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ABSTRACT

Rainbow trout is one of the widely used aquaculture species for food worldwide. Due to
its commercial importance, various genomic resources are available for the trout including
a draft reference genome, microRNA repertoire, quantitative trait loci and single nucleotide
polymorphisms (SNPs) associated with different production traits. However, many of these
genomic resources still need improvement in terms of quality and quantity. The only
available genome draft is not completely annotated, and lacks non-coding RNA and some
protein coding genes. Similarly, majority of the previous work aimed at identification of
trait-associated genetic markers were not robust due to limitation of genomic resources that
were previously available.

In this study, we used genomics and transcriptomic approaches to identify missing genetic
elements including long non-coding RNA and protein coding genes in the reference
genome. In addition, we utilized these genomics resources to identify genes and genetic
variations, especially SNPs, associated with growth and muscle quality traits in rainbow
trout. In order to facilitate gene discovery and to improve the draft genome reference, we
used deep transcriptome sequencing from 13 vital tissues. De novo assembly of ~1.167
billion paired-end reads from those 13 tissues identified a total of 474,524 protein coding
transcripts, of them 11,843 transcripts were not previously reported in the genome
reference. In order to discover long non-coding RNA repertoire, we used the same ~1.167
billion RNA sequencing reads in addition to RNA sequence data from 3 other published
sources. Transcriptome assembly followed by various filtration steps identified 54,503
long non-coding RNA transcripts, which provided the first long non-coding RNA draft
reference in rainbow trout. These long non-coding RNAs exhibited less sequence
conservation, one exon biased structure and overall lower expression level compared to
protein coding genes. The newly identified long non-coding RNAs showed differential
expression in response to Flavobacterium psychrophilum infection, and their expression
level strongly correlated with body bacterial load in selectively bred, resistant-, control-,
and susceptible- genetic lines of rainbow trout. These findings suggest that the INCRNAs
have importance roles in antibacterial immune response and disease resistance in rainbow
trout. In addition, multiple bioinformatics algorithms were tested and successfully utilized
to identify SNPs in protein coding genes and long non-coding RNAs that are associated
with 5 important production traits: whole body weight (\WBW), muscle yield, muscle crude
fat content, muscle shear force (tenderness) and fillet whiteness. A total of 7,930 SNPs
identified in protein coding genes and non-coding RNAs showed allelic imbalances (>2.0
as an amplification and <0.5 as loss of heterozygosity) between fish families showing
contrasting phenotypes for above-mentioned traits suggesting their importance in the
phenotypes. Validation of a small subset of the SNPs with allelic imbalances showed ~93%
success rate of the pipelines in calling SNPs suggesting reliability of the algorithms.



This study provides new genomic resources to complement the genome annotation and
facilitate functional genomics research in addition to genome-wide studies and selection in
rainbow trout.
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CHAPTER I: INTRODUCTION

The 21% century will be the century of biology, where the advancement of computing
technology and sequencing technology produce a tremendous amount of data that needs to
be analyzed [1]. Being able to collect biological data and process it using supercomputing
power can help society find answers to multiple problems, such as finding diagnostics for
diseases -for example The Cancer Genome Atlas project- and solving famine problems by
generating crops and stocks that can handle diseases, rough weather and harsh
environments.

In 1990, one of the biggest adventures in science was started. This was the launching of
Human Genome Project, led by the United States, represented by the National Institutes of
Health (NIH) and the US Department of Energy (DOE), and other countries that formed
the International Human Genome Sequencing Consortium. The project had a budget of 3
billion dollars and a 15 year deadline [2].

Two main principles were adopted by the Human Genome Project. First was to welcome
collaborations from any nation, since the human genome is a common heritage of all
humans. The second principle was the release of data by making sure all sequence data and
results were released to the public within 24 hours [2].

Releasing the data and making it available to other scientists so they can use it for research
opens the door for all scientists from all over the world to be part of this ongoing research.
One of the main goals of the Human Genome Project was, the construction of genetic and

physical maps of the human and mouse genomes [2]. To achieve the goals of the Human



Genome Project, 200 labs in the United States were funded by DOE and NIH; in addition,
by the end of the project, 18 different countries were contributing toward this project.

The first draft of the Human Genome was announced from the White House by President
Bill Clinton on June 26, 2000. Three years later, in April 2003, a finished version of human
genome was announced by the Human Genome Sequencing Consortium. The work did not
stop after this announcement. On the contrary, the adventure and the result of this important
work had just begun. Today, scientists and researchers use this tool to better understand
how a human being is developed. An important aspect is that it allows scientists to learn
more about genetic diseases and how to treat them.

It took almost 13 years, in addition to more than 3 billion dollars, to come up with the first
draft of the human genome, but with advancements in supercomputing and sequencing
technologies, such as the next-generation sequencing technology by different private
companies like lllumina, the goals of having the human genome assembly within one week
and with a cost of less than a $1000 dollars is now a reality [3]. Future technologies can
further bring the cost down of obtaining one’s genome sequence to less than $100, and
only require about 24 hours to complete (Figure 1 ). This advancement will open the doors
for scientists to be able to sequence multiple genomes for different people and species and

do comparisons for better understanding of the genome biology among different taxa.
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Figure 1: DNA Sequencing Cost and Data Output since 2000 [3].

The Human Genome Sequencing Project led the way for genetic research for other species.
Almost all agricultural species, such as cow [4-7], chicken [8-10], pig, wheat [11-13], goat,
fish etc. are being subject to this genetic research. The goal of this research is to improve

the quality of life by improving yield, disease resistance, and quality of crops [13-16].

Aquaculture

This dissertation research concentrates on one agricultural species: aquaculture species
rainbow trout. Aquaculture is the farming of aquatic species, whether these are used for
food, sports, or ornament. Until 1980, most sources of aquatic organisms were seas, oceans,
and the rivers. However, due to increased demand and economic reasons, people started
raising aquatic organisms in farms. In 1980 almost 97% of the seafood came from natural
fishing, and only 3% came from aquaculture production (Figure 2) [17]. The aquaculture
percentage is steadily rising as shown (Figure 2, Table 1); in 2014 more than 44% of

seafood came from aquaculture farms.
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Figure 2: World Capture Fisheries and Aquaculture Production [17].

Table 1: World Fishery and Aquaculture Production data used in this table were adapted
from Food and Agriculture Organization of the United Nation FAO [17].

2009 2010 2011 2012 2013 2014

Production

Capture

Inland 10.5 11.3 11.1 11.6 11.7 11.9
Marine 79.7 77.9 82.6 79.7 81 81.5
Total Capture 90.2 89.2 93.7 91.3 92.7 93.4
Aquaculture

Inland 34.3 36.9 38.6 42 44.8 47.1
Marine 215 22.1 23.2 24.4 21.4 26.7
Total aquaculture 55.8 59 61.8 66.4 66.2 73.8

According to Food and Agriculture Organization of the United Nation (FAO) [17],
aquaculture is considered the fastest growing agricultural economic product worldwide at
a rate of 6.1%. According to the United Nations statistics, in 2016 the US considered the
largest single importer of fish and fish products, with total imports of $20.13 billion and

with total exports of $6.14 billion (Table 2). This big difference between imports and



exports produces a deficit of $14 billion, which shows a need for improving aquaculture

production in the US.

Table 2: Exporters and Importers of Fish and Fishery Products data used in this table were
adapted from FAO [17].

Exporters Importers
2004 2014 2004 2014
USS millions USS millions

China 6,637 20,980 United State of America 11,964 20,317
Norway 4,132 10,803 Japan 14,560 14,844
VietNam 2,444 8,029 China 3,126 8,501
Thailand 4,060 6,565 Spain 5,222 7,051
United State of America 3,851 6,144 France 4,176 6,670
Chile 2,501 5,854 Germany 2,805 6,205
India 1,409 5,604 Italy 3,904 6,166
Denmark 3,566 4,765 Sweden 1,301 4,783
Netherland 2,452 4,555 United Kindom 2,812 4,638
Canada 3,487 4,503 Republic of Korea 2,250 4,271
Top ten subtotal 34,539 77,802 Top ten subtotal 52,120 83,446
Rest of world total 37,330 70,346 Rest of world total 23,583 57,169

Aguaculture product is considered one of the main food sources of protein for human
beings; according to FAO, fishery protein accounts for 16.7% of total animal protein
consumed by humans [18]. In the United States alone, people consume 5,550,744 tons of
seafood a year [18]. One of these major aquaculture organisms is rainbow trout. It is
considered one of the main seafood sources in the United State and worldwide. Rainbow
trout (Oncorhynchus mykiss), a member of Salmonidae family, is a native species of the
Pacific coast of North America. In addition, rainbow trout is considered a model for other

species. Several studies have been done on rainbow trout, including studying genetics,



ecology [19], pathology [20], physiology [21], toxicology [22] and carcinogenesis [23].
Having a complete and well-annotated rainbow trout reference genome will provide
genomic tools for scientists; these in turn will help in finding markers, single nucleotide
polymorphisms (SNP), quantitative trait loci (QTL), and gene annotations and providing
basic functional genomics information that will increase opportunities for genetic
improvement that could be used to increase fish production efficiency and value-added

products and could increase its usefulness as a biomedical research model.

Genome Annotation

Genomics is the science of studying the structure and content of a genome for each species.
With the help of supercomputing and the advancement of sequencing technology, the cost
of sequencing is becoming affordable by almost any institute[24]. Data emerging from next
generation sequencing offers unprecedented opportunity to study any genome.

In April 2014, Berthelot C, et al. publish the first draft reference genome for rainbow trout
[25]; however, the reference genome is not complete yet. The estimated length of the
rainbow trout genome is 2.4-3.0 GB [26, 27]. But the total length of the assembled genome
reference is 2.1 GB, and only 1.023 GB (48%) of the total assembly is anchored to
chromosomes. Additionally, there are 30,339,800 ambiguous nucleotides representing
unknown gaps [25]. The current version of the rainbow trout genome is not well-annotated,
with many genes misassembled, missing or fragmented, and lacks non-coding RNA.
Similarly, majority of the previous work aimed at identification of trait-associated genetic
markers were not robust due to limitation of genomic resource available at that time.

Therefore, we are proposing to improve the genome reference annotation, we will use



genomics and transcriptomic approach to identify missing genetic elements including long
non-coding RNA and protein coding genes in the draft reference genome. And we will
utilize these genomics resources to identify genes and genetic variations, especially SNPs,

associated with growth and muscle quality traits in rainbow trout.

Transcriptome De novo Assembly and Gene Annotation

One of the main objectives of any genome study is to identify genes and their
characterizations. To understand how genes and gene products interact, we need to
determine gene structure and function annotations [24, 28-31]. The gene identification
process involves multiple stages [24, 28-31]. In this study, two different methods were used
to assemble the rainbow trout transcriptome. The first method is reference-based using
Tophat and cufflinks package and the second method uses a de novo approach using Trinity
[32] software. After assembling short read sequences into contiguous sequences (contigs),
protein coding sequences were detected by searching for homology in a protein sequence
database, using BLASTX [33] search against the NCBI non-redundant (nr) protein
database which translates transcripts to all possible open reading frames (ORF) that can
provide a functional annotation. Further analyses were performed to determine complete
ORF. Gene annotation is completed with gene ontology by determining biological process,
molecular function, and cellular component of a protein. Providing basic functional
genomics information in addition to classifying and annotating the coding nucleotide

sequences will improve opportunities for genetic improvement of rainbow trout.



Long non Coding RNA (IncRNA)

Different studies showed that almost 70% of a genome is transcribed, where only 2% of
the genome transcribed into protein [34-36]. That raises an important question about the
function of the remaining transcriptome (68%) of transcribed genome. These genes are
transcribed into noncoding protein (nCRNA). There are different categories of ncRNAs,
such as transfer RNAs (tRNAs), microRNA (miRNAs), small nuclear RNA (snRNAS),
small nucleolar RNA (snoRNAs), small interfering RNA (siRNAs), signal recognition
particle (SRP) RNAs, in addition to IncRNAs which constitute the majority of the
transcribed RNAs. LncRNAs are greater than 200 nucleotides (nt), are not translated into
protein, and most of INcRNAs have an open reading frame (ORF) less than 100 amino acid
[37-39]. LncRNAs have fewer exons than coding genes, and on average, they are shorter
than coding genes. LncRNAs can be classified into two categories: genic, which either
partially or fully overlap with protein coding gene (sense, antisense, intronic, and exonic),
and intergenic which exist close by protein coding genes, most of them within 10k nt.
LncRNAs have different functions [40], such as IncRNAs can act as scaffolds [40], where
IncRNAs link multiple protein factors together to create more complex cellular machines
[40, 41]. Other IncRNAs work as decoys, where they interact with the promoters of genes
under some signals such as stress or heat and prevent the genes from being transcribed [40,
42]. Some IncRNAs work as molecular guides by localizing particular ribonucleoprotein
complexes to specific chromatin targets[40]. Other IncRNAs participate in signaling,
where they combines with protein factors to activate pathways. LncRNAS are not generally

evolutionarily conserved, which makes it hard to detect them [43]. To improve the genome



annotation, one of the major objectives of this study was to identify the transcribed
IncRNAs and use this information to annotate the rainbow trout genome reference.

We used these INCRNA data in a functional genomics study “Differential expression of
long non-coding RNAs in three genetic lines of rainbow trout in response to infection with
Flavobacterium psychrophilim.”” One of the major causes of mortality of salmonids is the
Bacterial Cold Water Disease which is caused by Flavobacterium psychrophilim (Fp).
Among the functions of IncRNAs is regulation of transcription and post-transcriptional
events of protein-coding genes, which are including in cellular processes, such as disease
immunity. In this study, IncRNAs that are associated with genetic resistance against Fp, a
causative agent of Bacterial Cold Water Disease (BCWD) were identified. An RNA-Seq
approach was used to quantify differentially expressed (DE) INncRNAs in response to Fp
challenge in three genetic lines (Resistance, Susceptible, and Control). Strong expression
correlation with their overlapped, neighboring, and distant immune related protein-coding

genes involved in immunity was discovered.

Single Nucleotide Polymorphism (SNP)

To complement the genome annotation, different tools have been used to identify Single
Nucleotide Polymorphisms (SNPs) in the transcribed regions of the genome. SNPs related
to specific growth and quality traits were targeted. If we take a close look at two genomes
of the same species, we can identify three different types of variations. These are copy
number variation (CNV), insertion/deletions (indels), and SNPs, which are the sites in the

genome where single nucleotides vary from one genome to another. The majority of
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variation comes from SNPs which constitute about 90% of all variations. There are
hundreds of thousands of SNPs located across the genome in different locations. SNP
classification depends on where they are located. Some SNPs are located in the non-protein
coding region, such as in the introns or at the 5’ and 3’ untranslated (UTR) ends of the
gene. Other SNPs are located in the protein coding region, which are called cSNP. The
CSNPs can be of two types, synonymous polymorphisms and non-synonymous
polymorphisms. Synonymous polymorphisms cause a change in the codon but not in the
amino acid. Non-synonymous polymorphisms change both the codon and the amino acid
which could lead to change in the function of the protein. Other SNPs are classified as
regulatory polymorphisms. Those functional SNPs can affect the transcriptional or
translational regulation of a gene.

For the last 15 years, a plethora of studies have been done on SNPs and their role in several
aspects in the medical and agricultural fields [44-46]. Different studies have been done for
SNP discovery in rainbow trout fish, such as recent studies by Palti et al., [47, 48]. These
studies targeted SNPs across the entire genome, coding and non-coding parts, which
identified 57K SNPs that are spread across the 2.7 billion nt, or about 27 SNPs for each
1,000,000 nt. Those SNPs have been used to build a relatively low-density SNP chip that
cannot capture most of the SNPs in the gene coding regions. Typically, one SNP exists for
every 1,000 nt [49].

In our study, we are extending the literature by generating SNP data for the coding region
in fish with phenotypic variations in specific traits. These data will be used to build a 50K
SNP chip specifically for the coding (transcribed) part of the genome, which represents 1-

2% of the whole genome. In 2012, Salem et al. used RNA-Seq to identify SNP markers for
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growth traits in rainbow trout [50]. We have used the same approach, but on a larger scale,
to identify up to 50K cSNPs from a large number of fish and fish families and identify
cSNPs that could serve as genetic markers for multiple traits including whole body weight,
muscle yield, muscle sheer force (softness), muscle fat content, and muscle whiteness. The
2012 study by Salem et al. was done without the use of a reference genome, which was
published in 2012 [50]. Having a reference genome should help filtering out the false SNPs.
SNPs generated from this study were used to build a cSNP-chip for rainbow trout that could
be used by other researchers. The cSNP-chip may be used to develop SNP markers for
genetic selection of improved fish production traits in the USDA aquaculture research
center at Leetown, WV.

One of the challenging problems in working of non-model eukaryotic species is to
determine splice variants without a reference genome. To overcome this challenge, we
introduce a new approach to determine splice variants without the need of a reference

genome.

Specific Objectives

This work includes the following chapters:
1. Assembly of a reference transcriptome and protein-coding gene discovery and gene
annotations for rainbow trout.
2. ldentification and characterization of long non-coding RNAs (IncRNA) in rainbow
trout genome to create a global gene expression atlas of IncRNAs in several vital

tissues.
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Identification of cSNPs with variations in production traits such as growth rate and
muscle quality traits. This will lead to building a cSNP-chip for rainbow trout that
could be used by other researchers.

Identification of IncCRNAs that are associated with genetic resistance against Fp and
to identify immune-relevant protein-coding genes that might be regulated by
IncRNAs.

Introduction of a new method to detect splice variants without the need of a

reference genome, using a new approach that depends on de novo assembly.

This study provides the following benefits for the science and research community:

a)
b)

c)

Improved genome annotation (transcriptome reference) for rainbow trout;
A database of IncCRNA for rainbow trout;

Data to construct a cSNP-chip and genetic markers for rainbow trout.
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CHAPTER Il: TRANSCRIPTOME ASSEMBLY, GENE
ANNOTATION AND TISSUE GENE EXPRESSION ATLAS OF THE

RAINBOW TROUT [51]

Introduction

Rainbow trout (Oncorhynchus mykiss), a member of Salmonidae family, is a native species
of the Pacific coasts of North America and Russia [52]. They are extensively cultivated
worldwide for food, and commercial rainbow trout production significantly contributes to
the aquaculture industry in several countries including the USA. In addition, rainbow trout
is one of the most extensively studied fish species as it is widely used as a model organism
in biomedical research including immunology [53], carcinogenesis [54], physiology [21],
nutrition [55], toxicology [22, 56], microbial pathogenesis [20], and ecology [19]. More

than 9,686 biomedical articles and abstracts have been published on rainbow trout [57].

Over the past decade, international efforts have been made to increase the genomic data on
rainbow trout resulting in a significant amount of information in public databases [25, 58-
67]. De novo transcriptome sequencing has been successfully used for gene discovery,
single nucleotide polymorphism (SNP) identification, molecular marker development,
detection of expression quantitative trait loci (eQTL), and differential gene expression
profiling [68-70]. The available rainbow trout transcriptomic resources include a
transcriptome reference sequence that has been developed in our laboratory using a 19X
coverage of Sanger and 454-pyrosequencing data [71]. In addition, another reference

transcriptome was sequenced in our laboratory representing responses to several stressors
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affecting the aquaculture production environments [72]. Further, a transcriptome sequence
of the anadromous steelhead (Oncorhynchus mykiss) was recently reported [73]. While the
first study aimed at assembling a transcriptomic reference for gene discovery, the latter two
studies complemented the existing transcriptomic resources and facilitated evaluating gene
expression associated with adaptation to ecological and environmental factors in rainbow

trout.

Identifying and annotating the coding nucleotide sequences and providing basic functional
genomics information will enhance opportunities for genetic improvement of this fish for
aquaculture production efficiency and product value and increase its usefulness as a
biomedical research model. Recently, unannotated genomic scaffolds and contigs with
~70% coverage of the genome length were assembled from the Swanson River clonal line
[74]. More successfully, a draft of the genome sequence has been assembled from a single
homozygous doubled haploid YY male from the same clonal line [25]. A gene models
approach based on both a genome and transcriptome sequences was used to annotate the
genome sequence, predicting 69,676 transcripts. However, the genome sequence still is not
complete, with a total length of 2.1 Gb and only 1.023 Gb (48%) of the total assembly
anchored to chromosomes [25]. To improve annotation of the under developed trout
genome sequence and estimate assembly coverage, a complete and well-annotated
transcriptome reference sequence is still needed. Therefore, a de novo approach was used
in this study to sequence and assemble the rainbow trout transcriptome using in-depth

(4,333X) sequence coverage.
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Next-generation sequencing is a rapid and cost-effective method for sequencing. However,
short sequencing reads generated by most high-throughput sequencing techniques pose
difficulties in de novo assembly resulting in short/fragmented assemblies of genes [75]. In
addition, about 50% of the genes in salmonids are duplicated [76], which makes de novo
assembly and annotation of the transcriptome difficult and complicates SNP/variant
discovery [77-80]. To help overcome these bioinformatics challenges of the trout
duplicated genome, we have sequenced the transcriptome of a single doubled haploid fish
from a clonal line in an effort to remove sequence variation resulting from polymorphism
[25]. This doubled haploid clonal line, which contains two identical copies of each
chromosome, was previously established by chromosome set manipulation techniques [81,
82] and has been used in sequencing the rainbow trout genome and transcriptome [25, 71,
83]. Recently, dramatic improvements in genome assembly of Takifugu rubripes were

achieved by using doubled-haploid individuals compared to the wild type [84].

Housekeeping genes were initially described as genes which are always expressed in the
cell [85]. Later, this concept has been refined to refer to genes with constitutive expression
that maintain normal cellular functions [86]. In contrast, tissue-specific genes are
transcripts whose functions and expressions are favored in specific tissue/cell types [87].
Tissue-specific gene expression is crucial for maintaining specificity and determining
complexity of multicellular organisms as they affect the development, function and
maintenance of diverse cell types within an organism. Studying the ubiquitous versus the
tissue-specific expression of genes enables greater understanding of organismal
development, complexity and evolution at the systems level. Large scale gene expression

profiling has been done on a small number of organisms [88-93]. In fish, gene expression
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atlases were characterized in only few model species [94, 95]. Identification of
housekeeping versus tissue-specific genes provides important molecular information that
is needed for genetic improvement of fish for food production and for biomedical research

purposes.

Salmonids underwent an evolutionarily recent whole genome duplication event and are in
the process of returning to a diploid state [96]. Therefore, some fundamental scientific
questions can be explored by decoding the rainbow trout transcriptome including how
many genes exist in the rainbow trout, which genes are ubiquitously expressed and which
genes and splice variants are uniquely expressed in each tissue to provide tissue specificity.
In addition to the fundamental knowledge, this information can be used for the genetic
improvement of rainbow trout for aquaculture by eliminating the need to positionally clone
genes, facilitating resequencing to identify genetic variants, and identifying candidate

genes for traits of interest.

To address the questions above, this study sequenced and de novo assembled the rainbow
trout transcriptome from 13 vital tissues. High throughput Illumina sequencing in
conjunction with the Trinity assembly package were used to: (1) sequence the rainbow
trout transcriptome to provide a reference sequence, (2) functionally annotate the
transcripts, (3) characterize digital gene expression and alternative splicing in 13 vital
tissues; and (4) identify full-length cDNAs in the rainbow trout genome. Illumina
sequencing in conjunction with Trinity assembly provided an efficient approach for de
novo assembly and characterization of the transcriptome with high depth and width of

coverage. Results of the de novo approach, used in this study, were compared to results of
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the gene models approach that was previously used in annotating the genome sequence

[25].

Materials and Methods

Ethics statement
The fish used for this study was reared and euthanized under protocol #02456 approved by

the Washington State University Institutional Animal Care and Use Committee.

Production of doubled haploid rainbow trout

The rainbow trout from the Swanson clonal line used in the study was produced at the
Washington State University (WSU) trout hatchery using previously described techniques
[81, 82, 97, 98]. First generation homozygous rainbow trout were produced by
androgenesis using gamma irradiation of eggs prior to fertilization [81, 82] and by
gynogenesis by blockage of first cleavage using hydrostatic pressure shock [81, 82, 98].
When fish reached sexual maturity, homozygous clones were produced by collecting sperm
from homozygous males and doing another cycle of androgenesis, or by stripping the eggs
from homozygous androgenetically or gynogenetically produced females and performing

gynogenesis by retention of the second polar body [98].

Tissue collection and RNA isolation

Thirteen different tissues were collected from a single immature (2-year old, 250 g) male
homozygous rainbow trout of the Swanson clonal line. Tissues collected were brain, white
muscle, red muscle, fat, gill, head kidney, kidney, intestine, skin, spleen, stomach, liver,

and testis. Tissues were quick-frozen in liquid nitrogen and were shipped to WVU from
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WSU in dry ice. Tissues were kept at -80°C until RNA isolation. Total RNA was isolated
from each tissue using TRIzol™ (Invitrogen, Carlsbad, CA) according the manufacturer’s

procedure as previously described [71] .

Illumina paired-end sequencing

Construction of RNA-Seq libraries and sequencing on an Illumina Genome Analyzer 11x
was performed at Roy J. Carver Biotechnology Center, University of Illinois at Urbana-
Champaign. RNA-Seq libraries were constructed with the mRNA Sequencing Sample
Preparation Kit (Illumina, San Diego, CA). Briefly, polyA+ messenger RNA was selected
from 1 pg of RNA with magnetic oligo (dT) beads, chemically fragmented and converted
to cDNA with random hexamers. Double stranded cDNAs were end-repaired, and the 3°-
ends were A-tailed followed by ligation of lllumina sequencing and amplification adapters
randomly to the ends. The adaptor-ligated cDNAs were loaded onto 2% agarose E-gels®
(Invitrogen, Carlsbad, CA) and the fraction containing 200-500 bp was excised. Size-
selected cDNAs were amplified by PCR with primers that introduced unique barcodes to
each library. The final libraries were quantitated with Qubit (Life Technologies, Grand
Island, NY) and the average size was determined on an Agilent bioanalyzer DNA7500
DNA chip (Agilent Technologies, Wilmington, DE) and diluted to 10 nM. The 10 nM
dilution was further quantitated by gPCR on an ABI 7700. Each library was loaded onto
one lane of an 8-lane flowcell for cluster formation and sequenced on an lllumina Genome
Analyzer IIx according to the manufacturer’s protocols (Illumina, San Diego, CA). The
libraries were sequenced from both ends of the molecules to a total read length of 100 nt

from each end. The FASTQ files were generated with Casava version 1.6.
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Trinity assembly and annotation

All 13 lanes of Illumina paired-end data were used to run Trinity assembler with default
parameters. The Trinity software package combines three assembly algorithms:
Inchworm, Chrysalis and Butterfly [99]. Assembly algorithms were run in C++ (Inchworm
and Chrysalis) and Java (Butterfly) scripts. FASTQ formatted sequencing reads were
converted into FASTA format by Fastool software, and extraction and computation of k-
mer abundance from the sequencing reads were done by Jellyfish software. During
assembly of contigs by Inchworm, minimum k-mer threshold abundance was set to 1
(default). The program was run at default parameters to cluster the Inchworm contigs into
components (min_glue <int> =2, min_iso_ratio <float>=0.05 and glue_factor
<float>=0.05). Transcript reconstruction from a deBruijn graph by Butterfly was also
performed at default parameters (max_number_of paths per node <int>=10,
group_pairs_distance <int>=500, path_reinforcement_distance <int>=75,
lenient_path_extension=1). Trinity contigs that were more than 500 nucleotides long were
BLASTed against NCBI non-redundant (NR) protein database. The longest transcript of
each Trinity contig group that matched a given protein in the NR database was selected as

a representative sequence for each contig group.

ORF/full-length cDNA prediction and gene ontology analysis

All representative transcripts selected from contigs having hits to the NCBI NR protein
database were analyzed by ESTScan [100] to search for an open reading frame (ORF),
which distinguishes coding and non-coding sequences [100, 101]. Whenever an ORF

began and ended within a contig, it was considered as full length. If an ORF began at the
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first base or ended at the last base, it was not considered as full length. In addition,

TransDecoder [http://transdecoder.sf.net] was used to identify ORFs with complete coding

sequences. Gene ontology analysis was performed by BLASTXx search against the NCBI
NR protein database using the Blast2GO suite [102]. Blast2GO analysis provides a
controlled vocabulary to describe gene product characteristics in three independent

ontologies: biological process, molecular function, and cellular component [103, 104].

Identification of housekeeping and tissue-specific genes

Housekeeping and tissue-specific genes were identified using a CLC genomics workbench.
A total of 44,990 transcripts selected as representative sequences for each contig group
from all 13 tissues were used as a reference sequence. Reads from each tissue (two libraries
from each tissue) were mapped against the reference. Transcripts with RPKM (Reads per
kilo base per million) value >1 in all 13 tissues were defined as housekeeping genes. For
the tissue-specific genes, expression level of a gene in a particular tissue was compared to
its expression level in all remaining 12 tissues. For distinction of tissue-specific genes, the
fold-change in expression level was set as > 8 fold, i.e. genes with an expression level in
one tissue that is equal to 8 fold or higher than the maximum value in any of the other 12
tissues. As explained above, a single doubled haploid individual was used in this study to
overcome the assembly bioinformatics challenges of the trout duplicated genome.
Therefore, inferences regarding the housekeeping and tissue-specific gene expression
should be considered with caution because results may be limited to this fish and to the

conditions and time period during which the tissues were collected.
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Complexity and composition of tissue specific transcriptome

Sequence reads from each tissue were mapped to the 44,990 transcripts used as a reference
sequence in this study. After mapping, numbers of genes expressed in each tissue were
reported at four different threshold RPKMs (5, 1, 0.5 and 0.1). Transcripts having an
RPKM value above the threshold were counted to obtain the number of genes expressed in
each tissue. The mRNA abundance of the tissue-specific genes were calculated by dividing
the sum of RPKM values of the tissue-specific genes by the sum of RPKM values of all
genes expressed in that particular tissue (at an RPKM threshold of 0.5). A similar method
of comparing the composition and complexity of tissue-specific transcriptomes was
employed by Jongeneel and coworkers [105]. A multivariate Principal Component
Analysis (PCA) analysis was applied to cluster tissues types according to gene expression

patterns using a CLC genomics workbench.

Assessment of the assembled rainbow trout transcriptome

Reference proteome sets of seven model fish species with known reference genome (Danio
rerio, Oreochromis niloticus, Takifugu rubripes, Tetraodon nigroviridis, Gadus morhua,
Gasterosteus aculeatus, and Oryzias latipes) were downloaded from the Uniprot database.
Rainbow trout protein coding sequences resulting from the Trinity assembly were searched
against the reference proteome of each fish species by BLASTx with a cut off E value of
1.00E-10. To obtain the expected range of sequence conservation between model fish
species, cDNA sequences of model fish species were downloaded from the NCBI database.
The cDNA sequences of each fish species were searched against the reference proteome

set of the other model fish species by BLASTx with a cut off E value of 1.00E-10.
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Genome read mapping, annotation and assessment of alternative
transcription/splicing

Alternative transcription/splicing events were assessed using the Bowtie2, TopHat and
Cufflinks software package [106, 107]. First, a rainbow trout draft genome assembly was

downloaded from http://www.genoscope.cns.fr/trout-ggb/data/ [25]. Then, sequence reads

from all 13 tissues were mapped to the genome reference using Bowtie2/TopHat. Cufflinks
was used to generate a transcriptome assembly for each tissue using alignment files from
TopHat. Assemblies were then merged together using the Cuffmerge utility. Reads and
the merged assembly were then analyzed using Cuffdiff to identify alternative transcripts

(produced by alternative splicing/start sites) from each genomic locus (gene).

To identify novel genes, gene loci predicted by Cufflinks were filtered against the trout
genome annotated loci first by BLASTn against the mRNAs (E-value 107°) then by
comparing the genome annotation coordinates (gtf files) using in-house script.

Targetldentifier [108] and TransDecoder [http://transdecoder.sf.net] were used to

determine novel genes with ORFs. In addition, an in-house software (available upon
request) was used to determine novel genes with 80% and 100% match to the NR database

at an E value 10-3.

BLAT [109] with default parameters was applied to map the Trinity transcripts to the
reference genome. The psIReps programs in the BLAT suite was used to select the best
alignments for each query sequence. BLAT hits were classified based on the percentage of
sequence identity covering the reference coding sequence at 100%, 90% and 50% of the

entire coding sequence.
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Results and Discussion

Illumina sequencing and Trinity assembly

To improve assembly and annotation of the rainbow trout reference transcriptome, libraries
were constructed from a single double-haploid individual of the Swanson homozygous
clonal line that has been used in sequencing the rainbow trout genome [25, 83] and in our
previous transcriptome assembly [71]. Total RNA was isolated and sequenced from 13
different tissues of vital importance to fish life. These tissues were brain, white muscle,

red muscle, fat, gill, head kidney, kidney, intestine, skin, spleen, stomach, liver and testis.

To maximize transcript coverage, cONA libraries were sequenced on 13 separate lanes of
an Illumina’s Genome Analyzer using a paired-end protocol, yielding a total of 1.167
billion paired-end reads (100 bp). The cDNA library and sequencing information is given
in Table 3. To allow identification of housekeeping and tissue-specific gene expression,
sequences were generated from non-normalized libraries from different tissues. To
facilitate the assembly, sequence reads were preprocessed to remove artifacts including
sequencing adapters, low complexity reads and near-identical reads to improve read quality

and efficiency of assembly [110].
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Table 3: cDNA library information and summary of the high-throughput sequencing yield.

Tissue Number of reads
1 Red Muscle 93,064,168
2 Skin 87,743,778
3 Fat 93,546,068
4 Brain 84,816,430
5 Gill 92,670,670
6 Spleen 93,532,200
7 Head kidney 92,168,818
8 Liver 85,281,910
9 Stomach 91,231,186
10 Intestine 91,613,688
11 Testis 85,389,746
12 White Muscle 86,643,770
13 Kidney 89,642,288

RNA-Seq data were de novo assembled using the Trinity assembly package which
comprises combining sequence reads into larger contigs (by Inchworm), clustering contigs
into a component (by Chrysalis), and producing the most plausible sets of transcripts from
these groups (by Butterfly) [99]. An assembly of 1.167 billion paired-end reads gave
1,371,544 Inchworm contigs (contig length > 200bp, ave = 744 bp). Inchworm contigs
longer than 500 nucleotides (474,524 contigs) were used for downstream analysis.
Assembly statistics and length distribution of contigs are given in Table 4 and Figure 3.
These Inchworm contigs were clustered into a set of connected components to construct
deBruijn graphs for assembly components. Each component defines a collection of contigs
that are derived from alternative splicing or closely related paralogs [99]. These contigs

were categorized into 163,411 components. Of them, 57,467 components contained more
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than one contig, while the remaining 105,944 were single contig components. The Trinity
assembly package was used based on previous studies done in model species that suggest
better performance of Trinity over some other assemblers, its ability to construct full-length

transcripts, and the quality of the constructed transcripts [99, 111].

Table 4: Assembly statistics of lllumina paired-end data.

All contigs Long contigs (= 500 nt)
Number of bases 1,020,368,806 | 753,301,781
Number of contigs 1,371,544 474,524
N50 (nt) 1,369 2,188
Largest contig length (nt) 54,460 54,460
Smallest contig length (nt) 201 500
Average contig length (nt) 744 1,587

Lengths distribution

% sequences
w

O 7, 2 B T Sy G S By 8 7
. %o, “o, Yo, %o, %, %, ¢ %, %,
% D % % % % % % % % %,
sy Dy Dy Doy Doy Dog Doy Dg Do 2,
Co, 0, B0, “Co 00 0,
% % % %

sequence length

Figure 3: Distribution of contig (> 500 nt) length of a rainbow trout Illumina/Trinity
transcriptome assembly.
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All 474,524 Trinity contigs longer than 500 nucleotides were searched against the NCBI
non-redundant (NR) protein database. A total of 287,593 (60.60%) contigs had hits to the
database proteins. Importantly, 92.5% (266,188) of these contigs were part of the
components with more than one contig, indicating the existence of a large number of
transcript variants possibly due to alternative splicing, variable transcription start or

termination points, or paralogous loci.

One of the remarkable findings of the project was the failure of a significant number of
contigs (39.40% of 474,524 contigs) to have hits to the NR database, a finding similar to
that observed previously in rainbow trout [112]. Similarly, in a catfish EST project Wang
et al (2010) reported over 40,000 unique catfish sequences containing ORFs had no
significant hits to the NCBI protein database [113]. Likewise, three transcriptomes from
Antarctic notothenioid fish revealed 38-45% significant BLASTX hits in the NR protein
database [114]. The unmatched contigs were used to identify a large number of non-coding
RNAs [115]. In addition, the unmatched contigs may result from mistakes in assembly
(contigs from reads with sequence errors) [99], lack of protein sequences of related fish in
the database, or “trout-specific” diverged sequences due to the whole genome duplication

[116, 117].

Previously, we utilized Sanger-based and 454-pyrosequencing approaches for
transcriptomic analysis of the rainbow trout [71]. Figure 4 shows comparisons of the total
number of sequenced bases, number of contigs, number of long contigs (=500 bp), and
average length of contigs obtained from Illumina, Sanger-based, and 454-pyrosequencing

techniques. Compared to Sanger based and 454-pyrosequencing, Illumina allowed more
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effective assembly of the transcriptome with tremendous increases in the total number of
contigs, total number of long contigs (>500 bp), and average length of contigs. However,
the percentage of long contigs (>500 bp) was only 34.59% in the current Illumina/Trinity

assembly compared to 56% in the 454-pyrosequencing assembly, which may be attributed

to longer sequence reads with 454-pyrosequencing (Figure 4).
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Figure 4. Comparison of total number of sequenced bases (A), total number of contigs (B),
number of long contigs (=500 bp) (C) and average length of contigs (D) obtained from
Illumina, Sanger-based and 454-pyrosequencing techniques. Data on Sanger-based and
454-pyrosequencing techniques were obtained from Salem et. al [25].
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Gene identification and annotation

Transcript annotation was performed by BLASTX similarity search of the Trinity contigs
against the NR protein public database. All contigs that had matches in the NR database
were further analyzed to select a set of transcripts that could be used for functional
genomics downstream analysis and ORF searching. For contigs that belonged to multiple
contig components, the longest contig in a component was selected as a reference transcript
of each component. For the single contig components, the longest contig was selected
when more than one contig had aligned to any database protein with the same gene
annotation. After removal of redundant transcripts, 44,990 were selected as a reference set
of transcripts, including 34,260 contigs from multiple contig components and 10,730
contigs from single contig components. Of the total 44,990 representative contigs,
ESTScan detected 43,824 (97.4%) sequences as having coding regions. The average length
and number of the representative contigs is close to those predicted in the rainbow trout
genome, 1.97 kb, versus 1.64kb and 44,990 versus 46,585 in the Trinity assembly and the
rainbow trout genome, respectively [25]. Ina catfish EST project, a 1.29 kb average length
was observed and 98% of the unique sequences with significant hits to a protein database
had ORFs [113]. About 2.6% of the contigs in this study (1,166) contained no coding
regions (data not shown). These transcripts may represent pseudogenes or transcripts with
intron-retaining cDNAs. Most of the contigs having hits to the NR database (97.49%) were

identified within coding regions, which supports the credibility of the sequence assemblies.

So far, the international effort of sequencing the rainbow trout transcriptome has led to the
discovery of 136,979 UniGenes (NCBI UniGene downloaded August, 2014), 1,610 genes

and 13,166 proteins that are available in the public NCBI database [57]. Coding sequences
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were annotated in a recent assembly of the rainbow trout genome [25], however, UniGene
sequence information is not yet updated at NCBI. The number and average length of the
rainbow trout protein coding transcripts identified in this study (44,990 transcripts; 1.97
kb) are similar to the number and average length of UniGenes from model fish species
(Figure 5). For example, zebra fish has 53,558 transcripts with a 1.04 kb average length.
These data suggest that this sequencing project has captured the vast majority of the
rainbow trout transcriptome. The protein coding Trinity transcripts are available at the

USDA/NAGRP website http://www.animalgenome.org/repository/pub/MTSU2014.1218/
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Figure 5: A: Number of UniGenes of model fish species and rainbow trout UniGenes that
are available in the NCBI database (red bars) compared with number of rainbow trout
protein coding transcripts obtained from Illumina sequencing (green bar). B: Average
length of UniGenes of model fish species and rainbow trout UniGenes that are available in
the NCBI database (red bars) compared with average length of rainbow trout protein coding
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(Figure 5 cont.) transcripts obtained from Illumina sequencing (green bar). High number
and short length of rainbow trout UniGenes suggest incomplete partial sequences. lllumina
sequencing and Illumina/Trinity assemble resulted in 44,990 protein-coding transcripts
with an average length of 1.97 kb, which is very close to number and average length of
UniGenes in model fish species

Grabherr et. al. found that Trinity was more sensitive than some other assemblers (Trans-
ABYSS, SOAP, Cufflinks and Scripture) in terms of percentage of full-length transcript
reconstruction [99]. In another study comparing de novo assembly by various assemblers
(SOAPdenovo, ABYSS, Trans-ABYySS, Oases and Trinity), Trinity assembly gave the
highest (90%) RMBT value (Reads that can be mapped back to transcripts) and that the
Trinity transcripts aligned better to the reference genome, indicating high quality of the
transcripts [111]. One reason for the high quality of the transcripts constructed by Trinity
may be its use of a fixed k-mer approach. In a previous study, Zhao et. al. found an increase
in frequency of incorrect assemblies and artificially-fused transcripts by applying a

multiple k-mer approach to the assemblers [111].

Prediction of full-length cDNAs

[llumina sequencing in conjunction with Trinity assembly provided a platform for
identification and characterization of full-length cDNAs without the need for laborious
cloning/primer walking approaches. Putative gene identification was done first by
BLASTX against the NR protein database and then by identification of coding regions using
ESTScan. ESTScan uses a Markov model to recognize the bias in hexanucleotide usage
that exists in coding regions compared to non-coding regions [100]. In the context of this
work, whenever an ORF began and ended inside a contig it was considered as full-length

cDNA. This means if the ORF began at the first base and ended at the last base, it was not
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considered as full length. A total of 15,736 putative full-length cDNAs with an average
length of about 24 kb were identified. In addition, TransDecoder

[http://transdecoder.sf.net] identified 25,705 unique transcripts with complete coding

sequences. Full-length transcripts identified by the ESTScan and TransDecoder were
aligned to the reference genome using BLAT [109]. There were 9,000 (57.2%) and 14,213
(55.3%) unique transcripts mapped at 90% of their total length, respectively. The average
lengths of the full-length cDNAs were more than that of Atlantic salmon obtained from
ESTs using Targetldentifier (17,399 cDNAs with average length 1.36 kb). The same study
reported 10,453 full-length cDNAs from the 51,199 rainbow trout ESTs [118]. A well-
characterized full-length cDNA set from rainbow trout will be necessary for the annotation
of the rainbow trout genome sequences as well as for comparative, structural and functional

genomics studies.

Assessment of the sequenced rainbow trout transcriptome

In order to assess the level to which the rainbow trout transcriptome has been captured, the
44,990 reference transcripts were BLASTX searched against reference proteome sets of
seven different model fish species with known reference genomes. Out of 44,990 reference
transcripts, a total of 30,880 (68.3%) sequences matched to protein sequences of all seven
fish species and 37,753 sequences (83.9%) matched to protein sequences of at least one
fish species with a cut off E value of 1.00E-10. These findings suggested a high degree of
sequence conservation and homology with these fish species. Variable numbers of
significant hits were identified within each species; Danio rerio (40.11%), Oreochromis

niloticus (53.10%), Takifugu rubripes (34.73%), Tetraodon nigroviridis (50.24%), Gadus
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morhua (67.69%), Gasterosteus aculeatus (49.21%) and Oryzias latipes (48.14%) with cut
off E values of 1.00E-10 (Table 5). Similar levels of homology to model fish species were
reported in a catfish EST project (54% to 57%) [113] and a common carp transcriptome
study (47.7% to 54.2%) [119]. To allow a fair comparison of the rainbow trout protein
coverage with that expected between fish species with complete known reference genomes,
cDNA sequences from each fish species were searched against complete reference
proteome sets of other fish species using BLASTXx search with a cut off E value of 1.00E-
10. Gadus morhua cDNA sequences had hits to 64.97% (15,022 out of 23,118) proteins
of Tetraodon, Takifugu rubripes sequences had hits to 64.45% (17,775 out of 27,576)
proteins of Gasterosteus aculeatus and Danio rerio sequences had hits to 66.43% (17,779
out of 26,763) proteins of Oreochromis niloticus (data not shown). Since rainbow trout
protein coverage observed in this study is within the expected range, we anticipate that the

project has captured the vast majority of the rainbow trout transcriptome.
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Table 5: Summary of BLASTX search analysis of rainbow trout sequences against different
model fish species with known reference genomes

No of protein having | % of proteins with hits
hits to rainbow trout | /total No of proteins in
proteins species
Takifugu rubvipes 16,621 34 73% of 47 836
Danio rerio 16345 40.11% of 40,747
Oryzias latipes 11,854 48.14% of 24 619
(Gasterostens aculeatus 13_409 49 21% of 27 248
Tetraodon nigroviridis 11.617 5024% of 23,123
Oreochromis niloticus 14206 53.10% of 26,753
Gadus morhua 14961 67.69% of 22,100

Functional annotation and gene ontology analyses

Gene ontology provides organized terms to describe characteristics of gene products in
three independent categories: biological processes, molecular function, and cellular
components [103, 104]. Functional annotation of the Illumina/Trinity transcriptome
contigs was performed by BLASTXx search against the NCBI NR protein database using
the Blast2GO suite [102]. The BLAST result findings were used to retrieve the associated
gene names and Gene ontology (GO) terms in all three areas of ontologies. BLASTX results
showed that biological processes constituted the majority of GO assignment of the
transcripts (22,416 counts, 49%), followed by cellular components (12,793 counts, 28.1%),
and molecular function (10,325 counts, 22.67%). The biological processes category
showed that 18% of the rainbow trout genes were associated with cellular processes, 16 %

with metabolic processes, and 14% with biological regulation (Figure 6). The molecular
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function category showed that 49% of the genes were associated with binding and 30%
with catalytic activities. Of the cellular components, 46% of the rainbow trout genes were

components of the cell and 27% were related to cellular organelles (Figure 6).
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Figure 6: Gene Ontology (GO) assignment (2nd level GO terms) of the rainbow trout of
13 lanes of Illumina Trinity assembly. Biological processes constitute majority of GO
assignment of the transcripts (22,416 counts, 49%), followed by cellular components
(12,793 counts, 28.1%) and molecular function (10,325 counts, 22.67%).



35

Previously, we performed functional annotation of rainbow trout transcripts sequenced
using Sanger based and 454-pyrosequencing techniques [71]. Compared to the
Illumina/Trinity assembly, there were some noticeable differences in distribution of genes
in all three areas of ontologies (data not shown). The most noticeable difference was
observed in distribution of genes in biological process. As an example of the previous
assembly, in the biological process category the highest number of transcripts were
associated with biological regulation and cellular processes (25% each) followed by
metabolic processes (18%). Similarly, in the molecular function category, a larger number
of transcripts was found to be associated with binding function (46%) than with catalytic
activity (32%). In the cellular component category, transcripts associated with the cell and
organelles were 59% and 24%, respectively. Possible reasons for these differences may
include variations in nature of cDNA libraries (non-normalized in this assembly versus
normalized in the previous assembly) and number of sequences used to retrieve GO terms
(161,818 versus 44,990). In addition, Illumina data have higher coverage and are expected
to be more representative of the transcriptome. These dissimilarities may have resulted in
differences in the number and types of genes captured by the sequencing projects, which

might have resulted in slightly different GO distribution profiles.

Taxonomic analysis

BLASTX top-hit species distribution of the gene annotations showed the highest number
of matches to Nile tilapia (Oreochromis niloticus) followed by Zebrafish (Danio rerio) and
Atlantic salmon (Salmo salar) (data not shown). Other fish species in the BLASTX top-hit

list were Japanese puffer fish (Takifugu rubripes), puffer fish (Tetraodon nigrovirdis) and
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European sea bass (Dicentrarchus labrax). Most of the species on the top hit list were
fishes, suggesting high quality of the assembled genes and a high level of phylogenetic
conservation of genes between rainbow trout and other fish species. As Nile tilapia showed
high similarity to rainbow trout on the BLASTxX top hit species distribution, the
transcriptome of rainbow trout was compared to that of the Nile tilapia (Figure 7). Gene
ontology for biological process and molecular function showed a homogeneous
distribution of GO terms of transcripts between rainbow trout and Nile tilapia, suggesting
that our transcriptome from Illumina/Trinity assembly represents all transcribed genes of
rainbow trout. However, there were some slight differences in GO distribution of
transcripts, especially in the =cellular component category (Figure 7). This variation in
GO distribution may be attributed to differences in the sequencing approaches used for

rainbow trout and Nile tilapia as well as their phylogenetic differences.
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Figure 7: Gene Ontology (2nd level GO terms) comparison of rainbow trout and Nile
tilapia. GO comparison shows a high resemblance of GO terms between rainbow trout and
Nile tilapia (Oreochromis niloticus).

Characterization of housekeeping and tissue-specific genes

An important outcome of this transcriptome sequencing project was identification of
housekeeping and tissue-specific genes from 13 vital tissues. By mapping reads from each

tissue to the Illumina/Trinity transcriptome reference, we identified a total of 7,678 (17.0%)

housekeeping transcripts expressed in all 13 tissues with a minimum of 1 RPKM value in
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each tissue (Supplementary table S1) [120]. In comparison with mammals, a wide range
of housekeeping gene percentages (1-38%) were reported in the mouse and human
genomes using chip hybridization, MPSS (massive parallel signature sequencing) and next
generation sequencing technologies [90, 105, 121]. Clearly, the differences are due to
variations in technologies, number of tissues included, and nature of the duplicated rainbow

trout genome.

Regarding the tissue-specific genes, a total of 4,021 transcripts with predominant
expression in various tissues were identified in this dataset (Figure 8). The level of gene
expression of each of these tissue-specific genes was at least 8-fold higher in one tissue
relative to the rest of the tissues. Using these criteria, there was no tissue-specific gene that
matches any housekeeping gene in the dataset. Testis expressed the highest number of
tissue-specific genes followed by brain, gill, and then kidney. Conversely, liver expressed
the lowest number of tissue-specific genes followed by spleen, skin, and then white muscle
(Figure 8 and Supplementary table S2) [122]. A similar trend of tissue specificity was
observed in the human and mouse genomes [121]. Examples of the highly expressed genes
shown in Supplementary table S2 include two brain transcripts that had expression levels
more than 30 fold higher than the rest of the tissues. Of them, metabotropic glutamate
receptor-5 is involved in signal transduction for glutamatergic neurotransmission in the
human brain [123, 124], and GABA (gamma-aminobutyric acid) receptor A is the principal
inhibitory neurotransmitter in the mammalian central nervous system [125]. In skin, one
of the three most highly expressed proteins is lily-type lectin which is a predominant
protein in mucus of fish skin and provides important innate immunity [126, 127]. Similarly,

myosins and troponins were among the most highly expressed tissue-specific transcripts
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predicted in muscle, both of which play important roles in muscle contraction. In red
muscle, four transcripts characteristic of slow (red) muscle were identified (Slow myosin
light chain, Troponin-lI, Slow skeletal muscle, Slow troponin-T family-like, and Slow
myosin heavy chain-1). The tissue-specific expression results warrant further work to
reveal how expression patterns are regulated in different tissues and how the functions of

genes are influenced by the cellular context.
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Figure 8: Number of tissue-specific genes predicted in different tissues. A transcript was
classified as tissue-specific if it had expression level in one tissue that is >8 fold higher
all other tissues.

Gene ontology comparison of housekeeping and tissue-specific genes showed differences
in patterns of GO distribution. For example, in the molecular function category, the
percentage of transcripts involved in the transport, receptor activities, and DNA binding
were notably higher among tissue-specific genes than housekeeping genes (3.8%, 3.0%,

1.4% versus 1.2%, 0.7%, 0.7%; respectively). Conversely, the percentage of transcripts
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involved in protein binding was greater among housekeeping genes in comparison to
tissue-specific genes (26.2% versus 11.2%; respectively). More than half of the DNA
binding transcripts have tissue specific expression, similar to the proportion reported in
humans [121]. Additionally, in the cellular component category relatively more tissue-
specific transcripts were associated with plasma membrane than transcripts from
housekeeping genes (1.1% versus 0.7%; respectively). Conversely, more genes connected
with the nucleus, cytoplasm and mitochondrion were classified as housekeeping genes
(3.3%, 2.6%, 2.2% versus 2.3%, 1.6%, 0.6%; respectively). Further, in the biological
function category, there were more tissue-specific genes linked to signaling, developmental
processes, and response to stimulus (2.6%, 6.6%, 0.7% versus 1.7%, 4.6%, 0.3%);
respectively). Similar trends in gene ontology comparisons between tissue-specific and

housekeeping genes have been reported in mammals [121].

Taken together, these data indicate the major biological role of the housekeeping genes in
performing basic cellular functions needed to sustain life including metabolism, cellular
processes, and biological regulation. However, tissue-specific genes were more involved
in specialized functions such as signaling, responding to stimuli, development, organismal

process, etc., suggesting diverse and specialized roles of tissue-specific genes in the cell.

Complexity and composition of tissue-specific transcriptome

In an attempt to investigate the tissue complexity and composition of the rainbow trout
transcriptome, the first question we asked was how many transcripts are expressed in a
tissue? From 16,000-32,000 genes (at RPKM threshold of 0.5) were found to be expressed

in the 13 studied tissues (Table 6). This range is slightly higher than what has been reported
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(12,170) in various mammalian tissues using RNA-Seq data at the same RPKM threshold
[121]. The difference may be attributed to the duplicated nature of the rainbow trout
genome.  Other studies utilizing non-RNA-Seq experimental techniques reported
expression of about 10,000-30,000 genes in different mammalian tissues [128-130]. Our
data suggested that expression of about 35-71% of total genes (at RPKM of 0.5) seems to
account for all basic and specialized functions of the 13 studied tissues (Table 6). This
expression level is marginally different from the level reported in humans (61%-84%)

using MPSS, but at less stringent conditions (RPKM threshold of 0.3) [105].

Table 6: Number of genes expressed in 13 rainbow trout tissues at different RPKM
threshold.

RPKM >5.0 RPKM> 1.0 RPKM> 0.5 RPKM >0.1
Tisste Number |Fraction|Number |Fraction|Number |Fraction|Number |Fraction

ofgenes |oftotal |ofgenes |oftotal |ofgenes [oftotal |of genes |oftotal

expressed [genes  |expressed [genes  |expressed|genes  |expressed |genes
\r;\{g?e 2,949] 0.06] 10,798 0.24f 15,970 0.35 27,593 0.61
Red
muscle 6,425 0.14] 18,991 0.42] 24,136 0.54] 33,079 0.74
Head
Kidrey 7,461 0.17] 19,699 0.44] 24,368 0.54f 32,022 0.71
Skin 6,646] 0.15] 20,951 0.47] 27,796] 0.62] 38,669 0.86
Spleen 10,277 0.23] 22,150 0.49] 26,009] 0.58f 32,850 0.73
Fat 9,584 0.21] 22,837 0.51] 27,059 0.6] 35,251 0.78
Testis 16,374 0.36] 26,385 0.59] 30,289 0.67 38,027] 0.85
Kidney 12,253] 0.27] 25,856 0.57] 29,964 0.67] 36,783 0.82
Gill 13,804 0.31] 26,149 0.58] 29,757 0.66] 36,440 0.81
Brain 11,464 0.25| 27,151 0.6] 32,053 0.71] 39,697] 0.88
Intestine 13,655 0.3] 27,018 0.6] 31,168 0.69] 38,186 0.85
Liver 5181 0.12] 16,293] 0.36] 21,236] 0.47| 29,698 0.66
Stomach 6,982] 0.16] 19,462 0.43] 24,460 054 33,807] 0.75
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The second question we asked is how various tissues differ in composition and complexity
of their transcriptomes? Brain, testis and intestine had complex transcriptomes in that they
expressed larger percentages of the genes in the genome (Table 6) with a small fraction of
the mRNA pool contributed by the most highly expressed genes (Figure 9). On the other
hand, white muscle and stomach had less complex transcriptomes, expressing fewer genes
in the genome with a large fraction of the transcriptome contributed by the most highly
expressed genes. As an example, the top hundred most highly expressed genes contributed
80% of the mRNA population in white muscle, while contributing only ~16% of mRNA
pool in testis (Figure 9). Similar trends in transcriptome complexity were reported from
previous studies in mammals [105, 121] suggesting conservation of the tissue-specific
expression patterns. Conserved expression of more than a third of the core tissue-specific

gene expression was reported across major vertebrate lineages [131].
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Figure 9: Distribution of gene abundance in various tissues. Proportion of the
transcriptome contributed by the most abundant genes is plotted in various tissues. In
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(Figure 9 cont.) testis, intestine, gill and brain, there was little contribution of the most
highly expressed genes to the mRNA pool. Conversely, in white muscle, spleen, and
stomach, large fraction of the transcriptome was contributed largely by the most highly
expressed genes.

The third question we asked is what is the contribution of the tissue-specific genes to the
transcription pool in different tissues? Stomach, white muscle and fat had high abundances
of tissue-specific transcripts; and skin, liver, spleen, brain, kidney and intestine had low
abundances of tissue-specific transcripts (Figure 10). Although stomach, white muscle,
and fat expressed relatively fewer tissue-specific genes (51-127 genes), these transcripts
significantly contributed to the total cellular mRNA pool (31-39% of total mMRNA) (Figure
10 and Supplementary table S2). Conversely, in brain, kidney, and intestine, which
expressed a large number of tissue-specific genes (734, 390 and 271 genes, respectively),
these genes contributed only 2-3% of total cellular mMRNA. These results indicate wide
variation in the number of genes and regulation of gene expression that determine tissue

specificity.
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Figure 10: Transcript abundance of tissue-specific genes in various tissues. White muscle,
stomach and fat showed high abundances of tissue specific transcripts; while, skin and liver
exhibited low abundance of tissue-specific transcripts.

This complexity in the expression pattern of genes may be explained in terms of not only
the degree of specialization but also the types of cells in each tissue. For example, brain
has a variety of cells specialized for equally important but different functions. As different
cell types express different cell-specific genes, tissue as a whole has a large collection of
equally important tissue-specific genes expressed at comparable rates (Figure 10). In
contrast, in fat, a majority of gene expression is directed to the manufacture of necessary
enzymes to carry out basic fat metabolic pathways. Therefore, there is an abundance of a
relatively small number of fat metabolic transcripts. The other possibility is that most of

the cells in fat tissues are alike and the genes taking part in some important function may
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be expressed highly in all cells so that their mRNA population may be dominated in non-

normalized libraries.

A multivariate Principal Component Analysis (PCA) analysis was applied to cluster tissues
types according to gene expression patterns. Two dimensional covariance matrix of the
different tissue samples revealed distinct expression of both the spleen and the kidney
(Supplementary figure 1) [132]. Recently, we reported a detailed expression in the spleen
transcriptome in rainbow trout [133]. The distribution of rest of the tissues were clearly
classified into 2 clusters (head kidney, red muscle and stomach) and (testis, gill, fat, skin,

intestine, brain, white muscle and liver).

Comparison of the Trinity assembly to the reference genome annotation

Berthelot et al used a gene models approach based on both a genome and a transcriptome
sequences to predict 46,585 annotated protein-coding genes [25]. To assess the de novo
transcriptome assembly approach used in this study against the gene models approach used
by Bethelot et al, we first ran a reciprocal BLAST search between the two datasets. A total
of 4,146 contigs of the Trinity assembly (9.2%) including, 710 full-length sequences, did
not match any mRNA sequences identified in the genome reference (BLASTN, E value >
1.00E-10). These contigs may represent unannotated, incomplete, or absent loci in the
trout genome. On the other hand, 2,641 mRNAs sequences in the genome reference did
not match any of the Trinity contigs. All teleost protein sequences were used, at least
partially, to annotate the trout genome [25]. Therefore, some of these 2,641 missing
transcripts may represent predicted gene models that are not expressed in rainbow trout, at

least in the single individual used in this study.
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In addition, we ran BLASTX of the two datasets against the zebrafish proteome (with a cut
off E value of 1.00E-3, downloaded from Ensembl 11/17/2014). A total of 19,390
(44.9%%) of the zebrafish proteins had hits by at least one of the Trinity contigs, compared
to 21,119 (48.9%) proteins in case of the trout genome mMRNA sequences. There were
16,046 (39.6%) zebrafish protein hits shared between the two datasets. A total of 4,378 and
1,077 transcripts of the Trinity and the genome reference mRNAs had no hits to the
zebrafish proteome, respectively. When the two datasets were compared by BLAST with
proteome sequences of seven model fish species (with known genomes), there were 3,297
and 195 transcripts of the Trinity and the trout genome reference mMRNAs with no hits,
respectively. TransDecoder recognized 25,705 (57.1%) and 38,313 (82.2%) transcripts
with complete ORFs in the Trinity and the trout genome mRNAsS, respectively. Taken
together, the comparison of de novo transcriptome assembly approach (used in this study)
and the gene models approach used by Bethelot et al, indicate some differences in the
transcripts/annotations identified by each method. It is worth mentioning that, in this study,
the transcriptome was sequenced from the Swanson clonal line which is the same source
used for the rainbow trout genome sequencing. However, a large proportion of the
transcriptomic data used by Berthelot and coworkers to annotate the genome came from a

different clonal line [25].

To assess the percentage of the mappable Trinity transcripts to the genome reference,
Trinity transcripts were aligned to the reference genome using BLAT and then the best hits
were selected using the psiReps program of the BLAT suite [109]. BLAT hits were
classified according to the percentage of Trinity sequence identity covering the reference

coding sequence of the genome. There were 1,434 (3.2%); 25,860 (57.5%) and 38,367
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(85.3%), unique Trinity transcripts mapped at 100%, 90% and 50% of coverage,
respectively. These results, at least partially, validate the Trinity assembly. However, the
current version of the genome sequence is still not complete which prohibits a complete

assessment of the Trinity assembly based on the BLAT results.

In an effort to find novel loci (not annotated) in the genome, sequence reads were mapped
to the genome reference using TopHat and Cufflinks software packages [106]. A total of
223,751 gene loci were predicted with 286,561 potential transcripts (average of 1.28
transcripts/gene). These gene loci were filtered against the trout genome annotated loci
first by BLASTnN against the mRNAs (E-value 10°) and then by comparing the genome
annotation coordinates (gtf files) using an in-house script (available upon request). Using
this approach a total of 78,592 novel loci were identified. Further investigation used

Targetldentifier [108] and TransDecoder [http://transdecoder.sf.net] to determine novel

genes with ORFs. Targetldentifier recognized 10,195 full ORFs and TransDecoder
identified 12,652 ORFs with 3,420 complete ORFs. There were 1,432 transcripts, with
complete ORF common between the Targetldentifier and TransDecoder datasets. Using
an in-house script based on a BLASTX to the NR database with and e value 10-3, there
were 128 genes with 100% matches and 832 genes with 80% matches to the NR database
not annotated in the reference genome. After redundant removal, 11,843 transcripts were
recognized as new transcription loci. To provide a comprehensive list of all new transcripts
that were identified in this study (not annotated in the trout genome), those 11,843 were
screened to remove redundancy with the 4,146 contigs of the Trinity contigs that had no
match with any mRNA sequences in the genome reference. A total of 14,827

(11,843+2,984) were counted as new transcripts. FASTA and annotation (gtf) files of those
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new transcripts are provided (Supplementary files S3 and S4) [134, 135] and available for

download http://www.animalgenome.org/repository/pub/MTSU2014.1218/

Comparison of the Trinity assembly to the marine rainbow trout transcriptome

The anadromous steelhead (Oncorhynchus mykiss) transcriptome was recently sequenced
[73]. To assess gene expression associated with adaptation to ecological and environmental
factors in the marine versus the freshwater rainbow trout, we ran a reciprocal BLASTn
search. A total of 8,312 contigs of the Trinity assembly (18.4%) did not match any
sequences in the marine rainbow trout (BLASTN, E value > 1.00E-3). On the other hand,
12,207 (9.3%) marine rainbow trout transcripts did not match any of the Trinity contigs.
These results should be considered with caution because of the unbalanced amount of data
(~1.167 billion paired-end reads [100bp] in the freshwater trout, compared to 41 million
76-mer reads in in the marine trout). Gene ontology comparison of the marine versus
freshwater unmatched transcripts did not show significant gene enrichment for salinity

adaptation (data not shown).

Assessment of alternative transcription/splicing

Trinity assembler is capable of predicting alternative splicing events. There were a total
of 287,593 Trinity contigs longer than 500 nucleotides that had hits to the NR protein
database. A total of 92.5% (266,188) of these contigs were part of the components with
more than one contig, indicating the contigs had alternative transcription/splicing.

However, these contigs may also be separately expressed from paralogous genes.
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Therefore, the TopHat and Cufflinks read mapping to the genome, described above, were
used to assess the percentage of alternative transcription/splicing events. Out of 223,751
predicted genes, 27,471 (12.8.) genes had at least two transcripts from alternative
transcription/splicing; 4,663 (2.08%) genes had five and more transcripts and 634 genes
had 10 or more transcripts. A total of 1,064,892 exons were detected yielding an average

of 4.75 exons/locus.

The low percentage of genes with alternative splicing is unexpected because alternative
splicing is one of the important components adding functional complexity to vertebrates;
in humans about half of the genes have at least one splice variant [136]. However, because
of the whole genome duplication event in teleost fish, many genes have paralogous
duplicates [137-139]. Indeed, gene duplication can lead to loss of alternative splicing of
genes [140, 141] and many of the splice variants present in an ancestor are found to be
expressed separately from duplicated genes in teleost fish [142]. The rate of alternative
splicing was lowest (17%) in the highly duplicated genome of zebrafish compared to the
compact genome of the pufferfish (43%) [143]. Availability of a complete and annotated
sequence of the rainbow trout genome is needed to fully characterize transcripts

representing splice variants and separately expressed sequences of paralogous genes.

Conclusion

High throughput Illumina sequencing of non-normalized cDNA libraries from 13 tissues
was used together with the Trinity assembler to generate a high-quality draft of the rainbow
trout transcriptome. A single doubled haploid rainbow trout fish, from the same source

used for the rainbow trout genome sequence, was used to address problems associated with
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the nature of the rainbow trout duplicated genome. Results of the de novo approach, used
in this study, were compared to results of the gene models approach that was used in
annotating the genome sequence. A total of 14,827 sequences were identified as new
transcripts (not annotated in the trout genome). A digital gene expression atlas revealed
7,678 housekeeping and 4,021 tissue-specific genes. In addition, expression of 16,000-
32,000 genes (35%-71% of the transcriptome) was revealed in various tissues. White
muscle and stomach showed the least complex transcriptomes, with high fractions of their
total MRNA expressed by a small number of genes. In contrast, Brain, testis and intestine

had complex transcriptomes with large numbers of genes involved in their gene expression.
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CHAPTER I11: GENOME-WIDE DISCOVERY OF LONG NON-

CODING RNAS IN RAINBOW TROUT [115]

Introduction

Global gene expression data in different mammalian species have demonstrated that
protein-coding sequences occupy less than 2% of the genome, and the vast majority of the
genome is transcribed into non-coding RNAs [25, 34-36]. These non-coding RNA
molecules include small nuclear RNA (snRNA), small nucleolar RNA (snoRNA),
microRNA (miRNA), small interfering RNA (siRNA), piwi RNA (piRNA), signal
recognition particle (SRP) RNA and IncRNA. LncRNAs are defined as non-protein-coding
RNAs greater than 200 nucleotides in length, distinguishing them from small non-coding
RNAs [37, 39]. Based on their proximity to the protein-coding genes in a genome,
InNcRNAs are subdivided as genic (intronic or exonic with sense, antisense, and
bidirectional orientation) or intergenic [144, 145]. Unlike small non-coding RNAS,
INcRNA sequences are less conserved and are expressed at relatively low levels, and these

characteristics make their computational identification and annotation difficult [43].

Like protein-coding genes, INCRNAs are often transcribed by RNA polymerase Il and can
be post transcriptionally modified by splicing, capping and polyadenylation [146-149]. In
contrast to protein-coding genes, a majority of IncCRNA transcripts tend to have fewer
exons [43] and a shorter transcript size (average of 800 nucleotides) [150]. LncRNAs
usually exhibit highly cell- and tissue-specific expression patterns and sometimes they are

uniquely localized to a specific cellular compartment [42, 151-153].
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Even though a small number of IncRNAs have experimentally validated molecular
functions, a substantial number of IncRNAs have been functionally annotated. LncRNAs
are considered important gene regulators due to, at least, three important molecular roles;
these RNAs serve as decoys, scaffolds or guides. Many IncRNAs serve as decoys that
preclude access to DNA by regulatory proteins; this role affects transcription of protein-
coding genes [154, 155]. Some IncRNAs regulate genes by acting as scaffolds to bring
two or more proteins into a discrete complex [41, 156-158]. Other IncRNAs regulate
different developmental and cellular processes by guiding a specific protein complexes to
a specific promoter in response to certain molecular signals [159-161]. LncRNA mediated
guidance of chromatin modifying proteins affects expression of neighboring genes (cis) or
distant genes (trans) and there is evidence that even cis acting INCRNAs have ability to act
in trans [162-164]. Beside transcriptional control, IncRNAs regulate many molecular
processes including alternative splicing [165, 166], other post transcriptional processes

[167], and mRNA transport [168].

Aquaculture of rainbow trout supplies a significant portion of aquatic food in the USA and
worldwide. In addition to its importance as a food species, rainbow trout is one of the most
widely used fish species as a model in biomedical research [19-22, 53, 54, 56, 169]. In
order to improve aquaculture production and efficiency and facilitate biomedical research
of involving rainbow trout, a great deal of genetic information has been accumulated for
this species that includes a recently published initial draft of the genome [25] and several
assemblies of the transcriptome [51, 71, 73]. However, a complete understanding of the
trout’s genome biology is still lacking. Recent studies in mammalian and non-mammalian

species have resolved some long-standing mysteries in biology by functionally
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characterizing INcCcRNAs as important regulators of protein-coding genes [158, 170-174].
With growing interest in IncRNAs-mediated gene regulation, these RNAs have been
characterized, genome-wide, in limited animal and plant species in recent years [38, 151].
And, our knowledge of IncRNAs in fish is still very limited [175]. Therefore, the objective
of this study was to identify and characterize IncRNAs in rainbow trout genome and create

a global gene expression atlas of INcRNAs in several vital tissues.

Materials and Methods

Data source

To facilitate INcRNA discovery in rainbow trout, four high-throughput sequence datasets
were used in this study. 1) About 1.16 billion lllumina sequence reads as we previously
described [51]. Briefly, 13 tissues including brain, white muscle, red muscle, fat, gill, head
kidney, kidney, intestine, skin, spleen, stomach, liver and testis were sequenced from a
single male-doubled haploid rainbow trout. Sequencing libraries were constructed using
poly-A selection technique and cDNA libraries were sequenced using Illumina’s paired-
end protocol. Data were generated from a single doubled haploid individual to overcome
the assembly bioinformatics challenges of the trout duplicated genome. 2) Similarly, about
0.75 billion Ilumina single reads, used in annotating the rainbow trout genome and
sequenced from a doubled haploid female rainbow trout, as previously described by
Berthelot et al. [25]. Briefly, 13 vital tissues including (liver, brain, heart, skin, ovary, white
and red muscle, anterior and posterior kidney, pituitary gland, stomach, gills) were
sequenced. Sequencing libraries were constructed using poly-A selection technique and

cDNA libraries were sequenced using [llumina’s 101 base-lengths single read protocol. 3)
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About 0.25 billion reads used in assembling the anadromous steelhead (Oncorhynchus
mykiss) transcriptome by Fox et al. [73]. 4) About 89 million reads data set from redband
trout (Oncorhynchus mykiss) by Narum et al. [176]. Data from Narum et al. were chosen
because Ribo-Zero RNA-Seq libraries were sequenced to capture both the polyadenylated

and the non- polyadenylated RNAs with information about transcript strand orientation.

Computational prediction pipeline

Sequencing reads were mapped to the genome reference [25] using the TopHat and
Cufflinks software packages [106]. An in house Perl script was written to filter the
transcripts shorter than 200 nt. Several stages of filtration were performed to remove
protein-coding transcripts and small non-coding RNAs. First, transcripts were searched
against NCBI nr protein database (updated on 10/01/2014). All the transcripts which had
an open reading frame more than 100 amino acids were removed. Next, protein-coding
calculator (CPC) was used to remove any remaining potential protein-coding transcripts
(Index value <-0.5) [177]. To remove other classes of RNAs (tRNA, rRNA, snoRNA,
miRNA, siRNA and other small non-coding RNAS) transcripts were searched against
multiple RNA databases including genomic tRNA database, mirBase, LSU (large subunit
ribosomal RNA) and SSU (Small subunit ribosomal RNA) databases [178-181]. Any
transcripts which showed sequence similarity with any of these classes of RNAs with cut-
off E value of < 0.0001 were removed. After these filtration steps, putative IncRNA
transcripts were searched against several noncoding-RNA databases to explore sequence
similarity of putative rainbow trout IncRNAs transcripts to previously characterized

InNcRNAs in other species [175, 182-186]. All prediction steps were applied independently
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to the four transcriptome datasets. All putative IncRNAs from all four datasets were blasted
against each other. LncRNA which were identified in at least 2 of the 4 datasets were
chosen for further analysis. Data set from Narum et al., is the only one with information
about strand orientation [176]. To ensure correct sense and antisense orientations of
IncRNAs from the other three sources, their strand orientation was assigned by matching
to counterparts from Narum and coworkers (based on sequence similarity match of more
than 95% and same genomic location coordinates). A total of 54,503 non-redundant

IncRNAs were identified in this dataset.

For the extra filtration steps, more stringently selected IncRNAs, any putative INCRNA
containing ORF covering more 35% of its length or more than 83 amino acid were filtered
out [187]. In addition, the cut-off value for the CPC [177] was decreased from -0.5to -1.0.
Further, if any IncRNA overlapped with more than 100 nt with another IncRNA from a
different dataset, we filtered out the shortest INCcRNA. Furthermore, any IncCRNA that
overlapped with a protein-coding gene in the sense orientation was removed. Lastly, any

single-exon IncCRNA that was adjacent to a protein-coding gene within 500nt was removed.

Identification of tissue expression

For IncRNA tissue distribution, sequencing reads from 13 tissues were independently
mapped to all putative IncRNAs and gene expression level were measured in terms of
RPKM. House-keeping and tissue-specific genes were determined as we previously

described [51].
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Gene clustering

Sequencing reads from each tissue were mapped to combined reference consisting of the
InNcRNAs and mRNAs from the rainbow trout genome reference [25]. Expression of
IncRNAs and protein-coding genes was determined in terms of RPKM. Expression value
of each transcripts in each tissue was normalized using a scaling method in CLC genomics
workbench with mean as the normalization value. Normalized expression values of
transcripts in each of the 13 studied tissues were used to cluster protein-coding genes and
InNcRNAs using a clustering feature in Multi-experiment Viewer (MeV) program [188,
189]. The minimum correlation threshold to generate clusters was 0.97.

Identification of genomic location of IncRNAs relative to neighboring protein-coding
genes

LncRNAs were classified based on their intersection or relative location to protein-coding
genes using in-house Perl scripts using the rainbow trout genome data (downloaded from

http://www.genoscope.cns.fr/trout/data/).

Results and Discussion

Identification of putative INcCRNAs in rainbow trout

The main objective of this study was to identify a comprehensive list of putative InCRNA
genes in the rainbow trout genome. To accomplish this, we sequenced poly-A selected
cDNA libraries using total RNA isolated from 13 tissues. Recently, we used the same
sequencing data to identify protein-coding transcripts in the trout genome [51]. In this
study, sequence data for about 1.167 billion, paired-end reads (100 nt) were mapped against

a reference rainbow trout genome using the Cufflink and TopHat software [106, 107],
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resulting in 231,505 putative transcripts. Several filtration steps were used to distinguish
IncRNAs in the transcript list by removing the protein-coding transcripts, pseudogenes and
other classes of non-coding RNAs including rRNA, miRNA, tRNA, snRNA, snoRNA (Fig
11). First, all transcripts shorter than 200 nt were removed, and then transcripts with an
open reading frame (ORF) longer than 100 amino acids were filtered out. Next, remaining
transcripts were BLASTX searched against the NCBI non-redundant protein database to
eliminate transcripts with sequence similarity to known proteins at a cut off E-value of <
0.0001. To further filter remaining protein-coding transcripts, we used the Coding Potential
Calculator (CPC) software that assesses quality and completeness of query ORF to proteins
in the NCBI database using six biologically meaningful sequence features [177]. These
filtration steps left 44,350 transcripts from this data set that had very little or no evidence
of protein-coding ability. Because most of the small non-coding RNAs like miRNA and
tRNA are shorter than 200 nt, the first filtration step should be enough to remove most of
the small non-coding RNAs. To confirm removal of any remaining small non-coding
RNAs (tRNA, rRNA, snoRNA, miRNA, siRNA and other small non-coding RNAS),
transcripts were searched against multiple RNA databases including genomic tRNA
database, mirBase, and LSU (large subunit ribosomal RNA) and SSU (Small subunit
ribosomal RNA) databases [178-181]. After application of the above filtration steps, we
found 44,124 putative INcCRNAs from our sequence data set (Salem et al., [51]). These
InNcRNAs exhibited little or no evidence of coding potential or belonging to other non-

coding classes of RNA.
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Figure 11: Bioinformatics pipeline used in prediction of rainbow trout IncRNAs. LncRNAs
were predicted from four different transcriptomic datasets, then all putative INCRNAs from
all data were blasted against each other. A total of 54,503 non-redundant INcCRNAS
identified in at least 2 of the 4 data sets were chosen for further analyses in order to increase
the confidence of INcCRNA prediction. Vertical arrows are pointing toward the subsequent
prediction and filtration steps of the workflow. First horizontal arrow pointing toward the
right is referring to the number of initial transcripts predicted from the four datasets. Middle
six horizontal arrows indicate the number of transcripts filtered at each step and the final
horizontal arrow points to the number of putative INCRNAs with significant hits to
noncoding-RNA databases from each dataset.

Because some of the IncRNAs are thought to be due to expression noise [190], we
conceptualized that prediction of IncRNAs from different reliable data sources would be
an important step in removing false INcCRNAs. To achieve this goal, the same IncCRNAs

prediction pipeline was applied to discover putative INCRNAs from three other rainbow
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trout transcriptomic datasets that are available on NCBI (Fig 11). Those three sources were
sequence data used by Berthelot et al. [25] in annotating the rainbow trout genome, a data
set used by Fox et al. [73] in assembling the anadromous steelhead (Oncorhynchus mykiss)
transcriptome and a data set from redband trout (Oncorhynchus mykiss) that was reported
by Narum et al. [176]. Data from Narum et al. were particularly useful because Ribo-Zero
RNA-Seq protocols were used which allow sequencing both the polyadenylated and the
non- polyadenylated RNAs. In addition, the strand orientation sequence information was
preserved. From these three sequence data sources, a total of 0.75B reads, 89M reads, and
0.25B reads were used in the prediction pipeline that yielded 51,882; 1,191; and 36,474
putative INCRNAs in the three datasets, respectively. LncRNAs predicted in at least 2 of
the 4 data sets were considered for the subsequent analyses. After removal of redundant
transcripts, we had a total of 54,503 putative InCRNAs. Fig 11 illustrates the bioinformatics
pipeline used in prediction of IncRNAs in all four datasets, and Table 7 and S1 table report
the number of putative INCRNAs predicted in each dataset. FASTA and gtf annotation files

are available at http://www.animalgenome.org/repository/pub/MTSU2015.1014/.
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Table 7: Number of INcCRNA predicted in at least 2 of the 4 datasets and final numbers.

Putative non-redundant
Source LncRNAs common between two data sources IncRNA from each sources
after combining all four
Salem et. al. |Berthelot et. al.|Narum et. al.|Fox et. al. |Source Number
Salem et. al. X 35,307 13,557 268 Salem et. al. 21,617
Berthelot et. al. | 35,307 X 13,993 291 Berthelot et al. 22,568
Narum et. al 13,557 13,993 X 401 Narum et. al 10,097
Fox et. al. 268 291 401 X Fox et al. 221
total 54,503

To look for evolutionarily conserved IncRNAs in rainbow trout, all putative INCRNA
transcripts (54,503) were searched against several noncoding-RNA databases (E <0.0001)
[175, 182-186]. Of those 54,503 IncRNAs, only 421 had sequence homology to IncCRNAs
from other species (S1 table). This low evolutionary conservation of IncRNAs is in

agreement with previous reports [43].

Characterization of IncRNAs

Studies on mouse, zebra fish and maize have suggested that INcRNAs are shorter than
protein-coding genes, have relatively fewer exons, and are expressed at a lower level [38,
175, 191]. Consistent with previous reports, our study indicates that trout INCRNAs were
shorter (0.821 kb) than protein-coding genes (1.636 kb) (Fig 12). In addition, the average
number of exons in INCRNAs was 1.14 compared to 4.75 in protein-coding genes. Unlike

the trout protein-coding genes, ~90% of the trout INcRNAs had one exon. Fig 12 and Table
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8 show distribution and number of exons in IncRNAs compared to protein-coding genes.
Data regarding exon numbers in IncRNAs from different species are inconsistent. Similar
to our findings, some plant and animal studies reported one-exon bias for INcCRNAs [38,
192]. Conversely, some human studies showed a remarkable two-exon prevalence in the
majority of INcRNAs [43]. Several reasons may explain these discrepancies including
tissue variation, developmental stages, sequencing techniques and biases due to variations

in number and length of genes in different species.
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Figure 12: Distribution of sequence length of LncRNAs compared to protein-coding
transcripts in rainbow trout. LncRNASs were shorter than protein-coding genes with (0.821
kb) and (1.636 kb) average length in each, respectively (Left). Distribution of number of
exons (Right).
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Table 8: Number of exons and average length of IncRNAs in different data sets

Salem et al. Berthelot et al. Narum et al. Fox et al. Common
# of LncRNA Average LncRNA Average LncRNA Average LncRNA Average LncRNA Average
exon % length % length % length % length % length
1 86.14 790 88.52 682 96.62 453 98.24 353 88.84 796
2 10.63 888 8.71 846 2.79 462 1.34 377 8.49 1007
3 2.37 973 2.07 893 0.43 480 0.42 359 1.91 1044
4 0.51 1090 0.47 1030 0.10 475 0.00 0.0 0.46 1225
5 0.15 1284 0.11 1217 0.02 792 0.00 0.0 0.13 1390
6 0.08 1289 0.04 1157 0.02 514 0.00 0.0 0.07 1206
7 0.05 1379 0.03 1076 0.01 477 0.00 0.0 0.03 1183
8 0.03 1322 0.01 1227 0.00 631 0.00 0.0 0.02 1364
9 0.01 1217 0.01 1394 0.01 620 0.00 0.0 0.01 1302
10 0.02 1167 0.01 1199 0.00 0.0 0.00 0.0 0.01 1181

LncRNAs are classified, based on their intersection with protein-coding genes, as genic
and intergenic [43]. Some of the IncRNAs are located in transcriptionally-active regions
and influence expression of neighboring genes [145, 193]. Therefore, the genomic position
of IncRNAs relative to protein-coding genes can possibly provide important clues about
IncRNA-mediated regulation of protein-coding genes [194]. Our data indicate that 7,847
(14.4%) of the IncRNAs intersected with protein-coding gene and thus are called genic
(Fig 13). Of these INcCRNAs 4,697 (8.6%), were intronic INCRNAS, existing in introns of
protein-coding genes but do not intersect with any exons, and 3,091 (5.6%) exonic, sharing
at least part of a protein-coding exon. Among those IncRNAs, 248 were sense and 1,488
were antisense; and 6,052 IncRNAs had an unknown orientation. In addition, there were
59 IncRNAs that completely overlapped with a protein-coding gene by containing this
protein-coding gene within its intron. Fig 13 and S1 table show classification and number
of IncRNAs based on their intersection with protein-coding genes. There were 46,656
(85.6%) intergenic INcCRNAs in the trout genome that did not intersect but were within 15

kb of the nearest protein-coding gene. Those intergenic IncRNAs were further divided
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into 3,588 convergent (same sense) and 3,428 divergent (opposite sense). Consistent with
our study, previous reports in humans indicate that the majority of IncRNA transcripts do

not intersect with protein-coding genes [43].
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Figure 13: Classification of IncRNAs based on their intersection with protein-coding genes
and number of IncRNAs in each class. Diagram on the top is a visual illustration of each
class of INcRNAs relative to nearest protein-coding gene(s) based on genomic position and
direction of transcripts. Bottom figure in tabular format presents number of different
classes of IncRNAs from each class. Numbers inside brackets following data source
references indicate total number of that particular class of IncRNAs. Letters C, D, S, AS
and U indicate number of convergent, divergent, sense, anti-sense and transcripts with
unknown directionality, respectively.
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Expression of IncRNA in different tissues

A comparison of IncRNA expression to protein-coding genes showed that transcript
abundance of IncRNAs is lower than that of protein coding genes. Average RPKM (Reads
Per Million per Kilo-base) of the most abundant 40,000 transcripts was 3.49 and 15.69 in
LncRNAs and protein-coding genes, respectively (Fig 14). Similar trends, showing lower

IncRNAs expression in all human tissues compared to mRNAS, were reported [43].
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Figure 14: RPKM comparison of protein-coding genes and IncRNAs. Transcript
abundance of IncRNAs is lower than that of protein-coding genes. Average RPKM of the
most abundant 40,000 genes is 15.69 and 3.49 for protein coding genes and LncRNAsS,
respectively (Left). Number of tissue-specific INcRNAs and protein-coding genes in
various tissues. Expression of INcRNAs and protein-coding genes showed similar patterns
among different tissues (Right).

Evidence is clear that IncRNAs exhibit strict cell/tissue specificity and play a significant
role in development and differentiation of tissues in plants and animals [38, 151].

Nonetheless, their tissue specificity and potential role in tissue development are not well
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studied in fish. Lack of sequence conservation of INCRNASs across diverse species demands
study of their expression in vital tissues as a method to identify IncRNAs with tissue-
specific roles in rainbow trout. In this study, INCRNA expression was studied in 13 vital
tissues of rainbow trout. Out of 54,503 putative INCRNAs, 3,269 (~5.9%) exhibited
expression across all tissues with a minimum RPKM value of 1.0 (S2 table). On the other
hand, 2,935 tissue-specific INCRNAs (5.4%) were identified from 13 tissues (S3 table). In
this report, transcripts were described as ‘tissue specific’ if their expression in one tissue
was 8-fold or higher compared to the maximum value for any of the other 12 tissues with
a minimum RPKM of 0.5 [51] (Fig 14). Previously, we reported 17.1% and 8.9%,
respectively, for housekeeping and tissue-specific protein-coding genes [51]. To gain
insight into the expression and tissue specific differences between InCRNAs and protein-
coding genes, the number of each was examined in 13 different tissues (Fig 14). Testis
expressed the highest number of tissue-specific IncRNAs followed by brain, gill, and
kidney. Conversely, liver expressed the lowest number of tissue-specific INCRNAs
followed by skin, white muscle then spleen, in increasing order. We previously reported
that the number of tissue-specific protein-coding transcripts follows similar patterns in
various tissues [51]. Similar to the protein-coding genes, expression patterns of tissue-

specific INcRNAs can be explained in terms of tissue complexity [51].

Previously, we showed that tissues are different in terms of the protein-coding
transcriptome composition and complexity. Brain and testis possess the most complex
transcriptomes. These tissues express large numbers of the genes; however, only a small
part of the mRNA pool is expressed by the most abundant genes [51]. On the other hand,

white muscle and stomach revealed simpler transcriptomes. These tissues express fewer
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genes and a greater proportion of the transcriptome comes from the most highly expressed
genes. Similarly and in this study, complex tissues like brain and testis, expressed a larger
number of IncRNAs with equal dominance of many transcripts (Fig 15). Conversely, white
muscle, fat and liver showed less complex transcriptomes; a vast majority of the
transcriptome included a few dominant IncRNAs. Similar expression patterns between
protein-coding genes and IncRNAs may suggest common mechanisms of gene expression
regulation and important role of IncRNAs in regulating protein-coding RNAs. Regardless,

these data suggest that INCRNAs may be significant in determining tissue complexity.
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Figure 15: Distribution of IncRNA expression in various tissues. Proportion of the
transcriptome that is contributed by the most abundant IncRNAs is plotted in various
tissues. In complex tissues like brain and testis, larger number of INCcRNAs were expressed
with fairly equal dominance of many transcripts. On the contrary, less complex tissues like
white muscle, fat and liver showed that majority of transcriptome is contributed by few
dominant IncRNAs.
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Correlation in expression patterns of IncRNA and protein-coding genes across tissues
Very low sequence conservation of IncRNAs hinders their molecular annotation. In order
to look for possible functional significance of IncCRNAs in regulating protein-coding genes,
we constructed an expression-based relevance network between protein-coding genes and
InNcRNAs using a clustering algorithm in Multi-experiment Viewer software package
(MeV) [188, 189]. In this study, biological correlation in expression patterns were
compared across 13 tissues representing vastly different cellular and functional
complexities. After clustering, genes of each cluster were ranked based on their entropies,
and the top 20% of genes with the highest entropy were retained to construct networks.
This approach identified 15 clusters containing protein-coding and IncRNA genes with
strong correlation in their expression patterns (R?> >0.97) (S4 table). Examples of
functionally important clusters include IncRNA Omy100084431 that was highly,
positively correlated with splicing factor 3B (GSONMT00018324001) and transcription
elongation factor SPT5 isoform X1 (GSONMTO00067984001). In addition, expression of
InNcRNAs Omy200064145 and Omy100138726 was positively correlated with NF-kappa
B inhibitor-like protein (GSONMTO00082784001). Furthermore, a strong positive
correlations in expression pattern between IncRNAs Omy300110093 and mitogen
activated protein kinasel-like (GSONMTO00053903001); Omy300072481 and thyroid
hormone receptor alpha-like (GSONMTO00066016001); Omy200106644 and histone
deacetylase 3-like (GSONMTO00058062001); and Omy300066671 and double-stranded
RNA-specific adenosine deaminase (GSONMT00000999001) were observed. Proteins
listed in these clusters have important functional roles in the cell including protein quality

control (derlin-2) [195], RNA editing (adenosine deaminase) [196], transcriptional control
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(histone deacetylase 3) [197], splicing, and development. These findings nicely correlate
with previously characterized molecular functions of IncRNAs in different species [157,
165, 166]. In order to explore additional underlying biological relationships between
InNcRNAs and protein-coding genes, more samples from different individuals and
developmental stages should be studied as INCRNAs may be specific to developmental

stages.

More stringently selected INCRNAs

The aforementioned 54,503 putative INCRNAs were identified using filtration steps with
traditional cutoff values [175, 191]. To provide an optional more stringently selected list
of IncRNAs, we performed extra filtration as follows. First, we calculated the average
amino acid length for the shortest 10% of the rainbow trout protein-coding genes [25]; this
calculation yielded 83 amino acids. Using 83 amino acids as the cut-off value of the
IncRNA, 5,836 IncRNAs were filtered out of 54,503. In addition, IncRNA containing ORF
covering more 35% of its length were filtered out [187]. Second, we decreased the cut-off
value for the CPC [177] from -0.5 to -1.0, which filtered out an extra 4,978 leaving 43,689
putative INCRNA. The next filtration step was performed based on location of the INCRNAs
in the genome predicted from a comparison of different datasets. If any IncRNA overlapped
fully or partially by more than 100 nt with another IncRNA from a different dataset, we
filtered out the shortest INCRNA; this step eliminated 5,945 putative INCRNASs. In addition,
we filtered out any IncRNAs that overlapped with a protein-coding gene in the sense
orientation and this filtration eliminated an additional 354 IncRNAs. The last filtration step

removed any single-exonic IncCRNA that was within 500 nt of a protein-coding gene; as a
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result, 1,538 putative IncCRNAs were removed. The final number of putative IncRNAs was
31,195 (S1 table). FASTA and gtf annotation files are available at

http://www.animalgenome.org/repository/pub/MTSU2015.1014/. Because the criteria for

distinguishing INcRNAs are still loosely defined [198], filters applied in this study (with
traditional or stringent cutoff values) should be considered arbitrary, hence, the identified
InNcRNAs may or may not reflect biological functions. For example, some of the well
characterized IncRNAs in mammals contain more than 100 AA ORF. In this study, two
sets of INcRNAs were obtained with traditional or stringent cut off values. All above

mentioned analyses were done using INcCRNAs from the traditional filtrations.


http://www.animalgenome.org/repository/pub/MTSU2015.1014/
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CHAPTER IV: IDENTIFICATION OF SNPS ASSOCIATED WITH
MUSCLE YIELD AND QUALITY TRAITS USING ALLELIC-
IMBALANCE ANALYSIS IN POOLED RNA-SEQ SAMPLES IN

RAINBOW TROUT [199]

Introduction

Fish growth rate, muscle yield and fillet quality are major traits affecting profitability of
aquatic food animal production. As feed cost is a major factor influencing the profitability,
efficiency of growth is important and related to growth rate and muscle yield and
composition. Skeletal muscle constitutes about 50-60% of the fish weight [200]. Given
that growth efficiency and fillet firmness and appearance are critical for profitability and
production of premium products [2], optimizing fish growth, muscle yield and fillet quality
traits is a key objective in aquaculture breeding programs. Traditional phenotype-based
selection is typically used to select for fast growth; however, muscle yield and quality traits
are difficult to improve by conventional selection because measurement of these traits

requires sacrificing the animal [201].

Genomic selection tools have been created to improve economically important traits in
plants and livestock. Genetic maps, which characterize the linkage or co-inheritance
patterns of genetic markers, have been developed for a wide range of species, including
fish, with the aim of discovering allelic variation affecting traits; and ultimately identify
DNA sequences underlying phenotypes [202, 203]. Markers have been identified by

various molecular techniques, including numerous and genome-wide single nucleotide
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polymorphisms (SNPs). In addition, recent technological developments have enabled high
throughput genotyping of these SNPs rendering them useful for genome-wide association
studies [47, 204-206]. Functional SNPs are generally defined as SNPs from genome
sequences with a functional effect. These sequences include coding SNPs (e.g. non-
synonymous, splicing), promoter and noncoding SNPs, as well as functional elements
identified from studying of genome conservation [207]. Functional/coding SNPs are
especially important because they have the potential to change the function of a protein
[50, 203, 208]. In addition, functional/coding SNP markers are unlikely to become
unlinked from their associated genes due to genetic recombination. Therefore,
functional/coding SNPs can be useful genetic markers for detecting significant associations
with phenotypes. Understanding molecular mechanisms of muscle growth and quality can
help in making better selection decisions. In terrestrial livestock, several genes, genetic
markers and QTLs associated with production traits, including growth, have been
characterized using molecular techniques [209, 210]. In addition, marker-assisted
selection has been used to enhance genetic improvement in livestock breeding programs
by direct selection on genes affecting economic traits [211] and to optimize selection for
quantitative traits [209, 210]. However, the genetic basis of muscle growth and quality

traits is not well studied in fish [212].

Rainbow trout is the most cultivated cool and cold freshwater fish in the U.S. [213], and it
is considered a model species for studies in several fields of biology, including ecology
[19], pathology [20], physiology [214], toxicology [22] and carcinogenesis [23]. Several
studies used RNA sequencing to identify markers in human [215, 216] and non-model

species [50, 217, 218]. However, most SNP detection algorithms were developed for DNA-
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Seq analyses and are not optimized/tested for RNA-Seq, especially in pooled samples. The
objective of this study was using RNA-Seq analyses of pooled samples to identify
functional/coding SNP markers and develop a resource for studies of marker association
with production traits in rainbow trout. First, transcriptome-wide SNP allele frequencies
were correlated to phenotypic variations in fish whole body weight (WBW) and muscle
yield, fat content, shear force and whiteness. Second, SNPs with allelic imbalance scores
(ratios between the allelic frequencies of the high-end families and that of the low-end
families) were identified. Then, a subset of the putative SNPs was validated for allelic
polymorphism and tested for trait association. Finally, genes harboring SNPs with allelic
imbalances were annotated to obtain insight into the potential functional effects of the

SNPs.

Methods

Ethical statement

Institutional Animal Care and Use Committee of the United States Department of
Agriculture, National Center for Cool and Cold Water Aquaculture (Leetown, WV)
specifically reviewed and approved all husbandry practices used in this study (IACUC

approval #056).

Fish population and sequencing
Phenotypic data and muscle samples were collected from ~500 fish representing 98
families (5 fish/family) from the growth-selected line at NCCCWA (year class 2010) as

previously described [50]. Families were produced and reared until ~13 months post-
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hatch as described in reference [219]. At about ~13-months old and in each of five
consecutive weeks, approximately 100 fish (i.e., 1 fish per full-sib family per week) were
anesthetized in approximately 100 mg/L of tricaine methane sulfonate (Tricaine-S,
Western Chemical, Ferndale, WA) weighed, slaughtered, and eviscerated. A muscle
sample was excised from the left dorsal musculature and frozen in liquid nitrogen. Head-
on gutted carcasses were packed in ice, transported to the West Virginia University Meats
Processing Laboratory (Morgantown, WV), and stored overnight. The next day, carcasses
were hand-processed into trimmed, skinless fillets by a trained faculty member and
weighed. Fresh fillet surface color was measured with a Chroma meter (Minolta, Model
CR-300; Minolta Camera Co., Osaka, Japan) calibrated using a standard white plate No.
21333180 (CIE Y 93.1; x 0.3161; y 0.3326). L* (lightness), a* (redness), and b*
(yellowness) values were recorded at three locations above the lateral line along the long
axis of the right fillet, and these values were used to calculate a fillet whiteness index
according to the following equation: Whiteness = 100 — [(100 — L)? + &% + b? Y2 [81]. The
left-side fillet was frozen for subsequent proximate analysis, and a 4 x 8 cm fillet section

was cut from the left side for subsequent cooked texture analysis [220].

For RNA-Seq study, eight different families (5 fish each) showing opposite phenotypes for
each of the 5 traits were analyzed (4 high ranked families versus 4 low ranked families on
average for each trait). Each family represented a full-sib family from the above-described
growth-selected line. Muscle tissues were collected from each fish and flash frozen in
liquid nitrogen then stored at —80°C until RNA isolation. Total RNA was isolated from
each sample using TRIzol™ (Invitrogen, Carlsbad, CA). Equal masses of total RNA from

5 samples of each family were pooled and used for RNA-Seq sequencing. cDNA libraries
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were prepared and sequenced on an Illumina HiSeq2000 (single-end, 100bp read length)

using multiplexing standard protocols.

SNP detections using

SAMtools/Popoolation2

For each trait (WBW, muscle yield, muscle fat content, shear force, and whiteness),
sequence reads from each family were aligned to the rainbow trout genome using STAR
[221]. After read alignment, the SAMtools view/sort and mpileup functions were used
within the Popoolation2 package (version 1.201) to determine the genotype for each variant
and calculate allele frequencies [222, 223]. Initial SNPs were considered at minimum reads
> 10 and minor allele count > 4 and MAF > 0.05. Putative SNPs associated with each trait
were determined using an in-house Perl script at allelic imbalance scores (the ratio between
the allelic frequencies of the high-end families and that of the low-end families) >2.0 as an

amplification and <0.5 as loss of heterozygosity.

SNP detection using GATK tools

For the GATK pipeline [224], reads from each sample were aligned to the rainbow trout
genome using STAR [221] as recommended by the GATK practice. Picard tools were used
to sort the SAM files and to mark duplicates, a step used by GATK to reduce a false positive
due to error in duplicate that could be falsely detected as a SNP. The following steps were
performed according to GATK pipeline for RNA-Seq (Split and trim to reassign mapping
quality, Indel realignment, local realignment around Indel in order to clean up any mapping

artifacts and Base Quality Score Recalibration). After data preparation, variants were
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called using HaplotypeCaller followed by hard-filtering using the following parameters:
Qual By Depth (QD) 2.0, FisherStrand (FS) 60.0: RMS Mapping Quality (MQ) 40.0, MAF
>0.05. Since GATK was not optimized to calculate allelic imbalances in RNA-Seq data,
putative SNPs identified in each family were analyzed using an in-house Perl script to
determine the allelic imbalances applying the criteria that we used in the

SAMtools/Popoolation2 method.

SNP validation

Flanking sequences (up to 250 bp on each side) of putative SNPs were extracted from the
reference genome [25]. Some SNPs were removed from SNP assay design because either
a sequence gap was located less than 60 bp from the SNP site or a non-target SNP was
located less than 30 bp away from the target SNP. A total of 92 SNP assays were developed
and evaluated with 282 DNA or cDNA samples. These included 85 DNA samples derived
from 19 full-sib families used for RNA-Seq and their parents (38 DNA samples), DNA
samples of 2 full-sib mapping families (2 parents and 19 offspring per family), 64 DNA
samples from two commercial populations (Troutlodge Inc. and Clear Springs Foods Inc.)
and 35 cDNA samples derived from the RNA samples used for RNA-Seq high versus low
muscle yield. The SNP genotyping was performed following the instructions of the
Fluidigm genotyping user guide. Briefly, DNA and cDNA samples were pre-amplified,
diluted and used for genotyping with 96.96 Dynamic Array IFCs (Integrated Fluidic
Circuits). The arrays were read using EP1 system, and genotypes were called automatically
using Fluidigm SNP genotyping analysis software 4.1 with a confidence threshold of 85.

The genotype clusters were examined for each assay and any wrong calls or no calls were
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corrected manually. The program Pedcheck [225] was used to identify genotypes
inconsistent with Mendelian inheritance between parents and offspring. Chi-square
goodness of fit tests were performed to identify SNPs with significant segregation
distortion (P < 0.01) in the two mapping families. Those SNPs were reported as assay-

failed SNPs.

For the Sanger sequencing validation of the SNPs showing potential mon-allelic gene
expression, flanking sequences (up to 250 bp on each side) of each SNP were PCR
amplified from DNAs and cDNA from the same 35 fish samples that were used for RNA-
Seq high versus low muscle analyses. PCR amplicons were Sanger sequenced and
manually inspected for consistency between DNA and cDNA genotypes or mono-allele

specific gene expression as explained in the results section.

Functional annotation of SNPs

SNP annotation by functional class (genic/intergenic etc.) for different SNP sets and their
genome distributions were conducted using in-house Perl scripts. The gff file of the
rainbow trout genome reference was used to determine if a SNP is located within an mMRNA
start and end positions (genic), within a CDS, 5’UTR or 3’UTR. Upstream/ downstream
SNPs were determined if located within 5kb of a protein-coding gene. SNPs were called
intergenic if located more than 5Kb of protein-coding genes. SNPs within InCRNAs were
determined using gtf file of our previously reported IncRNA reference [115]. Functional
annotation of the SNP-harboring genes was performed using the Blast2GO suite [30] and

KEGG pathway mapping [226].
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Results and Discussion

Phenotypes

SNPs were identified in fish families with divergent phenotypes in WBW, muscle yield,
fat content, shear force (texture) and whiteness of the fillet. These rainbow trout were from
a growth-selected line developed by the NCCCWA breeding program [219]. Briefly, this
line was created through artificial selection, starting in 2004, from 7 founder strains with
documented diversity and domestication history. Over five generations, the population
responded to selection by 9.8-12.7% increase in WBW per generation, and rate of
inbreeding averaged 0.86% per generation [219]. In this study population, which was
sampled after three generations of selection (hatch year of 2010), WBW was positively
correlated with muscle yield and muscle fat content (R?>= 0.56 and 0.50 respectively, data
not shown). Our previous reports showed that fast growth may be genetically associated
with improved muscle yield, paler fillets (affected by intramuscular fat content) and firmer
texture [227]. The trait heritability estimates for muscle yield, muscle weight, WBW10,
WBW13, carcass weight, fat percentage, shear force and fillet color were moderate to high
(0.31-0.81) [205, 227]. Those moderate to high heritability estimates imply that
substantial additive genetic variation exist in the study population for growth and carcass

traits.

For RNA sequencing, muscle samples were collected from 7-9 different full-sib families
showing divergent phenotypes per trait (i.e. 3-5 high ranked families versus 3-5 low ranked
families per trait). Five fish were sampled from each family. Divergent phenotypic

attributes (Figure 16) were different (P<0.01): WBW (1221.6g + 84.25 vs. 502.1+28.09),
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muscle yield (50.9% + 1.6 vs. 43.3% + 2.3), muscle crude-fat (9.24% + 1.2 vs. 4.77% +
1.3), shear force (grams force/grams of sample; 539.64+ 12.3 vs. 310.01+ 49.2), and fillet
whiteness index (44.7 £ 0.8 vs. 41.23 £ 0.4) for high- vs. low-ranking groups, respectively.

Means and standard deviations of these traits were calculated from the family averages.
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Figure 16: Phenotypic variations in fish families with contrasting phenotypes for five
different traits; whole-body weight, muscle yield, fat content, shear force and fillet
whiteness index. All differences were statistically significant (p< 0.01).
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Identification of putative SNPs

RNA pools from muscle tissues of 5 fish per family were used for RNA-Seq analyses. A
total of 259,634,620 reads (100 bp single-end) were generated from 22 families at an
average of 11,801,573 reads per family. Reads were aligned against the rainbow trout
genome [25] using the STAR [221] alignment tool. Percentage of reads mapped to the

genome ranged from 80% to 82% per family.

A total of 204,604 putative SNPs were detected for the five traits using Haplotypecaller
tool of Genome Analysis Toolkit v3.3.0 (GATK) [228], with an average of 40,920 SNPs
per trait. Using the SAMtools/Popoolation software package [229, 230], a total of 304,805
putative SNPs were predicted, with an average of 60,961 SNPs per trait (Table 9). After
removing redundant SNPs among all traits, we had 59,112 SNPs from GATK and 87,066
from SAMtools/Popoolation2 with 50,885 shared between the two bioinformatics pipelines

(Table 9).

After identifying putative SNPs, an in-house Perl script was used to estimate allelic
imbalances of the SNPs in each trait. A total of 6,275 SNPs with allelic imbalances were
identified from the GATK dataset at cutoff values of >2.0 as an amplification and <0.5 as
loss of heterozygosity. In addition, 969 SNPs explicitly existed in only the high or low
phenotypic group. After removing redundant SNPs between traits at the two cutoff values,
there were 4,798 unique SNPs (Table 9). Similarly, SAMtools/Popoolation2 identified
5,070 SNPs with allelic imbalances at cutoff values of >2.0 as an amplification and <0.5
as loss of heterozygosity. In addition, 1,450 SNPs existed in families at one of the two ends

of each trait variation scale but not in the other (Table 9). There were 4,962 non-redundant
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SNPs among the five traits that were identified with SAMtools/Popoolation2 at the two
cutoff values. There were only 1,829 non-redundant SNPs shared between GATK and
SAMtools/Popoolation2. Differences in variant calling and filtering steps might have
caused the observed differences in number of SNPs between GATK and

SAMtools/Popoolation2.

For subsequent analyses, we combined SNPs from GATK and SAMtools/Popoolation2
into three different groups: 1) Non-redundant SNPs with allelic imbalances from both
methods (7,930 SNPs); 2) Common putative SNPs from both methods (50,885 SNPs); 3)
Putative non-redundant SNPs from both methods (95,234 SNPs) (Table 9). All SNPs data

are provided in Additional file 1.

Table 9: Summary of putative SNPs and SNPs showing allelic imbalances identified by
SAMtools and GATK for each trait. Allelic imbalances were calculated at >2 for
amplification and <0.5 for loss of heterozygosity. SNPs explicitly existing in only the high
or low phenotypic group are indicated in the table by the 0.0/1.0 ratio. * 59 SNPs were
multi-allelic, showing different alleles in association with different phenotypes. ** 1 SNP
was multi-allelic showing different alleles predicted by different pipelines.

No. of putative SNPs [No. of SNPs with Allelic imbalance
Trait SAMtoo.Is/ GATK SAMtoo.Is/ GATK
Popoolation2 Popoolation2
0.5/2.0 0.0/1.0 |0.5/2.0/0.0/1.0
Fat% 59,032 38,808 662 406 877 270
Shear 60,309 38,960 910 488 1,152 | 261
Muscle% 61,117 42,383 1,321 116 1,507 76
Whiteness 64,636 44,460 1,011 347 1,283 298
WBW 59,711 39,993 1,166 93 1,456 64
Total # SNPs 304,805 204,604 5,070 1,450 6,275 | 969
Total # SNPs non- redundant 87,066 59,112 4,962 4,798
Total Common SNPs 50,885 1,829
All putative Total No. of SNPs with allelic
SNPs(MAF>0.05) imbalance =7,930 **
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SNP validation

A total of 92 putative SNPs including 88 SNPs from the GATK/SAMtools common pool
(50,885 SNPs) were selected for SNP validation. Among the 92 putative SNPs, 68 SNPs
showed allelic imbalances (Table 10), including 25 SNPs identified by GATK pipeline, 10
SNPs identified by SAMtools pipeline, and 33 SNPs identified by both pipelines (Tablel10).
Among the 92 tested SNPs, 72 (78.2%) SNPs were polymorphic, 11 (11.9%) SNPs were
monomorphic and 9 failed the assay (Table10). Failure of the Fluidigm assay can be caused
by unsuccessful or non-specific primer binding to the target genomic DNA. Therefore, we
cannot assume that a failed assay indicates failure of our bioinformatics pipeline to detect
a SNP in the RNA sequence data, and can remove the failed SNP assays from the
calculation of SNP validation rate. As 72 out of the 83 working Fluidigm SNP assays were
polymorphic we can claim 86.7% validation rate in detecting polymorphic SNPs in the
overall putative SNP pool and 90% validation rate in the GATK/SAMtools shared SNPs
pool. This success rate is much higher than what we previously achieved in rainbow trout
using RNA-Seq (70%) and genomic reduced representation libraries (48%) [48, 50]. The
improved success rate in this study is perhaps due to use of a reference genome instead of
de novo assembled references used in the previous studies. In addition, a transcriptome
sequence coverage of ~7.4X per fish was used compared to only ~0.97X in our previous
RNA-Seq study [50]. The 90% successful SNP validation rate is comparable to that
reported in diploid fish or using genomic RADs and doubled haploid fish in rainbow trout
[47,231]. Inaddition, a recent rainbow trout genome re-sequencing study with at least 10x
genome coverage per fish had 86% successful validation rate [47]. Relatively lower success

rates in SNP detection were reported from RNA-Seq studies in rainbow trout due to
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genome duplication and assembly errors in the genome/transcriptome references [50, 232,
233]. Noteworthy and in a separate study, we found variation in gene expression in only
75 genes distributed between all 5 traits (data will be published elsewhere). Therefore,
differential gene expression effects on estimating allelic imbalances were negligible as only
75 genes distributed between all five traits were differentially expressed between the high
and low families. Minor effects of variation in gene expression on allele frequency
estimation accuracy were previously reported [234]. The SNP validation data, albeit small,
indicated that the GATK method was more successful in calling polymorphic SNPs with
allelic imbalances than the SAMtools pipeline; 87.5% versus 66.7%, respectively.
However, combined GATK and SAMtools data had a 93.8% success rate. Success rates
between SNPs with and without allelic imbalances were 88.7% and 86.7%, respectively.
Importantly and out of 72 validated SNPs, 61 (84.7%) and 58 SNPs (80.5%) were
polymorphic in fish from two different commercially important rainbow trout populations
in the US, Troutlodge Inc. and Clear Springs Foods Inc., respectively. These results
suggest that the SNPs identified in this study are also useful for other commercial rainbow

trout populations.

To evaluate ability of the pipeline in calculating allelic imbalances, DNA and cDNA of the
35 fish used for RNA-Seq analyses of high versus low muscle yield were also genotyped.
For all 72 validated SNPs, all DNA and cDNA genotypes were consistent except for 4.64%

that indicated mono-allele specific gene expression as explained below.
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Table 10: Number of putative and validated SNPs from each dataset.

SNP Group Total SNPs| Polymorphic [Monomorphic|Failed assay |Success rate
All putative SNPs (95,234) 92 72 11 9 86.7%
GATK/SAMTool common SNPs o
(50,289) 88 72 8 8 90.0%
Total $NPS with allelic 68 55 7 6 88.7%
imbalance
GATK unlque SNPs with allelic o5 21 3 1 87.5%
imbalance
SAMTool unique SNPs with 10 4 2 4 66.7%
allelic imbalance
GATK/_SAMTC_)ol_common SNPs 33 30 5 1 93.8%
with allelic imbalance

Assessment of Mono-allelic Gene Expression

Out of the 72 validated polymorphic SNPs (Table 10), there were 46 SNPs that showed
potential mono-allelic expression in cDNA in at least one fish. In other words, the genomic
DNA is heterozygous for the SNP while cDNA is monomorphic. Thirty-three of the 35
fish showed mono-allelic expression in at least one SNP. Out of the aforementioned 46
SNPs, 5 SNPs were randomly selected for validation using Sanger sequencing. All SNPs
were heterozygous at the DNA level. However, manual investigation of the cDNA
sequence chromatograms exhibited existence of substantial allelic imbalances ranging
from existence of two alleles with >2.0 X peak height ratios between the 2 alleles at the
SNP base to a complete mono-allelic expression (a single peak). Overall, approximately
4.64% random mono-allelic/allelic imbalances existed in gene expression of rainbow trout.
These data are consistent with a recent study in human stem cells showing that most allelic
imbalances did not represent ‘on/off” events, but instead revealed biased expression from

each allele [235]. None of the 8 tested families in our study showed mono-allelic
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expression in all individuals specific to a given family, indicating no parental origin effect
through genomic imprinting. Likewise, the human stem cell study suggested that most of
the allele-biased gene expression is not due to genomic imprinting [235]. Compared to our
estimated 4.64% mono-allelic expression, recent studies showed 12-24% random mono-
allelic expression in mammals and 7-9% in interspecies catfish [203, 236-238]. Our mono-
allelic expression assessment is based on only 72 SNPs, and hence a genome-wide

assessment of mono-allelic expression in rainbow trout warrants further investigation.

SNP Genomic/Functional Classification

Three sets of SNPs were considered for genomic/functional classifications. For the 7,930
SNPs with allelic imbalances, 2,898 (37.69%) were intergenic. Of them, 635 (8.01%) and
721 (9.09%) SNPs were located within 5Kb upstream or downstream of protein-coding
genes, respectively. The rest of the intergenic SNPs, 1,633 (20.59%) were located more

than 5Kb distant to protein-coding genes.

On the other hand, 4,941 (62.31%) SNPs were genic, including 214 (2.70%) that were
located within the 5” untranslated region (5’UTR) and 1,677 (21.15%) that were located in
the 3’ untranslated region (3°’UTR) of protein coding genes. In addition, 2,548 (32.13%)
SNPs were located within coding DNA sequences (CDS) and 502 (6.33%) SNPs were
located within introns. Of the CDS SNPs, 504 (6.36%) were non-synonymous; 4 of these
caused early stop codon, and 500 caused amino acid substitution (Table 11). There were

684 (8.63%) SNPs located within 295 IncRNAs (Table 11).
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Regarding the GATK/SAMTtools shared SNPs (50,885 SNPs), there were 20,356 (40.00%)
intergenic SNPs. Of these shared SNPs, 4,594 (9.03%) were located within 5Kb upstream,
and 5,208 (10.23%) downstream of protein-coding genes. In addition, 10,554 (20.74%)
were intergenic, more than 5Kb distant to protein-coding genes. In contrast, 30,529
(60.00%) SNPs were genic. And, 1,389 (2.73%) of these SNPs were in the 5’UTR; 10,259
(20.16%) were in the 3°’UTR, 15,178 (29.83%) were within CDS; and 3,703 (7.28%) were
within introns. Out of those within CDS SNPs, 3,919 (7.70%) were non-synonymous
SNPs. Fifty of these CDS SNPs were nonsense (causing premature stop codon), and 3,869

(7.60%) were missense SNPs (Table 11).

Concerning all the putative SNPs, there were 46,901 (49.25%) intergenic SNPs. Of these,
9,005 (9.46%) were located within 5Kb upstream; and 10,245 (10.76%) were downstream
of protein-coding genes. In addition, 27,651 (29.03%) were more than 5Kb distant from
protein-coding genes. Alternatively, 48,333 (50.75%) SNPs were genic, and of these genic
SNPs, 2,247 (2.36%) were in the 5S’UTR; 16,420 (17.24%) were in the 3°’UTR; 22,616
(23.75%) were within CDS; and 7,050 (7.40%) were within introns. Of the CDS SNPs,
5,853 (6.15%) were non-synonymous with 79 SNPs causing early stop codons and 5,774

(6.06%) causing amino acid changes (Table 11).

In these three SNP datasets, there were large percentages of intergenic and
upstream/downstream SNPs (37-49%). Approximately 10% intergenic in addition to 30%
non-coding SNPs were reported in humans from RNA-Seq data [239]. Our high

percentages of intergenic SNPs may be partially explained by the incomplete annotation of
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protein coding genes and exons in the current version of the rainbow trout reference

genome sequence [25].

Table 11: Summary of SNPs classification for different SNP sets.

SNPs with
aI:e‘IAi: GATK/SAMtools All putative
Functional Class . % Common SNPs % P %
imbalance SNPs 95.2K
7.9K 50.8K
Intergenic 2,989 37.69% 20,356 40.00% 46,901 49.25%
Intergenic(>5K) 1,633 20.59% 10,554 20.74% 27,651 29.03%
Upstream (<5K) 635 8.01% 4,594 9.03% 9,005 9.46%
Downstream (<5K) 721 9.09% 5,208 10.23% 10,245 10.76%
Genic 4,941 62.31% 30,529 60.00% 48,333 50.75%
5’UTR 214 2.70% 1,389 2.73% 2,247 2.36%
3'UTR 1,677 21.15% 10,259 20.16% 16,420 17.24%
CDS 2,548 32.13% 15,178 29.83% 22,616 23.75%
Intronic 502 6.33% 3,703 7.28% 7,050 7.40%
Non-synonymous 504 6.36% 3,919 7.70% 5,853 6.15%
Stop gain 4 0.05% 50 0.10% 79 0.08%
Missense 500 6.31% 3,869 7.60% 5,774 6.06%
LncRNA 684 8.63% 4,386 8.62% 10,465 10.99%
Total number/percentage 7,930 100.00% 50,885 100.00%| 95,234 100.00%

Distribution and Density of SNPs in the Genome

Chromosome density distribution of the SNPs with allelic imbalances exhibited high
density for all five traits in several chromosomes with the three highest peaks in
chromosomes 9, 20 and 28 (Figure 17A). All five traits revealed very similar pattern of
distribution with a single exception; shear force exhibited a relative higher density than the
other traits on chromosome 9. The similarity in density distribution between traits may be

explained at least in part by the positive correlation that we observed between the
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phenotypes in this population. WBW and thermal growth coefficient were used as
selection criterion in this population [50, 219], and we found that WBW as an independent
variable has significant effects on muscle yield and fat percentage (multivariable regression
analysis [P<0.01], data not shown). However, despite the similarity in SNP density
distributions, most of the identified SNPs were unique to each trait. From the 7,930 SNPs
with allelic imbalances, only 27 were shared by all five traits, 161 were shared by four
traits, 680 were shared by three traits and 1,783 were shared by two traits. In agreement
with our results, a recent GWAS study identified two windows with effect on fillet yield
located on chromosome 9 and explaining 1.0-1.5% of genetic variance in the same fish

population [205].

As can be expected, the number of SNPs with allelic imbalances per chromosome was
strongly correlated with chromosome length (Figure 17 B). In general, numbered unknown
chromosomes, which are longer in the current reference genome [25], had more SNPs
compared to the known chromosomes (Figure 17 B). Chromosome “Unknown” (1.1 Gb
of scaffolds not assigned to chromosomes) had 4,086 (49.05%) SNPs (not shown in Figure
17 B). Previous genetic mapping reports showed that the growth-related SNPs/QTL are
distributed over ~20 chromosomes [50, 240, 241]. Together with our data, these reports

confirm the polygenetic nature of growth/muscle related traits in rainbow trout.
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Figure 17: Genome distribution of the SNPs with allelic imbalances for all five traits. SNP
density (SNPs per 100,000 NT) (A) and total number of SNPs (B) are shown for each
chromosome. Chromosome “Unknown” (1.1 Gb scaffolds not assigned to chromosomes)
had 4,086 (49.05%) SNPs is not shown in the lower panel.
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SNP Functional Annotation

Functional annotation of genes harboring SNPs with allelic imbalances were performed
using the Blast2GO suite [102]. The SNP-flanking sequences were searched against the
NCBI nr-protein database using BLASTX; then, associated genes and Gene Ontology (GO)
terms were acquired. In the biological processes category, SNP-harboring genes were
associated with various cellular processes mainly involved in growth-related mechanisms,
including regulation of metabolic and oxidation-reduction processes and protein translation
(Figure 18). In the molecular function category, SNP-containing genes were associated
with binding metal ions, ATP, nucleic acid, and actin. In addition, a significant number of
the genes were associated with transferase, motor, oxidoreductase, and structural molecule
activities (Figure 18). In the cellular component category, many of the genes exhibited
association with the cytoplasmic compartment, membranes, myosin complex, and
extracellular region compartment (Figure 18). Genes with similar GO associated terms
were previously reported to be involved in rainbow trout muscle growth and quality [50,

214, 240, 242-244)].
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Figure 18: Gene Ontology (GO) assignment of the genes harboring SNPs with allelic
imbalances in families with contrasting growth and muscle phenotypes.
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Additionally, KEGG pathway mapping was used to assign enzyme function to the SNP-
containing transcripts [226]. Searching transcripts against the KEGG database yielded
1,043 transcripts (13.15%) with significant KEGG hits to 632 KEGG Orthologies (KOs)
belonging to different pathways (Table 12). Most of the transcripts were assigned to
growth-related metabolic pathways. There were 275 transcripts (182 KOs) related to
metabolism. Under this category, sequences matching energy metabolism (88 transcripts,
57 KOs) appeared on the top of the list, with 52 transcripts (37 KOs) assigned to oxidative
phosphorylation. Sequences matching carbohydrate metabolism occupied the second place
(77 transcripts, 43 KOs) and were further classified into glycolysis/gluconeogenesis (39
transcripts, 18 KOs), citrate cycle (19 transcripts, 14 KOs) and pyruvate metabolism (16
transcripts, 10 enzymes). The next metabolic subcategories in the metabolic list were
amino acid metabolism (56 transcripts, 41 KOs), lipid metabolism (27 transcripts, 22 KOs),
and cofactors and vitamins metabolism (14 transcripts, 11 KOs). These preliminary SNP
functional annotations are in agreement with previous reports that showed strong
association between 1) mutations and altered expression of glycolytic and oxidative
phosphorylation enzymes and 2) rainbow trout growth and muscle degeneration [50, 214,

240, 242, 243].

In addition, 176 KEGG annotated sequences were assigned to the genetic information
processing category (112 KOs) that included translation (105 sequences, 69 KOs), folding,
sorting and degradation (62 sequences, 38 KOs), and transcription (9 sequences, 5 KOs)
(Table 12). A significant number of the SNP-harboring genes matched ribosomal (68
sequences, 48 KOs) and RNA-transport proteins (22 sequences, 12 KOs). Previously, we

showed that the atrophying muscle and muscle from fast versus slow growing rainbow
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trout had differentially expressed genes involved in RNA processing, protein synthesis,

posttranslational modification, and intracellular protein trafficking [214, 240, 242].

Moreover, 166 sequences (99 KOs) were classified by KEGG mapping into the
environmental information processing category; these sequences were further assigned to
signal transduction (147 sequences, 87 KOs) and signaling and interaction molecules (19
sequences, 12 KOs) (Table 12). The PI3K-Akt signaling, Calcium signaling, MAPK
signaling, and cGMP-PKG signaling pathways had the largest numbers of hits: 21, 18, 18,
and 16 KOs, respectively. Previous studies indicated involvement of MAPK and Calcium

signaling in fish/muscle growth [242, 245].

Furthermore, the cellular processes category contained 152 KEGG-annotated sequences
matching 85 KOs, which were further classified into cellular community (54 transcripts,
27 KOs), transport and catabolism (42 transcripts, 24 KOs), and cell growth and death (36
transcripts, 22 KOs) (Table 12). In the organismal systems category, the most significant
subcategories were endocrine (105 transcripts, 53 KOs), circulatory (49 transcripts, 30
KOs), immune (44 transcripts, 28 KOs), and digestive systems (32 transcripts, 16 KOs).
Recently, a GWAS study using the same fish population identified a small number of genes
involved in muscle development explaining ~1.0% of the total genetic variance of the

muscle yield and growth rate [205].

Distributions of KEGG matches were generally similar among all five traits. Albeit, we
noticed an increased number of hits related to fillet whiteness compared to other traits, for
carbohydrate metabolism (47 transcripts, 28 KOs) and amino acid metabolism (32

transcripts, 26 KOs) (Table 12). Similarly, there was a noticeable increase in numbers of
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hits in whiteness for PI3K-Akt signaling, focal adhesion, gap junction and regulation of
actin cytoskeleton (Table 12). Regulation of focal adhesion and actin cytoskeleton were
associated with development of pale, soft, and exudative (PSE) meat in turkey [246]. In
addition, the muscle yield trait exhibited an increased number of transcripts for energy
metabolism, with 28 transcripts/18 KOs belonging to oxidative phosphorylation. Shear
force exhibited an increased number of transcripts belonging to lipid metabolism (16

transcripts, 14 KOs) (Table 12).

Our KEGG pathway mapping results have linked many of the genes harboring SNPs with
allelic imbalances to potential regulation of growth and metabolic pathways, which may
support pathway-based GWAS analyses in rainbow trout, similar to what has been recently
applied to detect genetic pathways explaining live weight and muscle growth variation in

cattle genotypes [247].



Table 12: KEGG biochemical mapping of the genes harboring SNPs with allelic
imbalances in fish families showing contrasting growth and muscle phenotypes.
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Total (all traits) WBW Muscle % Fat% Shear Whiteness
Metabolism 275 182 133 99 130 96 102 77 125 92 142 105
Energy Metabolism 88 (32.00) 57 42 (31.58) 32 45 (34.62) 29 37 (36.27) 26 30 (24.00) 21 41 (28.87) 32
Oxidative phosphorylation 52 37 20 17 28 18 18 15 13 11 19 16
Carbohydrate Metabolism 77 (28.00) 43 42 (31.58) 28 39 (30.00) 21 26 (25.49) 19 39 (31.20) 25 47 (33.10) 28
Glycolysis / Glucc i 39 18 19 10 19 14 13 7 21 11 20 13
Citrate cycle (TCA cycle) 19 14 8 8 9 7 7 6 10 9 9 7
Pyruvate metabolism 16 10 6 4 7 7 5 4 10 8 6 5
Pentose phosphate pathway 13 5 8 5 7 5 7 3 3 2 3 3
Amino Acid Metabolism 56 (20.36) 41 26 (19.55) 21 24 (18.46) 20 21 (20.59) 16 28 (22.40) 22 32 (22.54) 26
Lipid Metabolism 27(9.82) 2 14 (10.53) 1 11 (8.46) 1 7(6.86) 6 16 (12.80) 14 13(9.15) 1
Fatty acid degradation 15 13 8 6 9 9 4 3 1 10 8 7
Metabolism of Cofactors and Vitamins 14 (5.09) 11 4(3.01) 4 6(4.62) 4 5 (4.90) 5 5 (4.00) 5 4(2.82) 4
Nucleotide Metabolism 13(473) 8 5 (3.76) 3 5(3.85) 5 6 (5.88) 5 7(5.60) 5 5(352) 4
Genetic Information Processing 176 112 69 50 79 59 50 40 83 59 74 55
Translation 105 (59.66) 69 36 (52.17) 31 48 (60.76) 39 30 (60.00) 27 45 (54.22) 35 47 (63.51) 40
Ribosome 68 48 25 23 32 26 21 19 33 27 32 28
RNA transport 22 12 9 6 11 9 7 6 8 4 7 6
Folding, Sorting and Degradation 62 (35.23) 38 28 (40.58) 17 24 (30.38) 16 19 (38.00) 12 30 (36.14) 19 23(31.08) 13
Protein processing in I ic reticulum 23 14 11 7 7 4 7 5 14 9 7 4
RNA degradation 16 5 11 4 10 5 8 4 9 3 1 5
Proteasome 12 1 4 4 5 5 1 1 4 4 4 3
Ubiquitin mediated proteolysis 9 7 2 2 2 2 1 1 3 3 1 1
Transcription 9(5.11) 5 5(7.25) 2 7(8.86) 4 1(2.00) 1 8 (9.64) 5 4(541) 2
Spliceosome 9 5 5 2 7 4 1 1 8 5 4 2
Environmental Information Processing 166 99 70 45 88 61 62 45 76 55 87 58
Signal Transduction 147 (88.55) 87 62 (88.57) 39 79 (89.77) 53 56 (90.32) 41 69 (90.79) 50 74 (85.06) 50
PI3K-Akt signaling pathway 35 21 12 8 13 10 12 8 13 10 24 16
Calcium signaling pathway 36 18 16 9 13 8 14 10 16 12 16 1
MAPK signaling pathway 26 18 10 6 17 12 7 6 12 9 10 8
cGMP - PKG signaling pathway 26 16 10 7 8 8 7 6 10 8 12 10
AMPK signaling pathway 21 12 10 5 14 8 9 3 10 6 12 7
cAMP signaling pathway 18 12 6 5 4 4 7 6 8 7 7 6
HIF-1 signaling pathway 11 9 4 2 7 4 3 3 9 6 8 4
Hippo signaling pathway 13 7 2 2 7 5 6 6 5 5 5 4
FoxO signaling pathway 7 6 3 3 2 2 3 3 1 1 4 3
mTOR signaling pathway 5 5 1 1 2 2 0 0 1 1 3 3
Signaling Molecules and Interaction 19 (11.45) 12 8(11.43) 6 9(10.23) 8 6 (9.68) 4 7(9.21) 5 13(14.94) 8
ECM-receptor interaction 17 10 7 5 7 6 6 4 7 5 13 8
Cell adhesion molecules 3 2 1 1 2 2 0 0 0 0 2 1
Cellular Processes 152 85 68 41 70 42 54 42 64 44 83 56
Cellular commiunity 54 (35.53) 27 27 (39.71) 13 29 (4143) 15 26 (48.15) 16 27 (42.19) 16 36 (4337) 21
Focal adhesion 35 21 13 10 17 11 14 11 15 11 23 17
Tight junction 19 10 18 6 17 6 15 8 16 7 10 6
Gap junction 8 2 1 1 1 1 2 2 2 2 7 2
Adherens junction 5 3 4 3 5 3 3 3 5 3 3 3
Transport and Catabolism 42 (21.63) 24 17 (25.00) 11 20 (2857) 14 8 (14.81) 8 16 (25.00) 11 18 (21.69) 11
Cell Growth and Death 36 (23.68) 2 16 (23.53) 11 12 (17.14) 8 13 (24.07) 12 14 (21.88) 13 19 (22.89) 16
Apoptosis 19 13 13 7 5 4 6 6 7 7 1 9
p53 signaling pathway 7 5 6 4 3 1 1 1 3 3 4 4
Cell Motility 20 (13.16) 12 8 (11.76) 6 9(12.86) 5 7 (12.96) 6 7(10.94) 4 10 (12.05) 8
Regulation of actin cytoskeleton 20 12 8 6 9 5 7 6 7 4 10 8
Organismal Systems 274 154 108 66 124 84 109 81 122 82 129 89
Endocrine System 105 (38.32) 53 44 (40.74) 25 49 (3952) 32 36 (33.03) 24 53 (43.44) 33 56 (43.41) 33
Glucagon signaling pathway 36 12 19 8 14 9 12 7 22 11 23 10
Insulin signaling pathway 32 12 14 7 11 6 7 4 12 6 22 10
Thyroid hormone signaling pathway 11 7 4 4 6 5 3 3 4 4 6 6
Thyroid hormone synthesis 6 4 3 2 1 1 3 3 2 2 1 1
Circulatory System 49 (17.88) 30 18 (16.67) 12 22 (17.74) 15 19 (17.43) 16 16 (13.11) 13 15 (11.63) 12
Immune System 44 (16.06) 28 16 (14.81) 10 21 (16.94) 14 22(20.18) 17 24 (19.67) 16 23(17.83) 17
Digestive System 32 (11.68) 16 13 (12.04) 9 9(7.26) 7 18 (16.51) 11 13 (10.66) 9 20 (15.50) 14
Protein digestion and absorption 12 5 6 4 7 5 8 5 5 3 8 4
Mineral absorption 4 2 1 1 1 1 2 2 1 1 2 2
Nervous System 27 (9.85) 17 7(6.48) 5 12 (9.68) 9 11 (10.09) 10 10 (8.20) 9 9(6.98) 8
Aging 17 (6.20) 10 10 (9.26) 5 11(8.87) 7 3(275) 3 6(4.92) 2 6 (4.65) 5
Total 1,043 632 448 301 491 342 317 285 470 332 515 363
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CHAPTER V: DIFFERENTIAL EXPRESSION OF LONG NON-
CODING RNAS IN THREE GENETIC LINES OF RAINBOW
TROUT IN RESPONSE TO INFECTION WITH

FLAVOBACTERIUM PSYCHROPHILUM [248]

Introduction

World aquaculture industries suffer considerable economic losses annually because of
infectious diseases [249]. Flavobacterium psychrophilum (Fp), a causative agent of
Bacterial Cold Water Disease (BCWD), saddleback disease, fry mortality syndrome, or
rainbow trout fry syndrome causes significant loss of trout and salmon each year and is a
threat to many other salmonids (see review [250]). Infection of rainbow trout with Fp
results in mortality of up to 30% and several complications in the survivors [251].
Originally, the pathogen was considered to be endemic to North America but in recent
years it has been reported from almost every continent [252]. Multiple routes of
transmission [253], wide geographical distribution, the ability of pathogen to cope with
harsh survival condition [253], limited chemotherapeutic agents, and lack of a commercial
vaccine make control measures inefficient. Live-attenuated Fp vaccines can provide

protection against BCWD but environmental safety is a concern (see review [254]).

Harnessing the host’s immune system by selective breeding is a strategy being pursued to
improve farmed fish health [255]. In order to improve resistance of rainbow trout against
Fp, the National Center for Cool and Cold Water Aquaculture (NCCCWA) started a

family-based selective breeding program in 2005. A closed genetic line, designated ARS-
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Fp-R, has undergone multiple generations of selection for increased survival following
standardized challenge. This line has improved disease resistance against Fp infection in
both laboratory and field settings compared to a susceptible (ARS-Fp-S) and randomly
bred control (ARS-Fp-C) lines [256]. Previously, we performed global expression analysis
of protein-coding genes in these genetic lines upon Fp challenge [257]. The study
identified a large number of DE protein-coding genes among genetic lines, a significant
proportion of which were genes with described roles in the immune response, especially
the innate immune system. We demonstrated transcriptome differences between lines in
the absence of infection. However, altered transcriptome abundance of IncRNAs among

genetic lines after mock and Fp infection was not addressed.

LncRNAs have appeared as critical regulators of transcription and post-transcriptional
events of protein-coding genes [151]. LncRNAs regulate diverse cellular processes,
including disease, immunity, development and cell proliferation [258]. In mammals,
INcRNAs regulate various immune responses including the interferon response,
inflammatory processes, and other aspects of innate and adaptive immune responses [170,
259-263]. TLR signaling and inflammatory responses increase the expression of INCRNA-
Cox2 that regulates both activation and repression of innate response genes [259].
LncRNA NeST controls susceptibility to Theiler’s virus and Salmonella infection through
epigenetic regulation of the interferon-y'locus [263, 264]. A distinct differential expression
profile of INCRNAs in response to microbial infection has been reported in mammals and
salmonids, suggesting involvement of a set of IncRNAs in host defense against microbes
[258, 265]. To date, most of the studies in the field of IncRNA influence on immune

processes are limited to mammalian species, especially human and mouse. To the best of
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our knowledge, there are no studies exploring the expression of IncRNAs during host
defense against bacterial infection in aquaculture finfish. Such studies are difficult as low
evolutionary conservation of IncRNAs across species prevents utilization of the

information from mammalian species into aquaculture animals.

The overall objective of this study was to identify InCRNAs that are associated with genetic
resistance against Fp and to identify immune-relevant protein-coding genes that might be
regulated by INCRNAs. To study the expression of InNcCRNA, we utilized a reference dataset
that we recently identified (31,195 IncRNA) in rainbow trout [115]. Using the
abovementioned three genetic lines of rainbow trout, we were able to characterize the
transcriptome profile of IncRNAs associated with the early response to Fp infection. We
have identified DE IncRNAs between genetic lines of naive animals and in response to
infection, identified their genomic co-localization relative to immune-relevant protein-
coding genes, and explored their co-expression relationships to suggest possible regulation

of immune-relevant protein-coding genes by InCRNAs.

Materials and Methods

Ethics statement
Fish were maintained at the NCCCWA and all experimental protocols and animal
procedures were approved and carried out in accordance with the guidelines of NCCCWA

Institutional Animal Care and Use Committee Protocols #053 and #076.
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Experimental animals and RNA-Seq experimental design

Three rainbow trout genetic lines ARS-Fp-R, ARS-Fp-C, and ARS-Fp-S used in this study
were developed at National Center for Cool and Cold Water Aquaculture (NCCCWA)
rainbow trout breeding program. These genetic lines differ significantly to their
susceptibility to Fp infection as a result of genetic selection [256] and we have previously
reported the challenge experiment utilized in this study [257]. Briefly, fifty randomly
selected fish from each genetic line were assigned to four challenge tanks (total 12 tanks
for three genetic lines). At the time of challenge, average body weight was 1.1g and fish
age was 49 days post-hatch. For each genetic line, fish in two tanks were injected with Fp
(experimental group) and fish in the other two tanks were injected with PBS (control
group). Fish were injection challenged with either 4.2 x 10 CFU Fp suspended in 10 pl
of chilled PBS or PBS alone, and survival was monitored daily for 21 days [257]. For
RNA extraction, five individuals were sampled from each tank on days 1 and 5 post
infections. Survival at 21 days post-challenge injection was monitored during the
experiment. Post-challenged bacterial load in the body was measured in a subset of fish

by gPCR and was expressed in terms of Fp genome equivalents (GE).

RNA extraction, library preparation, and sequencing

Tissue sampling, RNA extraction, library preparation and sequencing were done as
described previously [257]. Briefly, total RNA was extracted and equal amounts of RNA
from five fish were pooled from each of the 12 tanks at each of the two time points (total
of 24 pools, n = 120 fish total). cDNA libraries were prepared using Illumina's TruSeq

Stranded mRNA Sample Prep kit following the manufacturer's instructions. The 24
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indexed and barcoded libraries were randomly divided into three groups (eight libraries per
group) and sequenced in three lanes of an Illumina HiSeq 2000 (single-end, 100 bp read
length). RNA-Seq reads are available at the NCBI Short Read Archive (BioProject 1D

PRJINA259860, accession number SRP047070).

Differential gene expression analysis of INCRNAs

Complete description of INCRNA reference dataset with their discovery pipeline has been
recently described [115]. From this discovery datasets, a stringently selected set of
IncRNAs (31,195) were used as a reference for gene expression analysis. For differential
gene expression analysis, sequencing reads from each library were mapped to the IncRNA
reference using a CLC genomics workbench. Mapping conditions were, mismatch cost=2,
insertion/deletion cost=3, minimum length fraction=0.9 and similarity fraction =0.9. The
expression value of IncRNAs was calculated in terms of RPKM (reads per kilobase per
million). EDGE (extraction and analysis of differential gene expression) tests were
performed to identify DE genes between various groups, e.g. infected vs. non-infected, day
1 vs. day 5, and one genetic line vs. other with or without Fp injection [51]. To control
false discovery due to multiple testing, p-values were FDR-corrected. LncRNA was
considered significant at a fold-change cutoff value of +2 and a corrected p-value of less

than 0.05.

Validation of RNA-Seq data by qPCR
From DE IncRNAs in the RNA-Seq study, 7 were randomly selected from the DE day 5
susceptible line for experimental validation using individual (unpooled) samples. RNA

isolation, cDNA synthesis and primer design were completed using the same technique as



101

described previously [257]. Briefly, RNAs were treated with Optimize™ DNAase I
(Fisher Bio Reagents, Hudson, NH) to eliminate genomic DNA. One microgram of the
purified RNA was converted to cDNA using the Verso cDNA Synthesis Kit (Thermo
Scientific, Hudson, NH) according to the manufacturer protocol. Reverse transcription
was performed using My Cycler™ Thermal Cycler (Bio Rad, Hercules, CA) at 42°C for
30 min (one cycle amplification) followed by 95°C for 2 min (inactivation). Blend of
random hexamer and oligo (dT) primer (3:1 V/V), at a final concentration of 25 ng/uL, was

used to prime the reverse transcription reaction.

The Bio-Rad CFX96™ Real Time System (Bio-Rad, Hercules, CA) in conjunction with
SsoAdvanced™ Universal SYBR® Green Supermix (Bio-Rad, Hercules, CA, USA) was
used to quantify the amount of the expressed gene of interest in PBS and Fp injected whole-
body fish homogenates. Each primer was used at a concentration of 0.1 nM/uL and cDNA
template was used at a concentration of 0.006 pg/uL. Cycling temperatures were set up
according to the manufacturer’s protocol and different annealing temperatures were used
depending on primers. Fold change in gene expression was calculated as described
previously [257]. Briefly, B-actin (Accession: AJ438158) was used as endogenous
reference to normalize each target INcRNA. gPCR data were quantified using delta delta
Ct (AACt) methods [266]. Ct-values of B-actin were subtracted from Ct-values of the target
gene to calculate the normalized value (ACt) of the target IncRNA in both the calibrator
samples (PBS-injected) and test samples (Fp-injected). The ACt value of the calibrator
sample was subtracted from the ACt value of the test sample to get the AACt value. Fold
change in gene expression in the test sample relative to the calibrator sample was calculated

by the formula 2—AACt and the normalized target Ct values in each infected and non-


http://www.ncbi.nlm.nih.gov/nuccore/AJ438158
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infected group was averaged. Correlation between gene expression fold-change measured
by gPCR and RNA-Seq was performed by Pearson correlation. All statistics were

performed with a significance of P < 0.05.

Gene clustering and gene expression correlation

Sequencing reads from all 24 libraries (samples) were mapped to a combined reference
sequence consisting of all IncRNAs, that we previously identified [115], and mRNAs that
were identified in the rainbow trout genome [25]. Expression of IncRNAs and protein-
coding genes was measured in terms of RPKM. The expression value of each transcript in
each sample was normalized using the scaling method [267]. Mean was chosen as
normalization value and median mean was chosen as reference. Five percent of the data
on both sides of the tail were trimmed. Normalized expression values of transcripts in each
sample were used to cluster protein-coding genes and IncRNAs using algorithms in Multi-
experiment Viewer (MeV). Clusters were generated with a minimum correlation
coefficient of 0.92. During clustering, 30% of the sequences with flat expression values
over samples were excluded from cluster generation to prevent uninteresting cluster
generation. Correlation in expression of IncRNAs and neighboring/overlapped protein-
coding genes was performed in Excel using regression analysis using normalized

expressions values of the transcripts.

Discovery of novel IncRNAs in resistant and susceptible genetic lines
Novel IncRNA were identified according to Al-Tobasei et al., 2016 [115]. Briefly,
sequencing reads from each genetic lines (resistance, control and susceptible) were aligned

to a rainbow trout reference genome using TopHat [25]. Cufflinks, Cufflinks compare and
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Cufflinks Merge were used to predict transcripts in each genetic line. Transcripts shorter
than 200 nt were filtered out using in house Perl script. Transcripts which had open reading
frame (ORF) longer than 100 amino acids were removed. In addition, if ORF of the
transcript is longer than 35% of the transcript length, the transcript was filtered out even if
the ORF is shorter than 100 amino acids. Subsequently, transcripts were searched against
NR protein database (updated on May 2016) using BLASTX, and any transcripts with
sequence homology to existing proteins were removed. To remove any remaining protein
coding transcripts, coding potential calculator (CPC) was applied to the transcripts (Index
value <-1.0). Other classes of non-coding RNAs (e.g. rRNA, tRNA, snoRNA, miRNA,
SIRNA and others) in the dataset were removed by blasting (BLASTnN) the transcripts
against multiple RNA databases including genomic tRNA database. Finally, any single
exon transcripts within 500 nts of protein coding gene was removed. After these filtration
steps, remaining transcripts were considered as putative INCRNAs. To identify INcRNAs
specific to a particular genetic line, INcRNAs from one genetic line were compared with
IncRNAs from other two genetic lines. Resistant and susceptible specific IncRNA were

reported.

Results and Discussion

Global expression of INCRNA across dataset

Previously, we analyzed mRNA expression in three genetic lines of fish sampled at 1 and
5 days post-Fp challenge [257]. In our prior analyses, slightly more than half (51.77%) of
the RNA-Seq reads aligned to the 46,585 predicted coding mRNAs and thus considerable

sequence information remained unaligned and thus enigmatic. In present study, on
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average, 8.2% of the total RNA-Seq reads aligned to the 31,195 IncRNAs reference
(Supplementary Dataset 1A) [268]. 94.5% of the reads were uniquely mapped to the
reference. On average, each dataset expressed 87.2% of the putative reference IncRNA’s
at RPKM cut off > 0.5. Out of 31,195 reference IncRNAs, only 933 were not expressed in
any dataset (RPKM > 0.5). One possible explanation of the low percentages of aligned
read to INcRNA reference compared to protein coding mRNAs might be due to the lower
InNcRNAS expression compared to mRNAs. Recently, we reported that the average RPKM
of the most abundant 40,000 transcripts was 3.49 and 15.69 in LncRNAs and protein-
coding genes, respectively [115]. In this study, RNA was sequenced from a whole-body
extract, which may be another reason for the low percentage of mappable reads because
reference INcCRNA dataset was sequenced from about 13 specific tissues. Out of the
933IncRNAs, only 109 were tissue specific indicating that most of the 933 are very lowly

expressed on all tissues.

We utilized pairwise comparisons between different genetic lines and days of infection to
identify a sum of 937 DE IncRNA from all comparisons (FDR-P-value <0.05) (Table 13).
Of these, 556 were unique IncRNA showing differential expression in at least one
comparison (Supplementary Dataset 2 tab “ALL DEF, non-redundant”) [269]. In our
previous study using the same genetic lines, ~2,600 DE immune-related and other protein-
coding genes were identified in response to Fp infection [257]. We quantified the number
of DE IncRNAs between different genetic lines and infection statuses (total 24
comparisons) and compared the number with that of DE protein-coding genes. Numbers
of DE protein-coding genes and IncRNAs showed moderate positive correlation (R?=0.40,

p=0.0011) (Table 13). In general, within each pair-wise comparison, fewer differentially
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regulated IncRNA were identified as compared to DE protein coding transcripts (Table 13).
This may, in part, be, due to the overall lower expression level of IncRNA as compared to
protein-coding genes [43]. Numbers of the DE protein-coding genes as well as INcCRNAs
positively correlated with bacterial load in the body. The susceptible line showed more
DE IncRNAs as well as protein-coding genes compared to the resistant and control genetic
lines (Table 13). Similarly, more transcripts were expressed on day 5 of infection than on
day 1. Correlation between body bacterial load and the number of DE IncRNAs on the 5™
day of infection in control, susceptible and resistant genetic lines was strongly positively
correlated (R?>0.99); however, correlation of body bacterial load with the number of DE
protein coding-genes was moderately positive (R?=0.34). This finding suggests that, like
protein-coding genes, INCRNAs may play a role in the host defense against Fp. Expression
trends of seven randomly chosen regulated IncRNAs was verified by real time PCR. A
consistent trend (R?=0.84) between RNA-Seq and qPCR was observed, albeit with a
somewhat lower relative expression measured by qPCR for 6 of the 7 measured IncRNA’s
(Supplementary Dataset 1B). Information about primers and the real time PCR cycling

program is provided in Supplementary Dataset 1C.
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Table 13: Comparison of differentially expressed INcCRNA and protein coding genes in
response to Fp infection. Four different comparisons were made to quantify the
differentially expressed transcripts: infected vs. non-infected, one genetic line vs. another
without infection, one genetic line vs. another post infection, and day 1 vs. day 5 of
infection. Differential expression was considered at fold change +2 and FDR-corrected
p<0.05. Number of differentially expressed protein coding genes and IncRNAs showed
positive correlation (R?=0.40, P=0.0011).

b icli dinfecti No. differentially No. dif fiall
. ay, genetic line andinfection |4y srassed protein-| No- differentially
Comparison status pressedp . |expressed IncRNAs
coding genes
'"fe;;eg VS | Day 1 R-line (Fp) vs. R-line (PBS) 515 57
Day 5 R-line (Fp) vs. R-line (PBS) 428 36
Day 1 C-line (Fp) vs. C-line (PBS) 20 0
Day 5 C-line (Fp) vs. C-line (PBS) 2201 54
Day 1 S-line (Fp) vs. S-line (PBS) 1663 125
Day 5 S-line (Fp) vs. S-line (PBS) 2225 196
Genetic lines . .
(PBS) Day 1 R-line (PBS) vs. S-line (PBS) 76 24
Day 1 R-line (PBS) vs. C-line (PBS) 3 2
Day 1 S-line (PBS) vs. C-line (PBS) 28 6
Day 5 R-line (PBS) vs. S-line (PBS) 45 22
Day 5 R-line (PBS) vs. C-line (PBS) 246 28
Day 5 S-line (PBS) vs. C-line (PBS) 61 25
Genf(a'tzls)llnes Day 1 R-line (Fp) vs. S-line (Fp) 150 15
Day 5 R-line (Fp) vs. S-line (Fp) 1016 83
Day 1 R-line (Fp) vs. C-line (Fp) 28 12
Day 5 R-line (Fp) vs. C-line (Fp) 159 21
Day 1 S-line (Fp) vs. C-line (Fp) 37 13
Day 5 S-line (Fp) vs. C-line (Fp) 1758 5
Time points Day 5 vs. Day 1 R-line (PBS) 1286 26
Day 5 vs. Day 1 C-line (PBS) 294 36
Day 5 vs. Day 1 S-line (PBS) 376 14
Day 5 vs. Day 1 R-line (Fp) 334 22
Day 5 vs. Day 1 C-line (Fp) 2469 70
Day 5 vs. Day 1 S-line (Fp) 2434 45

! Data are from [257]

Recently, we reported tissue specificity of IncRNAs in rainbow trout [115]. A total of 35

DE IncRNAs were selectively expressed in specific tissues, 10 of them were gill-specific.
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Out of 13 vital tissues, liver, spleen and head kidney did not have any DE IncRNA. Spleen
and head kidney lymphoid organ are mainly involved in generation of antibody response
and other humoral components of immune system, but in early phase of BCWD, the first

line of defense includes skin, alimentary tract lining, and gill [270].

Differential expression of IncRNAs between Fp infected and PBS injected fish

LncRNAs are involved in the host immune response by regulating various immune-related
genes [170, 259-263]. In this study, we initially investigated DE IncRNAs associated with
Fp injection at days 1 and 5 post-challenge. Pairwise comparison between challenged and
time- and line-matched PBS-injected animals identified 327 unique IncRNAs with altered
expression (fold change +2 and FDR-corrected p value <0.05) (Supplementary Dataset 2

tabs 1-7, and tab “All Fp vs PBS, non-redundant”).

In order to identify INCRNAs that are broadly involved in the response to infection with Fp,
we quantified the DE IncRNAs (and their correlated protein-coding genes) that were
differentially regulated in all three genetic lines upon infection. On the 5 day of infection,
12 IncRNAs were significantly upregulated (>2-fold) in all three genetic lines (FDR-
corrected p- value <0.05) (Table 14, top panel). These IncRNAs were most highly
upregulated in the susceptible line followed by the control and resistant lines. These
finding may indicate that these INCRNAs were either upregulated in response to bacterial
load or extent of tissue damage caused by bacterial infection. Surprisingly, none of the

IncRNAs was downregulated in all three genetic lines.
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Table 14: LncRNAs upregulated in all three genetic lines (>2 fold) on 5th day post Fp
challenge and their expression correlation with protein coding genes (top). LncRNAS
showing highest fold change (>100-fold) upon Fp infection in at least one genetic line
relative to the two other genetic lines and their associated protein coding gene in genome
(bottom). Fold change was considered significant if FDR-corrected p value was < 0.05.

LncRNAs upregulated in all three genetic lines (>2 fold) upon infection and their expression correlation with protein coding genes
Resistant line Control line Susceptible line
LncRNA feature ID| EDGE test: FDR p-value EDGE test:| FDR p-value | EDGE test: | FDR p-value . ) 5
) . . Correlation with (R?)
Fold change correction Fold change correction Fold change| correction
Interferon-induced guanylate:
Omy200117486 24.36 0 41.6 0 91.18 0 binding protein 1 (0.82)
Complement protein
0 0
Omy100128008 14.95 22.23 46.4 0 component C7-1 (c7-1)
Omy200138656 24.3 0.000001 11.63 0.011489 28.75 0 Complement C5 (0.66)
Omy100149048 7.93 0.000004 5.95 0.048727 14.15 0 Unknown
Nuclear factor of kappa light
Omy200107378 6.38 0.000062 11.22 0.004248 11.22 0 polypeptide gene enhancer
in B-cells 2 (0.92)
Omy200165911 3.68 0.049287 4.5 0.040404 9.98 Unknown
Omy100052789 5.51 0.000564 5.13 0.047151 8.65 0 Unknown
Nuclear factor of kappa light
Omy200107535 3.71 0.000147 6.16 0.012707 8.12 0 polypeptide gene enhancer
in B-cells 2 (0.92)
Omy300025398 4.37 0.006514 5.15 0.002475 4.86 0 Unknown
Omy300085997 3.68 0.000345 3.16 0.043867 4.02 0.001759 Unknown
Omy200206941 3.16 0.000344 2.33 0.015415 3.44 0.000002 Lys"zym‘?o(;g)precursor
Properdin (0.82) and
Omy300043066 3 0.000121 3.74 0.006748 3.03 0.000014 complement factor b-like
(0.89)
LncRNAs showing drastic (>100) fold change upon infection in one particular genetic line and
: i i Associated
Feature ID EDGE test: Fold FDR p-value correction Comparison Classificatio
change n of LncRNA Gene(s) (R?)
Upregulated upon infection
D1_S_FP s )
Omy200018785 136.06 0.001233 DL g PRS Intergenic
D5_S_FP s .
Omy200132807 121.83 0.000167 D5 S PBS Intergenic
D5_C_FP vs .
Omy100037031 105.28 0.01282 D5 C PBS Intergenic
Downregulated upon infection
D1_S_FP s Genic GSONMG00062425001
-168.77 X 1 - !
Omy200194608 68 0.00000 D1 S PBS antisense si:ch73- protein (0.27)
D1_R_Fpvs Genic, GSONMG00065518001
-121.9 0.001972 — = )
Omy200226560 D1 R PBS antisense (fatty-acyl reductase-1)
D1_R_Fpws .
Omy100064313 108.56 0.001716 DL R PBS Intergenic

Among DE IncRNAs, 6 IncRNAs showed fold changes >100 fold following Fp challenge

(Table 14, bottom panel). Five out of six INCRNAs, all three upregulated (Omy200018785,

Omy200132807 and Omy100037031) and two downregulated (Omy200226560 and



109

Omy100064313), exhibited fold change only in one particular ‘genetic line-by-day of
infection’ comparison.
Relationship between differentially expressed INcRNAs and immune-related protein-
coding genes
LncRNAs can be classified as genic or intergenic based on their physical location in
genome relative to protein coding gene [115]. Classification of all 556 DE IncRNA is
given in Supplementary Dataset 1D. Lack of IncRNAs sequence conservation across
species [43] makes their annotation difficult. In addition, currently there are no enough
literature or database resources for rainbow trout and other salmonids to study INCRNAs’
involvement with the host immune system. Therefore, in an effort to implicate association
between DE IncRNAs, identified in this study, and the fish defense system, we followed
the following criteria based on our prior knowledge of IncRNAs classification and the
genetic lines that we used in this study:

Differentially expressed IncRNAs that overlap in position and correlate with
expression of immune-related protein-coding genes
Several IncRNAs have been identified that regulate expression of neighboring genes acting
in cis configuration [150, 271]. Therefore, we searched for DE IncRNAs that were partially
or completely overlapping with protein-coding genes in the trout genome. Out of 556 DE
IncRNAs, 92 overlapped with protein-coding loci in sense or antisense orientation
(Supplementary Dataset 3) [272]. Out of the 92 overlapped genes, 36 genes had hits to
KEGG pathways, of them 8 different genes were involved in immunity pathways (such as
TNF and mTOR signaling pathways) and 4 genes were associated with microbial diseases

(such as Staphylococcus aureus infection and viral carcinogenesis). There were 3 genes
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common in both sets of these pathways which are Complement component 5, Signal
transducer and activator of transcription 3 and Cyclic AMP-responsive element-binding

protein 5.

In order to identify possible relationships between DE IncRNAs and protein-coding genes
that physically overlap with them, we compared their expression patterns across 24
different samples that included different genetic lines and infection statuses. Normalized
expressions values of the transcripts used to generate clusters are provided in
Supplementary Dataset 4 [273]. The DE IncRNAs and their overlapping protein-coding
genes with a strong expression correlation are listed in Table 15. Overall, we identified 13
protein-coding genes that had strong expression correlation (R? >0.70) with their
overlapping IncRNAs and 6 of those protein-coding genes had already described role in
immune system. Consistent with this observation, previous studies suggested overlapped
genomic localization of immunity associated IncRNAs with protein coding genes of

immune system [274].
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Table 15: Correlation between expression patterns of INcCRNAs and their overlapping
protein-coding genes (R2> 0.70).

Protein-coding genes with known immune function or association with microbial infection

Interferon-induced
Omy100063056 | 1,263 | GSONMT00040216001 | Intronic | Antisense | Positive (0.73) | guanylate-binding | [233, 234]
protein 1-like

Tumor necrosis
factor receptor
superfamily
member 9-like
(Tnfrsf9)
Response gene
to complement
32 protein
(rgc32)
Lysozyme CII
precursor
Stromal
Omy200107012| 885 [ GSONMT00019341001 | Intronic | Unknown | Positive (0.89) |interaction [236]
molecule 2-like
Unnamed protein
Omy100228715| 297 [ GSONMT00079494001 | Exonic | Unknown |Positive (0.83) |product/transcobal|[237]
amin-1 like
Protein-coding genes with no previously described immunity function
Omy400008156| 668 | GSONMT00041383001 | Intronic | Unknown | Positive (0.87)| Reticulon-2 like

Omy200083892| 1,294 [ GSONMT00050654001 | Intronic | Antisense | Positive (0.84) [200]

Omy200080884 [ 1,512| GSONMT00034829001 | Exonic |Antisense | Positive (0.93) [235]

Omy200206941| 537 | GSONMT00021084001 | Intronic | Unknown | Positive (0.83) [216]

Omy300038945 | 596 | GSONMT00049537001 | Intronic | Antisense | Positive (0.81) |CYtochrome
P450 7B1

Collagen alpha-
1(IX) chain-like
Protocadherin 8
(pcdh8)

Fatty acyl-CoA
Omy100224015| 683 [ GSONMT00065518001 | Intronic | Antisense | Positive (0.71) |[reductase 1
(facrl)
Muscular LMNA-
Omy200181316| 604 [ GSONMT00071779001 | Exonic | Unknown [Positive (0.82) [interacting
protein
Immunoglobuli
n-like and
fibronectin type
11l domain-
containing
protein 1

Omy400006181 | 248 | GSONMT00049631001 | Intronic | Unknown | Positive (0.77)

Omy400003716| 725 [ GSONMT00061535001 | Intronic | Sense |Positive (0.87)

Omy100171980| 1,292 | GSONMT00073108001 | Exonic | Unknown | Positive (0.82)
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Some IncRNAs showed interesting correlated expression pattern with immune-related
protein coding genes post Fp challenge and were selected for the following further

discussion:

LncRNA Omy100063056 partially overlapped with intron 6 of interferon induced
guanylate binding protein-1 like (gbpl) (GSONMTO00040216001) in antisense orientation
and their expression pattern was positively correlated (R2=0.80) (Figure 19, A-C). RPKM
(reads per kilobase per million) count showed that both Omy100063056 and gbpl gene
transcript were upregulated on day 1 and 5 post-challenge. Upregulation on day 5 was
greater in the susceptible line relative to control and resistant lines. GPB1 gene transcript
also shows correlated expression with IncCRNA in human [275]. Previous reports suggested
that gbpl is one of the differentially regulated immune response genes against microbial

pathogens in salmon and trout [257, 276].
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Figure 19: Genomic location of selected differentially expressed IncRNAs relative to
protein-coding genes with immune-related functions and their expression patterns among
PBS injected and day 1 and day 5 post-Fp challenged fish of different genetic lines.
Omy100063056 is partially overlapped with intron 6 of gbpl in antisense orientation (A)
and their expression is positively correlated (R?=0.80) (B and C). Omy2001386656 is
within intron of complement C5 in antisense orientation (D) and they show correlated
expression pattern between PBS and Fp injected fish (R?=0.64) (E and F). Omy200206941
partially overlaps with intron of lysozyme CII precursor in antisense orientation (G) and
shows correlated expression pattern with the lysozyme ClI precursor (R?=0.83) (H and I).
Omy400003716 partially overlaps with intron of protocadherin 8 in sense orientation (J)
and shows strong positive expression correlation with the protocadherin 8 (R?>=0.87) (K
and L). Fatty acyl-reductase 1 has one sense IncRNA in each intron 8 (Omy200226560)
and 9 (Omy100224015) (M) and shows positive expression correlation with both the
INcRNAs. Expression pattern of fatty acyl reductase 1 and Omy100224015 is given in
figure (N and O).
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LncRNA Omy200128656 was located in intron 11 of complement C5 (c5)
(GSONMTO00047322001) gene in antisense orientation and their expression was positively
correlated (R2=0.64) (Figure 19, D-F). Expression of c5 gene transcript was increased by
day 5 post-infection and expression of Omy200128656 was upregulated on days 1 and 5
post-challenge. In human, IncRNA C5T1IncRNA, located in 3’UTR of the C5, showed
upregulated expression upon immune stimulation and its knockdown showed
corresponding decrease in transcript level of C5 mRNA [277]. However, unlike in human,

IncRNA Omy200128656 in trout is located in intron 11 of the c5 gene.

LncRNA Omy200206941 was partially overlapped with intron 4 of lysozyme CII precursor
(lyz) (GSONMTO00021084001) gene in antisense orientation and the expression was
positively correlated (R2=0.83) (Figure 19, G-l). Its expression was also positively
correlated with another C type lysozyme (lyz) (GSONMT00021082001) gene transcript
located about 18 kb away in the same chromosome (R2=0.88). All these three transcripts
showed upregulation on day 5 post-challenge. Consistent with this upregulated expression
post challenge, it has been established that C type lysozyme is an important component of
innate immune system in salmonid fish [278] . In addition, a neighboring antisense non-
coding RNA, LINoCR, is involved in induction of lysozyme locus upon lipopolysaccharide

stimulation in chicken [279].

LncRNA Omy400003716 partially overlapped with intron 8 of protocadherin 8 (pcdh8)
(GSONMTO00061535001) in sense orientation and the expression was highly positively

correlated (R2=0.87) (Figure 19, J-L). RPKM count between PBS and Fp challenged fish
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showed that both Omy400003716 and pcdh8 gene transcript were downregulated in day 1

post infection relative to naive and day 5 post-challenged fish.

Two IncRNAs Omy200226560 and Omy100224015 were in intron 8 and 9 of fatty acyl-
reductase 1 (farl) (GSONMTO00065518001) respectively and they positively correlated
with the farl gene transcript with correlation coefficient (R2) of 0.36 and 0.80 respectively
(Figure 19, M-0). These three transcripts showed downregulation on day 1, post challenge

relative to PBS injected, and day 5, post-Fp challenged fish.

Strand orientation of Omy200138656, Omy200206941 and Omy300084989 IncRNAS
transcripts were confirmed by strand specific PCR relative to their counterpart protein
coding loci (Supplementary Dataset 1E).

Differentially expressed IncRNAs that neighbor and correlate with expression of
immune-related protein-coding genes
Out of 556 DE IncRNAs, 464 were intergenic without overlap with protein-coding loci in
the trout genome. In order to identify the immune-relevant protein-coding genes that were
clustered around DE IncRNAs in the genome, we chose protein-coding genes within a 50
kb distance on both sides of DE IncRNAs and performed KEGG pathway analysis of the
neighboring protein-coding genes [280]. Out of 464 DE intergenic IncRNAs, 371 had
protein-coding genes within 50 kb distance in the genome. A total of 290 genes
neighboring to DE IncRNAs had hits to KEGG pathways, of them 51 different genes were
related to immunity pathways, 49 genes were involved in microbial infection processes and

28 genes were common in both sets of these pathways (Supplementary Dataset 5) [281].
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In the immune system category, most of the KEGG hits were involved in chemokine
signaling, platelet activation, complement system, TNF signaling, T cell receptor signaling,
Fc gamma R-mediated phagocytosis, Toll-like receptor signaling, phagosome, cytokine-
cytokine receptor interaction, NOD-like receptor signaling, leukocyte trans-endothelial
migration and others (Supplementary Dataset 5) [281]. Similarly, in the microbial
pathogenesis category, hits were involved in the pathogenesis of various viral, bacterial
and protozoal infections like tuberculosis, influenza A, herpes simplex infection,
amoebiasis, bacterial invasion of epithelial cell, and other microbial infections.
Interestingly, almost half of the hits to immune system were involved in signal transduction
pathways. Among the neighboring protein-coding genes, expression patterns of 9 were
highly positively correlated with that of INcRNA (R? >0.70) (Table 16). About half of the
protein-coding genes with high correlation in expression patterns with their neighboring
IncRNAs were from components of immune system like suppressor of cytokine signaling
3 (SOCS3), complement factor D, ninjurin-1 and ceramide-1 phosphate transfer protein.
Previous studies also indicated that many immune relevant IncRNAs are in 5° or 3’ close

proximity of neighboring protein-coding genes [261, 274].
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Table 16: Correlation between expression patterns of IncRNAs and their intergenic
neighboring protein-coding genes (within <50 kb and R?> 0.70). References are provided
for some of the protein-coding genes with previously described functions in immunity or
association with microbial infection/pathogenesis.

Reference
Neighboring protein lesr’?gce Direction | Bxpression Annotation of codin tOl";Tune
LncRNA | Size | " crgntoring protein- relative to| correlation ! Ing
coding genes (ID) |LncRNA LNcRNA ) gene pathogene
(KB) type (R°) sis
function
Protein-coding genes with known immune function or association with microbial infection
ki I factor D-
Omy200174653| 519 |GsONMTO0031633001| 5 |UTKNOWN | oocitive (0.92) | COMPlement factor [238]
Intergenic like
Antisense Suppressor of
Omy300084989| 596 | GSONMT00013116001| 2.6 | /Intergeni|Positive (0.71) ppressoro [239]
. cytokine signaling
Unknown/ . L
Omy300074800| 493 [ GSONMT00003195001 | 1.1 Intergenic Positive (0.79) Ninjurin-1 [240]
Unknown/ ..
Omy200206941 | 537 | GSONMT00021082001| 18.6 Intergenic Positive (0.88)|  Ctype lysozyme [216]
ki ide-1-phosph
Omy 200073559 | 2,003 | GSONMT00017721001 | 35 | V™MW pcitive (0.77) | CTAMIde-Lphosphate |,
Intergenic transfer protein-like
Protein-coding genes with no previously described immunity function
Unk / - Coiled-coil
Omy200061208 | 1057 | GSONMT00041695001 | 0.3 |- > positive (0.90) | O €~
Intergenic transcriptional
Unknown/ .
Omy200112536| 1,059 GSONMT00001821001 | 18.2 . | Positive (0.88)
Intergenic .
Serum albumin 1
ki N I ami i
Omy300087476| 619 | GSONMTOo0010387001| 09 |UKIOWM I oocitive (0.83)| Neutral amino acid
Intergenic transporter B(0)
Unk / . Hepatocyt I
Omy200075445| 745 | GSONMT00008107001 | 1.3 |- OV positive (0.70)| | ParocYte nuclear
Intergenic factor 4-beta-like

Differentially expressed IncRNAs that correlate with expression of immune-
related protein-coding genes

LncRNAs have ability to work in cis as well as in trans configuration [162-164] and can

regulate protein-coding genes that are distant in position on the same or different
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chromosome. In order to identify possible expression correlation of INcCRNAs with such
protein coding genes, we performed clustering of DE IncRNAs and protein-coding genes
based on their expression pattern across 24 samples. This clustering identified several
protein-coding genes with correlated expression with DE IncRNAs that were distantly
located in the genome (Table 17). Most of the proteins in these clusters were related to the
innate immune system, mainly the complement system, cytokines and chemokines, and
receptors and transcription factors of the innate immune system signal transduction
pathways. The list included chemokine CK1, NF-kappa B inhibitor alpha, c-c motif
chemokine 19, and several proteins of the complements system such as factor B, properdin,

component C7 and C4b-binding protein alpha (Table 17).



119

Table 17: Correlation between expression patterns of IncRNAs and some distantly located
(>50 kb or different chromosome) immune-relevant protein-coding genes. References are
provided for some of the protein-coding genes with previously described functions in

immunity or association with microbial infection/pathogenesis.

Reference
to
Proteincod Expression immunity
LncRNA | Size mte'”'c(‘:D')”g 9ENES 1 correlation | Annotation of coding gene | or
type (R%) pathogene
sis
function
Omy100104455] 587 | GSONMT00024124001 | Positive (0.96) Chemokine CK1 [242]
- C-C motif chemokine 19
Omy200174653| 357 | GSONMT00051250001 | Positive (0.92) mop'rezuf:(ﬁ ne [243]
- C4b-bindi tein alph
Omy300084989| 596 | GSONMT00062775001 | Positive (0.83) nding protein alpha |- oy
chain precursor
Omy300041057| 448 | GSONMT00042009001 | Positive (0.80) Caspase-8 [245]
Omy300043066| 715 | GSONMT00001792001 | Positive (0.82) Properdin [246]
Omy300043066] 715 | GSONMT00027840001 | Positive (0.89) | Complement factor b-like [247]
- C-C motif chemokine 19
Omy200100893| 357 | GSONMT00051250001 | Positive (0.92) mop're‘;uf:;? ne [243]
Nuclear factor of kappa
Omy200107378| 522 | GSONMT00016681001| Positive (0.92) light polypeptide gene [229]
enhancer in B-cells 2
Nuclear factor of kappa
Omy200107535| 948 | GSONMT00016681001 | Positive (0.92) light polypeptide gene [229]
enhancer in B-cells 2
omy200117486| 529 | GSONMTO0005714001 | Positive (0.82)|  'nterferon-induced 1 ro0q 53y
guanylate-binding protein 1
Tumor necrosis factor,
Omy100066751| 326 | GSONMT00080410001 | Positive (0.84)| alpha-induced protein 2 [200]
(tnfaip2)
L Complement protein
Omy100128008| 1,232] GSONMT00070499001 | Positive (0.82) component C7-1 (c7-1) [248]
Tumor necrosis factor,
Omy 100063056 1,263] GSONMT00075049001 | Positive (0.85)| alpha-induced protein 3 [200]
(tnfaip3)
Omy200053140| 1,510| GSONM T00071335001 | Negative (0.84)| NF-kappa-B inhibitor alpha |  [200]
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Differentially expressed IncCRNAs that correlate with expression of several
immune-related protein coding genes

Clustering of DE IncRNAs with protein coding genes based on their expression value
identified several protein-coding genes of the immune system correlated with one INcCRNA.
As an example, IncRNA Omy200107378 was upregulated post Fp challenge and its
expression was strongly positively correlated with six different protein coding genes, some
of which have already established function in immune system (R?>0.98) (Figure 20).
Similarly, expression of Omy100124197 was strongly correlated with 8 different proteins
including matrix metallo-proteinase (Astacin) (GSONMT00014156001), elastase-1
(GSONMTO00002714001), nattectin  (GSONMT00024075001),  phospholipase-A2
(GSONMT00073599001), and syncollin (GSONMT00034810001) (R#>0.98) (Figure 20).
Role of these correlated proteins in the immune system has already been characterized in
different species [282-288]. Several studies have also reported correlated expression of

several immune related protein-coding genes with a single IncRNA [259].
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Figure 20: Top two bar graphs show expression patterns of IncRNAs Omy100124197 and
Omy200107378 among PBS injected, and day 1 and day 5 post-Fp challenged fish in three
genetic lines. Respective bottom expression line graphs show expression level of these
InNcRNAs with different protein-coding genes across 24 samples consisting of different
genetic lines and infection statuses. Expression clusters were generated by the Multi-
experiment Viewer (MeV) program using a cut off R?> minimum of 0.98.

LncRNAs expression of naive fish in different genetic lines

Three genetic lines of rainbow trout used in this study had significant differences in
infection susceptibility to Fp as a result of selective breeding [257]. To investigate
differences in transcription between lines, we quantified the DE IncRNAs among genetic
lines on day 1 following PBS injection. Pairwise comparison identified 32 DE IncRNAs
among different genetic lines. Two INcRNAs were DE between the resistant and control

lines, 6 INcCRNASs between control and susceptible lines, and 24 IncRNAs were DE between
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resistant and susceptible lines (Supplementary Dataset 2) [269]. In our previous study, we
identified differences in transcriptome abundance of protein-coding genes among naive
genetic lines [257]. The numbers of DE IncRNAs were smaller but consistent with the
numbers of DE protein-coding genes among different naive genetic lines (Table 13).
Expression analysis identified an interesting pattern of transcriptome differences among
genetic lines, which correlated with infection susceptibility. LncRNAs Omy200019549,
Omy200132559, Omy200160814, Omy200075485 and Omy300048239 were most highly
expressed in the resistant line, followed by control and susceptible lines. In contrast,
Omy300052204, Omy200142923, Omy200118054 and Omy200165975 were upregulated
in the susceptible line relative to the resistant and control lines (Figure 21). These DE
InNcRNAs between genetic lines may contribute to differences in infection susceptibility
among genetic lines. In consistent with our findings, genetic variation in IncRNAs was

shown to be associated with human disease resistance/susceptibility [289, 290].
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Figure 21: Comparison of transcriptome abundance of selected IncRNAs among naive fish
in all genetic lines. Genes are hierarchically clustered based on their expression pattern.
D1 indicates day 1 post challenge and PBS indicates PBS injection. C, R and S represent
control, resistant and susceptible genetic lines of the fish.

Difference in transcriptome abundance of IncRNAs among genetic lines after
infection

Induction and activation of adaptive and some of the innate immune components requires
pathogen entry into the host suggesting that basal naive transcriptome level may not be

sufficient enough to explain the differences in the ability of the control, susceptible, and
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resistant fish lines to clear the pathogen. Therefore, we reasoned that, in addition to
differences in naive INcRNA abundance, the genetic lines had altered ability to express
immune-relevant transcripts following pathogen challenge. To investigate this point, we
quantified DE IncRNAs among genetic lines on days 1 and 5 following Fp infection.
Pairwise comparison identified 149 DE IncRNAs between genetic lines combined from the
1% and 5" days of infection (Table 13 and Supplementary Dataset 2). On 5" day of
infection, there were 83 INCRNAs DE between resistant and susceptible lines; 21 INcRNAs
between resistant and control lines, and 5 INcCRNAs between control and susceptible lines.
On 1% day of infection, these numbers were 15, 12 and 13 respectively (Supplementary
Dataset 2). Similarly, on the 1% day of infection majority of the I\cRNAs were upregulated
on susceptible line relative to two other genetic lines. The expression number of DE’s
correlate with the gradient of bacterial load between the three genetic lines: SSC>R.
Previous report also indicated correlation of IncRNAs expression with microbial load
[291]. Figure 22 shows abundance of selected hierarchically clustered IncRNAs among
genetic lines after infection with Fp. On the 5" day of infection, most of the INcRNAs were
upregulated in the susceptible line compared to control and resistant lines, with only
Omy200112846, Omy200075161, Omy200194608 and Omy100199114 exhibiting

opposite trend in expression level (Figure 22).
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Figure 22: Comparison of transcriptome abundance of selected IncRNAs among genetic
lines after infection with Fp. Genes are hierarchically clustered based on their expression
pattern. D1 and D5 indicate day 1 and day 5 of sampling after injection. Fp indicates Fp
injection. C, R and S represent control, resistant and susceptible genetic lines of the fish.

LncRNA transcriptome change as the disease progress from day 1 to day 5

During the course of infection, the host can utilize different immune components at
different stages of disease, which requires change in expression of immune-relevant genes.
We reasoned that if INCRNAs regulate the immune system, their transcriptome changes,
like that of protein-coding genes, would change as the disease progresses. Pairwise
comparison between day 1 and day 5 post-Fp challenge identified 137 IncRNAs whose
expression was significantly changed during two time points (Supplementary Dataset 2).
This finding is consistent with previous report demonstrating change in the number of
differentially regulated IncRNAs at different ISAV infection time points in Atlantic salmon

[265]. Figure 23 shows abundance of selected hierarchically clustered IncRNAs between
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day 1 and day 5 of Fp injection in each genetic line. As expected, some of the INCRNASs
that showed altered expression between day 1 and day 5 post-challenges had strong
expression correlation with immune relevant protein coding genes. LncRNAs
Omy200174653 had altered expression on day 5 relative to day 1 post challenge in
susceptible lines and a strong positive correlation with complement factor D (Table 16).
Similarly, Omy100066751 and Omy200107535 exhibited a strong positive expression
correlation with tumor necrosis factor alpha-induced protein 2 (tnfaip2) and nuclear factor
of kappa light polypeptide gene enhancer in B-cells 2 (NFKB2) (R?=0.92), respectively
(Table 17). NFKB?2 is a transcription factor required to maintain normal level of antigen
specific antibody production in response to antigen challenge [292]. It is noteworthy that
Omy200107535 was one of the 12 IncRNAs that were upregulated on day 5 post challenge
relative to naive fish in all three genetic lines (Table 14). This change in expression pattern
of IncRNAs during the course of infection suggests that these INCRNAs may play a role in
adjustment of immunity depending on severity and stage of the disease. In addition, these
DE IncRNAs might play a role in host pathogen interaction or pathogen life cycle during

the course of infection as suggested in previous studies [293].
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Figure 23: Comparison of transcriptome abundance of selected IncRNAs between day 1
and day 5 of Fp injection in each genetic line. Genes were hierarchically clustered based
on their expression pattern. D1 and D5 indicate day 1 and day 5 of sampling after injection
and Fp indicates Fp injection. C, R and S represent control, resistant and susceptible
genetic lines of the fish.

Sequence homology with IncRNAs in Atlantic salmon

Recently differentially regulated IncRNAs in response to infectious salmon anemia virus
(ISAV) has been characterized in Atlantic salmon [265]. Out of 556 DE IncRNA in trout
genetic lines in various comparisons, 23 showed significant sequence homology with
Atlantic salmon IncRNAs that were associated with ISAV infection (query cover > 50%,
sequence identity > 90% and E value < 1e-10) (Supplementary dataset 6) [294].
Interestingly, out of 23 conserved INcRNA, 17 showed regulated expression in Fp injected
fish relative to PBS injected naive animals; and remaining 6 were differently regulated
between genetic lines and time points of infection comparison (Supplementary dataset 2).

It is worth mentioning that one of the conserved IncRNA, Omy300043066 had strong
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positive expression correlation with properdin and complement factor b like protein in trout
(Table 17) and was one of the 12 IncRNAs that were upregulated during infection in all
three genetic lines relative to their PBS injected fish (Table 14). All of the 23-conserved
IncRNA were regulated in salmon in response to ISAV, indicating potential role in general

immunity rather than being bacterial or virus specific.

Novel IncRNAs in resistant and susceptible genetic lines

Novel IncRNAs were detected in each genetic line separately by running sequence reads
through our previously described IncRNA discovery pipeline [115]. 589 susceptible-
specific and 631 resistant-specific novel InNcRNAs were predicted. FASTA files are

available at http://www.animalgenome.org/repository/pub/MTSU2015.1014/. Correlation

analyses of gene expression showed only 9 IncRNAs in moderate correlation (R? >0.70)
with protein coding genes. However, none of these proteins was overlapped with INCRNA
or had previously described role in immune system (Supplementary dataset 7) [295].
While identification of these INCRNAs were limited to each genetic line, their multiple
group ANOVA analysis of gene expression (genetic line X infection status X time point)
showed a complex expression pattern (Supplementary dataset7-PCA). Interestingly, two
INcRNA (dis_R_00048342 and dis_R_00050098) showed resistant-line specific gene
expression regardless of the infection status or the time points. Similarly, three INCRNA
(dis_S_00030301, dis_S_00043616 and dis_S_00083595) were susceptible-line specific
(Supplementary dataset 7). On the other hand, 20 IncRNAs showed explicit expression
after Fp infection, regardless of the time of infection or the genetic line. In addition, three

InNcRNA showed explicit expression between dayl and day5 of infection (Supplementary
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dataset 7). These finding may suggests that genomic selection for BCWD over three
generations may have introduced novel genomic variations or genomic reorganization of

some IncRNA loci and altered expressions of InNCRNAs.

Conclusion

Thus far, studies on host response to microbial infection in salmonids have given
significant attention to changes in protein-coding gene expression. However, INCRNAS
have emerged as key regulators of host defense against a wide variety of pathological
processes including microbial infection [170, 258-263, 265]. Manipulation of individual
InNcRNAs is sufficient to change the expression of hundreds of immune response genes
[259], and variation in expression of other IncRNA’s alter host susceptibility to different
microbial pathogens [263]. In the present study, we quantified DE IncRNAS in response
to Fp infection, which is an important cause of morbidity and mortality in salmon and trout
[250]. This study is novel as we characterized the expression signature of IncRNAs on a
genome-wide scale in response to one of the major bacterial infection of a salmonid fish.
To our knowledge, regulation of IncRNA during bacterial pathogen challenge has not

previously been studied in any aquaculture/fish species.

Using transcriptome-wide datasets of protein-coding genes and IncRNAs across 24
samples, we were able to identify potential immune-relevant and other protein-coding
genes correlating with DE IncRNAs. This study identified correlation between the
genomic physical proximity and coordinated expression of a large number of immune
related and other protein coding genes with that of IncRNAs during BCWD in rainbow

trout. In this study, most of the DE IncRNAs (sense and antisense) had significant positive
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expression correlation (R?> 0.70) with their overlapped and/or neighboring protein coding
genes. These results are consistent with human ENCODE project results that showed
particularly striking positive correlation of IncRNAs with the expression of antisense
coding genes [43]. In trans-acting InNcCRNAs, the ENCODE project observed that INCRNAS
are more positively than negatively correlated with protein-coding genes, a finding
consistent with our observation of more frequent positive than negative correlation with
distantly located protein coding genes. The positive correlation between IncRNA and

protein coding genes suggest potential for co-expression [151].

This study has characterized DE IncRNAs in response an initial phase of BCWD (day 1
and 5 post-challenge) and has explored expression correlation of IncRNAs with immune
relevant protein coding gene that may play crucial role in pathogenesis or immunity during
the early phase of the disease in rainbow trout. Further mechanistic study of the underlying
biological relationship between correlated DE IncRNAs and proteins of innate immune
system will help understand regulation of pathogenesis/ immunity at this crucial phase of

infection in juvenile rainbow trout.
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CHAPTER VI: SUMMARY OF THE DISSERTATION

This dissertation work was mainly aimed at improving genome annotation, identifying long
non-coding RNA repertoire and identifying coding/functional single nucleotide
polymorphisms (cSNPs) associated with growth, disease resistance and muscle fillet
quality traits in rainbow trout. Using deep sequencing RNA-seq approach, we were able to
identify ~14,800 protein coding genes missing in the rainbow trout draft reference genome,
including 710 full length sequence. These additional sequences will help annotate the
genome reference towards its completion. In addition, we identified long non coding RNA
repertoire in trout for the first time that will provide important genomic resources for
functional genomics research in future. LncRNA database used to identify differentially
expressed INCRNAs between genetic lines of naive animals and in response to infection
with Flavobacterium psychrophilum, a causative agent of Bacterial Cold Water Disease.
In addition, we identified the IncRNAs genomic co-localization relative to immune-
relevant protein-coding genes, and explored their co-expression relationships to suggest

possible regulation of immune-relevant protein-coding genes by InNcRNAs.

This study also utilized combination of SNP calling algorithms in RNA-Seq data from
large population of selectively bred trout population to identify cSNPs to design a cSNP
array for functional genomics research. Functional validation of a subset of the cSNPs used
in cSNP array design showed high accuracy of the algorithms in cSNP identification. This
study will provide valuable genomic information for research scientists and industries to
conduct functional genomics research to improve production traits in commercially

important rainbow trout.
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APPENDIX A: Transcriptome-wide Detection of Tissue-specific

Alternative Splicing in Rainbow Trout

Introduction

Alternative splicing is a process where different RNA transcripts are generated from the
same pre-mRNA. This process incorporates different exons of the same gene into mRNAS
that produce structurally and functionally different proteins or isoforms. Alternative
splicing is specific to tissues, mMRNAs and developmental stages. Miss-regulated mRNA
splicing is reported in many diseases such as human Alzheimer’s [296-299] and cancer
[300-303]. Determining the alternative splice variants answers important questions about
the genome for any species. For example, it permits estimating the number of genes versus
the number of proteins produced in a cell type, tissue and/or species. Hence, it enables
interesting studies in the fields of comparative genomics and evolutionary genomics.
Over the last decade, studying alternative splicing using bioinformatics has become an
important new field. Emergence of the next-generation RNA sequencing (RNA-seq)
technology offers an unprecedented opportunity for genome-wide detection of alternative
splicing. However, one of the most challenging processes in bioinformatics is the
transcriptome-wide discovery and characterization of alternative splicing in non-model
species, where a complete reference genome is not available.

According to different analyses and studies, in the human genome and other species,
alternative splicing takes place in 60% to 95% of the genes [136, 304, 305].

Five different types of alternative splice are possible [306].
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* Exon skipping, the most common type, in which one exon or more is either included or
excluded in the formation of MRNA (see Figure 24A).

* Intron retention, where either part or all the intron is not removed from the mRNA
production leading to changes in the functionality and structure of the protein as shown in
(Figure 24B).

* Third and fourth types of alternative splicing are alteration of the 3’ splice site and 5’
splice site in which two 3’ ends of the exon splice with the 5’ junction and vice versa
(Figure 24C and 24D).

» Mutually exclusive exons: one of two exons is retained in mMRNA after splicing, but not
both (Figure 24E).

In this chapter, we introduce a naive approach to detect alternative splicing without the
need to have RNA pre-assembled to the full length or the existence of a reference genome.
The main concept of this “Splice Detection through Gap Existence” method is based on
the fact that all types of splice variants (Figure 24) will lead to gaps when sequence reads
from different tissues with splice variances are mapped back to a transcriptome reference
that is assembled from reads of all tissues.

This approach requires output from an assembler such as Trinity [32] and the reads for
individual tissues from a sequencer such as lllumina. To the best of our knowledge, this

approach has not been used to detect alternative splicing.
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Figure 24: Splice Variant type.

Material and Method

Alternative splice detection through gap existence:

The Gap Existence approach requires certain pre-requisites. Data from a NGS such as
Illumina must be de novo assembled into a transcriptome reference. Here we used Trinity
transcriptome assembler [32]. After that assembly, the genes can be identified. In order to
achieve this, we used gene identification techniques such as ab initio identification of open
reading frames (ORFs) by ESTScan [100] and a BLASTXx (Basic Local Alignment Search
Tool) [33] nr database search. Figure 25 summaries Splice Variants Detection through

Gap existence.
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Figure 25: Splice Variants Detection pipeline.

Data mapping and alignment

Reads from each tissue aligned against the transcriptome reference using BLASTn (Table
18). The main function of BLAST is to map each read to a transcript database. A table
format will be used to retrieve the following information from the BLASTn searches: the
name of the gene, E-value, how many nucleotides were matched, how many gaps
(nucleotides that did not match), and the start and end of the nucleotide for both the query

and the reference “transcript”.
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Table 18: Result of BLASTn for each tissue.

84,816,430

39,178,259

# of hits befor filtering | # of hits after filtering

27,729,233

[Z30 T 93,546,068 40,882,764 28,823,582
I 92,670,670 43,292,677 29,411,937
RIS 92,168,818 43,714,406 31,380,348
[T 01,613,688 41,451,989 28,155,209
Kidney 80,642,288 42,822,877 29,736,223
Liver 85,281,910 47,029,190 37,168,536
T 93,641,068 45,151,981 32,950,143
N 57,743,778 43,408,701 32,765,917
EIESN 03,532,200 41,794,723 28,770,351
B 91,231,186 48,742,586 36,610,242
Testis 85,389,746 39,221,647 27,542,037
ISV 86,643,770 42,574,543 34,109,987

A C++ object-oriented program used the BLASTN result to create a linked list for each
transcript. The program generates an output file that holds a vector that contains frequency
information (“depth of coverage”) for each transcript. This step performed on each tissue

separately.

Gap detection process

The vector file is used to determine possible gaps for each tissue (Table 18) where a sliding
window is used to determine if the gap is present or not using the following criteria:

. If the depth of coverage drop below a specific threshold (e.g., 5 reads) a possible edge can

be called.
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The average of the previous 50 positions from the left of the edge and average of 20
positions to the right of the edge are calculated.

If the ratio of the left average to the right average of the edge is higher than 10 fold, the
edge is considered as a gap start.

Similarly, the right edge side will be detected when the depth of coverage goes above
certain threshold (e.g., 5 reads).

The average of the previous 20 positions from the left of the edge and average of 50
positions to the right of the edge are calculated.

If the ratio between averages, right and left of the edge is higher than 10 fold, the edge is

considered as a gap end.

. For the gap to be considered, it has to be longer than 80 nt, shorter than 500 nt and 33% of

the transcript size, where these values can be changed based on the average exon size of
the studied species using input argument (Figure 26).

A total of 25,573 gaps were detected from the thirteen studied tissues [51] (Table 19).

Table 19: Number of putative gaps for each tissue.

Number - =

e 752
S 2080
U 2 612
Head kidney 1833
ntestine I3y
Kidney 2341
ver 330
Red Muscle 1444

TON 1674
DI 1969
Stomach 1640
N 3030
White Muscle  EEI
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Figure 26: Example of a gap detected in white Muscle based on a de novo assembled

reference from 13 tissues

Gap validation

The final step was to test if the gap is valid and if it’s a splice variant candidate or not by
checking each gap in one tissue against other tissues (Figure 27). With a minimum depth
and width of coverage to be determined, if the gap exists in one tissue but does not exist in
another tissue(s), the gap considered a good candidate of a splice variance event. Some

splice variant events will be validated by qPCR technique.



160

SDTGE SDTGE
T4 —— . .
350 . - . . . T - T T Brain ) _g||| —
] I fat intestine
3500 | |
300 |
M i 3000 ||} |
250 | | |
g [l I . ! ‘.
g \ | 2500 ||} r\ 1 Wt v
$ 200 | | 1‘ ] 1 LW
g | \ i \ l,‘h ﬂ 2000 | | ,J’-.'wl-
g . .
g 1% | Jﬂ\ 1s00 || W/
g \? {“‘ \ L
S 100 r ﬁ” W l'"']' ',m .I\ 1000 | -
{ \J' r J—" AL, Al
. = wft L H\ﬁ_ P, AN
50 ‘.-V / v[’ Vi 500 1 ¢ f s W\
v - M ot T
0 o~

] D% G O Y. b b e e
% % %, %5 %5 %0, LA

A 5\’30 (:}& J& \1}3 \’>\ Py \%\ 7 % ./ V,/

B2
o o % % o % %

nucleatide nucleatide

Figure 27: Left Coverage comparison between brain and fat tissue. Right Coverage
comparison between gill and intestine

Result and Conclusion

Software Validation

To validate the functionality of the process and the program, a test data was created and
tested to determine if the program can detect gaps, can distinguish between different gap
locations, and whether the gap internal, at the beginning, or at the end of the contig. Test
data was created by randomly selecting 28 contigs. For each one of these contigs a depth
of coverage was assigned. A gap was inserted in each of these contigs, some of the contigs
have internal gap other has external “beginning or end” gaps. The program was able to
detect all the gaps except two out of 28. Figure 28 show the results with different gap
locations. The reason why the program couldn’t detect these two gaps is that we artificially
concatenated all contigs together into one string. One of the undetected gaps was at the end
of the last and the second gap was at the beginning it. The algorithm is setup to detect a

gap between two boundaries of coverage only at this point so the first and last contig has
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no boundary from the left for the first contig in the linked list and no boundary from the

right for the last contig in the linked list.

Contig comp1014_c5_seql has a gap from 598 to 727 Contig compl041 _c1_seql has a gap from 1 to 192
10 10
test data test data
8 8
Klé %‘
e e
5 6 5 6
o =]
o o
s S
s 4 £ 4
5 5
© ©
2 2
0 L I ! L L 0 I
119 238 357 a76 595 714 833 952 1071 119¢ 193 386 579 772 965 1158 1351 1544 1737 1930
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Contig comp105_c93_seql has a gap from 1218 to 1354
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test data
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Figure 28: Gap location: upper left) internal gap. Upper right) beginning gap. Lower) end
gap detected by the pipeline

Conclusion:

From the above results we can conclude that this method can detect splice variance.
However it’s being improved upon. The next step is to run the program for the rest of the
tissues and compare tissues against each other to determine possible splice variants. After

this has been done, a random splice variance should be verified using qPCR.
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Future work

Software could be improved by combining the scripts into one package. For each contig
that has a gap, a method need to be added to check the depth and average of coverage. The
gap detection process could be improved by using individual contig instead of linked list.
Visualization could be improved by using OpenGL or any similar visualization software

to allow user Interaction, and the ability to select individual contig.



