasing cost threshold which limits

which nodes are expanded during an iteration. A scheme is necessary that allows for new

nodes to be cleared against the caches of other ranks. Absent this, there will be significant

duplication of effort between the ranks. Theoretically, this could be accomplished by

each rank passing its ‘new’ states around a ring of the ranks and have each rank remove

any state that it has already checked during previous iterations. While this would

essentially eliminate the redundant processing, it would also require an inordinate amount

of communication, since each rank would need to communicate its data to all other ranks

which would result in a total of
𝑛 (𝑛−1)

2
 communication per iteration of a rapidly

increasing cache size. Clearly this is impractical, as even with a distributed computing

environment the benefits would be lost to communication times rather than actual

processing; this does not even mention the additional communication complexity it could

require to have all nodes communicate to all others in a circular manner. Overall, a cache

clearing mechanism is not only useful, but practically necessary for the sake of

efficiency. Because of these additional complexities, the approach developed here is to

check the incoming vertex data against the existing cache data and only insert it for

36

processing if it has either never been seen or has a lower G value than what was last

recorded for that state. Using this strategy is simple to implement and resembles the same

check that is used in the core algorithm for deciding if an adjacency should be placed in

the Now list. Although this does not prevent redundant data from necessarily being

communicated, it will not be reprocessed by any rank more than once and has the benefit

of not requiring any additional communications. Additionally, since the check is

performed by the workers and the master when gathering the Later lists, this further

reduces the chance for excessive duplicated processing.

In his original work on DFS, Brand presents the concept of ‘cost relaxation’ as a

means to allow the search to consume the space faster with the tradeoff being that there

may be more extraneous processing and potentially suboptimal points up to the difference

between the optimal and the relaxation amount [5]. Brand sets the cost threshold, which

determines if a vertex is to be expanded or deferred to the Later list, to be the minimum

between the two values of the current threshold and the local minimum of the elements in

the Now list plus some relaxation constant. By doing this, the actual threshold value is

adjusted if a new local ‘minimum’ is found after an iteration. It seems to suggest that the

cost relaxation could have a cumulative impact on the threshold value during the course

of the search. To avoid this potential issue, this approach decided to only allow cost

relaxation to be factored in during the actual comparison to decide if a vertex is expanded

or placed in the Later list. In doing so, all threshold values are the same as they would be

computed in FS or DFS without the cost relaxation factor. Although this factor was added

in during development for potential inclusion, it was not tested during the course of this

research. However, a small relaxation value of .01 was used to avoid floating point errors

37

that were observed during some preliminary testing. Technically this is a relaxation

value, but because it is smaller than the minimum possible traversal cost between any two

nodes, it does not actually modify how the search will expand through the space.

HDFS Development

The HDFS algorithm was designed as a variation of the DCFS algorithm using

similar MPI constructs but with an altered communication structure with the intent of

attempting to address the load balancing issues with respect to the cache. This algorithm

borrows from the concepts proposed by Zho and Hansen in their work on Structured

Duplicate Detection (SDD) as a means of representing the problem space abstractly and

then using it to distribute the space [2]. These distributions of the space are based on what

SDD refers to as the ‘images’ of the space which are said to be the ‘projection’ of an

individual state; that is, that many states project to a single image. HDFS differs from

DCFS in its communication structure in that instead of collecting, combining, and then

redistributing the Later list after each distribution of work, each state is associated with a

projection that determines which rank will handle it. In practice, this involves ‘hashing’

of the coordinates of a vertex within the space; it is worth noting that the use of this type

of space distribution is novel in that it has not been combined with any DFS version

publically available at the time of this writing. By doing this, each processor becomes

responsible for an image which includes all of the vertices which project or ‘hash’ to it.

In the HDFS algorithm, each of these smaller spaces become the responsibility of an

individual rank. That is, a rank will only process data related to states in its image of

responsibility. By doing this, a single rank only has the memory requirement of the states

in its own space and will not have to retain states expanded in other areas of the space.

38

Although the search may expand in such a way that one rank receives a vertex from

another rank multiple times, each rank will necessarily only store one copy of such

vertex. Because of this, the maximum cache size for any rank can be expressed as 𝐶 =
𝑁

𝑃

where C is the cache size, N is the total number of vertices in the space and P is the

number of processors applied to the problem. An additional benefit of this approach is

that it does not require the additional cost of custom comparisons to insert vertices in the

hash map. In order to communicate this state information to the appropriate ranks, when a

rank expands a state it will determine the projection of each adjacency which identifies

the corresponding rank to which the state belongs. If the projection of a vertex is a

different image than the current rank, it is queued for sending at the end of the current

Now list iteration. This allows for a less centralized system of communication as

compared to DCFS, since each rank is determining which other ranks to communicate to

according how the search expands through the space and which ranks are responsible for

those sets of states. By using such abstraction approaches, a distributed system is able to

scatter amounts of data in such a way that the various processing elements can search the

space within their assigned data region with minimal request for data that resides local to

another processing element and without the barrier of more frequent collective

communications. Other approaches that actually distribute the space for processing may

sacrifice efficiency for a potential loss in optimality due to the separate processes not

communicating relevant cost data amongst themselves [1, 4, 6]. However, because HDFS

is fundamentally based on FS, the loss of optimality is avoided despite the distributions

due to the communication of the cost threshold during each iteration to all workers.

Because of this, each rank will only work on processing data that is less than the

39

minimally increased cost threshold for each iteration. HDFS borrows from the most

fundamental part of the space abstraction concept and works by assigning each

processing rank one or more images that it then becomes responsible for. In this way,

each rank has a constant bound on the amount of nodes that it must process and store in

memory.

When a rank begins to process a vertex, if a vertex is expanded and one or more

of its adjacent states are not strictly within its image, they are sent to the rank who own

that image. Internally this is maintained by simply adding the external vertex to a vector

to be sent to its appropriate processor after the current iteration completes; this is

drastically simpler than the DCFS methods which requires transformation of nodes from

hash maps to lists and then a more complicated communication structure to actually

transmit the data. A benefit of the abstracted communication approach is that it ensures

that no single rank will ever have more than a worst case number of nodes in its cache.

Contrasted with DCFS, in which the master is responsible for much of the work and

coordinating the communication, HDFS allows each rank to process its own data and

only communicate to others when it needs to send or receive data from them. To

determine the image projection of a state, a ‘hash’ is used based on its position within the

grid. For grid based problems, the hashing is conceptually simple to visualize in the most

intuitive way of breaking a rectangular space into smaller rectangles of equal size. While

the hashing approach would maintains an even distribution of closed list nodes, it would

necessarily mean that some ranks would sit idle until the fringe expanded into its sector

and for some paths a rank may never actually work. A possible improvement on this

40

would be to nest the hashing approach resulting in a somewhat checkerboard distribution

of the space (see Figure 6).

Figure 6. Hashing and nested hashing

In the figures above, the number represents which rank would be responsible for

each portion of the overall space. The first image would work as already described. The

second image allows each rank to have the same total area of coverage by ‘nesting’ the

hash distribution inside the subspace, while spreading it out so that the ranks are more

likely to receive work as the fringe expands. The side effect of this is that although the

area is the same, the perimeter of each zone has increased which will imply more

communication between ranks. Although there may be more communications, this may

be offset by the fact that more ranks doing work sooner, resulting in better utilization.

Nesting was tested at level one and two for each processor count which is visually

represented in Figure 6. A minor adjustment was made for the level two nesting with 16

processors because the test problem dimensions do not evenly divide by 16 twice in order

to produce even sets of images. To circumvent this issue, that particular set of tests was

altered to perceive the space as a 1024x1024 space which is appropriately divisible by 16

at two levels for even sets of image sizes. However, the problems themselves were still

the standard 1000x1000 problems that were tested on the other algorithms and the end

41

point remained the same. Because of this, the behavior of the search is preserved with the

only technical issue being the periphery of some nodes would be able to map vertices that

do not exist in the problem to some images. A visual representation of this is shown in

Figure 7. In that figure, the light portion represents the complete space with the two

darkest portions being where the beginning and end point exist, just as with the other

problems and the lightly shaded region on the border represents what is technically part

of the image but not actually represented in the space. By using this alteration, even

though all ranks do not have the same share of the actual space, each rank will still

process only parts of the usable space.

Figure 7. HDFS nested hashing for 16 processors

Initially, the HDFS communication scheme was designed to be asynchronous in

an attempt to take better advantage of the decentralized structure. Although such a

42

scheme is not impossible, it became significantly more complex to implement due to

avoiding communication blocking. In that approach, each rank would record a queue of

items to be sent to each rank and would use a probe to test for incoming messages from

other ranks. The problem with the probing technique is that, as the number of ranks

increases, it will be more likely that one rank will probe just before another rank posts the

message which will cause the posting rank to block until that message is probed for again

and the communication can be completed. While there are non-blocking message passing

options, they still require that the sending or receiving buffer be maintained until the

communication is completed. Because of this, it would be very problematic to move

things into a software level buffer that then later re-initiates the communication. The only

potential benefit of asynchronous communication would be a rank could theoretically

keep searching without being interrupted to check for messages that may not be waiting

and instead wait for a probe to be signaled. However, even when the probe was signaled,

it would still require some synchronization between ranks prior to communicating. While

such communications may be possible, it would require some level of agreement between

the ranks that they were about to communicate. Such a complex communication scheme

may be possible, however it is not necessarily central to the HDFS algorithm in itself and

could be a potential area of future work. Moreover, the potential benefit of some ranks to

continue processing with only occasionally interrupting to probe is arguably outweighed

by the complexity required to enable any rank to communicate with any other rank at any

time; additionally this still runs the risk that the rank may then lose any former efficiency

gains by waiting for the corresponding rank to probe and begin communicating. The

revised approach which was developed here retains the decentralized nature for

43

communication between the ranks but is synchronized to allow ranks to determine when

they should send and/or receive from other ranks. To accomplish this, all ranks now

participate in a single ‘all to all’ collective communication in which each rank sends a

count of how many vertices each other ranks should expect from it. From there, each rank

knows how many items it needs to send to each other rank and how many it should

expect from each rank. Using this data, each rank begins a non-blocking send of the ranks

it has data for. It is critical that the sends be non-blocking so that the ranks can send all

data necessary before posting their blocking receives. If the sends were blocking, it

would be possible for instance that rank 0 attempts to send data to rank 1 and rank 1

attempts to send data to rank 0 and both are waiting for each other to post the

corresponding receive, causing a communication deadlock. Similarly, it is necessary to

perform the sending before receiving so that all data is ‘sent’ before a rank can receive.

Because the non-blocking sends may not be immediately ‘sent’ it is possible that they are

buffered at some level by MPI until the communication channel can complete the

transmission to the receiving rank. To account for this, it is necessary for the sending

rank to perform a ‘wait’ on the status variables associated with each send. This allows the

rank to ensure that the data has been received and the send buffer can be cleared in

preparation for the next iteration of processing. The wait could potentially slow a rank

down if there was a particularly large send/receive operations between ranks. However,

this is minimized by the fact that all ranks are synchronized directly by participating in

the collective all-to-all just before the sending. Also, if a rank did not send or receive any

information, it can continue processing and will pause at the next communication.

44

CHAPTER IV

RESULTS

 The results of this research review are significant in its adaptation of the

Distributed Fringe Search for a distributed computing environment as well as its

application of Structured Duplicate Detection concepts for developing a means to

distribute a problem space. This research has built upon prior research, both by the author

and external, and has developed approaches for applying distributed computing systems

to large pathfinding problems. These approaches prove fairly adaptable to solving such

problems within a reasonable time and memory environment that may be used on such

large problems. Results in this section will be examined for each of the three algorithms

implemented, namely Fringe Search, Distributed Computing Fringe Search, and Hash

Distributed Fringe Search. Of these, the latter two are original to this work and the former

is used as a serial algorithm for base comparison. Descriptions of the problems, testing

environment, and specific design decisions used in the implementation of the tested

algorithms can be found in the previous chapter. It is worth noting that some of the

results here may have potentially been impacted by other computational processes

running outside the control of the research conducted here. Because all tests were

conducted on a cluster owned and operated by Middle Tennessee State University, other

researches may have had long running programs that have slightly delayed the processing

due to system level task switching. Although it is possible that some of the system usage

factors delayed some tests, the actually data processed during the run would not be

altered and therefore is still valid for reporting here. Linear regression analysis is

provided for most figures presented here and include an R2 value where applicable.

45

Fringe Search

 The FS algorithm was tested on all 300 randomly generated test problems and

data was gathered for statistical purposes, especially for comparison to the distributed

algorithms. This data was then compiled and analyzed in order to assess any observable

trends. These trends could then be used to contrast with the distributed algorithms to

provide a more in depth explanation for them. Statistical data for the FS tests are

summarized in Table 1.

Table 1. Fringe Search statistics

 Pass Fail

 Cache Iterations Time Cache Iterations Time

G2C100 104787 2776 9.19 737933 40003 110.20

G11C50 168466 4374 15.74 393944 24796 62.82

G20C25 98088 1701 8.30 667826 35389 102.14

Average 123780 2950 11.08 599901 33396 91.72

 Of all the data collected, the cache size with respect to time is of key importance,

since it is what requires the most memory to maintain for very large searches. For most

statistics reported here, the focus will be on the successful trials since they are of more

interest; some statistics on the failed trials will be included for completeness. In terms of

simple averages, the FS algorithm as implemented performed well on the tested

problems, with an average solve time of 11.08 seconds for successful tests and over eight

times longer at 91.72 seconds for unsuccessful ones. In terms of cache size, successful

tests retained an average of 123,780 vertices in its cache at the end of the search; this

constitutes approximately 12% of the total search space. For unsuccessful tests, the

46

average number retained was over four times more with 599,901 vertices in cache. The

FS algorithm itself had to iterate, that is it expanded until no vertices were available

under the current cost threshold, an average of 2,950 times for successful tests and nearly

12 times more for unsuccessful tests at 33,396 iterations. The data represent a clear cost

of expanding through a large complicated space, especially for the failed tests which

necessarily expanded more nodes. It should be noted that some tests failed relatively

quickly due to a blockage near the beginning point while in others the blockage was

closer to the end point. In the latter case, this leaves much more of the space available for

the search to process while essentially looking for alternate possible routes. Because of

this, some of the shorter failed attempts expanded considerably less nodes than most.

Additionally, due to the Gaussian distribution of the centers, the periphery of those

obstacles is naturally porous like, which complicates the search and results in

significantly more iterations; this is likely the cause of the dramatically increased number

of iterations for the failed tests. The nature of what causes difficulty can be observed

upon inspection of some of the select problem types tested. For the problems with 11

Gaussian centers with a width value of 50 (G11C50), the problems took longer on

average than the other two problem types. This is explainable by the fact that those

problems just happened to have more ‘complexity’ due to the high count of midsized

obstacles. Evidently from this data, the problems with two large centers were actually

relatively easier than a space with many small obstacles; this is not unrealistic given such

a large problem space. For the G2 tests, the longest runtime was just under 50 seconds

and retained just over 400,000 vertices after execution. The G11 tests took the longest

overall with a worst case of nearly 60 seconds and retaining almost 500,000 vertices.

47

Fastest of the three types, the G20 tests took only over 30 seconds and retained less than

300,000 vertices at completion. While there is some slight difference between the

individual problem types, the trend between processing time and the total number of

vertices retained appears to be sub-linear in growth. This seems to suggest that FS is

potentially a good candidate for large scale searches if it can be applied in a distributed

fashion. The results for all successful tests are compared by problem type in Figure 8.

Figure 8. FS successful searches

One interesting point of this graph is that the cache size growth becomes slightly

erratic after around the 300,000 vertex mark. A possible explanation is that by that point

approximately a third of the space has been searched and the frontier of the searched

space could extend through a large portion of the space. It is possible that this achieves

some sort of ‘critical mass’ of the space at which fewer nodes overall are added to the

G2 = 9479.7x + 17674
R² = 0.9773

G11 = 8622.6x + 32732
R² = 0.9822

G20 = 9583.9x + 18532
R² = 0.9835

0

100000

200000

300000

400000

500000

600000

0 10 20 30 40 50 60

C
a
c
h
e
 S

iz
e

Time (seconds)

G2C100

G11C50

G20C25

G2

G11

G20

48

cache since so much of the space has already been searched. This is at least one potential

explanation; further testing on larger problems could inspect if cache sizes began to

increase slower after approximately one third of the space had been processed.

Distributed Computing Fringe Search

 The DCFS was tested on all problem and specific data was tracked related to the

timing of its communication components. This data showed an expected increase in the

overall processing time compared to the serial version with the tradeoff being the benefit

of less overall vertices retained in the cache for each processor. These increases for both

successful and unsuccessful tests can be seen in Table 2.

Table 2. Distributed Computing Fringe Search statistics

 Pass Fail

 Cache Comm. Idle Time Cache Comm. Idle Time

D4G2 40651.88 48.65 23.36 190.46 440309.73 589.36 1707.53 4286.50

D4G11 65258.43 87.19 32.75 323.57 245465.50 321.11 1179.30 2631.61

D4G20 37486.45 47.46 17.02 173.99 386809.57 464.94 1748.67 8175.48

D4 Avg. 47798.92 61.10 24.38 229.34 357528.27 458.47 1545.17 5031.19

D8G2 30557.49 30.37 18.09 114.47 401052.90 276.85 2699.76 4123.52

D8G11 47207.75 46.69 24.70 170.42 231905.42 159.38 1554.62 2283.17

D8G20 28074.36 26.00 12.56 87.57 345785.20 275.34 2786.74 3947.20

D8 Avg. 35279.87 34.35 18.45 124.16 326247.84 237.19 2347.04 3451.30

D16G2 27361.90 31.57 24.33 100.27 384760.85 276.30 3835.91 4281.31

D16G11 40639.93 47.83 33.18 156.35 232675.59 140.16 2306.65 2811.45

D16G20 25819.81 27.95 41.27 87.03 378623.27 160.95 4381.15 5447.96

D16 Avg. 31273.88 35.78 32.92 114.55 332019.90 192.47 3507.90 4180.24

Average 38117.56 43.74 25.25 156.02 338598.67 296.04 2466.70 4220.91

 By utilizing the distribution of work between processors, the cache size was

effectively reduced by almost 70% on average for successful trials. Associated with this

better distribution of the cache is the cost of communication. In terms of overall time, the

49

DCFS took approximately 14 times longer for successful trials on average. Since FS

maintains a single cache in memory throughout the search, its size can be considered as

an upper bound of the minimum number of vertices that should be encountered in a given

search. As discussed earlier however, DCFS suffers from vertex duplication due to the

distributed nature of the processing with separate caches for each processor. So while

each individual processor retains 3.2 times fewer vertices in cache compared to FS, the

average of combined cache sizes is 2.6 times more than its serial counterpart. Absent

duplication between processors, it would be expected that the same number of vertices

would be processed for a given test with an even distribution of the cache space amongst

the processors. That is to say that if the serial FS algorithm could perfectly distribute its

cache during processing, each processor would receive an equal share. From this, the

amount of increase in total cache size suggests that on average 51% of all the vertices are

duplicated across the processors to some degree. In terms of relative problem difficulty,

the results are consistent with the result from the FS trials in that the G20 problems were

the easiest, with the G2 problems being just slightly harder and the G11 problems being

the hardest. This may appear counterintuitive, however it can be explained by the relative

density of the Gaussian points; although the number of center points is increased in the

different problems, recall that the width of the problems is also decreasing which works

to reduce the complexity of each point of clustered obstacles. The average cache sizes

with respect to time are represented in Figure 9 for the 11 Gaussian problems. This

visualizes the clear reduction in overall time with additional processors while maintaining

a relatively balanced increase in the reduced cache size per processor. However, it is

noted that there appears to be a diminishing return, since the reduction from using four to

50

eight is approximately 26% whereas the reduction from eight to 16 is only 12%. While

the reduction in time is not significant when using 16 compared to only eight processors,

only about 12 more nodes are required in memory per processor per second during the

search as represented by their different linear regression slopes. Because this is not

influenced by the means of the work distribution, i.e. whether it is being transmitted over

a local bus or over a network, it is more likely due to relationship between the

distribution threshold and the problems that are being used. For instance, it is possible

that as the frontier of the search is broken up into smaller pieces, the issue of cache

duplication is exacerbated since more processors have a higher chance of seeing

unfamiliar vertices during the search. At its extreme, a hypothetical situation where one

processor received one vertex for each iteration would likely need to retain many

duplicate vertices since it is only seeing a small portion of the search space at a time.

Figure 9. DCFS comparison for 11 Gaussians

D4 = 169.99x + 8183.3
R² = 0.9421

D8 = 202.8x + 11310
R² = 0.836

D16 = 214.39x + 6330.9
R² = 0.8205

0

100000

200000

0 200 400 600 800 1000

A
v
e
ra

g
e
 C

a
c
h
e
 S

iz
e

Time (seconds)

D4G11

D8G11

D16G11

D4

D8

D16

51

 The unsuccessful problems, while perhaps not as interesting, did show some

unique trends. This includes the fact that DCFS was still able to maintain a reduction in

the number of vertices cached by over 42% on average compared to serial FS. These data

also showed an extremely high increase in processing times that went from

approximately 8 times longer for failed FS test to about 27 times longer for failed DCFS

tests. It is thought that this is possibly exacerbated by the ‘porous’ nature of the Gaussian

problems which contain many small alternative paths which may complicate the search.

Although the successful problem are of the primary interest, the unsuccessful problems

can be used as an indicator to how these algorithms may perform on much larger search

spaces. If a feasible search were to conducted through a space large enough to actually

require the level of processing as seen for the unsuccessful trials here, it would take

approximately just as long and would exhibit similar behavior. In this way, although the

problems tested here only consisted of one million searchable nodes, the unsuccessful

tests inform what a similar successful trial may perform like in a larger space than was

actually tested here. With this generality in mind however, the unsuccessful results will

not be examined in detail here.

Hash Distributed Fringe Search

 The HDFS algorithm was tested under the same problems as the previous two

algorithms. This set of tests is similar to DCFS with runs of 4, 8, and 16 processors used

over the cluster. These tests also included an additional factor of ‘nesting’ level as

described in the Methods chapter. Data collected for all problems is in Table 3.

52

Table 3. HDFS statistics with non-nested hashing

 Pass Fail

 Cache Comm. ATA Time Cache Comm. ATA Time

H4G2 26331.27 5.19 5.01 8.17 184483.25 35.22 32.52 69.64

H4G11 42135.67 8.50 8.18 13.49 98486.02 21.50 19.93 40.78

H4G20 24556.17 4.40 4.24 7.15 166956.46 32.45 29.94 65.11

H4 Avg. 31007.70 6.03 5.81 9.61 149975.25 29.73 27.47 58.51

H8G2 13267.05 3.63 3.53 5.02 92241.63 27.73 26.11 42.50

H8G11 21081.53 5.72 5.55 8.03 49243.01 16.25 15.30 24.94

H8G20 12325.50 2.89 2.80 4.17 83478.23 23.68 22.22 37.70

H8 Avg. 15558.02 4.08 3.96 5.74 74987.62 22.55 21.21 35.04

H16G2 6152.98 3.18 3.13 4.13 46120.81 30.16 28.93 37.78

H16G11 10357.55 5.56 5.46 6.83 24621.51 17.97 17.27 22.18

H16G20 6150.12 3.22 3.18 3.86 41739.12 26.55 25.48 33.62

H16 Avg. 7553.55 3.99 3.92 4.94 37493.81 24.89 23.89 31.20

Average 18039.76 4.70 4.57 6.76 87485.56 25.72 24.19 41.58

Utilizing the distribution of vertices to other ranks based on a hash representation

allowed for an effective processing of the search space. On average, each processor

stored 85% less than the serial FS implementation tested here and 51% less than DCFS.

Because each rank processes nodes only as the search extends into its portion of the

space, it does not suffer from the multiple ranks having different versions of an expanded

vertex in memory at once. In terms of communication costs, HDFS performed

considerably better than DCFS, requiring 90% less time. Of the time spent

communicating, 97% of it is the All to All (ATA) collective call that acts to synchronize

all processors and causes them to intercommunicate as necessary. Remaining

communication time is spent performing the send, receive, the additional wait to ensure

that the sends have been received successfully. Despite the notion of a ‘wait’ seeming

expensive due to the possibility of processor idle times, it accounted for less than 1% of

the overall communication times. Overall timing actually showed a 37% decrease in time

53

over serial FS and a drastic 95% decrease over DCFS on average for all successful trials.

The data for HDFS trials on the 11 Gaussian problems is presented in Figure 10 for a

visual comparison of the average per processor cache sizes with respect to time.

Figure 10. HDFS comparison for G11 tests with non-nested hashing

The previous results are all indicative of the overall performance of HDFS using a

single level of ‘hashing’ the problem space. This provided one image for each rank that

was arranged in rectangles covering the space. These images were then tested with a

second layer of nesting in which N ranks have N images where the total area of the

images is equal to what would have been provided in level one nesting. With only one

layer of hashing, the image of a rank may be in a section of the space that the search

frontier will expand little if any through. By performing this recursive nesting of the

images, the intent was to allow each rank to have a portion of what would have been a

H4 = 2724.4x + 5371.4
R² = 0.954

H8 = 2276.2x + 2795
R² = 0.9329

H16 = 1480.2x + 254.8
R² = 0.9086

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

0 10 20 30 40

A
v
e
ra

g
e
 C

a
c
h
e
 S

iz
e

Time (seconds)

H4G11
H8G11
H16G11
H4
H8
H16

54

larger image. The same set of tests were run as with the non-nested hashing and the other

algorithms with the data being listed in Table 4.

Table 4. HDFS statistics with nested hashing

 Pass Fail

 Cache Comm. ATA Time Cache Comm. ATA Time

H4G2 26568.63 2.83 2.63 5.82 184483.25 33.49 30.61 68.84

H4G11 50905.05 6.37 5.86 9.91 98486.02 16.04 14.44 35.00

H4G20 24603.56 3.06 2.89 5.82 95402.19 26.76 24.17 58.72

H4 Avg. 34025.75 4.09 3.79 7.18 126123.82 25.43 23.07 54.19

H8G2 13408.88 1.82 1.69 3.18 92241.63 18.21 16.27 33.37

H8G11 21118.72 3.03 2.80 5.33 49243.01 10.07 8.94 18.55

H8G20 12353.58 1.51 1.41 2.77 83478.23 15.91 14.16 29.90

H8 Avg. 15627.06 2.12 1.97 3.76 74987.62 14.73 13.12 27.27

H16G2 6790.73 1.82 1.71 2.52 46120.81 19.80 17.94 27.18

H16G11 10574.84 2.92 2.72 4.09 24621.51 11.19 10.07 15.47

H16G20 6216.65 1.50 1.42 2.14 41739.12 17.52 15.77 24.72

H16 Avg. 7860.74 2.08 1.95 2.92 37493.81 16.17 14.59 22.46

Average 19171.18 2.76 2.57 4.62 79535.09 18.78 16.93 34.64

For these tests, cache sizes increased about 6% on average, representing more

usage. Due to the increased total perimeter of images belonging to a rank, the expectation

that the times would increase due to more frequent communication. Surprisingly

however, times were instead decreased by approximately 41% compared to non-nested

hashing. Overall times were reduced by just over 31% thanks mostly to the reduced

communication times compared to HDFS without nested hashing. The data for HDFS

tests with nested hashing are visually represented for comparison in Figure 11.

Contrasted with Figure 10 which represents the same data but with non-nested hashing,

some interesting features can be observed. Specifically, in examining the relative linear

regression slops for the various plots, non-nested hashing shows a 16% reduction from

55

four to eight processors while nested hashing only shows a 5% reduction. On the other

hand, going from eight to 16 processors with non-nested hashing shows only a 34%

reduction while in the nested hashing tests it shows a 66% reduction; future research

further explore this behavior.

Figure 11. HDFS comparison for G11 tests with nested hashing

H4 = 3725.2x + 5265.5
R² = 0.9401

H8 = 3512.3x + 2384.3
R² = 0.9677

H16 = 1168.3x - 446.84
R² = 0.8562

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

0 10 20 30 40

A
v
e
ra

g
e
 C

a
c
h
e
 S

iz
e

Time (seconds)

H4G11

H8G11

H16G11

H4

H8

H16

56

CHAPTER V

DISCUSSION

 The algorithms developed through the course of this project are designed to

provide approaches for distributed computing of pathfinding problems. This work has

implemented a serial Fringe Search algorithm as well as proposing two new algorithms,

namely the Distributed Computing Fringe Search (DCFS) and Hash Distributed Fringe

Search (HDFS). These algorithms have been extensively tested and demonstrated an

ability to reduce the burden of elements in the supporting cache list of the FS algorithm.

By utilizing the applied approaches for distributing the cache and the processing of the

search data, these algorithms provide a more suitable solution for solving large scale

pathfinding problems that may be otherwise difficult or practically impossible for a SMP

system. A consistent theme observable in the results presented here is the dichotomy

between utilization of the allocated processor ranks and the intercommunication between

them. Communication has been shown to be the most costly element of applying the FS

algorithm to a distributed system. However, in order for the ranks to actually assist in the

processing, communications of some kind must occur. If communication must occur,

ideally it will only be a few small messages. In order to have good utilization however, it

is desirable to send large amounts of data to other ranks so that it may be processed in

parallel. DCFS is designed to operate along these lines, where work is sent once a large

enough set has been generated to essentially ‘justify’ incurring the communication costs.

Alternatively to sending a few large sets of data, many small sets of data could be sent so

that each processor may stay relatively busy. In this approach, since the data is being sent

more frequently, there might not be enough for each processor to work on; this is also

57

dependent on how the distribution of work is design. HDFS operates more similar to this

approach, where the work is designed to be distributed to other processors based on

where the vertex is represented in the space. By doing this, some processors may have

little to know work the entire duration of the algorithm, meanwhile others may be

working significantly because the fringe of the search expands more prevalently in their

region of the space. Overall, the challenge is striking the balance between relatively

minimal communication and good utilization of the available processors. A comparison

of all three algorithms can be seen in Figure 12. By comparing the average performance

on the hardest set of problems, the ones with 11 Gaussians (G11), the performance

differences in terms of cache size required and time required become apparent. Contrasts

between FS and DCFS clearly show a significant reduction in processor cache size,

however at the cost of increased communication time. Contrasting FS with HDFS shows

an even more significant reduction in cache sizes and without the communication costs of

DCFS. The comparisons between DCFS and HDFS will be discussed in more detail in

the following sections. Additionally, the HDFS section will explore the differences

between HDFS with and without nested hashing.

58

Figure 12. All algorithms compared for G11 tests

DCFS Review

The DCFS test results provide insight into on an extension of the original DFS

designed for SMP systems to a distributed system. This implementation is a fairly direct

translation, with the necessary adjustments made for the communication over a cluster.

These adjustments however appear to be a significant source of the additional cost

associated with the distribution. DCFS does succeed in reducing the amount nodes in

cache for any single processor, therefore allowing for the potential of handling larger

scale problem overall. However, it pays a high price for the distribution due to the

complexities of coordinating and packaging the data in order to be sent via MPI.

Additionally, due to the fixed threshold value, the master must perform some of work

until the distribution threshold is reached. However, this prevents the costly distribution

for trivial amounts of work (see Figure 13).

0

100000

200000

300000

400000

500000

0 100 200 300 400 500 600 700 800 900 1000

A
v
e
ra

g
e
 C

a
c
h
e
 S

iz
e

Time (seconds)

FG11

D4G11

H4G11

H4G11N

59

Figure 13. DCFS cache comparisons

Examining the communications in more detail shows where the time is actually

being used. For the purposes of the data reported here, communication costs are

considered any costs associated outside of the core search processing. Although this

includes the ‘transformation’ time discussed in the Methods chapter, the timing for these

components was less than expected, amounting to less than 1% of all communication

time costs. Because of this insignificance to the time components, those data are not

analyzed further here. Processors overall spend an average of approximately 28% of their

time communicating necessary data amongst themselves. Idle time represents

approximately 16% of the overall time. Because the master rank is constantly working, it

is never truly idle in the sense that it has no work to be processing. It will only

necessarily pause to conduct the scatters and gathers, however those components allow

for more work to be performed and any momentary ‘wait’ time is associated with the

0

10000

20000

30000

40000

50000

60000

70000

80000

D4M D4W D8M D8W D16M D16W

A
v
e
ra

g
e
 C

a
c
h
e
 S

iz
e

G2 G11 G20

60

scatter or gather time component. Since the master is either processing or

communicating, the idle times reported here are indicative of the time that the workers

are waiting to receive work from the master. All workers will incur at least some idle

time because of the application of a distribution threshold, i.e. the point at which the

distributed communications take place. One question that is not addressed by the idle

time data gathered here is what portion of that time is a constant overhead while waiting

for the initial distribution threshold to be reached and what of it is from idle times

between communications and processing. Of the time spent communicating to the

workers, the overall averages showed that about 60% of the time was used during the

scatter with the remainder being taken up by the gather process. Initially it might seem

like the gathering process would be prone to take longer since the master must wait on all

of the workers to complete their work and then participate in the communication.

Although this can still be occurring, it seems that the fairly even distribution of work is

allowing most processors to complete at roughly equal rates and does not leave other

processes idle for significant amounts of time or leave the master waiting on the

collective communication call. It is likely that the scattering process takes slightly longer

because it is slightly more involved due to the requirements of determining how much

work needs to be distributed and then packing that data to be sent. The comparison of

communication time components can be seen in Figure 14. Note that time values reported

are only simple averages and do not indicate the extent of overlap between waiting

processes. Because of this, one process may only wait for a relatively short amount of

time because it was the last to ‘arrive’ at the point of communication. On the other hand,

another process may have reached the communication point much earlier and would incur

61

idle time while waiting for the other process(s) required for the communication.

Additionally, some process may be the first to arrive after one iteration and the last to

arrive at after another just depending on how their work is processed. Due to this

potential overlapping of timing components, it would be incorrect to simply add the

communication and idle times and suggest that the remainder of the time is exclusively

being used in conducting the core FS algorithm.

Figure 14. DCFS timing components

Although DCFS was slower than the serial version, a speedup is observed as more

processors are applied to DCFS. Increasing the used processes from four to eight resulted

in a 45% reduction in time which equates to an approximate 11% speedup. Going from

eight to 16 still showed a reduced processing time overall, with a reduction of about 8%

in time compared to using eight processors, although this only represents only 1%

0

100

200

300

Time Comm. Scatter Gather Idle

A
v
e
ra

g
e
 T

im
e
 (

s
e
c
o
n
d
s
)

D4 D8 D16

62

speedup. However, this is to be somewhat expectable given the configuration of the

testing environment. Because MPI was configured to only allow eight processors per

machine, moving from eight to 16 necessarily causes a jump to separate machine for the

other processors. Due to this, some of the communication must then happen over a

network which will be considerably slower than even using MPI to communicate

between processors on the same local machine. A significant part of this is due to the two

stage communications that are currently required. Both stages are required since the first

informs each rank of how much it is about to send in order for the correct buffer space to

be allocated and the second stage actually performs the exchange of data. A bottleneck

also exists at this stage since all communications are routed through the master rank.

Centralizing the communication scheme around the master is somewhat useful since it

allows for the search to begin and continue processing until enough work is encountered

to justify performing the more expensive communications. While a decentralized

approach may be theoretically possible, it is would likely require even more

communication between the processes in order for each processor to stay synchronized

during the search and for work to be distributed fairly. A more realistic option that may

prove beneficial is the use of an independent communication hub that is responsible for

only the packaging and distribution of work after each iteration. Due to the fact that

DCFS spends less time on gathers than scatters, this suggests that the work distribution of

work is fair enough to where processors are not typically spending much time on ‘hold’

waiting for a gather to occur. However, the master is still responsible for its own share of

work in addition to the packaging of the data to be sent to the other workers. If a separate

rank were responsible for the communication of work, it would free the former master

63

and allow it operate simply as another worker. Doing this would require no additional

communication calls, it would simply be directed at a different centralized point. Related

to the issue of work distribution is the item of selecting an appropriate threshold. Results

show that the threshold allowed for work to be distributed in such a way that all workers

stayed relatively busy. However, because the tests conducted here used a fixed threshold,

further testing of DCFS distribution threshold would be useful in determining a value that

potentially strikes a better balance between communication costs and idle times. Ideally,

a relationship could be derived between the size of the space and the number of

processors to be used on the problem; information on the approximate density of the

problem may also prove useful, however this would likely be difficult to obtain for many

practical real life problems.

The communication complications are a significant factor in the time costs of

DCFS, however any corrections to those alone will not address the cache clearing issue.

This issue is apparent in the data since the combined size of cache from each processor is

considerably larger than the total cache size of the serial FS algorithm; although this is

somewhat more acceptable due to a distributed environment, improvements in this area

could greatly extend the practicality of the algorithm overall. These improvements to the

cache clearing strategy may also reduce the communication costs since less duplicated

vertices are being communicated during the search. However, while it may be possible to

devise other means for cache clearing between the ranks, it is likely to require a non-

trivial amount of coordinated communication, at which point the benefit of not simply

recollecting the data may be lost. One possible approach to simply keeping the overall

cache sizes at each rank reasonable would be to redistribute nodes from the cache to other

64

ranks with smaller cache sizes; this is somewhat similar to how the fringe is distributed at

each iteration. Although this would require some mechanism for polling of the cache size

to know how to ‘fairly’ balance an oversized cache, this could be included in some of the

existing communications relatively simply. This strategy also could be slightly enhanced

by associating each state with some sort of a ‘hit’ counter that would be relatively cheap

to maintain. In doing this, the rank could have a better idea of which states are least

recently used and decide to distribute those out to save space, since the more recently

used states are more likely to be revisited and should remain with the original rank. The

communication involved with such an approach is less than a ‘ring’ style approach since

it only needs to happen on an as needed basis if the cache of a rank becomes too large.

However, it would still require the expensive collective communications once the cache

thresholds begin to reach a level to where they need to be distributed throughout the

system. Additionally, some coordination would likely be necessary which may place

more work on the master as each rank attempts to balance its cache and must have a way

to decide which rank it should balance with; the use of an independent coordination point

as discussed above may also assist with such a scheme.

While cache clearing may assist in reducing duplicative communication and

subsequent processing, a true solution would be to address the very nature of how the

work is distributed to the workers. Because the distribution is currently ‘blind’ which

entails that the master has no intuition as to which other processors may or may not have

seen each vertex that is about to be distributed. A primitive solution would be to have the

master record some level of vertex routing information as it encounters then distributes

states to other ranks. Although this would be fairly simple to implement, it would also

65

require additional processing and storage of this routing style information. A question for

further research into such a technique would be if these additional costs were less

extensive than the current ones associated without such information available to the

master. Instead of recording where data has already been sent, the other option is to

predetermine which ranks should process which vertices. At least one form of this is

HDFS since it ensures only one rank is responsible for any given vertex in the space; in

fact it was partially an early realization that such a solution would prevent duplication

which motivated the design of HDFS.

Another possible improvement to DCFS would be to have each of the workers

receive its initial load and then begin working with it and only communicate back to the

master if it runs out of work. Although this would require less frequent communications

of collecting and then redistributing the data to be worked with, it is likely to produce

much redundancy since there is no real opportunity for the cache clearing strategy to be

in place between the communications. Additionally, the iterations of the FS algorithm

would then no longer be synchronized since the minimum cost increase would no longer

be communicated between separate processes; the result of this is that every processors

were ‘behind’ in the search would likely only examine nodes that were already examined

by other processors which had already increased their local cost thresholds. In order to

counter this, it would be necessary for the processor to know not only which vertices had

been distributed, but also have some idea of their approximate region in order to avoid

processing in that part of the search space.

66

HDFS Review

The HDFS test results show a fairly successful approach for adapting the FS

algorithm to a distributed computing environment. This work has presented data which

demonstrates the ability of HDFS to significantly reduce the average space required for

each processor to maintain its cache. These processors are each responsible for a discrete

portion of the search space, and therefore only require as much space for its portion of the

total space. Contrasted with DCFS, HDFS has significantly less communication

overhead, thanks in part due to its decentralized nature. Additionally, the design of

allowing each rank to perform its non-blocking sends prior to receiving its data proves to

be an efficient approach to transferring the data between ranks. Because each rank

‘sends’ all of its data through non-blocking methods and subsequently begins to receive

its any new data for itself form other ranks, most ranks are able to begin receiving data

almost immediately after transmitting any data to other ranks. So while the use of non-

blocking sends does necessitate a following ‘wait’ to ensure successful transmission, the

timing results show that this was an insignificant amount of the communication time.

Because the amount of data being sent after any given iteration will be small, it will

require very little transmission time. Also, the wait times are able to remain low since

data is only transmitted to other ranks if the search expands through the area belonging to

another rank. While this approach appears to scale well for the varying levels of

complexity of problems tested here, future research may wish to explore larger problem

spaces to confirm such scalability. The timing components are visually represented in

Figure 15 and show that the ATA uses the majority of the communication time. This

67

implies that any possible improvements to this would likely see a reduction in overall

processing time due to the reduced communications between the ranks during the ATA.

Figure 15. HDFS timing components

 At least one possible means of reducing the ATA timing component has been

demonstrated by this research through the use of nested hashing. By default, only one

‘level’ of hashing is performed which is over the entire initial search space. Considering

each of the original images that are generated as a sub-space to be further dividing, a

second ‘level’ of hashing can be computed recursively, thereby adding a nested hashing

distribution of the abstract images of the overall search space. Distributing the space in

this nested hashing does increase the total perimeter of all the images owned by a rank,

however the speedup suggests that this is not causing a corresponding increase in

communication (see Figure 16). Explanation for this may be because the vertices on a

0

1

2

3

4

5

6

7

8

9

10

11

H4 H8 H16

A
v
e
ra

g
e
 T

im
e
 (

s
e
c
o
n
d
s
)

Time Communication ATA

68

given border at a time is decreased, resulting in smaller amount of data communicated

between each ranks; further testing is required to investigate this possibility.

Figure 16. HDFS level one and two nesting time components

The issue of utilization is visually represented in Figure 17 which comparison the

HDFS performance on the 11 Gaussian problems with and without nested hashing. This

figure, in combination with the result data reported in Tables 3 and 4, show an interesting

contrast in the speedups when additional processors are applied to the problems. DCFS

showed time reductions of 45% and 8% when moving from four to eight and from eight

to 16 processors respectively. HDFS without nested hashing showed reductions for 40%

and 13% for these same measurements while HDFS with nested hashing demonstrated

reductions of 47% and 22% respectively. These results show that HDFS without nested

hashing may have had better times than DCFS but it showed slightly worse reductions

0

1

2

3

4

5

6

7

8

Time Communication ATA

A
v
e
ra

g
e
 T

im
e
 (

s
e
c
o
n
d
s
)

L1 L2

69

when applying more processors; the slight increase when moving from eight to 16

processors is negligible considering that DCFS also contended with a significant increase

in communication costs for 16 processor tests. The decrease in relative decreases in time

is explainable by a poor utilization, where HDFS without hashing may create images that

are responsible for portion of the space that are never searched which leaves some of the

available ranks under-utilized. This is further corroborated by the fact that enabling the

nested hashing significantly improved the reductions in time as more processors were

applied to the problems; by breaking the images of the space into sub-images assigned to

the available ranks, it was more likely that the ranks would cover part of the space that

was used during the search. These increased utilization are then nicely complemented by

the decentralized and synchronous nature of the HDFS communication design which

structures the transfer of data to require significantly less time than the DCFS approach.

Figure 17. Comparison of HDFS for the G11 tests with and without nesting

H4 = 2724.4x + 5371.4
R² = 0.954

H4N = 3725.2x + 5265.5
R² = 0.9401

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

0 10 20 30 40

A
v
e
ra

g
e
 C

a
c
h
e
 S

iz
e

Time (seconds)

H4G11

H4G11N

H4

H4N

70

Although the HDFS algorithm performs rather admirably on the problems tested

here, there is almost always room for improvement. One potential option to improve on

the work utilization of HDFS is to somewhat borrow from the more direct work

distribution of regular DFS. In this approach, the fringe could be distributed as in the

basic DFS, however the cache division would be based on the hashing approach. This

would mean that other ranks would help process each vertex in their share of the fringe

and then report its results back to the ranks which are responsible for the respective

states. Although this would allow for better utilization of the ranks than the regular

hashing approach, the benefit may be minimal due to the fairly cheap cost of expanding a

vertex versus the costs of packaging everything for communication. In order for this to

actually be worth the overhead costs, the expansion of a vertex would likely have to be

time intensive and/or the problem would need to generate a large volume of nodes at each

iteration to justify the distribution.

One potential pathological problem that may have unusually high communication

costs using HDFS is if a search path were to follow along a boundary between two

images; this is somewhat of an edge case and not one tested in this study. In this case,

each rank could expand vertices that belong to the neighboring image and rank and then

queue those elements to be sent. Although the receiving rank in this situation will clear

them against its local authoritative cache, it is still redundant communication. A strategy

that may reduce this is a temporary set of only the state names that have been recently

sent that could then be cleared at some decay rate.

71

Conclusion

 The initial goal of this efforts conducted here were to move towards finding a

solution to using distributed computing resources on large scale pathfinding problems.

This research has expanded some potential opportunities for further exploration as well as

provided insight into why such approaches may or may not be successful. Two main

approaches were employed here, namely the use simple fringe distribution over a cluster

and using a space abstraction as means of distributing the space over a cluster. Results

from the testing are promising in that they show a viable means of reducing the cache

size of a FS algorithm. DCFS provides good resources utilization at each step by ensuring

that all ranks have data to process. The issue here is that due to the expensive

communications and vertex duplication amongst the separate processor caches, not all of

that work is productive toward advancing the search. Although HDFS has less

communication overhead compared to DCFS, it also has less utilization of the processors

since it is not concerned with ensuring all ranks are busy during each iteration. But it is

actually because of this that it allows the search to proceed through the space as it would

in a serial implementation and then only expand once it reaches the boundary of the a

given image; these image boundaries are established at run time based on the number of

processors available and the desired nesting level. Ultimately the data show that the

approach taken by HDFS was largely more successful, even if it means that the cluster

resources are underutilized. While the results are mostly positive, further review is

appropriate to assess these algorithms against other metrics that were not considered here.

Extensions of this work may also include application to larger pathfinding problems or

more nuanced problem including non-geometric domains such as puzzle style problems.

72

Future Work

 The research conducted here has provided a fairly extensive study of Fringe

Search as well as demonstrated the strengths and weaknesses of two new pathfinding

algorithms developed here, namely Distributed Computing Fringe Search and Hash

Distributed Fringe Search. This research can assist further exploration of the subject by

serving as a reference in developing pathfinding algorithms with similar behavior that is

desirable to be distributed over a cluster environment. These potential extensions of this

work may benefit from the methods used by this work to reduce a cache size of a single

processor and/or the methods used for communicating such data over a distributed

system. Besides future external work, the algorithms developed here provide a basis for

many interesting and potentially successful enhancements. Experimentation with the

framework of tests here would also allow for equitable testing between the new

enhancements and the algorithms as they were developed originally.

An aspect that was not tested here due time and scope limitations was that of cost

relaxation as proposed by Brand [5]. His implementation of DFS was tested with constant

cost relaxation values. Cost relaxation allows the search to consume the space quicker

because more nodes are considered under the threshold for expansion; refer to the

Methods chapter for a more detailed discussion of this behavior. Although cost relaxation

allows for less optimal paths to be acquired, it may be appropriate for large scale

problems that can allow for sub-optimal solutions. Somewhat more interesting but also

less clear would be the use of a cost relaxation to a more dynamic basis that would allow

the frontier of the search to expand faster in some direction than others. Such an

application of cost relaxation could allow for more effective processing of the space in

73

such a way that one rank could elect to search its area, such as in HDFS, more

aggressively rather than searching parts of the space that would induce cross

communication. Using a dynamic cost threshold to essentially prioritize the search

through the space in order to reduce communication could prove beneficial to these and

potentially other similar algorithms.

Another area of future work would be to use more advanced MPI techniques, such

as incorporating lightweight POSIX threads with each heavyweight process spawned

through MPI. Although this may add some complexity to the overall process, it may also

potentially simplify the communication structure and require less synchronization points

that cause blocking and idle time. Such techniques could allow a separate communicator

thread to probe for an incoming messaging signal and then only stop to process it if one

was being sent. This is likely most effective in HDFS since it does not always have new

data for all processes at once and could then allow each process to continue expanding in

its area until more data was sent to it. By reducing the amount of data transferred during

the ATA or even potentially eliminating the need for that synchronization point, the

algorithm may see significant enhancement. DCFS may also benefit from such a

hybridized thread system by letting some of the communication be handled by

simultaneous thread. While theoretically plausible, it is less clear how this could be

structured in a significantly beneficial way; therefore this would require more study.

Adapting these algorithms for non-grid based problems could also serve to

advance further study into solving large pathfinding like problems in a distributed

environment. Problems such as the sliding tile puzzle or other similar problems that can

be represented as a series of decisions from a beginning to an end could adapt these

74

algorithms for larger versions of those problems. Hashing of the tile puzzle problems is

slightly more abstract than grid based problem. However, it seems reasonable to hash

states out based on the position of the blank, as subsequent states are derived on that

information. Additionally, while it would be slightly more conceptually difficult to apply

the HDFS nesting to such problems, such a method may prove very effective in such a

problem domain. Even without the addition of nesting, by extending these algorithms to

other domains, it enhances their generalizability and also provides for more testing on

different problem types.

Possibly the most interesting and involved enhancement of the algorithms

developed here would be to introduce the use of the Asynchronous Dynamic Load

Balancing (ADLB) framework [13]. ADLB provides a means to send work of user

defined ‘types’ to a central processor that then acts a server of that that work. Because

ADLB is optimized for efficiency of extremely large scale jobs, it could very well allow

pathfinding problems to be scaled well if incorporated into DCFS or HDFS. In particular

DCFS may stand to benefit from such an approach where a master would send all work

the ADLB ‘server’ which could then be requested by the other workers on as-needed

basis. Further, it may be possible to have all workers send their processed data to the

server, thus relieving the master from that additional overhead and allowing it to focus

more on processing the search space. Ultimately this has the potential to significantly

improve its performance. HDFS may also potentially benefit from utilizing ADLB in its

design. However, HDFS already performs fairly well in its current decentralized but

synchronized design, so much larger problems would likely be necessary to determine its

degree of scalability and opportunities to transfer certain components to an ADLB server.

75

BIBLIOGRAPHY

[1] Z. Cvetanovic and C. Nofsinger, “Parallel Astar search on message-passing

architectures,” in System Sciences, 1990., Proceedings of the Twenty-Third

Annual Hawaii International Conference on, 1990, vol. 1, pp. 82–90.

[2] R. Zhou and E. A. Hansen, “Structured duplicate detection in external-memory

graph search,” in AAAI, 2004, pp. 683–689.

[3] Y. Björnsson, M. Enzenberger, R. C. Holte, and J. Schaeffer, “Fringe Search:

Beating A* at Pathfinding on Game Maps.,” CIG, vol. 5, pp. 125–132, 2005.

[4] A. Kishimoto, A. S. Fukunaga, and A. Botea, “Scalable, Parallel Best-First

Search for Optimal Sequential Planning.,” in ICAPS, 2009.

[5] S. Brand, “Efficient obstacle avoidance using autonomously generated

navigation meshes,” M.S. thesis, Electr. Eng. App. Math. Comp. Sci., Delft

Univ. Tech., Delft, Netherlands, 2009.

[6] E. Burns, S. Lemons, W. Ruml, and R. Zhou, “Best-first heuristic search for

multicore machines,” Journal of Artificial Intelligence Research, pp. 689–743,

2010.

[7] D. Cohen and M. Dallas, “Implementation of parallel path finding in a shared

memory architecture,” Department of Computer Science Rensselaer

Polytechnic Institute: Troy, NY, 2010.

[8] J. Nohra and A. J. Champandard, “The secrets of parallel pathfinding on

modern computer hardware,” Intel Software Network, Intel Corp, 2010.

[9] S. Brand and R. Bidarra, “Parallel ripple search–scalable and efficient

pathfinding for multi-core architectures,” in Motion in Games, Springer, 2011,

pp. 290–303.

[10] S. Brand and R. Bidarra, “Multi-core scalable and efficient pathfinding with

Parallel Ripple Search: Multi-core pathfinding with Parallel Ripple Search,”

Computer Animation and Virtual Worlds, vol. 23, no. 2, pp. 73–85, Mar. 2012.

[11] “Introduction to Parallel Computing.” [Online]. Available:

https://computing.llnl.gov/tutorials/parallel_comp/. [Accessed: 1-Jun-2016].

[12] “MPICH.” [Online]. Available: http://www.mpich.org/. [Accessed: 1-Jun-

2016].

[13] “Asynchronous Dynamic Load Balancing.” [Online]. Available:

https://cs.mtsu.edu/~rbutler/adlb/. [Accessed: 1-Jun-2016]

76

APPENDICES

77

APPENDIX A

SUPPLEMENTAL MATERIALS

 All source code developed in the course of this research is available upon request.

Figure A. DCFS with 4 ranks

G2 = 183.05x + 5787.2
R² = 0.9736

G11 = 169.99x + 8183.3
R² = 0.9421

G20 = 175.26x + 5462.5
R² = 0.9182

0

100000

200000

0 200 400 600 800 1000

A
v
e
ra

g
e
 C

a
c
h
e
 S

iz
e

Time (seconds)

D4G2

D4G11

D4G20

G2

G11

G20

78

Figure B. DCFS with 8 ranks

Figure C. DCFS with 16 ranks

G2 = 228.54x + 2845.9
R² = 0.9319

G11 = 202.8x + 11310
R² = 0.836

G20 = 232.63x + 6164.3
R² = 0.8183

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

0 100 200 300 400 500 600

A
v
e
ra

g
e
 C

a
c
h
e
 S

iz
e

Time (seconds)

D8G2

D8G11

D8G20

G2

G11

G20

G2 = 236.32x + 2318.1
R² = 0.905

G11 = 214.39x + 6330.9
R² = 0.8205

G20 = 225.19x + 5237.5
R² = 0.838

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

0 100 200 300 400 500

A
v
e
ra

g
e
 C

a
c
h
 S

iz
e

Time (seconds)

D16G2

D16G11

D16G20

G2

G11

G20

79

Figure D. HDFS with 4 ranks and non-nested hashing

Figure E. HDFS with 8 ranks and non-nested hashing

G2 = 2784.4x + 3578.2
R² = 0.9672

G11 = 2724.4x + 5371.4
R² = 0.954

G20 = 2998.7x + 3109.5
R² = 0.9702

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

0 10 20 30 40

A
v
e
ra

g
e
 C

a
c
h
e
 S

iz
e

Time (seconds)

H4G2

H4G11

H4G20

G2

G11

G20

G2 = 2376.4x + 1333.7
R² = 0.9604 G11 = 2276.2x + 2795

R² = 0.9329
G20 = 2538.8x + 1734.1

R² = 0.9462

0

10000

20000

30000

40000

50000

60000

0 10 20 30

A
v
e
ra

g
e
 C

a
c
h
e
 S

iz
e

Time (seconds)

H8G2

H8G11

H8G20

G2

G11

G20

80

Figure F. HDFS with 16 ranks and non-nested hashing

Figure G. HDFS with 4 ranks and nested hashing

G2 = 1376.5x + 471.36
R² = 0.9109

G11 = 1480.2x + 254.8
R² = 0.9086

G20 = 1432.8x + 616.43
R² = 0.9507

0

10000

20000

30000

0 10 20

A
v
e
ra

g
e
 C

a
c
h
e
 S

iz
e

Time (seconds)

H16G2

H16G11

H16G20

G2

G11

G20

G2 = 4077.4x + 2822.7
R² = 0.9646

G11 = 3725.2x + 5265.5
R² = 0.9401

G20 = 3892.9x + 1954.1
R² = 0.9638

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

0 10 20 30 40

A
v
e
ra

g
e
 C

a
c
h
e
 S

iz
e

Time (seconds)

H4G2

H4G11

H4G20

G2

G11

G20

81

Figure H. HDFS with 8 ranks and nested hashing

Figure I. HDFS with 16 ranks and nested hashing

G2 = 3740.5x + 1510.1
R² = 0.9802

G11 = 3512.3x + 2384.3
R² = 0.9677

G20 = 4025.3x + 1201.8
R² = 0.9696

0

10000

20000

30000

40000

50000

60000

0 10 20

A
v
e
ra

g
e
 C

a
c
h
e
 S

iz
e

Time (seconds)

H8G2

H8G11

H8G20

G2

G11

G20

G2 = 1202.4x - 276.78
R² = 0.9431

G11 = 1168.3x - 446.84
R² = 0.8562

G20 = 832.18x - 98.284
R² = 0.933

0

10000

20000

0 5 10 15 20

A
v
e
ra

g
e
 C

a
c
h
e
 S

iz
e

Time (seconds)

H16G2

H16G11

H16G20

G2

G11

G20

