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ABSTRACT

The multilevel Monte Carlo (MLMC) method has been recently proposed as a variance

reduction technique for the efficient estimation of expected values of the quantities of interest

associated with solutions of stochastic and random differential equations. By combining the

ideas of multigrid discretization and Monte Carlo sampling, it allows to achieve the optimal

asymptotical complexity of the estimator for the very large class of problems. The actual cost

of the estimator, however, is more problem and solver dependent as the method requires one

to solve a large number of decoupled deterministic problems. The efficiency of the estimator

is hence strongly influenced by the complexity of the corresponding pathwise integrators. It

is the task of this dissertation to study several problems for which the significant reduction

in the computational complexity of the MLMC estimator can be achieved by the appropriate

problem and level dependent choice of deterministic solvers. Three particular problems are

considered: integration of stiff SDEs, estimation of initial guesses for iterative linear solvers

and boundary values problems in randomly perturbed domains. The brief description of

each problem is given below.

In Chapter II, we consider acceleration of the MLMC method in application to sto-

chastic differential equations (SDEs). SDEs are often used in modeling of time-dependent

phenomena at the mesoscopic level. Physical systems at this level are characterized by

the presence of the vast range of temporal scales which makes them intrinsically stiff. In

stochastic setting, stiffness is a serious issue in numerical treatment of differential systems

due to non-trivial interaction between noise and multiscale dynamics. To resolve this issue,

we propose the family of split-step implicit integrators which are capable to generate stable

solutions without destroying geometry of the true stochastic dynamics. In the context of

the MLMC method, the proposed integrators allow to exploit all the levels of the multilevel

discretization without the need to explicitly resolve the fastest scale of the dynamics. The

efficiency of the proposed technique is illustrated by applying it to stiff stochastic chemical
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systems and both qualitative and quantitative results are presented.

Chapter III is devoted to the acceleration of the MLMC method in application to partial

differential equations (PDEs) with random input data. As was mentioned above, MLMC

requires solving a large number of decoupled deterministic problems corresponding to

different realizations of input data. For stationary partial differential equations, these

solutions are often constructed by means of iterative process and the choice of initial guess

can have a drastic influence on its convergence. It will be shown that the estimation of initial

guesses to iterative solvers can be efficiently performed by recycling previously calculated

data. For this purpose, we use the kernel based approximation technique and perform the

asymptotic cost analysis of the accelerated method to illustrate its superiority.

Finally, partial differential equations in random domains are discussed in Chapter IV.

Problems with topological uncertainties appear in many fields ranging from nano-device

engineering and analysis of micro electromechanical systems to design of bridges. In

many of such problems, only part of the domain is subjected to random perturbations and

conventional schemes relying on discretization of the whole domain become inefficient.

We study linear PDEs in domains with boundaries comprised of both deterministic and

random parts and apply the method of modified potentials with kernels given by the Green’s

functions defined on the deterministic part of the domain. This approach allows to reduce the

size of the original differential problem by reformulating it as a boundary integral equation

posed on the random part of the boundary only. The MLMC method is then applied to this

modified integral equation leading to significant computational savings. We provide the

qualitative analysis of the proposed technique and support it with numerical results.
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CHAPTER I

INTRODUCTION

Understanding of the temporal and spatial response of different systems to the imposed

constraints and forcings is essential in many applications of science and engineering. After

the invention of calculus in the 17th century mathematical description of such processes is

naturally formulated in terms of differential equations. Since then, the field of qualitative

and quantitative analysis of ordinary and partial differential equations has reached the high

level of maturity and still remains an active research area. There have been discovered,

however, numerous applications of practical importance where the classical approach faces

serious limitations.

Firstly, most of the real-life processes are characterized by the presence of the vast range

of spatial and temporal scales. Standard models are often based on the phenomenologi-

cal description of the underlying laws and the general principles of energy conservation

which makes differential equations a convenient tool for the macroscopic coarse-grained

description of the systems of interest. At the same time, macroscopic behavior is the result

of numerous microscopic processes and subsystem interactions taking place on much smal-

ler scales. Microscopic fluctuations of these underworld processes are often intrinsically

nonlinear and chaotic which directly influences the macroscale evolution of the underlying

system. According to [Hak83], description of the liquid at the microscopic level deals

with individual atoms and molecules; the mesoscopic level considers clusters of atoms

which are large compared to interatomic distances but are smaller than macroscopic pat-

terns; at the macroscpic level, one wish to study the corresponding spatial patterns. Direct

microscopic simulation is almost never possible either because of the limited computing

resources or due to the poorly understood physics at this level. Mean-field macroscopic

dynamics also has limited accuracy. It is the mesoscopic approach which allows to describe

the interaction of the small (macro) subsystem with the large (micro) environment. As is
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shown in [Kot08], the mesoscopic level is probabilistic in nature and stochastic differential

equations (SDEs) provide a faithful model for the description of microscopic fluctuations

in a certain mathematical idealization. During the last several decades these ideas became

increasingly important and found wide applications in physics [Cho94, Str92], chemistry

[Gar09, Gil77, vK92], biology [AK15, Bai75, EK09], neural science [LL10, Tuc89, Wal81]

and finance [BS73, HP81, Mer73] to name a few. The abstract mathematical formulation of

the problem also attracted a lot of attention since SDEs are forced by irregular processes,

have nondifferentiable paths and require a non-standard stochastic calculus. A special

interest has been paid to the study of stochastic ordinary differential equations (SODEs)

driven by semimartingale processes due to their exceptional practical importance and a

number of excellent monographs has been published [App09, Arn74, Fri75, GS72, Kha12,

Mao07, Øks03, Pro05]. Stochastic partial differential equations also represent a rapidly

growing field of study and an increasing number of monographs and papers appear every

year [Cho14, DKM+09, HØUZ10, Kot08, LR15, PZ07, PZ92, PR07, Wal86]. Other related

topics include stochastic optimal control [Nis15, ØSB07, Pha09], backward stochastic diffe-

rential equations [EKPQ97, PP90, PT99], SDEs with Markovian switching [MY06, YZ10]

and SDEs driven by non-martingale noise [HLN12, MN68, NR02].

As explained above, stochastic differential equations arise in the modeling of systems

which exhibit intrinsically random behavior. Additionally, in engineering practice, uncer-

tainties often stem from the presence of model discrepancies, numerical errors and inexact

measurements. For instance, according to deterministic modeling framework, information

about internal properties of the system and its external interactions enters the corresponding

initial-boundary-value problems in the form of operator coefficients, forcing terms, initial

and boundary conditions. Classical models of mathematical physics are constructed under

the assumption of the full knowledge and availability of this data. Unfortunately, it is

often not precisely known or is very expensive to determine experimentally. The uncer-
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tainty associated with such incomplete knowledge can be incorporated into the models by

using random fields for the representation of the input data [Chr92, Van88]. Numerous

applications of this approach include reliability analysis [GS91b, HM00, KK88, Rac01],

sensitivity analysis [CMM09], modeling of heterogeneous media [Kam05, OS98, OS07]

and multiphase flows [GD98], problems in structural mechanics [HB98, LC09, Sch07]

and fluid mechanics [MKNG01, MRN+02, MK10], safety assessments for nuclear reactors

[BHGH92], subsurface stormflow modeling [GTMW96] and others.

The goal of uncertainty quantification is to make predictions about response of the

systems in the presence of different forms of uncertainty. It is very uncommon that such

behavior can be described analytically and approaches using approximate and computational

techniques are required. A review of some of the state-of-the-art techniques can be found,

for instance, in [CD15, GWZ14, Ste09, Xiu09] and a basic overview of numerical methods

for both stochastic and random differential equations is presented below.

I.1. Overview of numerical methods for stochastic differential equations

This section contains a brief overview of numerical methods for stochastic ordinary

differential equations. Development of the similar theory for SPDEs is currently an active

research area; some recent results can be found, for instance, in [JK09, DPJR10, GNT05].

While numerical approximations of stochastic partial differential equations are not conside-

red in this work, one may refer to [LPS14] and references therein for the basic introduction

to the field.

We start with the formulation and the discussion of the well-posedness of initial-value

problems for SODEs driven by semimartingale processes. The elements of the classical

Itô calculus for such equations are provided next as a motivation for the construction of

numerical approximations. The classical Euler-Maruyama and Milstein methods are also
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given to illustrate the convergence properties and restrictions of the numerical schemes

derived from the stochastic Taylor series [KP92b, MT04, PBL10]. An overview of more

general Itô schemes completes the discussion in this section.

I.1.1. Problem formulation

Consider the following initial-value problem for the system of stochastic ordinary

differential equations

dX(t) = f(t,X)dt+
m∑
i=1

gi(t,X)dWi +
l∑

j=1

∫
E
cj(v, t,Xt−)pϕj(dv, dt), t ∈ [t0, T ]

X(t0) = X0, (I.1)

where X(t) ∈ Rd, f : [t0, T ] × Rd → Rd, g = (g1, g2, .., gm) : [t0, T ] × Rd → Rd×m,

c = (c1, c2, .., cn) : [t0, T ] × Rd × E → Rd×l, W (t) is an m-dimensional Wiener process

defined on the complete probability space (Ω,F ,P), pϕ(dv, dt) is a Poisson measure, E is a

finite label set and ϕ(dv) is a measure on E .

The global Lipschitz and the linear growth conditions for the coefficients f(t,X), g(t,X)

and c(v, t,Xt−) in (I.1) guarantee the well-posedness of the above problem.

Assumption I.1.1 (Global Lipschitz condition).∣∣f(t, x)− f(t, y)
∣∣2 +

m∑
i=1

∣∣gi(t, x)− gi(t, y)
∣∣2

+
l∑

j=1

∫
E

∣∣c(v, t, x)− c(v, t, y)
∣∣2ϕj(dv) ≤ C1|x− y|2

for t ∈ [0, T ] and all x, y ∈ Rd.

Assumption I.1.2 (Linear growth condition).∣∣f(t, x)
∣∣2 +

m∑
i=1

∣∣gi(t, x)
∣∣2 +

l∑
j=1

∫
E

∣∣c(v, t, x)
∣∣2ϕj(dv) ≤ C2(1 + |x|2)
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for t ∈ [0, T ] and all x ∈ Rd.

The following theorem establishes existence and uniqueness of strong solutions of

jump-diffusion SDEs under the above assumptions on the coefficients.

Theorem I.1.1 ([PBL10, Theorem 1.9.3]). Suppose that the coefficient functions f(·), gi(·)

and cj(·) of the SDE (I.1) satisfy the Lipschitz condition in Assumption I.1.1 and the linear

growth condition in Assumption I.1.2. Then the SDE (I.1) admits a unique strong solution.

Moreover, the solution X(t) of the SDE (I.1) satisfies the estimate

E
[

sup
0≤s≤T

|X(s)|2
]
≤ C

(
1 + E

[
|X(0)|2

] )
with T <∞, where C is a finite positive constant.

I.1.2. Itô calculus and stochastic Taylor series

Let Z1(t), Z2(t) be two stochastic processes and consider the corresponding quadratic

variation and covariation processes

[Z1]t
P
= lim

h→0
[Z1]h,t = lim

h→0

∑
k

(
Z1(tk)− Z1(tk−1)

)2
,

[Z1, Z2]t
P
= lim

h→0
[Z1, Z2]h,t = lim

h→0

∑
k

(
Z1(tk − Z1(tk−1)

)(
Z2(tk)− Z2(tk−1)

)
for the sequence of time discretizations tk = kh : k ∈ 0, 1, ... with a decreasing time step h.

The equalities are understood in the sense of convergence in probability.

The semimartingale process X(t) admits the following decomposition

X(t) = X(t0) + Ai,c(t) +M i,c(t) +X i,d(t),

where Ai,c(t) is a continuous process with finite total variation, M i,c(t) is a continuous

local martingale and X i,d(t) is the jump part of the process. Then, for the C(1,2) function
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u : [0,∞) × R → R and a semimartingale X(t), the Itô formula provides the stochastic

variant of the deterministic chain rule [App09, PBL10, Pro05]

du(t,Xt) =
∂u(t,Xt)

∂t
dt+

d∑
i=1

∂u(t,Xt)

∂xi
dX i,c

t

+
1

2

d∑
i,j=1

∂2u(t,Xt)

∂xi∂xj
d[M i,c,Mk,c]t +

(
u(t,Xt)− u(t−, Xt−)

)
.

The above formula agrees with the classical deterministic calculus in that the quadratic

variation and covariation equals to zero for deterministic functions with bounded variation.

In application to the strong solution of the SDE in (I.1), the Itô formula reads as

du(t,Xt) =

(
∂u(t,Xt)

∂t
+

d∑
i=1

f it
∂u(t,Xt)

∂xi
+

1

2

d∑
i,j=1

m∑
k=1

gikg
j
k

∂2u(t,Xt)

∂xi∂xj

)
dt

+
d∑
i=1

m∑
k=1

gik
∂u(t,Xt)

∂xi
dWk +

l∑
j=1

∫
E

(
u(t,Xt)− u(t−, Xt−)

)
pϕj(dv, dt),

where the arguments of the coefficients f(t,Xt) and g(t,Xt) are omitted for the economy

of notation. The integral variant of the Itô formula has the form

u(t,Xt) = u(0, X0) +

∫ t

0

L0u(s,Xs)ds+
m∑
k=1

∫ t

0

Lku(s,Xs)ds (I.2)

+
l∑

j=1

∫ t

0

∫
E
L−jv u(s,Xs)pϕj(dv, ds),

where the operators L0, Lk and L−j are defined as

L0 =
∂

∂t
+

d∑
i=1

f it
∂

∂xi
+

1

2

d∑
i,j=1

m∑
k=1

gikg
j
k

∂2

∂xi∂xj
,

Lk =
d∑
i=1

gik
∂

∂xi
dWk,

L−jv = u(t,Xs + cj(v, t,Xs))− u(t,Xs).
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By repeatedly applying the formula (I.2) to the functions L0u(s,Xs), Lku(s,Xs) and

L−ku(s,Xs) one gets the generalization of the Itô formula which allows explicit evaluation

via the Wagner-Platen expansion.

Theorem I.1.2 ([PBL10, Theorem 4.4.1]). For two given stopping times ρ and τ with

0 ≤ ρ ≤ τ ≤ T a.s., a hierarchical set A ∈M, and a function u : [0,∞)×R→ R, we

obtain the corresponding Wagner-Platen expansion

u(t,Xτ ) =
∑
α∈A

Iα
[
uα(ρ,Xρ)

]
ρ,τ

+
∑

α∈B(A)

Iα
[
uα(·, X·)

]
ρ,τ

(I.3)

assuming that the function u and the coefficients of the SDE (I.1) are sufficiently smooth

and integrable such that the arising coefficient functions uα and are well defined and the

corresponding multiple stochastic integrals exist.

In the above theorem, a row vector α = (j1, j2, ..., jn) is a multi-index of length

n = n(α). The set of all multi-indices α is denoted by

M = {(j1, ..., jn) : ji ∈ {−l, ...,−1, 0, 1, ...,m}, i ∈ 1, 2, ..., n}.

The number of negative components of the multi-index is denoted by s(α). Moreover, α−

and −α denote the multi-indices obtained by removing the last and the first components

from α respectively. Additionally, a subset A ∈M is hierarchical if supα∈A n(α) <∞ and

−α ∈ A for each nonempty α. The remainder set is defined as

B(A) = {α ∈M \A : −α ∈ A}.

The stochastic integrals are defined recurrently as



8

Iα[u(·)]ρ,τ =



u(τ, x) for l(α) = 0,∫ τ
ρ
Iα−[u(·)]ρ,zdz for l(α) ≥ 1, jn = 0,∫ τ

ρ
Iα−[u(·)]ρ,zdWjn(z) for l(α) ≥ 1, jn ∈ {1, ...,m},∫ τ

ρ

∫
E Iα−[u(·)]ρ,z−pϕjn (dvs(α), dt) for l(α) ≥ 1, jn ∈ {−1, ...,−l},

where u(·) = u(t, x, v1, ..., vs(α)) and the corresponding integrands are given by

uα(t, x, v1, ..., vs(α)) =


u(t, x) for l(α) = 0,

Lj1f−α(t, x, v1, ..., vs(−α)) for l(α) ≥ 1, j1 ∈ {0, 1, ...,m},

L−j1f−α(t, x, v1, ..., vs(−α)) for l(α) ≥ 1, j1 ∈ {−1, ...,−l}.

The sets of admissible integrands are described in [PBL10].

I.1.3. Euler-Maruyama and Milstein methods

The Wagner-Platen expansion in (I.3) is the stochastic analog of the deterministic Taylor

series. When applied to the function u(t, x) = x, it provides the basis for the derivation

of approximation schemes for the SDE in (I.1). The two simplest schemes are the Euler-

Maruyama and the Milstein methods which correspond to the hierarchical sets

AEM = {∅,−1, 0, 1}, AMil = {∅,−1, 0, 1, (1, 1), (1,−1), (−1, 1), (−1,−1)}

in the case of one-dimensional noise terms, i.e., for m = l = 1.

Assume that the coefficients cj(v, t,Xt) = cj(t,Xt) are mark-independent and consider

the following stochastic integrals

Iρ,τ(0) =

∫ τ

ρ

dz, Iρ,τ(i) =

∫ τ

ρ

dWi(z), Iρ,τ(−j) =

∫ τ

ρ

∫
E
pϕj(dv, dz),

Iρ,τ(i1,i2) =

∫ τ

ρ

∫ z2

ρ

dWi1(z1)dWi2(z2), Iρ,τ(i1,−j2) =

∫ τ

ρ

∫
E

∫ z2

ρ

dWi1(z1)pϕj2 (dv, dz2),
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Iρ,τ(−j2,i1) =

∫ τ

ρ

∫ z1

ρ

∫
E
pϕj2 (dv, dz2)dWi1(z1), (I.4)

Iρ,τ(−j1,−j2) =

∫ τ

ρ

∫
E

∫ z2

ρ

∫
E
pϕj1 (dv1, dz1)pϕj2 (dv2, dz2).

Then the single step of the Euler-Maruyama scheme for the k-th component of the approxi-

mate solution Yt on the interval t ∈ [ρ, τ ] can be written as

Yτ = Yρ + f(ρ,Xρ)I
ρ,τ
(0) +

m∑
i=1

gi(ρ,Xρ)I
ρ,τ
(i) +

l∑
j=1

cj(ρ,Xρ)I
ρ,τ
(−j)

while the Milstein scheme gives

Y k
τ = Y k

ρ + fk(ρ,Xρ)I
ρ,τ
(0) +

m∑
i=1

gki (ρ,Xρ)I
ρ,τ
(i) +

l∑
j=1

ckj (ρ,Xρ)I
ρ,τ
(−j)

+
m∑
i1=1

m∑
i2=1

d∑
i=1

gii1
∂gki2
∂xi

Iρ,τ(i1,i2) +
m∑
i1=1

l∑
j2=1

d∑
i=1

gii1
∂ckj2
∂xi

Iρ,τ(i1,−j2)

+
m∑
i1=1

l∑
j2=1

(
gki1(ρ, Yρ + cj2(ρ, Yρ))− gki1(ρ, Yρ)

)
Iρ,τ(−j2,i1)

+
l∑

j1=1

l∑
j2=1

(
ckj1(ρ, Yρ + cj2(ρ, Yρ))− ckj1(ρ, Yρ)

)
Iρ,τ(−j1,−j2).

Definition I.1.1. A discrete approximation Yn converges strongly with order γ ∈ (0,∞)

and weakly with order β ∈ (0,∞) if there exist finite constants C1 and C2 and a positive

constant δ0 (independent of h) such that for each h ∈ (0, δ0)

E [|X(tn)− Yn|] ≤ C1h
γ,∣∣E [b(X(tn)

)
− b
(
Yn
)]∣∣ ≤ C2h

β,

where b ∈ C2(β+1)(Rd,R) and all its derivatives of order up to 2(β + 1) have polynomial

growth.



10

In order for the truncated Wagner-Platen expansion (I.3) to converge with a strong order

γ ∈ {0.5, 1, 1.5, ...} and a weak order β ∈ {1, 2, 3, ...}, one has to use the hierarchical sets

[KP92b, PBL10]

Aγ =

{
α ∈M : n(α) + z(α) ≤ 2γ or n(α) = z(α) = γ +

1

2

}
,

Aβ =

{
α ∈M : n(α) ≤ β

}
,

where n(α) and z(α) denote the length and the number of zero components of the multi-

index α. In addition to the above conditions, classical convergence results also require for

the coefficients of the Wagner-Platen expansion to be globally Lipschitz and to grow at most

linearly, see [PBL10, Theorems 6.4.1, 11.2.1] and [KP92b, Theorems 10.6.3, 14.5.1].

Under the above conditions, the Euler-Maruyama and the Milstein schemes both have

the weak order 1 and the strong orders 0.5 and 1 respectively. The main issue in the

construction of higher order schemes is the approximation of multiple and mixed stochastic

integrals in (I.4) since efficient algorithms for their simulation exist only in the case of one

dimensional noise forcing. Multidimensional approximations are usually derived by using

Fourier series expansions which converge slowly and often have limited practical value

[Wik01]. Approximation of mixed stochastic integrals involving integration over one or

several Poisson measures is also problematic since it requires one to explicitly track the jump

times and marks of all Poisson processes. Therefore, the first order of strong convergence

achieved by the Milstein scheme is usually the best one can get in practical calculations for

general multidimensional SDEs.

I.1.4. General Itô schemes

Derivation of the stochastic Taylor series indicates that the higher order of stochastic

convergence is achieved by including more terms with multiple stochastic integrals into the

scheme. However, the required conditions for the convergence of the truncated expansion



11

are often too restrictive for many practical problems. For instance, local Lipschitz continuity

of the coefficients can be a sufficient condition for the convergence under additional assump-

tions on the boundedness of moments [HMS02], the linear growth of coefficients [YM08]

or the Khasminskii-type condition [Mao16]. At the same time, Hutzenthaler et al. showed

in [HJK11] that the classical Euler-Maruyama method diverges in finite time for SDEs with

non-globally Lipschitz continuous coefficients with superlinear growth. They proposed a

tamed Euler scheme where the drift term is modified so that it is uniformly bounded and

proved its convergence under the globally one-sided Lipschitz condition for the drift term

and with globally Lipschitz diffusion coefficient [HJK12]. The tamed Euler scheme was

also discussed in [DKS14, S+13, ZWH14] and the tamed Milstein method was proposed in

[KS14, WG13]. These results motivate the development of numerical methods which do

not follow directly from the Wagner-Platen expansion (I.3) but contain terms with multiple

stochastic integrals. Such schemes can be considered as a generalization of the classical

stochastic expansion.

Implicit modifications of the stochastic Taylor series provide a variant of such gene-

ralization [KP92a, TB01, WGW12]. Drift-implicit methods give a similar technique by

making implicit only deterministic terms of the expansion. This allows to resolve the

issue of fully implicit methods associated with possible singularity of linear systems in

nonlinear iterative solvers due to the dependence of their matrices on the stochastic inte-

grals. Convergence and stability properties of the drift-implicit methods were discussed,

for example, in [AVZ13, MS13, HMS02, Tal02] for SDEs driven by Brownian motion

and in [BLP07, HK05, HK06, sWMX07] for jump-diffusion systems. Additionally, the

combination of semi-implicit and implicit steps is used in the family of composite methods

to achieve better stability properties [BT01, OAHR11]. The balanced schemes [HG11,

KS06, MPS98, WL09] and the split-step methods [HH12, JZYH16, RKVZ15, VK15] form

another group of methods which allow to incorporate implicitness into the stochastic part of
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the scheme as well.

An alternative to the Wagner-Platen expansion is a large class of derivative-free stochastic

Runge-Kutta (SRK) methods introduced in [Rüe82, BB98]. Rößler in [Röß06b, Röß06a]

extended these results and applied a colored rooted tree analysis to derive the general order

conditions for the coefficients of the scheme. Flexibility of the derived order conditions

allows to construct the efficient SRK schemes for which the number of evaluations of the drift

and diffusion coefficients is independent of the dimension of the driving stochastic process

[Röß10]. On the other side, simulation of multiple stochastic integrals is still required for

higher order convergence. Implicit versions of the SRK method also follow naturally from

the general derivation of the scheme [BT04, DR09, HHR16]. Other variants of the SRK

schemes include methods for jump-diffusion systems [BNR07, BR11], methods for systems

with small noise [BRW10, VH12] and explicit S-ROCK stiff integrators [AC08, KB13].

Predictor-corrector schemes [BLP08, HSW07], multistep methods [BW06, BW07], ex-

ponential integrators [EL16, KB14], local linearization approximations [CJ08] and schemes

with adaptive time-stepping [RW06, SK08] are some of the other methods which can be

found in literature. Also, numerical methods for the approximation of continuous time

Markov chain models will be discussed later in Chapter II.

I.2. Overview of numerical methods for random differential equations

This section contains an overview of the numerical techniques for random partial dif-

ferential equations (PDEs). It is assumed that the random fields are time-independent

which allows to consider only stationary PDEs without loss of generality. We start with the

formulation of the boundary-value problems with random input data and the description

of the required function spaces. This is followed by the discussion of techniques for the

finite-dimensional representation of random fields. Stochastic spectral methods, which rely
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on such representations, are discussed next along with their limitations on the stochastic

dimensionality. The section is completed by the brief overview of perturbation techniques

for the systems with small uncertainties.

I.2.1. Problem formulation

Let L be a possibly nonlinear stationary operator defined on a bounded Lipschitz domain

D ⊂ Rd, d = 1, 2, 3, with a boundary ∂D = ∂DD ∪ ∂DN . Operator L has a random

coefficient a(x, ω), x ∈ D, ω ∈ Ω, defined on the complete probability space (Ω,F ,P).

Here Ω denotes the sample space of possible outcomes, F ⊂ 2Ω is the σ-algebra of events,

and P is the complete probability measure on F . Denote by u(x, ω) the strong solution of

the following stochastic boundary-value problem

 L
(
a(x, ω), u(x, ω)

)
= f(x, ω) in D × Ω,

γ
(
u(x, ω)

)
= g(x, ω) on ∂D × Ω,

(I.5)

where γ is a trace operator which defines Dirichlet boundary condition on ∂DD and Neumann

boundary condition on ∂DN . We require u(x, ω) to be a Bochner integrable function with

values in some Banach space W (D), i.e., u(x, ω) ∈ Lp(Ω;W (D)), the function space given

by

Lp
(

Ω;W (D)
)

:=

{
u : Ω→ W (D)

∣∣∣ u is strongly measurable and ‖u‖Lp(Ω;W (D)) <∞
}

with the corresponding norm

‖u‖pLp(Ω;W (D)) =


∫

Ω

‖u(·, ω)‖pW (D) dP(ω) if 0 < p <∞,

ess supω∈Ω ‖u(·, ω)‖W (D) if p =∞.
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For simplicity, we will write Lp(Ω) instead of Lp(Ω;W (D)) when the particular function

space W (D) can be concluded from the context.

It is assumed that all random input fields are defined on the same probability space and

are chosen so that the problem in (I.5) is well-posed in the following sense

Assumption I.2.1. For the fixed values of the random parameter ω ∈ Ω, there exist unique

realizations of the solution u(x, ω) ∈ W (D) such that

‖u(x, ω)‖W (D) ≤ C(ω) ‖f(x, ω)‖W−1(D) ,

where W−1(D) is the dual space of W (D) and C is a constant which may depend on ω.

I.2.2. Representation of random fields

The solution u(x, ω) of the boundary value problem in (I.5) is a random function.

Dependence on the random variable adds additional dimensions to the problem description

which makes the process of numerical discretization a more challenging task in comparison

to its deterministic counterpart. In most cases, probabilistic characteristics of the random

input fields are also subjected to certain simplifying assumptions due to the lack of real

experimental data. It is critically important that the mathematical representation of these

random fields facilitates the process of computation while keeping the model realistic.

The Gaussian assumption is one of the most frequently used in practice. This is due

to the fact that the Gaussian random quantities are completely characterized by their first

two moments which dramatically simplifies analysis of uncertain systems. Furthermore, it

arises naturally in applications when only information about the second moments of the

random field is available [SZ98]. Simulation of non-Gaussian processes is currently an

active research area; some results can be found in [PHQ05, Ste09] and references therein.

The classical approach for the representation of Gaussian random fields is via the

Karhunen-Loéve (KL) series [Loe78].
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Theorem I.2.1 (Karhunen–Loéve). Let a ∈ L2(Ω;L2(D)) be the square-integrable stochas-

tic process with continuous covariance function C(x, y). Then

a(x, ω) = E [a(x, ω)] +
∞∑
i=1

√
λiφi(x)yi(ω), (I.6)

where

yi(ω) =
1√
λi

∫
D

(
u(x, ω)− E [u(x, ω)]

)
φi(x)dx

and λi, φi(x) are the eigenvalues and the eigenfunctions of the integral operator with

covariance function as kernel, i.e.,

∫
D

C(x, y)φi(y)dy = λiφi(x).

Random variables yi are pairwise uncorrelated, zero-mean and unit-variance. Further-

more, if a(u, ω) is Gaussian, then yi are also independent and yi ∼ N(0, 1).

The choice of the covariance eigenfunctions φi(x) for the basis of L2(D) is optimal in

the sense that the error of the truncation of the series in (I.6) is minimized in L2(Ω;L2(D)).

Comparison of the KL expansion with some of the other methods for the approximation of

random fields can be found, for instance, in [Gri06, LK93, PHQ04, Sch97, Ste09].

Representation of random fields by the series in (I.6) requires explicit knowledge of the

eigenpairs of the covariance operator and thus cannot be applied for the unknown solution

u(x, ω) of the problem in (I.5). Generalized polynomial chaos (gPC) expansion is another

technique which is most commonly employed in practice for this purpose. It allows to

represent the arbitrary random function via orthogonal polynomials of independent random

variables. The independence of the random variables is an essential requirement which

helps to simplify analysis of the problem by seeking its solution in a functional space with

the tensor product structure. In this regard, it is hard to overestimate the importance of the
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Karhunen–Loéve representation of the input Gaussian fields as a linear combination of i.i.d.

variables.

Let us consider the random vector y = [y1, ..., yN ]T : Ω→ Γ with a support in the image

space Γ(Ω) =
∏N

k=1 Γk ∈ RN equipped with a product probability measure µ(y)dy =

µ(y1)dy1 × ... × µ(yN)dyN , where µi(yi) is a distribution on Γi and P(y) =
∫

Γ
µ(y)dy is

a probability measure on Γ. Let Pdii denote the space of polynomials of degree at most di

which are orthonormal with respect to µi(yi)dyi, i.e.,

Pdii :=
{
v : Γi → R : v ∈ span{ψm(yi)}dim=0

}
and

∫
Γi

ψm(yi)ψn(yi)µi(yi)dyi = δmn,

where ψm(yi) is the polynomial of degree m and δmn is the Kronecker delta function.

Then the space of N -variate orthonormal polynomials in Γ of total degree at most P is

defined as

PPN =
⊗
|d|≤P

Pdii ,

and the tensor product is over all possible combinations of the multi-index d = (d1, ..., dN)

satisfying |d| =
∑N

k=1 ≤ P . The basis functions of PPN are given by

PPN = span

Ψm(y) :=
∏
|m|≤P

ψmi

∣∣∣ m = (m1, ...,mN), mi ≤ di


and the total number of basis functions is

dim(PPN) =

(
N + P

N

)
.

The P -th order gPC approximation of the arbitrary second-order random function of N
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independent random variables has the following representation in the above basis [CM47]

u(x, ω) ≈
M∑
m=1

ûm(x)Ψm(y), M =

(
N + P

N

)
,

where the coefficients ûm(x) of the expansion can be determined by projecting u(x, ω)

onto PPN as

ûm(x) = E [u(x, ω)Ψm(y(ω))] =

∫
Γ

u(x, y)Ψm(y)µ(y)dy. (I.7)

I.2.3. Stochastic spectral methods

By analogy with the Karhunen–Loéve series, the formula for the coefficients of the

gPC expansion (I.7) is useless for the unknown function u(x, ω). The goal of the stochastic

spectral methods is to determine these coefficients by exploiting orthogonality properties of

the underlying spaces.

A typical approach, employed in the family of stochastic Galerkin (SG) methods, is to

start with the gPC approximation of the solution

uPN(x, ω) =
M∑
m=1

ûm(x)Ψm(y)

and to satisfy the governing equations (I.5) in the following weak sense

∫
Γ

L(a, x, y)
(
uPN(x, y)

)
w(y)µ(y)dy =

∫
Γ

f(x, y)w(y)µ(y)dy in D,∫
Γ

γ
(
uPN(x, y)

)
w(y)µ(y)dy =

∫
Γ

g(x, y)w(y)µ(y)dy on ∂D

for allw(y) ∈ PPN . This gives the system ofM coupled deterministic PDEs for the expansion

coefficients ûm(x). It is worth noting that the choice of approximation in the parameter

space Γ is not limited to the generalized Polynomial Chaos. Other approaches using standard
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global and piecewise continuous finite element approximations have also been proposed

[BTZ04, DBO01].

The stochastic Galerkin procedure is a well-established technique and an extensive

literature exists for both theoretical [BTZ04, CD15, DBO01, MK05] and practical [EU10,

FST05, GS91a, XLSK01] aspects of its implementation. It is exceptionally efficient for

systems with moderate dimensionality of parameter space and shows exponentially fast

convergence for equations with coefficients depending analytically on the random inputs.

However, its disadvantages are also well known. For complicated operators, the derivation

of the deterministic system corresponding to the stochastic Galerkin method can be a non-

trivial task. Moreover, the method is intrusive as the conventional codes for deterministic

PDEs have to be modified in order to include the projection onto the parameter space.

Instead, in the stochastic collocation (SC) methods, the governing equations in (I.5) are

satisfied at a discreet set of points {ym}Mm=1 in the parameter space Γ and the solution is

then reconstructed in the form of interpolant as

Iu(x, y) =
M∑
m=1

ũm(x)Φm(y),

where {Φm(y)}Mm=1 is the appropriately chosen basis for interpolation in Γ. This approach

requires one to solve a number of uncoupled deterministic problems for each collocation

point yi ∈ Γ. Since existing software can be used to find solutions of these problems, the

SC methods are nonintrusive and can be easily applied to arbitrary linear and non-linear

PDEs. While preserving the accuracy of the stochastic Galerkin methods, they also offer

some other advantages like the possibility to treat nonindependent and unbounded random

variables or nonlinearly parameterized input fields [BNT07, GWZ14, XH05].

Computational efficiency of both stochastic Galerkin and collocation methods rely

heavily on the choice of quadrature and collocation points in Γ =
∏N

k=1 Γk. This choice

is often nontrivial due to deteriorating accuracy and exponentially growing complexity of
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conventional methods for the numerical integration and interpolation in high-dimensional

spaces. Some of the commonly applied techniques include integration/interpolation on

tensor product grids with full [BNT07], sparse [NTW08b, Smo63] or adaptive anisotropic

structure [MZ09, NTW08a]. The full tensor product grid integration of an Cr function

has the accuracy O(n−r/d) and requires nd function evaluations, where d is the number of

dimensions and n is the number of quadrature nodes in each dimension. This is known

as the curse of dimensionality since the applicability of the method is limited only to

parameter spaces with moderate number of dimensions. Quadrature rules based on sparse

and anisotropic grids have better complexity but cannot beat the accuracy of quadratures on

full tensor product grids. Thus, they also suffer from the curse of dimensionality.

I.2.4. Perturbation methods

The perturbation techniques have been widely used in engineering practice for the

estimation of the response statistics of systems with small uncertainties. The basic idea

of the method is to expand all the functions about their mean values and to determine the

unknown coefficients by equating the same order terms. For instance, consider the following

equation with random operator and right hand side

L
(
x, y
)
u(x, y) = f(x, y), x ∈ D, y ∈ Γ ⊂ RN . (I.8)

By expanding the random input fields and the solution into the Taylor series around the

mean value of the random parameter, one gets

{
L
(
x, µy

)
+

N∑
i=1

∂L
(
x, µy

)
∂yi

εi∆yi +
N∑
i=1

N∑
j=1

∂2L
(
x, µy

)
∂yi∂yj

εiεj∆yi∆yj + ...

}

×

{
u
(
x, µy

)
+

N∑
i=1

∂u
(
x, µy

)
∂yi

εi∆yi +
N∑
i=1

N∑
j=1

∂2u
(
x, µy

)
∂yi∂yj

εiεj∆yi∆yj + ...

}
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=

{
f
(
x, µy

)
+

N∑
i=1

∂f
(
x, µy

)
∂yi

εi∆yi +
N∑
i=1

N∑
j=1

∂2f
(
x, µy

)
∂yi∂yj

εiεj∆yi∆yj + ...

}
,

where εi are small parameters, µy = E [y] and ∆y = y − µy. By multiplying and collecting

the terms with the same powers of εi, we get the following sequence of deterministic

equations for the coefficient of u(x, y)

u = L−1f,

∂u

∂yi
= L−1

(
∂f

∂yi
− ∂L
∂yi

u

)
,

∂2u

∂yi∂yj
= L−1

(
∂2f

∂yi∂yj
− ∂L
∂yi

∂u

∂yj
− ∂L
∂yj

∂u

∂yi
− ∂2L
∂yi∂yj

u

)
, i, j = 1, ..., N,

where all operators and functions are evaluated at (x, µy).

The first-order approximation of the mean and covariance of u(x, y) can be easily

calculated as

E [u(x, y)] = u
(
x, µy

)
,

Cov [u(x, y), u(z, y)] =
N∑
i=1

N∑
j=1

∂u
(
x, µy

)
∂yi

∂u
(
z, µy

)
∂yj

E [∆yi∆yj] .

The second-order approximations of the response statistics require the knowledge of the

joint probability distribution of the random parameters yi and thus can be easily computed

only for Gaussian fields [KH92, LMB87]. Higher-order approximations have also been

discussed, for example, in [Kam13].

Neumann expansion method is another technique which is conceptually similar to the

perturbation method. It starts with the first order approximation of the random operator by

decomposing it into deterministic and perturbation parts as follows

L(x, y) = L0(x) + ∆L(x, y)
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and applies Taylor series expansion to the inverse of this operator, i.e.,

L−1(x, y) =
(
L0(x) + ∆L(x, y)

)−1
=
( ∞∑
k=0

(−1)k
(
L−1

0 (x)∆L(x, y)
)k)L−1

0 (x).

The convergence of the above series is guaranteed when ‖L0(x)∆L(x, y)‖ < 1 in the

operator norm. This condition is not very restrictive and can be satisfied for perturbations of

arbitrary size by proper rescaling [YSD88].

The Neumann series solution of the problem in (I.8) with deterministic right hand side

takes the form

u(x, y) = L−1(x, y)f(x)

=
(
I − L−1

0 (x)∆L(x, y) +
(
L−1

0 (x)∆L(x, y)
)2 − ...

)
u0(x),

where u0(x) solves the problem

L0(x)u0(x) = f(x).

One of the advantages of the Neumann expansion is that the deterministic operator L0 has

to be inverted only once. However, the method still requires simulation to obtain statistics

of the solution in general case [GS91a].

I.3. Monte Carlo methods

This section contains the thorough description of the problem considered in this disser-

tation. We start with the formulation of the Monte Carlo method and the brief discussion

of its convergence rate. The classical techniques for the improvement of the Monte Carlo

integration are provided next. The multilevel Monte Carlo method is then formulated as a
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variance reduction technique of the control variate type. At the end of the section, we give

the contemporary overview of the existing acceleration techniques for the multilevel Monte

Carlo method and show how the proposed techniques fit and contribute to this classification.

I.3.1. Formulation and complexity of the Monte Carlo method

Both spectral and perturbation methods can be very efficient for the problems which

satisfy certain assumptions regarding the parametric dimensionality and the smoothness or

the magnitude of random perturbations. When these conditions are not met, they usually

demonstrate extremely poor behaviour. At the same time, Monte Carlo (MC) simulation

is a purely statistical technique. Its performance depends solely on the geometry of the

underlying random distribution and thus is immune to all of the above mentioned issues.

Let u(x, ω) : D × Ω → W (D) be the solution of the stochastic initial-value problem

(I.1) or the random boundary-value problem (I.5). With this definition, D can denote both

temporal and spatial domain of the corresponding problem andW (D) is a suitable codomain

of the random function u(x, ω). Consider the problem of estimation of the expected value

E
[
f
(
u(x, y(ω))

)]
=

∫
Ω

f
(
u(x, y(ω))

)
dP(ω) =

∫
Γ

f
(
u(x, y)

)
µ(y)dy (I.9)

where Γ(Ω) is the image space of the random vector y(ω) as discussed in section I.2.2,

µ(y) is a probability density on Γ and f : W (D)→ R is some continuous functional of a

random function u(x, ω) with a Lipschitz bound

∣∣f(u)− f(v)
∣∣ ≤ c ‖u− v‖W (D) . (I.10)

For the sequence {ym} of independent and identically distributed random samples

from Γ, consider the following averaged sum

EMC
[
f
(
u(x, ω)

)]
=

1

M

M∑
m=1

f
(
u(x, ωm)

)
. (I.11)
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If the integral in (I.9) exists, then the strong law of large numbers ensures the almost sure

convergence of the above sum to the true expectation when M →∞ [Fis96]. The rate of

convergence follows from Chebyshev’s inequality which states that for k > 0

P
[∣∣∣E [f(y)]− EMC [f(y)]

∣∣∣ ≥ k
√

Var [EMC [f(y)]]
]
≤ 1

k2

or by changing variables and using that Var [EMC [f(y)]] = Var [f(y)] /M

P
[∣∣∣E [f(y)]− EMC [f(y)]

∣∣∣ ≥ k
]
≤
√

Var [f(y)]

Mk
.

This shows that the error of the Monte Carlo estimator converges with a fixed polynomial

rate O(M−1/2) with no regard to the underlying distribution, smoothness and dimensionality

of the integrand or correlation between components of the random vector y ∈ Γ. The only

requirement is the finiteness of the true variance of the estimated functional.

Similar result follows from the Central Limit theorem which states that

(
E [f(y)]− EMC [f(y)]

)
d→ N

(
0,

Var [f(y)]

M

)
as M →∞,

where the convergence is understood in the sense of distributions. Thus the mean square

error of the Monte Carlo estimator reads as

E
[(

EMC [f(y)]− E [f(y)]
)2
]

=
Var [f(y)]

M
= ε2. (I.12)

Asymptotical complexity of the method

From the discussion in sections I.1 and I.2, it is obvious that solutions of the stochastic

and random differential equations are rarely obtainable in a closed analytic form and

numerical approximations must be used. When the MC integration is applied to this

approximation, we obtain the bias-variance decomposition of the mean square error of the
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estimator

E
[(

EMC [fh]− E [f ]
)2
]

=
(
E [fh − f ]

)2

︸ ︷︷ ︸
I:=Discretization bias

+E
[(

EMC [fh]− E [fh]
)2
]

︸ ︷︷ ︸
II:=Sampling variance

= ε2I + ε2II = ε2, (I.13)

where fh = f(uh(x, y)) is the approximate value of the functional f(u(x, y)) obtained

numerically on the discretization grid with step size h.

In the above formula, the bias error term is induced by the approximation of the solution

of the differential equation while the second term is the mean square error of the MC inte-

gration as in (I.12). If we suppose that α is the convergence rate of the weak approximation

of u(x, y), then the estimate of the bias in (I.13) reads as

∣∣∣E [f(u)− f(uh)]
∣∣∣ = O(hα) = εI .

Using this estimate and the bound on the sampling error in (I.12), one can find the size of

the discretization grid and the number of Monte Carlo samples

h = O(ε
1/α
I ), M =

Var [fh]

ε2II

which are sufficient to guarantee the desired level of accuracy.

Assume that the cost of generating a single path of u(x, y) grows polynomially with

decreasing h as

Ch = O(h−γ) = O(ε
−γ/α
I )

for some real positive constant γ. Then the ε-complexity of the Monte Carlo method has the

following asymptotical behavior

CMC = M · Ch = Var [fh]O
(
ε−2−γ/α) . (I.14)
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For example, for sufficiently smooth drift and diffusion coefficients, the Euler-Maruyama

scheme in section I.1.3 has the parameter values γ = α = 1 and the ε-cost of the MC

estimator is C = O(ε−3).

I.3.2. Improving the Monte Carlo method

Brute force Monte Carlo method is a simple and powerful but nevertheless very slow

simulation technique. Even though it outperforms standard quadrature rules in application

to high dimensional and/or non-smooth integrands, its computational complexity can remain

too high and impractical. Among the factors which limit the accuracy and efficiency of

the MC integration, the major three are the accessibility of the sampling measure, the high

discrepancy of the random quadrature nodes and the large variance of the integrand. The

overview of some of the available solutions to these problems is given below.

Sampling measure. When sampling from the probability distribution is difficult but the

measure itself can be easily evaluated, the importance sampling allows to integrate with

respect to another, simpler, measure using the identity

E [f(y)] =

∫
Γ

f(y)dPµ(y) =

∫
Γ

f(y)
dPµ(y)

dPν(y)
dPν(y) =

∫
Γ

f(y)
µ(y)

ν(y)
dy,

where the probability measure Pµ(y) =
∫

Γ
µ(y)dy is absolutely continuous with respect

to Pν(y) =
∫

Γ
ν(y)dy and dPµ(y)/dPν(y) is the Radon-Nikodym derivative. The absolute

continuity of measures implies that supp
(
µ(y)

)
< supp

(
ν(y)

)
and ν(y) must have heavier

tales then µ(y). Then the modified Monte Carlo estimator takes the form

EMC [f(y)] =
1

M

M∑
m=1

f(ym)µ(ym)

ν(ym)
,

where the random vectors {ym}Mm=1 are drawn from the new distribution Pν(y). This

estimator is unbiased since E [EMC [f(y)]] = E [f(y)] and have the variance
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Var [EMC [f(y)]] =
1

M
Var

[
f(y)

µ(y)

ν(y)

]
.

The above expression shows that the importance sampling can be also used to reduce the

variance of the estimator by the appropriate choice of ν(y).

Markov Chain Monte Carlo (MCMC) methods represent another group of algorithms

which allow to draw samples from the stationary distribution of a suitably constructed

Markov chain. The method can be considered then as a tool for approximate sampling from

the a-priory unknown distribution and the quality of this approximation improves as the

number of samples increases. The construction of an appropriate Markov chain is usually

not a problem and a number of algorithms exists. For example, the idea of the classical

Metropolis-Hastings algorithm is to iteratively explore the sampling space according to

some proposal distribution g
(
y′|ym−1

)
which is conditioned on the previous iteration ym−1.

The probability of accepting the step is then given by the Metropolis-Hastings ratio

α
(
ym|y′

)
= min

{
1,
µ
(
y′
)
g
(
ym|y′

)
µ
(
ym
)
g
(
y′|ym

)} ,
where µ(y) is the desired sampling distribution. In Bayesian inference, µ(y) = µ

(
y|yobs

)
is

the posterior distribution conditioned on the available data yobs and, by Bayes’ theorem, the

Metropolis-Hastings ratio converts to

α
(
ym|y′

)
= min

{
1,
L
(
yobs|y′

)
µ0

(
y′
)
g
(
ym|y′

)
L
(
yobs|ym

)
µ0

(
ym
)
g
(
y′|ym

)} , (I.15)

where L
(
yobs|y

)
is the likelihood and µ0(y) is the given prior distribution. Such construction

leads to the Markov chain since every next iteration depends only on the last step. Moreover,

as the method proceeds, more and more samples will tend to stay in the high density regions

of the target distribution as desired.

Metropolis-Hastings Markov chain obviously converges to its stationary distribution.

However, a rapid mixing is also required for the good chain such that the stationary state is
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reached quickly and this remains an active research area. In practice, a large initial burn-in

period is required before the chain converges to the target distribution and the convergence

has to be checked on-the-fly resulting in the extra computational cost and the potentially

unbounded running time.

Discrepancy. Immunity to the curse of dimensionality is the consequence of the statistical

nature of the Monte Carlo integration which does not utilize the structure of the sampling

space and explores it in a totally random manner. As a result, some points appear close to

each other while leaving a lot of empty spots with no points at all. A simple argument shows

that about
√
M out of M points lie in clumps [Caf98]. This appears to be a limiting factor

in accuracy of the MC integration as is shown by the Koksma–Hlawka inequality.

Theorem I.3.1 (Koksma-Hlawka, [Caf98, Theorem 5.1]). Consider the quadrature rule

in (I.11) with an arbitrary sequence of nodes {ym} ∈ [0; 1]N applied to any function

f(y) : [0; 1]N → R with bounded Hardy-Krause variation

V [f ] =

∫
[0;1]N

∣∣∣∣ ∂Nf

∂y1 . . . ∂yN

∣∣∣∣ dy +
N∑
k=1

V [f
(i)
1 ]

in which f (i)
1 is the restriction of the function f to the boundary yi = 1. Then the integration

error is bounded by ∣∣∣∣∣
∫

[0;1]N
f(y)dy − 1

M

M∑
m=1

f(ym)

∣∣∣∣∣ ≤ V [f ]D∗M

and D∗M is the star discrepancy defined as

D∗M = sup
J∈E∗

∣∣∣∣#{ym ∈ J}M
− Leb(J)

∣∣∣∣ ,
where Leb(J) is the Lebesgue measure of the set J and E∗ is the collection of all products

of the form
∏N

k=1[0; bk) with 0 ≤ bk ≤ 1.
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The Koksma–Hlawka theorem gives the worst-case bound of the error and thus often

underestimates the practical accuracy of the numerical integration. However, the discre-

pancy of the quadrature nodes is indeed indicative of actual performance. It provides the

quantitative measure of uniformity of a sequence of points and explains the low performance

of the Monte Carlo method with random or pseudo-random sequences.

An alternative is given by the family of quasi-Monte Carlo (QMC) methods which

use deterministic quasi-random numbers. These low-discrepancy sequences are designed

to provide better uniformity than their random counterparts resulting in potentially faster

convergence rate which is O((logM)NM−1). Description of the the most commonly used

quasi-random sequences such as Van der Corput, Halton, Sobol and others can be found in

[Caf98, DKS13, Fox99] and references therein.

It is worth noting the quasi-Monte Carlo method is a compromise between Monte Carlo

and grid-based quadratures. While combining some of their advantages, it also suffers from

their limitations. For instance, the convergence rate of the QMC estimator is dimension

dependent and the method looses its effectiveness for large values of N , the dimension

of the parameter space Γ. It also depends on the smoothness of the integrator which is

indicated by the term V [f ] in the Koksma-Hlawka inequality. Finally, quasi-Monte Carlo

methods are not directly applicable to simulation due to correlations between the points of

the quasi-random sequences. This, however, is not a big issue since the method is designed

for integration and many of the quantities of interest appear in the form of functionals.

Latin hypercube sampling is another integration technique of Monte Carlo type which is

designed to prevent the clustering of points in the sample space. It is conceptually similar to

the stratified sampling as it divides the sample space into parts of equal probability to ensure

that all portions of the distribution are represented evenly. The method picks the samples

from the N -dimensional Latin hypercube with each dimension divided into M regions of

equal probability. By its construction, the Latin hypercube has exactly one sample in each
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axis–aligned hyperplane and the possible number of ways to place the samples into the cube

is equal to (M !)N−1, where N denotes the dimension of the sampling space and M is the

number of samples. The Latin hypercube estimator is unbiased and has the variance smaller

than that of the classical Monte Carlo sampling [Loh96, Ste87]. This is an advantage of the

method but its practical application is still limited only to moderate dimensions. Firstly, the

method requires the number of samples to be predetermined prior to the actual simulation

which complicates the error analysis and the possibly required extension of the number of

samples. Secondly, all of the generated samples must be stored in the computer memory

which can become a very restrictive requirement for large values of N .

Variance reduction. The estimate in (I.14) indicates that the complexity the MC integra-

tion is proportional to the variance of the integrated quantity. It is thus possible to reduce

the computational complexity of the method by transforming the integrand in a way which

reduces its variance without modifying the final result.

One of such techniques, the importance sampling, has been discussed above. It changes

the measure of integration in order to oversample some portions of interest in the sampling

space that receive lower probability under the target distribution. A different approach is

to introduce artificial correlation between originally independent elements of the sampling

sequence such that the variance is reduced and the estimator remains unbiased. Antithetic

sampling and the method of control variates fall into this category.

Antithetic sampling approach is based on finding a pair of unbiased and identically

distributed estimators, say E1
MC and E2

MC, which are negatively correlated. Consider the

following estimators

E1
MC[f ] =

1

M

M∑
m=1

f(ym), E2
MC[f ] =

1

M

2M∑
m=M+1

f(ym)

and
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EMC [f ] =
1

2M

M∑
m=1

f(ym), ÊMC[f ] =
E1

MC[f ] + E2
MC[f ]

2
.

Clearly, both EMC and ÊMC are unbiased and have the variances

Var
[
ÊMC

]
=

Var [E1
MC] + Var [E2

MC]

4
+

Cov [E1
MC,E2

MC]

2

=
(1 + ρ)Var [f ]

2M
= (1 + ρ)Var [EMC] ,

where ρ is the correlation between E1
MC and E2

MC. Hence the negative correlation ρ ∈ [−1, 0)

ensures that Var
[
ÊMC

]
< Var [EMC] as desired.

The control variate technique is used to improve the quality of the estimator by compa-

ring it to another correlated estimator, say E1
MC, with a known expectation, i.e.,

ÊMC[f ] = EMC [f ]− λ
(
E1

MC[g]− E [g]
)

(I.16)

where f = f(y) and g = g(y) are possibly different functions and λ is an arbitrary number.

The above estimator is unbiased and has the variance

Var
[
ÊMC

]
= Var [EMC] + λ2Var

[
E1

MC
]
− 2λCov

[
EMC,E1

MC
]
,

which attains its minimum value

min
λ

(
Var

[
ÊMC

])
= Var [EMC]− (Cov [EMC,E1

MC])
2

Var [E1
MC]

= (1− ρ2)Var [EMC]

at

λ =
Cov [EMC,E1

MC]

Var [E1
MC]

. (I.17)

The coefficient ρ ∈ [−1, 1] again denotes the correlation between EMC and E1
MC but,

unlike the antithetic sampling, both positive and negative correlations are allowed.
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More details about the variance reduction techniques and the methods for the construction

of correlated estimators can be found, for instance, in [Ros13].

I.3.3. Formulation and complexity of the multilevel Monte Carlo method

Recall the expression (I.14) for the asymptotical complexity of the Monte Carlo method

CMC = M · Ch = Var [fh]O
(
ε−2−γ/α) .

As is mentioned above, one way to improve this complexity is to apply the control variate

technique. For highly correlated estimators, the constant parameter in (I.17) can be set to

λ ≈ 1 and the formula in (I.16) converts to

ÊMC[f(uh1)] = E [g(u)] + EMC [f(uh1)− g(u)] ,

for which we additionally assumed that EMC = E1
MC. The next step in the construction of

the control variate is to find the functional g(u) which is correlated to f(uh1) and such that

E [g(u)] can be easily evaluated. This can be achieved by taking g(u) = f(uh0) for h0 > h1,

i.e., the same functional evaluated at the coarser approximation of the true solution u(x, y).

Obviously, it is very unlikely that one can find the exact value of the expectation E [f(uh0)].

However, it can be estimated with much less effort than that required for the evaluation of

EMC [f(uh1)].

Finally, the two-level approximation of E
[
f
(
u(x, y)

)]
can be written in the form

ÊMC[f(uh1(x, y))] =
1

M0

M0∑
m=1

f
(
uh0(x, y

m)
)

+
1

M1

M1∑
m=1

(
f
(
uh1(x, y

m)
)
− f

(
uh0(x, y

m)
))
.

The difference in the second sum uses the same sequence of random samples for both

coarse and fine approximations of u(x, y). Thus, its magnitude is controlled by the strong

convergence of the numerical method resulting in the small variance of the Monte Carlo
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l=0

l=1

l=2

l=3

Figure 1: Geometric sequence of nested discretizations.

estimator. In other words, the total desired accuracy of the estimator can be achieved

with M1 � M0 and much less effort is required to run the MC simulation on the coarse

grid. Moreover, one can find the optimal values of the numbers of samples M0 and M1 on

coarse and fine levels respectively such that the total cost of the Monte Carlo estimator is

minimized.

Giles in [Gil08a] extended this idea to the multilevel setting and proved that by the

appropriate choice of the numbers of samples at different levels, it is even possible to

improve the total order of complexity of the estimator. For instance, consider a geometric

sequence of nested discretizations with step sizes

hL < hL−1 < ... < hl < ... < h0, hl = q−lh0, (I.18)

where q ∈ N \ 1 is a refinement parameter. An example of such sequences for one- and

two-dimensional domains is depicted in Figure 1.

Denote by ul(x, y) the approximation of u(x, y) at the level l and let fl(y) = f
(
ul(x, y)

)
.

Then the value of the functional at the finest discretization level L is given as the telescoping

series

fL(y) = f0(y) +
L∑
l=1

(
fl(y)− fl−1(y)

)
, (I.19)
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(C) Coupled solutions at level 2.
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(D) Coupled solutions at level 6.

Figure 2: Sample paths of the approximate solution evaluated at different levels in the
telescoping sum (I.19).

i.e., it can be represented as a solution at the coarsest mesh plus corrections calculated at

finer meshes. An example of such multilevel construction is illustrated in Figure 2. It is

worth noting that correction terms in the sum (I.19) must be evaluated at the same realization

of the random vector y. This leads to the stronger correlation of the coupled paths at higher

levels as is clearly seen in Figures 2B-2D.

Taking advantage of the linearity of expectation, we obtain
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E [fL(y)] = E [f0(y)] +
L∑
l=1

E [fl(y)− fl−1(y)] .

By setting ∆l(y) = fl(y)− fl−1(y), the above expression yields the multilevel Monte-Carlo

estimator

E
[
f
(
u(x, y)

)]
≈ EML [fL] =

L∑
l=0

EMC [∆l] =
L∑
l=0

1

Ml

Ml∑
ml=1

∆ml
l , (I.20)

where ∆0 = u0(x, y) and Ml is the number of random samples generated at each level l.

Asymptotical complexity of the method

Similarly to (I.13), the bias-variance decomposition of the MLMC error reads as

E
[(

EML [fL]− E [f ]
)2
]

=
(
E [fL − f ]

)2

︸ ︷︷ ︸
I:=Discretization bias

+E
[((

EML − E
)

[fL]
)2
]

︸ ︷︷ ︸
II:=Sampling variance

= ε2I + ε2II = ε2.

Thus, the discretization bias is the same as for the MC estimator. Together with (I.18), this

gives the following condition for the finest level in the discretization hierarchy

∣∣∣E [fL − f ]
∣∣∣ ≤ c · hαL = εI → L ≤ c+ logq

(
h0ε
−1/α
I

)
, (I.21)

where c is the generic constant and α is the weak convergence order of the numerical method.

The variance of the MLMC estimator in (I.20) follows from the formula for the variance

of the sum of independent Monte Carlo estimators

Var [EML] =
L∑
l=0

Var [∆l]

Ml

= ε2II .

Given the desired tolerance εII , the above condition can be satisfied by the taking
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Ml =
Var [∆l]

alε2II
and

L∑
l=0

al = 1,

where the coefficients al are the weights assigning certain part of the sampling error to each

level.

Let Vl = Var [∆l] and denote by Cl the cost of generating the single realization of ∆l.

Consider the cost function of the MLMC method

CML =
L∑
l=0

MlCl =
L∑
l=0

VlCl
alε2II

.

By treating al as continuous variables, this cost can be minimized by using the method

of Lagrange multipliers with respect to the constraint

L∑
l=0

al = 1.

In this case, the Lagrangian function has the form

Λ(a0, ..., aL, λ) =
L∑
l=0

VlCl
alε2II

+ λ

(
L∑
l=0

al − 1

)

and the minimization problem has the solution

al =
(ClVl)

1/2

L∑
k=0

(CkVk)
1/2

.

Thus, the optimal number of samples at each level is given by

Ml = ε−2
II

(
Vl
Cl

)1/2 L∑
k=0

(CkVk)
1/2 (I.22)

and the cost of the MLMC estimator takes the form
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CML = ε−2
II

(
L∑
l=0

(ClVl)
1/2

)2

. (I.23)

To avoid the proliferation of constants, we will write a . b for two positive values a and

b if a/b is uniformly bounded. We will also write a ' b if a . b and b . a.

The following theorem gives the asymptotical complexity of the multilevel Monte Carlo

method.

Theorem I.3.2 ([Gil08a]). If there exist independent estimators EMC [∆l] based on Ml

Monte Carlo samples, each with expected cost Cl and variance Vl, and positive constants α,

β, γ such that min(β, γ) ≤ 2α and

1.
∣∣∣E [fl(y)− f

(
u(x, y

)] ∣∣∣ . hαl ,

2. Vl . hβl ,

3. Cl . h−γl ,

then for any ε < e−1 there are values L and Ml for which the multilevel estimator (I.20) has

a mean-square-error with bound

E
[(

EML [fL(y)]− E
[
f
(
u(x, y)

)] )2
]
< ε2

with a computational complexity CML with bound

CML .


ε−2 if γ − β < 0,

ε−2
∣∣ ln ε∣∣2 if γ − β = 0,

ε−2− γ−β
α if γ − β > 0.

Proof. Let γ, β and q be some positive real constants. Define the function

θ(γ, β) =
L∑
l=0

q
γ−β
2
l, (I.24)
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where L is the number of levels as in (I.21). Then

θ(γ, β) .


1 if γ − β < 0,∣∣ ln ε∣∣ if γ − β = 0,

ε−
γ−β
2α if γ − β > 0.

To show this, consider 3 cases.

Case 1: γ < β.

L∑
l=0

q
γ−β
2
l =

1− q γ−β2 (L+1)

1− q γ−β2
≤ 1

1− q γ−β2
= O(1).

Case 2: γ = β.

L∑
l=0

q
γ−β
2
l = L+ 1 ≤ c+ logq

(
h0ε
−1/α

)
= O(ln ε−1).

Case 3: γ > β. Using the inequality in (I.21), we obtain

L∑
l=0

q
γ−β
2
l =

q
γ−β
2

(L+1) − 1

q
γ−β
2 − 1

=
q
γ−β
2
L − q− γ−β2

1− q− γ−β2

≤ q
γ−β
2
L

1− q− γ−β2
≤ c(qh0)

γ−β
2

1− q− γ−β2
ε−

γ−β
2α = O(ε−

γ−β
2α ).

Now consider the cost of the MLMC method (I.23). Define q as in (I.18), then

CML =
L∑
l=0

⌈
Ml

⌉
Cl ≤

L∑
l=0

Cl + ε−2
II

(
L∑
l=0

(ClV l)
1/2

)2

. h−γ0

L∑
l=0

qγl + hβ−γ0 ε−2
II

(
L∑
l=0

q
γ−β
2
l

)2

.
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For some positive constant c, we have from (I.24) that

L∑
l=0

pγl ≤ cε−
γ
α ≤ cε−2

since we assumed α ≥ 1
2

min(γ, β).

If ε ≤ e−1 then ln ε−1 ≥ 1 and the result follows from (I.24).

I.3.4. Applications of the multilevel Monte Carlo method

It is obvious that the multilevel approach results in the significant reduction of the

computational complexity when compared to the cost of the classical Monte Carlo integration

in (I.14). For example, in his original work [Gil08a], Giles applied the method to SDEs

with Brownian motion forcing and showed that, for Lipschitz continuous functionals, the

Euler-Maruyama approximation gives the parameter values α = β = γ = 1 and hence the

O
(
ε−2| ln ε|2

)
complexity of the estimator which is a large improvement over the O

(
ε−3
)

complexity in (I.14). It was also shown in [Gil08b] that the strong convergence order 1

of the Milstein scheme is the highest needed for the MLMC method to attain the optimal

O(ε−2) asymptotical complexity when applied to SDEs with scalar and diagonal noise terms.

Indeed, by the Lipschitz continuity of f
(
u(x, y)

)
in (I.10), one gets

Vl = E
[∣∣fl − fl−1

∣∣2]− (E [fl − fl−1]
)2

(I.25)

= c2E
[
‖ul − ul−1‖2

W (D)

]
+O

(
h2α
l

)
= O

(
hβl
)

+O
(
h2α
l

)
,

for which β/2 is the order of strong convergence of the method. For the Milstein scheme,

one still has α = γ = 1 but now β = 2 and hence faster decay of the variance Vl.

Application of the multilevel approach to problems with non-globally Lipschitz and

discontinuous functionals is more challenging and requires the non-standard strong conver-
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gence analysis of the approximation scheme. This issue was addressed in [Avi09, GHM09]

where it was shown that the multi-level Monte Carlo method can be rigorously justified for

a broad class of non-globally Lipschitz functions of bounded variation at the cost of slight

degradation in the order of convergence. Additionally, Altmayer et al. in [AN15] studied

quadratures of discontinuous payoffs in a multidimensional Heston model of mathematical

finance. They established the specially designed smoothing technique based on Malliavin

integration by parts formula and proved that it preserves the computational cost of order

ε−2
∣∣ log ε

∣∣ for their multilevel estimator. The issue of non-smooth functionals can be also

treated by applying different approximations on the coarse and fine levels such that

EML [fL(y)] =
L∑
l=0

M−1
l

Ml∑
ml=1

(
f fl (yml)− f cl−1(yml)

)
and E

[
f fl
]

= E [f cl ] .

Some of the methods which exploit this approach are based on the ideas of conditional ex-

pectation, splitting and the change of measure which are discussed in [Gil15] and references

therein.

Lévy-driven SDEs can be also treated in the multilevel fashion. Jump-diffusion equa-

tions with state-independent finite intensities of jumps represent the simplest variant of

Lévy models. For regular Itô schemes, the analysis and implementation of the multilevel

discretization of such systems is identical to the pure diffusion case. Alternatively, the

jump-adapted versions of the Euler-Maruyama and Milstein schemes were analyzed in

[ABB11] and [XG12] respectively. In this case, the slight modification of the classical

MLMC method had to be performed in order to account for the nonuniform jump-adapted

grids. This results in the extra constant multiple term in the cost of the MLMC estimator in

Theorem I.3.2 but does not change its asymptotic complexity.

A very general class of Lévy-driven SDEs was also considered in [GX14, DH11, Der11,

Mar10]. Giles et al. in [GX14] adapted MLMC to path-dependent functionals of infinite-

activity pure jump exponential Lévy models and showed that the complexity of estimator
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is the same as that in Theorem I.3.2. Dereich et al. in [DH11] studied functionals of Lévy

processes which are Lipschitz with respect to supremum norm and obtained anO
(
ε(6b)/(4−b)

)
upper bound on the worst case computational complexity. The parameter b ∈ [0, 2] in their

estimate denotes the Blumental–Getoor index which measures the frequency of small jumps,

where a large index corresponds to a process which has small jumps at high frequencies.

They showed that for small values of b, the complexity of the MLMC estimator is the same

as for diffusion SDEs but it decreases dramatically for larger Blumental–Getoot indices. As

a remedy for such undesirable behavior, they proposed a model with Gaussian correction of

smaller jumps by approximating them by a normal distribution [Der11]. A similar idea was

also proposed in [Mar10] where all the jumps with absolute value smaller than the certain

threshold where cut away and the variance was recovered by changing the Brownian motion

part of the process.

The proper coupling of the coarse and fine paths is one of the key points in the con-

struction of the MLMC estimator as it controls the decay rate β of the level variances Vl. The

coupling of paths in the original formulation of the algorithm for Itô SDEs is easily achieved

by using the same path of the driving Brownian motion on different levels. The variance

decay follows then from the strong convergence of the approximation scheme as is apparent

from (I.25). In jump-diffusion models with state-independent finite jump intensities, the fine

and coarse paths share the same jump times which also makes their coupling a trivial task.

The case of state-dependent intensities requires a special treatment since approximations at

different levels may jump at different times which in turn can lead to increase in the variance

of the multilevel corrections. The thinning algorithm provides one of the possible solutions

to this problem. It is based on the construction of a Poisson process with a constant rate

which is an upper bound of the state-dependent rate. This gives a set of candidate jump times,

and these are then selected as true jump times with certain probabilities. The appropriate

change of measure is additionally used to ensure that acceptance probability is the same for
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coarse and fine paths [XG12]. A different approach was proposed in [AH12, AHS14] for

the continuous time Markov chain models. The two stochastic processes are constructed in

a way which makes them jump together the vast majority of times. The auxiliary process is

then introduced to jump the extra times of either of the processes. Additionally, the coupling

of stochastically adaptive time-stepping schemes was also discussed in [GLW16, HvSST13]

while the coupling of weak schemes was considered in [BN14].

The multilevel Monte Carlo method can be also generalized to stochastic and random

partial differential equations. Furthermore, the computational savings of the multilevel

discretization will be even greater than for SDEs due to the rapid growth of the cost of

computing the level corrections in high spatial dimensions. In most cases, the implemen-

tation of the MLMC algorithm for SPDEs remains trivial and the major theoretical efforts

are concentrated on the analysis of the variance of the multilevel corrections. The first

research in this area was devoted to the study of elliptic PDEs with random coefficeints

[BSZ11, CGST11]. Since then there have been published numerous papers for equations of

various types including elliptic, parabolic, hyperbolic and mixed systems.

One of the recent extensions of the standard MLMC algorithm is the multi-index Monte

Carlo method [HANT16]. It generalizes the idea of nested levels to multidimensional setting

by allowing the originally scalar levels to be defined in multiple directions. A motivation for

such generalization is given, for instance, by approximation of SPDEs where discretizations

in different spatio-temporal dimensions should be indexed independently. The multi-index

notation provides an additional flexibility in construction of the telescoping sums of nested

approximations and can be viewed as a combination of sparse grids and Monte Carlo

sampling. Hence, similarly to sparse-grids, it offers the possibility of dimension-independent

complexity for SPDEs and other high-dimensional stochastic applications [HANT16, Gil15].

This can give a substantial improvement over the standard MLMC for which the rate γ of

increase in computational cost Cl increases at least linearly as a function of dimension.
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I.3.5. Improving the multilevel Monte Carlo method

Theorem I.3.2 gives the asymptotical ε-complexity of the estimator under very general

assumptions on the growth of costs Cl and the decay of variances Vl in (I.23). The constant

of proportionality, however, is more problem and solver dependent. In this regard, it is

possible to consider at least three types of the acceleration techniques for the multilevel

Monte Carlo method. The brief discussion of each technique is given below.

The first and the most obvious approach is to perform the optimization of the parame-

ters in the discretization hierarchy of the MLMC estimator. Originally, the method was

formulated for geometric sequences of uniform grids and the equal splitting between the

discretization bias and the variance components of the total mean-square error [Gil08a]. At

the same time it was observed numerically that the choice of the mesh refinement ratio can

have a serious impact on the performance of the algorithm. The rigorous theoretical study

of this problem was accomplished later in [HANvST16] under certain assumptions on the

asymptotical models for the weak and strong convergence and the computational cost of

pathwise solvers. The optimal sequences of discretization grids and the optimal tolerance

splitting between the bias and the statistical error contributions were explicitly determined in

terms of the calibrated parameters of the assumed asymptotical models for both geometric

and non-geometric hierarchies. However, the authors also mentioned several issues with

practical implementation of this approach due to possible constraints on the mesh sizes

arising from additional stability requirements or inaccuracy of the asymptotical models at

coarse levels. We will propose the remedy for these issues later in Chapter II.

The problem of parameter calibration can be rather challenging by itself due to the

well-known issue of large curtosis of standard Monte Carlo estimators at high discretization

levels [Gil15]. As a result, the number of samples required for the accurate estimation

of parameters can be much larger than their optimal values in (I.22). One of the possible

solutions to this problem was studied in [CHAN+15]. The basic idea of the proposed



43

continuation multilevel Monte Carlo algorithm was to perform the Bayesian estimation of

model parameters at deep levels using the available data from coarser levels for the a-priory

given discretization hierarchies and the parametric models of the estimated quantities. The

provided numerical results indicated significant computational savings for both random

and stochastic differential equations. A different approach was considered in [MTV16]

in application to continuous time Markov chain models. The authors studied the hybrid

Chernoff tau-leap algorithm with automatic switching between approximate and exact

path generation. The purpose of the proposed Chernoff-type bound on the time step of

the approximate tau-leaping method was to keep the solution in the positive lattice with

prescribed exit probability. The hybrid nature of the path simulation preserved positivity of

the solution but complicated extrapolation of the estimated quantities from coarse to fine

levels. This issue was resolved by using the dual-weighted residual estimation technique

which proved to be much more efficient than standard sampling estimators.

A different approach for the acceleration of the MLMC method is based on statistical

techniques discussed in section I.3.2 in the context of improving Monte Carlo integration.

This includes multilevel variants of the Markov chain Monte Carlo (MCMC) sampling, the

quasi-Monte Carlo integration and the methods for additional variance reduction. Such

generalizations, however, usually cannot be applied directly and require appropriate modifi-

cations of the standard techniques to account for the multilevel structure of the estimator. In

practice, this is often done by introducing two discretization hierarchies: one for physical

and one for parametric approximations. The variety of the obtained multifidelity models is

then combined appropriately to reduce the overall computational burden of the estimator

[PWG16, VCNGP15].

This idea is utilized, for instance, in the multilevel variant of the Markov chain Monte

Carlo algorithm when evaluation of the likelihood in (I.15) is based upon the solution of

the differential equation. In such case, the posterior distribution has to be level dependent
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since otherwise the cost of generating the samples at all levels would be dominated by

the cost of evaluating the likelihood at the highest level leading to no actual cost gain.

Therefore, the construction of the corresponding Markov chains at different levels must be

performed judiciously so that sufficient decay of the level corrections is guaranteed without

introducing additional bias to the estimator. One of possible solutions to this problem was

proposed in [DKST15] for the elliptic differential equation of subsurface flow. In order to

construct the unbiased estimator with a pair of correlated Markov chains at each level, the

authors considered the sequence of approximations with increasing physical and parametric

dimensionality. The coarser of the two chains at each level was constructed using the

standard Metropolis-Hastings algorithm and the result was then reused for the candidate

step of the finer chain with the extra random modes being generated independently. With

appropriately defined two-level acceptance/rejection strategy, such construction guarantees

that all samples from the same discretization level across the multilevel hierarchy are

generated from the same posterior distribution leading to no additional bias. Several variants

of this approach were also studied in [EJMT15] and [HSS13] in the context of multiscale

approximation of PDEs and Bayesian inference respectively. It was shown that, for the

considered problems in d physical dimensions, the ε-complexity of the multilevel MCMC

algorithm is O
(
ε−d
)

which gives a substantial improvement over the O
(
ε−d−2

)
complexity

of the standard single-level algorithm. An alternative to the Markov chain Monte Carlo

sampling, the sequential Monte Carlo method, has been additionaly considered in [BJL+16]

and the results also indicated the computational superiority of the multilevel approach.

Similarly to the multilevel MCMC algorithm, the level-dependent dimension truncation

strategy was applied in the multilevel quasi-Monte Carlo method for a class of elliptic PDEs

with random coefficients [KSS15]. It was illustrated that by the appropriate choice of the

functional basis for the representation of the input random field, it is possible to achieve the

optimal complexity of the multilevel estimator which is essentially of the order of the single
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PDE solve at the finest discretization level. It is worth noting that the standard MLMC

method cannot have this property due to the slow convergence of MC integration.

Multifidelity models have been also considered in the context of variance reduction. For

example, computationally cheap low-fidelity approximations of the quantities of interest

can be used as a control variate for the estimation of expectations of the level corrections.

This approach does not improve the order of complexity of the estimator but the results

in [FDKI16, GEI15, NT15] indicate that the overall cost of the algorithm is nevertheless

superior to both MLMC and MC methods.

A conceptually different antithetic technique was proposed in [GS14, Ric13]. It is based

on the idea of using different estimators for the fine and coarse levels as follows

EML [fL(y)] =
L∑
l=0

EMC

[
f fl (yml)− f cl−1(yml)

]

provided E
[
f fl
]

= E [f cl ]. This definition gives the flexibility to construct approximations

for which the values of the level corrections f fl − f cl−1 are much smaller than the original

difference fl − fl−1. Moreover, it is even possible to improve the total order of complexity

of the estimator when the choice of approximations leads to the increased rate of decay β of

the variances Vl in Theorem I.3.2. In [GS14], this was achieved by setting f cl−1 = fl−1 and

f fl = (fl+f
a
l )/2, where fal is a suitably constructed antithetic twin of the fine approximation

such that E [fal ] = E [fl] and fl−f cl−1 = −(fal −f cl−1). Therefore, f fl = (fl+fal )/2 ≈ f cl−1

and f fl −f cl−1 is a very small number. It was shown that, for a class of smooth functionals, the

described construction can result in the O
(
ε−2
)

complexity of the estimator even with low-

order pathwise integrators. As a variant of such integrator, the authors proposed to use the

truncated Milstein scheme obtained by skipping non-diagonal multiple stochastic integrals.

It was illustrated that this choice leads to the significant reduction in both asymptotical and

finite-tolerance complexities since, as was mentioned in section I.1.3, the high computational

cost of generating stochastic integrals is the main limiting factor for practical application of
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higher order schemes.

Finally, as a sampling technique, the MLMC method requires one to solve a large

number of deterministic problems. While the asymptotical complexity of the algorithm is

controlled solely by the rates of growth and decay of costs Cl and variances Vl respectively

( Theorem I.3.2 ), the actual cost of the estimator is more problem and solver dependent.

The efficiency of the method is hence strongly influenced by the complexities of the corre-

sponding pathwise integrators. It is the task of this dissertation to study several problems for

which the significant reduction in the computational complexity of the MLMC estimator

can be achieved by the appropriate problem and level dependent choice of deterministic

solvers. Three particular problems are considered: integration of stiff SDEs, estimation

of initial guesses for iterative linear solvers and boundary values problems in randomly

perturbed domains. The detailed description of the proposed techniques will be given later

in Chapters II-IV while the remainder of this section provides a brief overview of some of

the other approaches available in the literature.

One of the difficulties in the practical implementation of the multilevel Monte Carlo

method is the selection of the coarsest level due to possible divergence of numerical solutions

evaluated at coarse grids. For example, the divergence of the multilevel Monte Carlo Euler

method for non-linear stochastic differential equations with superlinear and one-sided

Lipschitz continuous drift coefficient was proven in [HJK13]. As a remedy for this problem,

the authors proposed to use the tamed Euler scheme which was mentioned earlier in section

I.1.4. Alternatively, the truncated Euler-Maruyama method was discussed in [GLMZ16] as

another way to resolve this issue. Application of implicit schemes, as discussed in section

I.1.4, is also classical in this context.

The issue of stiffness is another serious limiting factor for the integration of differential

equations at coarse discretization levels. It often stems from the presence of multiple

scales in the systems of interest leading to possible instability and thus divergence of
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numerical approximations. It is a well known fact that application of explicit schemes for

stable integration of stiff dynamics is possible only on time grids which explicitly resolve

the fastest scale of the system. This constraint can significantly decrease the number of

admissible discretization levels resulting in substantial reduction of the efficiency of the

multilevel estimator. There have been proposed several stabilization techniques which allow

to exploit all the levels of the multilevel discretization using both implicit [BHMT16] and

explicit integrators [AB13] at coarse levels. In Chapter II, we will elaborate on this idea and

propose a similar but different approach as a solution to this problem.

The choice of suitable patwhise integrators has been also discussed previously in the

literature. It was shown in [DR15] that it is possible to reduce the computational cost of the

multilevel estimator by a constant factor (p/p′)2 when the cheap approximation with low

weak order p′ on levels l = 0, 1, ..., L− 1 is combined with a more expensive approximation

of higher order p on the finest level L. The provided analysis required that the growth of costs

is the same as the decay of variances ( β = γ in Theorem I.3.2 ) for both approximations.

This, however, is not a severe restriction since simulation of multiple stochastic integrals

is not necessary for the construction of higher weak order schemes. Possibility of using

weak convergence properties of the numerical schemes for the construction of efficient

MLMC estimators was also studied in [MSS15]. The authors introduced the novel modified

equation analysis as an alternative to strong-approximation theory which is classically used

to derive the condition (iii) in Theorem I.3.2. Their result is completely based on the weak

approximation theory and the strong approximation is only needed to relate the original and

modified equations and not the numerical methods. The impact of choosing the particular

time-stepping method on the efficiency of the estimator was also discussed in the paper. It

was mentioned that integrators based on splitting methods can reduce the total cost of the

MLMC method by an order of magnitude when compared to the standard Euler-Maruyama

scheme as patwise integrator for Langevin equation. Similar result was obtained later in



48

[KMS+16] in application to atmospheric dispersion modelling. In Chapters III-IV, we will

follow this path and consider acceleration of the multilevel Monte Carlo method by selection

of suitable integrators for stationary PDEs subjected to random input data and topological

uncertainties.
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CHAPTER II

STIFF STOCHASTIC CHEMICAL KINETICS

Stochastic differential equations (SDEs) provide a convenient mathematical model for the

description of time-dependent physical phenomena at the mesoscopic level [Kot08, Gil07].

Physical systems at this level are characterized by the presence of a vast range of spatial

and temporal scales. Additionally, it is often the case that dynamical behavior of the

most practical interest happens on the slowest of scales. Extraction of the effective, lower

dimensional, dynamics can be achieved, for instance, by applying the model reduction

techniques to eliminate the fast variables through the process of averaging [PS08, GKS04,

WLVE05]. Within this framework, the reduced system is obtained by averaging the slow

dynamics over the invariant ergodic measure generated by the fast variables. In practice, such

ergodic measure is rarely obtainable in a closed form but can be estimated empirically as an

ensemble average of solutions from an auxiliary micro solver [VE03, GK08, GKK06, SV05].

A similar approach is given by the quasi-steady state or partial equilibrium approximations

which are based on the assumption that the fast reactions rapidly reach equilibrium state

with a relaxation time which is much smaller than the time scale of slow reactions [Gou05,

CGP05a, RA03, MHR07, HN14]. These ideas were implemented in the so-called slow-scale

and nested algorithms for the simulation of stochastic chemical kinetics [CGP05c, CGP05b,

CP08, ELVE07, ELVE05].

Model reduction techniques have proven their efficiency for a large class of problems.

However, it is not clear if they can be extended to the multilevel Monte Carlo setting. In

this case, one still has to rely on conventional solvers. As was mentioned previously in

section I.3.5, the choice of these solvers for stiff systems has to be performed carefully

due to their possible instability at low levels of the multilevel hierarchy. For stiff ODEs,

it is a well known result that implicit integrators can generate stable solutions with time

steps of the order of the slow scale of the system while most of explicit methods must
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resolve the fastest scale to be stable [HW96]. Efficiency of implicit solvers stems from

their damping effect which prevents the rapid transients to escape from the stable slow

solution manifold. Motivated by these results, several variants of implicit and semi-implicit

stochastic integrators with enhanced stability properties have been proposed in the literature

[APR09, Sch12, WGW12, TB01, HHR16, RPCG03, HK06, RKVZ15]. However, contrary

to deterministic case, random perturbations represent an important geometrical feature of

stochastic dynamics and overdamping of these fluctuations is not desirable. This problem

was raised in [RPCG03, CPRG04] in application to chemical kinetics driven by a discrete

stochastic process. For a carefully chosen test equation, it was shown that the variance of the

numerical solution calculated with the drift implicit Euler method is underestimated. As was

later explained in [LAE08], this happens due to the inability of implicit methods to resolve

the invariant quasi-equilibrium distribution of fast variables which plays the role of a slow

manifold for SDEs. Moreover, it will be shown in section II.2 that the damping property of

implicit integrators has a negative impact on the MLMC method as well by reducing the

number of allowed coarse levels even when the solver is stable.

It is clear from the above discussion that the requirements for the construction of

efficient stiff stochastic solvers are twofold since one has to treat destabilizing factors

without destroying geometry of the true dynamics. As an alternative to the model reduction

techniques, several approaches which do not require explicit separation of scales have been

proposed in the literature [CPRG04, RPCG03, CR11, LL12]. It was shown in [CPRG04]

that the trapezoidal tau-leaping method is able to recover the stationary variance of the true

solution for the carefully chosen test system. However, as was pointed out in [LAE08],

this feature is the consequence of the linearity of the test problem. Moreover, the method

is only A-stable and has impractically large relaxation time to the stationary state. An

interlacing strategy proposed in [RPCG03, CR11] does not have this issue. It allows to

recover the variance of stochastic systems by interlacing implicit integrators with short bursts
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of explicit methods which restore the overly damped stochastic fluctuations. In section II.2,

we will adopt this idea to the multilevel Monte Carlo setting by considering a composite

implicit-explicit integrator which is cheap, stable and is able to resolve the variance of the

true solution at low levels with a reasonable accuracy.

As an implicit part of our composite integrator, we consider the family of split-step

methods. The splitting of the original differential system into several parts provides the

flexibility to choose a combination of subsystem solvers with the most desirable set of

properties. The classical application of this approach is in geometric integration of dynamical

systems in both deterministic [MQ02] and stochastic [AVZ15] settings. Another application

is the integration of stiff systems where the split-step methods appeared as an attempt to

construct stochastically implicit integrators. The first method of this type was introduced by

Higham in [HMS02] as a modification of the classical Euler-Maruyama method. Further

developments include results on the split-step Milstein method [WL09, WL10, HH12,

VK15] for SDEs driven by Wiener noise and results for jump-diffusion systems [HK05,

HK06, AHL10]. In this chapter, we propose the novel two-stage splitting technique which

inherits all advantages of implicit integrators without destroying geometry of the true

stochastic dynamics. It will be shown that, as a part of the proposed composite integrator, it

allows to utilize more levels of the multilevel hierarchy leading to potential computational

savings of the MLMC estimator.

II.1. Problem setting

Consider a thermally equilibrated chemical system which consists of N well-stirred

molecular species {Si, i = 1, ..., N} interacting through R reactions channels {Rr, r =

1, ..., R}

R1 : ν−11S1 + ν−21S2 + ...+ ν−N1SN
c1−→ ν+

11S1 + ν+
21S2 + ...+ ν+

N1SN ,
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Figure 3: Realization of the Markov chain (II.1) describing evolution of the chemical system.

R2 : ν−12S1 + ν−22S2 + ...+ ν−N2SN
c2−→ ν+

12S1 + ν+
22S2 + ...+ ν+

N2SN ,

...

RR : ν−1RS1 + ν−2RS2 + ...+ ν−NRSN
cR−→ ν+

1RS1 + ν+
2RS2 + ...+ ν+

NRSN .

At any time instance this system can be in exactly one of the statesX(t) = (X1, X2, ..., XN)T ,

with Xi denoting the number of molecules of type Si. Under a reasonable assumptions that

collisions between molecules occur in a random manner, evolution of the state of the system

can be modeled as a stochastic jump process [Gil77, AK15]

X1(t)

X2(t)

...

XN(t)


=



X1(0)

X2(0)

...

XN(0)


+



ν11 ν12 . . . ν1R

ν21 ν22 . . . ν2R

... . . . ...

νN1 νN2 . . . νNR





N1(t)

N2(t)

...

NR(t)


, (II.1)

where each stoichiometric column vector νr = [ν+
1r−ν−1r, ..., ν+

Nr−ν
−
Nr]

T denotes the change

in molecular populations from the reaction channel Rr, and markovian processes Nr(t)
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count the number of corresponding reactions in the time interval [0, t].

Since the counting processes Nr(t) are markovian, evolution of the state of the system

also represents a continuous time Markov chain with transition probabilities

P [X(t+ dt)−X(t) = νr|Ft] = ar(X(t))dt+ o(dt), r = 1, .., R

and with associated (chemical) master equation (CME)

∂P [X(t) = x]

∂t
= −

R∑
r=1

ar(x)P [X(t) = x] +
R∑
r=1

ar(x− νr)P [X(t) = x− νr] , (II.2)

P [X(0) = x] = px. (II.3)

It describes the change in time of the probability mass function of every element x from the

state space of the system. According to the stochastic law of mass action, propensities ar(x),

which define transition intensities of the Markov chain, are proportional to reaction-rate

constants cr and the number of distinct combinations of molecules of source species in

corresponding reactions

ar(x) = cr

N∏
i=1

(
xi
ν−ri

)
= cr

N∏
i=1

xi!

(xi − ν−ri)!
, r = 1, .., R.

Although the master equation provides complete statistical description of the system

at any time instance, it admits analytical solutions only in very special simple cases and

rarely can be solved numerically. On the other hand, approximate solutions of the CME can

be extracted directly from (II.1) by considering ensembles of individual state paths. This

is a relatively simple task after the counting processes Nr(t) are reformulated in terms of

the unit rate Poisson processes P(t) by means of the random time change formula [AK15,

Theorem 1.10]. As a result, equation (II.1) converts to the following stochastic integral
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equation

X(t) = X(0) +
R∑
r=1

νrP
(∫ t

0

ar(X(s))ds

)
. (II.4)

The above equation has equivalent differential form via Poisson random measure µ(dt× da)

generated by compound Poisson process {ti, ai} with jump times ti and labels ai

dX(t) =
R∑
r=1

νr

∫ A(R,t)

0

1{a∈(A(r−1,t);A(r,t)]}µ(dt× da). (II.5)

The state dependent functions A(r, t) =
∑r

i=1 ai(X(t)), partitioning the label set, are

responsible for the choice of a particular reaction similarly to the acceptance-rejection

sampling strategy as is shown in Figure 4A. Taking into account that holding times of the

Poisson jump process are exponentially distributed random variables, the state paths of the

system can be generated with the stochastic simulation algorithm (SSA) [Gil77] as follows

X(tn + τ) = X(tn) + νr,

where the holding time and the index of the next reaction are calculated as

τ = − 1

A(R, tn)
ln r1, (II.6)

r = min {r : A(r, tn) > r2A(R, tn)} . (II.7)

In the above formulas, r1 and r2 are two random numbers drawn from the standard uniform

distribution. There also exist several modifications of this algorithm such as the first reaction

method and the next reaction method [Gil77, GB00].
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(A) Cumulative propensities (shaded regions) and realization of compound Poisson process (points).

(B) Sample propensities of the compound Poisson process in Fig. 4A.

(C) Sample paths of the compound Poisson process in Fig. 4A.

Figure 4: Realization of the compound Poisson process for the set of reactions in (II.8).
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II.1.1. Stochastic stiffness

The time scales of a chemical system are defined by the relative magnitudes of its

propensity functions. When probabilities, or equivalently propensities, of some reactions

are relatively large, the SSA inevitably spends most of the time tracking the impact of such

reactions.

It is known that the long time behavior of a chemical network which admits a complex-

balanced equilibrium is uniquely determined by its stationary distribution [AK15, The-

orem 3.7]. In systems with severe separation of time scales, existence of the stationary

distribution can be assumed when the relaxation time of species or their combinations

involved in fast reactions is much smaller than the time scale of slower reactions. It is

obvious that sampling of intermediate fast species from their quasi stationary distributions

becomes redundant on time intervals which are larger than appropriate relaxation times.

This explains inefficiency of SSA in application to such systems.

The situation described above is clearly seen in Figure 4 which illustrates dynamics of

the following reaction network [ELVE05]

S1

104



104

S2

102



102

S3

105



105

S4. (II.8)

This system has three pairs of reversible reactions evolving on three different time scales.

Indeed, one can observe from Figure 4 that each pair of reactions relaxes to a certain stable

state in time τrelax which has the order of the corresponding time scale: τrelax ' 10−5 for

the fastest third pair, τrelax ' 10−4 for the first pair and τrelax ' 10−2 for the slowest second

pair of reactions. It is worth noting that while all the species are involved in fast reactions

and are in fact fast variables, the molecular complexes S1 + S2 and S3 + S4 evolve on the

slow time scale of the second reaction. It is clear that the SSA is not able to recognize and

take advantage of this feature.
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II.1.2. Approximate path simulation

Stochastic simulation algorithm produces exact solutions to the equations (II.4)-(II.5)

because it updates the state of the system every time when any reaction fires. This explains

its inefficiency in application to stiff systems but it can be rather slow even for reduced order

models in situations when extremely high level of accuracy is not required. Approximate

tau-leaping methods are more suitable in this case since they allow to use time steps which

are larger then the time of a single reaction.

Consider the variant of the integral equation (II.4) over the time interval t ∈ [tn; tn+1]

X(tn+1) = X(tn) +
R∑
r=1

νrP
(∫ tn+1

tn

ar(X(s))ds

)
(II.9)

= X(tn) +
R∑
r=1

νr

∫ tn+1

tn

ar(X(s))ds+
R∑
r=1

νrP
(∫ tn+1

tn

ar(X(s))ds

)

with the driving stochastic processes which are martingales

P
(∫ tn+1

tn

ar(X(s))ds

)
= P

(∫ tn+1

tn

ar(X(s))ds

)
−
∫ tn+1

tn

ar(X(s))ds.

The major difficulty in construction of accurate numerical solutions to the above equation

is associated with approximation of the Poisson processes. First of all, calculation of the

corresponding intensities requires evaluation of the state dependent integrals which severely

limits the range of practically implementable schemes. It utilizes the straightforward explicit

approximation of the integrals

P
(∫ tn+1

tn

ar(X(s))ds

)
≈ P

(
ar(X(tn))τ

)
, τ = tn+1 − tn.

This approach produces reasonably accurate results for slow reactions with propensities

which are not expected to change values dramatically inside the interval of integration. The
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error analysis of tau-leaping schemes can be found, for instance, in [Li07, AGK11, RPCG05].

On the other side, by leaping over the large number of fast reactions one can destroy stability

of the numerical solution even when exact values of propensities are given. The reason is that

large intensities yield potentially large values of the generated Poisson increments. Statistical

independence of these increments means that different reaction channels separately update

populations of the common fast species leading to unstable solutions.

The issue of numerical stability is induced by the stiffness of reaction networks with

largely separated time scales. In deterministic setting, it is efficiently resolved by incorpora-

ting implicitness into numerical schemes. Construction of implicit integrators for stochastic

systems is more intricate. However, taking advantage of the flexibility in approximation of

deterministic integrals, we can rewrite the equation (II.9) in the form

X(tn+1) = X(tn) +
R∑
r=1

νr

(∫ tn+1−θτ

tn

ar(X(s))ds+

∫ tn+1

tn+1−θτ
ar(X(s))ds

)
(II.10)

+
R∑
r=1

νrP
(∫ tn+1

tn

ar(X(s))ds

)
, θ ∈ [0; 1]

which gives the well-known family of drift implicit theta methods

Yn+1 = Yn +
R∑
r=1

νr

(
(1− θ)ar(Yn) + θar(Yn+1)

)
τ +

R∑
r=1

νrP
(
ar(Yn)τ

)
(II.11)

= Yn + θ

R∑
r=1

νrar(Yn+1)τ +
R∑
r=1

νr

[
P
(
ar(Yn)τ

)
− θar(Yn)τ

]
.

The classical explicit [Gil01], implicit [RPCG03] and trapezoidal [CPRG04] tau-leaping

methods correspond to the parameter values θ = 0, θ = 1 and θ = 1
2

respectively

Explicit: Yn+1 = Yn +
R∑
r=1

νrP(ar(Yn)τ),

Implicit: Yn+1 = Yn +
R∑
r=1

νrar(Yn+1)τ +
R∑
r=1

νr

[
P
(
ar(Yn)τ

)
− ar(Yn)τ

]
,
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Trapezoidal: Yn+1 = Yn +
1

2

R∑
r=1

νrar(Yn+1)τ +
R∑
r=1

νr

[
P
(
ar(Yn)τ

)
− 1

2
ar(Yn)τ

]
.

Theta methods are implicit in their deterministic part but use explicit approximation of

driving stochastic processes. Split-step methods form another class of integrators which

allow to incorporate implicitness into stochastic part of the system as well. This is achieved

by treating deterministic and stochastic parts separately. The classical split-step method

starts with computing the deterministic predictor of the solution which is then used in

approximation of intensities of the driving Poisson processes. The numerical scheme

reads as

Ŷn = Yn +
R∑
r=1

νrar(Ŷn)τ, (II.12)

Ỹn = Ŷn +
R∑
r=1

νrP
(
ar(Ŷn)τ

)
= Yn +

R∑
r=1

νrP
(
ar(Ŷn)τ

)
.

It is seen that split-step scheme is very similar to the explicit tau-leaping approximation in a

way it treats stochastic integrals. Combined with enhanced stability properties, it makes this

scheme very useful and easily implementable. But this similarity with explicit methods also

has undesirable implications which will be explained in the next section.

In this chapter, we propose the modified two-stage split-step method which combines

ideas of the theta method (II.11) and the split-step method (II.12). The proposed scheme

has the form

Ŷn = Yn +

(
(1− η1)

R∑
r=1

νrar(Yn) + η1

R∑
r=1

νrar(Ŷn)

)
(1− θ)τ,

Ỹn = Ŷn +
R∑
r=1

νrP
(
ar(Ŷn)τ

)
, (II.13)

Yn+1 = Ỹn +

(
(1− η2)

R∑
r=1

νrar(Ỹn) + η2

R∑
r=1

νrar(Yn+1)

)
θτ,
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with parameters ν1, ν2, θ ∈ [0; 1]. When θ = 0, ν1 = 1 this scheme converts to the classical

split-step method while for the parameter values θ = 1, ν2 = 1 it gives the drift implicit

tau-leaping scheme.

We also consider the modified variant of the above scheme where the parameters

θr ∈ [0; 1] are chosen independently for every reaction channel

Ŷn = Yn +

(
(1− η1)

R∑
r=1

(1− θr)νrar(Yn) + η1

R∑
r=1

(1− θr)νrar(Ŷn)

)
τ,

Ỹn = Ŷn +
R∑
r=1

νrP
(
ar(Ŷn)τ

)
, (II.14)

Yn+1 = Ỹn +

(
(1− η2)

R∑
r=1

θrνrar(Ỹn) + η2

R∑
r=1

θrνrar(Yn+1)

)
τ.

It will be shown in the next section that, with the proper choice of the parameters θr, this

modified scheme shows very good results in application to chemical system with several

well-separated time scales.

II.1.3. Numerical stability

In this section, we perform comparative linear stability analysis of the theta tau-leaping

method (II.11) and the split-step scheme (II.13) and show superiority of the latter in applica-

tion to stiff chemical systems.

Stiff systems are characterized by the presence of multiple time scales with the fastest

scale being stable. In deterministic setting, this means existence of the attractive invariant

manifold which slaves the fast variables of the system. Efficient stiff integrators must

ensure that generated numerical solutions stay close to this invariant manifold. For instance,

implicit methods achieve this by damping fast components of the solution which try to push

the system out from its stable state.

In the context of stiff chemical systems, stability of the fastest scale means existence of
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the stationary distribution of the corresponding fast variables. By analogy with deterministic

systems, it would be very beneficial if one can skip over the stable fast states while capturing

their stochastic influence on slow species. Therefore, the ability to correctly resolve the

stationary distribution of fast species is an essential requirement in construction of stiff

stochastic integrators. The classical theta tau-leaping methods are not well suited for this

purpose.

In order to see this, consider the reversible isomerization reaction which serves as analog

of the deterministic Dahlquist’s test equation [CPRG04]

S1

c1


c2
S2. (II.15)

This reaction has linear propensities a1 = c1X1, a2 = c2X2 with stoichiometric vectors

ν1 = (−1, 1)T and ν2 = (1,−1)T . The stationary distribution of (II.15) is the binomial

distribution

P [X∗ = x] =
xT !

xT !(xT − x)!
qx(1− q)xT−x

with mean and variance

E [X∗] = qxT =
c2

c1 + c2

xT ,

Var [X∗] = q(1− q)xT =
c1c2

(c1 + c2)2
xT ,

where X∗ = X1(∞), q =
c2

c1 + c2

and xT denotes the fixed total number of molecules in

the system, i.e., xT = X1 +X2.

Let Yn denote the numerical approximation of X1(tn) and consider the theta method

(II.11) applied to the test system (II.15)

Yn+1 = Yn +
(
c2(xT − Yn+1)− c1Yn+1 − c2(xT − Yn) + c1Yn

)
θτ
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+ P
(
c2(xT − Yn)τ

)
− P

(
c1Ynτ

)
= Yn +

1

1 + (c1 + c2)θτ

[
P
(
c2(xT − Yn)τ

)
− P

(
c1Ynτ

)]
.

The mean and the variance of the solution obtained with the theta method can be easily

calculated as

E [Yn+1] = E [E [Yn+1|Yn]] = E
[
Yn +

c2(xT − Yn)τ − c1Ynτ

1 + (c1 + c2)θτ

]

=
1− (c1 + c2)(1− θ)τ

1 + (c1 + c2)θτ
E [Yn] +

c2xT τ

1 + (c1 + c2)θτ

and

Var [Yn+1] = Var [E [Yn+1|Yn]] + E [Var [Yn+1|Yn]]

= Var
[
Yn +

c2(xT − Yn)τ − c1Ynτ

1 + (c1 + c2)θτ

]
+ E

[
c1Ynτ + c2(xT − Yn)τ

(1 + (c1 + c2)θτ)2

]

=

(
1− (c1 + c2)(1− θ)τ

1 + (c1 + c2)θτ

)2

Var [Yn] +
(c1 − c2)τ

(1 + (c1 + c2)θτ)2
E [Yn]

+
c2xT τ

(1 + (c1 + c2)θτ)2
.

These recurrences have the solutions

E [Yn] = AnE [Y0] +
1− An

1− A
B,

Var [Yn] = A2nVar [Y0] +
C

A

1− An

1− A

(
E [Yn]− B

1− A

)
+

1− A2n

1− A2

(
BC

1− A
+D

)
,

where the coefficients A, B, C and D are given by

A =
1− (c1 + c2)(1− θ)τ

1 + (c1 + c2)θτ
, B =

c2xT τ

1 + (c1 + c2)θτ
,
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C =
(c1 − c2)τ

(1 + (c1 + c2)θτ)2
, D =

c2xT τ

(1 + (c1 + c2)θτ)2
.

The following condition ensures the global stability of the mean and the variance of the

numerical solution obtained with the theta method (II.11)

|A| =
∣∣∣∣1− (c1 + c2)(1− θ)τ

1 + (c1 + c2)θτ

∣∣∣∣ < 1. (II.16)

Assuming that |A| < 1 and letting n → ∞, we get the mean and the variance of the

stationary distribution generated by the theta method

E [Y∞] =
B

1− A
= E [X∗] , (II.17)

Var [Y∞] =
1

1− A2

(
BC

1− A
+D

)
=

2

2 + (c1 + c2)(2θ − 1)τ
Var [X∗] .

It is seen that, when the stability condition (II.16) is satisfied, theta method recovers the

stationary mean of the true solution for all values of the parameter θ. Moreover, the

trapezoidal method with θ = 1
2

is able to recover the stationary variance as well. However,

if θ < 1
2
, the theta method underdamps the variance while for θ > 1

2
, the stationary variance

is overdamped.

Table 1 shows propagation coefficients of the error and amplifiers of the stationary

variance of the scheme (II.11) for several values of parameter θ. Due to the linearity of

the test system (II.15), propagation of the error in the mean of the solution has the same

behavior as if the theta scheme was applied to the corresponding deterministic reaction rate

equation. For the same reason, explicit tau-leaping method with θ = 0 is only conditionally

stable for τ <
2

c1 + c2

. Trapezoidal and implicit tau-leaping schemes are unconditionally

stable for all values of the time step. But, by analogy with deterministic systems, trapezoidal

scheme is only A-stable since its propagation coefficient approaches −1 for increasing time

steps. This severely limits its application to stiff systems even though trapezoidal scheme
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Table 1: Propagation coefficients of the error and amplifiers of the stationary variance of the
theta method (II.11) applied to the test system (II.15). The parameter λ is set to λ = c1 + c2.

θ Propagation coefficients Variance amplifiers

θ
1− λ(1− θ)τ

1 + λθτ

2

2 + λ(2θ − 1)τ

0 1− λτ 2

2− λτ

1

2

2− λτ
2 + λτ

1

1
1

1 + λτ

2

2 + λτ

correctly resolves the stationary variance. The reason is that the A-stability implies that the

relaxation time of the mean value can be much larger then the time scale separation of the

system. On the other side, the implicit scheme is L-stable but it is also not suitable for stiff

systems since the stationary distribution becomes more atomic for larger time steps.

Now consider the split-step method (II.13) applied to the system (II.15)

Ŷn =
1− (1− η1)(c1 + c2)(1− θ)τ

1 + η1(c1 + c2)(1− θ)τ
Yn +

c2xT (1− θ)τ
1 + η1(c1 + c2)(1− θ)τ

,

Ỹn = (1 + τ(c1 + c2))Ŷn + P
(
c2(xT − Ŷn)τ

)
− P

(
c1Ŷnτ

)
− c2τxT ,

Yn+1 =
1− (1− η2)(c1 + c2)θτ

1 + η2(c1 + c2)θτ
Ỹn +

c2xT θτ

1 + η2(c1 + c2)θτ
.

Equations for the mean and the variance take the form

E [Yn+1] =

(
1− (1− η1)(c1 + c2)(1− θ)τ

1 + η1(c1 + c2)(1− θ)τ

)(
1− (1− η2)(c1 + c2)θτ

1 + η2(c1 + c2)θτ

)
E [Yn]
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+
1− (1− η1 − η2)(c1 + c2)θ(1− θ)τ(

1 + η1(c1 + c2)(1− θ)τ
)(

1 + η2(c1 + c2)θτ
)c2xT τ,

Var [Yn+1] =

(
1− (1− η1)(c1 + c2)(1− θ)τ

1 + η1(c1 + c2)(1− θ)τ

)2(
1− (1− η2)(c1 + c2)θτ

1 + η2(c1 + c2)θτ

)2

Var [Yn]

+

(
1− (1− η1)(c1 + c2)(1− θ)τ

1 + η1(c1 + c2)(1− θ)τ

)(
1− (1− η2)(c1 + c2)θτ

1 + η2(c1 + c2)θτ

)2

(c1 − c2)τE [Yn]

+

(
1− (1− η2)(c1 + c2)θτ

1 + η2(c1 + c2)θτ

)2(
1 +

(c1 − c2)(1− θ)τ
1 + η1(c1 + c2)(1− θ)τ

)
c2xT τ

and the global stability condition reads as

∣∣∣∣(1− (1− η1)(c1 + c2)(1− θ)τ
1 + η1(c1 + c2)(1− θ)τ

)(
1− (1− η2)(c1 + c2)θτ

1 + η2(c1 + c2)θτ

)∣∣∣∣ < 1.

If the above stability condition is satisfied then, similarly to (II.17), the stationary moments

of the solution generated by the split-step method (II.13) have the following values

E [Y (∞)] = E [X∗] ,

Var [Y (∞)]

=
2τ(c1 + c2)(

1 + η2(c1 + c2)θτ

1− (1− η2)(c1 + c2)θτ

)2

−
(

1− (1− η1)(c1 + c2)(1− θ)τ
1 + η1(c1 + c2)(1− θ)τ

)2Var [X∗] .

One can see that the split-step method also preserves the stationary mean of the true

solution. The stationary variance depends on the choice of implicitness parameters θ, η1, η2

and has more difficult behavior.

Table 2 provides propagation coefficients and variance amplifiers of the scheme (II.13)

for different values of the parameters. The first interesting observation from this table is that

the two-stage split-step scheme with η1 = 0, η2 = 1 reproduces stability properties of the

theta tau-leaping method (II.11) for the corresponding values of the parameter θ. The second
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Table 2: Propagation coefficients of the error and amplifiers of the stationary variance of
the split-step method (II.12) applied to the test system (II.15). The parameter λ is set to
λ = c1 + c2.

θ η1 η2 Propagation coefficients Variance amplifiers

θ 0 1
1− λ(1− θ)τ

1 + λθτ

2

2 + λ(2θ − 1)τ

θ 1 1
1

1 + λτ + θ(1− θ)(λτ)2

2λτ

(1 + θλτ)2 − 1

(1 + (1− θ)λτ)2

0 0 1 1− λτ 2

2− λτ

1 0 1
1

1 + λτ

2

2 + λτ

1
2

0 1
2− λτ
2 + λτ

1

0 1 -
1

1 + λτ

2(1 + λτ)2

2 + λτ
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Figure 5: Variance amplifiers of the split-step scheme (II.13) with η1 = η2 = 1 for different
values of the parameter θ. The parameter λ is set to λ = c1 + c2

observation is that the classical split-step scheme ( θ = 0, η1 = 1 ) is not able to preserve

stability of the stationary variance leading to possibly unbounded pathwise solutions.

Figure 5 illustrates the variance amplifiers of the split-step scheme eq. (II.13) with

η1 = η2 = 1 for different values of the parameter θ ∈ (0; 1). It is worth noting that, for

this choice of the parameters η1 and η2, the method is L-stable in the sense that propagation

coefficient tends to 0 for large values of time step. It is also clear that by appropriate choice

of the parameter θ it is possible to get the scheme which is able to reproduce the exact

stationary variance of the solution, i.e., we want to have

2λτ

(1 + θλτ)2 − 1

(1 + (1− θ)λτ)2

= 1.

The above equation does not have a closed form solution in terms of elementary functions.

However, for large values of λτ , the fraction in the denominator can be neglected which

gives the following approximate solution

θ =

√
2

λτ
− 1

λτ
, λ = c1 + c2.
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Figure 6: Optimal values of the parameter θ according to (II.18) and corresponding values
of the variance amplifier for the split-step scheme.

For small values of λτ , one can search for the solution in the form

θ = θ0 + θ1λτ + θ2(λτ)2 + θ3(λτ)3 + ...

Substituting this asymptotic expansion into the original equation and solving for the coeffi-

cients, we get

θ0 =
3−
√

3

2
, θ1 =

−9 + 5
√

3

6
, θ2 =

108− 187
√

3

24
, θ3 =

−531 + 307
√

3

36
, ...

As can be seen from Figure 6, it is appropriate to choose the following representation for

the parameter θ

θ(λτ) =


θ0 + θ1λτ, if λτ ≤ 2,

√
2

λτ
− 1

λτ
, if λτ > 2

(II.18)

with λ = c1 + c2.
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II.2. Description of the acceleration technique.

Selection of the coarsest level

Let X(t) be the solution of the stochastic integral equation (II.4) and f(X(t)) be the

corresponding functional of interest. Given the sequence of nested time discretizations with

step sizes

τL < τL−1 < ... < τl < ... < τ0 = T,

consider the problem of evaluation of the expectation of f(X(t)) with the multilevel Monte

Carlo estimator of the form

E
[
f
(
X(t)

)]
≈ EML [fL] =

1

M0

M0∑
m0=1

fm0
0 +

L∑
l=1

1

Ml

Ml∑
ml=1

(
fmll − f

ml
l−1

)
, (II.19)

where fl = f(Yl) and Yl is the numerical approximation of X(t) at level l obtained with any

of the methods described in section II.1.2 .

The overall cost of the above estimator is given by (I.23) as

CML = ε−2
II

((
C ′0V

′
0

)1/2
+

L∑
l=1

(ClVl)
1/2

)2

, (II.20)

where C ′0, V ′0 denote the pathwise cost and the variance of the functional f0 at the coarsest

level and Cl, Vl denote the costs and the variances of the level corrections (fl − fl−1).

In the formulas (II.19) and (II.20), we have implicitly assumed that the coarsest level

l = 0 corresponds to the largest possible time step τ0 = T . However, it has been mentioned

previously that this choice can be far from optimal. To show this, let CML(L0) denote the

computational cost of the MLMC method as a function of the coarsest level L0 ≥ 0 and

consider the difference
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∆CML = CML(L0 + 1)− CML(L0)

= ε−2
II

(√C ′L0+1V
′
L0+1 +

L∑
l=L0+2

√
ClVl

)2

−

(√
C ′L0

V ′L0
+

L∑
l=L0+1

√
ClVl

)2


= ε−1
II

(√
C ′L0+1V

′
L0+1 −

√
C ′L0

V ′L0
−
√
CL0+1VL0+1

)(√
CML(L0) +

√
CML(L0 + 1)

)
.

The construction of the multilevel estimator suggests that the cost CML(L0) must be

monotonically increasing function of L0. This means that the difference ∆CML must be

strictly positive and the following condition must be satisfied for all L0 ≥ 0

√
C ′L0

V ′L0
+
√
CL0+1VL0+1 <

√
C ′L0+1V

′
L0+1. (II.21)

In practice, this assertion is often violated at coarse levels and the above condition converts

to the stopping criterion for the greedy estimation of the coarsest level. To apply it, one

can start with some sufficiently high level and move down the discretization hierarchy by

iteratively checking (II.21). This procedure does not require the knowledge of parametric

models for the costs and the variances and relies solely on the empirically observed values of

Cl and Vl. The stability constraint on the largest allowed time step of the numerical scheme

is also automatically satisfied by using (II.21) and no a-priory analysis is required.

II.2.1. Comparative study of numerical schemes

As a benchmark problem to study the impact of the choice of pathwise integrators on

the overall complexity of the MLMC algorithm, we will use the reaction network in (II.8)

S1

104



104

S2

102



102

S3

105



105

S4

with the terminal time T = 10−3 and the functional f(X(t)) =
∣∣X3(T )−X2(T )

∣∣.
For example, Figure 7 illustrates comparative performance of three particular numerical
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Figure 7: Comparison of pathwise integrators.

Black color is used for explicit scheme, red color is used for implicit scheme and blue color is used for the
split-step scheme. The highest level is fixed to L = 15.
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schemes: the classical explicit and implicit tau-leap methods and the proposed split-step

scheme with adaptive choice of the parameter θ in (II.18). Figure 7D clearly shows that

none of these methods allow to utilize all levels of the hierarchy since, as we move from the

level 15 to the level 0, the cost of the estimator eventually starts to grow. Explanation for this

undesirable behavior can be found in Figures 7A-7C. Figure 7A indicates that the variances

V ′l and Vl of the functionals and the level corrections have the same order of magnitude at

low discretization levels. For explicit method ( black color ) this is the result of instability of

numerical approximation which leads to unbounded values of V ′l and Vl. Implicit scheme

( red color ) is stable but, as the analysis in the previous section shows, it severely overdamps

the variance of the numerical solution for large time steps which again gives that V ′l ≈ Vl at

low levels. The variance V ′l of the split-step method ( blue color ) remains nearly constant

as predicted but Vl still growths due to the decreasing correlation between coupled paths for

increasing step size.

The condition (II.21) can remain true only if VL0+1 � V ′L0
in order to compensate

the large cost of generating the coupled paths which is defined as CL0+1 = C ′L0
+ C ′L0+1.

The failure of this requirement can be seen in Figure 7C. The solid lines correspond to the

contribution of the coarsest level to the total cost of the estimator while the dashed lines

show the extra cost associated with moving down the discretization hierarchy. Intersection

of these lines indicate the failure of (II.21) and it is not difficult to see that this occurs when

VL0+1 ≈ V ′L0
. As was mentioned above, for explicit integrator, this is the consequence of

its instability at low levels. An obvious remedy for this issue would be to substitute it with

implicit scheme at these levels in the following way

EML [fL] =

Lint−1∑
l=L0

EMC
[
∆imp
l

]
︸ ︷︷ ︸

implicit levels

+EMC
[
f expLint+1 − f

imp
Lint

]
︸ ︷︷ ︸

interface level

+
L∑

l=Lint+1

EMC [∆exp
l ]︸ ︷︷ ︸

explicit levels

, (II.22)

where ∆l = fl − fl−1, Lint is the interface level determined from (II.21) as the last stable
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explicit level and f impL , f expL correspond to the solutions obtained with implicit and explicit

methods respectively. However, Figure 8 shows that such naive combination of integrators

does not give any improvement over the purely explicit approach. This is due to the large

difference in costs of explicit and implicit methods which gives the large jump in the

overall complexity of the estimator when passing the interface level l = Lint ( green line in

Figure 8D ). A possible solution to this problem is proposed below.

II.2.2. Criteria for the selection of pathwise integrators. Composite scheme

Based on the above mentioned, one can distinguish three desired properties of pathwise

integrators which lead to the reduction of the complexity of the MLMC estimator:

1. V ′l ≈ const, i.e., the variance of the solution must be stable,

2. Vl � V ′l , i.e., the variance of the corrections must be smaller than that of the solution,

3. C ′l < C ′l+1, i.e., the cost at low levels must be smaller than the cost at high levels.

As is seen in Figures 7 and 8, the first and second properties are violated by all considered

schemes while the last property is violated by the naive combination of explicit and implicit

integrators. As a remedy for such undesirable behavior, we propose a different combination

of implicit-explicit solvers which possesses all of the required features.

The proposed technique can be briefly describe as follows. By analogy with (II.22),

we divide all levels into explicit, implicit and interface parts. The coarsest stable level

l = Lint + 1 in the explicit part is again determined by repeatedly applying the stopping

criterion in (II.21). However, the implicit integrator is constructed more wisely to ensure

both decay of the cost and stability of the variance. Starting from the interface level l = Lint,

we divide the original time interval [0, T ] into two subintervals and apply implicit and

explicit schemes for t ∈ [0, T1] and t ∈ [T1, T ] respectively. The discretization of the first

subinterval is coarsened at lower levels l < Lint in a regular manner in order to guarantee
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Figure 8: Performance of MLMC with stabilized integrator.

Blue and red colors correspond to the levels which use explicit and implicit solvers respectively, the interface
level is highlighted with green color. The highest level is fixed to L = 15.
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the decay of the cost. The second subinterval keeps the same discretization for all l ≤ Lint

and is responsible for the correct behavior of the variances V ′l and Vl.

The sample paths of this composite integrator for explicit, implicit and interface levels

are depicted in Figure 9. Additionally, Figure 10 demonstrates its performance in the

multilevel Monte Carlo setting. One can see that the variances V ′l are stable, Vl � V ′l as

desired and the costs C ′l are strictly increasing functions. The proposed approach allows

to use five additional levels when compared to the pure explicit integrator ( blue line in

Figure 10D ) which is a large improvement over the naive stabilized algorithm, see Figure 8.

II.3. Numerical results

The proposed acceleration technique is not based on any a-priory given information

about the system of interest. Therefore, the complexity analysis of the accelerated estimator

cannot give a-priory estimates as well. The goal of this section is to provide the empirical

justification of the proposed method and the quantitative study of its performance.

Example 1. For the first example, consider the linear chemical network (II.8) which was

used as the benchmark problem in previous sections

S1

104



104

S2

102



102

S3

105



105

S4.

The initial condition is X(0) = [1000, 10, 10, 50]T , the terminal time is fixed to T = 10−3

and the functional is given by f(X(t)) =
∣∣X3(T )−X2(T )

∣∣.
Figure 11 demonstrates performance of the multilevel Monte Carlo method in application

to this system for two variants of the composite integrator with implicit part given by the

classical implicit tau-leap scheme and the proposed split-step method respectively. One

can see from Figure 11A that explicit tau-leap scheme cannot be applied for levels l < 11
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Figure 9: Sample paths of the composite integrator.
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Figure 10: Performance of MLMC with composite integrator.

Blue and red colors correspond to the levels which use explicit and implicit solvers respectively, the interface
level is highlighted with green color. The highest level is fixed to L = 15.
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while the composite integrators can explore four additional levels. Figure 11B shows that

this results in the significant speedup of the accelerated algorithm over the standard MLMC

method. It is obvious that the relative speedup will decay for increasing tolerance ε of the

estimator as the computational savings of the improved algorithm remain finite and the

ε-complexity growths with no bound. However, the cost gain always remains a positive

quantity as desired.

Example 2. In the second example, we consider the following stiff 3-species 6-reaction

system with nonlinear reaction intensities

S1 + S2

103



103

S3,

S1 + S3

10−5



10

S2,

S2 + S3

1


106

S1.

The initial condition is X(0) = [900, 1000, 950000]T , the terminal time is fixed to T = 10−4

and the functional is given by f(X(t)) =
∣∣X2(T )−X1(T )

∣∣.
Figure 12 illustrates performance of the MLMC method for this system. One can see

that the accelerated MLMC algorithm results in even bigger computational savings than

in Example 1. This happens due to the higher stiffness of this chemical network which

prevents application of the explicit scheme at levels l < 12.

It is worth noting that, in this case, the split-step method is less efficient than the

classical implicit scheme. Nevertheless, both variants of the composite integrator perform

exceptionally well which fully justifies application of the proposed acceleration technique.
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Figure 11: Performance of the MLMC algorithm for the problem in Example 1.

Red color is used for the standard MLMC with explicit integrator. Dashed and solid lines correspond to the
implicit and the split-step tau-leap methods as the implicit part of the composite integrator respectively. The
lowest level of the explicit integrator is fixed to Lint = 11. The lowest level of the composite integrator is
fixed to L0 = 8.
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Figure 12: Performance of the MLMC algorithm for the problem in Example 2.

Red color is used for the standard MLMC with explicit integrator. Dashed and solid lines correspond to the
implicit and the split-step tau-leap methods as the implicit part of the composite integrator respectively. The
lowest level of the explicit integrator is fixed to Lint = 12. The lowest level of the composite integrator is
fixed to L0 = 9.
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CHAPTER III

PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM INPUT DATA

In this chapter, we consider partial differential equations which are stochastically para-

meterized by the random input data. As was mentioned in previous chapters, the multilevel

Monte Carlo method requires one to solve a large number of decoupled deterministic

problems corresponding to different realizations of this data. For stationary PDEs, these

solutions are often constructed by means of iterative process and the choice of initial guess

can have a drastic influence on its convergence. The goal of this chapter is to study the

acceleration of the multilevel Monte-Carlo method by supplying initial guesses to itera-

tive solvers via recycling of the previously calculated data. Similar ideas have been paid

attention in the literature before. For instance, recycling of Krylov subspace vectors in

solving sequences of linear systems was discussed in [PdSM+06, EES00, EEU07]. Later

this approach was adopted for the construction of multilevel and stochastic preconditioners

to the linear systems that arise from stochastic Galerkin approximations [GP11, JCL07].

Reusing solutions to previous systems as initial guesses to linear solvers is another obvious

strategy which has been applied to the stochastic Galerkin (SG) and stochastic collocation

(SC) methods in [GP11, GK96, PG00]. Recently an improvement to this approach was

proposed in [GJWZ16] where the authors took advantage of the hierarchical construction of

sparse grids and associated polynomial spaces of increasing fidelity to efficiently interpolate

initial guesses.

Efficiency of acceleration techniques which are posed in the context of SG and SC

methods is the consequence of the special intelligent choice of quadrature or interpolation

nodes. Unfortunately, this very feature makes them impractical in the context of Monte Carlo

methods where the locations of collocation points are generated randomly. In this chapter, we

propose the acceleration technique that does not require any information about the structure

of collocation points and does not depend on any particular form of the input parameter or
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the range of the parameter space. The only required information is the appropriate metric of

similarity between different instances of the parameter which may be finite or even infinite

dimensional. This technique may be successfully applied to any problem involving large

number of repeated solvings of iterative linear systems. Possible applications include but are

not limited to classical and multilevel Monte Carlo methods, Markov Chain Monte Carlo

method, stochastic optimization algorithms and other methods involving random iterates.

III.1. Problem setting

Recall the problem setting in section I.2. Let L be a possibly nonlinear stationary

operator defined on a bounded Lipschitz domain D ⊂ Rd, d = 1, 2, 3, with a boundary

∂D = ∂DD ∪ ∂DN . Operator L has a random coefficient a(x, ω), x ∈ D, ω ∈ Ω, defined

on the complete probability space (Ω,F ,P). Here Ω denotes the sample space of possible

outcomes, F ⊂ 2Ω is the σ-algebra of events, and P is the complete probability measure

on F . Denote by u(x, ω) the strong solution of the following stochastic boundary-value

problem  L
(
a(x, ω), u(x, ω)

)
= f(x, ω) in D × Ω,

γ
(
u(x, ω)

)
= g(x, ω) on ∂D × Ω,

(III.1)

where γ is a trace operator which defines Dirichlet boundary condition on ∂DD and Neumann

boundary condition on ∂DN . We require u(x, ω) to be a Bochner integrable function with

values in some Banach space W (D), i.e., u(x, ω) ∈ Lp(Ω;W (D)), the function space given

by

Lp
(

Ω;W (D)
)

:=

{
u : Ω→ W (D)

∣∣∣ u is strongly measurable and ‖u‖Lp(Ω;W (D)) <∞
}

with the corresponding norm
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‖u‖pLp(Ω;W (D)) =


∫

Ω

‖u(·, ω)‖pW (D) dP(ω) if 0 < p <∞,

ess supω∈Ω ‖u(·, ω)‖W (D) if p =∞.

For simplicity, we will write Lp(Ω) instead of Lp(Ω;W (D)) when the particular function

space W (D) can be concluded from the context.

It is assumed that all random input fields are defined on the same probability space and

are chosen so that the problem in (I.5) is well-posed in the following sense

Assumption III.1.1. For the fixed values of the random parameter ω ∈ Ω, there exist unique

realizations of the solution u(x, ω) ∈ W (D) such that

‖u(x, ω)‖W (D) ≤ C(ω) ‖f(x, ω)‖W−1(D) ,

where W−1(D) is the dual space of W (D) and C is a constant which may depend on ω.

Example III.1.1 (Linear elliptic system). Given f ∈ L2
(
Ω;H−1(D)

)
, find u(x, ω) ∈

L2
(
Ω;H1

0 (D)
)

such that −∇
(
a(x, ω)∇u(x, ω)

)
= f(x, ω) in D × Ω,

u(x, ω) = 0 on ∂D × Ω
(III.2)

with a(·, ω) bounded and coercive almost surely, i.e.,

P
[
ω ∈ Ω : 0 < amin(ω) ≤ a(x, ω) ≤ amax(ω) <∞ ,∀x ∈ D

]
= 1.

Example III.1.2 (Steady Navier-Stokes system). Let H1(D) :=
(
H1(D)

)d
. Given f ∈

L2
(
Ω; H−1(D)

)
and g ∈ L2

(
Ω; H1/2(D)

)
, find the pair

(
u(x, ω), p(x, ω)

)
∈ L2

(
Ω; H1

g(D)×

L2
0(D)

)
such that
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−ν(ω)∇2u + u · ∇u +∇p = f(x, ω) in D × Ω,

∇ · u = 0

u = g(x, ω) on ∂D × Ω,

(III.3)

where H1
g :=

{
u ∈ H1(D) : u = g on ∂D

}
, L2

0(D) :=
{
p ∈ L2(D) :

∫
D
p = 0

}
and

ν(ω) > 0 is the spatially uniform uncertain viscosity.

Note that the elliptic regularity and the Babus̆ka-Brezzi inf-sup condition imply the

existence of solutions for the problems in (III.2) and (III.3) respectively. However, the

uniqueness result for the problem in (III.3) is guaranteed only if κc ‖f(·, ωf )‖ < ν2, i.e., for

sufficiently small data f or sufficiently large viscosity ν [GR86, Gun89, Lio96]. Assuming

that these conditions hold, Assumption (III.1.1) is satisfied and the considered problems are

well-posed.

As was mentioned previously in section I.2.2, stochastic fields are often approximated

with a finite number of uncorrelated, or even independent, random variables. For instance,

piecewise constant approximation and Karhunen-Loeve (KL) expansion represent examples

of truncated random fields which are most frequently employed in practice. It is worth noting

that, unlike stochastic collocation and stochastic Galerkin methods, the finite-dimensional

noise representation is not required in the Monte Carlo sampling as well as in the proposed

acceleration technique. As a matter of fact, we will only need some similarity measure

between realizations of random fields in a functional space which may be finite or infinite

dimensional. However, finite stochastic dimensionality is assumed in order to simplify the

analysis.

III.2. Acceleration of iterative solvers

Consider a hierarchical family of nested finite element discretizations
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W0 ⊂ W1 ⊂ ... ⊂ Wk ⊂ ... ⊂ W (D),

where each Wk corresponds to the finite dimensional space of continuous piecewise polyno-

mial functions defined on the triangulation τk of the domain D and hk := maxτ∈τk diam(τ)

is the maximum mesh spacing parameter.

Let uk(ω) denote the finite element projection of the solution u(x, ω) onto Wk. Then

solution at the finest discretization level L is given as the telescoping series

uL(ω) = u0(ω) +
L∑
l=1

(
ul(ω)− ul−1(ω)

)
.

By setting ∆l(y) = ul(y)−ul−1(y), the above expression yields the multilevel Monte-Carlo

estimator

E [u(x, ω)] ≈ EML [uL] =
L∑
l=0

1

Ml

Ml∑
ml=1

∆ml
l , (III.4)

where ∆0 = u0(x, ω) and Ml is the number of random samples generated at each level l.

Multilevel approximation allows to balance the cost and the sampling error of Monte

Carlo estimators between different levels in a way which minimizes the computational

cost of the method. The bulk of this cost goes into solving a large number of decoupled

deterministic problems corresponding to different samples from the space of parameters.

When solutions of deterministic problems are obtained with iterative solvers, one can

improve the total performance of the algorithm by providing a fast and simple way for

the estimation of good initial guesses. In this chapter, we will utilize a repeated sampling

framework of the Monte Carlo method to devise a learning algorithm for prediction of initial

guesses using the dynamically changing training dataset of the computed data.

The proposed method can be briefly described as follows. Consider the problem in (III.1)

with a random coefficient a(x, ω) ranging over the compact set A of a suitable normed

metric space X . A solution of this problem can be viewed as a function
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u : a→ u(a)

which maps X to W (D). We can supplement this solution map with an initial guess

interpolated from the previously computed data. Due to the random design of the Monte

Carlo method, realizations of the coefficient a(ω) have no structure or order between their

relative locations in X . This motivates the use of scattered data interpolation techniques to

get the desired prediction. Typically, such interpolants are constructed in reproducing kernel

Hilbert spaces which suggest the model function of the form

a
u(a(ω)) =

∑
i

K
(
‖a(ω)− a(ωi)‖X

)
αi, (III.5)

whereK
(
‖a(ω)− a(ωi)‖X

)
: X×X → R is a positive-definite reproducing kernel acting

as a measure of similarity in X [BKO+96, Wen05, Fas07].

It is worth noting that we do not require very high accuracy of the interpolant in (III.5)

since the goal is to estimate the initial guess and not the solution itself. In our case, the

crucial issue is the cost/quality relationship of the interpolation procedure. Therefore, we

will limit our attention to methods which allow explicit formulation, i.e., do not require a

solution of linear systems.

The Shepard approximation is the classical example of such method. It has the form

a
u(a(ω)) =

∑
i

Φδ (‖a(ω)− a(ωi)‖X)∑
j

Φδ

(
‖a(ω)− a(ωj)‖X

)u(a(ωi)), (III.6)

where Φδ(·) = Φ(·/δ) : X ×X → R is a symmetric positive-definite kernel function with

a support of radius δ and K (·) = Φδ (·) /
∑

j Φδ (·) is a moving least squares reproducing

kernel (MLSRK) which provides a local polynomial reproduction of degree 0, i.e., it can be

considered as locally fitting constant to the data [Wen05, LL04].
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The Shepard approximation formula can be interpreted as a weighted average of the

function values at a set of given nodes. In particular, for the uniform kernel Φδ (a) =

I(‖a‖X /δ ≤ 1) with a variable support radius δ =
∥∥a− a[kNN ]

∥∥
X

, it converts to the

k-nearest neighbor (k-NN) estimator

a
u(a(ω)) =

∑
i

I

(
‖a(ω)− a(ωi)‖X∥∥a(ω)− a[kNN ]

∥∥
X

≤ 1

)
∑
j

I

(
‖a(ω)− a(ωj)‖X∥∥a(ω)− a[kNN ]

∥∥
X

≤ 1

)u(a(ωi)) =
1

kNN

kNN∑
i=1

u(a(ωi)), (III.7)

where a[kNN ] is the kNN -th closest to a(ω) point and realizations of the coefficient are

reordered according to increasing values of ‖a(ω)− a(ωi)‖X .

Application of the formulas (III.5)-(III.7) requires calculation of distances in a functional

space X . In a general case, this can be a serious limitation of the algorithm because

such calculations are usually computationally expensive. Fortunately, finite dimensional

representations of random fields often provide an isometric map to the discrete space of

coefficients of such representations. This makes an evaluation of distances a trivial task.

Consider the following example.

Example III.2.1 (Karhunen-Loeve expansion). Any second order random field with a

continuous covariance function can be represented as a Karhunen-Loeve (KL) series of the

form

a(x, ω) = E [a(x, ω)] +
∞∑
k=1

φk(x)yk(ω), (III.8)

where yk(ω) are uncorrelated random variables with variance λk and λk, φk are the domi-

nant eigenvalues and eigenfunctions of the covariance operator. By virtue of the Parseval’s

identity, the space L2(D) of functions represented by the above series is isometrically

isomorphic to the space l2 of coefficients {yk}∞k=1.
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Finite-dimensional representations of random fields are obtained by truncation of the

series (III.8). This means that the classical Euclidean distance in the image space Γ(Ω) =∏s
k=1 Γk ∈ Rs of the random vector [y1, ..., ys] : Ω → Γ can be used as a measure of

similarity between different realizations of the random field a(x, ω) ∈ L2
(

Ω, L2(D)
)

.

In addition to the evaluation of distances, the search for nearest neighbors (NN) in space

X is also required to apply formulas (III.6)-(III.7) because of the compact support of kernel

functions. There are different techniques for the exact NN search based on partitioning

trees, locality sensitive hashing, graph methods or approximate nearest neighbor matching

[ML14]. Existing codes are highly scalable and can perform NN search to the very large

data sets in parallel. We found the FLANN (Fast Library for Approximate Nearest Neighbor

Search) library [ML] very useful in the framework of our acceleration method.

Our suggested implementation of the accelerated MLMC algorithm is given in Algo-

rithm 1. Note that efficient NN search algorithms perform preprocessing of the data to build

the appropriate data structures. Insertion of the new point is costly and may deteriorate the

performance of the method. Therefore, we suggest that data structures must be rebuilt only

after generation of a sufficient number of points.

The proposed acceleration technique can be successfully applied to both linear and non-

linear problems. To show this, we provide two examples of the application of Algorithm 1.

Example III.2.2. Consider the linear elliptic problem (III.2) with a random coefficient

a(x, ω). For each sampled ω ∈ Ω, finite element solutions ul(x, ω) =
∑Nl

i=1 cl,iφl,i of

corresponding deterministic problems are obtained by solving a linear system

Alcl = fl,

where Nl is the number of nodes in discretization at level l, φl,i
∣∣Nl
i=1

is the basis of Wl and

fl,i =

∫
D

f · (φl)idx for i = 1, .., Nl,
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Algorithm 1: The accelerated MLMC algorithm
Input: Desired tolerance ε of the estimator

Result: E [u(x, ω)] ≈
L∑
l=0

M−1
l

Ml∑
ml=1

(
umll − u

ml
l−1

)
1 Define discretization at level l = 0
2 Initialize the number of levels L
3 Initialize the number of samples per level Ml

4 Set Madd
l = Ml

5 while
∑L

l=0M
add
l 6= 0 do

6 for l = 0 to L do
7 for ml = 1 to Madd

l do
8 Sample ω ∈ Ω
9 Compute the initial guess according to (III.6):

a
umll−1 =

∑
i

Φδ (‖a(ω)− a(ωi)‖X)∑
j

Φδ

(
‖a(ω)− a(ωj)‖X

)ui
Compute the solution umll−1 with a

umll−1 as initial guess
10 Compute the solution umll with umll−1 as initial guess
11 end
12 Update the MC estimator at level l
13 Estimate the sample variance σl at level l
14 Estimate the computational cost Cl at level l
15 end
16 Update the MLMC estimator
17 Update the number of levels L
18 Update the number of samples per level Ml

19 Find the number of extra samples per level Madd
l

20 end
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Al,ii′ =

∫
D

a(ω) · ∇φl,i · ∇φl,i′dx for i, i′ = 1, .., Nl.

This means that resulting stiffness matrices Al are sparse, symmetric and positive definite.

In this case, the canonical choice of the linear solver is the conjugate gradient (CG) method

[Saa03] which defines iterative process for c̃l = cl − c(0)
l as

c̃
(0)
l = 0,

c̃
(k+1)
l = c̃

(k)
l +

pTk rk−1pk
pTkAlpk

,

where rk = fl − Al
(
c̃

(k)
l + c

(0)
l

)
is the residual at k-th iteration, vectors pk are mutually

conjugate with respect to Al and p0 = r0. The convergence of this recursion is determined

by the choice of initial guess c(0)
l and conditioning of the matrix Al. Therefore, for the given

matrix Al, we can accelerate the CG method by proposing initial guess as in Algorithm 1.

We will use the above linear elliptic system as the benchmark problem for the theoretical

analysis of our acceleration technique. Additionally, we will consider the following example

to show numerically that the method can be successfully applied to nonlinear problems as

well.

Example III.2.3. Consider the Navier-Stokes system (III.3) with a random forcing term

f(x, ω). Let (Vl, Sl) denote the pair of div-stable velocity and pressure finite element spaces

with basis functions vi(x), i = 1, .., Nl, and qj(x), j = 1, .., Pl, respectively. According to

the composite method [Gun89], coefficients αi(x), i = 1, .., Nl, and βj(x), j = 1, .., Pl, of

the finite element representations for velocity and pressure fields can be found by solving

the sequence of linear systems

 A
(k+1)
l B

(k+1)
l(

B
(k+1)
l

)T
0


 α

(k+1)
l

β
(k+1)
l

 =

 f(k+1)
l

0

 ,
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where components of the matrices and the right-hand side are defined as

A
(k+1)
l,ii′ =

∫
D

(
ν∇vl,i′ : ∇vl,i + σvl,i′ · ∇u(k)

l (ω) · vl,i + u(k)
l (ω) · ∇vl,i′ · vl,i

)
dx

for i, i′ = 1, .., Nl,

B
(k+1)
l,ji = −

∫
D

ql,j(∇ · vl,i)dx for j = 1, .., Pl and i = 1, .., Nl.

f(k+1)
l,i =

∫
D

(
f(ω) · vl,i + σu(k)

l (ω) · ∇u(k)
l (ω) · vl,i

)
dx for i = 1, .., Nl,

Note that the coefficient matrix and the right-hand side depend on u(k)
l . Thus, a different

linear system has to be solved at each iteration with any available solver. These linear

solvers are not accelerated by our technique; instead, a good initial guess can reduce the

number of nonlinear iterations.

The composite method converts to the Newton method when σ = 1 and to the simple

iteration method when σ = 0. It is well known that the Newton method converges qua-

dratically to the unique solution; however, contrary to linear systems, convergence is not

guaranteed for arbitrary initial guesses. Moreover, it is found in practice that the radius of

convergence is decreasing for increasing Reynolds number. This issue can be resolved by

applying the simple iteration method first and then switching to the Newton method when

residual of the solution becomes small enough. This approach improves the stability of the

method, but it comes at a price of slower convergence. By choosing an appropriate initial

guess, it is not only possible to reduce the number of iterations but also to improve the

effective convergence rate of the composite technique if the initial guess is close to the basin

of attraction of the Newton method.

To quantify the performance of the accelerated method, we have to choose an appropriate

efficiency metric. For the MLMC method, it can be trivially defined as
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CML =
L∑
l=0

Ml∑
ml=1

Cml
l ,

where Cml
l is the time cost of the corresponding deterministic problems. According to the

usual implementation of the finite element method, this cost can be decomposed into two

components:

• the cost Csys
l of assembling the system of equations,

• the cost CS
l

∑Ml

ml=1 J
ml
l of an iterative solver, where CS

l is the cost of one iteration

and Jmll is the number of iterations at the level l corresponding to ωml ∈ Ω.

Therefore, the cost function of the MLMC method can be written in the form

CML =
L∑
l=0

(
MlC

sys
l + CS

l

Ml∑
ml=1

Jmll

)
=

L∑
l=0

Ml

(
Csys
l + CS

l Jl

)
=

L∑
l=0

MlCl, (III.9)

where Jl and Cl are the average number of iterations and the average computational cost of

the finite element method at the given level l.

The number of iterations required to achieve the desired accuracy of an iterative solver

can be reduced by providing a good initial guess. This means that the cost gain from the

proposed acceleration technique can be quantified as

∆CML =
L∑
l=0

CS
l

Ml∑
ml=1

(
Jmll −

a

Jmll

)
− Cpredict, (III.10)

where
a

Jmll is the number of iterations of the accelerated method and Cpredict is the additional

cost of applying Algorithm 1.

Obviously, the cost Cpredict must be small enough to make the computational savings

possible, i.e., the cost gain (III.10) must be positive. The proposed acceleration technique

satisfies this condition. The next section provides theoretical justification of this assertion.
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III.3. Complexity analysis

III.3.1. Error component analysis

The accuracy of the MLMC estimator is controlled by two components: spatial discreti-

zation error and sampling error. However, there are a lot of other additional sources of errors

due to the inexact computation of integrals, approximation of the boundary of the domain,

approximation of the input data, etc. The finite tolerance of numerical linear solvers is one

of such sources of error. To understand its implication for the approximation of E [u(x, ω)],

consider the following error estimate

‖EML [ũL]− E [u]‖L2(Ω;W̃ (D)) (III.11)

≤ ‖E [uL − u]‖W̃ (D)︸ ︷︷ ︸
I := Discretization error

+ ‖EML [uL]− E [uL]‖L2(Ω)︸ ︷︷ ︸
II := Sampling error

+ ‖EML [ũL − uL]‖L2(Ω)︸ ︷︷ ︸
III := Solver error

,

where ũL ∈ W̃ (D) is the actually computed approximation of the true solution solution

u(x, ω) and W̃ (D) is a suitable spatial function space. In the above expression, the first

component is the spatial error, the second component is the sampling error and the third error

component represents additional bias introduced by inexact computation of MC trajectories.

To achieve the desired accuracy ε, it is sufficient to balance the total error between all three

components in the following way

‖EML [ũL]− E [u]‖L2(Ω;W̃ (D)) ≤ εI + εII + εIII = ε. (III.12)

If we apply an iterative solver to the linear systems arising after discretization, then the

errors I , II and III can be equilibrated by the proper choice of the spatial discretization,

the number of MC samples and the number of solver iterations respectively.
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As it has been mentioned, in the following all the analysis will be conducted for the

finite element discretization of the linear elliptic system from Examples III.1.1 and III.2.2

with the conjugate gradient (CG) method used as a linear solver. For this case, one can

easily estimate the spatial, sampling and CG solver errors.

Spatial discretization error. Let the finite element spaces be defined as the function

spaces of piecewise polynomials of degree at most p based on a triangulation τk of the

spatial domain D with mesh spacing parameter hk := maxτ∈τk diam(τ). For elliptic

equations with homogeneous Dirichlet boundary conditions, the classical result from the

finite element approximation theory gives the estimate [Ste08, BR08]

‖uL(x, ω)− u(x, ω)‖Hs(D) ≤ cfh
p+1−s
L ‖u(x, ω)‖Hp+1(D) , (III.13)

which holds a.e. in Ω. Here Hs(D) denotes the Sobolev space of functions with square-

integrable derivatives up to the order s and cf > 0 is a constant independent of ω and hk.

We will investigate L2 norm of the error, i.e. s = 0 and

W̃ (D) = H0(D) ⊂ W (D).

It follows that

‖E [uL − u]‖2
L2(D) =

∫
D

∣∣∣∣∫
Ω

(
uL − u

)
dP(ω)

∣∣∣∣2 dx ≤ ∫
D

∫
Ω

∣∣uL − u∣∣2dP(ω) dx

=

∫
Ω

(∫
D

∣∣uL − u∣∣2dx) dP(ω) = E
[
‖uL − u‖2

L2(D)

]
.

Combining with (III.12), this yields the estimate

I := ‖E [uL − u]‖H0(D) ≤ cfh
p+1
L ‖u‖L2(Ω;Hp+1(D)) = cfeh

α
L = εI , (III.14)

where α = p+ 1.
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According to (I.21), the condition (III.14) will be satisfied if the number of levels is

fixed to be

L =
⌈
logq

(
h0(cfeε

−1
I )1/α

)⌉
≤ 1 + logq

(
h0(cfeε

−1
I )1/α

)
.

Sampling error. Let V [u] = Var [u(x, ω)] and V [u] =
∫
D
V [u]dx. Then for any M and

for any u(x, ω) ∈ L2(Ω;L2(D)), it holds that

‖EMC [uL]− E [uL]‖2
L2(Ω) = E

[
‖EMC [uL]− E [uL]‖2

L2(D)

]
=

1

M2
E

∫
D

∣∣∣∣∣
M∑
m=1

(
umL − E [uL]

)∣∣∣∣∣
2

dx


=

1

M2

∫
D

M∑
m=1

Var [umL ] dx+
1

M2

∫
D

M∑
m=1

M∑
m′=1
m 6=m′

Cov
(
umL , u

m′

L

)
dx.

By virtue of the independence of i.i.d. samples umL , we have that Cov
(
umL , u

m′
L

)
= 0 and

‖EMC [uL]− E [uL]‖L2(Ω;L2(D)) =

√
V [uL]

M
. (III.15)

Based on this result, one gets the error of the MLMC estimator as follows

‖EML [uL]− E [uL]‖2
L2(Ω) =

∥∥∥∥∥
L∑
l=0

1

Ml

Ml∑
ml=1

[
umll − u

ml
l−1

]
− E [uL]

∥∥∥∥∥
2

L2(Ω)

=
L∑
l=0

∥∥∥∥∥ 1

Ml

Ml∑
ml=1

(
∆ml
l − E [∆l]

)∥∥∥∥∥
2

L2(Ω)

=
L∑
l=0

V l

Ml

.
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Thus, the sampling error of the MLMC method can be estimated as

II2 := ‖EML [uL]− E [uL]‖2
L2(Ω) =

L∑
l=0

V l

Ml

= ε2II , (III.16)

where V l = V [∆l[ and ∆l is defined in (III.4).

According to (I.22), the condition (III.16) will be satisfied if the number of MC samples

at each discretization level is set to

Ml = ε−2
II

(
V l

Cl

)1/2 L∑
k=0

(CkV k)
1/2.

Linear solver error. Finally, consider the error of the CG iterative linear solver. To work

with different spatial discretizations, we will require the following definition.

Definition III.3.1 ([BR08]). Let u(x) ∈ L2(D). Consider the finite element space Wl

equipped with the mesh-dependent inner product

(υ, w)l = h2
l

nl∑
i=1

υ(pi)w(pi),

where {pi}nli=1 is the set of internal vertices. The mesh-dependent norm induced by this

inner-product is given by

‖υ‖l = hl ‖υ‖2 = hl

(
nl∑
i=1

υ2(pi)

)1/2

,

where ‖·‖2 is the usual Euclidean norm.

Moreover, there exist positive constants c1 and c such that

1

c1

‖υ‖L2(D) ≤ ‖υ‖l ≤ c ‖υ‖L2(D) , ∀υ ∈ Wl.

Denote the error of the linear solver at the discretization level l as el = ũl − ul, where
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ul is the true solution and ũl is the actually computed solution. With the tolerance of the

solver fixed, we may assume that ‖el‖2 = ‖el−1‖2 = ‖e0‖2.

Using the definition (III.3.1), we arrive at

‖EML [ũL − uL]‖2
L2(Ω;L2(D)) =

L∑
l=0

E
[
‖(ũl − ũl−1)− (ul − ul−1)‖2

L2(D)

]
=

L∑
l=0

E
[
‖el − el−1‖2

L2(D)

]
≤

L∑
l=0

(
E
[
‖el‖2

L2(D) + ‖el−1‖2
L2(D)

] )
≤ c1

L∑
l=0

(
E
[
‖el‖2

l + ‖el−1‖2
l−1

] )
= c1

L∑
l=0

(hl + hl−1)E
[
‖el‖2

2

]
= c1(q + 1)

L∑
l=0

hlE
[
‖el‖2

2

]
,

where q is the refinement parameter from (I.18).

The error of an iterative linear solver may be considered as a function of three parameters:

the initial guess vector, the conditioning of the stiffness matrix and the number of iterations.

For the CG solver, these parameters are related by the well-known estimate [Ste08, Saa03]

‖e‖E ≤ 2

(√
κ− 1√
κ+ 1

)J
‖ ae‖E

which is computed in the energy norm ‖e‖E =
√

(Ae, e), where A is the stiffness matrix

with the condition number κ, a
el =

a
ul−ul is the initial error and J is the number of iterations.

Let λmin and λmax denote the minimum and maximum eigenvalues of the matrix A

respectively. From the properties of Rayleigh quotients, we have

√
λmin ‖e‖2 ≤ ‖e‖E ≤

√
λmax ‖e‖2 ,

yielding in the following error estimate

‖e‖2 ≤
1√
λmin

‖e‖E ≤
2√
λmin

(√
κ− 1√
κ+ 1

)J
‖ ae‖E ≤ 2

√
κ

(√
κ− 1√
κ+ 1

)J
‖ ae‖2 . (III.17)
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Now recall the (1,1)-Pade approximation of the exponential function

R1,1(x) =
1 + 1

2
x

1− 1
2
x
.

It can be shown that R1,1(−x) ≤ e−x which gives the useful bound

√
κ− 1√
κ+ 1

≤ exp

(
− 2√

κ

)
.

Together with (III.17), this gives the estimate

‖e‖2 ≤ 2
√
κ exp

(
−2J

(√
κ
)−1
)
‖ ae‖2 . (III.18)

It is well known that the spectral condition number of a stiffness matrix arising from the

finite element discretization of elliptic problems has the following asymptotical behavior

[Ste08]

1 ≤ κl ≤ c2
2 h
−2
l . (III.19)

Taking into account this result, the bound in (III.18) converts to

‖el‖2 ≤ 2c2h
−1
l exp

(
−2c−1

2 hlJl

)
‖ ael‖2 .

Finally, we obtain the following bound for the solver error

III2 := ‖EML [ũL − uL]‖2
L2(Ω) (III.20)

≤ 4(q + 1)2c2
1

L∑
l=0

E
[
c2

2 exp
(
−4c−1

2 hlJl

)
‖ ael‖2

2

]
= ε2III .

The condition in (III.20) can be satisfied pathwise if the number of CG iterations at each
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discretization level is given by

Jl = max

(
c2

2hl
ln

2c1c2(q + 1) ‖ ael‖2

blεIII
, 0

)
, for l = 0, .., L and

L∑
l=0

bl = 1,

where coefficients bl are the weights assigning certain part of the solver error to each level.

In the best case, the choice of these coefficients should satisfy some optimality condition.

However, we have already assumed that the tolerance of the solver is fixed and is the same at

each level. Therefore, it is natural to set bl = 1/L which simplifies the above expression to

Jl = max

(
c2

2hl
ln

2c1c2(q + 1)L ‖ ael‖2

εIII
, 0

)
, l = 0, .., L. (III.21)

III.3.2. Complexity analysis of the standard algorithm

From the above error analysis, it follows that accuracy of the MLMC method is controlled

by three parameters:

1. the number of levels L =
⌈
logq

(
h0(cfeε

−1
I )1/α

)⌉
,

2. the number of samples per level Ml =

⌈
ε−2
II

(
V l

Cl

)1/2 L∑
k=0

(CkV k)
1/2

⌉
and

3. the number of CG iterations per sample Jl =

⌈
c2

2hl
ln

2c1c2(q + 1)L ‖ ael‖2

εIII

⌉
.

By analogy with (I.23), the optimal cost of the MLMC estimator is defined as

CML =
L∑
l=0

⌈
Ml

⌉
Cl ≤

L∑
l=0

Cl + ε−2
II

(
L∑
l=0

(ClV l)
1/2

)2

.

Efficient finite element codes assemble the stiffness matrix and the right-hand side

of the system with a time complexity which is proportional to the number of degrees of

freedom, i.e., Csys
l = O

(
h−dl

)
, where d is the spatial dimension of the problem. Also,
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the dominating operations in the CG algorithm are matrix-vector products which require

CS
l = O

(
h−dl

)
operations per iteration since the stiffness matrices are sparse. Thus,

the cost of the CG algorithm behaves asymptotically as O
(
h
−(d+1)
l

∣∣ ln εIII∣∣) because

Jl = O
(
h−1
l

(∣∣ ln εIII∣∣+ lnL
))

and L = O
(∣∣ ln εI∣∣). One may conclude that the cost of

the CG linear solver is asymptotically dominant and the ε-cost of the finite element method

at the discretization level l behaves as

Cl = Csys
l + CS

l Jl = O
(
h−γl
∣∣ ln εIII∣∣) , (III.22)

where γ = d+ 1 and d is the spatial dimension.

According to Theorem I.3.2 and taking into account (III.22), the ε-cost of the MLMC

method applied to the problem in (III.2) is given by

CML '
∣∣ ln ε∣∣


ε−2 if γ − β < 0,

ε−2
∣∣ ln ε∣∣2 if γ − β = 0,

ε−2− γ−β
α if γ − β > 0

(III.23)

with γ = d+ 1, where d is the spatial dimension of the problem.

Note that the common logarithm term in the above estimate appears due to the finite

tolerance εIII of the conjugate gradient method as can be seen from the cost estimate

in (III.22).

III.3.3. Complexity analysis of the accelerated algorithm

Consider the cost of the MLMC estimator (III.9) using the zero initial guess for the CG

solver

CML =
L∑
l=0

(
MlC

sys
l + CS

l

Ml∑
ml=1

Jmll

)
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=
L∑
l=0

(
MlC

sys
l +

c2C
S
l

2hl

Ml∑
ml=1

ln
2c1c2(q + 1)L ‖umll ‖2

εIII

)
,

where Jmll was defined in (III.21) and ‖emll ‖2 = ‖umll − 0‖2 = ‖umll ‖2. Then the cost gain

in (III.10) can be redefined as

∆CML =
L∑
l=0

CS
l

Ml∑
ml=1

(
Jmll −

a

Jmll

)
− Cpredict (III.24)

=
c2

2

L∑
l=0

CS
l h
−1
l

Ml∑
ml=1

ln
‖umll ‖2

‖ aemll ‖2

− Cpredict,

where the initial residual of the linear system ‖ aemll ‖2 is given by the error of the interpolant.

The magnitude of the error ‖ aemll ‖2 is determined by approximation properties of the

corresponding interpolant. To simplify the analysis, we will assume that the input random

fields allow finite dimensional representation as in Example III.2.1. In this case, the

convergence analysis can be performed in the image space Γ(Ω) =
∏s

k=1 Γk ∈ Rs of the

random input vectors equipped with the usual Euclidian distance metric.

The approximation power of the Shepard’s formula in (III.6) is not uniform and depends

on the local distribution of interpolation nodes. To study the global approximation properties

of the method, one needs the uniform distance measure in Γ. The classical choice of such

measure for the data in Γ ∈ Rs is the fill distance

δΓ = sup
y∈Γ

min
1≤j≤n

‖y − yj‖2 , y, yj ∈ Γ,

which defines the radius of the largest data-free ball in Γ.

The convergence analysis of the Shepard approximation is complicated by the obvious

fact that the fill distance δΓ is a function of random variables yi(ω) ∈ Γ. This issue can be

easily resolved if one notes that the problem of function interpolation for a random data

design can be considered in the framework of regression analysis. From this point of view,
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the formulas (III.6) and (III.7) represent Nadaraya-Watson and k-NN smoothers respectively

[Nad64, Gyo02].

It is well known that the theoretical time complexity of the Shepard’s formula is

O(n log(n)) which is very inefficient compared to the O(log(n)) complexity of the ne-

arest neighbour estimate. Therefore, we will consider the nearest neighbour approximation

only.

In order to guarantee the convergence, the regression function estimate in (III.7) must

be consistent for the considered distribution of the training data yi
∣∣n
i=1
∈ Γ. Stone [Sto77]

gave the conditions on the weights which provide the universal consistency of the local

averaging estimates and showed that the k-NN estimate is universally consistent in Rs

provided k →∞ and k/n→ 0.

The following theorem establishes the convergence rate of the k −NN estimate.

Theorem III.3.1 ([Gyo02]). Assume that Γ is bounded and function ul(y) is Lipschitz

continuous in Γ, i.e.,

‖ul(y)− ul(z)‖2 ≤ C ‖y − z‖2 , y, z ∈ Γ.

Let a
u denote the k-NN estimate and assume that available data is noiseless. Then

E
[
‖ ael‖2

2

]
= E

[
‖ aul − ul‖2

2

]
≤ c2

3

(
kNN
n

)2/s

,

where n is the number of training points and c3 is some positive constant.

It is interesting to note that the convergence rate of the Shepard approximation formula

cannot exceed n1/s [Far86]. Thus, the nearest neighbor estimator represents an optimal stable

interpolation operator, insofar as the approximation power of the estimator is concerned.

Theorem III.3.2. Consider the finite element approximation of the linear elliptic system

in (III.2) as in Example III.2.2. The expected ε-cost of the accelerated MLMC method in
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Algorithm 1 is given by

E
[
CNN

ML
]
'
(

1− 1

s

)
CML,

where s is the dimension of the stochastic parameter space and CML is the computational

cost of the standard MLMC method in (III.23).

Proof. Assume that each iteration of the CG solver has CS
l ' h−dl complexity and consider

expectation of the cost gain (III.10)

E [∆CML] = E

[
c2

2

L∑
l=0

CS
l h
−1
l

Ml∑
ml=1

ln
‖umll ‖2

‖ aemll ‖2

− Cpredict

]

'
L∑
l=0

h
−(d+1)
l

Ml∑
ml=1

lnE
[
‖ aemll ‖

2
2

]−1

− E
[
Cpredict

]
.

Using the result of Theorem III.3.1 and the average complexity of the nearest neighbor

search E
[
Cpredict

]
' lnn, we obtain

E [∆CML] '
L∑
l=0

h
−(d+1)
l

Ml∑
ml=1

lnn
1/s
l,ml
−

L∑
l=0

Ml∑
ml=1

lnnl,ml ,

where nl,ml =
∑l−1

p=0 Mp + ml − 1 denotes the number of points in the dataset for ml-th

sample at level l.

The number of samples at each level have the following asymptotic behavior

Ml =
V l

alε2II
= ε−2

II

(
L∑
k=0

(CkV k)
1/2

)(
Cl
−1V l

)1/2 ' ε−2
II θ(γ, β)h

γ+β
2

l , (III.25)

where θ(γ, β) is defined in (I.24) and the cost Cl of the finite element method is given

in (III.22).
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From the Stirling’s formula, we have for l = 0

M0∑
m0=1

ln (m0) = ln (M0!) = M0

(
lnM0 − 1

)
+O

(
lnM0

)
'M0 ln

(
ε−2
II θ(γ, β)

)
.

Similarly, we obtain for l ≥ 1

lnnl,ml = ln

(
l−1∑
k=0

Mk +ml − 1

)
= ln

(
l−1∑
k=0

Mk

)
+ ln

(
1 +

ml − 1∑l−1
k=0Mk

)

' ln

(
l−1∑
k=0

Mk

)
' ln

(
ε−2
II θ(γ, β)

)
+ ln

l−1∑
k=0

h
− γ+β

2
k︸ ︷︷ ︸

O(1)

' ln
(
ε−2
II θ(γ, β)

)
.

Therefore, we get

Ml∑
ml=1

lnnl,ml 'Ml ln
(
ε−2
II θ(γ, β)

)
for l = 0, .., L.

Together with (III.25), this provides the following estimate

E [∆CML] ' ln
(
ε−2
II θ(γ, β)

) L∑
l=0

[
Ml

(
1

s
h
−(d+1)
l − 1

)]

' ε−2
II θ(γ, β) ln

(
ε−2
II θ(γ, β)

) L∑
l=0

[
h
γ+β
2

l

(
1

s
h−γl − 1

)]
' ε−2

II θ(γ, β) ln
(
ε−2
II θ(γ, β)

)(θ(γ, β)

s
−O(1)

)
' 1

s
ε−2
II θ

2(γ, β) ln
(
ε−2
II θ(γ, β)

)
' 1

s
ε−2
II θ

2(γ, β) |ln ε| ,

where the last relation holds because ln (ε−2 |ln ε|)) = O(|ln ε|)
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Finally, we get from (I.24) that

E [∆CML] ' 1

s
|ln ε|


ε−2 if γ − β < 0,

ε−2 |ln ε|2 if γ − β = 0,

ε−2− γ−β
α if γ − β > 0

and the result follows from (III.23).

III.4. Numerical results

This section provides a numerical illustration of the proposed acceleration technique. We

consider three test problems with different sources of uncertainty. However, the geometry of

the domain and the properties of the input random fields are shared by all test cases in order

to simplify the comparison and analysis of results. In particular, the problems are set in a

square domain D = [−1, 1]2 and we use homogeneous Dirichlet boundary conditions for all

components of the solution.

Uncertainty in the input data is modeled using the random field a(X,ω) with the

separable exponential covariance

Cov
(
a
)
(x, z) = σ2 exp

(
−|x1 − z1|+ |x2 − z2|

Lc

)
,

where Lc is the correlation length and σ is the variance. We set σ = 0.2 in all examples

below. Eigenfunctions of the above covariance kernel are given by φn(x) = φ1
i (x1)φ2

k(x2)

where we have for m = {1, 2}

φmi (xm) =


sin (ωix)√

1− sin(2ωi)/(2ωi)
if i even,

cos (ωix)√
1 + sin(2ωi)/(2ωi)

if i odd.
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The corresponding eigenvalues are given by λn = λ1
iλ

2
k with λmi =

2Lc
1 + L2

cψi
and values ψi

are determined from the following transcendental equations
ψi + L−1

c tan(ψi) = 0 if i even,

L−1
c − ψi tan(ψi) = 0 if i odd.
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Figure 13: Eigenvalues of the two-dimensional exponential covariance.

Given the set of eigenfunctions of the covariance kernel, we use the Karhunen-Loeve

approximation of the random field

a(x, ω) ≈ 0.5 +
s∑

n=1

√
λnyn(ω)φn(x), (III.26)

where s represents the stochastic dimension of the problem, eigenvalues λn are ordered in

the descending order and random variables yn(ω) are independent, have zero mean, unit

variance and are uniformly distributed in the interval [−
√

3,
√

3].

The regularity of the input data and the required tolerance of the solution are the

main parameters which control the computational cost of the multilevel Monte Carlo

method. Regularity determines the stochastic dimensionality of the problem which affects
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the effectiveness of the proposed acceleration technique. The impact of the tolerance on the

computational cost is obvious. Smaller tolerance results in higher cost and smaller relative

savings. To understand the actual influence of these parameters on the performance of the

algorithm, we have to carry out a series of numerical tests with different correlation lengths,

stochastic dimensions, spatial discretizations and tolerances.

Example 1. Linear elliptic equation. In the above, we used the linear elliptic equation

as the benchmark problem for our analysis. It is natural to consider the same problem for

the numerical support of the obtained theoretical results. For this purpose, we will study

two different examples.

The first example represents the elliptic system with the lognormal random coefficient

and the deterministic forcing term

 −∇
(

exp
(
a(x, ω)

)
∇u(x, ω)

)
= 1 in D × Ω,

u(x, ω) = 0 on ∂D × Ω
(III.27)

while for the second example, the coefficient is deterministic and the right-hand side is

random  −∇
2u(x, ω) = a(x, ω) in D × Ω,

u(x, ω) = 0 on ∂D × Ω.
(III.28)

First of all, we have to determine the accuracy of the nearest neighbor estimator and test

out its convergence rate. Figure 14 illustrates the convergence of the Euclidean norm of

the residual for the NN approximation of initial guesses for selected spatial discretizations

and stochastic dimensions. The correlation length of the random field and the tolerance

of the solution are set to Lc = 1/4 and ε = 10−5 respectively. One may observe that the

convergence is linear in the log-log scale and the rate of convergence is independent of
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(B) Example 2. Random forcing term.

Figure 14: Average initial residual of the CG linear solver for the problems (III.27) (left)
and (III.28) (right) with the nearest neighbor prediction of true solutions.

Table 3: Computed convergence rates of initial residuals for h = 0.2Lc.

Lc
1/s

0.33 0.20 0.14 0.10 0.07 0.05

1 0.34 0.21 0.16 0.12 0.09 0.07

1/4 0.34 0.21 0.16 0.11 0.08 0.06

1/16 0.43 0.27 0.21 0.14 0.10 0.08

the spatial discretization. Moreover, the slopes of the lines are proportional to 1/s which

is the theoretical rate from Theorem III.3.1. The actual convergence rates computed for

different correlation lengths and stochastic dimensions are given in Table 3. It is clear that

the obtained results confirm the theory.

Exponential decay of initial residual suggests that the number of CG iterations is a

logarithmically decreasing function of the number of Monte Carlo samples. Indeed, Fi-

gure 15 illustrates that decay of iterations is linear in logarithmic scale with the rate which is

inversely proportional to the dimension of parameter space. Evidently, the observed number

of iterations and their decay rates increase for decreasing mesh size which empirically shows
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Table 4: Total relative savings of iterations, %

s 3 5 7 10 15 20

100/s 33.3 20.0 14.3 10.0 6.7 5.0

Lc = 1

ε = 10−4 32.4 20.5 15.7 11.5 9.9 9.4

ε = 10−5 24.9 15.3 11.8 8.6 6.7 6.4

ε = 10−6 19.6 12.2 8.7 7.3 5.5 4.3

Lc = 1/4

ε = 10−4 36.9 20.4 14.4 10.6 7.1 5.9

ε = 10−5 30.6 17.2 12.9 8.3 5.8 4.9

ε = 10−6 18.7 11.6 8.8 6.6 4.5 3.8

Lc = 1/16

ε = 10−4 51.0 36.8 26.1 19.2 13.9 10.4

ε = 10−5 48.4 26.7 18.7 13.4 9.8 6.8

ε = 10−6 37.4 22.0 15.1 10.6 6.8 4.6

the correctness of the formula (III.21). At the same time, Figure 16 shows that relative

savings of iterations are insensitive to the level of discretization which leads to the result of

the theorem III.3.2 since we have

∆CML

CML
=

∆C0 + ∆C1 + ...+ ∆CL
C0 + C1 + ...+ CL

.
s−1C0 + s−1C1 + ...+ s−1CL

C0 + C1 + ...+ CL

and ∆CML '
1

s
CML.

One may predict that relative computational savings are better for higher tolerances

of the CG solver since ∆CML does not depend on the tolerance and CML is bigger for

smaller values of εIII as follows from the formula (III.24). Table 4 provides empirical

verification of this prediction; it contains total relative savings of iterations estimated for

the problem with the random coefficient for different tolerances and correlation lengths.

Additionally, the dependence of the savings on the stochastic dimension of the problem is

depicted graphically in Figure 17. These empirical results show that, for the given input data

and the fixed tolerance of the solution, savings of the proposed acceleration technique are
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Figure 15: Average number of iterations of the CG solver for different spatial discretizations
and stochastic dimensions and fixed tolerance ε = 10−5.
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Figure 16: Average relative savings of iterations of the CG solver for different stochastic
dimensions and spatial discretizations and fixed tolerance ε = 10−5.
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controlled by the approximation power of the nearest neighbor estimator which is inversely

proportional to the dimension of the parameter space. This, in fact, shows the correctness of

Theorem III.3.2.

Finally, Figure 18 compares the gain in the CPU cost from the nearest neighbor approxi-

mation of initial guesses to the actual cost of making these predictions. Clearly, the cost of

the NN estimator is smaller than the obtained computational savings by several orders of

magnitude which fully justifies the proposed acceleration technique.

Example 2. Stationary Navier-Stokes system. The goal of this numerical example is to

demonstrate that the proposed acceleration method can be successfully applied to problems

other than linear elliptic equations. In particular, here we consider the stationary Navier-

Stokes system


−ν∇2u + u · ∇u +∇p = f(x, ωf ) in D × Ω,

∇ · u = 0

u = 0 on ∂D × Ω,

(III.29)

which is an example of the nonlinear saddle point problem.

For the homogeneous boundary conditions, the flow is generated only by the random

forcing term f(x, ωf ) which must induce no flow through the boundary in order to satisfy

conservation of mass. This can be achieved if the force function is given by a divergence free

vector field. By Helmholtz decomposition of vector fields, this suggests that f is represented

as a curl of a vector potential which gives the following expression in two dimensions

f = ∇×
(

0, 0, ψ
)T

=

(
0, 0,

∂ψ

∂y
− ∂ψ

∂x

)T

for some scalar function ψ(x) so that∇× f =
(

0, 0,−∇2ψ
)T

. This leads to the definition
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Figure 18: Average savings of CPU time for different stochastic dimensions and fixed spatial
discretization h = 2−5 and tolerance ε = 10−5.
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of ψ(x) by

 ∇ψ(x, ω) = −a(x, ω) in D × Ω,

ψ(x, ω) = 0 on ∂D × Ω.

It is convenient to define the inverse operator L : H−1(Ω) → H1
0(Ω) which maps the

rotational a(x, ω) of the force term f(x, ω) to the ”stream function” ψ(x, ω). Then the

forcing function takes the form

f(x, ω) ≈ f0 +
s∑

n=1

√
λnyn(ω)fn, fi(x) = ∇×

(
0, 0,L[φi(x)]

)T
,

where φi(x) are the eigenfunctions of the exponential covariance operator which form the

basis of the KL expansion in (III.26).

It is important to note that correlation length of the input random field cannot be arbitrary

because it is related to the Reynolds number. It is physically unlikely that highly irregular

and noisy data will produce the flow with low Reynolds number which is required to

guarantee the existence of the stationary solution. Therefore, we choose Lc = 1.

Nonlinearity of the problem is resolved by the composite technique which combines sim-

ple iteration and Newton methods [Gun89]. To illustrate the effectiveness of the acceleration

technique, we have accomplished a series of numerical simulations for different dimensions

of the input random field and selected Reynolds numbers. The obtained results are presented

graphically in Figure 19. It is seen that the nearest neighbor acceleration technique results

in high computational savings especially for convective dominated flows where nonlinearity

plays crucial role. Additionally, Figure 20 illustrates computational savings as a function of

the stochastic dimension. One can observe that relative savings have similar behavior to that

of the linear elliptic system.
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Figure 19: Cumulative CPU time savings of the accelerated MLMC method for the problem
(III.29). Tolerance of the solution is set to ε = 10−5.
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Figure 20: Total relative CPU time savings of the accelerated MLMC method for the
problem (III.29). Tolerance of the solution is set to ε = 10−5.
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CHAPTER IV

PARTIAL DIFFERENTIAL EQUATIONS IN RANDOM DOMAINS

Problems with topological uncertainties appear in many applied fields ranging from

nano-device engineering and analysis of micro electromechanical systems (MEMS) [AA07,

ZWD04] to design of bridges [CF09]. Other applications include flow over rough surfaces

[TX06, ZPTK13], surface imaging [Tso05], corrosion or wear of surfaces, homogenization

of random heterogeneous media [SSPD14] and even modelling of blood flow [PIT12].

Despite its practical importance, relatively few results for partial differential equations

in random domains are available in the literature. The existing numerical techniques can

be fitted into several categories based on the method used for modeling and quantification

of uncertainty of random domain representations. Perturbation techniques form the first

category of methods. They describe random geometry using Eulerian coordinates in the

sense that points in the interior of the domain are held fixed and geometric uncertainty

is modeled by random perturbation of the boundary. In this approach, one starts with

specification of the deterministic reference boundary ∂Dref and the random perturbation

field χ(ω) acting on it

χ(x, ω) : ∂Dref → ∂D(ω), x ∈ ∂Dref .

Since uncertainty in the problem propagates only through stochastic perturbation of the

reference boundary, this approach naturally leads to boundary integral representation of

solutions to boundary value problems (BVP) under consideration. The key point in this

approach is that boundary integral equations (BIE) are formulated on the unperturbed

nominal boundary and variation of random geometry is quantified using methods of the

”shape calculus”. For instance in [Hon05], the ”shape Taylor expansion” was applied to

unknown densities of integral equations of the classical boundary element method (BEM)

and the solution of the BVP was constructed in the form of a polynomial chaos expansion.
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The resulting system was then projected on a homogeneous chaos space giving a single

matrix equation for coefficients of this expansion. Alternatively, in [HSS08], the solution

of the problem itself was represented in the form of the asymptotic shape Taylor series.

Using second moment analysis, the mean and the variance of this representation were then

determined as solutions of auxiliary deterministic boundary values problems.

The second group of methods utilizes Lagrangian description of random geometries,

i.e., stochastic perturbation is applied to every point in the physical domain. This requires

explicit knowledge of the random mapping function

χ(x, ω) : Dref → D(ω), x ∈ Dref

which is usually defined by specifying a random displacement field g(x, ω) relating the

points in the reference domain to the points in each realization of the random domain

according to the rule

ξ(ω) = x+ g(x, ω), x ∈ Dref , ξ ∈ D(ω).

When such transformation is established, there are two ways to put it into computational

framework. Firstly, via the chain rule, it is possible to transform the original problem in a

random domain to a problem with random coefficients posed on a deterministic reference

domain. Since uncertainty usually enters the problem through the random perturbation of

the boundary, this approach requires solution of a series of auxiliary partial differential

equations to extend the random displacement mapping to the whole domain. The resulting

problem with random coefficients can then be attacked numerically with available con-

ventional solvers. This approach was developed in [XT06] in conjunction with stochastic

Galerkin method and then applied in [TX06, KAF14, HPS14] both to stationary and to time

dependent PDEs. Additionally, the domain mapping method followed by the stochastic

collocation approximation in random space was considered in [CC14, CCNT15]. An equiva-
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lent Lagrangian approach was also proposed in [AA07], where the mapping to the reference

domain was applied together with stochastic spectral boundary element approximation of

the underlying problem. In this case, however, extension of the random perturbation field to

the whole domain was not required due to boundary integral formulation of the problem.

Contrary to the domain mapping method which generates a new problem with a different

governing stochastic operator, one can apply the random displacement field directly to the

mesh-based representation of random geometries. In this case, deformations are employed

on the reference mesh producing the new mesh with random coordinates of nodes but the

same fixed connectivity. This procedure does not change the underlying equations enabling

reusability of existing deterministic solvers. This idea was proposed in [MNK11] where it

was combined with a polynomial chaos approximation in random space. Later it was also

studied in [HPS14] in the context of the quasi-Monte Carlo method applied to problems

posed on domains with random interfaces.

Another group of numerical techniques which can be found in the literature is presented

by fictitious domain methods. Within this approach, the problem is formulated on a larger

deterministic domain containing all realizations of a random boundary. The attractive feature

of these methods is that the enclosing domain can be chosen arbitrarily allowing for simple

discretizations such as, for example, tensor product grids which do not have to conform

with random boundaries or interfaces inside the reference domain. However, in order to

enforce the boundary conditions of the original problem, additional variables must be added

to the new problem formulation on a fictitious domain. A possible way to achieve this

is by introducing a Lagrange multiplier acting on a random boundary and transforming

the original problem into a new saddle-point problem. For instance, this technique was

used in [CK07] together with spectral stochastic Galerkin method. It was also mentioned

in [NSM07, NCSM08] in the context of the extended stochastic finite element method

(X-SFEM). The X-SFEM was also applied in [SSPD14, LDM13, NC10] to problems with
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random interfaces by enriching the traditional finite element basis with a suitably constructed

enrichment functions to capture the solution discontinuity at the material interface. In X-

SFEM, the a-priory information about location of random boundaries is incorporated into

the problem implicitly via the level-set representation of geometries. This technique was

also applied in [NCS11] where the solution was constructed with the Proper Generalized

Decomposition method using the separated representation of the indicator function of the

uncertain domain defined in terms of the level-set function. This approach, however, was

limited only to Neumann boundary conditions imposed on the random boundary.

The methods described above have proven their efficiency for solving problems on

random domains. Nevertheless, they have certain limitations. For example, the main

drawback of the perturbation techniques, shared by all methods using Eulerian description,

is that they are applicable only to small random perturbations. The methods which use

Lagrangian description do not have this issue but they propagate uncertainty from the

boundary to the whole domain. This feature is not desirable when random displacement

field is applied only to small part of the boundary. In fictitious domain methods, this issue is

resolved via boundary supported Lagrange multiplier. In the resulting discrete saddle-point

problem, the information on the geometry of the random domain is encoded only in the

matrix coupling the primal variable and the Lagrange multiplier which gives significant

computational savings.

In this chapter, we propose the novel computational framework based on the Green’s

function formulation of the boundary integral equation method. It is conceptually similar

to the family of fictitious domain methods, however, no fictitious boundary is required.

Our motivation for this approach is clear. Firstly, as it was mentioned above, topological

uncertainties usually enter the boundary value problems through random perturbations of

the boundary making the BIE method the natural choice for building approximate solutions.

Additionally, in many problems, only certain (often relatively small) part of the boundary is
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subjected to random perturbations. This significantly reduces efficiency of fully discrete

formulations of conventional solvers due to the necessity in discretization of the whole

physical domain. In this regard, semi-analitical approximations hold a vast potential.

Namely, we propose to construct solutions in the form of potentials with suitable Green’s

functions as kernels. As will be shown later, this allows to reformulate the problem as an

integral equation on the random part of the domain only. The first step towards the practical

application of this approach was done in [Mel77] where the so-called method of ”modified

potentials” was introduced. Later it was successfully applied to various stationary and time-

dependent problems [MR14, MHM96]. It is also worth noting that importance of Green’s

functions has been recognized in various uncertainty quantification and uncertainty reduction

techniques [CET15, BST13, NO93, NTWW96, MS96]. Here we apply the multilevel Monte

Carlo (MLMC) method for statistical discretization. However, any method of collocation

type can be trivially adopted to the proposed numerical technique.

IV.1. Problem setting

Let (Ω,F ,P) be a complete probability space with a set of outcomes Ω, a sigma algebra

of eventsF and a probability measure P defined on it. For each outcome ω ∈ Ω, defineD(ω)

to be a realization of a random domain with a boundary comprised of deterministic and

random parts ∂D(ω) := ∂D1 ∪ ∂D2(ω). We are concerned with solutions of the following

boundary value problem

Lu(x, ω) = f(x) for x ∈ D(ω),

B1u(x, ω) = b1(x) for x ∈ ∂D1,

B2u(x, ω) = b2(x) for x ∈ ∂D2(ω),
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where L is a linear partial differential operator subjected to boundary conditions determined

by linear operators B1 and B2. We require u(x, ω) to be a Bochner integrable function with

values in some Banach space W (D), i.e., u(x, ω) ∈ Lp(Ω;W (D)), the function space given

by

Lp
(

Ω;W (D)
)

:=

{
u : Ω→ W (D)

∣∣∣ u is strongly measurable and ‖u‖Lp(Ω;W (D)) <∞
}

with the corresponding norm

‖u‖pLp(Ω;W (D)) =


∫

Ω

‖u(·, ω)‖pW (D) dP(ω) if 0 < p <∞,

ess supω∈Ω ‖u(·, ω)‖W (D) if p =∞.
(IV.1)

For simplicity, we will write Lp(Ω) instead of Lp(Ω;W (D)) when the particular function

space W (D) can be concluded from the context.

For the sake of simplicity we will limit our attention to the simple case of the linear

elliptic equation of the form

−∇2u(x, ω) = f(x) for x ∈ D(ω),

α1u(x, ω) + β1
∂u(x, ω)

∂n
= b1(x) for x ∈ ∂D1, (IV.2)

α2u(x, ω) + β2
∂u(x, ω)

∂n
= b2(x) for x ∈ ∂D2(ω).

With this choice, we do not lose in generality because the proposed solution strategy can be

easily extended to more general linear operators.

Denote by D1 the reference deterministic domain containing all realizations of the

random boundary ∂D2(ω). This definition is similar to that used in the family of fictitious

domain methods. However, we explicitly require that the deterministic part of the boundary

∂D1 is also the boundary of D1. This definition is depicted graphically in Figure 21.
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Now, due to linearity of the operators in (IV.2), one can represent the solution u(x, ω) as a

superposition of two functions

u(x, ω) = u1(x) + u2(x, ω). (IV.3)

The first function u1(x) represents the deterministic component of the solution u(x, ω)

and satisfies the following boundary value problem defined on the reference domain D1

−∇2u1(x) = f(x) for x ∈ D1, (IV.4)

α1u1(x) + β1
∂u1(x)

∂n
= b1(x) for x ∈ ∂D1.

The above problem can be solved with any conventional analytic or numerical technique.

The conditions on the required regularity of the input data f(x) and b1(x) are thus determined

by the choice of the solver and are out of the scope of this chapter. We only require that the

problem (IV.4) is well defined such that the solution u1(x) exists and is unique.

The random component u2(x, ω) of the solution u(x, ω) can be determined from the

following homogeneous boundary value problem

−∇2u2(x, ω) = 0 for x ∈ D(ω),

α1u2(x, ω) + β1
∂u2(x, ω)

∂n
= 0 for x ∈ ∂D1, (IV.5)

α2u2(x, ω) + β2
∂u2(x, ω)

∂n
= φ(x) for x ∈ ∂D2(ω).

with the boundary condition on ∂D2(ω) defined by the trace of the deterministic compo-

nent u1(x)

φ(x) = b2(x)− α2u1(x)− β2
∂u1(x)

∂n
. (IV.6)
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Figure 21: Realization of the random domain D(ω) (left) and the corresponding determinis-
tic domain D1 (right).

IV.2. Description of the acceleration technique. Dimension reduction

Since u1(x) is deterministic, the only source of uncertainty in u(x, ω) is given by the

solution of the problem in (IV.5). It is simpler than the original problem in (IV.2) allowing

to apply solution methods which are very well suited for this particular type of problems.

One of such methods, namely the method of modified potentials, is proposed in this chapter.

Firstly, define the Green’s function corresponding to the boundary value problem (IV.4) via

the following differential system

−∇2G1(x, ξ) = δ(ξ) for x, ξ ∈ D1, (IV.7)

α1G1(x, ξ) + β1
∂G1(x, ξ)

∂nx
= 0 for x ∈ ∂D1,

where δ(ξ) is the Dirac measure of unit mass at point ξ. With this function at hand and taking

advantage of the special structure of the problem in (IV.5), we can construct its solution

u2(x, ω) in the form of a single-layer Green’s potential [Jas63, Sym63]

u2(x) =

∫
∂D1

G1(x, y)ν1(y)dl(y) +

∫
∂D2(ω)

G1(x, y(ω))ν2(y(ω))dl(y(ω))
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=

∫
∂D2(ω)

G1(x, y(ω))ν2(y(ω))dl(y(ω)) (IV.8)

=

∫ 1

0

G1(x, ξω(t))µ(ξω(t))dt,

where µ(ξω(t)) = ν2(ξω(t)) |ξ′ω(t)| and ξω(t) defines a parameterization of the random

boundary curve for fixed ω ∈ Ω. In the above expression, the first integral over the

deterministic part of the boundary vanishes because the Green’s function G1(x, ξ) satisfies

the homogeneous boundary conditions on ∂D1 by definition.

Using (IV.6) and the jump conditions of the derivative of the single-layer potential on

the boundary, the unknown density µ(ξω(t)) of the potential in (IV.8) can be obtained from

the following boundary integral equation

−1

2

µ(ξω(s))

|ξ′ω(s)|
+

∫ 1

0

(
α2 + β2

∂

∂nξω(s)

)
G1(ξω(s), ξω(t))µ(ξω(t))dt = φ(ξω(s)), s ∈ [0; 1],

(IV.9)

which is a Fredholm equation of the second kind. The pure Neumann problem ( α2 = 0,

β2 = 1 ) yields the similar equation

−1

2

µ(ξω(s))

|ξ′ω(s)|
+

∫ 1

0

∂G1(ξω(s), ξω(t))

∂nξω(s)

µ(ξω(t))dt = φ(ξω(s)), s ∈ [0; 1]. (IV.10)

It is well known that equations of the second kind are well-posed and numerous numerical

techniques have proposed for their efficient solution [Atk97]. However, in the case of

Dirichlet boundary conditions ( α2 = 1, β2 = 0 ), equation (IV.9) converts to the Fredholm

equation of the first kind

∫ 1

0

G1(ξω(s), ξω(t))µ(ξω(t))dt = φ(ξω(s)), s ∈ [0; 1], (IV.11)

which is intrinsically ill-posed and must be treated with special care. For this reason, the
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traditional approach in solving the Dirichlet problem with methods of potential theory is

based on representing the solution in the form of the potential of the double-layer which

gives equations of the second kind. The use of the single-layer potentials, however, has

advantage of automatically satisfying equation on the deterministic boundary. As a result,

when the length of the boundary ∂D1 is large, the method of modified potentials can

lead to significant computational savings compared to traditional approaches relying on

discretization of the whole boundary and/or domain. It is well known that equations of

the first kind with logarithmically singular kernels admit unique solutions when conformal

radius of the boundary is not equal to one[YS88, Che93]. Therefore, we assume that all

boundaries satisfy this condition.

Of course, efficiency of the proposed method relies on the availability of the Green’s

functions satisfying the system (IV.7) for the specific geometry of the domain. This becomes

a serious limiting factor when the method is applied to deterministic problems because

analytic expressions of the Green’s functions can be obtained only for very simple domains.

Numerical estimation of Green’s functions can be impractical since this requires one to

solve the complementary boundary value problem which represents a challenging task by

itself. However, in the case of uncertain domains, the complementary problem has to be

solved only once and the value of the Green’s function at any field point is then readily

available through a simple matrix vector product which can be done very efficiently.

IV.2.1. Discretization scheme

Spatial discretization The boundary integral equation (IV.9) is the classical equation of

potential theory. It has been extensively studied in the literature and the large database of

methods has been already collected [AS91, Atk97, GJS85, JSSE97, Slo00, Che93, Che94].

We do not pretend to give an exhaustive literature review nor we propose the new method. In

fact, BIE (IV.9) can be solved with any available technique without modifying the proposed
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solution strategy.

For the sake of completeness, we present here the quadrature technique proposed in

[SB92] for the first kind Fredholm equations with logarithmic kernels on closed curves.

It is a fully discrete method of qualocation type based on the composite quadrature rule,

i.e., both the integral operator and the Galerkin projection are approximated with suitable

quadratures.

We start with the boundary integral operator

(Aµ)(s) =

∫ 1

0

G1(ξω(s), ξω(t))µ(ξω(t))dt

and approximate it with the trapezoidal rule on the uniform grid with step h = 1/N for

some integer N

(Aµ)(s) ≈ (Ahµ)(s) = h
N−1∑
k=0

G1(ξω(s), ξω(kh))µ(ξω(kh)), s ∈ [0; 1]. (IV.12)

The case of nonuniform grid is obtained trivially.

We then project this approximation on the test space Sh of 1-periodic smoothest splines

of order r with the discrete inner product

(v, w)h = Qh(vw),

where

Qhg = h

N−1∑
k=0

J∑
j=1

wjg((k + ζj)h), 0 < ζ1 < ζ2 < ... < ζJ < 1
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and

J∑
j=1

wj = 1, wj > 0, for 1 ≤ j ≤ J.

The problem now can be formulated as follows: find µh such that

(Ahµh, χ)h = (φ, χ)h, ∀χ ∈ Sh.

For r = 2, the basis (v0, ..., vN−1) of Sh is represented by the classical hat functions

vk(s) =


1− |s− kh|/h, if |x− kh| ≤ h,

0, otherwise.
(IV.13)

Given the basis, one can write the discrete formulation of the problem: find µh such that

N−1∑
k=0

al,kµh(ξω(kh)) = (f, vl)h, l = 0, ..., N − 1, (IV.14)

where

al,k = h2

N−1∑
k′=0

J∑
j=1

wjG1

(
ξω
(
(k′ + ζj)h

)
, ξω(kh)

)
vl
(
(k′ + ζj)h

)
.

It was shown in [SB92] that the following choices of the quadrature points and the

weights are optimal in terms of stability of the approximation

J = 2,

ζ1 =
1

6
, ζ2 =

5

6
, (IV.15)

w1 =
1

2
, w2=

1

2
,

J = 1,

ζ1 =
1

6
, (IV.15’)

w1 = 1.
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Figure 22: Collocation points (circles) and quadrature points (crosses) according to (IV.15)
(left) and (IV.15’) (right).

The collocation points ξω(kh) and the quadrature points ξω
(
(k′ + ζj)h

)
for the case of hat

basis functions vk(s) in (IV.13) are depicted in Figure 22.

The choice of nodes in (IV.15) gives the O(h3) order of uniform convergence [SB92].

The scheme with nodes in (IV.15’) has only O(h2) accuracy but the linear system in (IV.14)

converts to much simpler form

h
N−1∑
k=0

G1

(
ξω
(
(k′ + ζ)h

)
, ξω(kh)

)
µh(ξω(kh)) = f

(
(k′ + ζ)h

)
, k′ = 0, ..., N − 1.

(IV.16)

After the density of the potential is determined from the linear system in (IV.14) or

(IV.16), one can calculate the solution u2(x, ω) at any field point by evaluating the integral

with the quadrature rule (IV.12).

IV.2.2. Evaluation of Green’s functions for arbitrary domains

As it was mentioned previously, the proposed numerical technique relies heavily on

the ability to evaluate Green’s functions for domains of arbitrary shapes. We outline here

several methods which allow to do this in a computationally attractive way. Following the

logic of this chapter, we will consider Green’s functions for the classical two-dimensional
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Laplace operator only, i.e., we will limit our attention to the problem in (IV.7)

−∇2G1(x, ξ) = δ(ξ) for x, ξ ∈ D1, (IV.17)

α1G1(x, ξ) + β1
∂G1(x, ξ)

∂nx
= 0 for x ∈ ∂D1. (IV.18)

The case of more general operators can be treated similarly.

Analytical Green’s functions.

Our discussion will be incomplete if we do not mention special cases when the Green’s

function can be obtained in a closed analytic form. Fundamental solution is, probably, the

most important example of such solution since it can be used as a particular solution for the

system in (IV.17)-(IV.18). It satisfies the equation (IV.17) in the domain with no boundaries

and has the form

G∗(x, ξ) = − 1

2π
ln r, r =

√
(x1 − ξ1)2 + (x2 − ξ2)2. (IV.19)

The general form of the Green’s function can be written as a sum of the particular

solution (IV.19) and a ”corrector” function aiming to satisfy the boundary condition in

(IV.18)

G1(x, ξ) = G∗(x, ξ) + ψ(x, ξ). (IV.20)

Defined in this way, the corrector function is called the regular component of the Green’s

function. It solves the following complementary system

−∇2ψ(x, ξ) = 0 for x, ξ ∈ D1, (IV.21)

α1ψ(x, ξ) + β1
∂ψ(x, ξ)

∂nx
= −α1G

∗(x, ξ)− β1
∂G∗(x, ξ)

∂nx
for x ∈ ∂D1. (IV.22)
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In the case of simple geometries possessing certain symmetry properties, the above system

admits the closed form analytic solution which can be constructed via the method of

images. We list several examples of Green’s function obtained in this way below; more

examples can be found, for instance, in [Duf01, Mel11]. Additionally, the infinite product

representation of Green’s functions arising from applying the method of images is discussed

in [MM12, Res13].

Dirichlet problem in the upper half-plane D1(x, y) = {x, y ≥ 0}

G1(x, ξ) = − 1

2π
ln

√
(x1 − ξ1)2 + (x2 − ξ2)2

(x1 − ξ1)2 + (x2 + ξ2)2
.

Neumann problem in the upper half-plane D1(x, y) = {x, y ≥ 0}

G1(x, ξ) = − 1

2π
ln
√(

(x1 − ξ1)2 + (x2 − ξ2)2
)(

(x1 − ξ1)2 + (x2 + ξ2)2
)
.

Dirichlet problem in the quarter plane D1(r, ϕ) = {0 ≤ r <∞, 0 ≤ ϕ ≤ π/2}

G1

(
x, ξ
)

=
1

4π
ln

2∏
n=1

r2 − 2rρ cos(ϕ− (nπ − ς)) + ρ2

r2 − 2rρ cos(ϕ− ((n− 1)π + ς)) + ρ2
,

(x1, x2) = r(cos(ϕ), sin(ϕ)), (ξ1, ξ2) = ρ(cos(ς), sin(ς)).

Dirichlet-Neumann problem in the quarter planeD1(r, ϕ) = {0 ≤ r <∞, 0 ≤ ϕ ≤ π/2}

with Dirichlet condition along y = 0 and Neumann condition along x = 0

G1

(
x, ξ
)

=

1

4π
ln

(
r2 − 2rρ cos(ϕ− (2π − ς)) + ρ2

r2 − 2rρ cos(ϕ− ς) + ρ2
· r2 − 2rρ cos(ϕ− (nπ − ς)) + ρ2

r2 − 2rρ cos(ϕ− ((n− 1)π − ς)) + ρ2

)
,

(x1, x2) = r(cos(ϕ), sin(ϕ)), (ξ1, ξ2) = ρ(cos(ς), sin(ς)).
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Dirichlet problem in the infinite wedge D1(r, ϕ) = {0 ≤ r <∞, 0 ≤ ϕ ≤ π/4}

G1

(
x, ξ
)

=
1

4π
ln

4∏
n=1

r2 − 2rρ cos(ϕ− (nπ
2
− ς)) + ρ2

r2 − 2rρ cos(ϕ− ( (n−1)π
2

+ ς)) + ρ2
,

(x1, x2) = r(cos(ϕ), sin(ϕ)), (ξ1, ξ2) = ρ(cos(ς), sin(ς)).

Dirichlet-Neumann problem in the infinite wedgeD1(r, ϕ) = {0 ≤ r <∞, 0 ≤ ϕ ≤ π/4}

with Dirichlet condition along the wedge width ϕ = 0 and Neumann condition along the

wedge with ϕ = π/4

G1

(
x, ξ
)

=

1

4π
ln

2∏
n=1

(
r2 − 2rρ cos(ϕ− ( (2n−1)π

2
+ ς)) + ρ2

r2 − 2rρ cos(ϕ− ( (2n−1)π
2
− ς)) + ρ2

· r2 − 2rρ cos(ϕ− (nπ − ς)) + ρ2

r2 − 2rρ cos(ϕ− ((n− 1)π + ς)) + ρ2

)
,

(x1, x2) = r(cos(ϕ), sin(ϕ)), (ξ1, ξ2) = ρ(cos(ς), sin(ς)).

Dirichlet problem in the disk D1(r, ϕ) = {0 ≤ r < a, 0 ≤ ϕ ≤ 2π}

G1

(
x, ξ
)

=
1

4π
ln
a4 − 2rρa2 cos(ϕ− ς) + r2ρ2

a2(r2 − 2rρ cos(ϕ− ς) + ρ2)
,

(x1, x2) = r(cos(ϕ), sin(ϕ)), (ξ1, ξ2) = ρ(cos(ς), sin(ς)).

It is worth noting that presented analytic expressions can be used to build asymptotic

approximations of the true Green’s function when both the source point ξ and the observation

point x are located near the boundary. One can also use them as building blocks for

composite kernels.
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Direct numerical approximation of Green’s functions.

The advantage of having the explicit expression for the inverse operator is most promi-

nent in problems with fixed geometry and multiple boundary conditions or right hand sides.

However, having the analytic expression for the Green’s function is an exception rather than

a rule. Therefore, it is not surprising that the benefits of numerical utilization of Green’s

functions have been already recognized in the early era of digital computing [BL58, GK69].

By its definition, the Green’s function of the boundary value problem is the inverse of the

corresponding differential operator. In fact, any numerical method implicitly constructs the

approximate inverse operator of the original problem and thus every numerical solution can

be formulated in terms of the corresponding approximate Green’s functions. For instance, it

was shown in [Tot70] that the finite element solution uh(x) of the boundary value problem

with homogeneous boundary conditions has the form

uh(x) =

∫
D

Gh(x, ξ)f(ξ)dξ,

where Gh(x, ξ) is the FE-Green’s function, i.e., the projection of the exact Green’s function

on the finite element space Vh. One can write the FE-Green’s function in terms of the basis

functions (v1, ..., vM) ∈ Vh as

Gh(x, ξ) =
M∑
i=1

gi(ξ)vi(x).

Solving for the coefficients gi(ξ) we get the following

Theorem IV.2.1. ([Har13]) Let K be the stiffness matrix of the linear system arising after

the finite element disretization. The FE-Green’s function has the form

Gh(x, ξ) = v(x)TK−1v(ξ), (IV.23)
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where v(x) = (v1(x), ..., vM(x)) are the basis functions of the FE-space Vh.

It is interesting to note that when the basis (v1, ..., vM) ∈ Vh is given by the eigenfuncti-

ons of the differential Sturm-Liouville problem, i.e., in the case of the spectral finite element

method, the formula (IV.23) converts to

Gh(x, ξ) = v(x)TΛ−1v(ξ) =
M∑
i=1

vi(x)vi(ξ)

λi
, (IV.24)

where Λ is the diagonal matrix with corresponding eigenvalues. One can immediately

recognize in (IV.24) the M -term truncation of the classical eigenfunction representation of

the Green’s function which is guaranteed to exist by the Mercer’s theorem [FM16].

The spectral representation in (IV.24) might be useful when the corresponding eigenvalue

problem admits the analytical solution. When this is not the case, one gets the tradeoff

between inversion of the stiffness matrix in (IV.23) and numerical approximation of the

eigenfunctions and eigenvalues in (IV.24). Green’s functions which have analytical spectral

representation can be found, for instance, in [Duf01]. As an example, we provide the

Green’s function for the

Dirichlet problem in the rectangle D1(x, y) = {0 ≤ x ≤ a, 0 ≤ y ≤ b}

G1

(
x, ξ
)

= 4ab
∞∑
n=1

∞∑
m=1

sin

(
mπξ1

a

)
sin

(
nπξ2

b

)
sin
(mπx1

a

)
sin
(nπx2

b

)
n2π2a2 +m2π2b2

. (IV.25)

Numerical approximation of the regular part of Green’s functions.

Representations in (IV.23)-(IV.24) converge very slowly since the Green’s functions

generally do not belong to the function spaces approximated by the span(v1(x), ..., vM(x)).

For instance, solutions to the Poisson equation are usually constructed in H1(D1), the space

of square integrable functions with square integrable first derivatives, but the solution to the
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problem in (IV.17)-(IV.18) is not in H1(D1) since the delta function δ(ξ) /∈ H−1 for d ≥ 2,

where d is the physical dimension of the problem. Analogously, analytical expansions like

(IV.25) do not have uniform error estimates which seriously limits their practical utilization.

In certain cases, one can obtain uniformly convergent spectral representations by partial

summation of the series leading to explicit extraction of the singularity. Justification of this

approach with practical examples can be found in [Mel98]. For instance the series in (IV.25)

is transformed to the following form

G1

(
x, ξ
)

=
1

2π
ln

[
E(z − ζ∗)E(z + ζ∗)E(z1 + ζ∗1 )E(z2 + ζ∗2 )

E(z − ζ)E(z + ζ)E(z1 + ζ1)E(z2 + ζ2)

]
(IV.26)

− 2

π

∞∑
n=1

Sn(x1, ξ1) sin

(
nπξ2

b

)
sin
(nπx2

b

)
,

where z = x1+ix2, z1 = (x1+a)+ix2, z2 = (x1−a)+ix2, ζ = ξ1+iξ2, ζ1 = (ξ1+a)+iξ2,

ζ2 = (ξ1 − a) + iξ2, ζ∗1 = (ξ1 + a)− iξ2, ζ∗2 = (ξ1 − a)− iξ2, E(z) =
∣∣eπz/b − 1

∣∣ and

Sn(x1, ξ1) =
enπx1/b sinh(nπ(ξ1 − a)/b)− e−nπx1/b sinh(nπ(ξ1 + a)/b)

2ne2nπa/b sinh(nπa/b)
.

The remainder term RM(x, ξ) of the M -term truncation of the expansion in (IV.26) has the

estimate

|RM(x, ξ)| ≤ b

2π

(
ln
(
1− e−πa/b

)
−

N∑
n=1

e−nπa/b

n

)
which reveals the extremely high rate of convergence.

Similarly, the corrector function ψ(x, ξ) obtained in (IV.20) after extracting singularity

from the Green’s function is harmonic everywhere in the domain D1 and thus can be

efficiently approximated with any conventional numerical method. For instance, the finite

element approximation has the form

ψh(x, ξ) = v(x)TK−1g∗(ξ),



133

where K is the same stiffness matrix as in (IV.23) and g∗(ξ) encodes the trace of the

fundamental solution on the boundary.

One can also construct the regular part of the Green’s function in the form of the single

layer potential

ψ(x, ·) =

∫
∂D1

G∗(x, y)ν1(y)dl(y) =

∫ 1

0

G∗(x, ξ1(t))µψ(t)dt,

whereG∗(x, y) is the fundamental solution of the differential operator, µψ(t) = ν1(ξ1(t)) |ξ′1(t)|

and ξ1(t) defines a parameterization of the boundary ∂D1 of the Green’s function domain.

It is natural to build the approximate solution of the above equation with the same method

used for the approximation of the original integral equation, e.g., with the scheme given in

section IV.2.1. We will use this approach in the subsequent sections. An example of the

approximate Green’s function is given in Figure 23.

IV.3. Complexity analysis

IV.3.1. Error component analysis

Consider the following decomposition of the total error of the MLMC estimator

‖EML [ũL]− E [u]‖L2(Ω;W̃ (D)) ≤ ‖E [ũL − u]‖W̃ (D)︸ ︷︷ ︸
I := Discretization error

+
∥∥(EML − E

)
[ũL]

∥∥
L2(Ω)︸ ︷︷ ︸

II := Sampling error

, (IV.27)

where u is the exact value of the potential (IV.8) and ũL is its approximations at the

discretization level L obtained by solving the boundary integral equation with exact or

approximate Green’s kernel. In above, the error components I and II correspond to the

spatial approximation error and the sampling error. To achieve the desired accuracy ε, it is
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(B) Multi-connected domain with a combination of Dirichlet and Neumann boundary conditions.

Figure 23: Numerical Green’s functions.

sufficient to balance the total error between all components in the following way

‖EML [ũL]− E [u]‖L2(Ω;W̃ (D)) ≤ εI + εII = ε. (IV.28)

The error analysis for each of the components is provided below.

Spatial discretization error. The Jensen’s inequality gives

‖E [uL(x, ω)− u(x, ω)]‖W̃ (D) ≤ E
[
‖uL(x, ω)− u(x, ω)‖W̃ (D)

]
= εI (IV.29)
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and the estimate of the error component I can be derived from the convergence properties of

the spatial discretization scheme for fixed ω ∈ Ω. For instance, it was shown in [SB92] that

the scheme in section IV.2.1 admits the following estimate for the error in approximation of

µ ∈ H t([0, 1])

‖µl − µ‖Hs([0,1]) ≤ cht−sl ‖µ‖Ht([0,1])

provided that s > 1
2
, s + 1

2
< t ≤ s + α and the right hand side of integral equation is

continuous and 1-periodic. In the case of optimal regularity, i.e., for µ ∈ H t([0, 1]) with

t > α + 1/2, the following error bound is valid

sup
t∈[0,1]

|µl(t)− µ(t)| = ‖µl − µ‖L∞([0,1]) ≤ chαl ‖µ‖Ht([0,1]) (IV.30)

due to embedding of Hs (s > 1/2) in Cp, the space of 1-periodic continuous functions. The

order of convergence is α = 3 and α = 2 for the schemes with the quadrature nodes and

weights as in (IV.15) and (IV.15’) respectively.

Consider the error in the approximation of the single-layer potential (IV.8) at the level l

|ũl(x)− u(x)| ≤ |ul(x)− u(x)|+ |ũl(x)− ul(x)|,

where the first term on the right side gives the error of the numerical scheme with exact

Green’s function and the second term is the error due to approximation of the Green’s kernel

itself. We get for the first component that

ul(x)− u(x) = hl

Nl−1∑
k=0

G1(x, ξω(kh))µ(khl)−
∫ 1

0

G1(x, ξω(t))µ(t)dt

=

∫ 1

0

G1(x, ξω(t))(µl(t)− µ(t))dt+R(x),

where R(x) is the error of the trapezoidal rule in (IV.12). Since R(x) = O(h3
l ) for periodic
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functions and using (IV.30), one gets

|ul(x)− u(x)| ≤
∣∣∣∣∫ 1

0

G1(x, ξω(t))(µl(t)− µ(t))dt

∣∣∣∣+O(h3
l ) (IV.31)

≤ ‖µl − µ‖L∞([0,1])

∫ 1

0

|G1(x, ξω(t))|dt+O(h3
l ) = c ‖µl − µ‖L∞([0,1]) .

Similarly, the Green’s kernel is a harmonic and thus analytic function at any internal point

of the domain which gives the estimate for the error in the approximation of the derivatives

of the potential

|u(i)
l (x)− u(i)(x)| ≤

∣∣∣∣∫ 1

0

G
(i)
1 (x, ξω(t))

(
µl(t)− µ(t)

)
dt

∣∣∣∣+O(h3
l )

≤ ‖µl − µ‖L∞([0,1])

∫ 1

0

|G(i)
1 (x, ξω(t))|dt+O(h3

l ) = c ‖µl − µ‖L∞([0,1]) ,

where i = (i1, i2) is a multi-index and f (i) =
∂|i|f

∂xi11 ∂x
i2
2

.

Approximation of the Green’s kernel can be performed with any of the methods presented

in section IV.2.2. We consider the Green’s function as in (IV.20) and construct the regular

part in the form of the single layer potential

ψ(x, ·) =

∫
∂D1

G∗(x, y)ν1(y)dl(y) =

∫ 1

0

G∗(x, ξ1(t))µψ(t)dt,

whereG∗(x, y) is the fundamental solution of the differential operator, µg(t) = ν1(ξ(t)) |ξ′(t)|

and ξ(t) defines a parameterization of the boundary of the Green’s function domain. It is

natural to build the approximate solution of the above equation with the same method used

for the approximation of the original integral equation which, by analogy with (IV.31), gives

the error estimate

∣∣∣G̃1(x, ·)−G1(x, ·)
∣∣∣ = |ψl(x, ·)− ψ(x, ·)| = c1

∥∥∥µψl − µψ∥∥∥
L∞([0,1])

= chαl ,
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where hl is the step size of the grid approximating the boundary ∂D1 of the Green’s function

domain. This gives the following estimate

|ũl(x)− ul(x)| ≤ hl · sup
k
|µ(khl)| ·

Nl−1∑
k=0

∣∣∣G̃1(x, ξ(khl))−G1(x, ξ(khl))
∣∣∣

= c1 · sup
k
|µ(khl)| · hαl · (Nl · hl) = chαl

since Nl · hl = O(1).

It is trivial to obtain the estimates for the errors in Sobolev norm

I := E
[
‖ul(x, ω)− u(x, ω)‖Hs(D)

]
= E


∑
|i|≤s

∫
D

|u(i)
l (x, ω)− u(i)(x, ω)|2dx

1/2
 ≤ chαl = εI . (IV.32)

According to (I.21), the condition (IV.29) will be satisfied if the number of levels is fixed

to be

L =
⌈
logq

(
h0(c1ε

−1
I )1/α

)⌉
≤ c+ logq

(
h0ε
−1/α
I

)
.

Sampling error. Let W̃ (D) = Hs(D) be a Sobolev space. Then by using definition in

(IV.1), one obtains

∥∥(EMC − E
)

[u]
∥∥2

L2(Ω;W̃ (D))
= E

[∥∥(EMC − E
)

[u]
∥∥2

Hs(D)

]
=

1

M2
E

∥∥∥∥∥
M∑
m=1

(
um − E [u]

)∥∥∥∥∥
2

Hs(D)


=

1

M2
E

[
s∑
i=0

∫
D

∣∣∣ M∑
m=1

(
u(i),m − E

[
u(i)
] )∣∣∣2dx]
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=
1

M2

s∑
i=0

∫
D

M∑
m=1

Var
(
u(i),m

)
dx+

1

M2

s∑
i=0

∫
D

M∑
m=1

M∑
m′=1
m6=m′

Cov
(
u(i),m, u(i),m′

)
dx.

By virtue of the independence of i.i.d. samples um, we have that Cov
(
u(i),m, u(i),m′

)
= 0

and

∥∥(EMC − E
)

[u]
∥∥
L2(Ω;Hs(D))

=

√
V (u)

M
, (IV.33)

where V (u) = E
[
‖u− E [u]‖2

Hs(D)

]
.

Based on this result, and due to independence of MC estimators at each level, one gets

the error of the MLMC estimator as follows

∥∥(EML − E
)

[uL]
∥∥2

L2(Ω;Hs(D))
=

∥∥∥∥∥E [uL]−
L∑
l=0

EMC [ul − ul−1]

∥∥∥∥∥
2

L2(Ω;Hs(D))

=

∥∥∥∥∥
L∑
l=0

(
E [∆l]− EMC [∆l]

)∥∥∥∥∥
2

L2(Ω;Hs(D))

= E

∥∥∥∥∥
L∑
l=0

(
EMC [∆l]− E [∆l]

)∥∥∥∥∥
2

Hs(D)


=

L∑
l=0

E
[
‖EMC [∆l]− E [∆l]‖2

Hs(D)

]
=

L∑
l=0

V l

Ml

,

where V l = V (∆l) and ∆l = ul − ul−1.

Thus, the sampling error of the MLMC method can be estimated as

II2 :=
∥∥(EML − E

)
[uL]

∥∥2

L2(Ω;Hs(D))
=

L∑
l=0

V l

Ml

= ε2II . (IV.34)

According to (I.22), the above condition will be satisfied if the number of MC samples
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at each discretization level is set to

Ml = ε−2
II

(
V l

Cl

)1/2 L∑
k=0

(CkV k)
1/2.

IV.3.2. Complexity analysis of the standard algorithm

From the above error analysis, it follows that accuracy of the MLMC method is controlled

by two parameters:

1. the number of levels L =
⌈
logq

(
h0(c1ε

−1
I )1/α

)⌉
,

2. the number of samples per level Ml =

⌈
ε−2
II

(
V l

Cl

)1/2 L∑
k=0

(CkV k)
1/2

⌉
.

By analogy with (I.23), the optimal cost of the MLMC estimator is defined as

CML =
L∑
l=0

⌈
Ml

⌉
Cl ≤

L∑
l=0

Cl + ε−2
II

(
L∑
l=0

(ClV l)
1/2

)2

.

Consider the cost Cl of the solver at each level l ∈ [0, L]. It consists of three components:

1. the cost Ca
l of assembling the matrix of the linear system,

2. the cost Cs
l of solving the linear system

and

3. the cost Ce
l of evaluating the potential.

Let Nl denote the number of degrees of freedom at the level l ∈ [0, L] and Cfs be the cost of

evaluating the fundamental solution at a single point. Then the cost of assembling the matrix

is given by Ca
l = O(N2

l Cfs). For direct linear solvers, the cost of solving the resulting

system of equations is equal to Cs
l = O(Nγ

l ) for some γ ∈ (2, 3]. Finally, evaluation of

the potential at a single point requires evaluation of Nl fundamental solutions and the dot
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product of two vectors of size Nl which gives Ce
l = O(NlPCfs), where P is the number of

evaluation points.

One may conclude that the cost of the linear solver is asymptotically dominant and the

total cost at each level l ∈ [0, L] behaves as

Cl = Ca
l + Cs

l + Ce
l = O (Nγ

l ) (IV.35)

for some γ ∈ (2, 3].

According to Theorem I.3.2 and taking into account (IV.35) and that Nl = O(h−1
l ), the

ε-cost of the MLMC method applied to the linear elliptic equation in (IV.5)-(IV.6) is given

by

CML '


ε−2 if γ − β < 0,

ε−2
∣∣ ln ε∣∣2 if γ − β = 0,

ε−2− γ−β
α if γ − β > 0.

(IV.36)

with γ ∈ (2, 3].

Note that, in this case, the equation is formulated on the whole boundary ∂D =

∂D1 ∪ ∂D2.

IV.3.3. Complexity analysis of the accelerated algorithm

For the level l ∈ [0, L], let N1,l, N2,l be the number of degrees of freedom correspon-

ding to the fixed and random parts of the boundary ∂D1 and ∂D2 respectively such that

Nl = N1,l + N2,l.

Analytical Green’s kernel. Denote by Cgf the cost of evaluating the analytical Green’s

function at a single point. Then the cost of assembling the matrix is given by C̃a
l =
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O(N2
2,lCgf ). The cost of solving the system of linear equations is C̃s

l = O(Nγ
2,l) for some

γ ∈ (2, 3] and the cost of evaluation of the potential at P points is C̃e
l = O(PN2,lCgf ). In

this case, the cost of the linear solver is also asymptotically dominant and the total cost at

each level l ∈ [0, L] behaves as

C̃l = C̃a
l + C̃s

l + C̃e
l = O

(
Nγ

2,l

)
. (IV.37)

By comparing (IV.37) to (IV.35) it follows that

C̃l '
(
N2,l

Nl

)γ
Cl '

(
|∂D2|
|∂D|

)γ
Cl,

where |∂D| denotes the length of the boundary ∂D.

Theorem IV.3.1. Consider the boundary integral formulation of the linear elliptic system

in (IV.5)-(IV.6). Suppose that the kernels of integral operators are given by the analyti-

cal Green’s function defined on the deterministic part of the domain. The ε-cost of the

accelerated MLMC method is given by

C̃ML '
(
|∂D2|
|∂D|

)γ
CML,

where CML is defined in eq. (IV.36) as the cost of the standard formulation of the boundary

integral equation method.

Proof. By its definition, the computational cost of the accelerated MLMC method is

C̃ML =
L∑
l=0

⌈
Ml

⌉
C̃l '

(
|∂D2|
|∂D|

)γ L∑
l=0

⌈
Ml

⌉
Cl '

(
|∂D2|
|∂D|

)γ
CML.
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Approximate Green’s kernel. By our assumption, the same method is used to represent

the solution of the original differential system and the regular part of Green’s kernel.

Therefore, the cost of evaluating the numerical Green’s function at a single point is the same

as the cost of evaluating the potential over the boundary ∂D1, i.e., Cgf = O(N1,lCfs). Then

the cost of assembling the matrix is given by C̃a
l = O(N2

2,lCgf ) = O(N2
2,lN1,lCfs). The

cost of solving the system of linear equations is C̃s
l = O(Nγ

2,l) for some γ ∈ (2, 3] and the

cost of evaluation of the potential at P points is C̃e
l = O(PN2,lCgf ) = O(PN2,lN1,lCfs).

Lemma IV.3.1. Let the costs C̃a
l , C̃s

l and C̃e
l be defined as above. Then

C̃l ' κ (r)h−3
l ,

where r =
N2,l

N1,l

and

κ (r) .



rγ−1 if r � 1,

rγ−1

(r + 1)γ
if r = O(1),

r−1 if r � 1.

Proof. It happens that the cost of assembling the system is asymptotically dominant, i.e.,

C̃l = C̃a
l + C̃s

l + C̃e
l = O

(
N2

2,lN1,lCfs
)
. (IV.38)

By comparing (IV.38) to (IV.35) it follows that

C̃l '
N2

2,lN1,l

Nγ
l

Cl =
N2

2,lN1,l

(N1,l +N2,l)γ
Cl.

Consider 3 cases.



143

Case 1:
N2,l

N1,l

= r � 1.

N2
2,lN1,l

(N1,l +N2,l)γ
'
N2

2,lN1,l

Nγ
1,l

=

(
N2,l

N1,l

)γ−1

N3−γ
2,l ' rγ−1N3−γ

2,l

Case 2:
N2,l

N1,l

= r = O(1).

N2
2,lN1,l

(N1,l +N2,l)γ
' rγ−1

(r + 1)γ
N3−γ

2,l

Case 3:
N2,l

N1,l

= r � 1.

N2
2,lN1,l

(N1,l +N2,l)γ
'
N2

2,lN1,l

Nγ
2,l

= r−1N3−γ
2,l

The result follows from N2,l = O(h−1
l ) and Cl = O(h−γl ).

The following theorem establishes the computational cost of the MLMC method for the

method of boundary integrals with numerically approximated Green’s kernels.

Theorem IV.3.2. Consider the boundary integral formulation of the linear elliptic system

in (IV.5)-(IV.6). Suppose that the kernels of integral operators are given by the approxi-

mate Green’s function defined on the deterministic part of the domain. The ε-cost of the

accelerated MLMC method is given by

C̃ML ' κ (r)


ε−2 if β > 3,

ε−2
∣∣ ln ε∣∣2 if β = 3,

ε−2− γ−β
α if β < 3,

where κ (r) is defined in Lemma IV.3.1.

Proof. Proof is the same as for (IV.36) and Theorem IV.3.1.
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If the Gaussian elimination is used for the linear solver, then γ = 3 in (IV.36) and

the result of the above theorem is equivalent to C̃ML ' κ (r)CML. It is clear that the

coefficient κ (r) is always less than one which indicates computational savings for all values

of r = N2,l/N1,l. If γ < 3, then asymptotical complexity of the proposed technique may

not be optimal. However, for the finite value of the tolerance ε, the value of κ (r) is usually

small enough to guarantee C̃ML < CML.

IV.4. Numerical results

In this section, we test the convergence and the cost properties of the proposed discreti-

zation scheme for the fixed deterministic boundary. Consider the problem

−∇2u(x) = 0 for x ∈ D,

u(x) = 0 for x ∈ ∂D1,

u(x) = G1(x, ξ) for x ∈ ∂D2,

where D is the square domain with a single aperture depicted in Figure 24. ∂D1 is the

boundary of the rectangle while ∂D2 is the boundary of the aperture which has the following

parametrization

(
x(t, ω), y(t, ω)

)
=
(
xc(ω), yc(ω)

)
+R(t, ω)

(
cos(t), sin(t)

)
, t ∈ [0, 2π).

The radius of the aperture is defined as

R(t, ω) = R(t) + σr

s∑
n=1

(
an(ω) cos(2πnt) + bn(ω) sin(2πnt)

)

with the mean radius R(t) and the random coefficients an(ω) = U(−
√

3,
√

3), bn(ω) =

U(−
√

3,
√

3). Coefficient σr controls intensity of the random perturbation. Coordinates of
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Figure 24: Geometry of the domain in Example 1.

the center are also random variables

xc(ω) = xc + σxU(−1, 1),

yc(ω) = yc + σyU(−1, 1),

where (xc, yc) is the mean location of the center and coefficients σx, σy control deviation

from the mean.

For this particular example, we set (xc, yc) = (0.3, 0.4), σx = σy = 0, R = 0.1,

σr = 0.01 and s = 8. The function G1(x, ξ) is the Green’s function (IV.26) for the square

bounded by ∂D1 and the location of the source is ξ = (xc, yc).

The choice of the boundary condition on ∂D2 suggestsG1(x, ξ) as the analytical solution

of the above problem. We can use it to test the convergence properties of the scheme in

section IV.2.1 applied to the boundary integral equation with exact and approximate kernels.

Figure 25 shows discretization of the boundary for both cases. For BIE with exact kernel,

only the boundary of the aperture has to be discretized while for BIE with approximate

kernel, it is necessary to discretize both boundaries.
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Figure 25: Discretization of the boundary for BIE with analytical (left) and numerical (right)
Green’s kernels.

Convergence properties of the scheme (IV.14) with the quadrature nodes in (IV.15’)

are illustrated in Tables 5 and 6. Table 5 provides the errors of the numerical solution

of the boundary integral equation with analytical Green’s kernel as well as the errors of

the solution of the corresponding boundary value problem. The reference density of the

potential µ is evaluated with the higher order scheme which uses the quadrature nodes

in (IV.15). The apparent rates of convergence are defined as αh =
log(el/el−1)

log(hl/hl−1)
. It is

seen that the errors have the order of convergence α = 2 in all norms as predicted by the

analysis. Table 6 provides the same information in application to BIE with approximate

Green’s kernel. Obviously, the errors have greater values but the difference is not large. The

computed rates of convergence also satisfy the predicted values.

Results in Tables 5 and 6 are also presented graphically in Figures 27 and 28. Figure 27

illustrates the supremum norm of the error along the isocontours depicted in Figure 26.

Superiority of the analytical Green’s kernel is obvious near the deterministic boundary ∂D1

but both approaches show good results far from the boundaries. Figure 28 confirms that

approximation of the Green’s kernel does not change the order of the numerical scheme and

does not have serious impact on the accuracy of the numerical solution.
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Table 5: Convergence with analytical Green’s kernel.

N2 ‖µ− µh‖L∞ rate ‖u− uh‖L∞ rate ‖u− uh‖H1 rate

8 5.074e-1 - 3.323e-2 - 9.462e-2 -

20 7.008e-2 1.87 4.506e-3 2.36 2.992e-2 1.56

68 5.215e-3 2.06 1.820e-4 3.33 2.058e-3 2.64

260 3.533e-4 2.01 4.898e-6 2.34 1.312e-5 3.87

1028 2.258e-5 2.00 3.133e-7 2.00 8.176e-7 2.00

4100 1.428e-6 1.99 1.970e-8 2.00 5.140e-8 2.00

N2 denotes the number of degrees of freedom on the random part of the boundary ∂D2 and u is the solution
of the boundary value problem in the form of the single layer potential (IV.8) with density µ.

Table 6: Convergence with numerical Green’s kernel.

N1 N2 ‖µ− µh‖L∞ rate ‖u− uh‖L∞ rate ‖u− uh‖H1 rate

48 8 5.071e-1 - 3.323e-2 - 1.048e-1 -

104 20 7.004e-2 1.87 4.507e-3 2.36 3.460e-2 1.53

328 68 5.212e-3 2.07 1.820e-4 3.33 2.462e-3 2.64

1232 260 3.530e-4 2.01 4.901e-6 2.34 1.335e-5 3.98

4848 1028 2.257e-5 2.00 3.135e-7 2.00 8.319e-7 1.99

19336 4100 1.422e-6 1.99 1.971e-8 2.00 5.230e-8 2.00

N1 and N2 denote the number of degrees of freedom on deterministic and random parts of the boundary ∂D1

and ∂D2 respectively. u is the solution of the boundary value problem in the form of the single layer potential
(IV.8) with density µ.
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Figure 26: Isocontours of the aperture.
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Figure 27: Maximum errors of the spatial approximation along the isocontours of the
boundary for BIE with analytical (left) and numerical (right) Green’s kernels.
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Figure 28: Convergence of the spatial approximation with analytical (left) and numerical
(right) Green’s kernels.
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The costs Ca of assembling the matrix and Cs of solving the resulting system are

illustrated in Figure 30. As predicted, the cost Cs is asymptotically dominant for BIE with

analytical Green’s kernel while the cost Ca dominates in the case of numerical Green’s

function. To verify the cost analysis of the proposed acceleration technique, we fix the

discretization on the boundary ∂D1 and sequentially refine the grid on the boundary ∂D2.

Tables 7 and 8 provide the computational savings for various values of the ratios
N

N2

'
|∂D|
|∂D2|

and
N1

N2

' |∂D1|
|∂D2|

. It is seen that the proposed technique is computationally efficient

for all tested values of this ratio. Computational savings in solving the linear system are

exceptionally good for both analytical and numerical Green’s kernels. Also, as expected, the

cost gain of assembling the system is much better in the first case. In any case, the total cost

of the proposed scheme is smaller than the cost of the standard approach for both variants

of the Green’s kernel. This is clearly seen in Figure 29 which shows the computational

speedup of the accelerated algorithm for boundary integral equations with both analytical

and approximate kernels.

100 101 102 103

N/N
2

100

101

102

103

Numerical
Analytical

Figure 29: Computational speedup of the accelerated algorithm for the problem in Example 1.
Blue and red colors correspond to the boundary integral equations with analytical and
numerical Green’s kernels.
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Figure 30: The costs Ca and Cs of assembling and solving the linear system for the scheme
with analytical (left) and numerical (right) Green’s kernels.

Table 7: Computational gain for BIE with analytical Green’s kernel.

N1 N2 N/N2 Ca/C̃a Cs/C̃s CML/C̃ML

4096 36 114.78 205.74 4044.82 446.94

4096 132 32.03 116.43 1367.12 250.97

4096 516 8.94 27.37 189.69 54.56

4096 2052 2.99 3.79 17.87 7.92

4096 8196 1.50 0.85 2.92 1.93

Table 8: Computational gain for BIE with numerical Green’s kernel.

N1 N2 N1/N2 Ca/C̃a Cs/C̃s CML/C̃ML

4096 36 113.78 5.92 6379.26 13.70

4096 132 31.03 3.73 2105.12 8.99

4096 516 7.94 1.60 228.94 3.78

4096 2052 1.99 0.68 17.93 1.88

4096 8196 0.50 0.35 2.93 1.14

N1 and N2 denote the number of degrees of freedom on deterministic and random parts of the boundary ∂D1

and ∂D2 respectively. N = N1 +N2 is the total number of degrees of freedom. Ca, Cs and CML denote the
cost of assembling the system, the cost of solving the system and the total cost of the estimator for the standard
MLMC algorithm. C̃a, C̃s and C̃ML denote the same quantities for the accelerated algorithm.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

Multilevel Monte Carlo method is a recently proposed technique which has already

proven its efficiency for a broad class of problems with a large number of stochastic

dimensions. Many of these problems have internal structure which can be efficiently

combined with that of the multilevel Monte Carlo method to significantly improve the overall

performance of the algorithm. Three of such problems were studied in this dissertation.

In the first problem, we considered the issue of stochastic stiffness which can drastically

reduce the number of admissible discretizations in the multilevel hierarchy. We established

the necessary criteria for the pathwise integrators for such systems and proposed the novel

implicit-explicit composite integrator which satisfies these requirements. The provided

numerical experiments indicated the high empirical efficiency of the proposed technique.

Nevertheless, the optimal selection of the parameters of the composite integration remains

an open question. The rigorous theoretical study of this problem is still required and can be

considered as a possible future research in this direction.

The repetitive sampling framework of the Monte Carlo integration was used in the

second problem for the acceleration of iterative solvers arising after discretization of the

stationary PDEs with random input data. The proposed technique for the estimation of initial

guesses for such solvers proved to be efficient for linear problems with low to moderate

stochastic dimensionality and for nonlinear problems with solutions near instability. As a

possible extension of this approach, it would be interesting to perform theoretical analysis

for more general nonlinear problems and to study the optimal distribution of the tolerance

between iterative solvers at different levels.

The last project was devoted to the acceleration of the MLMC method in application to

PDEs in randomly perturbed domains. In this case, the reduction of the cost of the MLMC

estimator was achieved by reformulating the original boundary value problem as a boundary
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integral equation on the random part of the domain only. The proposed technique proved to

be extremely efficient for domains with known analytical Green’s functions but also showed

very good results for general domains. An obvious extension of this approach would be to

consider problems with more general stationary and time-dependent operators.
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