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ABSTRACT 

 The first study of this dissertation evaluated the accuracy of the Fitbit Surge 

(FBS), Garmin Vívofit (GVF), and SenseWear armband (SWA) in measuring energy 

expenditure (EE), heart rate (HR), and steps during treadmill and cycling activities 

performed at two intensities in healthy, physically active individuals. In the second study, 

the monitors were evaluated in measuring EE and HR during a gym-based routine that 

included aerobic and resistance training activities performed by healthy, physically active 

participants.  

 In the first study, the activity monitors underestimated EE compared to the 

Oxycon Mobile (OM) metabolic analyzer across all bouts and their accuracy declined 

with vigorous intensity, signified by higher measurement error. The HR analyses 

revealed that the FBS and GVF yielded lower average HR (HRavg), although the 

estimates were comparable to the Polar HR monitor (PM). The GVF had better HR 

accuracy over the FBS, however, the difference in accuracy was minimal during the 

moderate intensity treadmill bout. The same trend was observed for session maximal HR 

(HRmax). The step count analysis showed that all monitors accurately estimated steps 

during the vigorous intensity treadmill bout. During the moderate intensity bout, only the 

SWA had an equivalent step count with the video observation.  

 The results of the second study demonstrated that no monitor was equivalent to 

the OM in assessing EE. The FBS and GVF overestimated EE for all segments of the 

gym-based session. The SWA overestimated EE for the treadmill running bout but 

underestimated EE for the stationary cycling and resistance training bouts, which resulted 
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in reasonable whole-session EE estimates (450.9 ± 142.1 kcal) compared to the OM 

(470.6 ± 106.0 kcal), further supported by low measurement error. Equivalency testing 

for HRavg data revealed that only the FBS did not agree with the PM during the stationary 

cycling bout. The GVF had superior accuracy in measuring HR indicated by lower 

measurement error across all segments of the session.  

 In conclusion, the activity monitors were the least accurate in measuring EE 

during common aerobic and resistance training activities. The monitors showed 

promising accuracy for measuring steps during treadmill walking and running. Lastly, the 

wrist-worn monitors demonstrated good potential in measuring HRavg and HRmax, 

although the GVF appears to have a lower measurement error than the FBS. 
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CHAPTER I 

DISSERTATION INTRODUCTION 

Physical activity (PA) and exercise are bodily movements produced by muscular 

contraction that result in energy expenditure (EE) above resting levels. The primary 

difference is that exercise is planned, structured, organized, and performed repeatedly 

with the goal of improving physical fitness. Engaging in PA and exercise provides a 

variety of health and fitness benefits (Blumenthal et al., 1989; Hollingworth, Harper, & 

Hamer, 2015; Kushi et al., 1997; Loprinzi, Lee, & Cardinal, 2013; Paffenbarger et al., 

1993; Rockhill et al., 2001; Tanasescu et al., 2002; Williams, 2010).  

In several large-scale investigations, in which self-report surveys of PA and 

exercise were employed, evidence of a dose-response relationship between PA and many 

disease outcomes including cardiovascular disease and premature mortality (Manson et 

al., 2002; Paffenbarger et al., 1993; Rockhill et al., 2001), hip fracture (Feskanich, 

Willett, & Colditz, 2002), and death from all-causes, cancer, and cardiovascular and 

respiratory diseases (Manson et al., 2002; Rockhill et al., 2001) has been documented. 

Accelerometry-based findings have also confirmed inverse dose-response relationships 

between PA and health complications, diseases, and mortality, respectively (Blumenthal 

et al., 1989; Dengel, Pratley, Hagberg, Rogus, & Goldberg, 1996; Healy et al., 2007; 

Loprinzi & Cardinal et al., 2013). Individuals who participate in at least light-intensity 

PA have a reduced risk of cardiovascular disease compared to individuals who participate 
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in no PA. In addition, participation in higher amounts of light-intensity PA produces 

greater benefits (Loprinzi & Cardinal et al., 2013).  

While there is substantial subjective and objective evidence supporting the 

relationship between PA and/or exercise with health and fitness benefits, there are 

methodological concerns in quantifying PA and/or exercise. Although self-report 

questionnaires are simple and accessible tools, inter-responder variability in interpreting 

PA terms may be problematic (Shepard, 2003). In addition, recalling past activities is 

difficult and may lead to incorrect subjective estimation of PA and/or exercise levels 

(Walsh, Hunter, Sirikul, & Gower, 2004). There are limitations associated with objective 

measures of PA and/or exercise as well, including the cost and training and experience 

requirements to operate the equipment, making some of these objective methods 

unfeasible outside of research settings. Motion sensors offer less obtrusive methods for 

objective assessment of health and fitness metrics and provide personalized feedback.  

Continuous progression in technology has led to the development of wearable 

motion sensors available on the consumer market. These activity monitors can wirelessly 

connect to smartphones and social media applications for personal monitoring of fitness- 

and health-related parameters, such as time being active, step count, heart rate (HR), and 

an estimation of caloric expenditure and sleep patterns. These monitors are founded on 

accelerometry-based technology and may be combined with multiple sensors (such as 

skin and ambient temperatures, heat flux, galvanic skin response, or HR). Activity 

variables such as EE, steps, distance, or sleep are estimated using monitor-specific 

proprietary algorithms integrated with personal data (e.g. height, weight, age). 
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 While commercially-available activity monitors are designed to target the general 

population, researchers are also including these monitors in research applications (Bai et 

al., 2016; Ellingson, Meyer, & Cook, 2016; Lee, Kim, & Welk, 2014; Price et al., 2016; 

Stahl, An, Dinkel, Noble, & Lee, 2016; Tucker, Bhammar, Sawyer, Buman, & Gaesser, 

2015; Wang et al., 2015). The employment of activity monitors in research interventions 

has been shown to reduce prolonged bouts of sedentary behavior (Ellingson et al., 2016) 

and to increase walking activity in previously sedentary individuals (Kurti & Dallery, 

2013). A valid activity measurement tool is fundamental to both epidemiological and 

intervention studies for establishment of appropriate PA and/or exercise 

recommendations. Therefore, it is important that the validity and the accuracy of these 

activity monitors be determined.  

 Numerous researchers have examined the validity of activity monitors in 

estimating EE (Bai et al., 2016; Lee et al., 2014; Nelson, Kaminsky, Dickin, & Montoye, 

2016; Noah, Spierer, Gu, & Bronner, 2013), HR (Parak & Korhonen, 2014; Wallen, 

Gomersall, Keating, Wisløff, & Coombes, 2016) and steps (Hill, Wyatt, Reed, & Peters, 

2003; Lindberg, 2000; Wilde, Sidman, & Corbin, 2001; Yamanouchi et al., 1995) in 

apparently healthy and active individuals. A comparison of previous findings is often 

challenging because there is large heterogeneity in research designs. In addition, some 

consumer-based monitors are represented in the literature more than other monitors.  

 Commonly assessed activity monitors for accuracy in estimating EE include the 

Fitbit, Jawbone, and Nike models, however, other monitors, such as the Garmin Vívofit 

(GVF), the Apple Watch (APW), and the BodyMedia Fit (BMF) have also been 
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evaluated. In most studies, the accuracy of the monitors was assessed during laboratory 

conditions including treadmill walking/running or stationary cycling (Bai et al., 2016; 

Nelson et al., 2016; Noah et al., 2006; Stackpool, Porcari, Mikat, Gillette, & Foster, 

2014). To evaluate the performance of the monitors, a few researchers also incorporated 

simulated daily-living activities, such as household chores, playing golf, tennis, or 

basketball, stair climbing, or elliptical (Lee et al., 2014; Tucker et al., 2015) and a 

resistance exercise session (Bai et al., 2016). Some studies have documented reasonable 

accuracy of certain Fitbit monitors (Bai et al., 2016, Lee at al., 2014), while others have 

not (Nelson et al., 2016; Noah et al., 2006; Stackpool et al., 2014). A wrist-worn Fitbit 

Surge (FBS) has only been included in two reports and shown to have poor accuracy in 

estimating EE during outdoor walking and running (Kirk, 2016) and laboratory-based 

treadmill ambulation and stationary cycling (Shcherbina et al., 2017). Findings for 

another wrist-worn monitor, the Fitbit Flex (FBF), indicated that, compared to a portable 

oxygen analyzer, the monitor produced lower EE estimates during stationary cycling 

(Nelson et al., 2016) and resistance training session (Bai et al., 2016), but higher EE 

during treadmill walking and jogging at self-selected intensities (Bai et al., 2016, Nelson 

et al., 2016).  

 Similarly, controversial results showing the Nike Fuelband (NFB) to be accurate 

in assessing whole-session EE (Tucker et al., 2014), but to overestimate total EE (Bai et 

al., 2016) have been reported. Contrasting findings have also been shown for the Jawbone 

Up (JBU) which underestimated EE during ambulatory activities on a treadmill across 

walking and running speeds (Price et al., 2016) and overestimated EE during treadmill 
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walking (Bai et al., 2016). These discrepancies may be attributed to differences in study 

design, varying sample sizes, and/or varying statistical analyses used to evaluate the 

performance of the monitors. In addition, inaccurate measurement of HR via 

photoplethysmography (PPG) technology may increase the EE estimate error rate. 

 While commercially-available activity monitors have only been evaluated in a 

few studies for accuracy in assessing HR, there is also variability in these findings. For 

example, the Mio Alpha (MIA) has been shown to have reasonable accuracy for 

measuring HR for resting, treadmill walking and running (Stahl et al., 2016), and cycling 

(Parak & Korhonen, 2014; Wallen et al., 2016) activities, however, to underestimate HR 

during a weight lifting session (Spierer, Rosen, Litman, & Fujii, 2015). Stahl et al. (2016) 

and Wallen et al. (2016) concurrently evaluated the accuracy of the Fitbit Charge (FBC) 

and found that the monitor produced lower HR values than the criterion measure, but 

both authors concluded that the monitor performance was favorable. Lastly, Dooley, 

Golaszewski, and Bartholomew (2017) evaluated the validity of the FBC along with the 

APW in measuring HR during rest and walking and running on a treadmill. The monitors 

provided similar HR monitoring for some of the intensity bouts, but overestimated HR at 

low (APW) and high (FBC) intensities. A possible explanation for these discrepancies 

may be skin photosensitivity, as melanin concentration and skin pigmentation may 

impact the function of PPG technology (Fallow, Tarumi, & Tanaka, 2013), thereby 

altering the accuracy of the monitors.  

 Another commonly monitored activity variable is steps. Although commercially-

available monitors tend to produce lower step counts than reference methods, these 
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estimates have been considered favorable (An, Jones, Kang, Welk, & Lee, 2017; Case, 

Burwick, Volpp, & Patel 2015; Chen, Kuo, Pellegrini, & Hsu, 2016; Huang, Xu, Yu, & 

Shull, 2016). Hip-worn monitors provide more accurate estimates than wrist-worn 

monitors, however, the accuracy of the wrist-worn monitors is improved with increased 

speed (Chen et al., 2016; Diaz et al., 2015; Huang et al., 2016; Storm, Heller, & Mazza, 

2015). For example, the GVF and JBU estimated steps with greater accuracy at a fast (5.0 

mph) compared to a slow speed (3.0 mph; Chen et al., 2016). Similarly, Storm et al. 

(2015) showed that the JBU and the NFB produced lower error rates for ambulation at 

self-selected fast speed in comparison to a self-selected slow speed. The improved step 

count accuracy at higher speeds could be contributed to increased angular movement of 

the swinging arm (Thielemans, Meyns, & Bruijn, 2014), which in turn may enhance the 

ability of the monitors to detect the arm movement and yield favorable outcomes.  

 There is a need to examine the validity of consumer-based monitors in measuring 

activity variables to allow users to make educated decisions while purchasing monitors. 

In addition, establishing the accuracy and validity of these monitors will enable their 

utilization for research interventions. While many activity monitors have been 

represented in the literature, few studies have evaluated the accuracy of the FBS and 

GVF in measuring EE, HR, and steps in healthy individuals. 

Overall Purpose  

 The investigations in the dissertation were intended to examine the validity of the 

FBS, GVF, and SWA activity monitors for assessing PA parameters. The primary 

purpose of the first study was to determine the validity during a laboratory-based protocol 



7 

 

 

controlling for intensity and mode of exercise. The accuracy of the monitors in estimating 

EE compared to a portable metabolic analyzer during treadmill walking, treadmill 

running, and stationary leg cycling at two different intensities was evaluated in healthy, 

physically active individuals. The secondary objectives were to compare step count from 

the monitors to a video observation and to examine the accuracy of monitoring maximal 

and average HR compared to HR obtained via telemetry. The purpose of the second study 

was to validate the activity monitors against a portable metabolic analyzer for estimating 

EE during a simulated gym-based routine consisting of treadmill running, stationary 

cycling, and resistance training activities at self-selected intensities. The secondary 

purpose was to assess the accuracy of monitoring maximal and average HR compared to 

HR obtained by telemetry 
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CHAPTER II 

REVIEW OF LITERATURE 

The review of literature begins with a description of the terminology on physical 

activity (PA) and exercise, providing their definitions and listing commonalities and 

differences between the terms. The review then transitions into an overview of previous 

research examining health and fitness benefits associated with PA and exercise as 

examined by subjective and objective measurement methods. A brief paragraph is 

devoted to addressing limitations to using the mentioned instruments for the assessment 

of activity. The next section introduces wearable technology, a new appealing method for 

monitoring activity that targets the consumer market for personal use. While there is an 

array of wearable technology devices, the literature review will focus on activity 

monitors. The final section will focus on an overview of previous research examining the 

validity of activity monitors in measuring EE, HR, and step count.  

Definitions of PA and Exercise  

 The terms PA and exercise are often interchanged. However, an important 

conceptual distinction exists between these terms. An understanding of this difference is 

necessary for appropriate interpretation and comparison of results across intervention and 

epidemiology studies (Caspersen, Powell, & Christenson, 1985).  

 Physical activity is bodily movement generated by contraction of the skeletal 

muscles that results in an increase in EE above resting level. The caloric contribution of 
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PA to the total EE occurs above the basal metabolic rate requirements and is determined 

by the nature of the activity. Physical activity can be divided into mutually-exclusive 

categories on the basis of will (voluntary or obligatory), intensity (light, moderate, or 

high), or segments of every-day life (sleep, work, leisure; Caspersen et al., 1985). In 

addition, leisure-time PA can be subcategorized into activities such as household tasks, 

sports, and conditioning exercises (Folsom et al., 1985). The amount of caloric 

expenditure is greatly influenced by the extent of participation in each category. 

Furthermore, the magnitude of EE depends on how much muscle mass is used to produce 

the bodily movements and on the frequency, intensity, and duration of muscular 

contractions. Energy expenditure will also vary across individuals based on fitness status, 

body composition, age, and sex.   

 Like PA, exercise also involves any bodily movement produced by skeletal 

muscles that results in increased EE. However, exercise is a more specific subset of PA in 

that it is planned, structured, repetitive, and goal-oriented. While the goal of exercise 

varies among individuals, the objective is either improvement or maintenance of one or 

more components of physical fitness that is either health- (body composition, 

cardiorespiratory fitness, flexibility, and muscular endurance and strength) or skill- 

(agility, balance, coordination, reaction time, speed, and power) related.  

 Because exercise is a subset of PA, it can constitute, in part or entirely, 

occupational and leisure-time PA. However, some categories of PA may be represented 

by exercise to a greater extent than others. For example, Caspersen and colleagues (1985) 

suggested that conditioning and many sports activities have the greatest probability to be 
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deemed exercise. These two PA categories are almost always performed to maintain or 

improve physical fitness and, in such, are planned, structured, and repetitive. In contrast, 

occupational, household, and other daily activities are typically performed in the most 

time-efficient and energy-conserving manner with little or no concern for physical 

fitness. However, there may be instances in which occupational and household tasks are 

performed in such a manner to be considered exercise. For example, jobs requiring 

manual labor can be completed in a structured and planned way to improve muscular 

strength (e.g. a construction worker). Likewise, a person may plan to perform weekly 

household chores in a taxing manner to expend calories.   

 There are apparent similarities between PA and exercise. First, both involve 

bodily movement generated by skeletal muscles resulting in EE. Exercise, a subset of PA, 

is specifically intended to improve or maintain one or more components of physical 

fitness through structured, planned, and repetitive bodily movements. Both PA and 

exercise are positively related to physical fitness, resulting in a variety of health and 

performance benefits.  

Benefits of PA and Exercise 

 Regular participation in PA and exercise is associated with a wide range of health 

and fitness benefits. To elicit these beneficial outcomes, all Americans should participate 

in 150 minutes of moderate intensity, 75 minutes of vigorous intensity, or any 

combination of the two intensities weekly (Physical activity guidelines advisory 

committee report, 2008). Additionally, based on the American College of Sports 

Medicine (ACSM), these amounts can be accumulated in 10-minute bouts (ACSM, 
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2014). Further improvements in health and fitness are obtained by engaging in higher 

intensities or durations of activity (Haskell et al., 2007). There is compelling subjective 

and objective evidence supporting decreased risk of chronic diseases, comorbidities, and 

premature mortality and improvements in physiological and physical variables from PA 

and exercise (Hollingworth et al., 2015; Kushi et al., 1997; Loprinzi & Lee et al., 2013; 

Paffenbarger et al., 1993; Rockhill et al., 2001; Williams, 2010). 

 Subjective measurement of PA and exercise and improvements in health 

 Participation in PA and exercise can be subjectively reported by having 

individuals self-report their activities, in either a recall fashion or an activity log.  As with 

all self-report measures, there are concerns with lack of or incorrect recall and incorrect 

representation of intensity or duration of activities.  These concerns notwithstanding, 

there exists a substantial body of literature documenting improvements in health relative 

to self-reported PA and/or exercise. 

 Participation in PA was associated with reduced risk of mortality in individuals 

who reported being more physically active compared to those who reported being less 

physically active (Kushi et al., 1997; Paffenbarger et al., 1993; Rockhill et al., 2001). 

Specifically, the risk of pre-mature all-cause mortality was inversely related to the total 

time of PA, suggesting that men who expended at least 3,500 kcal a week had half the 

risk compared to men who expended less than 500 kcal a week (Paffenbarger et al., 

1993). Similarly, women who engaged in more hours of PA per week had lower risk for 

all-cause mortality and for death caused by cardiovascular diseases, cancer, and 

respiratory diseases (Rockhill et al., 2001). The positive effect of PA on health outcomes 
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was also confirmed in ethnically-diverse postmenopausal women between the ages of 50 

and 79 years in a large prospective cohort study (Manson et al., 2002). Baseline PA levels 

were assessed by a detailed self-report questionnaire and expressed as EE in metabolic 

equivalents of task (MET scores) per week. The 6-year follow-up revealed lower 

incidence of coronary heart disease (CHD) and total cardiovascular events for women 

who participated in regular PA, with decreased risk for greater quantities of PA.  

 Engaging in higher levels of PA has also been shown to reduce risk of hip fracture 

in postmenopausal women (Feskanich et al., 2002). In this prospective cohort study, 

postmenopausal women (40-77 years old) were followed for 12 years to assess the 

influence of PA on the incidence of hip fracture. Women who self-reported participation 

in higher amounts of PA (24 MET-hours a week) had 55% lower hip fracture risk than 

women who reported engaging in lower PA mounts (3 MET-hours a week). Additionally, 

a dose-response relationship between hip fracture risk and amount of PA indicated that 

the risk decreased by 6% for every 3 MET-hours increase in PA per week. It is apparent 

that PA is associated with many health benefits. In addition, improvements in 

cardiorespiratory function resulting from participation in PA lead to higher levels of 

habitual PA (Blair et al., 1995), which in turn results in many health benefits.   

 Several studies have also documented a positive influence of self-reported 

exercise on health and fitness (Hollingworth et al., 2015; Williams, 2013). Participation 

in aerobic exercise is associated with a decreased risk of all-cause mortality (Williams, 

2013), cardiovascular diseases (Tanasescu et al., 2002; Williams, 2010; Williams, 2013), 

and cardiovascular risk factors (Hollingworth et al., 2015). A greater risk reduction in 
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these maladies is achieved by individuals who reported engaging in higher amounts of 

exercise compared to individuals with lower amounts (Hollingworth et al., 2015; 

Tanasescu et al., 2002; Williams, 2010; Williams, 2013). A relationship between habitual 

cycling and cardiovascular risk markers (hypertension and hypercholesterolemia) and 

body mass index (BMI) was examined via an online survey completed by 6,949 male and 

female cyclists with a mean age of 48 years (Hollingworth et al., 2015). There was a 

dose-response relationship between self-reported cycling volume and risk of diagnosed 

hypertension and hypercholesterolemia. Furthermore, BMI was inversely related to 

cycling volume. This study suggests that higher cycling volumes are associated with a 

lower likelihood of cardiovascular risk factors in habitual male and female cyclists. 

 Similarly, the risk of angina and nonfatal and fatal CHD was lower in habitual 

male runners who reported running > 9 km/day compared to < 3 km/day (Williams, 

2010). In addition, every additional km/day of running distance was associated with a 5% 

risk decrease in nonfatal CHD and revascularization procedures, a 7% risk reduction in 

nonfatal myocardial infarction, and a 10% decrease in angina. Tanasescu et al. (2002) 

also reported a dose-response relationship between self-reported exercise and the 

incidence of CHD. In addition, individuals who participated in greater amount of 

exercise, including activities such as running, cycling, swimming, or racquet sports, had 

lower BMI and prevalence of hypertension.  

 Collectively, these studies present sufficient evidence of the positive effects PA 

and exercise have on health, even when these activities are documented by self-report. In 

addition, there is a clear dose-response relationship between PA or exercise and the risk 
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of disease. These conclusions are based on surveillance findings from either large cohort 

studies that require long-term follow-up of individuals or computer-, telephone-, or mail-

mediated communication. Surveys call for an individual’s ability to recall past PA or 

exercise participation to provide subjective quantification of activity. Objective measures 

of PA and exercise provide many benefits over subjective assessments. 

 Objective measurement of PA and exercise and improvements in health 

 Objective activity assessments may provide more precise measurements of 

intensity and duration of PA and exercise. Methods of objective assessment include direct 

and indirect calorimetry, doubly-labeled water, physiologic markers, heart-rate 

monitoring, and/or motion sensors.  

 Objective measurements to examine PA levels and the related benefits were 

employed in a population-based study from the 2003-2006 National health and Nutrition 

Examination Survey (NHANES). Accelerometry-assessed PA data exhibited a dose-

response relationship between PA and having metabolic syndrome and its contributing 

risk factors (Loprinzi & Cardinal et al., 2013). A total of 5,538 individuals, 18 years of 

age or older, wore an accelerometer during all waking hours, except during water-based 

activities, for 7 days. Participation in light-intensity activities was associated with a 

decreased cardiovascular disease risk, although higher amounts of PA resulted in greater 

benefits. Furthermore, participants who engaged in a minimum of 71 minutes of 

moderate-to-vigorous PA a day were least likely to have metabolic syndrome and had the 

lowest triglyceride levels, waist circumference, and BMI, and the highest HDL levels.  
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 Physical activity also has a positive influence on certain blood markers suggestive 

of chronic cardiovascular or metabolic diseases. For example, the association between 

PA and C-reactive protein, a marker of inflammation recognized to be related to 

cardiovascular disease risk, has been examined (Loprinzi & Lee et al., 2013). Physical 

activity was assessed by a hip-worn accelerometer over a 7-day period in a total sample 

of 4,555 participants from the 2003-2004 NHANES database. Physical activity was 

inversely related to C-reactive protein levels in adults, suggesting that PA has an anti-

inflammatory effect and may therefore provide protection from cardiovascular disease. 

The relationship between PA and blood plasma glucose, a blood marker that is a 

precursor of type 2 diabetes, has also been studied (Healy et al., 2007). A total of 67 men 

and 106 women without diagnosed diabetes wore an accelerometer for 7 consecutive 

days and their PA levels were summarized into sedentary, light-intensity, and moderate-

to-vigorous intensity. Individuals who were mostly sedentary had higher 2-h plasma 

glucose, while individuals who participated in higher moderate-to-vigorous intensity PA 

and increased light-intensity PA were associated with lower 2-h plasma glucose. 

Therefore, spending time in light- and moderate-to-vigorous PA helps to maintain blood 

plasma glucose within appropriate levels. 

 Evidence on the effects of exercise on health and fitness outcomes measured by 

objective assessments also exists. Aerobic exercise is associated with weight reduction 

(Dengel et al., 1996; Houmard et al., 2004), improved glucose metabolism (Dengel et al., 

1996; Houmard et al., 2004) and improved plasma lipoproteins (Stefanick et al., 1998). 

Houmard et al. (2004) reported that 6-months of exercise training lead to improvements 
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in insulin sensitivity in previously sedentary, overweight/obese individuals. The 

improvements were greater for a training program that incorporated 170 minutes 

compared to 115 minutes of exercise per week, supporting the evidence of a dose-

response relationship between exercise and health benefits. Accordingly, a 10-month 

intervention including three weekly aerobic exercise sessions consisting of stationary 

cycling and walking and running on a treadmill for 30 minutes improved insulin 

sensitivity and reduced weight when paired with dietary modifications (Dengel et al., 

1996). Another study examined the effect of 4-month aerobic exercise training program 

in older men and women (Blumenthal et al., 1989). The findings revealed that three, 45-

minute sessions a week that consisted of leg and arm cycle ergometry and walking and 

running performed at 70% of maximum HR reserve improved cholesterol levels, diastolic 

blood pressure, and bone mineral content. In addition, improvements were also observed 

for cardiorespiratory fitness (Blumenthal et al., 1989; Dengel et al., 1996) and anaerobic 

threshold (Blumenthal et al., 1989).  

 Like aerobic training, regular participation in resistance training also elicits an 

array of positive changes in health status. In fact, resistance training is as effective as 

aerobic training in improving blood lipid profile in overweight/obese individuals 

(Schwingshackl, Missbach, Dias, König, & Hoffman, 2014) and for managing and 

treating type 2 diabetes (Yang, Scott, Mao, Tang, & Farmer, 2014). Shaibi et al. (2006) 

found that a 16-week resistance training program increased insulin sensitivity in 

overweight adolescents and this improvement was independent of changes in body 

composition. Insulin sensitivity was also improved in non-obese, young women (18-35 
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years) who participated in a 6-month resistance training program targeting enhancements 

in muscular strength and mass (Poehlman, Dvorak, DeNino, Brochu, & Ades, 2000). In 

addition, exercise that enhances muscular strength and mass increases regional bone 

mineral density and bone strength (Lohman et al., 1995), which may be especially 

valuable in individuals at risk for osteoporosis.  

 It is evident that PA and exercise offer a variety of positive health and fitness 

outcomes. Despite the well-known benefits, 31.1% of adults worldwide are inactive and 

approximately 50% of US adults meet aerobic activity guidelines, 30% meet muscle 

strengthening guidelines, and only 21% meet both guidelines (Centers for Disease 

Control and Prevention, 2013). The individual’s ability to assess and monitor activity 

may induce behavioral changes and encourage PA and exercise (Bravata et al., 2007). 

The measurement tool must be valid, reliable, and practical (in terms of cost and utility; 

Laporte, Montoye, & Caspersen, 1985). It is, therefore, necessary that individuals have 

access to accurate and practical assessment tools. Direct and indirect calorimetry and 

doubly-labeled water are time consuming, require expensive equipment, and experience 

and training, confining these methods to research settings. Motion sensors may offer 

more convenient methods for assessing PA in free-living conditions.  

 Although accelerometers and PA questionnaires have been widely used as 

conventional methods to measure PA, there are limitations to each method as well. For 

instance, while questionnaires are relatively simple tools for PA assessment, participants 

must recall and quantify recent activity levels, which often results in an inaccurate 

estimation (Walsh et al., 2004). Furthermore, the reliability and validity of these 
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subjective tools may be lacking (Shephard, 2003). Accelerometers were first introduced 

in 1961 (Cavagna, Saibene, & Margaria, 1961) to provide objective monitoring of PA 

and have been employed in many research settings since that time (Bouten, Koekkoek, 

Verduin, Kodde, & Janssen, 1997; Colley & Tremblay, 2011; Welk, Schaben, & 

Morrow, 2004). They provide a useful method of activity assessment, especially in large-

scale studies. However, the relatively high cost and inconvenience of accessing PA data 

may be deemed as limitations. Continuous advancements in technology have led to recent 

developments of new activity tracking devices that are available for personal use and may 

offer more convenient and less expensive ways for individuals to monitor and track their 

own PA. 

Activity Monitors  

 Wearable-technology products were introduced to the consumer marketplace a 

few years ago. Wearables, which is an abbreviated form of the term wearable technology, 

are small portable electronic devices that can either be worn on the body or connected to 

clothes and accessories. These gadgets include activity monitors, smart watches, global 

positioning system (GPS) tracking devices, HR monitors, and smart eye glasses. While 

there is an array of devices, the focus of this paper will be on wearable activity monitors 

and smart watches. Wearable activity monitors and smart watches will jointly be referred 

to as activity monitors in this paper. 

 Wearable technology has become ubiquitous, achieving a number-one fitness 

trend rank for the past two consecutive years (Thompson, 2015). The popularity of 

activity monitors has increased as they have become less obtrusive and more useful in 
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their everyday utility (Evenson, Goto, & Furberg, 2015). According to the 2015 NPD 

Connected Intelligence Consumers and Wearables Report, one in 10 US adults reported 

owning an activity monitor to track activity and health patterns. The 2017 PA Council 

Report stated that ownership of a fitness tracking device among active individuals 

increased from 22.5% in 2014 to 28.0% in 2016. In addition, the interest in purchasing a 

wearable technology device to track PA between 2014 and 2016 increased from 3.0% to 

10.7% in inactive individuals and from 9.3% to 25.7% in active individuals. Another 

survey reported that out of 1,000 Americans, 78% reported they would use an activity 

monitor and the reasons for using one included losing weight, achieving a fitness goal, or 

lower health insurance rates (“Where are Wearable Fitness Trackers Going for 2015?” 

2014, October 30). Approximately 3.3 million monitors were sold between April 2013 to 

March 2014 and Fitbit (67 %), Jawbone (18%), and Nike (11%) represented 96% of the 

total trade (Danova, 2014). Stanley and colleagues (2014) forecasted a 154% annual 

growth rate in wearable shipments between 2013 and 2017. In addition, analysts predict 

wearable technology orders to increase from 9.7 million units in 2013 to 135 million in 

2018, with wrist-worn devices accounting for 87% of the orders (Spann, 2015).  

 Activity monitors allow consumers to personally assess and track a variety of 

exercise modalities (walking, running, cycling, swimming, weight lifting, etc.) and other 

health- and fitness-related parameters, most commonly including HR, estimating caloric 

expenditure, counting steps, and monitoring sleep patterns. The convenience and 

practical utility of activity monitors enables consumers to track progress towards daily or 

long-term goals and to compare personal statistics with peers via specific platforms. The 
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provision of interactive tools for goal-setting and feedback is an effective instrument to 

induce positive behavior and lifestyle modifications (Lyons, Lewis, Mayrsohn, & 

Rowland, 2014). Additionally, the application of consumer activity monitors has 

facilitated a growth of the Quantified Self movement, which is a self-quantification 

system for personal health information (Almalki, Gray, & Sanchez, 2015).  

 Activity monitors provide consumers with convenient and easy access to their 

health and fitness data. Generally, the collected data are transferred to smartphones, 

computers, or network storage clouds through wireless connectivity (for example 

Bluetooth). This wireless connectivity to external devices allows real-time activity data 

tracking utilizing device specific platforms. To track activity, the monitors utilize 

accelerometry-based technology that senses acceleration to detect bodily movements. 

Accelerometers can sense activity in one (uni-axial) to three (tri-axial) orthogonal planes 

(anteroposterior, mediolateral, and vertical; Chen & Bassett, 2005). Most modern activity 

monitors combine tri-axial accelerometry with other physiological sensors such as HR, 

skin and ambient temperatures, heat flux, or bioelectrical impedance (for respiration and 

galvanic skin response).  

 The inclusion of several sensors may improve monitors’ accuracy in predicting 

EE or detecting activity mode. Some activity monitors interface with external 

accessories, for instance chest straps, while others implement technology called 

photoplethysmography (PPG) to measure HR. Photoplethysmography is a simple and 

low-cost optical technique that measures the amount of light absorbed by blood flow 

changes in the microvascular bed of tissues to detect HR (Allen, 2007). The PPG 
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technology implements an optical emitter, typically light-emitting diode (LED) to shine 

light into the skin and a digital signal processor captures the light that is refracted and 

translates the signals into HR data. Activity variables such as EE, steps, distance, or sleep 

are estimated using monitor-specific proprietary algorithms integrating measured data 

along with information entered by the users. 

 Although commercially-available activity monitors have primarily targeted the 

consumer market, their use has also been implemented in research. Health and PA-related 

intervention studies have employed activity monitors for goal-setting, self-monitoring, 

measurement purposes, and behavior changes reinforcement (Cadmus-Bertram, Marcus, 

Patterson, Parker, & Morey, 2015; Ellingson et al., 2016; Kurti & Dallery, 2013; Wang et 

al., 2015). Evaluating the validity of monitors and establishing their accuracy should, 

however, precede their widespread application in intervention and measurement research. 

Although manufacturers conduct internal studies to evaluate their products, the 

documentation on the process and accuracy has a certain level of obscurity and the results 

reported are typically vague. Thus, external research has focused on examining the 

accuracy and validity of commercial activity monitors for various health and fitness 

metrics. In this review, the focus is on studies assessing EE, steps, and HR validity. 

Descriptive statistics of the most commonly represented activity monitors in the literature 

are displayed in Table 1. 

Validity of Activity Monitors in Measuring Steps 

 Step count is a simple method of quantifying PA. It has been recommended that 

adults accumulate at least 10,000 steps per day to improve health (Hill et al., 2003; 



 

 

Table 1 

 

Consumer-available Activity Monitors Validated for Measuring Energy Expenditure, Steps, or Heart Rate  

 

Monitor Release date Measurements Ancillaries  Placement Size (cm) Mass (g) 

Fitbit       

Tracker 2008 

(discontinued) 

Calories, steps  Bra, pocket, waist 5.5(h) × 1.9(w) × 1.4(d) 11 

Ultra 2011 

(discontinued) 

Calories, steps Altimeter Bra, pocket, waist, 

wrist (requires a 

band) 

5.5(h) × 1.9(w) × 1.4(d) 11 

One 2012 Calories, steps Altimeter  Bra, pocket, waist 4.8(h) × 1.9(w) × 1.0(d) 9 

Zip 2013 Calories, steps  Bra, pocket, waist 3.6(h) × 2.9(w) × 1.0(d) 8 

Flex 2013 Calories, steps  Wrist S: 14.0-17.6(c) × 1.4(w) 

L: 16.1-20.9(c) × 1.4(w) 

13 

15 

Charge 2014 Calories, steps Altimeter Wrist S: 14.0–17.0(c) × 2.1(w)  

L: 16.1–20.0(c) × 2.1(w) 

XL: 19.8–23.0(c) × 2.1(w) 

23 

Surge 2015 Calories, HR, steps Altimeter, GPS, 

LED 

Wrist S: 14.0–16.0(c) × 3.4(w)   

L: 16.0–19.8(c) × 3.4(w) 

XL: 19.8–22.6(c) × 3.4(w) 

77 

Charge HR 2015 Calories, HR, steps Altimeter, LED Wrist  L: 16.1–19.4(c) × 2.1(w)  

XL: 19.4–23.0(c) × 2.1(w) 

23 

Jawbone       

UP 2011 

(discontinued) 

Calories, steps  Wrist S: 14.0–15.5(c)   

M: 15.5–18.0 21(c) 

L: 18.0–20.0(c) 

19 

21 

23 

UP24 2013 

(discontinued) 

Calories, steps  Wrist S: 5.2(w) × 3.5(h)   

M: 6.3(w) × 4.0(h) 

L: 6.9(w) × 4.3(h) 

19 

21 

23 
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Table 1 

 

Consumer-available Activity Monitors Validated for Measuring Energy Expenditure, Steps, or Heart Rate (Continued) 

 

Monitor Release date Measurements Ancillaries  Placement Size (cm) Mass (g) 

Nike        

Nike+ 

Fuelband 

2013 

(discontinued) 

Calories, steps LED Wrist S: 15.2(c) × 1.9(w)    

M: 17.2(c) × 1.9(w) 

L: 19.7(c) × 1.9(w) 

27 - 35 

BodyMedia        

Fit 2010 

(discontinued) 

Calories, steps  Upper arm 6.1(w) × 5.6(h) 45 

Core 2012 

(discontinued) 

Calories, HR, steps  Upper arm 4.0(w) × 6.5(h) 30 

Garmin       

Forerunner 225 2015 Calories, HR, steps GPS, LED Wrist 45(w) × 4.8(h) × 1.6(d) 54 

Vívofit 2014 Calories, HR, steps Heart rate strap Wrist 2.1(w) × 1.1(h) 26 

Apple       

Watch  2015 Calories, HR, steps LED, Wi-Fi,  Wrist S: 13.0-18.0(c) × 3.9(w) × 3.3(h) 

× 1.1(d) 

L: 14.5-21.5(c) × 4.2(w) × 3.6(h) 

× 1.1(d) 

56 

69 

MIO       

Alpha 2013 HR LED Wrist 26.3(c) ×4.4(w) 56 

Alpha 2 2015 Calories, HR  Wrist 25.2(c) × 4.3(w) 53 

Note. c = Circumference; d = Depth; HR = Heart rate; h = Height; GPS = Global positioning system; L = Large; LED = Light-emitting diode; M = 

Medium; S = Small; w = Width; Wi-Fi = Wireless networking; XL = Extra-large. 

2
3
 



24 

 

 

Lindberg, 2000; Wilde et al., 2001; Yamanouchi et al., 1995). While commercially-

available activity monitors provide consumers with an easy way to assess their daily step  

count, it is paramount to determine the accuracy of these values. Various wrist- and hip-

worn activity monitors have been evaluated for step count accuracy in laboratory-based 

settings (Case et al., 2015; Chen et al., 2016; Diaz et al., 2015; Huang et al., 2016; Nelson 

et al., 2016; Noah et al., 2013; Takacs et al., 2014), during over-ground activities (Kirk, 

2016; Storm et al., 2015), and in free-living conditions (An et al., 2017; Ferguson, 

Rowlands, Olds, & Maher, 2015). The step counts reported by the activity monitors have 

been compared to criterion measures that included pedometers, accelerometers, or 

manual step counting by a person or with video recording.  

 With respect to wrist-worn monitors, Chen et al. (2016) and Huang et al. (2016) 

reported reasonable accuracy for the GVF in measuring steps during short bouts of 

treadmill walking at slow, moderate, and fast speeds. The monitor produced low error 

rates, ranging between 1.5% and 5.6% across both studies. Another wrist-worn monitor, 

the NFB, yielded high error rates (up to 35%) while underestimating steps during slow 

walking, however, accuracy improved for walking at a faster speed (15% error rate; 

Storm et al., 2015). Two other wrist-worn monitors, the JBU and the FBF, were shown to 

underestimate steps during treadmill running (Chen et al., 2016; Nelson et al., 2016) and 

treadmill walking at slow (Case et al., 2015), moderate, and fast speeds (Chen et al., 

2016, Huang et al., 2016). During slow walking on a treadmill, the FBF produced lower 

step count when worn on a dominant (461.8 ± 65.1) compared to a non-dominant (479.6 

± 35.6) wrist, however, the counts for both wear placements were significantly lower than 
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the actual step count (513.7 ± 30.7; Chen et al., 2016). At the highest speed, the 

difference between the actual step count (815.3 ± 51.2) and the dominant (797.9 ± 46.3) 

and non-dominant (793.6 ± 43.4) sides, respectively was reduced. Diaz et al. (2015) also 

reported that the FBF underestimated steps by 16.3% during slow, 10.6% during 

moderate, and by 11.3% during brisk walking on a treadmill for 5 minutes at each speed. 

The JBU was suggested to underestimate steps during indoor and outdoor walking at 

slow, fast, and self-selected “natural” speeds on average by 36±178 steps (Storm et al., 

2015), however, the error rate was smaller for the fast and self-selected ( < 5%) speeds 

compared to the slow speed (10%).  

 The FBS provided similar step estimates to the actual step count during a 2-mile 

walk and run (Kirk, 2016). This was only a dissertation abstract and, unfortunately, no 

further details are disclosed. In contrast, the FBC, which is another wrist-worn monitor, 

underestimated steps (with 9.4% error) during 500 m of suburban walking, but had good 

inter-device reliability between dominant and non-dominant hands (de Man et al., 2016). 

Noah et al. (2013) reported the hip-worn FBU to be valid and reliable in estimating steps 

during level walking, but accuracy reduced when incline was incorporated. Although the 

step counts produced by the FBU (116.96 ± 6.85) compared to the research-grade 

monitor (117.22 ± 6.83) during incline walking were different statistically, the two 

monitors may be deemed equivalent in practical terms. In general, wrist-worn monitors 

were the least accurate at slower speed, but accuracy improved as speed increased.  

 Various hip-worn monitors have also been documented in the literature for their 

step-measuring accuracy. The Fitbit One (FBO) underestimated steps with lower 
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accuracy for walking at a slow speed, but became more accurate during walking at a fast 

speed (Huang et al., 2016; Storm et al. 2015). The FBO, however, showed promising 

accuracy across all speeds with low error rates ranging between 1.0% (fast speed) and 

3.8% (slow speed; Storm et al., 2016). Other authors reported concurring findings 

confirming the reasonable accuracy of the FBO in measuring steps during treadmill 

walking (Case et al., 2015; Diaz et al., 2015; Nelson et al., 2016; Takacs et al., 2014) and 

running (Diaz et al., 2015; Nelson et al., 2016). The error rate produced by the activity 

monitor was < 1.3% during 5-minute ambulation bouts on a treadmill at five speeds (54, 

67, 80, 92, and 107 m•min-1; Takacs et al., 2014), 1.5% for treadmill walking at 3 mph 

for 500 and 1,500 steps (Case et al., 2015), and < 3% at self-selected walking and running 

speeds (Nelson et al., 2016). 

 Other Fitbit models are also represented in the literature for step count validity. 

The FBZ is another hip-worn activity monitor that is considered a valid tool for 

measuring steps while ambulating on a treadmill at different speeds (An et al., 2017; Case 

et al., 2015). The monitor was consistently accurate across speeds from 2.0–5.0 mph and 

averaged 0.6% error across all speeds (An et al., 2017). In contrast, the monitor was less 

accurate in detecting steps for over-ground and treadmill ambulatory activities at slow to 

fast self-selected speeds and resulted in slight, although statistically significant, step 

count overestimation (2250 steps) compared to the observed step count (2206 steps; 

Nelson et al., 2015).  

 The step-counting accuracy of commercially-available activity monitors has also 

been assessed in healthy individuals during free-living conditions (An et al., 2017; 
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Ferguson et al., 2015). Various Fitbit activity monitors have been found to be accurate 

measures of steps during 24 hours (An et al., 2017) and 48 hours (Ferguson et al., 2015) 

of free-living activities. The Fitbit monitors represented in the investigations included the 

FBO, FBF, and FBZ and their accuracy was compared to research-grade monitors. The 

NFB is one of the least accurate monitors as it has been shown to undercount daily steps 

(An et al., 2017; Ferguson et al., 2015). The average underestimation of steps over a 48-

hour period by the activity monitor was 2,529 (Ferguson et al., 2015).  

 Conclusions on the accuracy relative to steps 

 The general observation from the findings is that commercially-available activity 

monitors tend to underestimate actual step count. Overall, hip-worn monitors provide 

more accurate estimates compared to wrist-worn monitors. The wrist-worn monitors 

underestimate steps specifically at slower speeds with improved accuracy as speed 

increases. The greater accuracy at higher speeds may be explained by enhanced ability of 

the activity monitors to detect arm movement because the angular momentum of the 

swinging arm increases at higher speeds (Thielemans et al., 2014). One way to possibly 

improve accuracy of the monitors is to manually enter stride length if the option is 

available (Evenson et al., 2015).   

Validity of Activity Monitors in Assessing EE 

 While counting steps may be an easy method to measure PA levels, monitoring 

EE may be more valuable for weight management purposes. Evaluating EE estimations 

may be achieved by comparing monitor estimates to EE measured by direct or indirect 

calorimetry. Most research studies use indirect calorimetry as the criterion measure (Bai 
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et al., 2016; Lee et al., 2014; Nelson et al., 2016; Noah et al., 2014; Price et al., 2016), 

although the use of direct calorimetry has also been documented (Dannecker, Sazanova, 

Mlanson, Sazanov, & Browning., 2013). Certain activity monitors are represented in the 

literature to a greater extent than others and comparisons of findings across validation 

studies can be challenging due to the heterogeneity of protocols and statistical analyses 

used to evaluate the monitors’ accuracy. In addition, only few studies have included an 

in-depth analysis to provide the reader with more precise insight on activity monitors’ 

performance assessment.  

 The Fitbit is a commonly used monitor and various models (approximately 7) 

have been studied. Depending on the type of the activity monitor, it can be worn at the 

waist, pocket, bra, or wrist (see Table 1). The original Fitbit monitor, the Fitbit Tracker 

(FBT; also, referred to as the “original Fitbit”), tends to underestimate EE. For instance, 

Dannecker et al. (2013) showed that the monitor underestimated EE at different 

intensities while participants performed a series of activities including resting, stationary 

cycling, and walking at different grades and speeds for 3.5 hours in a room calorimeter. 

The monitor underestimated EE by 28.7%, however, the error was reduced to 12.9% 

when activities were manually classified via the monitor’s web-based software. 

Underestimation of EE was also reported by Sasaki et al. (2015), who compared EE 

estimated by the FBT to a portable metabolic analyzer during sedentary, sport, and 

household activity routines. The monitor showed a systematic underestimation of EE 

across the routines with differences ranging from 104% (cycling) to 22% (treadmill walk 

at 4 mph and 5% grade). However, comparable EE estimation was found for running on a 
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treadmill at 5.5 mph. In accord, the FBT underestimated EE during 6-minute bouts of 

level and incline (5%) walking at 3.5 mph and level running at 5.5 mph on a treadmill 

(Noah et al., 2013).  

 Other Fitbit monitors worn on the hip have been examined for EE accuracy 

during an assortment of activities. For example, the FBU, which was an upgraded model 

released few years after the FBT, underestimated EE during treadmill walking at a 

constant 3.5 mph speed (Noah et al., 2013) and at self-selected slow and brisk speeds 

(Gusmer, Bosch, Watkins, Ostrem, & Dengel, 2014), but slightly overestimated EE for 

running at 5.5 mph (Noah et al., 2013). The mean EE estimates during walking (6.7 ± 2.1 

kcal) and running (14.3 ± 4.7 kcal) were statistically different from the metabolic 

analyzer (11.4 ± 2.9 kcal and 13.1 ± 2.5 kcal, respectively) with accuracy within 91-

113% of EE and high correlations (r = .81 – .87; Noah et al., 2013). Slightly different 

outcomes for this monitor were found by Stackpool et al. (2014). They reported that the 

mean estimated EE, in comparison to the criterion measure, was lower during a 20-

minute treadmill run (230.0 ± 50.5 kcal vs. 240.0 ± 47.3), and higher during a 20-minute 

treadmill walk (111.0 ± 22.8 kcal vs. 109.0 ± 19.6 kcal) at self-selected speeds. The mean 

EE values between the monitor and the criterion measure were not statistically different, 

however, they had a low correlation (r = .24) for the treadmill walk. Although both 

studies had similar sample sizes (N = 20, Stackpool et al., 2014; N = 23, Noah et al. 2013) 

of healthy male and female participants, the study protocols were different in that 

Stackpool et al. (2014) implemented walking and running at self-selected intensities as 
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opposed to standardized speeds (Noah et al., 2013). This may have contributed to the 

discrepancies in the findings.  

 The FBT and FBU have been discontinued and replaced by two other hip-worn 

monitors, the FBO and Fitbit Zip (FBZ) that are still available on the market. Their 

accuracy in estimating EE has been documented in previous research. For example, in an 

investigation by Nelson et al. (2013), the FBZ and FBO underestimated stationary 

cycling at a self-selected intensity producing mean absolute percentage error (MAPE) up 

to 46% and overestimated EE during ambulatory activities on a treadmill at self-selected 

speed and grade, also with high error rates up to 68%. Although there is no set standard, 

≤10% MAPE is considered reasonable and MAPE between 10% and 20% is considered 

moderately reasonable (Bai et al., 2016; Lee et al., 2014). Similar outcomes indicating 

overestimation of EE by the FBO were found during treadmill walking and running at 

various speeds on a level surface (Diaz et al., 2015) and on 1% incline (Price et al., 

2016). Although the monitor demonstrated the ability to distinguish gross increases in EE 

by being highly correlated to the criterion measure across all speeds (1.6, 2.8, 4.0, 5.0, 

6.2, and 7.5 mph), it overestimated EE with mean bias of 2.9 kcal per minute (Price et al., 

2016).  

 In another investigation, the FBO underestimated EE with a 10.4% MAPE while 

the FBZ overestimated EE producing a MAPE of 10.1% during a continuous 69-minute 

session (Lee et al., 2014). The session consisted of simulated free-living activities 

including sedentary, ambulatory, household, and sport activities. For the first time in 

activity monitor validation research, the authors used a novel statistical analysis called 
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equivalence testing to assess EE measurement agreement between monitors and the 

criterion measure. According to the equivalence testing analysis, the FBZ was considered 

equivalent to the criterion measure based on confidence intervals (CI) falling within an 

equivalence zone of ±10% from the measured mean EE. The authors concluded that the 

performance in estimating total EE by these two monitors was reasonable, particularly 

because they provided similar error rates relative to a well-established research monitor 

Actigraph GT3X (AG3X). The discrepancy in EE outcomes between the studies by Lee 

et al. (2014), Price et al. (2016), Diaz et al. (2015), and Nelson et al. (2016) may be 

explained by variations in the protocols. While the three latter studies reported the FBO 

accuracy for individual activities, Lee et al. (2014) analyzed total EE over the course of 

the whole session. It is possible that the monitor overestimated EE for some activities, but 

underestimated EE for most activities, thereby resulting in net EE underestimation of the 

whole session. 

 Wrist-worn models of the Fitbit, including the FBF, FBS, and FBC, have also 

been evaluated for assessing EE during a variety of activities. The monitors have been 

shown to vary in their accuracy depending on the activity mode as well as due to 

heterogeneity in study protocols. For example, the FBF has been shown to overestimate 

EE during treadmill walking and jogging at self-selected intensity (Bai et al., 2016; Diaz 

et al., 2015; Nelson et al., 2016), but to underestimate EE during stationary cycling 

(Nelson et al., 2016) and resting and resistance activities (Bai et al., 2016). The treadmill 

ambulation activities were similar in duration and the average EE overestimation was 40 

kcal over 15 minutes (Nelson et al., 2016) and 52 kcal over 20 minutes (Bai et al., 2016). 
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The average EE underestimation was 5 kcal for the resting and 25 kcal for the resistance 

activities (Bai et al., 2016). The authors postulated that combining EE from all three 

activities (treadmill ambulation, resistance exercises, and resting tasks) resulted in a more 

reasonable EE estimation for the whole session due to the over- and under-estimates 

balancing out. It is also noteworthy that a MAPE provided by the FBF (16.8%) was 

comparable to a MAPE of the AGT3X (16.7%), which is the most commonly used 

research-grade monitor.  

 To date, there are only two reports on the FBS accuracy. An unpublished 

dissertation showed poor accuracy of the monitor when compared to a portable metabolic 

analyzer in estimating EE during a 2-mile walk and a 2-mile run on a treadmill (Kirk, 

2016). Unfortunately, only the dissertation abstract is accessible and, therefore, no data 

statistics are obtainable. The other investigation also showed poor accuracy of the FBS 

indicated by a median error rate of 27.4% during a protocol consisting of slow and fast 

walking, slow and fast running, and exercising on a stationary cycle ergometer at a low 

and a high intensity (Shcherbina et al., 2017). However, it is important to note that only 

the last minute of each stage was used for the analysis, which may make generalizability 

of the results demonstrating the monitor’s accuracy problematic.  

 The other wrist-worn Fitbit monitor, the FBC, overestimated EE compared to 

indirect calorimetry during 4-minute treadmill stages of light (2.5 mph), moderate (3.5 

mph), and vigorous (5.5 mph) ambulation (Dooley et al., 2017). The EE estimates during 

the light and moderate bouts were considerably higher than the measured EE with large 

MAPE ranging from 45.8% (moderate) to 85.0% (light). In contrast, the FBC 



33 

 

 

underestimated total EE during a routine consisting of 5-minute activities that included 

supine and seated rest, walking and running on a treadmill, and stationary cycling 

(Wallen et al., 2016). Although the literature is lacking in statistical evidence, it appears 

that the two Fitbit monitors are inaccurate in estimating EE during aerobic activities 

 Varying outcomes have been reported on the accuracy of the Fitbit. It appears that 

across all the Fitbit models, studies mostly indicate a bias toward EE underestimation for 

the hip-worn devices and EE overestimation for the wrist-worn devices. The hip-worn 

trackers seem to provide a more substantial agreement with a reference method in 

comparison to the wrist-worn monitors. This is specifically true for the FBC, which 

produced exceedingly large error rates ranging from 45.8% to 85%. In contrast, the FBF 

demonstrated reasonable accuracy signified by providing comparable MAPE to a well-

established research-level monitor. The confounding findings on the accuracy of the 

monitor may be contributed to a diversity in study designs and sample sizes. In addition, 

the newer wrist-worn monitors (FBS and FBC) integrate PPG technology to measure HR. 

The proprietary algorithms include HR in the EE calculations for improved accuracy 

(“How does”, 2016, May 16). However, it is possible that the EE estimate error would be 

augmented if the monitor inaccurately measured HR.  

 The validity of other consumer-based monitors has also been documented. Two 

commonly represented monitors in the literature include the JBU and NFB.  In the study 

by Price et al. (2016), the JBU showed a bias to underestimate EE when participants 

walked at 1.5, 2.8, and 4.0 mph and to overestimate EE during running at 5.0, 6.2, and 

7.5 mph. The EE estimates correlated strongly (r = .80) with the measured EE, which led 
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the authors to conclude that the JBU is able to distinguish gross increases in EE across 

the speeds used in the study. Bai et al. (2016) reported that the JBU and the NFB yielded 

lower whole-session EE estimates than the criterion measure during semi-structured 

periods of sedentary, aerobic (walking and running on a treadmill), and resistance 

activities, with MAPE of 18.2% for the JBU and 17.1% for the NFB. Unlike the NFB, 

which consistently underestimated EE across all activities, the JBU underestimated EE 

during the 15-minute resting and 20-minute resistance activities, but overestimated EE 

for 20 minutes of treadmill walking and running. This resulted in a smaller difference in 

total EE between the criterion measure (316.8 ± 81.6 kcal) and the JBU (290.7 ± 99.0 

kcal) in comparison to the NFB (274.5 ± 60.9 kcal). Findings presented by Stackpool 

(2014) indicated that both the JBU and the NFB overestimated EE while participants ran 

at self-selected speeds on a treadmill for 20 minutes. Furthermore, during a 20-minute 

self-paced treadmill walk, the JBU (123 ± 25.2 kcal) overestimated EE while the NFB 

(107 ± 24.2 kcal) had slightly lower mean EE compared to the criterion measure (109 ± 

19.6 kcal).  

 It is not clear why the NFB performed differently for the treadmill walking and 

running in Bai et al. (2016) and Stackpool at al. (2014), considering the similar nature of 

the activities. One possible explanation could be in the way the EE data were obtained 

and analyzed. Unlike in the study by Stackpool et al. (2014) where the walking and 

running activities were performed and analyzed separately, Bai et al. (2016) analyzed the 

EE obtained during the 25-minute bout disregarding the activity modes and the 

proportion of participants who walked or ran. Therefore, the discrepancy in findings 
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could be contributed to the different biomechanical and energy demands associated with 

walking and running. In addition, Bai et al. (2016) used JBU24, which is an updated 

version of the JBU. The monitor possibly operated on upgraded firmware integrating 

upgraded algorithms to compute EE.  

 The performances of the JBU and the NFB were also evaluated in the previously 

mentioned study by Lee at al. (2014). During the continuous 69 minutes of simulated 

daily activities routine performed by 60 participants, the monitors exhibited a systematic 

bias to underestimate EE, producing MAPE of 13% for the NFB and 12% for the JBU. 

Based on equivalence testing analysis, the mean EE by the JBU (338.8 ± 66.1 kcal) 

exceeded the lower limit of the ±10%, while NFB (350.2 ± 41.8 kcal) was accurate 

within a margin of ±10% error from the portable oxygen analyzer (356.9 ± 67.6 kcal), 

however, the correlation with the criterion measure was weak (r = .35). In a similar 

protocol, during which 24 participants performed a 60-minute activity routine, Tucker et 

al. (2015) reported the NFB to be accurate and reliable in estimating EE. The statistical 

results contrasted with those by Lee et al. (2014), demonstrating that the activity monitor 

yielded comparable EE estimates (246.0 ± 67.0 kcal) to the measured EE (243.0 ± 67.0 

kcal) with no systematic bias and a moderate correlation (r = .77) with the criterion 

measure. Furthermore, the NFB produced a slightly higher MAPE of 16% with an upper 

CI limit exceeding the ±10% equivalence zone (although by only 4 kcal). While the 

discrepancy in findings is difficult to explain, it was proposed that adding resting EE to 

the monitor’s activity EE estimates to assess total EE (Lee et al., 2014), as opposed to 

assessing activity EE only (Tucker et al., 2015), contributed to the differences. Another 
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explanation could be that Lee at al. (2014) had a nearly three times larger sample size 

than Tucker at al. (2015). Lastly, it is possible that in right-handed participants, some 

activities (for example ironing, vacuuming, tennis, or basketball dribble) may not have 

been adequately detected by the monitor because the NFB was worn on the left wrist only 

in both studies.  

 The accuracy in measuring EE of a few other activity monitors have also been 

previously examined. For example, the GVF is another monitor that was concurrently 

assessed for validity in the above-mentioned study by Price et al. (2016). It was shown to 

be strongly correlated (r = .85) with the criterion measure across all ambulation speeds. 

Significant correlations were also reported for walking (r = .71) and running (r = .35) 

speeds separately.  The GVF underestimated EE with a mean bias of 1.6 ± 2.4 kcal/min 

across all speeds, 1.7 ± 1.21 kcal/min for walking speeds with greater proportional bias at 

higher speeds, and 1.5 ± 3.1 kcal/min for running speeds. The largest mean difference, of 

approximately 40%, was reported for walking at 1.8 mph and the smallest mean 

difference of roughly 4% for running at 5.0 mph. Similar findings were reported by 

Alsubheen and colleagues (2016) showing that the GVF underestimated EE on average 

by 29.5% in comparison to indirect calorimetry. The differences between the monitor and 

indirect calorimetry decreased at higher intensities as indicated by lower measurement 

error. In another study, a different model from Garmin, the Forerunner 225 (GF225), 

overestimated EE and had a large magnitude of MAPE (31-155%) during a session that 

consisted of a resting measurement followed by 4-minute treadmill stages at 3 speeds and 

a 10-minute recovery period (Dooley et al., 2017). The possible source of discrepancy in 
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the accuracy between the monitors may be grounded in that they utilize distinct firmware 

versions that integrate different regression equations to compute EE. In addition, the GVF 

can be paired with a HR strap and the GF225 has a build-in optical sensor to measure 

HR. Measuring activity HR may enhance EE estimation as HR data are incorporated in 

the proprietary calculation of active calories by the Garmin products (“Calorie 

Terminology”, n.d.). However, it appears that the HR monitor was not used in 

conjunction with the GVF, which could suggest why the activity monitor underestimated 

EE. Lastly, the differences in findings may be attributable to the sample size used in 

Dooley et al. (2017) as it was four times larger than the sample size of Price et al. (2016).  

 Another monitor, the Body Media Fit (BMF) is a commercially available monitor 

that has been derived from a research-grade SenseWear Armband monitor. The SWA is 

an accelerometer that integrates various heat- and galvanic-related variables and has been 

used for research. It provided valid and reliable measures of EE during a resistance 

training session targeting all major muscle groups (Reeve, Pumpa, & Ball, 2013) and 

during a level treadmill walking at two speeds (1.25 and 1.75 m•s-1; Vernillo, Savoldelli, 

Pellegrini, & Schena, 2015). However, at high exercise intensities, the SWA 

underestimated EE during a circuit training session (Benito et al., 2012) and treadmill and 

outdoor running (Drenowatz & Eisenmann, 2011). It was suggested that addition of HR 

measurement may enhance the performance (Plasqui & Westeerterp, 2005). The 

upgraded version of the SWA, the BMF, integrates a HR-monitoring function among the 

other physiological sensors. 
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 Studies have reported contradicting results for the BMF indicating both 

overestimation (Bai et al., 2016) and underestimation (Lee et al., 2014; Stackpool et al., 

2014) of EE. The whole-session EE estimates by the monitor (351.0 ± 98.9 kcal) 

compared to a portable metabolic analyzer (316.8 ± 81.6 kcal) yielded a moderate MAPE 

of 15.3% (Bai et al., 2016), although in Lee et al. (2014), it produced a low MAPE of 

9.3% for EE estimates (338.9 ± 59.4 kcal) compared to the reference method (356.9 ± 

67.6 kcal). The EE estimates from the BMF fell within the equivalence zone and the 

monitor had the best overall results among all the monitors tested in the investigations 

(Bai et al., 2016; Lee et al., 2014). This opposes outcomes in Stackpool et al. (2014) who 

reported that the monitor’s mean EE estimates (261.0 ± 52.4 kcal) significantly differed 

from the criterion measure EE (240.0 ± 47.3 kcal) during the 20-minute treadmill running 

bout. The main difference in the way the monitor accuracy was interpreted may be due to 

the statistical approaches used to evaluate its performance. Secondly, the varying sample 

size across the studies may again impact the results. 

 Lastly, the APW one of the most versatile activity monitors, has also been 

included in recent validation investigations. In the study by Dooley et al. (2017), the 

APW overestimated EE with MAPE 14.1%, 16.5%, and 20.0% for moderate-, vigorous-, 

and light-intensity treadmill activities, respectively. However, the monitor was highly 

inaccurate and overestimated EE with large error rates for the seated resting measurement 

(210%) and the recovery period (160%). Interesting findings showed an interaction 

between sex and device and BMI and device during the resting and recovery periods. The 

device overestimated EE for both sexes and all BMI categories, however, the magnitude 
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of the effect was greater for males than females and greatest for participants who were 

overweight, followed by participants that were obese, and normal weight. Furthermore, 

an interaction during the moderate-intensity bout between BMI and the APW denoted 

that the monitor overestimated EE for participants who were overweight and obese, but 

not for participants who were of normal weight.  

 In contrast, Wallen et al. (2016) reported that the APW (162.6 ± 33.0 kcal) 

underestimated total EE compared to the criterion measure (285.7 ± 50.2 kcal) with a 

weak correlation (r = .16) across resting, treadmill, and cycling activities. The difference 

in the outcomes may be contributed to analyzing total EE estimates for the entire session 

(Wallen et al., 2016) as opposed to estimating EE for individual activities (Dooley et al., 

2017). In addition, Dooley at al. (2017) included a large sample size (N = 62) of diverse 

participants in terms of sex, age, race, and fitness status, compared to a small (N = 22), 

more homogenous sample (Wallen et al., 2016), which possibly contributed to the 

differences in the findings.  

 Conclusions on the accuracy relative to EE 

 There is a large disparity in the literature regarding the accuracy of activity 

monitors in measuring EE. While some studies report that certain activity monitors are 

valid in estimating EE, other studies show contrasting results. The discrepancies are most 

likely attributable to differences in study design. For example, some studies included 

analyses of accuracy in estimating total EE over an entire session (Bai et al., 2016; Lee et 

al., 2014; Tucker et al., 2015; Wallen et al., 2016) while others analyze EE for individual 

activities (Diaz et al., 2015; Nelson et al., 2016; Price et al., 2016; Stackpool et al., 2014). 
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The sample size of different studies must also be taken into account. While some studies 

had larger sample sizes (N ≥ 50; Bai et al., 2016; Dooley et al., 2017; Lee at al., 2014), 

others had sample sizes that was less than half in size (Noah et al., 2013; Price et al., 

2016; Stackpool et al., 2014; Tucker et al., 2015; Wallen et al., 2016). The targeted 

population may also influence how accurately the monitors perform. Although most 

studies included relatively young, healthy male and female participants, Dooley et al. 

(2017) demonstrated that sex and BMI impacts monitor performance. To the author’s 

knowledge, this was the only study to include an examination of the effects of 

demographic and anthropometric measures on estimation of EE.  

 Furthermore, the selected statistical analyses may influence how the accuracy of 

the monitors is interpreted. Using a traditional hypothesis approach with a focus on 

testing for a statistical difference between the criterion measure and the monitors may not 

offer the best insight on the accuracy of a monitor because this method does not imply 

equivalence between monitors (Hauck & Anderson, 1984). The study by Lee et al. (2014) 

was a pioneering investigation to introduce a novel statistical approach in activity 

monitors validation research called equivalence testing. Equivalence testing statistically 

examines measurement agreement between activity monitors and the criterion measure 

and, thus, makes it possible to determine if one method is “significantly equivalent” to 

another method. Whether a method is equivalent to another method is determined by 

specifying appropriate equivalence zone. While there is no standard, ±10% error zone has 

been used elsewhere (Bai et al., 2016, Lee et al., 2014; Stahl et al., 2016). Another 

common statistical approach used in validation studies is the Bland-Altman plot. It 
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determines if existing systematic bias of the estimating method is present. Lastly, 

reporting MAPE, which provides an indicator of overall measurement error, or mean 

percent error rates has also been widely used. Standardized statistical analyses should be 

used to allow for comparison across studies and make interpretation of results practical. 

 Several other factors may impact the accuracy of a monitor. For instance, proper 

wear placement is not known for all devices studied in the literature and manufacturer 

instructions are not always clear. The manufacturer-specific instructions designate that 

the FBS should be positioned higher on the wrist and the BMF on the left upper arm, 

however, no concrete directions are provided for the remaining monitors. In addition, the 

EE calculation is determined by device-specific proprietary algorithms that are not 

disclosed. The manufacturers will only provide general information to the consumers 

about what variables are accounted for in the determination of EE. For example, the 

Garmin and Fitbit support pages list definitions related to caloric expenditure, disclosing 

that the type of activity, and the user’s age, height, weight, and sex are included in the 

calculations. With the inclusion of HR monitoring function (either via ancillary HR strap 

or built-in PPG technology), the supporting monitors may also utilize HR to compute 

active calories. Therefore, errors in HR readings would consequently contribute to error 

in measuring EE. 

Validity of Activity Monitors in Measuring HR 

 Heart rate monitoring is an easy and practical method for determining association 

between HR and health and fitness status (Blair, Goodyear, Gibbons, & Cooper, 1984; 

Wannamethee & Shaper, 1994) and assessing exercise intensity (Karvonen & Vuorimaa, 
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1988). With the integration of HR measurement via chest strap or PPG technology, 

activity monitors allow for personal monitoring of this health and fitness metric. While 

the inclusion of HR in proprietary algorithms calculating EE has enhanced EE 

predictions, the accuracy of PPG-based monitors in measuring HR has only been 

evaluated in a few studies. The validity of the monitors in measuring HR is achieved 

through comparison to electrocardiography (ECG; Parak & Korhonen, 2014; Wallen et 

al., 2016) or HR monitors (Dooley et al., 2017; Spierer et al., 2015; Stahl et al., 2016).   

 A common wrist-worn monitor for measuring HR is the MIA. Wallen et al. 

(2016) evaluated four wrist-worn monitors, including the MIA, in assessing HR during a 

58-minute continuous routine that included supine, standing, and sitting rest periods, a 

treadmill routine consisting of the first three stages of the Bruce protocol, and a 25-watt 

step test on a stationary leg ergometer. The MIA exhibited a systematic bias and had a 

lower whole-session mean HR (97.7 ± 14.6 bmp) compared to the ECG (102.0 ± 13.4 

bmp). The error across all the monitors ranged between 1-9%, however, the specific error 

for the MIA was not specified. The authors concluded that the monitors provided 

satisfactory measurement of HR, although the study included a relatively small sample 

size (N = 22) of young, healthy individuals. Similar procedures were used in another 

small study (N = 21) by Parak and Korhonen (2014), who compared the accuracy of the 

MIA to ECG during a 50-minute protocol that simulated activities such as resting in 

supine or seated positions, cycling (speed: 60 rpm and 90 rpm), walking (speed: 1.9 – 3.1 

mph; grade: 0 – 10 %), and running (speed: 5.6 – 6.8 mph) on a treadmill. The monitor 

was within ±10 bpm from the ECG HR 86-87% of the time, but tended to underestimate 
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HR across all activities (mean error: 1.7%; MAPE: 5.2%). The monitor performed better 

during walking (mean error: 1.7%) and running (mean error: 1.9%) compared to cycling 

(mean error: 4.8%), however, it was the most accurate during the resting conditions 

(mean error: 0.5%).  

 The accuracy of the MIA was also evaluated in two larger investigations. Spierer 

et al. (2015) found the MIA to have different HR values while 50 participants performed 

6-minute tasks including rest, walking, jogging, cycling, stair climbing, elliptical, and 

weight lifting. The monitor overestimated HR during the resting and walking tasks and 

underestimated HR for the other activities, but the difference was only significant during 

the weight lifting activity (error: 23.3 ± 31.9 bmp). Furthermore, when activity intensity 

increased, the measurement error also increased. This was specifically apparent during 

the running (5.3 mph) trial. In the other large study where the accuracy of the MIA to 

measure HR was assessed, 50 participants simultaneously wore six wrist-worn activity 

monitors during a routine consisting of resting, treadmill walking (speed: 1.9 – 4.0 mph), 

and treadmill running (5.0 – 6.0 mph) activities (Stahl et al., 2016). The mean HR 

measured by the MIA (110.5 ± 30.3 bpm) was shown to be equivalent to the Polar HR 

monitor (109.1 ± 29.3 bpm) determined by equivalence testing. The monitor’s MAPE 

ranged between 0.8% to 16.0% across all activities, with the lowest error for the highest 

running speed (6.0 mph) and the highest error at the lowest walking speed (2.0 mph). 

These data contrast the findings by Spierer et al. (2015) who found that the performance 

of the MIA decreased with increasing speed. Collectively, the findings suggest varied 

accuracy of the MIA monitor in measuring HR. Some studies analyzed whole session HR 
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data (Wallen et al., 2016) while others analyzed HR for individual activities (Parak & 

Korhonen, 2014; Stahl et al., 2016; Spierer et al., 2015) which could partially explain the 

discrepancies in the results.  

 As mentioned, other monitors with PPG technology have been examined for their 

accuracy. For example, Dooley et al. (2017), Wallen et al. (2016), and Stahl et al. (2016) 

examined the accuracy of two other monitors (the APW and the FBC) next to the 

previously mentioned MIA. In the study by Stahl et al. (2016), the FBC underestimated 

HR across all activities producing a whole-session HR (105.0 ± 30.6 bpm) that was lower 

than the ECG (109.1 ± 29.3 bmp) with an overall MAPE of 6.2%. However, the FBC was 

found to be equivalent to the criterion measure through the utilization of equivalence 

testing. Similarly, Wallen et al. (2016) reported that the FBC underestimated whole-

session HR with mean difference of almost 10 bpm and produced the largest mean error 

of 9%. Slightly different findings reported by Dooley et al. (2017) showed that the FBC 

provided similar HR monitoring during moderate intensity (110.1 ± 16.7 bmp), but 

produced lower HR during vigorous intensity (144.0 ± 17.4 bpm) and higher HR values 

during light intensity (103.1 ± 17.5 bpm) compared to the Polar HR monitor (106.8 ± 

16.4 bmp, 150.6 ± 21.3 bmp, 92.5 ± 13.7 bpm, respectively). The FBC produced a MAPE 

that ranged between 3.4% - 17.0%. In the same study, the APW measured comparable 

HR values to the reference method during rest and vigorous intensity work, but 

underestimated HR during light (89.2 ± 11.9 bpm vs. 92.5 ± 13.7 bpm) and moderate 

(101.0 ± 16.7 vs. 106.8 ± 16.4 bpm) intensities (Dooley et al., 2017). The APW had a low 

MAPE that ranged between 1.1 and 6.7% across activities. In addition, a small study 
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including only 4 participants showed that the APW measured HR with 99.9% accuracy 

during walking for 200, 500, and 1,000 steps (El-Amrawy & Nounou, 2015).  

 Conclusions on the accuracy relative to HR 

 Similar to the large disparities in EE validity between activity monitors, 

discrepancies in HR validity across studies also exist. However, it is noteworthy, that 

monitors estimate HR more accurately than EE, as represented by a lower MAPE for HR 

measures. In spite of the accurate assessment of HR, there are a few proposed reasons 

why discrepancies exist in HR accuracy across studies. First, varying sample sizes may 

contribute to MAPE differences, as the number of participants fluctuated between 4 and 

62. Secondly, the accuracy of the monitors with built-in PPG technology may be 

influenced by skin photosensitivity as melanin concentration and skin pigmentation can 

reduce the light wavelength emitted and thus attenuate the monitor’s ability to detect 

pulse rate (Fallow et al., 2013). Indeed, Spierer et al. (2015) attributed the observed error 

to the variance in skin types. Although most studies did not assess skin photosensitivity, 

Dooley et al. (2017) included a diverse sample consisting of 47% non-White individuals. 

These data suggest that HR accuracy may have been impacted by the varying skin 

photosensitivity of the sample. 

 Additionally, the intensity of the activity has been proposed to also impact the 

accuracy of the HR measurement, as higher intensities, specifically during running, tend 

to disturb the skin to sensor interface introducing error (Spierer at al., 2015). While this is 

a valid concern, it conflicts with outcomes showing improved accuracy as intensity 

increased (Stahl et al., 2016; Parak & Korhonen, 2014). It is possible that, given complete 
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and undisturbed contact between the monitor and skin, lower blood flow to the 

extremities during exercise at a lower intensity compared to a higher intensity may 

interfere with a monitor’s ability to detect pulse. The improved perfusion at higher 

intensities could decrease the error rate. 

 Lastly, some discrepancies may be due to whole session HR data being analyzed 

in some studies (Wallen et al., 2016) while HR for individual activities being analyzed in 

other studies (Parak & Korhonen, 2014; Stahl et al., 2016; Spierer et al., 2015). As the 

validity of wrist-worn activity monitors in measuring HR was only examined in a few 

studies, more research in this area is warranted. Further, there is a scarcity of studies that 

have addressed certain factors (BMI, skin photosensitivity, or sex) that may influence the 

ability of PPG-based monitors to detect HR. Therefore, future research focusing on 

examining the impact of these factors is warranted.  
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CHAPTER III 

VALIDATION OF ACTIVITY MONITORS IN ESTIMATING ENERGY 

EXPENDITURE, HEART RATE, AND STEPS IN LABORATORY 

CONTROLLED CONDITIONS 

Introduction  

 Motion sensors, such as accelerometers and pedometers, are noninvasive, 

relatively inexpensive, and easy to use. These sensors have been applied in research to 

assess activity intensity, energy expenditure (EE), and steps (Bouten, Koekkoek, 

Verduin, Kodde, & Janssen, 1997; Colley & Tremblay, 2011; Welk, Schaben, & 

Morrow, 2004). Wearable technology has also become popular among market 

consumers, with one in 10adults in the United States owning an activity tracker to 

monitor PA and improve health (“The Demographics Divide”, 2015, November 30). 

 Although the features vary, most commercially-available monitors can estimate 

EE, measure heart rate (HR), record steps, track active minutes, and/or monitor sleep 

patterns. Many of the monitors integrate multiple sensors (such as a tri-axial 

accelerometer, global positioning system (GPS), HR sensor, or skin temperature and 

galvanic responses gauge), which may improve estimation of EE (Brage et al., 2006; 

Evenson, Goto, & Furberg, 2015; Maddison & Ni-Muhurchu, 2009). In addition, some of 

the newer wrist-worn monitors include photoplethysmography (PPG) technology, an 

optical sensing technique that detects blood flow changes to determine HR (Allen, 2007).  
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 Although these innovations may enhance the utility of activity monitors for 

personal and research purposes, their validity and accuracy remain to be determined. 

Most recently, commercial activity monitors were analyzed for step-measuring accuracy 

during treadmill ambulation under laboratory-controlled conditions (Chen, Kuo, 

Pellegrini, & Hsu, 2016; Diaz et al., 2015; Huang, Xu, Yu, & Shull, 2016) and during 

over-ground walking and running (Kirk, 2016; Storm, Heller, & Mazza, 2015). In 

general, hip-worn monitors provided more accurate estimates than wrist-worn monitors, 

however, the accuracy of the wrist-worn monitors improved as speed increased (Chen et 

al., 2016; Diaz et al., 2015; Huang et al., 2016). Additionally, the accuracy of the 

commercial monitors has been compared to established accelerometers, such as the 

SenseWear armband (SWA; Storm, Heller, & Mazza, 2015).  

 With respect to estimating EE, the validity of consumer-based monitors has been 

determined during free-living (Bai et al., 2016, Lee, Kim, & Welk, 2014; Tucker, 

Bhammar, Sawyer, Buman, & Gaesser, 2015) and laboratory-based (Dooley, 

Golaszewski, & Bartholomew, 2017; Nelson, Kaminsky, Dickin, & Montoye, 2016; Price 

et al., 2016) protocols. However, the validation studies disregard participants’ fitness 

status as the intensities investigated are usually based on a constant workload or an 

absolute intensity. This may be problematic because training status impacts HR response 

at a given intensity and as measurement of HR is often included in monitor-specific 

estimations of EE, disregarding training status can lead to error in the EE estimates. In 

addition, with the inclusion of PPG technology, users may rely on HR-monitoring to 

assess fitness status (Blair, Goodyear, Gibbons, & Cooper, 1984) and prescribe relative 
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exercise intensity (Karvonen & Vuorimaa, 1988). Therefore, activity monitors with a HR 

function should be evaluated for accuracy in measuring HR and EE whilst participants 

exercise at relative intensities.    

 To date, there is a scarcity of validity research on the Fitbit Surge (FBS) and the 

Garmin Vívofit (GVF) and little is known about their accuracy in estimating EE, HR, and 

step count at specific exercise intensities. Therefore, the primary purpose of the current 

study was to examine the accuracy of three activity monitors (FBS, GVF, and SWA) in 

estimating EE in comparison to EE measured by a portable metabolic analyzer during 

treadmill walking, treadmill running, and stationary leg cycling at relative moderate and 

vigorous intensities in healthy, physically active individuals. The secondary objectives 

were to compare step count from the three activity monitors to a video observation and to 

assess HR-monitoring accuracy measured by the wrist-worn monitors (FBS and GVF).  

Methods 

 Participants 

 Male (n = 23) and female (n = 11) participants completed three laboratory visits. 

All participants were physically active based on the Physical Activity Guidelines 

Advisory Committee Report (2008) and classified as either low or moderate risk based on 

American College of Sports Medicine (ACSM) cardiovascular risk assessment (ACSM, 

2014). Moderate-risk participants obtained written medical clearance prior to 

participating in the study. All participants read and signed an informed consent form (see 

appendix A). The study was approved by the university Institutional Review Board (see 

Appendix B) 
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Instrumentation  

Resting HR and blood pressure (BP) were obtained in a seated position after 

participants sat quietly for 5 minutes. To determine resting HR, participants were fitted 

with a Polar HR monitor (PM; Polar Electro, Kempele, Finland). Heart rate was recorded 

at the end of the 5 minutes of resting (Palatini et al., 2006). Next, resting BP was 

measured manually with a BP cuff and a stethoscope in a seated position with the 

participants’ arm resting on a table at heart level (Pickering et al., 2005). Anthropometric 

and body composition measures were obtained in light clothing and with shoes removed. 

Standing height was determined with a wall-mounted stadiometer (Seca, Hamburg, 

Germany) to the nearest 0.1 cm. Body mass was measured with a digital scale (Sunbeam 

Products Inc., Health O Meter, Boca Ratoon, FL) to the nearest 0.1 kg. Participants’ body 

composition was determined by a 3-site (males: chest, abdomen, and thigh; females: 

triceps, suprailiac, and thigh) skinfold procedure (Pollock, Schmidt, & Jackson, 1980) 

using a calibrated Harpenden skinfold caliper. Population-specific formulas (ACSM, 

2014) were used to estimate percent body fat.  

Activity monitoring instruments 

Fitbit Surge (Fitbit Inc., San Francisco, CA). This wrist-worn activity monitor 

combines a 3-axis accelerometer and multiple sensors to track physical activity. The FBS 

measures pulse rate, estimates total and exercise EE, tracks daily steps, distance traveled, 

and floors climbed, and monitors sleep patterns. Continuous HR is detected by an optical 

sensor. When enabled, the monitor utilizes GPS to determine distance traveled, pace, and 

elevation. The FBS provides specific activity modes (e.g. treadmill running, free running, 



51 

 

 

cycling, elliptical, spinning, hiking, weight training, or circuit training) to select from 

when tracking exercise. The rechargeable battery life of this device lasts up to 7 days, but 

when GPS is in use, the life can be reduced to 10 hours. Activity data can be viewed on a 

monitor-specific application by wirelessly syncing the device to a smartphone or 

computer.  

Garmin Vívofit (Garmin Ltd, KS). The GVF is an accelerometer-based activity 

monitor worn on the wrist that estimates active and total EE, measures steps taken and 

distance traveled, and tracks sleep patterns. Heart rate-monitoring is available by pairing 

the GVF with an Ant+ (Dynastream Innovations Inc., Canada) HR strap. The HR data are 

considered in the calculation of EE for fitness activities. The monitor measures active 

minutes and, when an individual has been inactive for an hour, a red bar appears on the 

display. The bar increases in length for each additional 15-minute block of inactivity. The 

monitor utilizes two replaceable coin cell batteries with a life of more than 1 year. Data 

recorded by the monitor can be either wirelessly synced with a smartphone or to a 

computer via a universal serial bus (USB) Ant+ stick. 

SenseWear Armband Mini (SWA; BodyMedia Inc., Pittsburgh, PA). The SWA is 

a multi-sensor activity monitor that measures steps and estimates EE by combining 

information from a 3-axis accelerometer with heat-related and galvanic skin response 

sensors. The monitor is worn on the upper left arm, midway between the olecranon and 

acromion processes. The SWA has a rechargeable battery that lasts approximately 7 days. 

The data are downloaded via a USB cord to a computer and accessed through monitor-

specific software. Previously reported findings indicate the SWA to be valid in estimating 
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EE at rest and during level walking at two (1.25 and 1.75 m•s-1) speeds (Vernillo, 

Savoldelli, Pellegrini, & Schena, 2015). 

Oxycon Mobile (OM; Carefusion Germany 234 GmbH, Hoechberg, Germany). 

The OM is a portable metabolic analyzer that was used as the criterion measure for EE 

measurements. The analyzer was calibrated before each session based on manufacturer’s 

instructions. The OM includes two small portable units (a sensor and a receiver) that can 

be attached to a harness and strapped around a person’s chest or back. Gas volumes are 

measured through a triple VTM turbine that connects to the sensor unit and a gas-

collecting face mask. Gas is sampled via a sampling tube connected to the sensor unit and 

turbine. The OM can be paired with Polar technology to monitor HR. The measured 

parameters (such as the gas and air flow signals or HR) are telemetrically sent by the 

units to PC-based software (JLAB, Carefusion Germany 234 GmbH, Hoechberg, 

Germany). In a previous validation investigation, the OM measured comparable VO2, 

carbon dioxide production (VCO2), and ventilation to the Douglas bag method during 

different intensities (50 W, 100 W, 150 W, and 200 W) on a cycle ergometer (Rosdahl, 

Gullstrand, Salier-Eriksson, Johansson, & Schantz, 2010).  

 Digital video device (iPad, Apple Inc., Cupertino, CA). This video device was 

used as the reference method to compare actual steps and estimated step counts by the 

activity monitors. The device was positioned next to the treadmill to record participant’s 

lower limbs during the 10-minute bouts of treadmill walking and running.  
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Procedures 

 Participants reported to the laboratory on three occasions, each separated by at 

least 48 hours. Participants were asked to abstain from exercise and alcohol and caffeine 

consumption 24 hours prior to each visit. During the first visit, participants completed a 

pre-participation health history questionnaire (ACSM, 2014) and a physical activity 

questionnaire (Global Physical Activity Questionnaire, World Health Organization, 

Geneva, Switzerland). Then, resting HR, BP, and anthropometric and body composition 

assessments were completed. The resting HR was used to calculate moderate (40% - < 

60% of HR reserve) and vigorous (60-84% of HR reserve) intensity target HR zones 

(HRZ; Garber et al., 2011). Participants’ demographic data (i.e. sex, age, and hand 

dominance) and smoking status were also collected and recorded during the visit.  

Next, participants were fitted with a gas collection mask (Hans Rudolph Inc., V2 

Mask, Shawnee, KS) and the OM for familiarization. After familiarization, participants 

performed an accommodation session of three, 10-minute ambulation bouts on a 

motorized treadmill (Fitnex, Dallas, TX) with 10-minute rest periods between each bout 

(Morgan, Martin, Krahenbuhl, & Baldini, 1990). For the initial 10-minute bout, the 

treadmill speed was maintained at 1.34 ms-1. The second 10-minute bout was used to 

determine workloads for walking within the moderate HRZ and the third 10-minute bout 

was used to determine workloads for running within the vigorous HRZ. This was 

accomplished by having the participants walk at a starting speed of 1.34 ms-1 in the first 

two minutes of the second bout and by having the participants run at a starting speed of 

1.8 ms-1 in the first two minutes of the third bout. Then, the workload was increased by 
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asking participants if they wanted speed and/or grade increased until steady state HRs 

(defined as HR difference of less than 5 beats per minute; bpm, between the second and 

third minute at the specific speed and/or grade) at the low and high ends of each intensity 

HRZ were obtained. To monitor HR, participants wore the PM. The speeds and/or grades 

eliciting HR values in the appropriate intensity ranges were recorded to be used during 

visits 2 and 3.  

After the treadmill accommodation, participants rested in a seated position until 

HR returned within 10 bpm of the baseline level. Participants then completed two, 10-

minute familiarization periods (one for the moderate and one for the vigorous intensity) 

on a stationary leg ergometer (828E Monark Exercise AB, Verberg, Sweden). The 

pedaling frequency was kept constant at 70 rpm and the resistance (kilopond) was 

progressively increased based on participants’ HR response until steady state HRs near 

the low and high ends of each intensity HRZ were achieved. The resistances that elicited 

the appropriate HR values were recorded and used during the next two visits.  

Participants returned to the laboratory for visits 2 and 3 during the morning hours 

(6 am-10 am), after an overnight fast, to complete counterbalanced treadmill and cycling 

protocols. Upon arrival to the laboratory, participants’ body mass was obtained. Next, all 

activity monitors were initialized using each participant’s personal information (i.e. age, 

sex, body mass, height, smoking status, and hand dominance) and synchronized with a 

laptop computer. Then, the activity monitors, the Ant+ HR monitor, the PM, and the OM 

were donned. The SWA was placed on the left triceps and the FBS and the GVF were 

worn on the right and left wrist in a counterbalanced order across participants and 
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protocols. The PM monitor was placed around the chest at the level of the xyphoid 

process and the Ant+ HR monitor was strapped directly below. Participants then 

completed the treadmill or cycling protocols.  

The treadmill protocol consisted of counterbalanced 10-minute walking in the 

moderate HRZ and 10-minute running in the vigorous HRZ, each followed by a recovery 

period until participant’s HR returned within 10 bpm of the baseline level. The treadmill 

was adjusted to the personalized workload based on the speed and/or grade recorded in 

the first visit. The investigator initiated all activity monitoring devices and then instructed 

the participant to step on the treadmill belt. Holding the treadmill handrails during 

ambulation was not permitted. Heart rate was continuously monitored and, if necessary, 

the investigator adjusted the speed and/or grade to ensure participants were exercising 

within the desired intensity range. At the end of the 10 minutes, participants were 

instructed to grasp the handrails and straddle the belt. Data recording by the activity 

monitors was immediately stopped.  

For the cycling protocol, participants performed two, 10-minute bouts within the 

moderate and vigorous HRZs in a counterbalanced order. Each bout was also followed by 

a recovery period. To begin, participants pedaled at 70 rpm while the investigator 

adjusted the cycle ergometer to the desired resistance. Then, all activity monitors were 

activated. Participants were instructed to maintain pedaling frequency at 70 rpm 

throughout the 10 minutes. The PM constantly monitored HR and, if necessary, the 

resistance was adjusted to maintain HR within the desired intensity. At the end of the 10 

minutes, participants stopped pedaling and the monitors were stopped.  
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Data processing  

Criterion measures. Data acquired from the OM were processed using the 

manufacturer’s software. The calculation of EE (kcal) from the OM is based on software 

specific algorithms considering urea nitrogen concentration and measured respiratory 

exchange ratio (RER) obtained by breath-by-breath VO2 and VCO2 analysis. Because 

urea nitrogen concentration was not attained in the study, a constant value of 15 g/day set 

by the program was used in the computation of EE. To allow for direct comparison 

between the activity monitors and the criterion measure, the OM minute-by-minute EE 

for each 10-minute bout was summed to obtain a total EE value. The HR measured by the 

PM was received and telemetrically transmitted by the OM receiver unit to the software 

and accessed at the end of the sessions. Minute-by-minute HR values were added and 

then divided by 10 to obtain average HR (HRavg) for each activity bout. The highest HR 

reached during each activity bout (HRmax) was acquired by analyzing 5-second HR 

averages and recording the highest average value. The actual step count recorded by the 

digital video device was observed and recorded after completing the sessions. A clicker 

was used to count the observed steps. The running bouts were viewed in slow motion to 

avoid miscounting steps.  

Activity monitors. To optimize activity recording by the FBS, the spinning, 

walking, and running settings were selected in respect to both cycling, moderate 

treadmill, and vigorous treadmill bouts. For the GVF, EE estimation was optimized by 

wearing the Ant+ HR monitor and selecting the HR settings for all treadmill and cycling 

bouts. Upon completion of each activity bout, the GVF and FBS were wirelessly synced 
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to a smartphone to access total EE estimates, step count, and average and maximal HR 

through monitor-specific mobile applications. However, the step count estimated by the 

GVF had to be determined by calculating the difference between step numbers noted 

from the monitor’s display at the start and then again at the end of the treadmill bouts. 

The data obtained by the SWA were downloaded via a USB cable to a computer-based 

program and processed at the end of each session. The minute-by-minute EE and minute-

by-minute step count data were combined to provide 10-minute estimates for each bout.  

Statistical analyses 

Descriptive characteristics were calculated for all study variables and reported as 

means ± standard deviations. Pearson correlations were calculated to assess overall 

group-level associations between the criterion measures and the activity monitors. Root 

mean square error (RMSE) was calculated to indicate overall measurement error. To 

examine measurement agreement for all variables between the criterion measures and the 

activity monitors, 95% equivalency testing analyses were performed. The estimates by 

the monitors were considered equivalent to the criterion-measured values if the 90% 

confidence intervals (CI) of the mean estimates fell within ±10% of the mean measured 

values. This approach has been used elsewhere (Bai et al., 2016; Lee, Kim, & Welk, 

2014). Bland-Altman plots (Bland & Altman, 1999) with the corresponding 95% limits of 

agreement and a regression line were used to graphically represent individual variations 

and to examine systematic bias in the EE estimates. The estimated and measured means ± 

standard deviations and the 90% CI were obtained using the IBM SPSS statistical 

software package, version 24 (IBM Corp., Armonk, NY).   
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Results 

 Participants (N = 34, age = 25.8 ± 4.9 years, height = 171.7 ± 8.4 cm, body mass 

= 76.6 ± 18.8 kg, percent body fat = 15.5 ± 7.8%) completed two visits during which they 

performed moderate and vigorous intensity treadmill and cycling activities in a 

counterbalanced order. During the data collection process, some measuring device data 

were lost due to technical issues. Furthermore, one female participant did not complete 

the treadmill session due to illness, resulting in varying sample sizes for the measured 

variables across activity bouts. The varying sample size can be found in Tables 1, 2, and 

3 for EE, HRavg and HRmax, and step count, respectively.  

As shown in Table 1, the activity monitors produced lower EE values compared 

to the OM across all activity bouts. The measurement error increased at higher intensities 

as signified by higher RMSE for vigorous intensity bouts compared to moderate intensity 

bouts. The activity monitors tended to underestimate HRavg but yielded comparable 

HRmax values to the PM (Table 2). Finally, the activity monitors underestimated actual 

step count for both treadmill bouts (Table 3).  

 When assessing the EE correlation matrix between activity monitors and the OM, 

the monitors had the strongest relationship with the OM during the vigorous intensity 

(Table 4) treadmill bout, with the SWA having the strongest correlation, followed by the 

FBS, and the GVF. Strong correlation between the monitors and the OM was still found 

for the moderate intensity treadmill bout. When assessing the HR correlation matrix, the  
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Table 1 

 

Descriptive Statistics and Root Mean Square Error for Energy Expenditure Obtained 

by the Oxycon Mobile and Activity Monitors 

 

Mode / Intensity n EE (kcal) RMSE 

Cycling / Moderate    

OM  34             88.2 ± 16.5 - 

FBS 34             63.0 ± 19.2            30.6 

GVF  34             75.3 ± 17.4            19.1 

SWA 32             44.6 ± 18.6            41.0 

 

Cycling / Vigorous 
   

OM  33           114.7 ± 23.7 - 

FBS  33             85.0 ± 26.2            43.1 

GVF  32           113.2 ± 16.3            23.3 

SWA  32             52.8 ± 22.6            67.3 

    

Treadmill / Moderate    

OM  33             88.5 ± 20.9 - 

FBS  33             82.7 ± 16.2            15.7 

GVF  33             76.2 ± 17.2            21.2 

SWA 32             65.1 ± 12.8            28.1 

 

Treadmill / Vigorous 

 
  

OM  33           144.3 ± 31.6 - 

FBS  33           123.8 ± 23.1            26.1 

GVF  32           124.7 ± 20.6            27.7 

SWA 32           123.0 ± 22.7            61.5 

Note. EE = Energy expenditure; FBS = Fitbit Surge; GVF = Garmin Vívofit; OM = 

Oxycon Mobile; RMSE = Root mean square error; SWA = SenseWear Armband. 



 

 

Table 2 

 

Descriptive Statistics and Root Mean Square Error for Average and Maximal Heart Rate for the Polar and Activity Monitors 

 

Mode / Intensity n Average HR (bpm) RMSE n Maximal HR (bpm) RMSE 

Cycling / Moderate       

PM  34         122.3 ± 5.6 - 34           130.8 ± 6.5 - 

FBS 34         109.3 ± 14.8        20.2 34           129.1 ± 8.3         5.8 

GVF  32         120.1 ± 6.0          2.4 33           130.2 ± 6.9         1.2 

 

Cycling / Vigorous 
   

 
  

PM 34         151.2 ± 7.0 - 34           160.0 ± 6.4 - 

FBS  34         130.9 ± 19.2        28.8 34           159.5 ± 6.0         2.7 

GVF  32         147.0 ± 7.2          5.0 33           159.8 ± 6.6         0.7 

       

Treadmill / Moderate       

PM 33         123.1 ± 5.6 - 32           131.7 ± 6.4 - 

FBS  33         111.9 ± 10.8        14.1 33           128.2 ± 7.9         6.7 

GVF  30         117.0 ± 12.6        13.7 31           129.8 ± 11.1         8.9 

 

Treadmill / Vigorous 
      

PM  32         159.3 ± 8.0 - 32           169.6 ± 7.6 - 

FBS  33         148.3 ± 7.1        11.8 33           168.2 ± 9.0         5.4 

GVF  30         152.0 ± 9.5          9.2 29           169.7 ± 8.0         0.9 

Note. bpm = Beats per minute; FBS = Fitbit Surge; GVF = Garmin Vívofit; HR = Heart rate; PM = Polar monitor; RMSE = 

Root mean square error. 

6
0
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Table 3 

 

Descriptive Statistics and Root Mean Square Error for Steps during the Treadmill 

Bouts 

 

Intensity n Steps RMSE 

Moderate    

Video  32             1220.5 ± 53.6 - 

FBS 33             1101.39 ± 123.9                175.1 

GVF 32             1123.2 ± 148.0                185.1 

SWA 32             1162.8 ± 61.8                  71.6 

 

Vigorous 

 
  

Video 30             1654.0 ± 110.1 - 

FBS 33             1607.6 ± 106.3                  71.7 

GVF 32             1647.8 ± 109.8                  25.1 

SWA 32             1584.1 ± 70.5                102.9 

Note. N = 34. FBS = Fitbit Surge; GVF = Garmin Vívofit; RMSE = Root mean square 

error; SWA = SenseWear Armband. 
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Table 4 

 

Pearson’s Correlation for Energy Expenditure between the Oxycon Mobile and 

Activity Monitors 

 

Mode / Intensity FBS GVF SWA 

Cycling / Moderate     

OM           .09           .43*          .52** 

FBS            1           .33          .17 

GVF             1          .16 

 

Cycling / Vigorous  
   

OM           .24           .34          .37* 

FBS            1           .34          .18 

GVF             1          .32 

    

Treadmill/ Moderate    

OM           .71**           .59**          .63** 

FBS            1           .71**          .60** 

GVF             1          .37* 

 

Treadmill / Vigorous 
   

OM           .74**           .66**          .88** 

FBS            1           .77**          .85** 

GVF             1          .78** 

Note. FBS = Fitbit Surge; GVF = Garmin Vívofit; OM = Oxycon Mobile; SWA = 

SenseWear Armband. *p < .05, **p < .01. 
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GVF produced the strongest relationship with the PM. Strong correlations for HRavg 

between the GVF and the PM were found for the moderate and vigorous intensity cycling 

bouts. Similarly, the GVF was strongly correlated with the PM for session HRmax during 

the moderate intensity cycling, vigorous intensity cycling, and vigorous intensity 

treadmill bouts (Table 5). Pearson’s correlation analysis for step count revealed that steps 

estimated by the GVF strongly correlated with the video observation for the vigorous 

intensity bout, but had a weak correlation with the criterion measure for the moderate 

intensity bout (Table 6.). A similar pattern was found for the FBS, which was strongly 

correlated with the video observation for the vigorous intensity bout, but had a weak 

relationship with the criterion measure for the moderate intensity bout. The SWA had a 

strong correlation with the video observation for both intensity bouts.  

 The equivalency testing analyses for agreement in EE (Figure 1) indicated that the 

activity monitors were not equivalent to the OM for any activity bout except for the GVF 

during the vigorous intensity cycling bout, indicated by the monitor’s 90% CI (lower 

limit: 108.3; upper limit: 118.1 kcal) within the ±10% of the OM measured mean EE 

(103.7; 126.7 kcal). During the moderate intensity treadmill bout, the FBS 90% CI 

interval was nearly entirely contained within the equivalency zone. The lower limit (77.9 

kcal) missed the lower bound (79.7 kcal) of the equivalency zone by only 1.8 kcal 

(Figure 1c). Similar pattern was seen for the GVF during the moderate intensity cycling 

bout, where the lower limit of the 90% CI (70.0 kcal) missed the lower bound (74.0 kcal) 

of the equivalency zone by 4 kcal (Figure 1a). For the HR equivalency analysis, estimates 

from the FBS and GVF were considered equivalent to the PM, with the exception of   
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Table 5 

 

Pearson’s Correlation for Average and Maximal Heart Rate between the Polar and 

Activity Monitors 

 

 Average HR Maximal HR 

Mode / Intensity FBS GVF FBS GVF 

Cycling / Moderate      

PM        .20       .97**       .73**       .99** 

FBS         1       .20        1       .84** 

GVF         1         1 

 

Cycling / Vigorous  
    

PM       -.30       .96**        .91**       .99** 

FBS         1     -.22        1       .91** 

GVF         1         1 

     

Treadmill/ Moderate     

PM        .58**       .28       .69**       .59** 

FBS         1       .08        1       .29 

GVF         1         1 

 

Treadmill / Vigorous 
    

PM        .73**       .83**       .54**       .99** 

FBS         1       .62**        1       .72** 

GVF         1         1 

Note. FBS = Fitbit Surge; GVF = Garmin Vívofit; HR = Heart rate; PM = Polar 

monitor. *p < .05, **p < .01. 
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Table 6 

 

Pearson’s Correlation for Steps between the Activity Monitors and Video Observation 

during the Treadmill Bouts 

 

Intensity FBS GVF SWA 

Moderate    

Video           .08         -.05         .73** 

FBS           1         .49**         .13 

GVF           1        -.06 

SWA            1 

 

Vigorous 
   

Video           .84**        .98**         .64** 

FBS           1        .83**         .56** 

GVF          1         .61** 

SWA            1 

Note. FBS = Fitbit Surge; GVF = Garmin Vívofit; SWA = SenseWear Armband. **p < 

.01. 
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Figure 1. Equivalency testing for energy expenditure agreement between the Oxycon 

Mobile and activity monitors. 1a. The moderate intensity cycling bout. 1b. The vigorous 

intensity cycling bout. 1c. The moderate intensity treadmill bout.1d. The vigorous 

intensity treadmill bout. Vertical lines represent the ±10% equivalency zone of the mean 

measured energy expenditure by the Oxycon Mobile. *Within the equivalency zone. FBS 

= Fitbit Surge; GVF = Garmin Vívofit; OM = Oxycon mobile; SWA = SenseWear 

Armband.  
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HRavg obtained by the FBS during the moderate intensity treadmill bout (Table 7). The 

monitor’s lower level of the 90% CI missed the lower bound of the equivalency zone 

bound by 2 bmp. The step count equivalency analysis showed that only the SWA 

produced step count estimates equivalent to the video observation during the moderate 

intensity treadmill bout. All three activity monitors were equivalent to the video 

observation during the vigorous intensity treadmill bout (Table 8).   

 The distribution of individual error and systematic bias in the EE estimates were 

evaluated by Bland-Altman plots (Figures 2, 3, 4, and 5). The narrowest 95% limits of 

agreement during the moderate intensity cycling bout (Figure 2) were found for the SWA 

(difference = 68.3 kcal; Figure 2c), followed by the GVF (difference = 70.9 kcal; Figure 

2b), and the FBS (difference = 94.9 kcal; Figure 2a). The narrowest limits of agreement 

during the vigorous intensity cycling bout (Figure 3) were produced by the GVF 

(difference = 91.8 kcal; Figure 3b), followed by the SWA (difference = 104.2 kcal; 

Figure 3c), and the FBS (difference = 122.7 kcal; Figure 3a). During this bout, a 

significant slope for the regression analysis was found for the GVF. For the moderate 

intensity treadmill bout (Figure 4), the FBS had the narrowest limits of agreement 

(difference = 58.0 kcal; Figure 4a), followed by the SWA (difference = 64.3 kcal; Figure 

4c), and the GVF (difference = 68.6 kcal; Figure 4b). Significant slope was found for the 

SWA. Lastly, during the vigorous intensity treadmill bout (Figure 5), the narrowest limits 

of agreement were found for the SWA (difference = 62.7 kcal; Figure 5c), followed by 

the FBS (difference = 83.5 kcal; Figure 5a), and the GVF (difference = 93.1 kcal; Figure 

5b). Significant slope from the regression analysis was found for the FBS and SWA.  
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Table 7 

 

Equivalency Testing for Average and Maximal Heart Rate between the Polar and 

Activity Monitors 

 

 

Mode / Intensity -10% (bpm) 

90% CI (bpm) 

+10% (bpm) Variable Lower Upper 

HRavg Cycling / Moderate     

 FBS* 101.1 105.0 113.6 134.5 

 GVF* 101.1 118.3 121.9 134.5 

 Cycling / Vigorous     

 FBS* 136.1 125.3 136.5 166.4 

 GVF* 136.1 144.8 149.1 166.4 

 Treadmill / Moderate     

 FBS 110.8 108.8 115.1 135.4 

 GVF* 110.8 113.1 120.9 135.4 

 Treadmill / Vigorous     

 FBS* 143.4 146.2 150.4 175.2 

 GVF* 143.4 149.1 155.0 175.2 

      

HRmax Cycling / Moderate     

 FBS* 117.7 126.7 131.5 143.9 

 GVF* 117.7 128.1 132.2 143.9 

 Cycling / Vigorous     

 FBS* 144.0 157.7 161.2 176.0 

 GVF* 144.0 157.9 161.8 176.0 

 Treadmill / Moderate     

 FBS* 118.5 125.9 130.5 144.9 

 GVF* 118.5 126.4 133.2 144.9 

 Treadmill / Vigorous     

 FBS* 152.6 165.5 170.8 186.5 

 GVF* 152.6 167.1 172.2 186.5 

Note. bpm = Beats per minute; CI = Confidence interval; FBS = Fitbit Surge; GVF = 

Garmin Vívofit; HRavg = Average heart rate; HRmax= Maximal heart rate. *Within the 

equivalency zone. 



69 

 

 

  

Table 8 

  

Equivalency Testing for Steps between the Activity Monitors and Video for the 

Treadmill Bouts 

 

 

-10% 

90% CI 

+10% Intensity Lower Upper 

Moderate     

FBS 1098.5 1064.9 1137.9 1342.6 

GVF 1098.5 1078.8 1167.6 1342.6 

SWA* 1098.5 1144.3 1181.4 1342.6 

 

Vigorous 
    

FBS* 1488.6 1576.2 1638.9 1819.4 

GVF* 1488.6 1614.9 1680.7 1819.4 

SWA* 1488.6 1563.0 1605.2 1819.4 

Note. CI = Confidence interval; FBS = Fitbit Surge; GVF = Garmin Vívofit; SWA = 

SenseWear armband. *Within the equivalency zone. 
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Figure 2. Bland-Altman plots for differences in energy expenditure between the Oxycon 

Mobile and activity monitors for the moderate intensity cycling bout. 2a. Individual 

errors between the OM and the FBS. 2b. Individual errors between the OM and the GVF. 

2c. Individual errors between the OM and the SWA. FBS = Fitbit Surge; GVF = Garmin 

Vívofit; OM = Oxycon Mobile; SWA = SenseWear Armband. 
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Figure 3. Bland-Altman plots for differences in energy expenditure between the Oxycon 

Mobile and activity monitors for the vigorous intensity cycling bout. 3a. Individual errors 

between the OM and the FBS. 3b. Individual errors between the OM and the GVF. 3c. 

Individual errors between the OM and the SWA. FBS = Fitbit Surge; GVF = Garmin 

Vívofit; OM = Oxycon Mobile; SWA = SenseWear Armband. 
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Figure 4. Bland-Altman plots for differences in energy expenditure between the Oxycon 

Mobile and activity monitors for the moderate intensity treadmill bout. 4a. Individual 

errors between the OM and the FBS. 4b. Individual errors between the OM and the GVF. 

4c. Individual errors between the OM and the SWA. FBS = Fitbit Surge; GVF = Garmin 

Vívofit; OM = Oxycon Mobile; SWA = SenseWear Armband. 
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Figure 5. Bland-Altman plots for differences in energy expenditure between the Oxycon 

Mobile and activity monitors for the vigorous intensity treadmill bout. 5a. Individual 

errors between the OM and the FBS. 5b. Individual errors between the OM and the GVF. 

5c. Individual errors between the OM and the SWA. FBS = Fitbit Surge; GVF = Garmin 

Vívofit; OM = Oxycon Mobile; SWA = SenseWear Armband. 
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Discussion  

 The present study evaluated the accuracy of activity monitors including the FBS, 

GVF, and SWA in estimating EE, HRavg, HRmax, and steps during stationary cycling and 

treadmill activities at two relative intensities in healthy, physically active adults. The 

unique feature of the current study was that the accuracy of the activity monitors was 

assessed relative to each individual’s HRZs. In addition, evaluating accuracy by relative 

HR intensity may offer a more practical application of the results. In general, the activity 

monitors yielded lower EE compared to EE measured by the OM. The FBS and the GVF 

performed favorably in measuring HR, producing comparable HRavg and HRmax to the 

PM. The step analysis also revealed promising accuracy for the activity monitors when 

compared to the actual step count obtained via video observation.  

The EE analyses demonstrate that the activity monitors underestimate EE across 

all activity bouts with increased error at higher intensities (Table 1). Some monitors 

however, had more promising accuracy compared with the OM. For instance, the FBS 

was highly correlated (r = .77) with the OM, produced the lowest RMSE (15.7), and 

showed no systematic bias of individual errors with the narrowest limits of agreement 

(Figure 4a) during the moderate intensity treadmill bout. While the results from 

equivalency testing indicate that the FBS did not yield significantly equivalent EE 

estimates to the criterion measure (Figure 1c), it should be noted that the monitor’s 90% 

CI missed the lower bound of the equivalency zone by only 1.8 kcal. The GVF produced 

favorable results compared to the OM during the moderate intensity cycling bout. The 

GVF was moderately correlated with the OM (r = .43), yielded relatively low error 
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(RMSE = 19.1), and showed no systematic bias of individual errors (Figure 2b). Similar 

to the FBS, the equivalency testing suggests that GVF did not yield equivalent estimates 

to the measured EE (Figure 1b), with the monitor’s 90% CI missed the lower bound of 

the equivalency zone by 4 kcal. 

The heterogeneity of protocols in previous research poses challenges for 

comparison of findings across studies. In addition, some activity monitors have been 

utilized in validation research more than others. Only a few studies have examined the 

validity of the GVF in estimating EE, concluding the monitor underestimates EE during 

treadmill ambulation (Alsubheen, George, Baker, Rohr, & Basset, 2016; Price et al., 

2016). In the study by Price and colleagues (2016), the GVF underestimated EE with a 

systematic bias of 1.67 ± 1.21 kcal·min-1 across treadmill walking (0.70-1.80 ms-1) and 

with a systematic bias of 1.45 ± 3.10 kcal·min-1 across treadmill running (2.22-3.33 ms-1) 

speeds. A similar pattern for the GVF to systematically underestimate EE during the 

vigorous intensity (running) treadmill bout was observed in the present study (Figure 5b). 

Likewise, Alsubheen et al. (2016) reported that the GVF underestimated EE on average 

by 29.5% compared to indirect calorimetry. However, the differences between the 

monitor and indirect calorimetry decreased at higher intensities, which is in contrast to 

the results of the present study. In general, the present investigation and the study by 

Alsubheen et al. (2016) and Price et al. (2016) collectively found a trend for the GVF to 

underestimate EE during treadmill ambulation. In addition, the current study included 

evaluation of the GVF in estimating EE during stationary cycling. To the author’s 

knowledge, no other study has done so. Interpretation of the monitor’s results is 
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challenging due to apparently contradicting findings. For instance, while during the 

vigorous intensity cycling bout, the GVF yielded equivalent EE based on the monitor’s 

90% CI within the equivalency zone, it did not correlate with the OM (r = .34), and 

systematically underestimated EE based on Bland-Altman analysis (Figure 3b). It is 

difficult to resolve how the monitor can produce equivalent group-level estimates and 

yet, not be correlated with the OM.  

Evaluation of the FBS accuracy revealed that the monitor performed poorly for 

the cycling bouts with increased error during higher intensity bouts (Table 1). While there 

was no apparent systematic bias for the FBS during the cycling bouts, the monitor did not 

correlate with the OM (Table 4) and the equivalency testing showed the monitor not to be 

equivalent to the OM (Figures 1a-1b). The monitor performed better during the moderate 

intensity treadmill bout, but during the vigorous intensity treadmill bout, it did not 

produce equivalent EE estimates to the OM (Figure 1c), with systematic EE 

underestimation (Figure 5a) and relatively high RMSE (26.1). These findings are similar 

to results of another study, where the FBS underestimated EE with a mean bias of 25.0 ± 

16.0 kcal and produced 90% CI outside of the equivalency zone during structured periods 

of walking and running (0.9-2.7 ms-1) on a treadmill (Massey, Funk, Thiebaud, & Patton, 

2017). It is interesting to note that older versions of wrist-worn Fitbit monitors, such as 

the Fitibit Flex or Fitbit Charge, have been reported to overestimate treadmill walking 

and running EE (Bai et al., 2016; Diaz et al., 2015; Dooley et al, 2017; Nelson et al., 

2016). Although EE calculation is based on proprietary algorithms, the inclusion of PPG 

with the FBS may contribute to the discrepancy in the accuracy across models.  
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The accuracy of the SWA was also concurrently examined in this study. Based on 

the results from equivalency testing, the SWA was not equivalent to the OM for any of 

the activity bouts (Figures 1a-1d), yielding lower EE estimates compared to the OM with 

relatively high RMSE. As seen in Table 1, the measurement error increased at higher 

intensities. These findings are in accordance with previous research demonstrating that 

the SWA underestimated EE during treadmill running (Drenowatz & Eisenmann, 2011; 

Koehler, deMarees, Braun, & Schaenzer, 2010) and stationary cycling at two different 

(150 W and 450 W) workloads (Jakicic et al., 2004). Drenowatz and Eisenmann (2011) 

found that the measurement error increased across intensity levels (65, 70, and 85% of 

maximal VO2) and concluded that the larger measurement error at higher intensities was 

due to a ceiling effect in EE measurement by the monitor. In contrast to these and current 

findings, an overestimation of EE by the SWA at exercise intensities up to 3.6 ms-1 (8 

mph) has been reported (King, Torres, Potter, Brooks, & Coleman, 2004). The difference 

in the results may be attributed to the outdated monitor algorithm used in the King et al. 

(2004) study.  

The monitors seem to be more accurate in measuring HRavg and HRmax compared 

to their accuracy in estimating EE. The results of equivalency testing show that the FBS 

and GVF measured HRavg and HRmax that were equivalent to the PM across all activity 

bouts with the exception of the FBS during the moderate intensity treadmill bout (Table 

5). However, the monitor’s 90% CI missed the lower bound of the equivalency zone 

bound only by 2 bmp. The RMSE (Table 1) suggests that the monitors performed better 

in detecting HRmax than HRavg indicated by lower measurement errors. For example, 
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during the vigorous intensity cycling bout, the FBS produced relatively high RMSE for 

HRavg (28.8), but yielded considerably lower RMSE for HRmax (2.7). The same trend was 

seen for both wrist-worn monitors across all activity bouts.  

In general, the GVF had lower measurement error for both HR variables 

compared to the FBS. The implementation of a HR strap (GVF) as opposed to PPG 

technology (FBS) to obtain HR measurements may contribute to the improved accuracy 

of the GVF. Existing literature evaluating the accuracy of various consumer-based 

monitors utilizing PPG technology demonstrates poor accuracy (Dooley et al., 2017; 

Wallen, Gomersall, Keating, Wisløff, & Coombes, 2016) and the tendency to 

underestimate HR during a variety of activities (Stahl, An, Dinkel, Noble, & Lee, 2016; 

Wallen et al., 2016). The Fitbit Charge was found to underestimated HR (105.0 ± 30.6 

bpm) compared to the criterion measure (109.1 ± 29.3 bmp) across treadmill walking 

(0.8-1.8 ms-1) and running (2.2- 2.7 ms-1) speeds. However, the monitor was found to be 

equivalent to the criterion measure based on equivalency testing. Although a different 

model of the Fitbit monitor was used, these findings are similar to those of the current 

study where the FBS produced lower HRavg across activities, but was found to be 

equivalent to the criterion measure with the exception of the moderate intensity treadmill 

bout.  

 Caution should, however, be taken when interpreting the results for HR accuracy. 

While the GVF and FBS produced relatively accurate HR measurements based on 

equivalency testing, the monitors did not correlate with the PM (Table 5) and produced 

relatively high RMSE (Table 2) for some activity bouts. This is specifically true for the 
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FBS during the cycling bouts. The reason for this occurrence can be potentially explained 

by sampling error of the monitor during the cycling activity. Although this was not a part 

of the study purpose, an intermittent HR detection by the monitor was observed during 

data collection. While it is not clear what caused the HR signal to be lost for some 

participants, it may be that flexion of the wrist interrupted the HR-measuring ability of 

the monitor. Another possible explanation is that compared to treadmill exercise, lower 

blood flow to the upper extremities during leg ergometry may interfere with the 

monitor’s ability to detect pulse. This may explain the improved measurement error and 

correlation with the PM during the treadmill bouts. Interestingly, during the moderate 

intensity treadmill bout, the GVF did not correlate with the PM (r = .28), producing the 

highest RMSE (13.7). The second highest RMSE (11.8) for this monitor occurred during 

the vigorous intensity treadmill bout. In previous research, decreased correlation between 

HR monitors and ECG during treadmill activities was attributed to upper body movement 

(Lee & Gorelick, 2011; Montgomery et al., 2009), which may elucidate the lower 

correlation and accuracy for the treadmill bouts in the present study. 

 The results of the step count analysis indicated that the monitors tended to 

underestimate actual step count as indicated by lower mean values compared to the video 

observation (Table 3). However, some of the activity monitors displayed a promising 

ability to measure step count. The SWA showed good measurement agreement with the 

video observation based on equivalency analysis (Table 8) and high correlation with the 

actual step count (Table 5) for both intensity bouts. Improved accuracy of the monitor 

was detected for the moderate intensity (walking) based on smaller RMSE in comparison 



80 

 

 

to vigorous intensity (running). In previous work, the SWA was found to underestimate 

steps during indoor and outdoor walking, with higher underestimation at slow compared 

to fast speeds (Storm, Heller, & Mazzà, 2015). The ambulation activities and statistical 

analyses differed between the current study and the study by Storm et al. (2015), 

therefore, careful consideration should be given to the interpretation of findings.  

 As for the wrist-worn monitors, the GVF and FBS produced equivalent step count 

with strong correlation with the criterion measure only during the vigorous intensity bout. 

The measurement errors for the GVF and FBS were also lower at the higher intensity 

treadmill bout. The findings for the accuracy of the GVF in measuring steps is in 

agreement with previous work reporting that the monitor tended to underestimate actual 

steps, but the accuracy increased at the fastest treadmill speed (2.2 ms-1) compared to 

slower treadmill speeds (Chen et al., 2015). Alsubheen et al. (2016) found that the GVF 

underestimated steps during treadmill walking at 0% incline, but no significant 

differences were observed at 5% and 10% inclines. Collectively, it appears that the 

monitor has a tendency to underestimate actual step count with improved accuracy as 

intensity of the activity increases. Similar findings have been reported for the wrist-worn 

Fitbit monitor, although an older Fitbit model (Fitbit Flex) has been implemented in step 

validation research (Chen et al., 2015; Diaz et al., 2015).  

 There are some limitations of the current study. First, the sample population 

included only young (18-45 years), healthy, and physically active individuals. Thus, the 

generalization of the study findings should not be implemented with other groups of 

different ages, fitness levels, and/or health status. Secondly, application of the results is 
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limited to the activities during which the monitors were examined, including stationary 

cycling and treadmill ambulation. Lastly, the study included validation of only three 

activity monitors. In addition, the SWA has since been discontinued and is no longer 

available in the market. Future research should focus on measurement accuracy of 

activity monitors during a variety of physical activities, and include a more diverse 

sample to address how the accuracy of these monitors is impacted under a variety of 

conditions.  

 In conclusion, the current study demonstrates that the FBS, GVF, and SWA tend 

to underestimate exercise variables during treadmill ambulatory activities and stationary 

cycling when compared to the criterion measures, specifically at higher intensities. 

However, some of these estimates were promising. The activity monitors appear to be a 

valuable tool in measuring HR and step count while the accuracy of EE estimates should 

be interpreted with caution. While the monitors included in the current study 

underestimated EE, it may be more beneficial for weight loss purposes for activity 

monitors to underestimate rather than overestimate EE. The current findings provide 

consumers and researchers with insight on the functionality of these activity monitors 

during common aerobic activities including treadmill walking, running, and stationary 

cycling performed at relative HR intensity. The current results indicate acceptable 

validity of the activity monitors in measuring HRavg, HRmax, and step variables. The 

utility of the findings may be valuable for personal measurement of these physical 

activity variables during exercise. It is important for individuals to obtain accurate real-

time physical activity feedback to help maintain or increase their physical activity levels. 
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In addition, the monitors used in the current study may also be utilized in research 

applications for behavioral and measurement purposes in place of expensive and complex 

laboratory equipment. 



83 

 

 

CHAPTER III REFERENCES 

Allen, J. (2007). Photoplethysmography and its application in clinical physiological 

measurement. Physiological Measurement, 28(3), R1-R39. 

Alsubheen, S. A. A., George, A. M., Baker, A., Rohr, L. E., & Basset, F. A. (2016). 

Accuracy of the Vivofit activity tracker. Journal of Medical Engineering & 

Technology, 40(6), 298-306. 

American College of Sports Medicine. (2014). ACSM's guidelines for exercise testing 

and prescription, (9th ed.). Baltimore: Lippincott, Williams & Wilkins. 

Bai, Y., Welk, G. J., Nam, Y. H., Lee, J. A., Lee, J. M., Kim, Y., . . . Dixon, P. M. 

(2016). Comparison of consumer and research monitors under semistructured 

settings. Medicine and Science in Sports and Exercise, 48(1), 151-158.  

Benito, P. J., Neiva, C., González-Quijano, P. S., Cupeiro, R., Morencos, E., & Peinado, 

A. B. (2012). Validation of the SenseWear armband in circuit resistance training 

with different loads. European Journal of Applied Physiology, 112(8), 3155-3159. 

Blair, S. N., Goodyear, N. N., Gibbons, L. W., & Cooper, K. H. (1984). Physical fitness 

and incidence of hypertension in healthy normotensive men and women. Journal 

of the American Medical Association, 252(4), 487-490. 

Bland, J. M., & Altman, D. G. (1999). Measuring agreement in method comparison 

studies. Statistical Methods in Medical Research, 8(2), 135-160. 

 

 



84 

 

 

Brage, S., Brage, N., Ekelund, U., Luan, J. A., Franks, P. W., Froberg, K., & Wareham, 

N. J. (2006). Effect of combined movement and heart rate monitor placement on 

physical activity estimates during treadmill locomotion and free-living. European 

Journal of Applied Physiology, 96(5), 517-524. 

Bouten, C. V., Koekkoek, K. T., Verduin, M., Kodde, R., & Janssen, J. D. (1997). A 

triaxial accelerometer and portable data processing unit for the assessment of 

daily physical activity. IEEE Transactions on Biomedical Engineering, 44(3), 

136-147. 

Chen, M. D., Kuo, C. C., Pellegrini, C. A., & Hsu, M. J. (2016). Accuracy of wristband 

activity monitors during ambulation and activities. Medicine and Science in 

Sports and Exercise, 48(10), 1942-1949. 

Colley, R. C., & Tremblay, M. S. (2011). Moderate and vigorous physical activity 

intensity cut-points for the Actical accelerometer. Journal of Sports Sciences, 

29(8), 783-789. 

Diaz, K. M., Krupka, D. J., Chang, M. J., Peacock, J., Ma, Y., Goldsmith, J., . . . 

Davidson, K. W. (2015). Fitbit®: An accurate and reliable device for wireless 

physical activity tracking. International Journal of Cardiology, 185, 138-140. 

Dooley, E. E., Golaszewski, N. M., & Bartholomew, J. B. (2017). Estimating accuracy at 

exercise intensities: A comparative study of self-monitoring heart rate and 

physical activity wearable devices. Journal of Medical Internet Research, 

mHealth and uHealth, 5(3), e34. 



85 

 

 

Drenowatz, C., & Eisenmann, J. C. (2011). Validation of the SenseWear Armband at 

high intensity exercise. European Journal of Applied Physiology, 111(5), 883-

887.  

Evenson, K. R., Goto, M. M., & Furberg, R. D. (2015). Systematic review of the validity 

and reliability of consumer-wearable activity trackers. International Journal of 

Behavioral Nutrition and Physical Activity, 12(1), 1-22. 

Fitbit. (2016, May 16). How does Fitbit estimate how many calories I’ve burned? 

Retrieved from http://help.fitbit.com/articles/en_US/Help_article/1381. 

Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. 

M., . . . Swain, D. P. (2011). American College of Sports Medicine position stand. 

Quantity and quality of exercise for developing and maintaining cardiorespiratory, 

musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance 

for prescribing exercise. Medicine and Science in Sports and Exercise, 43(7), 

1334-1359. 

Garmin. (n.d.). Calorie terminology. Retrieved from https://support.garmin.com/ 

faqSearch/enUS/faq/content/lkl4cwCLlK7ox362uGQEV7 

Huang, Y., Xu, J., Yu, B., & Shull, P. B. (2016). Validity of FitBit, Jawbone UP, Nike+ 

and other wearable devices for level and stair walking. Gait and Posture, 48, 36-

41. 

 

 



86 

 

 

Jakicic, J. M., Marcus, M., Gallagher, K. I., Randall, C., Thomas, E., Goss, F. L., & 

Robertson, R. J. (2004). Evaluation of the SenseWear Pro Armband to assess 

energy expenditure during exercise. Medicine and Science in Sports and Exercise, 

36(5), 897-904. 

Karvonen, J., & Vuorimaa, T. (1988). Heart rate and exercise intensity during sports 

activities. Sports Medicine, 5(5), 303-311. 

King, G. A., Torres, N., Potter, C., Brooks, T. J., & Coleman, K. J. (2004). Comparison 

of activity monitors to estimate energy cost of treadmill exercise. Medicine and 

Science in Sports and Exercise, 36(7), 1244–1251. 

Kirk, S. E. (2016). Comparison of the Apple Watch, Fitbit Surge, and Actigraph GT9X 

Link in Measuring Energy Expenditure, Steps, Distance, and Heart Rate 

(Unpublished doctoral dissertation). Cleveland State University, Cleveland, OH.  

Koehler, K., deMarees, M., Braun H., & Schaenzer, W. (2010). Comparison of two 

portable devices for assessing energy expenditure during high-intensity running. 

Medicine and Science in Sports and Exercise, 42(5), S304–S305. 

Lee, C. M., & Gorelick, M. (2011). Validity of the Smarthealth watch to measure heart 

rate during rest and exercise. Measurement in Physical Education and Exercise 

Science, 15(1), 18-25. 

Lee, J. M., Kim, Y., & Welk, G. J. (2014). Validity of consumer-based physical activity 

monitors. Medicine and Science in Sports and Exercise, 46(9), 1840-1848. 



87 

 

 

Maddison, R., & Ni Muhurchu, C. (2009). Global positioning system: A new opportunity 

in physical activity measurement. International Journal of Behavioral Nutrition 

and Physical Activity, 23, 1489-1495. 

Massey, B. L., Funk, M. D.; Thiebaud, R., & Patton, J. C. (2017). Accuracy of wrist-

worn physical activity monitors to measure energy expenditure, International 

Journal of Exercise Science: Conference Proceedings, 9(2), Article 90. 

Montgomery, P. G., Green, D. J., Etxebarria, N., Pyne, D. B., Saunders, P. U., & 

Minahan, C. L. (2009). Validation of heart rate monitor-based predictions of 

oxygen uptake and energy expenditure. The Journal of Strength and Conditioning 

Research, 23(5), 1489-1495. 

Morgan, D. W., Martin, P. E., Krahenbuhl, G. S., & Baldini, F. D. (1990). Variability in 

running economy and mechanics among trained male runners. Medicine and 

Science in Sports and Exercise, 23(3), 378-383. 

Nelson, M. B., Kaminsky, L. A., Dickin, D. C., & Montoye, A. H. (2016). Validity of 

consumer-based physical activity monitors for specific activity types. Medicine 

and Science in Sports and Exercise, 48(8), 1619-1628. 

Palatini, P., Benetos, A., Grassi, G., Julius, S., Kjeldsen, S. E., Mancia, G., . . . Zanchetti, 

A. (2006). Identification and management of the hypertensive patient with 

elevated heart rate: Statement of a European Society of Hypertension consensus 

meeting. Journal of Hypertension, 24(4), 603-610.  



88 

 

 

Physical Activity Guidelines Advisory Committee. (2008). Physical activity guidelines 

advisory committee report, 2008. Washington, DC: US Department of Health and 

Human Services, A1-H14. 

Pickering, T. G., Hall, J. E., Appel, L. J., Falkner, B. E., Graves, J., Hill, M. N., . . . 

Roccella, E. J. (2005). Recommendations for blood pressure measurement in 

humans and experimental animals. Circulation, 111(5), 697-716. 

Pollock, M. L., Schmidt, D. H., & Jackson, A. S. (1980). Measurement of 

cardiorespiratory fitness and body composition in the clinical setting. 

Comprehensive Therapy, 6, 12-27.  

Price, K., Bird, S. R., Lythgo, N., Raj, I. S., Wong, J. Y., & Lynch, C. (2016). Validation 

of the Fitbit One, Garmin Vivofit and Jawbone UP activity tracker in estimation 

of energy expenditure during treadmill walking and running. Journal of Medical 

Engineering and Technology, 41, 208-215. 

Rosdahl, H., Gullstrand, L., Salier-Eriksson, J., Johansson, P., & Schantz, P. (2010). 

Evaluation of the Oxycon mobile metabolic system against the Douglas bag 

method. European Journal of Applied Physiology, 109(2), 159-171. 

Stahl, S. E., An, H. S., Dinkel, D. M., Noble, J. M., & Lee, J. M. (2016). How accurate 

are the wrist-based heart rate monitors during walking and running activities? Are 

they accurate enough? BMJ Open Sport and Exercise Medicine, 2(1), e000106. 

Storm, F. A., Heller, B. W., & Mazzà, C. (2015). Step detection and activity recognition 

accuracy of seven physical activity monitors. PLoS One, 10(3), e0118723. 



89 

 

 

Tucker, W. J., Bhammar, D. M., Sawyer, B. J., Buman, M. P., & Gaesser, G. A. (2015). 

Validity and reliability of Nike+ Fuelband for estimating physical activity energy 

expenditure. BMC Sports Science, Medicine and Rehabilitation, 7(1), 14-20.  

Vernillo, G., Savoldelli, A., Pellegrini, B., & Schena, F. (2015). Validity of the 

SenseWear armband to assess energy expenditure in graded walking. Journal of 

Physical Activity and Health, 12(2), 178-183. 

Wallen, M. P., Gomersall, S. R., Keating, S. E., Wisløff, U., & Coombes, J. S. (2016). 

Accuracy of heart rate watches: Implications for weight management. PloS one, 

11(5), e0154420. 

Welk, G. J., Schaben, J. A., & Morrow Jr, J. R. (2004). Reliability of accelerometry-

based activity monitors: A generalizability study. Medicine and Science in Sports 

and Exercise, 36(9), 1637-1645. 

  



90 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES FOR STUDY I 

  



91 

 

 

APPENDIX A 

 

Informed Consent Form 

  



92 

 

 

  



93 

 

 

  



94 

 

 

APPENDIX B 

 

IRB Approval Letter 

  



95 

 

 

  



96 

 

 

 

 

CHAPTER IV 

ACCURACY ASSESSMENT OF ACTIVITY MONITORS IN MEASURING ENERGY 

EXPENDITURE AND HEART RATE DURING A GYM-BASED ROUTINE 

Introduction  

Commercially-available activity monitors have become popular among 

consumers to maximize health and fitness benefits associated with aerobic and resistance 

training. These monitors allow tracking of personal activity patterns and monitoring of 

exercise intensity and energy expenditure (EE) to assist with outcomes such as weight 

control, improved health, and increased physical fitness (“Where are Wearable”, 2014, 

October 30). In addition, intervention research on wearable technology demonstrates the 

utility of consumer-based monitors in goal-setting, self-monitoring, and behavior change 

reinforcement (Ellingson, Meyer, & Cook, 2016; Kurti & Dallery, 2013; Wang et al., 

2015).  

Many activity monitors combine mechanical and physiological measures in a 

single device in an attempt to improve accuracy of EE estimates. For example, the 

SenseWear Armband (SWA; BodyMedia Inc., Pittsburgh, PA) is an accelerometer that 

integrates heat- and galvanic-related variables. The SWA was found to provide valid and 

reliable measures of EE (Reeve, Pumpa, & Ball, 2013; Vernillo, Savoldelli, Pellegrini, & 

Schena, 2015), but to underestimate EE at high exercise intensities (Benito et al., 2012; 

Drenowatz & Eisenmann, 2011).  
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It has been suggested that the addition of heart rate (HR) measurement to 

accelerometry-based monitors may enhance the performance of activity monitors in 

estimating EE (Plasqui & Westeerterp, 2005). Some monitors, such as the Garmin 

Vívofit (GVF), interface with chest straps to measure HR while other monitors, including 

the Fitbit Surge (FBS) or Apple Watch (APW), implement optical blood flow sensing 

technology called photoplethysmography (PPG) for HR detection.  

The accuracy of activity monitors is often examined during structured bouts of 

aerobic activities (Dooley, Golaszewski, & Bartholomew, 2017; Price et al., 2016; Stahl, 

An, Dinkel, Noble, & Lee, 2014; Wallen, Gomersall, Keating, Wisløff, & Coombes, 

2016). Due to the popularity of these monitors with the general public, it is important to 

evaluate the performance of commercial activity monitors during activities that simulate 

real-life conditions to establish their validity for personal measurement and intervention 

purposes. Therefore, the primary purpose of the current study was to examine the 

accuracy of EE estimates obtained by the FBS, GVF, and SWA against a portable 

metabolic analyzer during a gym-based session consisting of treadmill, cycling, and 

resistance activities in healthy, physically active individuals. The secondary purpose was 

to compare HR readings obtained by the FBS and GVF to a reference HR monitor. 

Methods 

Participants 

 The sample consisted of 37 male (n = 21) and female (n = 16) participants. 

Participants reported no major illnesses, medical complications, or musculoskeletal 

injuries. Physical activity level was assessed with a Global Physical Activity 
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Questionnaire (World Health Organization, Geneva, Switzerland) and all participants met 

the minimum physical activity recommendation criteria (Physical Activity Guidelines 

Advisory Committee report, 2008). Additionally, all participants had at least 1-year 

experience of resistance training and had engaged in resistance training exercises for at 

least 2 days a week over the past 6 months prior to study participation. All participants 

provided written informed consent (see Appendix A). The university Institutional Review 

Board approved the study (see Appendix B) 

Activity monitoring instruments 

Fitbit Surge (Fitbit Inc., San Francisco, CA). The FBS is a light-weight and 

water-resistant activity monitor that is worn on the wrist. The tracker is powered by a 

rechargeable battery that lasts up to 7 days. The monitor has a monochrome liquid crystal 

display (LCD) touch-screen display. It continuously monitors pulse rate, estimates EE, 

records steps, tracks distance covered and stairs climbed, and monitors sleep patterns. 

When enabled, a built-in global positioning system (GPS) receiver measures maximal 

and average pace, and tracks elevation and distance covered. A maximum of 35 hours of 

GPS data can be stored on the device. According to the manufacturer, estimated exercise 

EE can be enhanced by selecting an activity from a variety of exercise-specific modes. 

The FBS allows the consumer to set daily goals and tracks progress. Activity data are 

displayed on the monitor’s screen or can be later viewed and extracted after wirelessly 

synchronizing with a computer or a smartphone.  

Garmin Vívofit (Garmin Ltd, KS). The GVF is a small wrist-worn activity tracker 

that estimates EE, records steps, tracks distance traveled, and monitors sleep activity. It 
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features a move bar that indicates a period of inactivity that can be reset by short-term 

continuous bodily movement. The tracker has an option to pair with a HR transmitter to 

enable HR-monitoring during fitness activities. According to the manufacturer, this 

improves EE estimation. Replaceable coin cell batteries power the monitor for more than 

1 year. Data tracked are shown on a segmented LCD display. The GVF provides a 

personalized daily step goal based on prior activity levels. The monitor is water resistant 

up to 50 meters. Data recorded by the GVF can be wirelessly synchronized and viewed 

on a computer or smartphone application.  

SenseWear Armband Mini (BodyMedia Inc., Pittsburgh, PA). The SWA is a small 

armband device that estimates EE by incorporating accelerometry, heat flux, galvanic 

skin response, and skin temperature sensors. The SWA also monitors steps and provides 

time spent and intensity level of minute-by-minute activities. The SWA is worn on the 

back of the left arm, half-way between the Olecranon and Acromion processes. Data 

recorded by the armband are accessed by connecting the SWA to a computer via a 

universal serial bus (USB) cable.   

Oxycon Mobile (OM; Carefusion Germany 234 GmbH, Hoechberg, Germany). 

The OM is a portable metabolic analyzer including a sensor and a receiver unit with 

identical dimensions of 126 x 96 x 41 mm (length x width x height). The device weighs 

950 g including strap, battery, and mask. Data acquired by the measuring units are 

telemetrically transmitted to a base unit, which provides real-time data projected on a 

laptop screen via manufacturer-specific software (JLAB, Carefusion Germany 234 

GmbH, Hoechberg, Germany).  Calculated EE in kilocalories (kcal) is determined based 
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on software-specific algorithms that take into consideration urea nitrogen concentration 

(a constant value of 15 g/day set by the program) and respiratory exchange ratio (RER) 

obtained by breath-by-breath oxygen consumption (VO2) and carbon dioxide production 

(VCO2). The OM was calibrated before every session based on the manufacturer’s 

instruction. The HR data obtained by the PM (Polar Electro, Kempele, Finland) was 

received by the OM receiver unit and telemetrically transmitted to the software and 

accessed at the end of the sessions 

Procedures 

Visit one. On the first laboratory visit, the study procedures were explained, and 

participants signed the consent form. Then, participants completed the PA questionnaire 

and the health screening using pre-participation health history questionnaires (American 

College of Sports and Medicine; ACSM, 2017). After completing the paperwork, 

participants rested 5 minutes in a seated position prior to a resting blood pressure 

assessment. Participants’ sex, age, smoking status, and hand dominance were 

documented for activity monitor device configuration. Participants were asked to empty 

their pockets and remove heavy clothes and shoes for body mass (to the nearest 0.1 kg; 

Seca, Hamburg, Germany) and standing height (to the nearest 0.1 cm; Sunbeam Products 

Inc., Health O Meter, Boca Ratoon, FL) assessments. Body composition was then 

assessed with a Harpenden skinfold caliper (Baty International, England) using a 3-site 

skinfold procedure (chest, abdomen, and thigh for males; triceps, suprailiac, and thigh for 

females; Pollock, Schmidt, & Jackson, 1980). Percent body fat (BF%) was estimated 

from calculation of body density and population specific BF% formulas.  
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Following the resting assessments, participants were fitted with a gas collection 

mask (Hans Rudolph Inc., V2 Mask, Shawnee, KS) and the OM for familiarization. 

Participants were allowed to perform any activity (e.g. walking on a treadmill, 

performing body weight exercises) while wearing the equipment. When participants felt 

accustomed to the OM, the device and the mask were removed. Following 

familiarization, participants received this list of resistance exercises: back squat, step 

forward lunge, box step ups, leg press, dead lift, hamstring curls, dumbbell bench press, 

machine chest fly, seated cable rows, lat pulldown, reverse fly, shoulder press, dumbbell 

bicep curls, cable bicep curls, cable triceps extensions, dips, crunches, Russian twists, 

Superman, planks, and table tops. From this list, participants created their own resistance 

training routine to perform during the second visit. Participants were instructed to self-

select three upper body exercises, three lower body exercises, and two core exercises and 

weights enabling them to perform 8-12 repetitions for 2-4 sets (ACSM, 2017). At the end 

of the first visit, participants were shown the weight room and were allowed to 

familiarize themselves with any of the resistance training equipment and given the 

opportunity to ask questions about any of the exercises.  

Visit two. Participants reported to the laboratory in a 2-hour postprandial state and 

after refraining from exercise and consumption of alcohol and caffeine for the prior 24 

hours. Upon arrival, participants’ current body mass was assessed. Then, they were fitted 

with the activity measuring devices. The OM was attached to a harness that was fastened 

over the shoulders and the upper torso. The SWA was placed on the left triceps. The FBS 

and the GVF were worn on the right and left wrists, as per the manufacturer’s 
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recommendations, in a counterbalanced order across participants. Additionally, the PM 

was strapped around the participant’s chest right below the pectoralis muscles and an 

Ant+ (Dynastream Innovations Inc., Alberta, Canada) HR transmitter was placed directly 

below the PM. The Ant+ HR transmitter was used in conjunction with the GVF. Before 

data collection started, all devices were personalized to each participant. The wrist-worn 

monitors were synchronized with a smart phone (Apple Inc., Cupertino, CA) and the 

SWA was synchronized with a computer through the monitor specific program. 

After properly donning the measuring devices, participants completed a 75-

minute session comprised of 3 exercise bouts performed in a counterbalanced order 

across participants: 1) 15 minutes of level-grade treadmill running (Fitnex, Dallas, TX) at 

self-selected speeds. Participants were allowed to increase or decrease the speed at any 

time, but were instructed to sustain running for the entire 15 minutes; 2) 15 minutes of 

stationary cycling on a semi-recumbent bike (Biodex, Shirley, NY) or leg ergometer 

(828E Monark Exercise AB, Verberg, Sweden) at a self-selected intensity. Participants 

were allowed to adjust the pedaling frequency and/or resistance at any point during the 

activity; and 3) 35 minutes of resistance training routine, during which participants 

performed the resistance exercises selected on the first visit. Five-minute breaks 

following the first and second exercise bouts were included to facilitate transition to the 

next station, data recording, and resetting all devices for the following activity. 

Participants were instructed to perform the gym-based activities in the same manner in 

which they would perform a personal workout routine in their free-time.  
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Data processing 

Estimated EE from the activity monitors and the OM was recorded in kcals. 

Exercise EE, average HR (HRavg), and maximal HR (HRmax) data from the FBS and GVF 

were synchronized with a smart phone following each exercise bout and accessed from 

the monitor-specific mobile applications after the session. The EE estimates from the 

SWA were extracted using specific software (version 8.1) following completion of each 

exercise session. The EE obtained by the SWA was calculated based on proprietary 

algorithms that considered participant’s height, weight, age, sex, and hand dominance. 

The software reports the data in minute-by-minute values, which were summed for each 

activity bout to provide total EE estimates. The EE data measured by the OM were 

processed after the exercise sessions through manufacturer-specific software. Proprietary 

algorithms calculated EE estimates as minute-by-minute averages, therefore, the 

estimates were summed to represent total EE for each session bout. Because the PM 

technology can be paired with the OM, exercise HR data were also obtained through the 

OM software and reported as minute-by-minute readings. These HR minute-by-minute 

averages were averaged out for each exercise bout to provide HRavg estimates. The HRmax 

was determined by analyzing 5-second averages and reporting the highest average value 

for each segment of the session.  

Statistical analyses 

Descriptive statistics for participant characteristics, EE, HRmax, and HRavg are 

reported as means and standard deviations. The validity of EE, HRmax, and HRavg 

estimates from the activity monitors were analyzed for each bout separately. The EE 
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estimates were also combined and analyzed to represent whole-session estimates. 

Pearson’s correlations for EE, HRmax, and HRavg were computed to determine overall 

association with the criterion measures.  

Next, equivalency testing analyses were implemented to examine agreement 

between the activity monitors and the criterion measures for EE, HRavg, and HRmax. To 

determine if measurements were equivalent, 90% confidence intervals (CI) of the 

estimates and ± 10% equivalence zone for the mean of the criterion measures were pre-

determined (Bai et al., 2016; Lee, Kim, & Welk, 2014; Stahl et al., 2014). Mean absolute 

percentage error (MAPE) was computed to represent overall measurement error between 

the estimates and the criterion methods. The MAPE was calculated as [(|criterion measure 

– monitor|) / criterion measure] x 100. The monitors were considered to have a 

reasonable error rate if MAPE was ≤ 20% for EE (Bai et al., 2016; Lee et al., 2014) and ≤ 

10% for HRavg and HRmax (Dooley et al., 2017; Stahl et al., 2014). Lastly, Bland-Altman 

plots with 95% limits of agreements and a regression line were used to determine 

systematic bias of the EE estimates (Bland & Altman, 1999). The means and standard 

deviations, 90% CI, MAPE, Bland-Altman plots, and regression lines were obtained from 

the IBM SPSS statistical software package version 24 (IBM Corp., Armonk, NY).  

Results 

The 37 participants completed a gym-based session consisting of aerobic 

activities and resistance training performed at self-selected intensities. Descriptive 

statistics of the participants are reported in Table 1. There were no differences between 
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male and female participants for age, however, male participants were significantly taller, 

had a higher body mass, and lower BF% compared to female participants.  

During testing, some data were lost from each activity monitor. An initialization 

problem with the FBS for one participant caused that data from this monitor not to be 

recorded for the session. For another participant, there was a synchronization problem 

between the GVF and the smartphone during the stationary cycling and resistance 

training bouts. Lastly, the SWA-specific software encountered an error during data 

download and the data were lost for another participant’s session. In addition, the first 

five participants performed the stationary cycling bout on a semi-recumbent bike, but due 

to equipment malfunction, the remaining 32 participants completed the cycling bout on a 

stationary leg ergometer.  

In comparison to the OM, the wrist-worn activity monitors produced higher EE 

estimates for all segments of the exercise session (Table 2). The SWA overestimated EE 

during the treadmill running bout and underestimated EE for the rest. Analysis of overall 

measurement error revealed acceptable values (i.e. ≤ 20%) with the smallest MAPE 

across monitors being produced by the SWA during the whole-session EE estimates. 

During the treadmill running bouts, the SWA and GVF were found to have an acceptable 

measurement error. During this bout, the FBS produced its smallest measurement error,  
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Table 1 

 

Participants’ Descriptive Statistics 

 

Variable Males (n = 21) Females (n = 16) Full sample (N = 37) 

Age (years)         26.6 ± 5.0        26.7 ± 5.0          26.6 ± 5.0 

Height (cm)       177.0 ± 5.9     *164.4 ± 5.4        171.5 ± 8.5 

Body mass (kg)         85.2 ± 9.4       *65.6 ± 9.6          76.7 ± 13.6 

Body fat (%)         10.8 ± 4.0       *21.5 ± 5.0          15.4 ± 7.0 

Note. * = Significantly different from male participants (p < .01). 
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Table 2 

 

Descriptive Statistics and Mean Absolute Percentage Error for Energy Expenditure 

Obtained by the Oxycon Mobile and Activity Monitors 

 

Exercise bout n EE (kcal) MAPE (%) 

Stationary cycling    

OM  37          109.2 ± 25.8 - 

FBS 36          119.1 ± 42.5         33.0 ± 25.6 

GVF  36          127.8 ± 38.2         31.1 ± 24.4 

SWA 36            83.6 ± 30.7         30.4 ± 19.5 

    

Treadmill running    

OM  37          163.3 ± 39.3 - 

FBS  36          186.0 ± 38.5         21.9 ± 15.1 

GVF  37          178.9 ± 35.1         18.0 ± 16.0 

SWA  36          184.5 ± 36.9         16.6 ± 11.3 

    

Resistance training     

OM  37          198.1 ± 56.0 - 

FBS  36          243.9 ± 82.6         29.8 ± 25.1 

GVF  36          279.3 ± 112.8         52.3 ± 30.2 

SWA 36          182.8 ± 106.1         22.9 ± 28.5 

    

Whole session     

OM  37          470.6 ± 106.0 - 

FBS  36          549.0 ± 136.9         23.2 ± 18.1 

GVF  37          575.0 ± 165.1         30.6 ± 23.8 

SWA 36          450.9 ± 142.1         11.9 ± 10.5 

Note. EE = Energy expenditure; MAPE = Mean absolute percentage error; OM = 

Oxycon Mobile; FBS = Fitbit Surge; GVF = Garmin Vívofit; SWA = SenseWear 

Armband. 
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however, this error did not meet the acceptance criteria. During the resistance training 

bout, the GVF had the highest MAPE across monitors. 

Both monitors tended to underestimate HRavg compared to the PM for all exercise 

bouts, with the GVF yielding lower estimates than the FBS (Table 3). During these bouts, 

the wrist-worn monitors measured HRmax and HRavg with acceptable error rates (i.e. ≤ 

10%), however, the GVF had an improved accuracy over the FBS as indicated by lower 

error rates. The magnitude of measurement error was lower for HRmax than for HRavg in 

both monitors. When assessing HR values during the resistance training bouts, the 

activity monitors provided comparable measurements of HRmax to the PM, with the 

exception of the underestimation of HRmax by the FBS. 

When looking at the correlational statistics, EE estimates for all monitors 

correlated with the OM for each exercise bouts and the whole session (Table 4). Strong 

relationships between the activity monitors and the OM were found for the treadmill 

running, resistance training, and whole session, while lower correlation coefficients were 

reported for the stationary cycling bout. The strongest correlation was found between the 

SWA and the OM for the treadmill running bout while the weakest correlation with the 

OM was the SWA during the stationary cycling bout. When assessing the HR data, the 

wrist-worn activity monitors were strongly correlated with the PM in measuring HRavg 

and HRmax for all conditions (Table 5).  

Through the utilization of equivalency testing analysis, it was determined that no 

monitor was equivalent to the OM in the estimation of EE (Figure 1). During the 

stationary cycling (Figure 1a), the SWA produced the narrowest 90% CI (74.9-82.2 kcal)



 

 

Table 3 

 

Descriptive Statistics and Mean Absolute Percentage Error for Average and Maximal Heart Rate Obtained by the Polar and 

Activity Monitors 

 

Exercise bout n Average HR (bpm) MAPE (%) Maximal HR (bpm) MAPE (%) 

Stationary cycling       

PM  37          132.1 ± 20.4 -         146.3 ± 20.3 - 

FBS 36          123.9 ± 17.4       5.9 ± 8.1         146.7 ± 19.8      1.4 ± 2.0 

GVF 36          130.8 ± 19.5       2.0 ± 1.5         146.6 ± 19.5      0.8 ± 1.8 

      

Treadmill running       

PM 37          153.3 ± 15.1 -         165.7 ± 16.5 - 

FBS  36          148.1 ± 12.9       3.1 ± 2.7         164.3 ± 15.1      1.5 ± 1.9 

GVF  37          150.0 ± 16.6       2.4 ± 4.5         165.8 ± 17.2      0.9 ± 1.5 

      

Resistance training       

PM 37          128.8 ± 18.2 -         162.6 ± 16.0 - 

FBS  36          117.0 ± 15.2       9.5 ± 6.4         155.3 ± 15.2      7.0 ± 8.0 

GVF  36          127.2 ± 18.9       2.4 ± 6.1         163.3 ± 15.2      0.9 ± 2.2 

Note. bpm = Beats per minute; HR = Heart rate; MAPE = Mean absolute percentage error; PM = Polar monitor; FBS = Fitbit 

Surge; GVF = Garmin Vívofit. 

1
0
9
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Table 4 

 

Pearson’s Correlation for Energy Expenditure between the Oxycon Mobile and 

Activity Monitors  

 

Exercise bout FBS GVF SWA 

Stationary cycling      

OM .43** .50**          .39* 

FBS            1 .71**            .25 

GVF            1          .42* 

    

Treadmill running      

OM .69** .66** .85** 

FBS            1 .74** .72** 

GVF             1 .62** 

    

Resistance training     

OM .78** .76** .64** 

FBS            1 .84** .71** 

GVF             1 .54** 

    

Whole session     

OM .73** .60** .83** 

FBS            1 .86** .69** 

GVF             1 .51** 

Note. FBS = Fitbit Surge; GVF = Garmin Vívofit; OM = Oxycon Mobile; SWA = 

SenseWear Armband. *p < .05, **p < .01. 
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Table 5 

 

Pearson’s Correlation for Average and Maximal Heart Rate between the Polar and 

Activity Monitors  

 

Exercise bout  

Average HR Maximal HR 

FBS GVF FBS GVF 

Stationary cycling      

PM .77** .99** .99** .99** 

FBS        1 .74**        1 .99** 

GVF         1         1 

     

Treadmill running       

PM .95** .90** .97** .99** 

FBS        1 .86**        1 .97** 

GVF         1         1 

     

Resistance training     

PM .82** .90** .63** .97** 

FBS        1 .83**        1 .61** 

GVF         1         1 

Note. FBS = Fitbit Surge; GVF = Garmin Vívofit; HR = Heart rate; PM = Polar 

monitor. **p < .01. 
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Figure 1. Equivalency testing for energy expenditure agreement between the Oxycon 

Mobile and activity monitors. 1a. The stationary cycling bout. 1b. The treadmill running 

bout. 1c. The resistance training bout. 1d. The whole session. Dashed vertical line 

represents mean EE measured by the OM and solid vertical lines represent the ±10% 

equivalency zone of the mean measured EE by the OM. EE = Energy expenditure; FBS = 

Fitbit Surge; GVF = Garmin Vívofit; OM = Oxycon Mobile; SWA = SenseWear 

Armband.  
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and still it fell entirely outside equivalency zone (98.3-120.2 kcal). The SWA yielded the 

most favorable agreement for the whole session as the monitor’s 90% CI (410.9-500.1 

kcal) overlapped the higher end of the equivalency zone (423.6-517.7 kcal) by only 12.7 

kcal. The widest 90% CI was found for the GVF (529.2-620.8 kcal) for whole-session EE 

(Figure 1d). Only the FBS was not considered equivalent to the PM during the resistance 

training bout (Figure 2) as the 90% CI (112.7-121.2 bmp) was not entirely contained 

within the equivalency zone (115.9-141.7 bmp). More favorable equivalency testing 

results were reported for HRavg (Figure 2) and HRmax (Figure 3), indicating nearly perfect 

measurement agreement between the wrist-worn monitors and the PM.  

Bland-Altman plot analyses examined the distribution of error and evaluated the 

systematic bias in EE estimates (Figures 4, 5, 6, and 7). All monitors produced their 

narrowest 95% limits of agreement during the treadmill running bout (Figure 5). The 

SWA had the narrowest limits of agreement (difference = 83.6 kcal; Figure 5c), followed 

by the FBS (difference = 115.3 kcal; Figure 5a), and the GVF (difference = 121.6 kcal; 

Figure 5b). The widest limits of agreement were reported for the GVF for whole-session 

EE (difference = 517.1 kcal; Figure 7b). Significant bias was observed for the FBS during 

the stationary cycling (10.1 ± 39.2 kcal; Figure 4a), the resistance training (47.4 ± 52.7 

kcal; Figure 6a), and for the whole session (83.2 ± 93.7 kcal; Figure 7a). Similarly, 

significant bias was also found for the GVF during the stationary cycling bout (18.6 ± 

33.7 kcal; Figure 4b), the resistance training bout (82.0 ± 79.2 kcal; Figure 6b), and 

whole-session EE (104.4 ± 131.9 kcal; Figure 7b).  
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2a.      2b. 
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Figure 2. Equivalency testing for average heart rate agreement between the Polar and 

activity monitors. 2a. The stationary cycling bout. 2b. The treadmill running bout. 2c. 

The resistance training bout. Dashed vertical line represents mean HRavg measured by the 

PM and solid vertical lines represent the ±10% equivalency zone of the mean HRavg 

measured by the PM. Bpm = Beats per minute; FBS = Fitbit Surge; GVF = Garmin 

Vívofit; HRavg = Average heart rate; PM = Polar monitor. *Within the equivalency zone.  
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3a.       3b.  
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Figure 3. Equivalency testing for agreement in maximal heart rate between the Polar and 

activity monitors. 3a. The stationary cycling bout. 3b. The treadmill running bout. 3c. 

The resistance training bout. Dashed vertical line represents mean HRmax measured by the 

PM and solid vertical lines represent the ±10% equivalency zone of the mean HRmax 

measured by the PM. Bpm = beats per minute; FBS = Fitbit Surge; GVF = Garmin 

Vívofit; HRmax = Maximal heart rate; PM = Polar monitor. *Within the equivalency zone.  
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Figure 4. Bland-Altman plots for differences in energy expenditure between the Oxycon 

Mobile and activity monitors for the stationary cycling bout. 4a. Individual errors 

between the OM and the FBS. 4b. Individual errors between the OM and the GVF. 4c. 

Individual errors between the OM and the SWA. FBS = Fitbit Surge; GVF = Garmin 

Vívofit; OM = Oxycon Mobile; SWA = SenseWear Armband. 
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5a.       5b. 
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Figure 5. Bland-Altman plots for differences in energy expenditure between the Oxycon 

Mobile and activity monitors for the treadmill running bout.5a. Individual errors between 

the OM and the FBS. 5b. Individual errors between the OM and the GVF. 5c. Individual 

errors between the OM and the SWA. FBS = Fitbit Surge; GVF = Garmin Vívofit; OM = 

Oxycon Mobile; SWA = SenseWear Armband. 
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6a.      6b.  
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Figure 6. Bland-Altman plots for differences in energy expenditure between the Oxycon 

Mobile and activity monitors for the resistance training bout. 6a. Individual errors 

between the OM and the FBS. 6b. Individual errors between the OM and the GVF. 6c. 

Individual errors between the OM and the SWA. FBS = Fitbit Surge; GVF = Garmin 

Vívofit; OM = Oxycon Mobile; SWA = SenseWear Armband. 
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7a.      7b.  
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Figure 7. Bland-Altman plots for differences in energy expenditure between the Oxycon 

Mobile and activity monitors for the whole session. 7a. Individual errors between the OM 

and the FBS. 7b. Individual errors between the OM and the GVF. 7c. Individual errors 

between the OM and the SWA. FBS = Fitbit Surge; GVF = Garmin Vívofit; OM = 

Oxycon Mobile; SWA = SenseWear Armband. 
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Discussion  

 The present study examined the accuracy of the FBS, GVF, and SWA for 

estimating EE and HR during a gym-based routine that consisted of treadmill running, 

stationary cycling, and resistance training activities in healthy, physically active males 

and females. The study protocol was designed to assess the performance of the monitors 

under real-life conditions to replicate actual usage by consumers. The wrist-worn 

monitors consistently yielded higher EE estimates while the SWA both over- and under-

estimated EE across the gym-based routine compared to the criterion measure (OM). 

Evaluation of HR data revealed that the FBS and GVF tend to measure lower HRavg 

compared to the PM, but these estimates showed promising accuracy. The FBS and GVF 

were the most accurate in the measurement of HRmax, as the wrist-worn monitors had 

equivalent values to the PM, with low overall measurement error.  

Existing validation research demonstrates large variability in the accuracy of 

various activity monitors in estimating EE during diverse activities. In the current study, 

the FBS and the GVF overestimated EE for all exercise bouts, which subsequently 

resulted in overall overestimation of whole-session EE. The presence of a proportional 

bias in the errors of EE estimates for stationary cycling (Figure 4), resistance training 

(Figure 6), and the whole-session (Figure 7) suggests that the monitors had a systematic 

tendency to yield higher EE compared to the OM during the specific periods. Contrasting 

outcomes are presented in previous research, indicating that the FBS (Massey, Funk, 

Thiebaud, & Patton, 2017) and the GVF (Alsubheen, George, Baker, Rohr, & Basset, 

2016; Price et al., 2016) yielded lower EE estimates compared to indirect calorimetry 
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during treadmill activities. In addition, the GVF underestimated EE with a proportional 

bias (Price et al., 2016). In the current study, the 5-minute breaks between exercise bouts 

may not have provide enough time for participants to recover for the next exercise bout. 

Consequently, participants’ HR may have stayed elevated for the beginning of the 

subsequent exercise bout, which may have resulted in overestimation of EE by the 

activity monitors. This may potentially explain the discrepancy in the findings by 

Alsubheen et al. (2016) and Price et al. (2016) and the current study. In addition, the 

sample size in the current study was approximately twice as large compared to the others 

(Alsubheen et al., 2016, Massey et al., 2017; Price et al., 2016), which could also 

contribute to the disparity in the outcomes.  

Comparison of present results obtained by the GVF and the FBS from stationary 

cycling and resistance training is difficult because, to the author’s knowledge, no other 

study been conducted to examine the accuracy of these monitors under these conditions. 

However, in contrast to the current findings, a different model of the Fitbit (Fitbit Flex) 

along with five other wrist-worn activity monitors were found to underestimate EE 

during 25 minutes of a resistance exercise routine performed on a training machine (Bai 

et al., 2016). The varying accuracy could be attributed to differences in the resistance 

training protocols in the two investigations. In the study by Bai et al. (2016), the 

resistance exercises were self-selected and it is possible that participants completed more 

leg and/or core exercises than upper body exercises, while in the current study, 

participants completed equal amounts of leg and arm exercises (i.e. 3 sets of each). 

Because leg and core exercises require little to no hand and arm movements, the wrist-
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worn monitors would then consequently underestimate the work performed and yield 

lower EE.  

In regard to the estimates obtained by the SWA, the armband overestimated 

treadmill running EE, but underestimated EE for the stationary cycling and resistance 

training bouts, with no evident proportional bias (Figures 4c, 5c, 6c, and 7c). 

Contradictory to the present findings, the SWA was previously found to underestimate 

EE during 10-minutes of high intensity (65, 75, and 85% of maximal VO2) treadmill 

running (Drenowatz & Eisenmann, 2011) and during 5-minute running bouts above 6.3 

mph (Koehler, deMarees, Braun, & Schaenzer, 2010). One possible reason for the 

difference in the findings could be that the two latter studies used an older version of the 

armband’s firmware (version 6.1), while the current SWA was using updated algorithms 

(version 8.1). 

The armband yielded lower EE estimates compared to the OM during the 

resistance training routine, which is consistent with past research. Benito et al. (2012) 

reported the SWA underestimated EE with increased error at higher intensities during 

circuit-style resistance training performed on an exercise machine at three different 

intensities (30, 50, and 70% of participants’ 15 reputation maximum). Similar findings by 

Reeve et al. (2013) showed the SWA underestimated EE by 23.7% compared to a 

portable metabolic analyzer while participants performed 10 repetitions of 9 resistance 

exercises. It was postulated that the SWA fails to recognize the load being moved during 

resistance activities because the armband’s algorithms depend on measurement of body 
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acceleration (Benito et al., 2012). This would consequently lead to the same EE estimates 

for a movement regardless of the weight lifted, resulting in inaccurate EE estimation. 

The inclusion of equivalency testing made it possible to evaluate group-level 

agreement between the monitors and the OM. No monitor yielded EE estimates that were 

equivalent to the OM (Figure 1). Similar findings were presented by Bai et al. (2016), 

who examined various consumer-based monitors during a protocol that resembled that of 

the current study. Although different monitors were used, the authors also reported that 

the whole-session EE estimates were not in agreement with the criterion measure (the 

OM). In addition, the Fitbit Flex used by Bai et al. (2016) had 90% CI that overlapped the 

upper level of the equivalency zone. These outcomes correspond to those produced by the 

FBS, which 90% CI also overlapped the upper bound of the equivalency zone for whole-

session EE (Figure 1d).  

The activity monitors produced overall measurement error of EE ranging between 

11.9% (SWA) and 52.3% (GVF) across the exercise session (Table 2). Previous 

validation investigations have also shown a wide range of MAPE, although different 

models and monitors have been used. For example, Dooley and colleagues (2017) found 

that three wrist-worn monitors (Apple Watch, Fitbit Charge, and Garmin Forerunner) 

estimated EE during light to vigorous intensity treadmill activities with error rates as low 

as 14.1% to as high as 85.0%. This range is much higher in comparison to the activity-

specific (treadmill) MAPE in the current study (16.6% and 21.9%). In the study by Bai et 

al. (2016), the MAPE range was 15.3-52.6%, and monitors generally produced higher 

error when evaluated separately for each exercise bout as opposed to the whole session. 
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This pattern was produced by the SWA in the current study. The reasonable measurement 

error may be attributable to the over- and under-estimation of EE across the exercise 

bouts balancing out.  

The SWA consistently produced lower MAPE compared to the FBS and GVF for 

all conditions and estimated EE with an acceptable measurement error (i.e. < 20%) 

during the treadmill running and for the whole session. In accordance, a newer version of 

the SWA, the BodyMedia Core, was also found to have the lowest MAPE values among 

six other activity monitors and to produce MAPE of < 20% for treadmill exercise and 

whole session EE (Bai et al., 2016). From the wrist-worn monitors, only the GVF met the 

MAPE acceptance criteria for treadmill running, however, the monitor also had the 

highest MAPE (52.3%) when estimating resistance training EE. This conflicting accuracy 

should be interpreted with caution. The GVF may not be able to accurately estimate the 

energy cost associated with resistance activities due to inability to detect the increased 

energy cost associated with increased loads. In contrast, the FBS had a lower MAPE 

(29.8%) than the GVF for the resistance training bout. The improved accuracy of the FBS 

is likely grounded in the integration of activity mode in the proprietary EE estimation, but 

the error rate is still considerably high.  

In addition to the evaluation of EE estimates, the wrist-worn monitors were also 

assessed for accuracy in measuring HRavg and HRmax over the three exercise periods. In 

general, the FBS and GVF measured exercise HR more accurately in comparison to 

estimating exercise EE. Both wrist-worn monitors were strongly correlated with the PM 

for HRavg and HRmax values. The FBS and the GVF measured slightly lower mean HRavg 
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than the PM (Table 3), however, the measurement error was within the acceptable range 

(i.e. < 10%) for both monitors across all three exercise bouts. The GVF demonstrated 

superior ability to detect HRavg and HRmax as indicated by lower MAPE. The use of 

traditional HR strap in conjunction with the GVF is most likely associated with the 

increased accuracy (Terbizan, Dolezal, & Albano, 2002). 

Scarcity of HR validation research including the GVF and the FBS poses 

challenges for interpretation and comparison of current findings. Other models of these 

wrist-worn monitors have, however, been evaluated. In a study by Stahl and colleagues 

(2016), the Fitbit Charge HR demonstrated comparable ability to measure HRavg during 

treadmill running as the FBS. Both monitors strongly correlated with the PM, produced 

low MAPEs (Fitbit Charge HR = 1.7-2.5%; FBS = 3.1%), and had good agreement with 

the criterion measures indicated by the 90% CIs within the equivalency zones. Slightly 

higher MAPE (5.8%) for HRavg obtained by the Fitbit Charge HR during treadmill 

running was reported by Dooley et al. (2017). Collectively, the findings suggest that the 

Fitbit monitor may serve as a valid tool for optical detection of HR during treadmill 

running.  

Previous research evaluating the accuracy of optically-sensing HR illustrates 

inconsistency in the relative validity of various activity monitors to obtain HR data 

(Dooley et al., 2017; Parak & Karhonen, 2014; Stahl et al., 2016; Wallen et al., 2016). 

The accuracy of monitors differs not only across studies, but also across activities and 

intensities within a single protocol. Stahl et al. (2016) concurrently assessed six wrist-

worn monitors during treadmill walking and running and found the HRavg estimates to be 
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equivalent to the PM, with measurement error rate generally < 10%. Conversely, Dooley 

et al. (2017) reported that MAPE for HRavg varied between 3.3% and 24.4% among three 

monitors and across light, moderate, and vigorous intensities of treadmill ambulation. In 

the present study, the HRavg obtained by the GVF had a consistently low MAPE (2.0-

2.4%), but the measurement error produced by the FBS fluctuated across exercise periods 

(3.1-9.5%). It is noteworthy that the FBS measured HR with the lowest accuracy during 

the resistance training activities, which coincides with a study by Spierer, Rosen, Litman, 

& Fujii (2015). It is possible that movements of the wrist and the forearm, occurring 

particularly during upper body resistance exercises, disrupted the interface between skin 

and the monitor, resulting in sampling error by the FBS. 

Some limitations of the study include that the application of study findings can 

only be generalized to samples with similar characteristics and the same modes of 

activities and monitors. Another limitation regarding the activity monitors is that the 

GVF does not have the ability to segment activities based on mode or duration (i.e. 

activity files are only created for activities ≥ 10 minutes in duration). The inability to 

recognize the activity mode may lead to elevated EE estimates by the monitor. 

Furthermore, according to the manufacturer, the Ant+ HR monitor for the GVF should be 

worn around the chest. In the study, the Ant+ HR monitor was always worn below the 

PM. This wear placement could have impacted its accuracy. Additionally, the EE and HR 

from the wrist-worn monitors are reported as averages over the activity-specific time 

periods. Evaluating the accuracy of the monitors for shorter-time averages (minute-by-

minute, 30-s-by-30-s) would provide further insight on measuring ability. However, 
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obtaining these shorter averages requires specialized and costly software. Lastly, due to 

equipment malfunction, 5 participants completed their study session on a semi-recumbent 

bike, while the rest used a stationary cycle ergometer. Past investigations have reported 

no difference in physiological variables between the two methods (Eckstrom, 2000; 

Griffiths, 1989). 

In conclusion, the current study protocol simulated real-world conditions in order 

to facilitate naturalistic application of the findings. During the gym-based routine, no 

monitor accurately estimated EE, however, the SWA had the most favorable estimates. 

The wrist-worn monitors demonstrated comparable performance for both EE and HR 

estimates. The GVF and the FBS both systematically overestimated EE and were equally 

accurate in measuring HRavg and HRmax across the aerobic and resistance exercises. The 

GVF produced slightly lower HR measurement errors, which was most likely due to 

utilization of HR strap. The utility of activity monitors in promoting behavioral changes 

and lifestyle modifications relies on their ability to accurately assess health- and fitness-

related parameters (e.g. EE and HR). However, monitors’ features including appearance, 

cost, functions, data accessibility, and data sharing on interacting platforms will also 

influence their utility. Considering the comparable inaccuracy between the wrist-worn 

monitors, the FBS facility to continuously and effortlessly monitor HR and to track 

activity-specific variables (potentially providing improved accuracy as seen during the 

resistance exercise bout) may make this monitor more attractive to consumers for 

personal usage. 
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CHAPTER V 

OVERALL CONCLUSIONS  

The purpose of this dissertation was to evaluate the accuracy of three activity 

monitors (FBS, GVF, SWA) in measuring EE, HR, and steps under controlled and free-

living conditions. The FBS and GVF are wrist-worn monitors that are available on the 

consumer market and the SWA (now discontinued) is a multi-sensor armband commonly 

used for research purposes (Benito et al., 2012; Drenowatz & Eisenmann, 2011; King, 

Torres, Potter, Brooks, & Coleman, 2004; Koehler, deMarees, Braun, & Schaenzer, 

2010; Vernillo et al., 2015). These monitors offer relatively inexpensive and simple 

objective assessments of physical activity. To evaluate the accuracy of the monitors, their 

estimates were compared to criterion measures including a portable metabolic analyzer 

(OM) for EE, a Polar HR chest strap (PM) for HR, and a video observation for step 

count. Various statistical analyses were implemented to assess individual and group 

agreements with the criterion measures. 

In study 1, healthy, physically active male and female participants (N = 34) 

completed a laboratory-controlled protocol that consisted of treadmill and stationary 

cycling activities performed at two intensities. The treadmill and stationary cycling 

protocols each included a 10-minute bout performed at moderate intensity and a 10-

minute bout performed at vigorous intensity HRZs. Each activity bout was analyzed 

separately. In study 2, healthy and physically active male and female participants (N = 
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37) completed a gym-based routine comprised of 15 minutes of stationary cycling, 15 

minutes of treadmill running, and 35 minutes of resistance training, all at self-selected 

intensities. The exercise bouts were analyzed separately and combined to represent 

whole-session estimates. 

The findings of the first study indicated that the monitors yielded lower EE in 

comparison to the OM for all activity bouts, but the measurement error of the estimates 

was higher at the vigorous intensity. This error was specifically high for the SWA. Some 

of the estimates were, however, favorable. For example, the FBS was highly correlated (r 

= .77) with the OM, yielding the lowest measurement error (15.7 kcal), and producing the 

lowest limits of agreement with no systematic bias of error distribution during the 

moderate treadmill bout. Through the utilization of equivalency testing, no monitor was 

equivalent to the OM except for the GVF during the vigorous cycling bout. This was an 

interesting finding, considering that the monitor did not correlate with the OM (r = .34) 

and showed systematic underestimation of EE based on Bland-Altman plots.  

The GVF and FBS showed improved accuracy in measuring HRavg and HRmax 

compared to their accuracy in estimating EE. The monitors tended to measure slightly 

lower HRavg compared to the PM, but these estimates had good agreement with the 

criterion measure. The GVF had a lower measurement error than the FBS for both HR 

variables, however, the difference between the errors of the two monitors for HRavg was 

minimal during the treadmill bouts. The equivalency testing revealed that HRavg and 

HRmax obtained by the monitors were equivalent to the PM for all activity bouts, with the 

exception of HRavg measured by the FBS during the moderate intensity treadmill bout. 
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Some equivocal outcomes were observed when the HRavg data were further examined 

through the application of other analyses. For example, the FBS did not correlate with the 

PM and produced relatively large measurement error for both cycling bouts. Similarly, 

the GVF did not correlate with the PM and produced its highest error rate during the 

moderate intensity treadmill protocol. 

Lastly, the step count analysis in study 1 revealed that the monitors tended to 

underestimate the actual steps, which is in agreement with previous investigations 

(Alsubheen et al., 2016; Price et al., 2016; Storm et al., 2015,). However, some of the 

estimates had a promising agreement with the video observation. For example, based on 

the equivalency testing results, during the vigorous treadmill bout, all three monitors 

were considered equivalent to the video observation. The activity monitors also strongly 

correlated with the video observation. In addition, the SWA yielded equivalent estimates 

to the video observation with strong correlation (r = .73) for the moderate treadmill bout. 

Findings of the second study revealed that the FBS and GVF consistently 

overestimated EE for all exercise bouts of the gym-based session. The SWA 

overestimated EE for the treadmill running bout but underestimated EE for the stationary 

cycling and resistance training bouts. The SWA had smaller MAPE for all segments of 

the session compared to the wrist-worn monitors. In addition, the armband had the 

smallest and acceptable (i.e. <20%) measurement error for whole-session EE. The SWA 

and GVF also had an acceptable MAPE during the treadmill running. In contrast, the 

GVF had the highest MAPE across monitors for the resistance training bout. Lastly, the 
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results of equivalency testing analysis revealed that no monitor produced equivalent 

estimates to the EE measured by the OM. 

Results of the HRavg and HRmax analyses again showed improved accuracy of the 

wrist-worn monitors in measuring HR compared to estimating EE. The GVF appeared to 

be more accurate based on a lower measurement error for both HR variables. Both HRavg 

and HRmax estimates obtained by the GVF and FBS were highly correlated with the PM, 

had acceptable MAPE (i.e. <10%), and were found equivalent (with the exception of 

HRavg obtained by the FBS for the resistance training bout) to the criterion measure 

through implementation of the equivalency testing analysis.  

Comparison of the current findings with existing literature is difficult due to 

differences in study protocols and activity monitors implemented in these investigations. 

Only a few validation studies have assessed accuracy of the GVF and FBS. For example, 

the GVF was found to underestimate EE during treadmill ambulation (Alsubheen et al., 

2016; Price et al., 2016). This is in agreement with the results of the first study, indicating 

the GVF underestimated EE during the treadmill bouts, however, findings of the second 

study show contrasting outcomes. Similar conflicting outcomes were found for the FBS. 

Results from a previous study showed that the monitor underestimated EE and was not 

considered equivalent to the criterion measure during structured periods of treadmill 

walking and running (Massey, Funk, Thiebaud, & Patton, 2017), which is in accordance 

to the findings of the first study, however, opposes the findings of the second study. It is 

possible that the varying EE accuracy in studies 1 and 2 is due to differences in rest 

durations between activity bouts. Unlike in study 1, where participants rested in a supine 
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position until reaching baseline VO2 levels, allowing sufficient time for HR recovery, the 

resting periods in study 2 were only 5 minutes, which may not be enough time for 

adequate recovery. This possibly resulted in having elevated HR as participants started 

the subsequent exercise bout. The overestimation of EE by the GVF and FBS in study 2 

may be attributed to the elevated HR. Inconsistent findings were also reported for the 

SWA. Results from the first study correspond with previous findings showing the 

armband underestimates EE during high intensity treadmill running (Drenowatz & 

Eisenmann, 2011; Koehler et al., 2010), which is controversial to the findings of the 

second study and to those reported by King et al. (2004). 

Comparison of the resistance training EE findings from study 2 agrees with 

previous research that demonstrates that the SWA underestimated EE (Benito et al., 

2012, Reeve et al., 2013). This can be contributed to the monitor’s inability to detect the 

higher energy cost associated with increased loads. The same can be concluded for the 

wrist-worn monitors, specifically for the GVF that produced the highest measurement 

error during the resistance training bout. The FBS also produced relatively high error rate 

for this bout, but it appears to have improved accuracy via the ability to track selected 

activities. 

Similarly, lack of validation research examining HR measurement accuracy for 

the GVF and FBS presents challenges for comparison of current findings. In studies 1 

and 2 of the dissertation, the wrist-worn monitors demonstrated good accuracy in 

assessing HRavg and HRmax during various activities. Previous studies including other 

models of the Fitbit monitor, suggest reasonable HR measurements compared to the 
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criterion measures for treadmill activities (Dooley et al., 2017; Stahl et al., 2016). 

Therefore, it could be concluded that the Fitbit monitor provides a valid method for HR 

measurement during treadmill ambulation. However, it is noteworthy that the FBS 

measured HR with the lowest accuracy during the cycling and resistance training 

activities, possibly due to the monitor experiencing sampling error. This could be 

attributed to a loss of skin contact caused by movements of the wrist and the forearm 

during upper body resistance exercises or due to an inability to detect pulse resulting 

from decreased blood flow to the arms during leg ergometry. 

 In conclusion, the results from studies 1 and 2 demonstrate that the activity 

monitors produce accurate estimates for some activities, but not for others, and provide 

preliminary support of the less established GVF and FBS in the literature. Specifically, 

EE estimates had promising accuracy for the treadmill activities, suggesting that the 

monitors appear to have an improved performance during treadmill compared to 

stationary cycling and resistance training activities. In addition, the utility of the FBS and 

GVF in monitoring exercise HR is supported by the dissertation study findings. In regard 

to the comparable performance between the FBS and the GVF, the FBS may provide 

additional value to users due to its advanced technological features. Taken collectively, 

the results demonstrate good potential for the monitors in terms of estimating PA 

variables, specifically HR and steps. Overall, the dissertation findings suggest that the 

activity monitors could be used as alternative methods for objective assessment of PA or 

exercise for personal purposes or intervention research applications.  
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