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ABSTRACT 

To determine the existence of individual and group differences in 199 precalculus 

students’ abilities to interpret graphs of mathematical functions and relationships between 

graphical and algebraic function representations, two parallel cluster analyses were 

performed on the results of a ten item dichotomous test of mathematical function literacy 

and translation fluency.  Cluster means from two hierarchical methods, Ward’s (N =199) 

and average linkage (N =187), were used as seed values for two separate nonhierarchical 

k-means cluster analyses.  Four clusters emerged from the Ward’s based nonhierarchical 

solution and three clusters emerged from the average linkage based nonhierarchical 

solution.  Both nonhierarchical solutions were externally validated using Likert-type 

scale items measuring mathematics anxiety, attitudes toward the precalculus teacher, 

visualization skills, and gender.  Gender was associated with cluster membership for both 

nonhierarchical solutions.  Student perception that the precalculus teacher skipped steps 

in demonstrating problems in lecture predicted cluster membership for both 

nonhierarchical solutions. 
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CHAPTER I: INTRODUCTION 

 Precalculus is the gateway college mathematics course for students pursuing 

degrees in science, technology, engineering, or mathematics (STEM) fields.   The strictly 

procedural algebraic reasoning many precalculus students apply to analyzing 

mathematical functions is insufficient to provide deep understanding of functions as 

representations of rate of change, but function graphs show rates of change directly 

(Carlson, Oehrtman, & Engelke, 2010; Knuth, 2000).  Mastery of functions, graphical 

interpretation, and rate of change have been identified as critical prerequisite skills for 

success in calculus (Carlson et al., 2010; Knuth, 2000).  Student attrition from college-

level mathematics courses and STEM majors is influenced by over-emphasis of 

procedural methods at the expense of graphical methods (Carlson et al., 2010; Herman, 

2007).   Differences in precalculus students’ understanding of rate of change and 

mathematical functions may be related to their preference for the particular method they 

use to solve problems that involve mathematical functions.  Precalculus students who use 

methods that exploit graphical properties and graphical interpretation of mathematical 

functions may have an advantage over students who use other methods of problem 

solving. 

Purpose of the Present Study 

 There appear to be two primary methods of approaching precalculus problems 

that involve mathematical functions: a static, procedural, and algebraic approach versus a 

dynamic, conceptual, and graphical approach.  The second method includes the ability to 

mine the graphical representation of a function for information about its algebraic 
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properties; in contrast, the first method does not acknowledge that the graphical 

representation provides any information about the function’s algebraic properties. The 

key concept that differentiates the two approaches is translation between graphical and 

algebraic representations of mathematical functions.  For the purposes of the present 

research, therefore, function translation fluency is defined as recognizing, interpreting, 

and predicting the behavior and properties of mathematical functions that are shown in 

their graphical representations together with the ability to extract graphical information 

from written algebraic representations of mathematical functions in order to solve 

problems. 

 It is thought that precalculus students will show individual differences in function 

translation fluency on a set of mathematical function problem solving tasks and that 

profiles of their problem solving methods can be developed.  It is also thought that 

precalculus student function translation fluency is influenced by visualization ability, 

mathematics anxiety, student perceptions of precalculus teachers, and gender.  Cluster 

analysis will be used to examine individual differences in function translation fluency and 

to create groups based on similarities in fluency and strategies used on the mathematical 

function tasks.    

Individual Differences in Mathematical Problem Solving Methods 

 Prior studies have used cluster analysis to develop profiles of students based on 

the methods those students use to solve problems.  Farrington-Flint, Vanuxem-Cotterill, 

and Stiller (2009) administered a set of addition and subtraction tasks to British first and 

second grade students and observed or asked each student for a verbal self-report of the 
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strategy used to solve the problem; the strategies were coded in accordance with prior 

work.  The four strategy categories: retrieval, counting, finger modeling, and other, 

together with the student’s score on each task, were subjected to hierarchical cluster 

analysis.  The results of the cluster analysis showed that the students could be classified 

into three distinct groups based on their performance and strategy used on the addition 

and subtraction tasks.  The highest performing group used retrieval and counting 

strategies.  The second group was not as accurate on task performance as the first, and 

also used counting strategies, but substituted finger modeling for retrieval.  The third 

group had the poorest performance and almost exclusively used finger modeling or other 

methods to solve the problems.  Individual differences in problem solving strategy choice 

accounted for 65% of the variability in the students’ scores on the addition and 

subtraction tasks. 

 Hallett, Nunes, and Bryant (2010) developed tests of conceptual and procedural 

knowledge of fractions in order to examine how different types of students combined the 

two methods in solving fraction problems.  The results of their cluster analysis showed 

that students could be classified into five distinct groups based on the extent to which 

they successfully used conceptual and procedural knowledge to solve fraction problems.  

Only one group appeared to be comfortable applying both types of reasoning to problems 

involving fractions; of two the remaining groups that successfully solved fraction 

problems, one clearly demonstrated a preference for conceptual methods and an aversion 

to procedural methods, with the reverse situation for the other group.  Two distinct 

groups of students who had difficulty with fractions also emerged: one group struggled 
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with the procedures that relate to fractions while the other struggled with the concept of 

fractions.  The researchers concluded that these classification techniques should benefit 

students in two major ways: 

 First, if children can be classified into different clusters of combining conceptual 

 and procedural knowledge, teaching approaches can be tailored to match their

 current profile of conceptual and procedural understanding.  Knowing the cluster 

 to which a child belongs could help teachers identify weaknesses in their 

 understanding, and these weaknesses could then receive some additional attention 

 (i.e. children from the lower conceptual cluster would need some help in their 

 conceptual understanding).  Conversely, clusters could help identify strengths in 

 different children’s understanding, so instruction in new material might play to 

 these strengths.  Thus, knowing more about individual differences could help 

 teachers target instruction in ways that would be more suited to any given child 

 [emphasis added]. (p. 404). 

 

 The studies described above used cluster analysis to differentiate groups of 

students based on performance on mathematical tasks and, fundamentally, the student’s 

way of thinking about the task.  A cluster analysis of student performance on graphical 

and algebraic mathematical function translation tasks will provide meaningful 

classifications that could ultimately be used in the development of teaching methods and 

materials tailored to the needs of each group.  Improving student function translation 

fluency is important for mastering the concept of function and therefore for success in 

STEM, as discussed in the following section.  

The Concept of Function and the Advantage of Graphical Representations  

Carlson et al. (2010) assert that “...the concept of function [is] the central 

conceptual strand of the mathematics curriculum, from algebra through calculus”          

(p. 115).  A mathematical function is a mapping from an input set to an output set, where 
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the mapping is the path taken to get from input items to output items.  Barnier and 

Feldman (2000) offer the following conceptualization:  

The idea of a function plays a central role in mathematics and many other related 

 fields.  Intuitively, a function is a rule that assigns, to each given object in one set, 

 a unique object in another set.  For example, consider the rule that assigns, to the 

 real number x, the real number x
2
.  If the given real number is 3, then the real 

 number assigned to it is 3
2
, or 9.  Functions of this type are encountered in 

 calculus [emphasis added].  (p. 117) 

 

The rule is expressed as an algebraic equation.  It is this equation that students 

think of as the function; the importance and meaning of the input and output sets are 

ignored.  Functions are introduced in the elementary grades of school mathematics, but 

the concept is not formalized with unique notation and meaning until high school algebra.  

In algebra and subsequent mathematics courses the notational, symbolic forms of 

functions and algebraic manipulations are heavily emphasized (Carlson et al., 2010; 

Gagatsis & Shiakalli, 2004; Herman, 2007; Knuth, 2000).  This procedural emphasis may 

contribute to student attrition from college mathematics courses and STEM majors 

(Carlson et al., 2010; Herman, 2007).   

When a function is presented in its graphical form, the input and output sets are 

instantly revealed simultaneously with the mapping between them.  Students have been 

found to prefer symbolic manipulation to graphical representation and to struggle with 

translation between symbolic and graphical forms.   This may indicate a limited 

understanding of the concept of functions and a bias toward procedural mathematics, 

most likely imprinted upon them by the formats modeled and preferred by their teachers 

(Gagatsis & Shiakalli, 2004; Herman, 2007; Knuth, 2000).  This reliance on symbolic 
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forms may hinder students’ choice of problem solving strategies.  Students may choose to 

use a more difficult symbolic strategy for a problem that is more easily solved through a 

graphical approach (Herman, 2007; Knuth, 2000).  By selecting a more difficult 

approach, the student unintentionally places barriers of frustration around mathematical 

problem solving and develop strong negative attitudes toward mathematics.  Enabling 

students to avoid this path by using graphical representations is worthwhile.   

Graphical representations of functions offer a direct route to understanding a 

function as a relationship that expresses relative change between the input and output 

sets, and to meaningful interpretation of the function, that can be quite difficult to obtain 

from symbolic manipulation alone (Knuth, 2000).  Students progressing through college 

precalculus and calculus courses absolutely need to have the ability to reason about a 

function as a dynamic model rather than a static procedure (Carlson et al., 2010).  

Graphical representations encapsulate this dynamism and directly show the critical aspect 

of rate of change.   

If a student does not develop function translation fluency in precalculus, the 

properties and implications of rate of change can be very difficult to master.  Because rate 

of change is the central concept in calculus and higher mathematics those students 

without fluency in function translation are not set up for success in those courses.  Failure 

to develop function translation fluency may strongly increase the likelihood of student 

attrition from STEM majors.  Factors that could negatively impact student mastery of 

graphical representations may include spatial visualization skills, mathematics anxiety 
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attitudes toward mathematics, and gender differences (Ashcraft & Moore, 2009; Tolar, 

Lederberg, & Fletcher, 2009; Turner et al., 2002). 

Visualization Ability 

Spatial ability has been broadly defined as a combination of visualization and 

orientation.  Visualization is the ability to mentally model the movement of objects in 

two- and three-dimensional space.  Orientation is the ability to understand relationships 

between static and moving objects in two- and three-dimensional space (Ozer, 1987).  

The difference is that visualization deals with singular objects.  Predicting where an 

object will move to when it is rotated is a visualization skill.  Orientation skills are 

roughly equivalent to physics.  Strong orientation ability is necessary for a student to 

develop a solid understanding of the mathematical concept of functions (Tolar et al., 

2009).  This is likely because mathematical functions are fundamentally descriptions of 

how to move from one set to another.  The graphs of functions cannot be well interpreted 

without some sense of the relative orientation of the sets in space. 

Visualization would seem to be a stepping stone to orientation.  Tasks that assess 

visualization ability may provide some prediction of function translation fluency. 

Stavridou and Kakana (2008) defined a modified concept of spatial ability for learning 

mathematics called graphic ability.  Graphic ability comprises three-dimensional mental 

representation of objects and mental translation between two- and three-dimensional 

views of objects.  Problems that ask what a side view of a three-dimensional shape would 

look like assess graphic ability.  Graphic ability is positively correlated with 
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mathematical skill as well as positive student orientation toward mathematics (Stavridou 

& Kakana, 2008).   

Tolar et al. (2009) also found that three-dimensional visualization ability is a 

predictor of performance on the SAT mathematics exam.  The mathematics SAT includes 

non-procedural mathematics questions that cannot be solved by algebraic processes 

alone, so the use of graphical representations and translations is necessary.  The cognitive 

aspects of visualization may also influence mathematical skill; Miller and Bichsel (2004) 

found that visual working memory was a predictor of performance on both simple and 

complex mathematical tasks.   

Understanding and extending the two-dimensional relationships in graphs of 

functions as sets and mappings may be related to differences in overall visualization 

ability and visual translation ability.  Function translation fluency may also be influenced 

by visualization skills since strong visualization is a predictor of mathematics 

performance as well as enjoyment.  Since visualization skills are linked to enjoyment, 

there may be a relationship between visualization and mathematics anxiety as well.   

Mathematics Anxiety and Attitudes 

Mathematics anxiety levels influence grades, number and type of mathematics 

classes taken, and choice of college major (Ashcraft & Moore, 2009).   Ashcraft and 

Moore (2009) define mathematics anxiety as “…a person’s negative affective reaction to 

situations involving numbers, mathematics, and mathematical calculations.”  

Mathematics anxiety, in general, is negatively correlated with performance on a wide 

variety of mathematical tasks across demographic and age groups.  It has been shown that 
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mathematics anxiety lowers mathematics performance; the effect is more pronounced as 

the difficulty level of the mathematical problems increases.  Some explanations of this 

effect are based in cognitive psychology.  One mechanism could be the result of the 

demands anxiety places on working memory; there are fewer resources available for 

problem solving because resources are diverted to serving the students’ anxiety (Ashcraft 

& Krause, 2007; Ashcraft & Kirk, 2001).   Another mechanism by which mathematics 

anxiety may impact mathematical performance is through interference with specifically 

visual working memory (Miller & Bichsel, 2004).  Since problems requiring graphical 

interpretation of functions are among the more difficult problems in precalculus and 

involve visual abilities, it may be expected that students’ anxiety levels increase when 

they are asked to solve function translation problems.  Students with preexisting high 

levels of mathematics anxiety also likely achieve lower scores on function translation 

problems. 

Student perceptions of mathematics also influence their levels of mathematics 

anxiety.  Meece, Wigfield, and Eccles (1990) found that self-ratings of the importance of 

mathematics, mathematical ability, and student expectations of achievement in 

mathematics courses were predictors of mathematics anxiety.  Precalculus students may 

self-identify as high achievers in mathematics with correspondingly high expectations of 

achievement in this new area of mathematics.  Such expectations could lead to 

mathematics anxiety or mathematics avoidance as these students realize that the level of 

performance required in college is significantly higher than they may have expected.  

Failure to experience the immediate success in mathematics they have become 
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accustomed to could negatively influence students’ assessments of their own ability.  

Mathematics aversion and anxiety can also influence test performance, grades, and desire 

to remain in a STEM field for precalculus students.  

Gender Differences 

Gender differences in mathematics performance, mathematics anxiety, attitudes 

toward mathematics, and spatial thinking have been observed.  Haynes, Mullins, and 

Stein (2004) found that test anxiety and ACT mathematics score influenced the 

mathematics anxiety levels of both male and female college students.  As test anxiety 

increased, mathematics anxiety increased, but the directionality of the association 

between ACT mathematics score and mathematics anxiety was different for men than for 

women.  Female students with higher mathematics ACT scores had higher mathematics 

anxiety; males with lower ACT scores had higher mathematics anxiety. In addition, for 

women, mathematics anxiety was negatively associated with both perception of 

mathematics ability and perception of high school mathematics teachers; neither was 

associated with mathematics anxiety for men. 

Gender differences in emotional attitudes toward mathematics have also been 

observed.  Frenzel, Pekrun, and Goetz (2007) examined the relationships between 

mathematics achievement and five emotional indicators: enjoyment, pride, anxiety, 

hopelessness, and shame, in a sample of fifth grade students in Germany. When girls and 

boys at comparable levels of mathematical achievement expressed their feelings about 

mathematics, boys reported higher pride, higher enjoyment, lower anxiety, lower 
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hopelessness, and lower shame than girls.  Girls also reported significantly lower 

perceptions of mathematical ability than boys at the same achievement levels.   

Differences in spatial thinking ability between females and males have also been 

widely reported (Casey, Nuttall, & Pezaris, 2000; Geary, Saults, Liu, & Hoard, 2000; 

Miller & Bichsel, 2004; Quaiser-Pohl & Lehmann, 2002), with both skill and affective 

factors associated with these differences.  Geary et al. (2000) examined the skill factors 

related to gender differences in college students’ arithmetical reasoning and found that 

males were more skilled at solving arithmetical problems than females.  Arithmetical 

reasoning was directly influenced by spatial and computational skill and indirectly 

influenced by gender.  Gender also had direct effects on spatial and computational skill.  

Casey et al. (2000) also found gender differences among eighth grade students; there was 

a self-confidence advantage and a spatial ability advantage in problem solving for males; 

females did not show the same advantages.  It seems that females are disadvantaged in 

problem solving tasks by both skill deficits and emotional factors, and at various ages.  

The correlation between perception of mathematical ability and performance for female 

college students was also seen by Quaiser-Pohl and Lehmann (2002).     

Review of Cluster Analysis  

 As described by Hair, Anderson, Tatham, and Black (1998),    

 Cluster analysis is the name for a group of multivariate techniques whose primary 

 purpose is to group objects based on the characteristics they possess.  Cluster 

 analysis classifies objects (e.g., respondents, products, or other entities) so that 

 each object is very similar to others in the cluster with respect to some 

 predetermined selection-criterion.  The resulting clusters of objects should then 

 exhibit high internal (within-cluster) homogeneity and high external (between-  
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 cluster) heterogeneity.  Thus,  if the classification is successful, the objects within 

 clusters will be close together when plotted geometrically, and different clusters 

 will be far apart.  (p. 473.) 

 

The above description highlights the primary mathematical measure used in cluster 

analysis: similarity measures that can be interpreted geometrically.  Similarity between 

objects in cluster analyses is measured in terms of the distance between them (Everitt, 

Landau, & Leese, 2001).  Commonly used similarity measures include the Euclidean 

distance, the Minkowski distance, the simple matching coefficient, the Pearson 

correlation coefficient, and the Mahalanobis distance (Everitt et al., 2001).  The similarity 

measure used for a specific cluster analysis is influenced by the type of data, categorical 

or continuous, (Everitt et al., 2001), and the extent of collinearity among the variables 

(Hair et al., 1998). 

 The choice of a similarity measure must be guided by the nature of the variables 

used to form the clusters (Everitt et al., 2001).  For symmetric binary data, in which the 

response pairs (1,1) and (0, 0) should both be counted as matching pairs, one widely used 

similarity measure is the simple matching coefficient for binary data (Gan, Ma, & Wu, 

2007).  This coefficient can be thought of as the fraction of identical responses between 

two observations or between two people on a dichotomous test.  More formally, the 

simple matching coefficient for symmetric binary data is defined by Gan, et al. (2007) as 

𝑠(𝑥, 𝑦) =
∑ 𝑥𝑖𝑦𝑖 + ∑ (1 − 𝑥𝑖)(1 − 𝑦𝑖)

𝑑
𝑖=1

𝑑
𝑖=1

𝑑
,                                                                           (1) 
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where x is the binary response vector for person x, y is the binary response vector for 

person y, and d is the dimension of the response vector.  However, if the clustering 

variables are highly correlated, the Mahalanobis distance may be a more appropriate 

similarity measure for symmetric binary data. 

 After an appropriate similarity measure is chosen, the next step in a cluster 

analysis is the selection of a procedure for forming the clusters.  Two main types exist: 

hierarchical, which is subdivided into agglomerative and divisive methods, and 

nonhierarchical (Hair et al., 1998).   At the start of all agglomerative hierarchical 

methods, there are n clusters, one for each object.  At each succeeding step, the two 

clusters with the highest degree of proximity are merged until only one cluster of size n 

remains (Hair et al., 1998).  Divisive methods begin with all objects in a single cluster 

and split into n clusters based on the lowest degree of proximity (Hair et al., 1998).  

Commonly used agglomerative procedures include single linkage, complete linkage, 

average linkage, centroid linkage, median linkage, and Ward’s method (Everitt et al., 

2001).   Since hierarchical procedures produce multiple numbers of clusters, the 

researcher must choose the ultimate number of clusters and the specific solution(s) to be 

submitted to external validation.  The selection of a cluster solution is most often a 

heuristic process (Aldenderfer & Blashfield, 1984).  Examination of the cluster means, χ
2
 

tests, dendrograms, cubic clustering criterion (CCC), and practical factors can be used to 

determine the final number of clusters (Everitt et al., 2001; Hair et al., 1998).   The 

pseudo t
2 

and pseudo F statistics are also frequently used. 
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 Nonhierarchical procedures, in contrast, require the researcher to specify the 

ultimate number of clusters that will be formed a priori.  The clusters are then formed 

around seed values, which may also be specified a priori or generated by the 

nonhierarchical clustering algorithm; commonly used nonhierarchical cluster analysis 

procedures include sequential threshold, parallel threshold, and optimization (Hair et al., 

1998).  Hierarchical methods may be used to produce sets of seed values that are sent to 

subsequent nonhierarchical procedures.   A complete example of this combined 

procedure can be found in Hair et al. (1998).    

 Two of the more commonly used agglomerative hierarchical procedures are 

average linkage and Ward’s method.  These procedures use different methods to build the 

clusters, potentially generating very different cluster means solutions.  The average 

linkage method, illustrated in Figure 1, calculates the mean distance between every pair 

of observations in every existing pair of distinct clusters and combines the clusters with 

the smallest mean distance.   
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Figure 1.  Average linkage clustering.  Clusters A and B will be combined. 

 

 

Average linkage combines clusters with small variances and is not as sensitive to outliers 

as Ward’s method, but tends to create clusters that all have similar variances (Everitt et 

al., 2001; Hair et al., 1998).   In contrast to average linkage, Ward’s method is sensitive 

to outliers, and tends to produce clusters that are all roughly spherical and of similar size 

(Everitt et al., 2001; Hair et al., 1998).   In Ward’s method, as described by Everitt et al. 

(2001) the clusters are combined by “… [minimizing] the increase in the total within-

cluster error sum of squares … [which] is proportional to the squared Euclidean distance 

between the centroids of the merged clusters” (p. 60-61).  Ward’s method of combining 

the clusters considers the cluster means, while average linkage does not.  The within-

cluster error sum of squares used in Ward’s method is shown below (Everitt et al., 2001) 

𝐸 ∑ 𝐸𝑚

𝑔

𝑚=1

 ,                                                                                                                                     (2) 
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where 

𝐸𝑚 = ∑ ∑ (𝑥𝑚𝑙,𝑘 − 𝑥̅𝑚,𝑘)2
𝑝

𝑘=1

𝑛𝑚

𝑙=1
,                                                                                          (3) 

And where  

𝑥̅𝑚,𝑘 = (
1

𝑛𝑚
) ∑ 𝑥𝑚𝑙,𝑘 ,                                                                                                            (4)

𝑛𝑚

𝑙=1
 

where 𝑥𝑚𝑙,𝑘 is the score on the kth variable for the lth object in the mth cluster and 𝑥̅𝑚,𝑘 is 

the mean of the mth cluster for the kth variable. 

 The selection criteria for determining the number of clusters is based on visual 

inspection of the dendrograms, examination of the reasonableness of the cluster means,  

practical considerations,  χ
2
 tests, the CCC, the pseudo F, and the pseudo t

2
 statistics.  For 

both the CCC and the pseudo F statistic, relatively larger values are indicative of good 

cluster solutions (SAS Institute, 2011).  Peaks on a plot of the CCC versus the number of 

clusters where the CCC is larger than 2 or 3 are indicative of a good cluster solution; 

large negative values of the CCC are indicative of outliers (SAS Institute, 1983.)   A large 

change in the value of the pseudo t
2
 statistic between one number of clusters and the next 

lowest number of clusters also indicates a good solution (SAS Institute, 2011,  “PROC 

CLUSTER”).   Agreement among these statistics and well-defined cluster means should 

ultimately determine the final number of clusters selected. 

 Some researchers validate the hierarchical solution.  Hair et al. (1998), however, 

recommend that the hierarchical cluster means be used as seed values in a 

nonhierarchical cluster analysis.  Once the number of clusters is selected, the cluster 
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means can be used as seed values for k-means clustering.  K-means clustering uses an 

optimization algorithm that 

 … allows for reassignment of objects.  If, in the course of assigning objects, an 

 object becomes closer to another cluster that is not the cluster to which it is 

 currently assigned, then an optimizing procedure switches the object to the more 

 similar (closer) cluster (Hair et al., 1998, p. 497).    

 

 The final steps in a cluster analysis are the interpretation and subsequent external 

validation of the cluster solution.  Hair et al. (1998) suggest first that interpretation of the 

cluster solution be based on natural and meaningful descriptions of differences in the 

cluster means on the clustering variables, and second that this descriptive interpretation 

of the actual cluster solution be compared to the a priori theoretical groupings developed 

in the research hypothesis.   

 External validation of the cluster solution is the process of determining the 

strength and nature of relationship between cluster membership and the variables that 

were used to create the clusters or other external variables.  If the researcher is interested 

in whether cluster membership can be predicted from the external variables, either 

discriminant analysis or logistic regression, statistical methods for predicting the 

classification of objects (Tabachnick & Fidell, 2007), may be used.  An alternative 

method of external validation, if prediction is not of interest, may be to use ANOVA or 

MANOVA to determine if there are statistically significant group differences on the 

mean(s) of the external variable(s) by cluster membership.  External validation is often 

performed with the goal of demonstrating that the cluster solution will generalize to the 

larger population or has criterion or predictive validity (Hair et al., 1998.)  
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Objectives of the Current Research 

 First, this study sought to develop profiles of precalculus students’ function 

translation fluency based on their performance on 10 mathematical function problem 

solving tasks.  This work built on the tasks and definitions in the work of Stavridou and 

Kakana (2008) and Gagatsis and Shiakalli (2004) and had similar intentions as in the 

research of Farrington-Flint et al. (2009) and Hallett et al. (2010); developing profiles of 

precalculus student function translation fluency may eventually contribute to individually 

tailored teaching and, it is hoped, retention of STEM students.   

 Second, this study also sought to investigate the extent to which function 

translation fluency group membership could be predicted by visualization ability, 

mathematics anxiety, student perceptions of precalculus teachers, and gender.  Therefore, 

items from Likert type scales measuring mathematics anxiety, attitudes toward 

mathematics, teaching effectiveness, perceived teacher investment in students, and 

visualization ability self-ratings were used for external validation of the clusters.  One  

difference between this study and the previously reviewed work is that a self-reported 

measure of visualization ability was used rather than an objective test.  The reasons for 

the use of a self-report of visualization ability were that prior research indicated 

significant affective influences on actual visualization skills (Casey et al., 2000), and that 

the intent of the present research was that the only objective measures were items 

requiring function translation fluency skills.   

 It was thought that precalculus students would show individual differences in 

function translation fluency on a set of mathematical function problem solving tasks and 
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that profiles of their problem solving methods could be developed.  It was also thought 

that precalculus student function translation fluency is influenced by visualization ability, 

mathematics anxiety, student perceptions of precalculus teachers, and gender.  Cluster 

analysis was used to examine individual differences in function translation fluency and to 

create groups based on similarities in fluency and strategies used on the mathematical 

function tasks.   

 The main research hypothesis was that at least two interpretable clusters of 

function translation fluency would emerge and that some of the clusters may have been 

predominantly male while others may have been predominantly female.  The prediction 

of at least two clusters was based on the originally postulated two fundamental 

approaches to mathematical function problem solving, the algebraic method and the 

graphical method.  Dominance of some of the clusters by a single gender was predicted 

based on the previously reviewed work which demonstrated that gender differences in 

mathematics task performance exist at various task content levels and across age groups.  

It was hoped that more than two clusters emerged and that some clusters showed more 

gender heterogeneity.  Two secondary research hypotheses were dependent on the 

emergence of at least two interpretable clusters.  One secondary research hypothesis was 

that profiles of students’ function translation fluency could be developed from the results 

of the cluster analysis; the other was that cluster membership could be predicted by 

students’ visualization ability, mathematics anxiety, student perceptions of precalculus 

teachers, and gender.  It was hoped that items from at least two of these constructs would 

be predictors of function translation fluency group membership.  
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CHAPTER II: METHOD 

Participants    

 All participants were volunteers selected from sections of precalculus classes 

being taught in the Fall 2011 semester at a mid-sized public university in the southeastern 

United States. A total of 209 students (94 female, 114 male, 1 unidentified) provided 

responses.  No monetary compensation or course credit was provided.  No demographic 

or identifying information was collected other than self-reported gender and age.  All 

participants were at least 18 years of age.  Ten respondents were dropped due to missing 

or invalid responses.  The final sample consisted of 199 students (89 female, 110 male) 

active in precalculus at the time of the survey administration.  

Materials 

 Three polytomous measures developed by Rostorfer and Mateleska (2011) were 

used: attitude toward precalculus, student perception of precalculus teacher attitude and 

teaching ability, and self-rated visualization and spatial thinking skills.  Each measure 

used a 5-point Likert-type scale, where 1 indicated “Strongly Agree” and 5 indicated 

“Strongly Disagree”.  A dichotomous test of some properties of graphical and algebraic 

representations of mathematical functions was also used (Rostorfer & Mateleska, 2011).  

 All four measures were developed and pilot tested on a college student population 

of students enrolled in precalculus courses.  Reliability estimates were derived from 

results obtained from a sample of 199 college level precalculus students, with 89 females 

and 110 males (Rostorfer & Mateleska, 2011).   
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 Attitude toward precalculus.  The Precalculus Attitude Rating Scale (PARS) 

was used to measure student attitudes toward precalculus.  The PARS is an eight item 

precalculus-specific self-rating of student mathematical ability, enjoyment, and anxiety.  

Sample items from the PARS include “I think precalculus is an easy class” and “I am 

nervous while taking a math test”.  The Cronbach’s alpha reliability of the PARS was .85 

(Rostorfer & Mateleska, 2011). 

 Student perception of precalculus teacher attitude and teaching ability.  The 

Perception of Precalculus Teacher Scale (PTTS) was used to measure student perception 

of precalculus teacher attitude and teaching ability.  The PTTS is a 13 item scale that asks 

students to rate their precalculus instructors’ attitude toward students and teaching 

effectiveness.  Sample items from the PTTS include “I think my precalculus teacher 

enjoys teaching” and “I feel like my precalculus teacher makes the class difficult on 

purpose because he/she wants to “weed out” people”.  The Cronbach’s alpha reliability of 

the PTTS was .91 (Rostorfer & Mateleska, 2011). 

 Self-rated visualization and spatial thinking skill.  The Visio-Spatial Self-

Assessment for Precalculus Students Scale (VSSA) was used to measure self-rated 

visualization and spatial thinking skill.  The VSSA is a nine item scale that includes 

abstraction statements about two- and three-dimensional visualization ability (“I am good 

at mentally rotating 3-dimensional objects”), estimation problem statements (“I can tell 

by looking if a 2-dimensional object is symmetric”), and one specific precalculus 

situational statement (“When I have a math problem about transition points in a function, 



22 

 

 

 

I can picture those points on the graph of that function”).   The Cronbach’s alpha 

reliability of the VSSA was .81 (Rostorfer & Mateleska, 2011).  

 Graphical and algebraic representations of mathematical functions.  The 

Function Literacy and Translation Fluency Test was used to measure understanding of 

properties of graphical and algebraic representations of mathematical functions, i.e. 

mathematical function translation fluency.  The FLTF is a 10 item dichotomous 

mathematical functions test composed of four content areas: Graphical Literacy (items 1 

and 5), Graphical Interpretation (items 2, 7, and 10), Slope Recognition (items 3 and 6), 

and Function Property Line Tests (items 4, 8, and 9). Six items show graphical 

representations of functions; an example is shown in Figure 2.   

 

What type of function does this graph show? 

 

 
(a) cubic             (b)  linear             (c)  quadratic             (d)  rational 

Figure 2.  FLTF Graphical Literacy item. 

 

 



23 

 

 

 

 The remaining four items on the FLTF are algebraic, written items that ask the 

student to interpret an essentially graphical property of a function, such as “Which 

function increases faster, x
2
 or x

3
, on the interval (0, 1)?”.   Higher scores on the FLTF 

indicate that the student is more fluent in function translation and more literate in the 

basic properties of mathematical functions commonly seen in college precalculus.  The 

Cronbach’s alpha reliability for the FLTF was .35 (Rostorfer & Mateleska, 2011). 

Procedures  

 The four scales were administered together as a single survey during class periods 

in multiple sections of precalculus in October and November 2011.  The scales were only 

administered to students in precalculus class sections whose instructors had previously 

agreed to allow the researcher 25 minutes of class time to administer the survey.  

Participants completed the survey on a standard Scantron sheet.  Missing data accounted 

for at most 1.5% of cases; as the percentage of missing data was less than 5% all missing 

data was deleted listwise.  From prior analyses it is known that the data did not 

significantly violate the assumptions of multivariate normality (Rostorfer, 2011).  An 

alpha of .05 was used for all statistical tests unless otherwise indicated.  Data analysis 

was done using SAS software.   
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CHAPTER III: RESULTS 

 Two parallel cluster analysis procedures were performed.  In both procedures, the 

cluster means were extracted from a hierarchical cluster analysis solution and used as the 

seed values to a nonhierarchical (k-means) clustering.  The nonhierarchical cluster 

solution was interpreted with respected to the quality of its separation of the clusters and 

its meaning with respect to the FLTF test.  Last, stepwise logistic regression was used to 

determine which items from the PARS, PTTS, and VSSA, along with gender, could be 

used to predict cluster membership for that nonhierarchical solution.   

 The simple matching coefficient for binary data, shown in Equation 1, was chosen 

as the similarity measure for both hierarchical cluster analyses since the responses to the 

FLTF items were coded as “1” indicating a correct response and “0” indicating an 

incorrect response.  Complete flowcharts of the hierarchical and subsequent 

nonhierarchical cluster analyses appear in Figures 3 and 4, respectively.   
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Figure 3.  Hierarchical cluster analyses flow chart. 
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 The correlation matrix for the FLTF items is shown in Table 1. 

 

Table 1 

 

Correlations Among FLTF Items 

 

Item 1 2 3 4 5 6 7 8 9 10 

1 — 

         2 .09 — 

        3 .17 .01 — 

       4 -.05 -.03 .06 — 

      5 .07 .06 -.04 .03 — 

     6 .15 .01 .30 -.02 -.07 — 

    7 .13 .05 .02 .03 .11 -.06 — 

   8 .10 .06 .09 .03 .18 .02 .05 — 

  9 .03 .15 -.10 .05 .09 .07 -.05 .28 — 

 10 -.01 .16 -.01 -.04 .02 -.04 -.08 -.10 .13 — 

Note.  p < .05 

         

 Although the correlations between several items were statistically significant at 

the .05 level, none of the correlations among the FLTF items were above a predetermined 

cutoff of |.50|.  Since multicollinearity among the clustering variables was not a concern, 

the simple matching coefficient for binary data defined in Equation 1 was used as the 

similarity measure between student response vectors.  The distance matrix used in all 

hierarchical cluster analyses was a transformation of the simple matching coefficients 

into equivalent Euclidean distances, DMATCH, generated by the SAS DISTANCE 

procedure.   

 In the remainder of the results section, the Ward’s Method based cluster analyses 

results and the Average Linkage method based results will be discussed separately.  
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Ward’s Method Based Analyses 

 A four cluster solution was selected from the hierarchical cluster analysis that 

used Ward’s Method to build the clusters, based on agreement between the pseudo F 

statistic, the pseudo t
2 

statistic, and the dendrogram.  Both the pseudo F and pseudo t
2
 

statistics indicated that four cluster and three cluster solutions were plausible, based on 

mutual agreement in local peaks of plots of those values.  A four cluster solution was 

chosen over a three cluster solution because the cluster means for four clusters (Table 2) 

made more theoretical sense than did those of the three cluster solution.   
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Table 2 

 

Proportion of Correct Responses for Ward’s Hierarchical Solution 

 

FLTF Skill Item Cluster 

 

  

1 2 3 4 Overall 

    (n = 47) (n = 32) (n = 72)  (n = 48)  (n = 199) 

Graphical  1 .91 .88 .86 .67 .83 

  Literacy 5 .79 .97 .92 .83 .87 

Mean   .85 .92 .89 .75 .85 

Graphical 2 .32 .16 .47 .35 .36 

  Interpretation 7 .11 .53 .21 .06 .20 

 

10 .51 .03 .68 .75 .55 

Mean   .31 .24 .45 .39 .37 

Slope  3 .89 .91 .88 .88 .88 

  Recognition 6 1.00 .91 1.00 .94 .97 

Mean   .95 .91 .94 .91 .93 

Function  4 .02 .88 .64 .92 .60 

  Property  8 .43 .84 .74 .21 .55 

  Line Tests 9 .02 .03 .94 .00 .35 

Mean   .16 .58 .77 .38 .50 

Grand Mean  .50 .61 .73 .56 .62 

 

 Since the hierarchical solution resulted in four clusters, the k-means algorithm 

was restricted to optimize to four clusters.  The cluster means from Table 2 were used as 

the seed values for the k-means clustering performed via the SAS FASTCLUS procedure.   

Table 3 shows the proportion of correct responses by cluster and FLTF skill for the 

nonhierarchical solution.  The cluster profiles for the nonhierarchical solution (Table 3) 

exhibit a high degree of homogeneity with the cluster profiles from the hierarchical 

solution (Table 2), which indicates the stability of Ward’s Method for clustering the 
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FLTF responses.  See Appendix B for further details on the similarities between the 

cluster profiles for the hierarchical and nonhierarchical solutions.   

 

Table 3 

Proportion of Correct Responses for Ward’s Nonhierarchical Solution 

FLTF Skill Item Cluster 

 

  

1 2 3 4 Overall 

    (n = 46) (n = 52) (n = 34)  (n = 67)  (n = 199) 

Graphical  1 .72 .85 .88 .87 .83 

  Literacy 5 .85 .81 .94 .91 .87 

Mean   .78 .83 .91 .89 .85 

Graphical 2 .35 .33 .18 .48 .36 

  Interpretation 7 .09 .12 .53 .18 .20 

 

10 .78 .54 .06 .66 .55 

Mean   .41 .33 .25 .44 .37 

Slope  3 .91 .87 .94 .85 .88 

  Recognition 6 .98 .96 .94 .99 .97 

Mean   .95 .91 .94 .92 .93 

Function  4 1.00 .00 .88 .64 .60 

  Property  8 .22 .38 .82 .78 .55 

  Line Tests 9 .02 .04 .00 1.00 .35 

Mean   .41 .14 .57 .81 .50 

Grand Mean  .59 .49 .62 .73 .62 

 

 Referring to Table 3, it is clear that Ward’s nonhierarchical solution did achieve  

appropriate groupings of students by their performance on the FLTF items.  Cluster 2 

contained the lowest performing students; their results on each of the four skill areas 

tested by the FLTF were below the overall mean.  Cluster 4 contained the highest 

performing students.  Clusters 1 and 3 were similar in overall performance; Cluster 1 was 
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stronger in Graphical Interpretation, while cluster 3 was stronger in both Graphical 

Literacy and Function Property Line Tests.   Figure 5 shows a three-dimensional 

separation of the nonhierarchical clusters; despite the few misclassified members of 

clusters 1 and 2, the four cluster nonhierarchical solution did achieve a reasonably high 

degree of discrimination between clusters along three dimensions.   

 

Figure 5.  Three-dimensional separation of Ward’s nonhierarchical clusters. 

  External validation of the Ward’s nonhierarchical solution results indicated that a 

student’s cluster membership could be predicted by one item from the PTTS, one item 
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from the VSSA, and gender.  In the stepwise logistic regression, item PTTS4 was added 

in Step 1, Wald χ
2
(3, N = 192) = 16.40, p = .001; item VSSA6 was added in Step 2,  

Wald χ
2
(3, N = 192) = 9.03, p = .029; gender was added in the final step, Step 3,  

Wald χ
2
(3, N = 192) = 8.33, p = .040.  Cluster 3, as shown in Table 3, was used as the 

reference group.  The logistic regression model is shown in Table 4. 

 

Table 4 

 

Stepwise Logistic Regression Model for Predicting Cluster Membership From Ward’s 

Nonhierarchical Solution 

 

Parameter Cluster β SE p 

Odds 

Ratio 

95% CI for Odds 

Ratio 

            LL UL 

Intercept 1 2.24 0.97 .0203    

 

2 1.16 0.98 .2361    

 

4 0.08 0.99 .9353    

ptts4 1 0.18 0.18 .3317 1.20 0.83 1.72 

 

2 0.39 0.18 .0321 1.47 1.03 2.10 

 

4 0.65 0.18 .0003 1.92 1.35 2.73 

vssa6 1 -0.78 0.26 .0029 0.46 0.27 0.77 

 

2 -0.42 0.26 .1062 0.66 0.40 1.09 

 

4 -0.43 0.25 .0892 0.65 0.40 1.07 

sex  1 -0.58 0.52 .2630 0.56 0.20 1.54 

  Male vs  2 -1.34 0.51 .0087 0.26 0.10 0.71 

  Female 4 -0.41 0.50 .4087 0.66 0.25 1.76 

Note.  N = 192.  Reference Cluster = Cluster 3.  p < .0167.   

 Odds ratio comparisons for the three significant predictors of cluster membership 

are shown in Table 5.  The odds ratio comparison between clusters 4 and 3 for PTTS4, 

1.92, 95% C.I. [1.35, 2.73], indicates that the odds of a student belonging to the higher 

performing group, cluster 4, were 1.92 times greater for every one point increase in 
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disagreement with the statement “It is hard for me to understand my pre-calculus teacher 

in lecture because I feel like he/she skips steps in demonstrating problems.”  Similarly, 

the odds ratio comparison between clusters 1 and 4, 1.61, 95% C.I. [1.19, 2.18] indicates 

that the odds of a student belonging to the higher performing group, cluster 4, were 1.61 

times greater for every one point increase in disagreement with the statement “It is hard 

for me to understand my pre-calculus teacher in lecture because I feel like he/she skips 

steps in demonstrating problems.”  The odds ratio comparison between clusters 1 and 3 

for VSSA6, 2.19, 95% C.I. [1.31, 3.66] indicates that the odds of a student belonging to 

cluster 3 rather than cluster 1 increase by a factor of 2.19 for every one point increase in 

disagreement with the statement “I am good at estimating the sizes of angles inside 

shapes.”  Finally, although gender was a significant predictor of cluster membership as 

determined in the stepwise logistic regression, none of the individual odds ratios were 

significant at the required alpha cutoff for the clusterwise comparisons; however, the 

odds ratio comparison between clusters 2 and 3 for sex did approach significance. 
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Table 5 

 

Odds Ratios for External Validation of Ward’s Nonhierarchical Solution 

 

  PTTS4 

 

VSSA6 

 

SEX (M* vs F) 

  OR p   OR p   OR p 

C1 vs C3 0.84 .3317  2.19 .0029  1.78 .2630 

C2 vs C3 0.68 .0321  1.52 .1062  3.82 .0087 

C3 vs C4 1.92 .0003  0.65 .0892  0.66 .4087 

C1 vs C2 1.232 .1839  1.44 .1010  0.47 .0939 

C4 vs C2 0.77 .0714  1.01 .9557  0.40 .0265 

C1 vs C4 1.61 .0023  1.43 .0999  1.18 .7044 

Note.  Reference cluster = cluster on left.  *Reference group is Males.  PTTS4 = It is 

hard for me to understand my pre-calculus teacher in lecture because I feel like he/she 

skips steps in demonstrating problems; VSSA6 = I am good at estimating the sizes of 

angles inside shapes; 1 = Strongly Agree, 5 = Strongly Disagree; p < .0083.  

 

 Desciptive statistics for the significant predictors of Ward’s nonhierarchical 

cluster membership are shown in Table 6.  Given the significant odds ratios (Table 5), 

these relatively large differences in mean scores were expected. 
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Table 6 

 

Descriptive Statistics for External Variables From Ward’s Nonhierarchical Solution 

 

    Cluster 

  

1 2 3 4 

Variable 

 

(n = 46) (n = 52) (n = 34) (n = 67) 

PTTS4 M 2.85 3.06 2.47 3.67 

 

SD 1.59 1.36 1.16 1.30 

VSSA6 M 2.39 2.75 3.00 2.60 

 

SD 0.95 1.01 1.04 0.95 

Sex % Female 43.48 61.54 41.18 34.33 

  % Male 56.52 38.46 58.82 65.67 

Note.  PTTS4 = It is hard for me to understand my pre-calculus teacher in lecture because 

I feel like he/she skips steps in demonstrating problems; VSSA6 = I am good at 

estimating the sizes of angles inside shapes; 1 = Strongly Agree, 5 = Strongly Disagree. 
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Average Linkage Method Based Analyses   

 Because the initial average linkage hierarchical cluster analysis indicated the 

presence of outliers, this analysis proceeded in two steps (Figure 3).  A six cluster 

solution was selected from the first average linkage method hierarchical cluster analysis, 

based on agreement between the pseudo F statistic, the pseudo t
2 

statistic, and the 

dendrogram.  However, this six cluster solution contained four clusters with six or fewer 

observations in each cluster, for a total of 12 outlier observations.  These 12 outliers were 

subsequently removed from the data set and a second hierarchical cluster analysis using 

average linkage was performed on the reduced data set of 187 observations.  A three 

cluster solution was selected from this second hierarchical average linkage method 

cluster analysis, again based on mutual agreement between the pseudo F statistic, the 

pseudo t
2 

statistic, and the dendrogram.  Descriptive statistics for the outliers removed 

prior to the second analysis, N = 12, are shown in Tables A4 through A12 (Appendix A); 

the proportion of correct responses for the outlier group are shown in Table A13.  The 

cluster means for the three cluster solution are shown in Table 7. 
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Table 7 

 

Proportion of Correct Responses for Average Linkage Hierarchical Solution 

 

FLTF Skill Item 

 

Cluster 

 

   

1 2 3 Overall 

      (n = 94) (n = 35) (n = 58)  (n = 187) 

Graphical Literacy 1 

 

.82 .94 .91 .87 

 

5 

 

.83 .97 .97 .90 

Mean     .83 .96 .94 .89 

Graphical  2 

 

.02 .97 .52 .35 

  Interpretation 7 

 

.20 .29 .17 .21 

 

10 

 

.37 .60 .83 .56 

Mean     .20 .62 .51 .37 

Slope Recognition 3 

 

.96 .97 .83 .92 

 

6 

 

.98 1.00 1.00 .99 

Mean     .97 .99 .92 .95 

Function Property  4 

 

.60 .60 .62 .60 

  Line Tests 8 

 

.45 .57 .78 .57 

 

9 

 

.13 .03 .91 .35 

Mean     .39 .40 .77 .51 

Grand Mean   .54 .69 .75 .63 

 

 Since the hierarchical solution resulted in three clusters, the k-means algorithm 

was restricted to optimize to three clusters.  The cluster means from Table 7 were used as 

seed values for the k-means clustering performed via the SAS FASTCLUS procedure.  

Table 8 shows the proportion of correct responses by cluster and FLTF skill for the 

nonhierarchical solution.  The cluster profiles for the nonhierarchical solution (Table 8) 

are not as strongly homogeneous with the cluster profiles from the hierarchical solution 

(Table 7) as in the Ward’s Method based analyses, most notably with regard to the  

Function Property Line Tests section of the FLTF.  See Appendix B for further details on 
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the similarities and differences between the cluster profiles for the hierarchical and 

nonhierarchical solutions.   

Table 8 

 

Proportion of Correct Responses for Average Linkage Nonhierarchical Solution 

 

FLTF Skill Item Cluster 

 

  

1 2 3 Overall 

    (n = 64) (n = 88) (n = 35)  (n = 187) 

Graphical Literacy 1 .88 .84 .94 .87 

 

5 .95 .85 .91 .90 

Mean   .92 .85 .93 .89 

Graphical  2 .48 .00 1.00 .35 

  Interpretation 7 .17 .23 .23 .21 

 

10 .70 .42 .63 .56 

Mean   .45 .22 .62 .37 

Slope Recognition 3 .86 .94 .97 .92 

 

6 1.00 .98 1.00 .99 

Mean   .93 .96 .99 .95 

Function Property  4 .64 .60 .54 .60 

  Line Tests 8 .77 .43 .57 .57 

 

9 1.00 .02 .00 .35 

Mean   .80 .35 .37 .51 

Grand Mean  .75 .53 .68 .63 

 

 Referring to Table 8, it is clear that the average linkage nonhierarchical solution 

did achieve appropriate groupings students by their performance on the FLTF items.  

Cluster 2 contained the lowest performing students; their results on three of the four skill 

areas, Graphical Literacy, Graphical Interpretation, and Function Property Line Tests, 

were below the overall mean.  The students in cluster 2 did score above the overall mean 
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in Slope Recognition, but averaged lower scores on this skill than did the students in 

cluster 1.  Cluster 1 contained the highest overall mean performance, and those students 

far outscored the students in clusters 2 and 3 on Function Property Line Tests, but had the 

lowest mean score on item 3 of Slope Recognition.  The students in cluster 3 achieved the 

highest performance on Graphical Interpretation and were similar to those in cluster 1 on 

Graphical Literacy.  Figure 6 shows a two-dimensional separation of the nonhierarchical 

clusters.  Although there are two members of cluster 2 that are misclassified into cluster 

1, no members of cluster 3 are misclassified; there is a bimodal distribution of the 

members of cluster 1, which may indicate anomalies in this cluster with respect to a 

particular FLTF item response.  
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Figure 6.  Two-dimensional separation of Average Linkage nonhierarchical clusters. 

 External validation of the average linkage nonhierarchical solution results 

indicated that a student’s cluster membership could be predicted by two items from the 

PTTS.  In the stepwise logistic regression, item PTTS4 was added in Step 1,  

Wald χ
2
(2, N = 181) = 15.76, p < .001; item PTTS7 was added in Step 2,  

Wald χ
2
(2, N = 181) = 6.45, p = .040.  Cluster 3, as shown in Table 8, was used as the 

reference group.  The logistic regression model is shown in Table 9. 
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Table 9 

 

Stepwise Logistic Regression Model for Predicting Cluster Membership From Average 

Linkage Nonhierarchical Solution 

 

Parameter Cluster β SE p Odds Ratio 

95% CI for Odds 

Ratio 

            LL UL 

Intercept 1 -0.67 0.64 .2909    

 

2 0.37 0.58 .5189    

ptts4 1 0.35 0.18 .0516 1.42 1.00 2.02 

 

2 -0.24 0.17 .1502 0.79 0.57 1.09 

ptts7 1 0.04 0.18 .8226 1.04 0.73 1.48 

  2 0.37 0.18 .0332 1.44 1.03 2.02 

Note.  N = 181.  p = .025.  Reference Cluster = Cluster 3. 

   

 Odds rato comparisons for the two significant predictors of cluster membership 

are shown in Table 10.  The odds ratio comparison between clusters 2 and 1 for PTTS4, 

1.80, 95% C.I. [1.35, 2.41], indicates that the odds of a student belonging to the highest 

performing group, cluster 1, were 1.80 times greater for every one point increase in 

disagreement with the statement “It is hard for me to understand my pre-calculus teacher 

in lecture because I feel like he/she skips steps in demonstrating problems.”  Despite the 

significance of item PTTS7 as a predictor of cluster membership as determined by the 

stepwise logistic regression, none of the other odds ratio comparisons were significant at 

the required alpha cutoff for the clusterwise comparisons. 
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Table 10 

 

Odds Ratios for External Validation of Average Linkage Nonhierarchical Solution 

 

  PTTS4   PTTS7 

  OR p   OR p 

C1 vs C3 0.71 .0516  0.96 .8226 

C2 vs C3 1.27 .1502  0.69 .0332 

C2 vs C1 1.80 <.0001  0.72 .0342 

Note.  Reference cluster = cluster on left.  PTTS4 = It is hard for me to understand my 

pre-calculus teacher in lecture because I feel like he/she skips steps in demonstrating 

problems, PTTS7 = I feel like my pre-calculus teacher makes the class difficult on 

purpose because he/she wants to “weed out” people; 1 = Strongly Agree, 5 = Strongly 

Disagree;  p <  .0167. 

 

 

 Descriptive statistics for the significant predictors of the average linkage 

nonhierarchical cluster membership are shown in Table 11.  Given the significant odds 

ratios (Table 10) the relatively large differences with respect to PTTS4 and the 

homogeneity with respect to PTTS7 were expected.  Gender is included in Table 11 for 

comparison with the results of the Ward’s nonhierarchical analysis and also since cluster 

weighting by gender was a research variable of interest.  Additionally, despite the fact 

that gender did not emerge as a significant predictor of cluster membership for the 

average linkage nonhierarchical clusters in the stepwise logistic regression, the χ
2 

test of 

independence was significant, χ
2
(2, N = 187) = 6.84, p = .033, indicating that average 

linkage nonhierachical cluster membership and gender are related. 
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Table 11 

 

 

Descriptive Statistics for External Variables From Average Linkage Nonhierarchical 

Solution 

 

    Cluster 

  

1 2 3 

Variable 

 

(n = 64) (n = 88) (n = 35) 

PTTS4 M 3.64 2.80 2.97 

 

SD 1.30 1.43 1.40 

PTTS7 M 2.58 2.72 2.74 

 

SD 0.91 1.02 0.98 

Sex % Female 29.69 50.00 48.57 

  % Male 70.31 50.00 51.43 

Note.  PTTS4 = It is hard for me to understand my pre-calculus teacher in lecture because 

I feel like he/she skips steps in demonstrating problems; PTTS7 = I feel like my pre-

calculus teacher makes the class difficult on purpose because he/she wants to “weed out” 

people; 1 = Strongly Agree, 5 = Strongly Disagree. 
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CHAPTER IV: DISCUSSION 

 The two primary research hypotheses of this study were that at least two clusters 

of function translation fluency would emerge and that some clusters would be dominated 

by a single gender.  Both were supported.  The four clusters that emerged from the 

Ward’s method based analysis showed dominance of cluster 2 by females and cluster 4 

by males but heterogeneous gender distributions in the other clusters (Table 6).  The three 

clusters that emerged from the average linkage based analysis showed dominance of 

cluster 1 by males but heterogeneous gender distribution in clusters 2 and 3 (Table 11). 

 The two secondary research hypotheses of this study were that profiles of 

precalculus students’ function translation fluency could be developed based on the results 

of the FLTF clustering and that students’ FLTF cluster membership could be predicted by 

their visualization ability, mathematics anxiety, perceptions of their precalculus teachers, 

and gender.  The first was strongly supported by the results.  Profiles of students’ 

function translation fluency were developed and externally validated in both the Ward’s 

method and average linkage based analyses. 

 The remaining secondary research hypothesis was less well supported, in that the 

not all four constructs predicted FLTF cluster membership. Of those that did, only 

specific aspects of those constructs were predictors.  Mathematics anxiety and attitudes 

toward mathematics were not predictors of FLTF cluster membership; no PARS items 

were significant in either external validation.  Gender predicted FLTF cluster 

membership for the Ward’s method nonhierarchical clusters, both when controlling for 
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other predictors in the model and at the univariate level, but only at the univariate level 

for average linkage FLTF cluster membership.  

 The specific aspects of visualization ability and student perception of the 

precalculus teacher that predicted FLTF cluster membership varied by cluster solution.  

Visualization ability did not predict average linkage nonhierarchical cluster membership. 

Self-rated ability to visually estimate angle sizes within shapes (item VSSA6) predicted 

Ward’s nonhierarchical cluster membership. Student perception that the precalculus 

teacher increased the difficulty of the class in order to “weed out” students (item PTTS7) 

predicted average linkage nonhierarchical cluster membership.  Student perception that 

the precalculus teacher skipped steps while presenting solutions to mathematical 

problems in lecture (item PTTS4) predicted FLTF cluster membership for both 

nonhierarchical cluster solutions.    

 The observed gender differences in FLTF performance are in accordance with the 

work of Geary et. al (2000), Casey et. al (2000), Miller and Bischel (2004), and Quaiser-

Pohl and Lehmann (2002).  In both cluster solutions the highest overall mean scores on 

the FLTF were achieved by the students in the male dominated clusters; in the Ward’s 

method solution, the lowest overall mean scores were achieved by the students in the 

female dominated cluster.  Differences between the results of the current study and those 

obtained by Geary et. al (2000) and Casey et. al (2000) did appear.  In both of these prior 

studies, males had direct advantages in spatial ability on a variety of mathematical 

problem solving tasks.  However, the single spatial visualization ability predictor of 

FLTF cluster membership, item VSSA6, was significant only for the Ward’s 
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nonhierarchical clusters; the odds ratios (Table 5) for item VSSA6 were also significant 

only for comparing the two clusters that were heterogeneous by gender.  Therefore, the 

results of this study did agree with prior research in that there were overall performance 

differences by gender on the FLTF, but the influence of the single specific visualization 

item as a predictor of cluster membership was not common to both cluster solutions and 

was not associated with gender. 

 The results of this study also differed from the work of Ashcraft and Moore 

(2009), Meece et al. (1990), Haynes et al. (2004), and Frenzel et al. (2007) in that 

mathematics anxiety, as measured by items from the PARS, was not a predictor of cluster 

membership.  However, specific student perceptions of the precalculus teacher were 

predictors of cluster membership for both cluster solutions.  This is somewhat similar to 

the results obtained by Hayes et al. (2004), although their results showed an association 

between lower mathematics anxiety and perceptions of high school mathematics teacher 

only for females.   

 Student perceptions that precalculus teacher is purposely making the course more 

difficult in order to dissuade students from pursuing further mathematics courses is also 

similar to results observed by Turner et al. (2002), in which negative mathematics teacher 

affect influenced student tendencies to avoid mathematics.  The results observed for item 

PTTS4, which addresses algebraic manipulation of mathematical functions, are also in 

agreement with prior work.  As discussed by Carlson et al. (2010), Gagatsis and Shiakalli 

(2004), Herman (2007), and Knuth (2000), a precalculus teacher focused on classroom 

demonstrations of procedural algebraic solutions over graphical demonstrations may be 
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directly influencing student function translation fluency.  This conclusion is also 

supported by the odds ratio comparisons and overall FLTF performance results as well as 

the Graphical Interpretation and Function Property Line Tests item scores for both cluster 

solutions.    

Limitations 

 Limitations of this study include the use of a convenience sample, unequal sample 

sizes for the Ward’s method and average linkage method based analyses, time taken to 

collect data, and length of the original survey.  The generalizability of the results of this 

study is influenced by the sample from which the students were drawn, a regional 

university in the South; therefore, generalizability may be limited to similar samples.  

 The Ward’s method based analyses were run on the full sample of 199 students as 

no outliers were identified by this method.  In contrast, the average linkage hierarchical 

clustering identified 12 outliers in its first run.  Thus, the average linkage based analyses 

were completed on a subset of 187 students.  The 12 outliers removed from the average 

linkage hierarchical analysis could indicate the presence of another subgroup that was not 

able to be well identified by the average linkage method. 

 The remaining limitations of this study are associated with the measures used and 

the time span associated with data collection.  Data collection for this study began in 

October of 2011 but was not completed until mid-November of 2011.  It is possible that 

some students had not yet been exposed to some of the material on the FLTF in their 

precalculus classes and that this could have influenced FLTF scores.  The measures used 

in this study and the survey design also had certain limitations.  All of the measures used 
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for external validation were subjective rather than objective; it would have perhaps been 

more relevant to include an objective measure of visualization skills for closer 

comparison with prior work rather than a subjective self-assessment of those skills.  The 

original instrument used to collect all of the data for this study contained 70 items, with 

the 10 FLTF questions at the end of the survey. It is therefore possible that the FLTF 

scores may have been influenced by students’ fatigue.  Finally, since identifying data for 

the instructors was not collected, this potential source of variability was not controlled for 

in the analyses.   

Suggestions for Future Research 

 Suggestions for future research include revision of the FLTF and further 

development of the construct of function translation fluency.  The low Cronbach’s alpha 

for the original FLTF and the observed results from this study indicate that function 

translation fluency is not a unidimensional construct; therefore, creation and validation of 

a truly multidimensional version of the FLTF to explore the extent of the 

multidimensionality of function translation fluency would be worthwhile.  Further 

refinement of the conceptual definition of function translation fluency should also be 

considered in future research. 

 Alternative constructs could also be considered for use as predictors of FLTF 

cluster membership.  These include race, socio-economic status, school system factors, 

and objective measures of both student strength of mathematical background and of 

visualization ability.  Specific characteristics of precalculus teacher background could 

also be considered in future research, such as course design, years of teaching experience, 
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and mathematical preparedness.  Future research could also incorporate self-report 

instruments for precalculus teachers to address the issues of “weeding out” students and 

of skipping steps in demonstrating problems in lecture.  The specific aspects of the 

classroom dynamic that lead students to believe that the precalculus teacher is attempting 

to “weed out” also merit further investigation.  In addition, it should be determined 

whether or not precalculus teachers actually do skip steps in demonstrating problems, or 

if this issue is truly related to student perception rather than teacher in-class behavior.    
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APPENDIX A 

Descriptive Statistics 

Table A1 

 

Descriptive Statistics and Response Frequencies for PARS Items 

 

Item M SD 

Strongly 

Disagree Disagree Neutral Agree 

Strongly 

Agree 

pars1 2.82 1.28 33 55 53 30 28 

pars2 2.84 1.07 19 62 63 42 13 

pars3 2.54 1.21 14 29 58 49 49 

pars4 3.36 1.17 14 33 57 57 38 

pars5* 2.99 1.29 25 60 31 53 29 

pars6* 2.80 1.22 15 51 46 51 35 

pars7 2.28 1.02 43 91 40 17 8 

pars8* 2.27 1.14 6 28 41 61 62 

Note.  N  =  199 unless otherwise indicated; *N = 198. 

 

 

Table A2 

 

Descriptive Statistics and Response Frequencies for VSSA Items 

 

Item M SD 

Strongly 

Disagree Disagree Neutral Agree 

Strongly 

Agree 

vssa1 2.23 1.00 50 81 44 20 4 

vssa2 2.47 1.02 40 60 69 26 4 

vssa3** 3.64 0.87 33 79 68 16 1 

vssa4* 2.64 1.08 36 48 74 32 8 

vssa5* 1.96 0.89 67 86 32 12 1 

vssa6 2.66 1.00 28 57 72 39 3 

vssa7* 3.28 1.27 21 35 50 52 40 

vssa8* 2.76 0.98 18 63 73 37 7 

vssa9*** 1.84 0.80 71 93 25 6 1 

Note.  N  =  199 unless otherwise indicated; *N = 198, ** N= 197, ***N = 196. 
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Table A3 

 

Descriptive Statistics and Response Frequencies for PTTS Items 

 

Item M SD 

Strongly 

Disagree Disagree Neutral Agree 

Strongly 

Agree 

ptts1 2.46 1.34 61 53 42 19 24 

ptts2 2.58 1.27 45 64 41 28 21 

ptts3 4.50 0.85 132 44 16 4 3 

ptts4 3.11 1.43 42 52 28 41 36 

ptts5 3.06 1.18 19 64 49 44 23 

ptts6 3.80 1.09 54 90 29 15 11 

ptts7 3.47 1.35 53 64 31 25 26 

ptts8 2.09 0.99 60 85 35 14 5 

ptts9 2.52 1.20 45 62 50 27 15 

ptts10 2.46 1.28 58 56 35 35 15 

ptts11 2.31 1.06 42 90 41 15 11 

ptts12 3.33 1.25 30 84 33 27 25 

ptts13 3.15 1.49 50 45 33 28 43 

Note.  N  =  199. 
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Table A4 

 

Descriptive Statistics and Response Frequencies for PARS Items for Outliers Removed 

From Average Linkage Based Analysis 

 

Item M SD 

Strongly 

Disagree Disagree Neutral Agree 

Strongly 

Agree 

pars1 2.67 1.23 2 4 3 2 1 

pars2 2.92 1.31 2 2 5 1 2 

pars3 2.00 1.35 6 3 1 1 1 

pars4 3.58 1.51 2 1 1 4 4 

pars5 3.08 1.31 1 4 2 3 2 

pars6 2.92 1.31 2 3 2 4 1 

pars7 2.00 0.95 4 5 2 1 0 

pars8 2.83 1.34 2 3 4 1 2 

Note.  N  =  12 unless otherwise indicated. 

 

 

 

Table A5 

 

Descriptive Statistics and Response Frequencies for VSSA Items for Outliers Removed 

From Average Linkage Based Analysis 

 

Item M SD 

Strongly 

Disagree Disagree Neutral Agree 

Strongly 

Agree 

vssa1 2.50 1.24 3 3 4 1 1 

vssa2 2.58 1.24 3 2 5 1 1 

vssa3 3.50 0.90 0 1 6 3 2 

vssa4 2.50 1.45 4 2 4 0 2 

vssa5 2.08 1.00 4 4 3 1 0 

vssa6 2.42 1.38 5 0 5 1 1 

vssa7 2.92 1.56 4 0 3 3 2 

vssa8 2.25 0.75 2 5 5 0 0 

vssa9* 1.82 0.87 5 3 3 0 0 

Note.  N  =  12 unless otherwise indicated; *N  =  11. 
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Table A6 

 

Descriptive Statistics and Response Frequencies for PTTS Items for Outliers Removed 

From Average Linkage Based Analysis 

 

Item M SD 

Strongly 

Disagree Disagree Neutral Agree 

Strongly 

Agree 

ptts1 2.42 1.73 6 1 2 0 3 

ptts2 2.83 1.47 3 2 3 2 2 

ptts3 4.50 0.80 0 0 2 2 8 

ptts4 3.08 1.44 2 3 1 4 2 

ptts5 2.92 1.24 1 4 4 1 2 

ptts6 4.00 0.74 0 0 3 6 3 

ptts7 3.33 1.83 4 0 1 2 5 

ptts8 2.00 1.41 7 1 2 1 1 

ptts9 2.92 1.38 2 3 3 2 2 

ptts10 2.50 1.38 4 2 3 2 1 

ptts11 2.33 1.15 2 7 1 1 1 

ptts12 3.00 1.28 2 2 3 4 1 

ptts13 3.42 1.73 3 1 1 2 5 

Note.  N  =  12 unless otherwise indicated; *N  =  11. 

 

 

 

Table A7 

 

Descriptive Statistics and Response Frequencies for PARS Items for Outliers Removed 

From Average Linkage Based Analysis for Females Only 
 

Item M SD 

Strongly 

Disagree Disagree Neutral Agree 

Strongly 

Agree 

pars1 2.778 1.202 1 3 3 1 1 

pars2 3.333 1.118 0 2 4 1 2 

pars3 1.444 0.726 6 2 1 0 0 

pars4 4.111 1.269 1 0 0 4 4 

pars5 2.778 1.093 1 3 2 3 0 

pars6 2.444 1.130 2 3 2 2 0 

pars7 2.000 1.000 3 4 1 1 0 

pars8 2.444 1.236 2 3 3 0 1 

 Note.  N  =  9. 
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Table A8 

 

Descriptive Statistics and Response Frequencies for VSSA Items for Outliers Removed 

From Average Linkage Based Analysis for Females Only 
 

Item M SD 

Strongly 

Disagree Disagree Neutral Agree 

Strongly 

Agree 

vssa1 2.889 1.167 1 2 4 1 1 

vssa2 3.000 1.118 1 1 5 1 1 

vssa3 3.444 0.882 0 1 4 3 1 

vssa4 2.556 1.236 2 2 4 0 1 

vssa5 2.333 1.000 2 3 3 1 0 

vssa6 2.889 1.269 2 0 5 1 1 

vssa7 2.889 1.537 3 0 2 3 1 

vssa8 2.556 0.527 0 4 5 0 0 

vssa9* 2.000 0.926 3 2 3 0 0 

 Note.  N  =  9 unless otherwise indicated; *N  =  8. 

 

 

 

Table A9 

 

Descriptive Statistics and Response Frequencies for PTTS Items for Outliers Removed 

From Average Linkage Based Analysis for Females Only 
 

Item M SD 

Strongly 

Disagree Disagree Neutral Agree 

Strongly 

Agree 

ptts1 2.889 1.764 3 1 2 0 3 

ptts2 3.333 1.323 1 1 3 2 2 

ptts3 4.333 0.866 0 0 2 2 5 

ptts4 2.667 1.414 2 3 1 2 1 

ptts5 3.111 1.269 0 4 2 1 2 

ptts6 3.889 0.782 0 0 3 4 2 

ptts7 2.778 1.787 4 0 1 2 2 

ptts8 2.333 1.500 4 1 2 1 1 

ptts9 3.333 1.323 1 1 3 2 2 

ptts10 2.444 1.236 3 1 3 2 0 

ptts11 2.556 1.236 1 5 1 1 1 

ptts12 2.556 1.130 2 2 3 2 0 

ptts13 2.889 1.691 3 1 1 2 2 

 Note.  N  =  9. 
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Table A10 

 

Descriptive Statistics and Response Frequencies for PARS Items for Outliers Removed 

From Average Linkage Based Analysis for Males Only 
 

Item M SD 

Strongly 

Disagree Disagree Neutral Agree 

Strongly 

Agree 

pars1 2.33 1.53 1 1 0 1 0 

pars2 1.67 1.15 2 0 1 0 0 

pars3 3.67 1.53 0 1 0 1 1 

pars4 2.00 1.00 1 1 1 0 0 

pars5 4.00 1.73 0 1 0 0 2 

pars6 4.33 0.58 0 0 0 2 1 

pars7 2.00 1.00 1 1 1 0 0 

pars8 4.00 1.00 0 0 1 1 1 

 Note.  N  =  3. 

 

 

 

Table A11 

 

Descriptive Statistics and Response Frequencies for VSSA Items for Outliers Removed 

From Average Linkage Based Analysis for Males Only 
 

Item M SD 

Strongly 

Disagree Disagree Neutral Agree 

Strongly 

Agree 

vssa1 1.33 0.58 2 1 0 0 0 

vssa2 1.33 0.58 2 1 0 0 0 

vssa3 3.67 1.15 0 0 2 0 1 

vssa4 2.33 2.31 2 0 0 0 1 

vssa5 1.33 0.58 2 1 0 0 0 

vssa6 1.00 0.00 3 0 0 0 0 

vssa7 3.00 2.00 1 0 1 0 1 

vssa8 1.33 0.58 2 1 0 0 0 

vssa9 1.33 0.58 2 1 0 0 0 

 Note.  N  =  3. 
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Table A12 

 

Descriptive Statistics and Response Frequencies for PTTS Items for Outliers Removed 

From Average Linkage Based Analysis for Males Only 
 

Item M SD 

Strongly 

Disagree Disagree Neutral Agree 

Strongly 

Agree 

ptts1 1.00 0.00 3 0 0 0 0 

ptts2 1.33 0.58 2 1 0 0 0 

ptts3 5.00 0.00 0 0 0 0 3 

ptts4 4.33 0.58 0 0 0 2 1 

ptts5 2.33 1.15 1 0 2 0 0 

ptts6 4.33 0.58 0 0 0 2 1 

ptts7 5.00 0.00 0 0 0 0 3 

ptts8 1.00 0.00 3 0 0 0 0 

ptts9 1.67 0.58 1 2 0 0 0 

ptts10 2.67 2.08 1 1 0 0 1 

ptts11 1.67 0.58 1 2 0 0 0 

ptts12 4.33 0.58 0 0 0 2 1 

ptts13 5.00 0.00 0 0 0 0 3 

 Note.  N  =  3. 
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Table A13 

Proportion of Correct Responses for Outliers Removed From Average Linkage Analysis 

Compared to Overall Average Linkage Nonhierarchical Solution 

 

FLTF Skill Item 

Females  

(n = 9) 

Males  

(n = 3) 

Overall  

(n = 12) 

Solution  

(n = 187) 

Graphical Literacy 1 .22 .00 .17 .87 

 

5 .44 .67 .50 .90 

Mean   .33 .33 .33 .89 

Graphical Interpretation 2 .33 .67 .42 .35 

 

7 .11 .00 .08 .21 

 

10 .33 1.00 .50 .56 

Mean   .26 .56 .33 .37 

Slope Recognition 3 .33 .33 .33 .92 

 

6 .67 .67 .67 .99 

Mean   .50 .50 .50 .95 

Function Property  4 .44 .67 .50 .60 

  Line Tests  8 .33 .00 .25 .57 

 

9 .44 .00 .33 .35 

Mean   .41 .22 .36 .51 

Grand Mean   .37 .40 .38 .63 
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APPENDIX B 

Comparison of Hierarchical and Nonhierarchical Cluster Solutions 

 

Figure B1.  Ward’s Method hierarchical cluster profiles.  See Figure B2 for comparison 

to Ward’s Method nonhierarchical cluster profiles.  
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Figure B2.  Ward’s Method nonhierarchical cluster profiles.  See Figure B1 for 

comparison to Ward’s Method hierarchical cluster profiles.  
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Figure B3.  Average Linkage hierarchical cluster profiles.  See Figure B4 for comparison 

to Average Linkage nonhierarchical cluster profiles.  
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Figure B4.  Average Linkage nonhierarchical cluster profiles.  See Figure B3 for 

comparison to Average Linkage hierarchical cluster profiles.  
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IRB Approval Letter 

 

                                                                                                                                                                                                                                

                                                                                                    
 

October 11, 2011 
Robin Rostorfer and Ashley Mateleska 
Department of Psychology 
rlr3x@mtmail.mtsu.edu, jwa.kim@mtsu.edu   

 
Protocol Title: “Validation of Affective Influences on Function Translation Instrument” 
 
Protocol Number: 12-082 

 
Dear Investigator(s), 

 
I found your study to be exempt from Institutional Review Board (IRB) continued review.  The 
exemption is pursuant to 45 CFR 46.101(b) (2).  This is because your study involves the use of 
educational tests and survey materials, and information is obtained in such a manner that human 
subjects cannot be identified. 
 
You will need to submit an end-of-project report to the Office of Compliance upon completion of your 
research.  Complete research means that you have finished collecting data and you are ready to 
submit your thesis and/or publish your findings.  Should you not finish your research within the three 
(3) year period, you must submit a Progress Report and request a continuation prior to the expiration 
date.  Please allow time for review and requested revisions.  Your study expires on October 11, 2014. 
 
Any change to the protocol must be submitted to the IRB before implementing this change.  
According to MTSU Policy, a researcher is defined as anyone who works with data or has contact with 
participants.  Anyone meeting this definition needs to be listed on the protocol and needs to provide a 
certificate of training to the Office of Compliance.  If you add researchers to an approved project, 
please forward an updated list of researchers and their certificates of training to the Office of 
Compliance before they begin to work on the project.  Once your research is completed, please 
send us a copy of the final report questionnaire to the Office of Compliance. This form can be located 
at www.mtsu.edu/irb on the forms page. 
 
Also, all research materials must be retained by the PI or faculty advisor (if the PI is a student) for at 
least three (3) years after study completion.  Should you have any questions or need additional 
information, please do not hesitate to contact me.   
 
Sincerely, 
 
Emily Born 
Compliance Officer 
615-494-8918 
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