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ABSTRACT

Promoters and companies often want to forecast the success of their event while their tickets

are still on sale. Prediction and good estimation of ticket sales will allow companies to see if they

need to plan for things in advance, such as advertisements for their event and the arrangements

of services for the event. The purpose of this study is to predict the ticket sales for air shows put

on by a ticket-selling company. This study uses the ticket sales data of four past events of the

Great Tennessee Air Show. We study two kinds of prediction models, the three-segment latent

class Weibull model and dynamic neural network model. We then compare the prediction results

of both models. We conclude that the three-segment latent class Weibull model is more suitable for

long-term prediction, and the dynamic neural network model is better for short-term forecasting.
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CHAPTER 1

INTRODUCTION

Ticket-selling companies want to know how their events are doing in sales. They especially

want to have an estimation of how many tickets will be sold before the event happens so that

they can determine if they need to allocate resources towards advertising and arranging of other

services. Some of these services include food purchases, contact of law enforcement for traffic, and

staffing for the show. Jacob Suher [1] provided some reasons into why predicting ticket sales is a

critical element of event planning and discussed how to determine the specific modeling needs.

Air shows are usually two-day events for air performers. Since the air performers typically put on

the same act for both days, consumers can choose either day to watch the air show.

The purpose of this air show ticket study is to predict the ticket sales for air shows for a company

by using their previous air show ticket data. In this thesis, we try to adapt two different models

to forecast tickets sales. The first is the three-segment latent class Weibull model. The Weibull

distribution [2] is named after Swedish mathematician Waloddi Weibull and is used in survival

analysis, wind speed [3], weather forecasting and so on. The latent class (LC) [4] modeling was

initially introduced by Lazarsfeld and Henry as a way of formulating latent attitudinal variables.

We incorporate Weibull distribution into latent model for air show ticket sales prediction. Our

second model is the dynamical nonlinear autoregressive (NAR) neural network model. The NAR

neural networks [5] are powerful computational models for modeling and forecasting nonlinear

time series. We find the three-segment latent class Weibull model gives a better prediction for the

upcoming event before ticket sales begin. However, the dynamic NAR neural network model is

better suited for predicting ticket sales after sales have began.

We organize this thesis as follows. The analysis of raw data is given in Chapter 2. The three-

segment latent class Weibull model and experimental results are shown in Chapter 3. The algorithm
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and modeling of dynamical NAR neural network and results are presented in Chapter 4. Some

comparative analysis and conclusions are summarized in Chapter 5.
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CHAPTER 2

DATA ANALYSIS

The data for the air show study consists of the Great Tennessee Air Shows in 2011, 2012, 2014,

and 2016. A few lines of the data from 2011 are shown in the table below. This data has eight

variables: event ID number, order ID number, event name, ticket ID number, ticket name, price, the

time when the ticket was purchased, and the time when the event started. The various ID numbers,

event names, and prices are not used in the analysis.

Order ID Event ID Event Name Ticket ID Ticket Name Price Purchased UTC Event Start UTC
1010006 755 The Great... 1305 Children 4-12 One... 8 4/17/2011 06:31 AM 5/7/2011 01:00 PM
1010013 755 The Great... 1305 Children 4-12 One... 8 4/17/2011 06:54 AM 5/7/2011 01:00 PM
1010014 755 The Great... 1304 Adult One Day... 15.99 4/17/2011 03:49 PM 5/7/2011 01:00 PM
1010014 755 The Great... 1304 Adult One Day... 15.99 4/17/2011 03:49 PM 5/7/2011 01:00 PM
1010014 755 The Great... 1305 Children 4-12 One... 8 4/17/2011 03:49 PM 5/7/2011 01:00 PM
1010015 755 The Great... 1317 Flight Line... 95.99 4/17/2011 05:07 PM 5/7/2011 01:00 PM
1010015 755 The Great... 1317 Flight Line... 95.99 4/17/2011 05:07 PM 5/7/2011 01:00 PM
1010016 755 The Great... 1304 Adult One Day... 15.99 4/17/2011 05:31 PM 5/7/2011 01:00 PM
1010016 755 The Great... 1305 Children 4-12 One... 8 4/17/2011 05:31 PM 5/7/2011 01:00 PM
1010017 755 The Great... 1316 Premium Box Seats 25.99 4/17/2011 06:19 PM 5/7/2011 01:00 PM

The sequence of daily or weekly ticket sales is a time series. We focus on the number of tickets

sold at a specific time, therefore, another time parameter is added which is the time interval be-

tween the start of the event and the time a ticket was purchased. This parameter is measured in

days. If there is a difference of zero, then the person bought their ticket right at the beginning of

the event. The company usually opens up sales for these tickets about 180 days before the event.

However, each of the events varies in their maximum time differences, some above and below 180

days. Each of the differences were shifted until the maximum time difference was set to 180. This

allowed for each of the events to be standardized up to 180 days.

In order to avoid any negative differences, the time when the first ticket was sold became the

event’s start time. The numbers in the new time variable were also reversed to create another time

variable in order to show the day of a ticket sale. Therefore, a difference of 180 would become

the first day of sale in the new dataset. In this case study, the days of sales were converted into

weeks of sales. All of the partial weeks were rounded up so that the sale would range from 1 to 26
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weeks of sales. Each ticket that had the same week as another ticket sold was added together. The

final dataset was completed and ready to be used for plotting. A few lines of the correspondingly

dataset from 2012 are shown in the table below.

Year Week of Sale Count
2012 1 68
2012 2 77
2012 3 92
2012 4 97
2012 5 108
2012 6 110
2012 7 115
2012 8 124
2012 9 142
2012 10 164
2012 11 172
2012 12 174
2012 13 204
2012 14 227
2012 15 287
2012 16 337
2012 17 389
2012 18 425
2012 19 493
2012 20 572
2012 21 697
2012 22 877
2012 23 1184
2012 24 1814
2012 25 4116
2012 26 10359
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The graph of the actual cumulative sales of 2011,2012 and 2014 are shown below.
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CHAPTER 3

THE THREE-SEGMENT LATENT CLASS WEIBULL MODEL

In this chapter, we consider a three-segment latent class Weibull model to fit and to predict

for air show ticket selling. The latent class model describes the air show ticket selling by separate

segments, and then improves model fit relative to the single segment model.

3.1 The Three-segment Latent Class Weibull Model

A statistical distribution is used to fit curve [6]. The best way to determine the best model for this

dataset uses the hazard rate function. The hazard rate function is given by:

h(t) =
f (t)

1 − F(t)
, (1)

where F(T) is the cumulative distribution function (CDF), f (t) is the probability density function

(pdf) of the corresponding random variable.

Since the purpose of the hazard rate is to determine the purchase rate in regards to time, it can

be used to determine the best statistical distribution for this model. The Figure 1 shows that the

curve is monotonically increasing as the event is approaching.

Even though there are many distributions that have similar hazard rates, the best distribution

for this model is the Weibull distribution. Its CDF and hazard rate function are as shown:

F(t) = 1 − e−(λt)α
(2)

h(t) = αλαtα−1, (3)

where α is the shape parameter and λ is the scale parameter. If the shape parameter α is greater

than 1, then the hazard rate function is monotonically increasing.

However, only two parameters would not be sufficient for the Weibull distribution to fit the

curve. We considered the latent class model. The latent class model allows heterogeneity in the
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shape parameter α and the scale parameter λ. Thus, a three-segment latent class Weibull model

[4] is used for this research. Functionally, the same Weibull distribution models are used, but now

with three discrete segments of parameters. The entire curve is made up of a percentage of each

segment. The CDF is shown below:

F(t) = p1(1 − e−(λ1t)α1 ) + p2(1 − e−(λ2t)α2 ) + (1 − p1 − p2)(1 − e−(λ3t)α3 ), (4)

with the following parameters:

α1 is the shape parameter of the first segment,

λ1 is the scale parameter of the first segment,

p1 is the proportion of tickets sold of the first segment,

α2 is the shape parameter of the second segment,

λ2 is the scale parameter of the second segment,

p2 is the proportion of tickets sold of the second segment,

α3 is the shape parameter of the third segment,

λ3 is the scale parameter of the third segment.

Since this equation would only reach up to 1, the expected frequencies N of this model would

need to be calculated. It represents the max predicted number of tickets sold during the time period.

The final formula of three-segment latent class Weibull distribution used in this study is shown as:

N̂(t) = N[(p1(1 − e−(λ1t)α1 ) + p2(1 − e−(λ2t)α2 ) + (1 − p1 − p2)(1 − e−(λ3t)α3 ))]. (5)

The parameter estimates can be calculated since the data has been condensed and the distribu-

tion has been found. The best technique was to find the Maximum Likelihood Estimate (MLE) for

each parameter. This can be achieved by finding the log-likelihood function for the data. This data

was treated as complete, grouped data. The likelihood function for this type of data is as shown:

L(θ) =
K

∏
j=1

[F(tj|θ)− F(tj−1|θ)]nj , (6)
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where K represents the total number of data, in this study K = 26; tj represents each week of

the ticket sales and nj represents the number of tickets sold in that week, for j = 1, 2, · · · , K ; θ

represents the estimated parameter, θ = αi, λi and pi, for i = 1, 2, 3 .

The logarithm of the likelihood function is:

l(θ) =
K

∑
j=1

nj ln[F(tj|θ)− F(tj−1|θ)]. (7)

The log-likelihood function must be maximized in order to find the MLE. Since it is unrealistic

to find the MLEs for an 8-parameter model by hand, they were found by using MATLAB. This

study used MATLAB in order to maximize the log-likelihood function.

There are certain interpretations for each of the parameters. The shape parameter (α) has three

conditions that can affect the curve. If the shape parameter (α) is less than 1, then the purchase rate

decreases and results in an early life. If the shape parameter (α) is close to or equal to 1, then the

purchase rate is constant, resulting in an approximate of an exponential distribution. If the shape

parameter (α) is greater than 1, then the purchase rate increases resulting in a wear-out life. As

the scale parameter (λ) increases and the shape parameter (α) remains constant, the maximum of

the probability density function increases. If any of the proportion parameters (p) increase, then

the model becomes more like a single Weibull distribution with the respective parameters of that

segment. The ticket quantity (N) is the amount of tickets that are projected to be sold for an event.

3.2 Experimental Results

Since there are only 3 groups of train datasets, to even out fluctuation, we added a new dataset

which is the average of 2011, 2012 and 2014, giving us 4 groups of samples to be fitted. The graph

of the actual sales of 2011, 2012, 2014 and the average are shown below.
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Figure 2: Actual Sales with The Average Dataset

The following are graphs of all train datasets fitted with the latent class Weibull Model by MAT-

LAB:
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Using the three-segment latent class Weibull distribution model prediction, we find the param-

eters of the three-segment latent class Weibull distribution, obtain values, and fully describe the

fitted curve. Therefore, the main task is to find the parameter estimates for 2016 under the three-

segment latent class Weibull distribution model. In this study, we assume that there is no other

influence except the time effect. The method to calculate the parameters for 2016 uses the average

of the 4 groups of fitted parameters, estimating each parameter one at a time. The results of all the

parameters are shown in the following:

Table 1: Fitted Parameters of Train Datasets

p1 λ1 α1 p2 λ2 α2 λ3 α3 N
2011 0.3021 0.0449 6.8377 0.0769 0.0834 1.6139 0.0419 26.0591 12,557
2012 0.1470 0.0406 6.2746 0.0220 0.0614 0.6754 0.0390 46.1624 10,359
2014 0.3175 0.0418 7 0.0985 0.5 2 0.0397 35 18,925
3 yar-average 0.2616 0.0461 5.5874 0.0016 0.0684 1.9560 0.0395 32.3640 13,747

Table 2: Estimated Parameters of 2016
Segment 1 Segment 2 Segment 3

α 7.3715 1.3835 38.8975
λ 0.0431 0.1908 0.0401
p 0.2492 0.0648 0.686
N 13,947

The predictive model of air show ticket sales for 2016 is shown in the figure below:
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Figure 7: Predictive Model of Ticket Sale in 2016
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3.3 Summary

We made use of the three-segment latent class Weibull distribution model for air show ticket sales

prediction. In our predictive model, all the shape parameters (α) are greater than one. Although

the scale parameter differs, with the second parameter being slightly greater than the other two

parameters, this difference helps to fit the flat part of the curve. The curve for the later time periods

when sales are greatest is based on the third proportion parameter.

The prediction model is based on the hypothesis that there is no other influence except time

effect. Although other factors can affect ticket sales. Our predictive curve for 2016, is performed

well using only time as a factor.
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CHAPTER 4

DYNAMIC PREDICTION BASED ON NAR NEURAL NETWORK

4.1 NAR Structure

Artificial neural networks simulate biological neural networks and have many uses, including non-

linear function approximation, time series prediction, and system control. There are two kinds

of dynamic neural networks, the nonlinear autoregressive exogenous model(NARX)[7] is used for

input-output modeling of nonlinear dynamical system; the nonlinear autoregressive models (NAR)

predicts future values based only on several past values. The NAR neural network has great fitting

ability for a nonlinear time series. NAR networks have three layers: the input layer (consisting

of signal source nodes), a hidden layer (with a input delay function), and a linear output layer.

The input layer is connected to the hidden layer by non-linear transformation. The hidden layer

completes the nonlinear transformation of the input vector. On the other hand the transformation

from the hidden layer to the output layer is linear, that is, the output of the network is the linear

weighted sum of the outputs of the hidden layer nodes [8]. The basic structure is shown in the

figure below.

Figure 8: NAR Schematic Structure of The Neural Network

In the figure, W denotes the weighting coefficient in the network, b denote bias term, and 5
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denotes the delay order.

The model of the NAR neural network is expressed as:

y(t) = f (y(t − 1), y(t − 2), · · · , y(t − d)), (8)

where d is delay order.

From the equation in (8), the value of y(t) is determined by the value of y(t − 1), y(t − 2), · · · ,

y(t− d), that is, using the past known values to infer the current value which reflects the continuity

of the process. If there exists a time series y = {yi | yi ∈ R, i = 1, 2, ..., L}, we use the first d

values to predict the next m values. The data can be divided into k segments of length d + m

with certain overlap, and each segment can be regarded as a sample. We obtain k samples, where

k = L − (d + m) + 1, and we use these k samples to create the NAR neural network.

4.2 Establishment of NAR Neural Network

First, to build the model, we set the d delay order parameter and the number of neurons. Second,

we train the NAR neural network in the openloop model using the Levenberg-Marquardt training

function, and stop training when the network meets certain requirements. Next, we change the

openloop model into the closeloop model, and then we obtain the predicted value. Additionally,

we use squared error (R) and mean square error (MSE) to evaluate the network performance, we

also use the error autocorrelation curve to judge whether the network is feasible.

Model steps:

• Set the delay order d, and the number of hidden neurons M.

• Set 70% of data for training sets, 15% for validation sets, and 15% for testing sets. Use the

neural network toolbox in MATLAB to train the network.

• Make use of this network to predict air show ticket selling.
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Table 3: Predictive Index of 2011 of NAR Network

Index Training Validation Testing
MSE 350.8617 21208.8447 3163.3202
R 1 0.9984 0.9658

In this study, since we have 26 weeks of each year, and there is a minimal change in the first 9

weeks, we use d = 9 for the dynamic NAR neural network model.

The results of data in 2011 are shown in the following graphs:

Figure 9: Autocorrelation of Error of 2011 Figure 10: Error Histogram With 20 Bins of

NAR Network of 2011

4.3 Prediction Modeling

The prediction method of the NAR model is one kind of a recursive prediction method [9], and the

main idea is the cyclic use of the 1-step forward prediction value [10]. The basic step is :

y(tn) = f (y(tn − 1), y(tn − 2), · · · , y(tn − d)). (9)

If we have obtained the first predictive value y(tn), to predict y(tn + 1), we substitute y(tn − d)

by y(tn). We obtain a new sample y(tn), y(tn − 1), y(tn − 2), · · · , y(tn − d + 1). We repeat the basic

step based on the new sample, and then, we obtain the second predictive value y(tn + 1). We

repeat this loop until we obtain all the predictive values we need. In this study, since d = 9, the first

predictive value is y(10) and we need to predict the next 17 values. Therefore, the whole recursive
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process is represented by equation:


y(10) = f (y(9), y(8), · · · , y(1)))
y(11) = f (y(10), y(9), · · · , y(2))
...
y(26) = f (y(25), y(24), · · · , y(17))).

(10)

We use the MATLAB function removedelay() to predict the 1-step forward prediction value.

This function returns the network with input delay connections decreased, and output feedback

delays increased, by the specified number of delays n. Here, let n = 1. Then, using loop statements

in MATLAB, we can implement the above algorithm.

There are various kinds of factors that will influence air show tickets selling, for example market

environment, weather and so on. However, we have reason to believe, the closer the time, the

greater the influence. Therefore, we add a larger weight for the closer predictive value. The final

predictive value at time t is the weighted average :

ˆy(t) =
w1y1(t) + w2y2(t) + w3y3(t)

w1 + w2 + w3
, (11)

where w1 = 1, w2 = 2 and w3 = 3 are the weight values of y1, y2 and y3, respectively.

4.4 Experimental Results

We trained the data set several times and used 60 hidden neurons. The NAR neural network good

fitting generated a nonlinear curve for the 2011 sales data. See the graph below. We repeated this

method for year 2012 and 2014. Then, we obtain three NAR neural networks based on three groups

of training sets, 2011, 2012 and 2014, respectively.
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Figure 11: Fitting Curve of 2011, M = 60

A part of 10-step forecast results based on three different NAR neural networks one for each

year are shown in the table below.

Table 4: 10-step Forecast Based on Three NAR Networks, M = 60
NAR 1 2 3 4 5 6 7 8 9 10
2011 586.10 712.84 874.64 1063.484 1171.81 1278.87 1358.84 1498.22 1952.05 2476.97
2012 618.76 812.3 436.99 69.63 125.49 1081.97 2412.80 6965.56 3786.26 6515.24
2014 461.83 486.34 523.25 520.44 533.90 583.85 613.2142 640.84 706.51 784.342

We calculated the weighted average and the final predictive value of the next ten weeks. The

analysis of the results are shown in the figures.

Table 5: Final Predictive Values, M = 60
t 1 2 3 4 5 6 7 8 9 10

ˆy(t) 584.85 632.74 553.07 460.68 504.08 865.73 1337.35 2891.974 1940.679 2976.74
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Figure 12: Results of Prediction, M = 60
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Figure 13: Error Between Actual And Predic-

tive Values

When t < 10, the errors are small, that is, the prediction is good. However, when 10 < t < 16,

there is a huge error and this model fails. According to the principle of neural networks, the failure

is due to over-fitting [11] with train datasets. When we changed M = 60 into a smaller number

M = 10, and repeated the whole prediction process again, we get much better results. The fitted

results of 2011 when M = 10 are shown in the figures.
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Figure 14: Fitting Curve of 2011, M = 10
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Figure 15: Autocorrelation of Error 2011, M =

10

We can see there is much more errors between the fitting data and the actual data when M = 10.

The final prediction is the weighted average of predictive values of the three different NAR neural
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networks for year 2011, 2012 and 2014.
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Figure 16: Actual And Predictive Values of Tickets Selling in 2016

4.5 Summary

In this chapter, we used the dynamic NAR neural network prediction model, which is well suit-

ed for taking into account. If any unexpected events occurs during ticket selling time. By using

in-going ticket sales data, this method constantly updates the prediction and reduces the impact

of unexpected events on the prediction. We presented the flow chart and the recursive equation

underlying the structure and algorithm of the dynamic NAR neural network. Our results show

that this method provides good short term prediction.
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CHAPTER 5

CONCLUSIONS

To compare the results of the two prediction methods, the three-segment latent class Weibull

model and the dynamic NAR neural network, respectively. We use the root mean squared error

(RMSE) and the mean squared prediction error (MSPE).

RMSE =

√√√√ 1
K

K

∑
i=1

(y(ti)− ŷ(ti))2 (12)

MSPE =
1
K

√√√√ K

∑
i=1

(
y(ti)− ŷ(ti)

y(ti)
)2. (13)

Here K is the total number of data, K = 26; y(ti) is an array of actual values and ŷ(ti) is the

corresponding predictive values. The evaluation results are provided in following table.

Table 6: Comparison Between LCW Model And DNN Model
RMSE MSPE

LCW 1027.9 0.0762
DNN 860.80 0.1002

Here the LCW represents the latent class Weibull model and the DNN represents the dynamic

NAR neural network model. It can be seen that DNN has the lower RMSE value, but LCW has a

lower MSPE.

The three-segment latent class Weibull model gives a better prediction for the upcoming event if

a prediction is needed before ticket sales begin. However, the dynamic NAR neural network model

is better suited for predicting ticket sales after sales have began, the dynamic NAR neural network

model predicts short term prediction with higher accuracy.
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