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ABSTRACT

In computational mathematics, Graph Theory serves as an abstract model for chemical

compounds. Induced cycles, i.e. cycles with no chords, are referred to rings in molecules,

and these rings have an important physical meaning in Chemistry. The mathematical

analysis and development of algorithms for the ring perception problem is analogous to

cycle detection in graph theory. In this work, we are interested in the representation of

chemical structures using graphs and the detection of rings in these structures. In the first

chapter, we develop a polynomial time algorithm for the detection of all small induced cycles

in a given graph G. We achieve a complexity of O(m3n+n2) for a graph of m edges and n

vertices. Then, we apply this approach to several chemical compounds such as fullerenes,

cata-condensed benzenoids, protein structures and others.

Many chemical properties of fullerenes and benzenoid systems can be explained in

Mathematics in terms of the number of perfect matchings, the Clar number, the Fries

number, the HOMO-LUMO energy gap, etc. These are some of predictors of molecules

stability. In the second chapter, we investigate the Fries number and Clar number for

hexagonal systems and show that a cata-condensed hexagonal system has a maximum

resonant set containing a maximum independent resonant set, which is conjectured for all

hexagonal systems. Further, our computation results demonstrate that there exist many

contra-pairs, and, for stability predictor of hexagonal systems, the Clar number is better

than Fries number. Lastly, we compute the Clar number and Fries number of all isomers

of fullerenes C20−C60 by using integer linear programming in addition to calculating the

HOMO-LUMO energy gap of all fullerenes isomers.
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CHAPTER 1

INTRODUCTION

The ring perception problem (i.e. the identification of cyclic substructures) is used in

a diverse range of problems including the analysis of electrical circuits, the analysis of

communication networks, operations research, and the identification and classification of

chemical structures. It is a fundamental part of chemical structure storage and retrieval

systems [35]. The concept of rings in chemistry is defined as cycles of the linear graph in

mathematics [96]. In chemical structures, the presence of small cycles can signify important

physical properties; for example, the structural integrity of organic compounds [50].

Ring perception is fundamentally important not only for identifying rings but also for

computer aided synthesis goals [108, 39]. It is also useful in identifying structural fragments

associated with rings. For this reason, the synthesis of cyclic structures is usually desirable

for researchers. The presence of rings also controls the possible conformations of a molecule

by limiting the intramolecular reactions [108]. The synthesis of cyclic structures can be

difficult due to these restrictions on conformational freedom [50, 108, 73].

Another important property that is an indicator of the exceptional stability of a cycle is

the classification of the aromaticity [108, 22]. A bond or atom is aromatic if it is a member of

a cycle that contains 4n+2 π-electrons where n≥ 0. The aromaticity of molecules implies

that it only undergoes certain reactions and the cycles are of particular lengths [50, 108, 22].

Chemically interesting cycles are usually small. Depending on the application, the

maximum length of these cycles is usually anywhere from six to eight. Rings that are bigger

than six edges have limited synthetic reactions [35]. For this reason, the perception of

rings of length six or smaller are of particular interest to chemists [35]. The reactions that

use larger rings are only successful when the ring is known to be “real”, i.e. a ring from a

maximum proper covering set [22]. Therefore, rings that are to be used as synthetic units
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are all cycles of length six or smaller and all cycles larger than six that are known to be “real”

[22].

The length of the smallest ring in a molecule usually determines the ease of which a bond

will form [22]. For instance, consider the formation of a carbon-carbon bond using an aldol

reaction to form a 6-membered ring fused to either a 3-membered ring or a 9-membered

ring [22]. The reaction works much more easily when the 6-membered ring is fused to the

3-membered ring [22].

Finding large rings is a more difficult problem. Garey and Jonson [89] showed that

finding the longest cycle or longest induced cycle is an NP-complete problem. However,

Lokshtanov [81] produced an algorithm to determine the longest isometric cycle of a given

connected graph in polynomial time.

(A) C3 (B) C4

Figure 1: Induced Cycles of Length 3 and 4

Definitions

The mathematical analysis and development of algorithms for the ring perception

problem are analogous to cycle detection in graph theory. In this project, we are interested

in the representation of chemical structures using graphs and the detection of rings in these

structures. Any molecule may be represented by a graph G, where every atom is a vertex
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b
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g

h

i

j

Figure 2: Isometric Cycles

v and every bond is an edge e. The Frerejacque number or the cyclomatic number of the

molecule is represented as the graphs nullity [35]. The degree of valency of the molecule is

represented as the graph’s connectivity. In this section, we will provide some definitions

from graph theory and chemistry, as they will be helpful in the discussion of cycle detection.

Let graph G= {V,E}where V and E are sets of all vertices and edges of G. Alternatively,

the vertex set and edge set of G can be written as V (G) and E(G), respectively. G is

connected if for any two vertices u and v ∈ V (G), there is a path joining them. If G is

disconnected graph then it has at least two components (subgraphs of G). The distance

between two vertices u and v is the number of edges that make the shortest path joining u

and v , denoted by distG(u,v).

A sequence of vertices where all vertices are distinct is a path. A closed path that

begins and ends at the same vertex is a cycle. A cycle of a graph G is induced if it has

no chords, see Figure 1A and 1B. An isometric cycle C is a cycle such that for any two

vertices u,v ∈V (C), distG(u,v) = distC(u,v). For example in Figure 2, the isometric cycles

of this example are {abchg f a, cde jihc}, but the cycle {abcde jihg f a} is not isometric

because distG(c,h) 6= distC(c,h). For any two vertices u,v ∈V (P) said P is a shortest path if

distG(u,v) = distP(u,v). A cycle of a graph G is shortest if for any two vertices u,v ∈V (C),

the distance between u and v is the length of the shortest path joining them in G.
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A cycle is called the longest isometric cycle of a graph if it has the largest cycle length

such that for any two vertices u and v on the cycle, distG(u,v) = distC(u,v) [81]. A cycle

of a graph G is longest cycle if any two vertices u,v ∈ V (C), the distance between u and

v is the longest distance distG(u,v) = max(distC(u,v)). The diameter of a graph G is

the greatest distance between u and v where u,v ∈ V (G) [29]. An alternating sequence

v1e1v2e2vi−1ei−1vi of vertices and edges of G, such that starting and ending at vertices and

ei−1 is incident with vi−1 and vi, is a walk . A closed walk that starts and ends with the same

vertex is a circuit. A cut vertex is a vertex such that removal of this vertex disconnects and

divides a graph into two or more components. Similarly, a cut edge is an edge such that the

removal of this edge disconnects and divides into two or more components. A block is a

component that does not have cut vertices. A bridge is a series of one or more cut edges

connecting two blocks of a component. This is not to be confused with the term bridge from

chemistry, which indicates a series of two or more edges crossing a cycle [35].

A spanning tree is a tree that contains all vertices of a graph G. The chords are the

minimum number of removal edges that make a cyclic graph to an acyclic graph. The

nullity of a graph is the number of chords in a graph. A neighbor of a vertex u is a

vertex v such that uv ∈ E(G). The set of the neighborhood of u is a set of all neighbors

of u denoted N(u). The ith neighborhood of u is the set of vertices such that for every

vertex v ∈ Ni(u) that distG(u,v) = i. E(G[Ni]) = {uv | uv ∈ E and u,v ∈ Ni(x)} and

E(Gc[Ni]){uv | uv /∈ E and u,v ∈ Ni(x)}.

Breadth First Search algorithm (BFS) is a search algorithm that starts with a given vertex x

and finds all adjacent vertices. Then, for every vertex y in the neighbor of x, it will find all

unvisited vertices in the neighbor of y and so on.

1.1 Cycles in Chemical Graphs

Many algorithms have been implemented to attain a variety of ring sets for connected

graphs [35]. Not all algorithms find a general set of all rings [35]. Some are developed for
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specific sets of rings with particular sets of desirable properties.

One of these sets is known as the Smallest Set of the Smallest Rings (SSSR). This set

was first described by Plotkin [96] and is a fundamental type of ring set. Plotkin defines

the SSSR to be the maximal linearly independent set of rings S in the set of all rings C.

Therefore, the SSSR is also a minimum spanning set or a minimum covering set. This

is a particularly important feature of the SSSR as the conformation of a ring system can

be determined by the conformational possibilities of the smallest rings [73]. For instance,

Hydrindane has three rings each with a length of five, six, and nine see Figure 3. However,

the SSSR only contains the rings of lengths five and six. This set contains the information

for the entire ring system because the ring of length nine is a linear combination of rings in

the SSSR [73].

Figure 3: Hydrindane

Finding the SSSR can be used for synthesis planning by using the fundamental ring

systems features. Plotkin [96] and Gasteiger & Jochum [50] developed methods for finding

the SSSR. Plotkins algorithm includes all rings up to length seven and eight. This can be

beneficial compared with other algorithms if larger rings are present in the structure. For

example, in the Cubane molecule in Figure 4, many ring algorithms will only find 16 rings

of length six and 6 rings of length four, while Plotkins algorithm will add 6 rings of length

eight [35]. Although these algorithms are successful for analyzing structure, they are not

always valid in complex structures [35].
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Figure 4: Cubane

1.2 Conjugated Cycles

Many cyclic molecules in organic chemistry are conjugated, but some of these com-

pounds are aromatic and others antiaromatic. Let H be a hexagonal system. A perfect

matching M of H is a set of disjoint edges such that every vertex of H is incident with

exactly one edge in M. These edges of M are the edges that previously presented as double

bonds of benzenoid systems in the Kekule structure, see Figure 5. A perfect matching of a

hexagonal system is also called a Kekulé structure in chemistry literature [88].

Figure 5: Kekulé Structures for Benzene or Resonance Structures

Definition 1. A cycle C of H is M-alternating (or resonant) if the edges of C alternate

between M and E(H)\M.

A conjugated cyclic molecule is very stable and aromatic if it obeys Hückel’s rule, that

is, the number of π-electrons of this molecule is 4n+2 where n≥ 0 [88, 98].
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Aromatic molecules are planar and that can be estimated from the Hückel’s rule [88].

Aromatic molecules are very stable due to the delocalized π-electrons (or have large reso-

nance energy values) [88]. The resonance stabilization energy (or delocalization energy) of

a molecule can be estimated by the following formula

RE =
1
K ∑

n≥1
(Rn(#4n+2)+Qn(#4n)

Where K is the number of Kekulé structures (perfect matchings) of the molecule, and Qn

and Rn are oppositely signed parameters that decrease roughly geometrically with respect to

the length of the cycle [99].

Some conjugated cycle molecules are planar and don’t follow the the Hückel’s rule and

others are non-planar. In both of these cases, if the molecule contains 4n π-electrons, then

they are antiaromatic [88]. These antiaromatic compounds have a low positive resonance

energy values and small HOMO-LUMO energy gap value and thus, are unstable [88].

Figure 6 shows some examples for (4n+2) π-electrons (or aromatic) and (4n) π-electrons

(or antiaromatic) molecules. Benzene C6H6 is the most stable molecule and a common

example of the aromatic molecules because it has 6 π-electrons that form three alternated

double bonds. However, Cyclooctatetraene C8H8 has 8 π-electrons and is not aromatic

because it has (4n) π-electrons.

Figure 6: Cycles of Size 6 and 8

Definition 2. The hexagonal rings that have precisely three bounding edges in a given

Kekulé structure are called benzene faces, see Figure 7.

Aromaticity is one of the most important concepts that has been attracting scientists’
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Figure 7: A Benzene Face

attention since 1865 when Kekulé [65, 64] presented the cyclic structure of benzene. Later,

several studies explained the characterization of aromaticity in terms of conjugated cycles

[101, 104, 102, 103, 100].

Conjugated cycles have been used as a tool to solve many difficult problems of aromatic-

ity [97]. In 1976, conjugated π-systems were noticed as a result of observing the difference

between the three Kekulé valence structures of the “naphthalene” molecule. The naphthalene

has one unique Kekulé structure where both hexagons have alternating single and double

bonds see Figure 8 (b). This unique structure is the most stable resonance structure, see

Figure 8. Notice that the other structures in Figure 8 (a and c) have only one hexagon with

three double bonds.

Figure 8: Different Kekulé Structures for Naphthalene
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CHAPTER 2

SMALL CYCLES

In the following chapter, we give a brief review of cycle algorithms, a mathematical

description of the problem setting, including definitions. We then outline our algorithms and

give examples of this work. Next, we provide theorems for the analysis.

2.1 Cycle Algorithms

Computer aided cycle detection is a powerful tool. The programmatic representation

of graphs is usually achieved by either a connection table or an adjacency matrix [35]. A

connection table can easily be transformed into an adjacency matrix of a graph or incidence

matrix [35]. Algorithms can be dependent on which of these representations are used.

There are two primary methods for ring perception, walking methods and matrix manip-

ulation methods [35]. Walking methods are very clear and were the first to be developed.

These methods ‘walk’ through the connection table starting with a vertex and tracing paths

and branch points [35]. If we get back to the starting vertex, then a cycle is found and stored.

Otherwise, we find the final branch vertex and then that path is contracted to that final vertex.

This method is terminated when all paths are searched from each branch vertex. Applying

this method on undirected graphs produces duplicate cycles because paths are found from

both sides around the cycle, which adds unnecessary complexity. Therefore, some rules

should be used to search the right path in a short time [35]. This method can work directly

from the connection table and generate an ordered list of vertices and edges that form the

desired rings [35].

The second fundamental method uses manipulations of trees, sets, or matrices to identify

the desired set of rings [35]. Most algorithms that use this method depend on matrix

manipulations to construct a spanning tree to generate a fundamental basis of cycles. The
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fundamental basis is the set of the minimum number of linearly independent cycles that

cover all vertices and edges of each ring [35]. However, the sets of fundamental bases of

cycles are not unique.

Vector space algorithms are also used to find cycles [35]. By using different starting

vertices and expanding spanning trees from the ends of the chords, we may produce more

trees, and then take all the combinations of the resulting rings for additional fundamental

bases. This method will derive rings which have an un-ordered sequence of vertices. Another

step is necessary for this method to produce an ordered sequence of vertices or edges.

Many algorithms have been implemented to attain a variety of cycle sets of connected

graphs [35]. Not all algorithms find a general set of all cycles for a given graph. Some

are developed for a specific set of cycles with a particular set of desirable properties [35].

Most algorithms that we review are classified in four categories: 1) algorithms that find

all possible cycles and then determine a specific set of cycles, 2) algorithms that find all

possible simple cycles and then determine a specific set of cycles, 3) algorithms that find

a fundamental basis of cycles, and 4) algorithms that find the smallest fundamental basis

cycles set which is called the smallest set of smallest rings (SSSR). A short review is given

in the next section for algorithms that find all possible cycles of a graph.

2.1.1 Algorithms to Find All Cycles

In 1970, Tiernan [118] developed an algorithm for cycle detection in directed graphs.

In general, directed graphs are much easier to search. This algorithm is less efficient than

others if it is used for undirected graphs. Tiernan uses a walking method to search a |V |×|V |

adjacency matrix. The first vertex in the adjacency matrix is chosen to be the start vertex to

search a path. The next start vertex chosen should not be in a found path and should not be

adjacent to the last vertex of the found path. Also, the label of this vertex must be greater

than that of the last start vertex. This algorithm finds an initial ring set containing all cycles

and then finds the final ring set, which is the set of all simple cycles. A similar approach is
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the backtracking algorithm presented by Beiss, Janicke, and Meissler [58]. In this approach

the complexity analysis shows that it is more efficient than Tiernans algorithm.

Numerous algorithms are developed to obtain all rings in directed graphs. Using

adjacency matrices manipulations approach to finding all cycles of directed graphs is

easy, but additional steps are required in the process of selecting the desired cycles from

the set of all cycles [35]. Many of these algorithms have not been implemented to chemical

graphs.

Corey et. al. [22] established the first algorithm used in the LHASA organic synthesis

program for ring perception. By producing a simple spanning tree using depth first search

from the connection table, cycles are found and each one is represented as a cycle vector.

From the set of all cycles, rings can be divided into real rings and pseudo rings. A set of real

rings contains all cycles that are found from a maximum proper covering set and all other

cycles are pseudo rings.

Shelley [114] used ring perception as a step to generate the coordinates for presenting

chemical structures by graphs. The process of ring identification is used for assigning

relative vertices coordinates for each ring system. This algorithm uses breadth the first

search algorithm to produce a spanning tree to find all chords. Next, it finds all paths

between every two vertices of each chord by using the depth first search algorithm and then

adds that chord to the tree. An initial set of all cycles is found, all smaller cycles that contain

nachbarpunkte are removed from the set to obtain a set of all simple cycles, and these rings

are included in the set of K-rings.

2.1.2 Algorithms to Find All Simple Cycles

An algorithm presented by Nickelsen [92] is used to find a set of simple cycles. This

algorithm is used to find β -rings, which are required for mathematically based ring percep-

tion for the implementation in the GREMAS system. Nickelsen presents four criteria for

the selection of β -rings. These rings are defined to be a set of simple cycles where each



12

has just three or four vertices that cannot be constructed from three or more smaller simple

cycles. The concept of β -rings has some problems as it is difficult to apply manually, it

requires producing all simple cycles, and it needs a large number of ring sum operations for

a complex ring system. Furthermore, it does not produce the set of rings that conforms to

the chemists concept of “real rings”.

2.1.3 Algorithms for the Fundamental Basis Set of Cycles

A fundamental basis set may be preferred to finding the set of all rings. A spanning

tree may be constructed by either manipulating the adjacency matrix or by a path searching

algorithm with a connection table [35]. The spanning tree is then used to determine a

fundamental basis set by observing the chords. Finding one ring for each chord can create a

basis. The fundamental basis deduction is important in graph theory and network theory.

Taking the ring sum of combinations of the basis cycle vectors after creating a fundamental

basis can generate all cycles. A vector space and a backtracking algorithm have been

developed to generate all possible cycles and find a fundamental basis set [35]. Perhaps the

most important type of these sets is the smallest fundamental basis cycle set, which is called

the smallest set of the smallest rings (SSSR) [35].

Welch [122] presented an algorithm to find the fundamental basis then conclude a set of

all cycles. A |V |×|E| incidence matrix is used where columns are rearranged and partitioned

in a form to apply matrix manipulations easily and then attain such set. The manipulation

of the matrix uses a process for isolating the cycle vectors. Cycle vectors are stored in the

basis cycle matrix as rows so that standard ring sum operations can be completed in stages.

Then, for each component of the graph structure, a fundamental basis is attained and all

combinations of fundamental cycle vectors can be generated. Welch used two additional

stages to minimize the number of ring sum operations to find all cycles.

Paton [93] applied depth first search algorithm to produce a spanning tree by using

adjacency matrix manipulations and a stack (or pushdown list) of unvisited vertices. For
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adjacency matrix A of |E| edges and |V | vertices, let B be the spanning tree matrix, T be

a set of vertices that are in the spanning tree, and X be a set of unvisited vertices which

is equal to the set of vertices V . The algorithm starts by choosing a vertex from X to be

the root of the tree. The starting vertex is stored on the stack and in the matrix B. While

the stack is not empty, the algorithm loops over the following steps: 1) Pick a vertex from

the stack and use A to find the associated edge. Let the set of these edges be Y . 2) Choose

an edge from Y . If this edge is in T , then it is a chord and we backtrace the fundamental

cycle found in B. Otherwise, this edge is added to B and the associated vertex is stored in T .

In either case, delete this edge from Y and repeat this step until Y is empty. 3) Delete the

chosen vertex from A and X . When the algorithm terminates, the spanning tree is complete

and the fundamental cycles have been found. Paton shows that using depth first search

algorithm in the procedure of selecting the next vertex is more efficient than using breadth

first search algorithm. Jovanovich [63] modified Paton’s algorithm to make it more efficient.

Kizawas algorithm [62] has a similar matrix manipulation process and proves that producing

a spanning tree using a list is more efficient by using breadth first search algorithm.

Corey and Petersson [21] developed another algorithm that is used in the LHASA

synthesis system. This algorithm finds a fundamental basis and then derives the SSSR. A

spanning tree is constructed by using Paton’s algorithm. A set of edges and vertices is used

to save every vertex in the tree, and a ring sum of the right pair of edge sets is used to derive

a reduced fundamental basis cycle. This step costs extra storage, but eliminates backtracking

the fundamental cycle like in Paton’s algorithm [93]. Then the algorithm reduces the set of

fundamental basis rings to obtain a reduced basis by taking the ring sums of each pair of

fundamental basis cycles vectors to find the SSSR. The SSSR and all cycles of length 7 and

less can be obtained by selecting the smallest rings from the set of reduced basis.

The Casteiger and Jochums [50] algorithm determines the SSSR by using the spanning

tree method and produces a set of fundamental cycles that contains all possible smallest
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cycles. In their paper, they do not focus on finding a set of all cycles but argue for the use of

the SSSR. This algorithm does not use the method of reduced basis that is implemented in

some other algorithms such as Corey and Petersson [21] or Wipke and Dyott [127], but can

obtain the SSSR by directly constructing the smallest fundamental cycles. If an SSSR is not

found, then other fundamental cycle sets containing the smallest cycles are produced.

This algorithm has two main stages. In the first stage, it constructs a spanning tree

by searching for chords from a starting vertex using breadth-first search. Each chord is

saved and ordered according to its distance from the starting vertex. Then backtracking

is used back to the root for one end of each chord to find the first shared vertex between

the two paths. This guarantees that the closest path is discovered and a set of fundamental

basis cycles is produced. This fundamental cycle set is usually the SSSR. A second stage

is implemented in cases where the SSSR is not found. This stage requires the following

definition for the complexity of a ring system C:

C =
|V (C)|
|V (R)|

.

The second stage repeats itself until C ≤ 1.5. It begins by selecting a vertex to be the new

starting root vertex. This root must be chosen such that it is contained in a smallest cycle

that does not include any pervious roots or otherwise chosen arbitrarily if this is not possible.

It also must have the greatest ring connectivity for the cycle from which it was chosen. This

is repeated for the new root vertex for a maximum of three iterations. Finally, an SSSR is

found from the accumulated ring set.

2.1.4 Algorithms That Find a Smallest Set of Smallest Rings Directly

The SSSR has an important effect on the consistent characterization of a molecule

structure since it contains the smallest fundamental basis cycles. A small basis is useful for

fast processing of a graph; especially if the set is extended to comprise other cycles [35].
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Although, an SSSR might not be unique in some complex structures that contains many

equivalent rings, the SSSR is considered sufficient for most applications used to make a

deeper ring analysis[35].

Plotkin [96] gave one of the first descriptions of the independent class of rings called the

Smallest Set of the Smallest Rings (SSSR) as we mentioned previously. This algorithm is

implemented in the Chemical Information and Data System (CIDS). The rings found by this

algorithm are all the cycles of the length eight or smaller, or classified as K-rings. The class

K is defined as a set of all SSSR rings that one ring cannot be indicated by the sum of the

other smallest rings.

The first stage of this algorithm is finding an SSSR for the given graph. The second

stage uses this SSSR to derive all rings of class K.

Stage one of the algorithm is to eliminate all edges that are not contained in any rings.

Then Plotkin’s theorem is applied for stratifying ring perception:

Theorem 2.1.1. [96] If P is an unforked path in a structure G, and there is a shortest ring

R through P such that |R| ≤ 2|P|, there is an SSSR of G that contains R and no other ring in

which P occurs.

Therefore, the next step is to search for a suitable unforked path P and ring R by testing

each edge of the structure. Then a longest unforked path P is determined containing an

edge uv, and paths are constructed by searching from one end of the edge uv and smallest

rings are derived. If the end vertex v is reached where path distance L≤ |P| is the distance

from vertex u, then all paths of length L, which join u and v with P are smallest rings R with

length |R|= L+ |P| ≤ 2|P|. Thus, one or more suitable rings are found and contained in a

path P, so we store one in the set of the smallest rings and delete the path P from the graph.

Then the same process is repeated for d(C) iterations where d(C) is the number of rings in

the set of all rings C. Therefore, no rings are left and an SSSR is found.
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Edge uv is chosen to lie within the largest ring found. If the graph does not contain any

suitable path P containing uv, then we simply delete this edge. Otherwise, an edge is picked

at random if there no cycles are found. Then we repeat the procedure to find the SSSR with

each edge removed.

In the second stage of the algorithm, the following theorem is applied to find all rings of

the class K:

Theorem 2.1.2. [96] Given an SSSR, if Rm, is the longest ring of the SSSR and if P is an

unforked path that is part of Rm, but contained in no other ring in the SSSR, then the rings

of class K that pass through P are the rings of length |Rm| that pass through P. These are

the shortest rings through P.

Therefore, a longest unforked path P is selected through the largest ring in the SSSR

previously found. All rings of length |Rm| through P, are found from the previous step are

stored in the set of class K. Then we delete the path P from the graph and delete Rm from

the SSSR. Repeat the same process for d(C) iterations until no rings are left. The algorithm

terminates with the set of all K-ring. Plotkins algorithm is invalid for certain structures,

because the rules of choosing an edge sometimes delete an edge required to find an SSSR.

Bersohn [11] establishes an algorithm to produce a set of synthetically important rings

as they are described by Corey and Petersson [21]. These rings are all small cycles of size

six or less or are not envelope cycles. If the value of nullity |R| is greater than zero this

indicates a ring’s existence. Any acyclic chains is deleted (i.e. chains that do not belong to

any rings) from the connection table to make a new structure. Bersohn initialized k = 3 and

apply the following steps:

1. If |R| = 1, the new structure is an isolated cycle found and then the procedure stops.

Else, choose a start vertex.
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2. Use this starting vertex to search for all paths of length k. If the path reaches the start

vertex, the cycle is stored (unless it had been previously found). Then if the cycle

discovered has a path of length 7 or more, the algorithm deletes all paths starting

with the new path sequence. Otherwise, if the path has a length less than 6, the

algorithm deletes these paths once the lengths of these paths are more than 6. The

application of this step of the algorithm guarantees that once a smallest ring is found,

only symmetrically equivalent rings or rings of size six or less are searched from the

chosen start vertex and larger envelope rings are removed. The algorithm continues

searching paths by the depth-first search algorithm from each start vertex until all

possible paths are removed by the reasons listed above. If there is no cycle discovered,

then let k := k+1 and the second stage is repeated.

3. A new start vertex is chosen and the second stage is repeated. The iteration stops if

the nullity number of rings is found or there are no more vertices left.

Zamora [130] developed an algorithm that uses basic rules to attain three types of ring

systems with respect to the SSSR. This algorithm starts with choosing a starting vertex of

high ring connectivity. Depth-first search is used to generate a path. If this path returns to the

start vertex, a smallest ring is found. Zamora mentions that a breadth-first search algorithm

can be used to find the smallest cycle, or cycles first. This algorithm uses principles that

provide for efficient path searching and for cycle analysis.

Zamora’s algorithm is used to find three classes of cycle systems [130]:

1. A class where all of the vertices of the ring system are not contained by any subset of

the smallest cycles.

2. A class where the subset of the smallest cycles includes all vertices but not all edges.

3. A class where the subset of the smallest cycles includes all vertices and edges.
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Roos-Kozel and Jorgensen [108] developed an algorithm that can produce an SSSR and

all symmetrically equivalent rings (all rings of class K mentioned by Plotkin [96] ). They

used the fundamental basis method that is used in many algorithms. It starts by deleting

edges that do not belong to any ring structure. A spanning tree is constructed and paths

are searched by using the breadth-first search. A path searching is started from a chosen

vertex of highest connectivity until a cycle is found or the path is forked then it stops to

avoid finding any envelope ring. The selection of a starting vertex requires that this vertex

does not already exist in two or more cycles and other unvisited vertices are available. This

procedure stops if all vertices are used or iterations reach the number of nullity and the set

of rings contains all vertices. Each found cycle is checked to avoid having double cycles.

This algorithm can fail to find embedded rings if paths tracing is stopped by a branch

vertex [108]. However, this problem is fixed if for each starting vertex, the number of cycles

is less than the number of paths divided by 2 plus 1. There are separate steps applied to

check for some ring classes such that asteranes, cyclophanes, or porphyrins, if all starting

vertices are utilized, but the nullity is not reached. When 2 cycles are found, the existence of

4 starting vertices implies a cyclophane, more than 4 starting vertices implies an asterane,

and more than 4 start vertices and more than 2 cycles implies a porphyrin. Hence, finding a

branch point stops the path tracing which cause failures, and extra steps are required to solve

these problems. Expanding the capabilities of the original path tracing may be a solution

instead of involving more procedures.

Lee et. al. [74] present an RP-path method for finding the SSSR by using a Path Included

Distance Matrix (PID). This method claims to be quicker than other methods for forming

the SSSR. The complexity cost of this method for the worst case is O(n3). However, it

needs more storage space than other algorithms. Nevertheless, the storage problem is graph

dependent, and many graphs do not present any memory problems.
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2.2 Small Cycles Algorithm

We develop an algorithm to detect sets of all small cycles of lengths 3,4,5,6,7, and

8. Many algorithms reviewed before are set to reveal cycles of particular requirements.

However, our algorithm guarantees the detection of all cycles for any given complex graph.

This method not only finds the small cycles but also provides the number of these cycles

in each set. A vertex x is chosen to begin the process. Once the algorithm is complete, all

small cycles that contain x will be found. All cycles can be found by deleting x from the

graph and then choosing a new vertex until all vertices have been checked. The set C3, all

cycles of length 3, is found by searching for the edges that connect every pair of vertices in

N1(x), that is we search E(G[N1(x)]) Figure 9A. Set C4 is generated by searching through

E(Gc[N1(x)]), the graph complement of first neighborhood of x. For every edge v1v2 in

E(Gc[N1(x)]), we find the first neighborhood of each end and intersect both neighborhoods

with the second neighborhood of x Figure 9B. Similarly, for set C5 we use E(Gc[N1(x)])

to check for edges connecting vertices in the first neighborhood of x Figure 9C. For each

edge v1pv2p in E(Gc[N1(x)]), we find the first neighborhood of each end. Then, we use

E(G[N2(x)]) to find the edge v1v2, where v1 is adjacent to v1p and not connected to v2p and

v2 is adjacent to v2p and not connected to v1p. The set C6 has two cases. The first is that we

have a path of length 2 in E(G[N2(x)]), and the second is the isometric cycle case where we

have one vertex in N3(x) Figure 10A and Figure 10B. Then we apply similar checking steps.

We do the same for C7 and C8 Figure 11A and Figure 22). Also, we can continue in this

fashion to find a set of cycles of any length.

Algorithm 2.2.1. F I N D A L L S M A L L C Y C L E S O F L E N G T H S 3 , 4 , 5 , 6 , 7 , A N D 8

Input: A connected graph G and a given vertex x.

Output: The sets of all cycles of lengths 3,4,5,6,7, and 8 containing the given vertex x.
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(A) C3 (B) C4 (C) C5

Figure 9: Small Cycles of Length 3,4 and 5.

(A) Case 1 (B) Case 2

Figure 10: Small Cycles of Length 6 Cases.
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(A) Case 1 (B) Case 2 (C) Case 3

Figure 11: Small Cycles of Length 7 Cases.

Figure 12: Small Cycles of Length 8 (Isometric Cycles Case)

Step 0. Set Ci← /0, for i = 3,4,5,6,7, and 8.

Step 1. Find N1(x).

Step 2. Find E(G[N1]) and E(Gc[N1]).
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Step 3. For every edge v1v2 ∈ E(G[N1(x)])

1. C3 =C3∪{xv1v2x}

Return C3.

Step 4. Find N2(x) = {u|u ∈ N1(vi)\N1(x)\N0(x), for every vi ∈ N1(x)}

Step 5. For every edge v1v2 ∈ E(Gc[N1(x)])

1. Find z ∈ (N1(v1)∩N1(v2)∩N2(x)),

2. Then C4←C4∪{xv1zv2x}.

Return C4.

Step 6. Find E(G[N2(x)]) and E(Gc[N2]).

Step 7. For every edge v1v2 ∈ E(G[N2(x)])

1. Let N′(v1) = N1(v1)∩N1(x) and N′(v2) = N1(v2)∩N1(x)

2. For v1pv2p ∈ E(Gc[N1])

(a) If v1p ∈N′(v1)\N′(v2) and v2p ∈N′(v2)\N′(v1), then C5←C5∪{xv1pv1v2v2px}.

Return C5.

Step 8. Find N3(x) = {u|u ∈ N1(vi)\N2(x)\N1(x), for every vi ∈ N2(x)}

Two cases to find all cycles of length 6.

Case I: 3 vertices in N2(x).

Step 9. For every edge v1v2 ∈ E(Gc[N2(x)])

1. Let N′(v1) = (N1(v1)∩N1(x)) \N(v2) \N2(x), N′(v2) = (N1(v2)∩N1(x)) \N(v1) \

N2(x), and Z = N2(x)∩N1(v1)∩N1(v2).
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2. For v1pv2p ∈ E(Gc[N1])

• For z ∈ Z

– If v1p ∈N′(v1)\N(z) and v2p ∈N′(v2)\N(z) then, C6←C6∪{xv1pv1zv2v2px}.

Case II: One vertex in N3(x)-(isometric cycles).

Step 10. For every edge v1v2 ∈ E(Gc[N2(x)])

1. Let N′(v1) = (N1(v1)∩N1(x)) \N(v2) \N2(x), N′(v2) = (N1(v2)∩N1(x)) \N(v1) \

N2(x), and Z = N3(x)∩N1(v1)∩N1(v2).

2. For v1pv2p ∈ E(Gc[N1])

• For z ∈ Z

– If v1p ∈ N′(v1) and v2p ∈ N′(v2) then, C6←C6∪{xv1pv1zv2v2px}.

Return C6.

Three cases to find all cycles of length 7.

Case I: 4 vertices in N2(x).

Step 11. For every edge v1v2 ∈ E(Gc[N2(x)])

1. Let N′(v1) = (N1(v1)∩N1(x)) \N(v2) \N2(x), N′(v2) = (N1(v2)∩N1(x)) \N(v1) \

N2(x), N(z1) = N2(x)∩N1(v1)\N1(v2), and N(z2) = N2(x)∩N1(v2)\N1(v1).

2. For v1pv2p ∈ E(Gc[N1])

• For z1z2 ∈ E(G[N2])

– If v1p ∈N′(v1)\N(z1)\N(z2) and v2p ∈N′(v2)\N(z1)\N(z2). then, C7←

C7∪{xv1pv1z1z2v2v2px}.
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Step 12. Find E(G[N3(x)]) and E(Gc[N3])

Case II: An edge (2 vertices) in N3(x)-(isometric cycle).

Step 13. For every edge v1v2 ∈ E(G[N3(x)])

1. Let N′(v1) = (N1(v1)∩N2(x))\N(v2), and N′(v2) = (N1(v2)∩N2(x))\N(v1).

2. For v1pv2p ∈ E(Gc[N2])

• If v1p ∈ N′(v1) and v2p ∈ N′(v2), Let N′(v1p) = (N1(v1p)∩N1(x))\N(v2p), and

N′(v2p) = (N1(v2p)∩N1(x))\N(v1p).

– For v1ppv2pp ∈ E(Gc[N1]).

∗ If v1pp ∈N′(v1p) and v2pp ∈N′(v2p), then C7←C7∪{xv1ppv1pv1v2v2pv2ppx}.

Case III: An edge (2 vertices) in N2(x) and A vertex in N3(x).

Step 14. For every set of vertices v1,v2, and v3 such that v1v2,v1v3 ∈ E(Gc[N2(x)]) ,and

v2v3 ∈ E(G[N2(x)])

1. Let N′(v1) = (N1(v1)∩N1(x)) \N(v2) \N(v3) \N3(x), N′(v3) = (N1(v3)∩N1(x)) \

N(v1)\N(v2)\N3(x), and Z = (N3(x)∩N1(v1)∩N1(v2))\N(v3).

2. For v1pv3p ∈ E(Gc[N1])

• For z ∈ Z

– If v1p ∈ N′(v1) and v3p ∈ N′(v3) then, C7←C7∪{xv1pv1zv2v3v3px}.

Return C7.

Step 15. Find N4(x) = {u|u ∈ N1(vi)\N3(x)\N2(x)\N1(x), for every vi ∈ N3(x)}

The isometric case for cycles of length 8.
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Case I: One vertex in N4(x).

Step 16. For every edge v1v2 ∈ E(Gc[N3(x)])

1. Let N′(v1) = (N1(v1)∩N2(x)) \N(v2), N′(v2) = (N1(v2)∩N2(x)) \N(v1), and Z =

N4(x)∩N1(v1)∩N1(v2).

2. For v1pv2p ∈ E(Gc[N2])

(a) Let N′(v1p)= (N1(v1 p)∩N1(x))\N(v2 p)\N2(x), N′(v2p)= (N1(v2 p)∩N1(x))\

N(v1 p)\N2(x).

(b) For v1ppv2pp ∈ E(Gc[N1])

• For z ∈ Z

– If v1pp ∈N′(v1 p) and v2pp ∈N′(v2 p) then, C8←C8∪{xv1ppv1pv1zv2v2pv2ppx}.

Return C8.

2.2.1 The Computational Complexity

Theorem 2.2.1. Let G be a connected graph. The computational complexity of the small

cycles algorithms of lengths 3-8 is O(m3n+n2) where m = |E(G)| and n = |V (G)|.

Proof: The time complexity of step 0 is O(1), finding N1(x) is O(n), and the complexity

for finding E(G[Ni(x)]), E(Gc[Ni(x)]), and Ni(x) for i = 2,3,4, ... is O(n2). One or more of

these sets is constructed to search for each cycle set, but this construction can take place

before the search. Therefore, there is an additional complexity of O(n2) for each cycle set.

To find all cycles of length 3 by searching the edge set E(G[N1(x)]) is O(m). With the

additive complexity explained previously we get O(m+n2).
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To find all cycles of length 4, we search for appropriate combinations of vertices in

N2(x) and edges in Gc[N1(x)], giving a complexity of O(mn+n2) total.

To find all cycles of length 5, we search for appropriate combinations of edges in

Gc[N1(x)] and edges in G[N2(x)], giving O(m2 +n2) total.

Cycles of length 6 have 2 cases. In the first case we search for appropriate combinations

of edges in Gc[N1(x)], edges in Gc[N2(x)], and vertices in N2(x), giving O(m2n+n2) total.

In the second case we search for appropriate combinations of edges in Gc[N1(x)], edges in

Gc[N2(x)], and vertices in N3(x), giving O(m2n+n2) total.

Cycles of length 7 have 3 cases. In the first case we search for appropriate combinations

of edges in Gc[N1(x)], edges in Gc[N2(x)], and edges in G[N2(x)], giving O(m3 +n2) total.

In the second case we search for appropriate combinations of edges in Gc[N1(x)], edges in

Gc[N2(x)], and edges in G[N3(x)], giving O(m3 +n2) total. In the third case we search for

appropriate combinations of edges in Gc[N1(x)], 2 edges in Gc[N2(x)], edges in G[N2(x)],

and vertices in N3(x), giving O(m3n+n2) total.

Cycles of length 8 have only one case because we are only interested in isometric cycles

of this length. For these cycles we search for appropriate combinations of edges in Gc[N1(x)],

edges in Gc[N2(x)], edges in Gc[N3(x)], and vertices in N4(x), giving O(m3n+n2) total.

2.2.2 Implementations and Results

The algorithm is written in C++ (see Figure 14 shows the procedures). Our programs

contain about a thousand of lines of codes. All codes are performed and executed on Intel

Core i7-6820HQ CPU 2.7 GHz, 16 GB RAM, Windows 7 Enterprise 64-bit Operating

System. We run our program for a set of actual molecular structures listed in Table 2.
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Figure 13: Flow Chart for Small Cycles Algorithm part 1.
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Figure 14: Flow Chart for Small Cycles Algorithm part 2.
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These data are for chemical compounds. We used CCDC identifier codes from the Cambridge Structural Database (CSD) and

Protein Data Bank (PDB) to represent each molecule, see Table 1.

Table 1: Molecular Structure Examples From CSD and PDB

CSD code Chemical Name Reference

1HPH a protein structure (a structure of human parathyroid hormone) [87]
ABECAL 9-(4-biphenyl)cyclopenta[a]phenalene [113]
BOXGAW01 anthra(2,1,9,8-hijkl)benzo(de)naphtho(2,1,8,7-stuv)pentacene [86]
CORONE coronene [41]
AMCOCB10 methyltriethylammonium 8,8’-oxido-3,3’commo-bis(3-cobalta-1,2-dicarba-closo-dodecaborate) [95]
CIMCAE octadecachloro-C48graphene [117]
GEBGEZ bis(tetramethylammonium) octadecadiborate(20) [43]
GUCFOA tetracosachloro-C76fullerene [61]
GUTCUT (1212)pentamantane [25]
JALXEZ 1,10,11,20-tetrakis(Benzyloxy)nonacyclo(12.6.0.02,6.04,11.05,9.07,20.010,17.012,16.015,19)eicosane [83]
LOPYOG 11,14-Di-t-butyl-7,8,9,16,17,18-hexamethoxy-1,3,4,6-tetraazahexabenzo[bc,ef,hi,kl,no,qr]coronene [123]
NIHZAF (1a,8a,9a,13a,14a,15a,16a,17a,18a,19a,20a,20a,24a,25a,26a)-endo-2,endo-7-Dibromo-11,22-dioxadecacyclo-(13.9.2.03,19.04,25.05,17.06,14.08,16.09,13.018,26.020,24)-hexaeicosane [77]
OLADOU tridecacyclo(12.10.0.01,18.02,6.02,10.03,13.04,11.05,9.010,17.012,16.014,21.015,19.020,24)tetracosa-7,22-diene [16]
SELMON t-Butyl 3-fluoro-4-hydroxy-1-((4-methylphenyl)sulfonyl)-2-phenyl-1,2,3,4-tetrahydroquinoline-3-carboxylate [75]
UJISAH dodecacyclo(12.12.0.02,11.03,16.05,18.06,11.07,20.09,22.010,2 5.012,17.012,21.013,24)hexacosane [25]
ULOXID 3,6-bis(7b-Fluoradenyl)-N-hexylcarbazole [107]
ULOXUP 4,4’-bis((7b-Fluoradenyl)phenyl)aniline [107]
WUCHIN 1,2,3,4,5,7,8,9,10,11,12,13,15,16-tetradecakis(phenylsulfanyl)thieno[2”’,3”’,4”’,5”’:4”,5”]phenanthro[1”,10”,9”,8”:5’,6’,7’,8’]piceno[1’,14’,13’,12’:4,5,6,7,8,9]perylo[1,12-bcd]thiophene [116]
YOFCUR benzo(1,2,3-bc:4,5,6-b’,c’)dicoronene [51]



30

Also, small cycle algorithm has been implemented on many fullerene graphs and cata-

condensed benzenoid structures listed and explained in detail in the next sections.

The adjacency matrix G for each graph is constructed as where matrix entry gi j is defined

as

gi, j =

 1 if ∃ an edge between vertex i and vertex j, that is edge (i, j)

0 otherwise.

Note that an adjacency matrix is n×n where n is the number of vertices.

On completion our C++ program provides the results which are summarized in Table 2

output as sets of all smallest small cycles of lengths 3-8 and the total number of rings for

each set. Table.1 also shows the CPU time for the algorithm for each data set. If we look at

the smallest example we have in Figure 15, it has |n|= 36 and |m|= 42. The outputs of this

structure is shown below:

7 small cycle(s) of length 6:

1 2 4 6 17 16 1

1 14 12 11 18 16 1

6 7 9 29 36 17 6

11 19 20 21 35 18 11

16 18 35 34 36 17 16

21 22 23 24 34 35 21

24 32 30 29 36 34 24

It takes 0.001 second to find all smallest small cycles.
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Table 2: Implementations of Small Cycles Algorithm and CPU Times (C++)

Example n m C3 C4 C5 C6 C7 C8 CPU(s)
1HPH 626 631 0 0 4 2 0 0 0.037
ABECAL 46 51 0 0 1 5 0 0 0.001
AMCOCB10 65 102 40 1 24 80 0 0 0.005
BOXGAW01 56 66 0 0 0 11 0 0 0.001
CIMCAE 66 81 0 0 0 16 0 0 0.001
CORONE 36 42 0 0 0 7 0 0 0.001
GEBGEZ 51 71 22 0 6 4 2 0 0.002
GUCFOA 100 138 0 0 12 28 0 0 0.004
GUTCUT 58 68 0 0 0 16 0 15 0.002
JALXEZ 100 112 0 0 8 4 0 2 0.004
LOPYOG 104 116 0 0 0 13 0 0 0.003
NIHZAF 56 65 0 0 2 15 0 6 0.002
OLADOU 44 56 0 0 16 8 4 1 0.002
SELMON 63 66 0 0 0 4 0 0 0.002
UJISAH 56 67 0 0 0 18 0 9 0.003
ULOXID 98 110 0 0 5 8 0 0 0.002
ULOXUP 92 104 0 0 4 9 0 0 0.002
WUCHIN 212 240 0 0 2 27 0 0 0.006
YOFCUR 68 82 0 0 0 15 0 0 0.002

Figure 15: Coronene Molecule (CORONE) [41]
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Figure 16: 9-(4-Biphenyl)Cyclopenta[a]Phenalene (ABECAL) [113]

Figure 17: Chlorinated Nanographenes Molecule (CIMCAE) [117]

2.2.3 Conclusions

We present a polynomial time algorithm that finds all small cycles of length 3 to 8 for a

given vertex and the number of cycles in each set. Our algorithm covers all cycles in any

complex molecule graph. The breadth first search algorithm is used to walk through an

adjacency matrix and trace paths. Compared with other algorithms, our method is efficient,

simple and easy to implement for complex undirected graphs and molecule structures. Many

algorithms don’t discover all small cycles in some graphs for instance in the cube graph
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Figure 18: A Protein Structure of A Structure of Human Parathyroid Hormone 1HPH [87]

(Figure.21), the cycle 12781 won’t be found. However, this algorithm guarantees to detect

all these small cycles. This algorithm has several sections which can be applied at once or

separately on a given graph to attain a set of all cycles of specific length. This algorithm

may be useful in different fields of science.
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Figure 19: Tetracosachloro-C76Fullerene (GUCFOA) [61]

Figure 20: Benzo[1,2,3-bc:4,5,6-b’c’] Dicoronene Molecule (YOFCUR) [51]

1 2

3 4

5 6

7 8

Figure 21: A Cube Graph
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2.3 Shortest Paths Algorithm

We also developed another algorithm to find all shortest paths joining given vertices u

and v and any given graph G. For any two vertices u,v ∈V (P) and uv ∈ E(G) said P is a

shortest path if distG(u,v) = distP(u,v). To determine the shortest cycles, we first omit an

edge between the two adjacent vertices u and v. The proposed fixed end algorithm then finds

all shortest paths between the two given vertices. Evaluating these paths can determine a

set of cycles, which can then be shown on a graph. In order to show this representation, we

propose that the primary function of this research is two-fold; to use two algorithms in order

to find all possible shortest paths in a graph and to compute all shortest cycles of a graph

that is containing the given edge.

For each uv ∈ E(G), we delete the edge that is joining them. Then, the vertices u and v

are chosen to begin the process where u is the start vertex and v is the destination vertex.

BFS algorithm is used to trace paths if the destination vertex is found. If v is not found then,

we pick another vertex and continue tracing its neighborhood. Otherwise, all found paths

are saved and we delete all paths that contain the same vertex, which is the vertex adjacent

to (or before) the destination vertex v.

Once the algorithm is complete all shortest paths that are joining u and v will be found.

All cycles can be found by deleting u and v from the graph and then choosing new vertices

until all vertices have been checked. This algorithm guarantees that there are no two paths

sharing a vertex or an edge. We have proved this in this research.

In the following sections we give a mathematical description of this problem setting,

including definitions. We will then provide proofs and theorems for the analysis. Next we

outline our algorithm and give examples of this work.



36

2.3.1 Properties

Let u and v be two vertices of G such that uv ∈ E(G). A path P joining u and v is

semi-isometric if for any two vertices x,y ∈V (P) such that distP(u,x)< distP(u,y),

distG(x,y) = min{distP(x,y),distP(x,u)+distP(y,v)+1}.

Proposition 2.3.1. Let G be a graph and C be a cycle. Assume that uv is an edge of C. Then

C is a isometric cycle if and only if C−uv is a semi-isometric path joining u and v.

Proof. Let P =C−uv. Let x,y ∈V (C) such that distP(u,x)< distP(u,y). Note that

min{distP(x,y),distP(x,u)+distP(y,v)+1}= distC(x,y).

The proposition follows directly from the definitions.

Let Ni(u) be the i-th neighborhood of u, i.e., Ni(u) = {x|distG(u,x) = i}. Let Gα be the

subgraph induced by all edges contained by at least one semi-isometric path of length α .

Lemma 2.3.2. Let G be a graph and u,v two vertices of G. Then Gα ∩Gβ = {u,v} and

E[V (Gα),V (Gβ )] = /0 for α 6= β .

Proof. Let u,v two vertices of G and Gα be a subgraph containing all semi-isometric paths

from u to v with α length and Gβ be a subgraph containing all semi-isometric paths from u

to v with β length.

Assume α > β . Suppose on the contrary that either Gα ∩Gβ −{u,v} 6= /0 or

E[V (Gα),V (Gβ )] 6= /0.

First suppose Gα ∩Gβ 6= /0. Let w ∈ Gα ∩Gβ −{u,v}.

Note that

max{distPα
(u,w),distPα

(w,v)}> max{distPβ
(u,w),distPβ

(w,v)}
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because α > β . So distPα
(u,w)+distPα

(w,v)> distPβ
(u,w)+distPβ

(w,v)

that means distG(u,w)+distG(w,v) = distPβ
(u,w)+distPβ

(w,v) then distPβ
(u,v) is a semi-

isometric path and distPα
(u,v) is not a semi-isometric path a contradiction and therefore

Gα ∩Gβ = {u,v}

Now assume xy ∈ E[V (Gα),V (Gβ )] and x ∈V (Gα) and y ∈V (Gβ ). Since α 6= β ,

x ∈ Ni(z) and y ∈ N j(z) for some z ∈ {u,v} and i 6= j.

Without loss of generality,

assume z = u and i > j. Then i = j+1 because x is in the first neighbor of y.

Then distPα
(y,v)> distPβ

(y,v) because α > β .

From the semi-isometric path definition distG(y,v)= distPβ
(y,v) and distG(y,v)= distPα

(y,v)

That means distG(y,v)> distG(y,v) is a contradiction. Therefore, y is not on a semi-isometric

path of length α .

Algorithm 2.3.1. F I N D A L L S H O R T E S T PAT H S W I T H F I X E D E N D S A L G O -

R I T H M

Input: A connected graph G and two vertices u and v.

Output: The set of all shortest paths joining u and v.

Step 0. Set P0 = {u}, N0(u) = {u}, Q = N0(u), P= /0 and i = 0.

Step 1. If i < n, then set Ni+1(u) = /0, and Pi+1 = /0, go to Step 2. Otherwise, return P.

Step 2. If Ni(u) 6= /0, choose a vertex x ∈ Ni(u) and go to Step 3. Otherwise, go to Step

4.
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1  

α−1 

β−1 

i = j  +1

j 

α  > β

β α

α−1 

β−1 

α  > β

β α

α−1 

β−1 

i = j  +1

j 

α  > β

β α

a. Sharing a vertex b. Sharing an edge

Figure 22: Lemma Example

Step 3. Set Y = {y|y ∈ N1(x)\Q} and Ni+1(u)← Ni+1(u)∪Y , Pi+1 = Pi+1 ∪{P+

xy|P ∈ Pi with end u and x}. Set Ni(u) = Ni(u)\{x}.

1. If v /∈ Y , then return to Step 2.

2. Otherwise, add Q← Q∪ (Y\v), Y = {v}. set P← P∪Pi+1 and delete all paths from

Pi with x as an end vertex and return to Step 2.

Step 4. Update Q← Q∪Ni+1(u) and set i← i+1 and return to Step 1.

Theorem 2.3.3. Let G be a graph. The computational complexity of the shortest paths

algorithm is O(n+m) where m = |E(G)| and n = |V (G)|.

Proof. The time complexity of steps 1, 2, and 4 are n since we are going to explore all

vertices in each level. In line 3, we find all adjacent vertices of a vertex x, that means we
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go through each edge. Then, this step needs to be done in m time. The complexity time

is O(3n+m). Therefore, the final complexity time of this algorithm is O(n+m) where

n = |V (G)| and m = |E(G)| because we explore all vertices and edges.

Theorem 2.3.4. Algorithm finds all shortest paths from u to v.

Proof. We want to prove that P is the set of all shortest paths of G. That means we prove

that

∀p ∈ Puv, p is the shortest path joining u and v.

Let q be a shortest path from u to v, then q ∈ P.

Frist, ∀p ∈ Puv, p is the shortest path joining u and v.

let p = uw1w2...wi...w j...wkv.Take any two vertices wi and w j where i < j and wi ∈ Ni(u)

& w j ∈ N j(u)

distG(wi,w j)≤ distp(wi,w j)

Assume that distG(wi,w j)< distp(wi,w j) (∗)

distG(u,wi) = i,

distG(u,w j) = j,

distp(wi,w j) = j− i

distG(wi,w j) = α

from (∗) α < j− i

distG(u,w j)≤ distG(u,wi)+distG(wi,w j)

≤ i+α

< i+( j− i)
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j < j

Contradicts our assumption

Now, we need to prove that if q is a shortest path from u to v, then q ∈ P.

let q = uw1w2...wkv, and wi ∈ Ni(u) for i = 1,2, ...n

wi is not adjacent to v for 1≤ i≤ k−1. Suppose wi ∈ Nα(u) Consider i < α and i > α by

the definition Nα(u), distG(u,x) = α for any x ∈ Nα(u).

That means q ∈ P.

2.3.2 Implementations and Results

Figure 23: Shortest Paths Example

The graph in Figure 23 is used as an example for the shortest paths algorithm.
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On completion our FORTRAN 90 program provides the following output as the set of

all shortest paths of G. All codes are performed and executed on a MacBook Pro running a

2.5 GHz Intel Core i5 processor, with 16 GB of 1600 MHz DDR3 memory, and with the

macOS Sierra 10.12.3 operating system.

P =

1 2 5 10

1 3 5 10

1 2 6 10

1 3 6 10

1 4 6 10

1 3 7 10

Also, we run our algorithm for several actual molecular structures. The meanings of

these chemical compounds are explained in detail in the previous section. The results, which

are summarized in Table 3, output the total number of shortest cycles that join two vertices

u and v. Also, shortest paths can be printed. The CPU time (per second) is also shown for

the algorithm for each data.
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Table 3: Implementations of Shortest Paths Algorithm and CPU Times (FORTRAN 90)

Example n m number of cycles CPU(s)

1HPH 626 631 6 26.9

ABECAL 46 51 6 0.1

BOXGAW01 56 66 11 0.2

CORONE 36 42 7 0.07

AMCOCB10 65 102 41 0.5

CIMCAE 66 81 18 0.3

GEBGEZ 51 71 29 0.2

GUCFOA 100 138 39 0.9

GUTCUT 58 68 16 0.2

JALXEZ 100 112 13 0.6

LOPYOG 104 116 13 0.7

NIHZAF 56 65 17 0.2

OLADOU 44 56 16 0.2

SELMON 63 66 4 0.3

UJISAH 56 67 19 0.3

ULOXID 98 110 13 0.6

ULOXUP 92 104 13 0.6

WUCHIN 212 240 30 3.0

YOFCUR 68 82 15 0.4

2.3.3 Conclusions

The Shortest Paths algorithm is easy to implement and can be used for any chemical

graph. The concept of this algorithm is similar to the BFS algorithm. By this algorithm, a
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set of shortest paths is generated from given two vertices u,v ∈V (G).

The distance between any given pair of vertices can be found easily by applying the shortest

paths algorithm. We can compute a set of all shortest cycles in a graph containing edge uv

by removing this edge and applying the shortest paths algorithm. This strategy is effective

only if the graph is sparse. A graph is sparse if it has few edges. However, we have applied

this algorithm to different actual molecular structures to show that it works for all graphs.
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CHAPTER 3

CLAR STRUCTURES VS FRIES STRUCTURES IN

HEXAGONAL SYSTEMS

A hexagonal system is a finite 2-connected plane bipartite graph in which every interior

face is bounded by a regular hexagon. Hexagonal systems can be used to model molecular

skeletons of graphens or benzenoid hydrocarbons such that a vertex represents a carbon

atom and an edge models a bond between two adjacent carbon atoms. Many chemical

properties of graphenes or benzenoid hydrocarbons can be estimated through the computing

some topological indices of hexagonal systems, particularly perfect matchings or Kekulé

structures [26, 55]. One of challenge problems in material science and chemistry is to

identify the stable molecules among all possible structures through massive computation.

Let H be a hexagonal system. A perfect matching M of H is a set of disjoint edges

such that every vertex of H is incident with exactly one edge in M. A perfect matching

of a hexagonal system is also called a Kekulé structure in chemistry literatures. A graph

with a perfect matching is called matchable and a graph is matching-covered if every edge

is contained in a perfect matching. A hexagonal system is catacondensed if all vertices

appear on its boundary. A catacondensed hexagonal system H is matching-covered. The

computation of the number of distinct perfect matchings for a given bipartite graph is

#P-complete [120]. For planar graphs, the number of perfect matchings can be computed in

polynomial time by the Pfaffian orientation method (cf. Chapter 8 in [82]) which provides a

polynomial time algorithm to compute the permanent of the adjacency matrix. Li et. al. [76]

characterize hexagonal chains maximizing the coefficients sum of permanent polynomial.

For a given perfect matching M, a cycle C of H is M-alternating (or resonant) if the edges

of C alternate between M and E(H)\M.



45

A resonant set S of H is a set of hexagons such that all hexagons are M-alternating

for some perfect matching M. A maximum independent resonant set is also called a Clar

formula of H. The Fries number of H is the size of a maximum resonant set, denoted by

fr(H), and the Clar number of H is the size of a maximum independent resonant set (or

Clar formula), denoted by cl(H). The Clar number and Fries number of hexagonal systems

can be computed by the integer programming [59].

Abeledo and Atkinson [1] show that the integer programming for Clar problem can

be relaxed to a linear integer programming. The integer programming can also be used to

compute the Clar problem and Fries problem of fullerenes [17, 110]. There is a natural

connection between the Clar number and the forcing number of hexagonal systems [134],

and this connection could be considered in general for resonant sets and forcing sets (for

more details on enumeration of forcing sets, see [133]).

For a given number of vertices, there are many non-isomorphic hexagonal systems,

so-called isomers in chemistry. Brinkmann et al. [15] developed an algorithm to construct

all non-isomorphic hexagonal systems. By the Clar theory [20] and Randić conjugated

circuit model [99], usually, an isomer of a hexagonal system with larger Clar number is

more stable, and the same holds for the Fries number. However, the Clar numbers and the

Fries numbers of hexagonal systems are not always consistent, even for cata-condensed

hexagonal systems. For example, the following two hexagonal systems H1 in Figure 24A

and H2 in Figure 24B satisfy cl(H1) = 5 > 4 = cl(H2) = 4 but fr(H1) = 6 < 7 = fr(H2).

A pair of hexagonal systems H1 and H2 with the same number of vertices is called a

contra pair if cl(H1) > cl(H2) and fr(H1) < fr(H2). In this work, we characterize the

structures of cata-condensed hexagonal systems maximizing Clar number and Fries number

among all their isomers, and the contra pairs of cata-condensed hexagonal systems. Our

computation results demonstrate correlations between the Fries number and Clar number of

cata-condensed systems hexagonal systems. In a contra pair H1 and H2, the system with
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(A) H1 (B) H2

Figure 24: A Contra Pair H1 and H2: Blue Edges form a Perfect Matching and Hexagons
with Circles form a Clar Formula.

larger Clar number has larger HOMO-LUMO gap, which shows that Clar number is a better

stability predictor than Fries number.

The following conjecture shows the connection between Clar structures and Fries struc-

tures of hexagonal systems, which is circulated among the mathematical chemistry commu-

nity [91] and first appears in [54].

Conjecture 3.0.5 ([54]). Let H be a hexagonal system. Then H has a maximum resonant

set containing a maximum independent resonant set.

Graver, Hartung and Souid [54] verified the conjecture for a family of hexagonal systems

admitting a special face-coloring. In this project, we confirm the above conjecture for all

cata-condensed hexagonal systems.

3.1 Maximizing Fries Number and Clar Number

Let H be a hexagonal system. The inner dual H∗ of a hexagonal system H is a graph

such that the vertex set consists of center points of all hexagons of H and two vertices of H∗

are joined by a straight line segment if the corresponding two hexagons sharing an edge. A

hexagonal system is catacondensed if its inner dual is a tree. A linear chain is a hexagonal
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system whose inner dual is a straight line segment. Clearly, a linear chain is a catacondensed

hexagonal system. A linear hexagon chain of length k consists of k hexagons h1,h2, . . . ,hk

such that hi∩hi+1 is an edge in the opposite position of hi−1∩hi (the subscribes are taken

modulo k). A linear chain of H is maximal if it is not contained by another linear chain of

H. A hexagon of H is called a kink-hexagon if it belongs to two maximal linear chains. A

hexagon of H is called a leaf-hexagon if the corresponding vertex in its inner dual is a leaf.

Observation 3.1.1. Let H be a linear chain with at least two hexagons. Then cl(H) = 1

and fr(H) = 2.

Let H be a catacondensed hexagonal system and h be a hexagon which is contained by

maximal linear chains L1, . . . ,Lk (k ≤ 3). Choose one hexagon hi from Li for each i with

1≤ i≤ k. Note that hi may be the hexagon h. Then H−∪k
i=1V (hi) has a perfect matching,

which implies the following observation.

Observation 3.1.2. Let H be a catacondensed hexagonal system and let S be a set of disjoint

hexagons. If S contains at most one hexagon from each maximal linear chain, then H−V (S)

has a perfect matching. In other words, S is a independent resonant set of H.

The above observation show that a Clar formula is a maximum set of disjoint hexagons

which intersects every maximal linear chain of H. The following is a very important property

for maximum independent resonant sets of hexagonal systems.

Theorem 3.1.3 (Zheng and Chen, [85]). Let H be a hexagonal system and S be a maximum

independent resonant set of H. Then H−V (S) has unique perfect matching.

The following is a very useful technical lemma due to Kotzig [69]. A short proof can

also be found in [128].

Lemma 3.1.4 (Kotzig, [69]). Let G be a graph with a unique perfect matching M. Then G

has a cut-edge e which belongs to M.
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Theorem 3.1.5. Let H be a hexagonal system with a perfect matching. Let φ(H) be the

number of hexagons of H and τ(H) be the total number of vertices not on the boundary of

H. Then

1≤ fr(H)≤ φ(H)− τ(H)

6
.

Furthermore, for cata-condensed hexagonal systems H, the upper bound holds if and only if

every maximal linear chain of H has length 2.

Proof. Let H be a hexagonal system with a perfect matching M. By Lemma 3.1.4, H has

another perfect matching M′ 6= M since H is 2-connected. Let S be a maximum independent

resonant set. By Theorem 3.1.3, H −V (S) has a unique perfect matching. It follows

immediately that S is not empty. So fr(H)≥ cl(H)≥ |S| ≥ 1.

Let v be a vertex not on the boundary of H. For a perfect matching M of H, let uv ∈M.

Then the hexagon containing v but not uv is not M-alternating. Note that a hexagon has 6

vertices. Therefore, there are at least τ(H)/6 hexagons which are not M-alternating. So

fr(H)≤ φ(H)− τ(H)/6 and the upper bound follows. Note that the upper bound is sharp

for infinitely many hexagonal systems (see Figure ??).

Note that, for catacondensed hexagonal system, τ(H) = 0. In the following, we are

going to show fr(H) = φ(H) if and only if H is a catacondensed hexagonal system in which

every maximal linear chain has length at most 2.

First assume that fr(H) = φ(H). Then H has a perfect matching M such that all

hexagons are M-alternating. If H has a vertex v which is not on the boundary of H, let

uv ∈M and H has a hexagon h which contains v but not uv. Then h is not M-alternating, a

contradiction. Hence all vertices of H are on the boundary of H. So H is catacondensed. If

H has a linear chain L with length at least 3, by Observation 2.1, fr(L) = 2 and hence L has

a hexagon which is not M-alternating, a contradiction again. So every maximal linear chain

of H has length at most 2.

Now, assume that H is catacondensed and every linear chain of H has length at most
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2. We prove that fr(H) = φ(H) by induction on the number of hexagons. If H has only

one hexagon, the result trivially holds. So assume that H has more than one hexagons and

let h be a leaf-hexagon of H. Let H ′ be a subgraph containing all hexagons of H except

h. Then H ′ has no linear chain of length bigger than 2. By inductive hypothesis, H ′ has a

perfect matching M such that all hexagons of H ′ are M-alternating. Then M contains all

edges shared by two hexagons of H. It implies that the edge in h∩H ′ belongs to M too. So

the edge of h∩H ′ ∈M. Let Mh be the perfect matching of h such that h∩H ′ ∈Mh. Then

Mh∪M is a perfect matching of H such that all hexagons of H are (Mh∪M)-alternating.

Therefore, fr(H) = φ(H).

In the following, we consider the Clar number of hexagonal systems.

Theorem 3.1.6. Let H be a hexagonal system with n vertices and admitting a perfect

matching. Then

1≤ cl(H)≤ bn
6
c,

and the both bounds are sharp.

Proof. Let H be a hexagonal system with n vertices and a perfect matching. The lower

bound follows from fr(H)≥ 1 by Theorem 2.2. The bound is sharp for all linear hexagon

chains.

Let S be a maximum independent resonant set. Since all hexagons in S are disjoint,

6|S| ≤ |V (H)| = n. So cl(H) = |S| ≤ bn/6c. There are infinitely many cata-condensed

hexagonal systems with cl(H) = bn/6c (see the following theorem).

Let L be the infinite hexagon lattice, i.e., a hexagon tiling of the plane. A hexagonal

system H is a finite subgraph of the lattice consisting of a cycle together with its interior.

Let F(L) be the set of all hexagonal faces of L. Then L admits a proper 3-face-coloring

c : F(L)→ Z3, which can be constructed from one hexagon h with color 0: color the
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hexagons adjacent to h by 1 and 2 and extend the coloring to all faces. Note that this 3-face-

coloring is unique up to permutations of colors. The restriction of the coloring c of faces

of L on H is a proper 3-face-coloring of all inner faces of H, called a canonical 3-coloring

of H. From the 3-face-coloring of L, define a proper 3-edge-coloring α : E(L)→ Z3 of L

such that α(e) = c(h1)+ c(h2) (mod 3) where e is a common edge of hexagons h1 and h2.

The restriction of α on H is a proper 3-edge-coloring of H. Note that, if α−1(i) is a perfect

matching M of H, then the hexagons of H with color i+1 or i+2 (mod 3) are M-alternating.

A hexagonal system H is fully if cl(H) = |V (H)|/6. The number of vertices of a fully

hexagonal system is divisible by 6. The fully hexagonal systems is a very important family

which usually have good chemical properties [24]. The following proposition shows a

direct connection between the Clar number of a fully hexagonal system and its canonical

3-coloring.

Proposition 3.1.7. Let H be a fully hexagonal system and let c : F(H)→ Z3 be a canonical

3-coloring of H, where F(H) is the set of all hexagons of H. Then

max{|c−1(i)|
∣∣i ∈ Z3}= cl(H).

Proof. Let S be a maximum independent resonant set of H. Since H is fully, we have

|S|= n/6 and H−V (S) = /0. Let c : F(H)→ Z3 be the canonical 3-coloring of H.

Claim. All hexagons of S are colored by same color.

Proof of Claim. If not, assume hexagons of S are colored by at least two colors. Let S1 ⊂ S

be the set of hexagons colored by the same color, say 1, which is not empty. Then S\S1

is not empty neither. Let h1 ∈ S1 and h2 ∈ S\S1 such that the distance of the two vertices

corresponding to h1 and h2 in the inner dual H∗ of H is as small as possible. Since both

h1 and h2 belong to S, h1∩ h2 = /0. Hence the distance between h1 and h2 is bigger than

1. Let h1hi1hi2 . . .hikh2 be a shortest path in H∗ connecting h1 and h2. Then k ≥ 1, and all
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hi1,hi2, . . . ,hik do not belong to S by the choice of h1 and h2. Since all vertices of hi1 is

covered by S, the other vertices not in h1 are covered by hexagons from S. Since c is the

canonical 3-coloring, it follows that all vertices of hi1 are covered by hexagons colored by 1.

Therefore, all three disjoint hexagons adjacent to hi1 belong to S and they are colored by

1. Note that, hi2 (may be h2) is adjacent to hi1 , and hence is adjacent to at least a hexagon

h ∈ S colored by 1 which is adjacent to hi1 . So h has a shorter distance to h2 as hhi2 . . .hikh2

is shorter than h1hi1hi2 . . .hikh2, a contradiction to the choice of h1 and h2. This completes

the proof of Claim.

By the Claim, S⊆ c−1(i) for some i ∈ Z0. Note that c−1(i) is an independent hexagon

set and hence |c−1(i)| ≤ n/6. It follows that S= c−1(i) and this completes the proof.

The following is a direct corollary of Proposition 3.1.7 since the canonical 3-coloring of

a hexagonal system is unique up to the permutation of colors.

Corollary 3.1.8 (Gutman and Salem [57]). Let H be a fully hexagonal system. Then H has

a unique maximum independent resonant set.

The following is a result characterizing the catacondensed hexagonal systems max-

imizing the Clar number among all its isomers. For a vertex set S, let Sc to denote its

complement.

Theorem 3.1.9. Let H be a catacondensed hexagonal system with n vertices and let H∗ be

the inner dual of H. Let Vi = {v|dH∗(v) = i} for i = 1,2,3. Then H∗ has an independent set

S such that its complement Sc =V (H∗)\S satisfies

(1) cl(H) = n/6 if and only if Sc ⊆V3 is an independent set;

(2) cl(H) = (n−2)/6 if and only if one of the follows holds:

(2.1) Sc ⊆V3 induces exactly one edge; or

(2.2) Sc is independent and |Sc∩V1|= 0 and |Sc∩V2|= 1;

(3) cl(H) = (n−4)/6 if and only if one of the following properties holds:
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(3.1) Sc ⊆V3 induces two edges; or

(3.2) Sc induces one edge and |Sc∩V2|= 1 and |Sc∩V1|= 0;

(3.3) Sc is independent and |Sc∩V2|+2|Sc∩V1|= 2.

Proof. Let H be a catacondensed hexagonal system and H∗ be the inner dual of H. Then

H∗ is a tree.

(1) If cl(H) = n/6, then H has a maximum independent resonant set S such that

H−V (S) = /0. Then every hexagon not in S is adjacent to three hexagons in S. Let S be

the set of vertices of H∗ corresponding to these hexagons in S. Then the vertex of H∗ in

Sc =V (H)\S is adjacent to three vertices in S. So it follows that Sc ⊆V3 is an independent

set due to the maximum degree of H∗ is 3.

Now assume that H∗ has an independent set S such that Sc ⊆V3 is also an independent

set. Let S be the set of all hexagons corresponding to vertices in S. Then S is a set of

disjoint hexagons as S is independent. For any vertex x ∈ Sc, all three neighbors of x are

in S. It follows that H −V (S) is empty. So S is a independent resonant set, and hence

cl(H) = |S|= n/6.

(2) If cl(H) = (n−2)/6, then H has a independent resonant set S such that H−V (S)

is an single edge e. If the edge e is not on the boundary, then it is a common edge of two

hexagons which are adjacent to three disjoint hexagons since H−V (S) = e. So the two

vertices corresponding to the two hexagons containing e have degree-3 and are joined by an

edge in H∗, and hence (2.1) holds. If the edge e is on the boundary of H, then e is contained

by a kink hexagon and hence (2.2) holds.

Now, suppose that H∗ has an independent set S such that either (2.1) or (2.2) holds.

Let S be the set of disjoint hexagons corresponding to vertices in S. Then H−V (S) is an

single edge e which has a perfect matching. Then S is a independent resonant set. Since

the hexagons in S cover all vertices of H except the two end-vertices of e, it follows that

|S|= (n−2)/6. By Theorem 3.1.6, it follows that cl(H) = |S|= (n−2)/6.
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(3) If cl(H) = (n−4)/6, then H has a independent resonant set S such that H−V (S)

has a matching of size 2. Let S be the set of vertices H∗ corresponding to hexagons in S

and Sc =V (H∗)\S. If H−V (S) has one connected component which is a path P of length

3, then the path is contained in a hexagon h of H because all other vertices are covered by

S. If h is a leaf-hexagon, then h is corresponding to a degree-1 vertex in Sc and all other

vertices of Sc have degree-3. So (3.3) follows. So, in the following, assume that h is not a

leaf-hexagon. If h is adjacent to two hexagons of H, then one of its adjacent hexagons h1

belongs to S but another adjacent hexagon h2 does not belong to S. Then h2 has two vertices

are not covered by S and four vertices are covered by S. Hence h2 is corresponding to a

vertex of degree-3 in Sc, and all other hexagons not in S and different from h and h2 are

corresponding to vertices of degree-3 in Sc. Hence (3.2) follows. If h is adjacent to three

hexagons h1,h2 and h3 of H, then one of them, say h1, belongs to S but other two hexagons

do not belong to S. Then, in H∗, there is an edge joining the two vertices corresponding to h

and h2 and an edge joining the two vertices corresponding to h and h3. Therefore, (3.1) holds.

So we may assume that H−V (S) is not connected. In other words, H−V (S) is a union of

two isolated edges e1 and e2. Then e1 and e2 belong to different hexagons h1 and h2 of H

such that h1∩h2 = /0 (otherwise, H−V (S) is connected). Each hexagon hi for i ∈ {1,2} are

adjacent to two hexagons in S. If both h1 and h2 are corresponding to degree-2 vertices in

Sc, then (3.3) holds. If h1 and h2 are corresponding to one degree-2 vertex and one degree-3

vertex, then (3.2) holds. If both h1 and h2 are corresponding to degree-3 vertices in Sc, then

hi is adjacent to one hexagon h′i /∈ S (i.e., hi∩h′i = ei) for i ∈ {1,2}. It follows that the vertex

of H∗ corresponding to hi for i ∈ {1,2} is adjacent to the vertex corresponding to h′i. Note

that h′1 6= h′2. Otherwise, both e1 and e2 are contained in h′1 = h′2, and hence H−V (S) is

connected, a contradiction. Therefore, Sc induces two edges and (3.1) follows because all

other hexagons (different from h1 and h2) not in S are adjacent to three hexagons in S.

Now, suppose that H∗ has an independent set S satisfying either (3.1), or (3.2) or (3.3).
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Let S be the set of hexagons corresponding to vertices in S. Since S is independent, all

hexagons in S are disjoint from each other. If H satisfies (3.1), then H−V (S) have two

edges e1 and e2 corresponding to the two edges induced by vertices of Sc. Note that each

ei is contained by two hexagons corresponding to degree-3 vertices in Sc because Sc ⊆V3.

So e1 and e2 are disjoint and hence form a perfect matching of H−V (S). Therefore, S is a

independent resonant set. If H satisfies (3.2), let h be the hexagon of H corresponding to

the vertex in Sc∩V2 and the edge induced by Sc is corresponding to an edge e1 in H−V (S).

Then e1 is contained by two hexagons of H corresponding to two vertices in Sc. Note

that h is adjacent to two hexagons of H. The hexagon h contains an edge e2 whose end-

vertices do not belong to any other hexagons of H. So H−V (S) is a union of two disjoint

edges e1 and e2. So S is a independent resonant set. If H satisfies (3.3), there are two

possibilities that either |Sc∩V2|= 2 and |Sc∩V1|= 0, or |Sc∩V2|= 0 and |Sc∩V1|= 1. If

|Sc∩V2| = 2, let h1 and h2 be two hexagons corresponding to the two vertices in Sc∩V2.

Since Sc is also independent, both h1 and h2 have an edge, say e1 and e2 respectively, whose

end-vertices do not belong to any other hexagons. Hence H−V (S) is the union of e1 and

e2. Therefore, S is a independent resonant set. If Sc∩V2 = /0, then Sc∩V1 has exactly one

vertex corresponding to a leaf-hexagon h of H. Then H−V (S) is a path of length 3 which is

contained by h. Therefore, S is a independent resonant set. Hence cl(H)≥ |S|= (n−4)/6.

By Theorem 3.1.6, cl(H) = (n−4)/6. This completes the proof.

For any given number n≡ 2 (mod 4), we can construct a tree satisfying the properties

in Theorem 3.1.9, and hence a catacondensed hexagonal system with cl(H) = bn/6c. So

the following corollary follows.

Corollary 3.1.10. For each n with n ≡ 2 (mod 4), there is a catacondensed hexagonal

system H with fr(H) = (n−2)/4 and cl(H) = bn/6c.
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3.2 Contra Pairs

In general, for two hexagonal systems H1 and H2, one with a larger Fries number also

has larger Clar number, and vice versa. However, it is not always true in the mathematical

sense. For examples, Figure 25 demonstrates the distribution of catacondensed hexagonal

systems with 10 hexagons according to Clar number and Fries number. There are 213

non-isomorphic catacondensed hexagonal systems with 10 hexagons having cl(H) = 5 and

fr(H) = 10, while there are 458 non-isomorphic catacondensed hexagonal systems with 10

hexagons having cl(H) = 6 and fr(H) = 9.

Figure 25: Distribution of Catacondensed Hexagonal Systems with 10 Hexagons with
respect to Clar Number and Fries Number.

A pair of hexagonal systems (H1,H2) is called a contra pair if cl(H1) > cl(H2) but

fr(H1) < fr(H2). From the distribution of cata-condensed hexagonal system with 10

hexagons, contra pairs are not rare. It is interesting to seek a structure characterization for

contra pairs of hexagonal systems. However, it seems that such characterization may not

be simple. The following result gives the range of the Clar number for hexagonal systems

maximizing their Fries numbers.
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Theorem 3.2.1. Let H be a hexagonal system with n vertices and φ(H) hexagons. If

fr(H) = φ(H), then
n−2

8
≤ cl(H)≤ n

6

and both bounds are sharp.

Proof. Let H be a hexagonal system with fr(H) = φ(H). Then H has a perfect matching

M such that every hexagon of H is M-alternating. Let H∗ be the inner dual of H. Then the

Clar number of H is equal to the independent number of H∗.

By Theorem 3.1.5, H is catacondensed and fr(H) = φ(H) = (n−2)/4. Hence its inner

dual H∗ is a tree has independent number at least |V (H∗)|/2 = φ(H)/2 = (n− 2)/8. It

follows that

cl(H)≥ n−2
8

which is attained by all hexagonal chains with fr(H) = (n− 2)/4. The upper bounds

follows directly from Theorem 3.1.6. This completes the proof.

A direct corollary of above theorem shows the gap between the Clar number and Fries

number.

Corollary 3.2.2. Let H be a hexagonal system with n vertices and φ(H) hexagons. If

fr(H) = φ(H), then
n−6

12
≤ fr(H)−cl(H)≤ n−2

8

and both bounds are sharp for infinitely many hexagonal systems.

In the above corollary, the upper bound holds for all hexagonal chains H with fr(H) =

(n− 2)/4 and the lower bound holds for all catacondensed systems with fr(H) = (n−

2)/4 and cl(H) = bn/6c whose existence follows from Corollary 3.1.10. The corollary

implies that there is a infinite sequence of hexagonal systems {Hn} such that lim
n→∞

(fr(Hn)−

cl(Hn))→ ∞, a result obtained by Klavžar et. al. [66].
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For hexagonal systems maximizing Clar numbers, especially fully hexagonal systems,

the following theorem shows the range of their Fries numbers.

Theorem 3.2.3. Let H be a hexagonal system with φ(H) hexagons and τ(H) vertices not

on its boundary. If H is a fully hexagonal system, then

φ(H)+cl(H)

2
≤ fr(H)≤ φ(H)− τ(H)

6
.

If H is catacondensed (not necessarily fully), then

4cl(H)

3
≤ fr(H)≤ φ(H).

Proof. The upper bounds follows directly from Theorem 3.1.5. So it suffices to show the

lower bounds.

Let H be a fully hexagonal system. Then cl(H) = n/6. By Proposition 3.1.7, the

maximum independent resonant set S of H is the same as the maximum set of monotonic

colored hexagons in the canonical 3-coloring c : F(H)→ Z3 of H where F(H) is the set of

all hexagons of H. Without loss of generality, assume that S= c−1(1), i.e., all hexagons in

S are colored by 1.

Let S be the set of all vertices in the inner dual H∗ of H corresponding to all hexagons

in S. Then it follows that H∗−S is a bipartite graph because all hexagons of F(H)\S can be

colored by two colors 0 and 2. We may assume that |c−1(0)| ≥ |c−1(2)|. Note that H is a

subgraph of the infinite lattice L bounded by the boundary of H. Define an edge coloring

of H such that α : E(H)→ Z3 such that α(e) = c(h1)+ c(h2) (mod 3) where h1 and h2

are two hexagons of L both containing e. Let M = α−1(1)⊂ E(H). Then every hexagon h

colored by 1 contains 3 disjoint edges from M since there are three hexagons colored by 0

surrounding h. Therefore, all hexagons in S= c−1(1) are M-alternating. Since |S|= n/6, it

follows that M is a perfect matching of H. On the other hand, all hexagons of H colored
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by 0 are also M-alternating since every hexagon colored by 0 is adjacent to three disjoint

hexagons colored by 1 in L. Hence c−1(1)∪ c−1(0) is a resonant set of H. Therefore,

fr(H)≥ |c−1(1)∪c−1(0)|= |c−1(1)|+|c−1(0)| ≥ cl(H)+(φ(H)−cl(H))/2=
φ(H)+cl(H)

2
.

If H is catacondensed, let S be the maximum independent resonant set. Choose a perfect

matching M of H such that: (1) all hexagons in S are M-alternating; (2) subject to (1), the

total number of M-alternating hexagons is maximum. Let S′ be the set of all M-alternating

hexagons. Every hexagon h ∈ S is contained by at least a maximal linear chain of H

which contains at most two M-alternating hexagons which are adjacent to each other by

Observation 3.1.1. However, an M-alternating hexagon which is not in S could be adjacent

to at most three hexagons in S. Therefore,

fr(H)≥ |S′|= |S|+ |S′\S| ≥ cl(H)+
1
3
cl(H) =

4cl(H)

3
.

This completes the proof.

In the following, we focus on catacondensed hexagonal systems. Let H(n) be the family

of all catacondensed hexagonal systems with n vertices. Define fr(H(n)) = {fr(H)|H ∈

H(n)} and cl(H(n)) = {cl(H)|H ∈H(n)}. Note that, for any given n≡ 2 (mod 4), we

can easily construct a hexagonal system of n vertices having any Fries number 2≤ fr(H)≤

φ(H) and also a system of n vertices having any Clar number 1≤ cl(H)≤ bn/6c as follows.

Let n ≡ 2 (mod 4) and 2 ≤ k ≤ (n− 2)/4. In order to construct a catacondensed

hexagonal system H with n vertices and fr(H) = k, we construct a catacondensed hexagonal

system H ′ with k hexagons in which every maximal linear chain has length 2. Then by

Theorem 3.1.5, we have fr(H ′) = k. Next, extend one maximal linear chain of H ′ to a linear

chain with φ(H)− k+2 hexagons. Let H be the resulting catacondensed hexagonal system

which has n vertices and fr(H) = k. Note that, there is no catacondensed hexagonal system
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with n≥ 10 vertices and fr(H) = 1.

Let n ≡ 2 (mod 4) and 1 ≤ k ≤ n/6. For constructing a catacondensed hexagonal

system H with n vertices and cl(H) = k, first we construct a fully catacondensed hexagonal

system H ′ with cl(H ′) = k by Proposition 3.1.7. Then H ′ has 6k vertices. Then choose a

maximal linear chain of H ′ containing a leaf-hexagon and extend it to a linear chain with

(n− k)/4+2 hexagons. Then the resulting catacondensed hexagonal system has n vertices

and cl(H) = k. Then we have the following proposition.

Proposition 3.2.4. Let H(n) be the family of catacondensed hexagonal systems with n≥ 10

vertices. Then fr(H(n)) = {2,3, ...,(n−2)/4} and cl(H(n)) = {1,2, ...,bn
6c}.

3.3 Clar Structure and Fries Structure

In this section, we show that Conjecture 3.0.5 holds for all catacondensed hexagonal

systems. Let H be a hexagonal system. If H has a perfect matching M realizing both

Clar number and Fries number, then the maximum set S′ of M-alternating hexagons has

size fr(H) and the maximum set S of independent M-alternating hexagons has size cl(H).

Therefore, Conjecture 3.0.5 is equivalent to the following conjecture. Klavžar et. al. [66]

show that a maximal resonant set may not contain a maximum independent resonant set.

Theorem 3.3.1. Let H be a catacondensed hexagonal system. Then H has a maximum

resonant set containing a maximum independent resonant set.

Proof. Use induction on the number of maximal linear chains of H. If H is a linear chain,

then the result holds trivially. So assume that H has at least two maximal linear chains.

Let L be a maximal linear chain of H containing a leaf-hexagon. Without loss of

generality, assume that L = h1h2 . . .hk with k ≥ 2 and h1 is the leaf-hexagon. Let H ′ be the

hexagonal system obtained from H by deleting all vertices in (∪k−1
i=1 V (hi))\V (hk). Label
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the vertices of hk by v1,v2, . . . ,v6 such that v1v2 ∈ hk−1∩hk. By inductive hypothesis, H ′

has a maximum resonant set containing a maximum independent resonant set. Among all

such maximum resonant sets and maximum independent resonant sets, choose a maximum

resonant set S′ and a maximum independent resonant set S⊆ S′ such that

(i) hk /∈ S′ if possible;

(ii) if hk ∈ S′, choose S such that hk /∈ S if possible.

Since S is a maximal independent resonant set, H ′−V (S) has a unique perfect matching

by Theorem 3.1.3, denoted by M. By Observation 3.1.2, S intersects every maximal linear

chain of H, which implies that v1v2 ∈M if hk /∈ S.

If hk /∈ S′, then S∪ h1 is a maximum independent resonant set by Observation 3.1.2

since S is a maximum independent resonant set of H ′. If k = 2, it is clear that S′∪h1 is a

maximum resonant set of H which contains S∪h1. So assume that k ≥ 3. Choose a perfect

matching M′ of H ′ such that M ⊆M′ and all hexagons in S′ are M′-alternating which can be

done by adding a perfect matching carefully chosen from every hexagon h in S to M so that

h∩h′ ∈M′ where the hexagon h′ ∈ S′\S and is adjacent to h. Let M′′ be a perfect matching

of L−V (hk\hk−1) such that both h1 and h2 are M′′-alternating. Then M′\{v1v2}∪M′′ is a

perfect matching of H such that all hexagons in S′∪{h1,h2} are alternating with respect to

M′\{v1v2}∪M′′. Note that S′ is a maximum resonant set of H ′ and {h1,h2} is a maximum

resonant set of L. It follows that S′∪{h1,h2} is a maximum resonant set of H which contains

S∪h1. The theorem follows.

In the following, assume that hk ∈ S′. Suppose first that hk /∈ S. Then S∪ hk−1 is an

independent resonant set of H by Observation 3.1.2. Since S is a maximum independent

resonant set of H ′, it follows that S∪ hk−1 is a maximum independent resonant set of H

because L contains a most one hexagon from a maximum independent resonant set.

Let M′ be the perfect matching of H ′ containing such that all hexagons in S′ are M′-

alternating and let M′′ be the unique perfect matching of L−V (hk). Note that hk−1 is



61

(M′′∪M′)-alternating because v1v2 ∈M ⊂ (M′∪M′′). Therefore, all hexagons of S′∪hk−1

are (M′ ∪M′′)-alternating. So S′ ∪ hk−1 is a resonant set of H. Since S′ is maximum in

H ′ and {hk−1,hk} is maximum in L, it follows that S′∪ hk−1 is a maximum resonant set

of H = H ′∪L. Note that S∪ hk−1 ⊆ S′∪ hk−1, and hence the theorem holds. So assume

that hk ∈ S. Then any independent resonant set without hk has size smaller than S by (ii).

Therefore, S is a maximum independent resonant set of H. Similarly, we have that S′∪hk−1

is a maximum resonant set of H which contains S. This completes the proof.
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3.4 Linear Programming

Linear programming has been a very important and useful tool for solving many combi-

natorial optimization problems [82].

3.4.1 The Clar Number and Integer Linear Programming

In a Clar formula of a cata-condensed hexagonal system H, every vertex i has to belong

to a hexagon containing a circle or an end vertex of a double bound. Therefore, we formulate

the problem as the following: Let m be the number of hexagons of a given catacondensed

benzenoid H, hk be a hexagon of H where k = 1,2, ...m and yk be a variable such that:

yk =


1 if hk contains a circle

0 if hk otherwise

Let (i, j) be the edge joining vertices i and j of H and xi, j be a variable such that:

xi, j =


1 if the edge (i, j) is a double bound.

0 if otherwise

Where yk and xi, j are constraint variables of the integer linear program problem. The

neighborhood set of a vertex i is the set of all adjacent vertices of i and is denoted N(i). Let

V (H) be the set of vertices, E(H) be the set of edges of H, and H(i) is the set of hexagons

containing the vertex i in H.

Let the function that we want to optimize be the objective function and the constraints

functions be an integer linear program as follows: The objective function:

maximize z = ∑
hk∈H

yk where k = 1,2, ...m (3.1)
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Subject to the constraints:

∑
j∈N(i)

xi j + ∑
hk∈H

yk = 1 (3.2)

xi j,yk ∈ {0,1} for (i, j) ∈ E(H), h ∈ H and k = 1,2, ...,m (3.3)

The feasible solution for the maximization problem is determined by the constraint (3.3)

that confirms that each vertex belongs to a double bound or a circle (perfect matching). We

formulate the Clar numbers problem as integer programming (IP) problems. Then, we relax

the (IP) to the linear programming (LP). Then, solving the linear programming relaxation of

the integer programming by using branch and bound method. Then, we obtain optimum

integer solutions.

We substitute the integer optimal solution of this (IP) in the objective function to obtain

the optimal objective value, which is the Clar number of H.

The Clar formula of this problem can be attained from the optimum integer solutions as the

following: A hexagon hk contains a circle if yh = 1 and the edge (i, j) is a double bound if

xi, j = 1.

3.4.2 The Fries Number and Integer Linear Programming

The following model is used for building the Fries optimization system for each data

structure.

maximize
m

∑
k=1

yk (3.4)
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Subject to the constraints:

∑
j∈N(i), j<i

xi j + ∑
j∈N(i), j>i

x ji = 1 for i = 1,2, ...,n (3.5)(
∑
i∈hk

∑
j∈N(i)∩hk, j>i

xi j

)
−3yk ≥ 0 for k = 1,2, ...,m (3.6)

xi j ∈ {0,1} i = 1,2, ...,n; j ∈ N(i), j > i (3.7)

yk ∈ {0,1} k = 1,2, ...,m (3.8)

The feasible solution for the maximization problem is determined by the constraints

(3.5-3.8). The constraint (3.5) confirms that each vertex is incident with one double bond

(i.e. no two double bonds share a vertex) and all edges satisfying this constraint build a

perfect matching of the given molecule graph. The constraint (3.6) emphasizes that the kth

hexagon has three double bounds in the perfect matching formed in (3.5).

3.5 Clar Number vs Fries Number: Implementations

In this section, we include some computational results for cata-condensed hexagonal

systems with 10 hexagons. We use the algorithm of Brinkmann, Caporossi and Hansen [13]

to construct all 5572 non-isomorphic cata-condensed hexagonal systems of 10 hexagons.

The Clar number and Fries number can be computed by binary integer programming [59]

and can be relaxed into linear programming [1]. For computing Clar number and Fries

number of fullerenes, see [17, 110].

We compute the Clar numbers and the Fries numbers for catacondensed benzenoids

using integer linear programming. The catacondensed benzenoids are saved as a binary

code called “planar code” format for saving planar graphs [14]. For each catacondensed

benzenoids isomer, we build two different systems, one for computing the Clar number and
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Figure 26: Distribution of HOMO-LUMO Gaps of Catacondensed Hexagonal Systems with
10 Hexagons with respect to Clar Number and Fries Number.

the other for computing the Fries number using the following steps:

• Convert the planar code to readable adjacency lists using Brinkmann et al. [14]

program “planarread-mac” and the C program “planarcode”; then, use the executable

file (./planarread) [14].

• Get the adjacency matrix from the adjacency list for each catacondensed benzenoid

isomer.

• Use the adjacency matrix |V |× |V | for each isomer to construct two different incident

matrices as the following:

– To construct the Clar number model, the first part of the constraint is ∑ j∈N(i) xi, j

as mentioned previously in section 3.4.1. The construction of this section of the

Clar number model will form |V |× |E| incident matrix for each isomer. The
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other part of constraint is ∑hk∈H yk, and we also use the the adjacency matrix

|V |× |V | and apply our small cycle algorithm to find all the hexagons (cycles

of length 6) and their vertices. The algorithm will detect all cycles of length 6

and print the number of these found cycles. Then the hexagon incident matrix

|V |× |H| is generated and constructed for each vertex i ∈V (hk), for all k. The

combination of the two incident matrices [|V |× |E|, |V |× |H|] forms the whole

constraints system.

– To construct the Fries optimization system, the first constraint is ∑ j∈N(i), j<i xi j +

∑ j∈N(i), j>i x ji as mentioned in section 3.4.2. We use the adjacency matrix

|V | × |V | to build this part of the system. This constraint will form |V | × |E|

incident matrix. For the second constraint, the procedures are similar to what we

do in the previous step for the Clar model because it has two parts. That means

from this constraint, we build two incident matrices |V |× |E| and |V |× |H|. The

two incident matrices together will fulfill the second constraint. The combination

of two constraints will construct the whole problem.

• Relax the constraints variables yk and xi, j of the integer linear program problem to

0≤ xi, j,yk ≤ 1 to obtain the linear program (LP).

• Solve for the integer optimum solution with linear programming method (simplex

method).

• If the obtained optimal solution is an integer (i.e. all variables are 0 or 1 given the

constraint 0≤ xi, j,yk ≤ 1), then we are done. If the optimal solution has a non-integer

part, then add two new constraints where the non-integer variable equals 0 and 1 one

at a time defining two new LP (branch and bound method), return to the previous step

to solve it and do the same steps until the optimal solution is an integer.
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3.5.1 Computational Results

Our computational results show that hexagonal systems with large Clar number usually also

have large Fries number and vice versa, which is believed to be true in general for hexagonal

systems. However, this conclusion does not hold exactly from the mathematics point view

because many contra pairs exits.

The computation the Clar numbers and Fries numbers for all catacondensed benzenoid

isomers for |h = 10| 5572 different isomers was done by using MATLAB(R2016a) and C++

(see Figure 40 shows the procedures). Our programs contain thousands of lines of codes.

All codes are performed and executed on a MacBook Pro running a 2.5 GHz Intel Core i5

processor, with 16 GB of 1600 MHz DDR3 memory, and with the macOS Sierra 10.12.3

operating system.

From Clar’s Theory [20] and Randić Conjugated Model [99], an isomer has larger

resonance energy if it has a larger Clar number or Fries number. However, Clar number and

Fries number do not always match exactly because of the existence of contra pairs. The

HOMO-LUMO gap of a molecule is the energy difference between the highest occupied

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), which

is often used as a index to describe the stability of molecules (see [47, 68]). We compute

the HOMO-LUMO gaps of catacondensed hexagonal systems with 10 hexagons and their

HOMO-LUMO distribution with respect to Clar number and Fries number is shown in

Figure 26. The distribution shows that the HOMO-LUMO gap increases when both Clar

number and Fries number increase.

Figures 27 and 28 demonstrate the distributions of HOMO-LUMO gaps with respect to

Clar number and Fries number respectively, which shows that the mean value of HOMO-

LUMO gaps increase faster with respect to Clar number than Fries number. The mean value

of HOMO-LUMO gap with respect to the maximum value Clar number 7 is much larger
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than the mean value of HOMO-LUMO gaps with respect to the maximum Fries number

10. On the other hand, the standard deviation of HOMO-LUMO gap with respect to the

maximum Clar number is much smaller than the standard deviation of HOMO-LUMO gap

with respect to the maximum Fries number. In conclusion, Clar number is better than Fries

number as a stability predictor for hexagonal systems.

Figure 27: Distribution of HOMO-LUMO Gaps of Catacondensed Hexagonal Systems with
10 Hexagons with respect to Clar Number.

3.5.2 Conclusions

The Clar number and Fries number are used as indices for the stability of a hexagonal

system. We investigates the Fries number and Clar number for hexagonal systems, and show

that a cata-condensed hexagonal system has a maximum resonant set containing a maximum

independent resonant set, which is conjectured for all hexagonal systems. Usually, an isomer

of a hexagonal system with a larger Clar number is more stable, and the same holds for

the Fries number. However, our computation results show that the Clar numbers and the
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Figure 28: Distribution of HOMO-LUMO Gaps of Catacondensed Hexagonal Systems with
10 Hexagons with respect to Fries Number.

Fries numbers of hexagonal systems are not always consistent, even for cata-condensed

benzenoid systems and demonstrate that there exist many contra-pairs. In conclusion, the

Clar number is better than Fries number for stability predictor of hexagonal systems. The

HOMO-LUMO energy gaps are also calculated for these contra pair isomers. In conclusion,

Clar number is better than Fries number as a stability predictor for hexagonal systems.
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Figure 29: The Normalization Scheme of the Clar Numbers of Catacondensed Hexagonal
Systems with 10 Hexagons.

Figure 30: The Normalization Scheme of the Fries Numbers of Catacondensed Hexagonal
Systems with 10 Hexagons.
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CHAPTER 4

CLAR NUMBERS OF FULLERENES

4.1 Fullerenes

Fullerenes are polyhedral molecules built entirely of carbon atoms with either pentagons

or hexagons as faces [6, 5]. In 1985 the first fullerene molecule was found by Kroto et. al.

[71]. They discovered the famous Buckminsterfullerene (or buckyball), C60 (Figure 31).

Later, similar polyhedral structures with 70, 76, 78, 82, 84, 90, 94, and 96 carbon atoms were

found in nature [6, 5]. In 1991, the Buckminsterfullerene (or buckyball) was pronounced

“Molecule of the year” and five years later Kroto et. al. were awarded the Nobel Prize

in Chemistry for their discovery of fullerenes [6, 5]. Fullerenes have been examined and

studied from different perspectives and have many applications in fields such as Mathematics,

Chemistry, Biology, and Physics due to the thier unique strctuctures. [12, 31, 106, 37, 121,

131, 40].

Banhart et. al. [9] noticed that molecules that had sharp angles between the faces of their

structure were less stable then those without. Therefore, fullerenes, which are approximately

spherical, are fairly stable molecules. Due to their use in synthetic structures and that

they are entirely built of carbon, fullerenes continue to be an important area of research

[12, 106, 37, 121, 131, 40].

Graph theory techniques can be applied to represent a fullerene’s molecular structure.

Graph theoretical terms are used to describe predictors of fullerene molecular stability. The

number of perfect matchings, the HOMO-LUMO gap, and other properties are used as

predictors of the stability of different fullerene isomers [32, 38].
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[126]

Figure 31: Buckminsterfullerene C60

4.1.1 Fullerene Graphs

A graph is used to model the structure of these molecules with vertices representing

carbon atoms and edges representing the bonds between them. With fullerenes, every vertex

has degree 3. A fullerene graph with n vertices is a cubic, planar, and 3-connected graph

which has exactly 12 pentagonal faces and h = 1
2n−10 hexagonal faces.

Fowler [46] showed that fullernes with n vertices exist for all even vertices n≥ 20 except

n = 22. Chemists use Cn to indicate a fullerene with n vertices. All fullerenes have the same

number of pentagons, and these pentagonal faces are important in forming the structure of

the corresponding fullerene molecule.

Fowler and Manolopoulos [46, 19] mentioned that the number of fullerene isomers with n

vertices is O(n9), except for fullerenes with n= 20, 24, or 26 vertices because of their unique

design. Many algorithms and theoretical studies of the fullerenes were developed to generate

a list of fullerene structures, such as to generate all such IPR buckyballs [84, 79, 109].

Barnette [10] developed a mathematical method for generating cyclically n-connected
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plane graphs. Brinkmann and Dress [15], developed a fast and complete method for the

enumeration and generation of fullerene isomers. For example, with n = 60 vertices there

exist 1812 different fullerene graphs, including C60. However, their algorithm works only

for 3-regular graphs that contain no more than 6-member rings, i.e. the boundary of every

face in the graph cannot have more than 6 edges.

Fullerene Types

There are different classes of fullerene graphs regarding where the pentagons are po-

sitioned [6]. The IPR fullerenes (Isolated Pentagon Rule) are fullerenes where no two

pentagons share vertices or edges, i.e. all pentagons are isolated and separated by hexagons.

This type of fullerene is more stable [72, 19] because all pentagonal faces are separated

which minimizes the steric strain energy and enhance the resonance stabilization of the

IPR isomer [46]. If two pentagon faces are adjacent, the two fused pentagons form a cycle

of size 8 that means 4n anti-aromatic conjugated cycle (i.e. does not satisfy Hückel rule)

[46]. Only one isomer of C60 and C70 are IPR fullerenes among the 1812 and 8149 possible

isomers respectively. There are no IPR fullerene isomers for C62,C64,C66 and C68 [72, 67].

For each fullerene C70 and larger, there exist at least one IPR isomer [32]. Adjacent

pentagons will cause destabilization that results from (i) antiaromaticity (pentalene eight-

π-electron system around the ring) and (ii) higher strain energy as a result of angle strain

[60]. Higher fullerenes are all fullerene Cn where n≥ 76 and giant fullerenes are Cn where

n≥ 240 (Figure 32).

A leapfrog fullerene is a very important type of fullerene because it has some special

chemical properties [45, 78]. It has been proven that this type of fullerne contains at least

one Fries Kekulè structure (i.e. a perfect matching which includes the maximum number of

benzenoid system n
3 ) [45]. Therefore, a leapfrog fullerene must be the most stable fullerene.



74

This type of fullerene can be generated by applying some geometrical steps. The first

leapfrog fullerene graph is C60 and can be constructed from the dodecahedron fullerene

graph C20.

Figure 32: Giant Fullerene Graphs [36]

A fullerene graph is icosahedral if pentagons are equally distributed and the center of

all pentagonal faces, are vertices of trianglar faces. All icosahedral fullerene graphs have

common geometrical features. The smallest icosahedral fullerene graph is the dodecahedron

C20 (Figure 34). C20 is the only icosahedral fullerene that does not fulfill the IPR and has

the greatest possible degree of symmetry of non-IPR fullerenes. C60 is the most icosahedral

symmetric fullerene graph [112] (Figure 33).

Coxeter [23] and Caspar and Klug [18] presented the tessellation method that generates

all possible icosahedral structures from the triangulated duals of the spheres that have 12

pentagonal faces and some hexagonal faces. The icosahedral fullerene graphs were first

explained by Goldberg [52, 53]. He applied his method on hexagonal grid to find the vertices

of triangular faces and construct the triangulated dual. He also presented the Goldberg
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equation that is applied to find the number of vertices in an icosahedral fullerene

n = 20(i2 + i j+ j2)

where 0≤ i≤ j. For (i = j or i = 0), the fullerene graph is of the full icosahedral symmetry

group Ih and has a mirror symmetry. For (i 6= j or j 6= 0), the fullerene is of the regular

icosahedral group I. The Goldberg vector is defined as ~G = (i, j). This vector can be

used to find the location of the (i, j) triangles in a hexagonal grid which is helpful for

surrounding the 12 pentagonal rings with more hexagonal rings. In addition to icosahedral,

other symmetry groups are used to define fullerene graph structure types such as tetrahedral,

prismatic, antiprismatic, dihedral, etc.

Figure 33: Icosahedral C60 Graph [124].

Nanotubical fullerenes are a type of fullerene that have a cylindrical shape. These

tubular shapes have two ends that are covered by subgraphs [6]. Each subgraph includes 6

pentagonal rings and some hexagonal rings, but it can be open ended as well (Figure 36). The

cylindrical part is basically a rolled hexagonal grid. This hexagonal grid can be used with

the Goldberg vector to determine the class of nanotube graph. A nanotube graph structure

is of the class (i, j) where the sum of i and j is called the perimeter. The (i, j)-nanotubes

where i = 0 are called zig-zag, and if i = j, they are called armchair. The zig-zags and
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Figure 34: Dodecahedron C20 Graph [125].

armchair nanotube structure classes are the only classes that have a mirror symmetry in the

hexagonal grid part. The Buckminsterfullerene can be considered the smallest nanotube of

class (5,5) whose caps are fulfilling the IPR rule (Figure 35).

Figure 35: The Smallest Nanotube of Type (5,5)- Buckyball Fullerene C60 [6].

4.1.2 Perfect Matching of Fullerenes

The Kekulé structures of an organic molecule are also known as its perfect matchings

M [6]. This is represented in its molecular graph G, by a set of edges such that each vertex

in G is incident with exactly one edge in M. The edges of M were previously presented
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Figure 36: Nanotubes [115].

Figure 37: Perfect Matchings for Benzene or Resonance Structures.

as double bonds of fullerene and benzenoid hydrocarbon molecules (Figure 37). The size

of a matching M is defined to be the number of edges in the matching, |E(M)|. Other

fundamental studies of structural properties of fullerene graphs were made and present the

character of all distinct Kekulé valence structures of the Buckminsterfullerene [105, 7, 42].

The computation and estimation of the number of Kekulé structures for a given benzenoid

system or fullerene molecule is a problem of particular interest because of its important

relationship with the molecule’s stability and energy level. Babić developed a method

to calculate the numbers of perfect matchings of C60 and C70 to be 12500 and 52168

respectively [8].

Theorem 4.1.1. [30] If G is a cubic graph with at most 2 cut edges then G has a perfect
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matching.

As a result of this theorem, fullerene graphs all contain a perfect matching [94]. Some

linear lower bounds for the number of perfect matchings in fullerene graphs exist with

respect to the number of vertices in its graph [132, 30, 31]. Došlić [31] presented some

structural properties of fullerene graphs and showed the lower bounds for the number of

perfect matchings for fullerene graphs.

Theorem 4.1.2. [31] A fullerene graph with n vertices has at least n
4 +2 perfect matchings.

Theorem 4.1.3. [31] Every fullerene graph with n vertices contains at least n
2 +4 perfect

matchings.

Došlić [30] determined a better lower bound by applying the Cathedral construction

algorithm on fullerene graphs. The resulting bound for any fullerene graph with n vertices

must include at least n
2 +1 different perfect matchings.

Theorem 4.1.4. [30] Every fullerene graph contains at least three different perfect match-

ings.

Zhang et. al. [132] established that all fullerene graphs are 2-extendable, then proved an

even lower bound for fullerene graphs as in the following theorem:

Theorem 4.1.5. [132] Any fullerene graph with n vertices can include at least d3(n+2)
4 e

different perfect matchings.

Došlić [33] proved that the numeration of the perfect matchings is exponentially many

for some types of fullerene graphs with n vertices. The same author in [34] shows that the

number of perfect matchings of a leapfrog fullerene graph Cn with n vertices is at least 2
n
8 .
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4.2 Clar Numbers and Fries Numbers of Fullerenes and Integer Lin-

ear Programming

In the previous chapter, we applied our small cycles algorithm that described previously

in Chapter 2 to find all hexagons of a hexagonal system. This step is very important for

the formulation of the problem. Then, we computed the Clar numbers of cata-condensed

benzenoid systems. Similarly, we calculate the Clar number index for all fullerene graphs

and solve the problem similar to the implementations that are explained in Chapter 3.

Let H be a set of all hexagonal faces of a fullerene Cn with n vertices and m hexagons.

Let yi j be an variable such that xi j = 1 if i j ∈ E(H), and 0 otherwise; and let zik be the

vertex-hexagon incident variable such that yik = 1 if the vertex i belongs to the hexagon hk,

and 0 otherwise. Define x(hk) to be indicator of the hexagon hk such that, x(hk) = 1 if hk

belongs to a resonant set, and 0 otherwise. Then the Clar number problem can be formulated

as follows:

maximize ∑
hk∈F(H)

x(hk)

subject to ∑
0≤ j≤n

yi j + ∑
0≤k≤m

zikx(hk) = 1, for i = 1,2, . . . ,n

yi j ∈ {0,1},zik ∈ {0,1} and x(hk) ∈ {0,1}.
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And the Fries number problem can be formulated as the following programming:

maximize ∑
hk∈F(H)

x(hk)

subject to ∑
1≤ j≤n

yi j = 1, for i = 1,2, . . . ,n

∑
1≤i, j≤n
i, j∈hk

yi j−3x(hk)≥ 0, for k = 1,2, . . . ,m

yi j ∈ {0,1},zik ∈ {0,1} and x(hk) ∈ {0,1}.
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Table 4: The Clar Numbers of Fullerene Isomers C20 - C60.

Fullerene Number of isomers min max

C20 1 0 0

C24 1 2 2

C26 1 1 1

C28 2 1 2

C30 3 1 2

C32 6 2 2

C34 6 2 3

C36 15 2 4

C38 17 2 3

C40 40 2 4

C42 45 3 5

C44 89 2 4

C46 116 3 5

C48 199 3 6

C50 271 3 5

C52 437 4 6

C54 580 4 7

C56 924 4 6

C58 1205 4 7

C60 1812 4 8
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Table 5: The Fries Numbers of Fullerene Isomers C20 - C60.

Fullerene Number of isomers min max

C20 1 0 0

C24 1 2 2

C26 1 1 1

C28 2 1 4

C30 3 2 4

C32 6 4 4

C34 6 4 5

C36 15 4 8

C38 17 4 6

C40 40 4 10

C42 45 5 10

C44 89 4 10

C46 116 6 10

C48 199 6 12

C50 271 6 12

C52 437 7 12

C54 580 8 12

C56 924 8 14

C58 1205 8 16

C60 1812 8 20
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4.3 HOMO-LUMO Energy Gap of Fullerenes

Electronic transitions can be explained in terms of graph eigenvalues in conjugated

π-system molecular graphs. From the Hückel method, the eigenvectors xi and eigenvalues

λi are the molecular orbitals of the π-system and the orbital energies respectively [47].

Fukui [49] noticed that the reactivity of conjugated hydrocarbons is related to the frontier

orbitals HOMO-LUMO. There is an interaction between the “frontier” electrons, the highest

occupied energy (HOMO) of a given molecule and the lowest unoccupied orbitals (LUMO)

of another molecule [49]. A molecule has a large HOMO-LUMO energy gap implies a high

stability [49].

The HOMO is the highest energy orbital, and LUMO is the lowest energy orbital, HOMO

and LUMO together are frontier molecular orbitals [90]. The energy differences between

HOMO and LUMO is called the HOMO-LUMO gap. While many methods can be used

to predict the HOMO-LUMO energy gap, the Hückel theory or Hückel molecular orbit

energies method (HMO) is the most familiar [56, 47]. There is a linear relationship between

these energy orbitals or HMO and the eigenvalues of a molecule graph. The HOMO and

LUMO eigenvalues are used to explain the π-electron systems. A given molecule graph

with n vertices has n electrons; there are λ1,λ2, ...,λn eigenvalues arranged in decreasing

order.

The orbital energy of a molecule graph can be represented by the formula Ei = α +λiβ

where i = 1,2, ..,n and the integrals α and β are negative energies [56, 47]. This formula

explains the relation between the HMO approximations and the eigenvalues and shows that

the Hückel molecular orbital energies can be represented as linear functions of eigenvalues

of a molecule graph [56]. The β is used as the unit of the energy scale and β = -137.0

kJ/mol = -1.4199 eV [111].

Then, if the number of vertices n is even, we can define the HOMO eigenvalue to
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be λHOMO = λ n
2

and the LUMO eigenvalue to be λLUMO = λ n
2+1. Otherwise, λHOMO =

λLUMO = λ n+1
2

.

Within the Hückel molecular orbital approximations, the total π-energy of a molecule

Eπ = ∑
n
i=1 niλi where ni = 2,1 or 0 is the number of π−electron [56]. The energy of a graph

is E(G) = ∑
n
i=1 |λi| [56]. If a molecule graph is a bipartite graph and some others, then the

orbital energy Eπ equals the energy of a molecule graph E(G) [56, 47].

In this work, we calculate the energy gap by computing the absolute value of the

difference between the HOMO and LUMO eigenvalues.

The HOMO and the LUMO have essential functions in various chemical reactions. Any

chemical reaction has kinetic and thermodynamic aspects. The kinetic stability means the

stability of a molecule against any chemical reaction [84].

The estimation of the kinetic stability is not easy compared with the estimation of

thermodynamic stability because it is related to chemical reactions, while the thermodynamic

stability can be examined with different methods. The computation of the HOMO-LUMO

energy gap is used to estimate the kinetic stability of fullerenes[84].

The fullerenes C60 and C70 isomer structures have a large HOMO-LUMO energy gap

[28, 80]. The C74 and the metallofullerenes C80 isomer with icosahedral symmetry, have

small HOMO-LUMO energy gaps and thus they are only kinetically unstable [28].

As the size of a fullerene graph increases, the kinetic stability will be raised and enhanced

because the number of hexagonal faces increases to the pentagonal faces [44] and the

pentagonal faces are in charge of reducing fullerene’s aromaticity [119, 4]; however, the

value of HOMO-LUMO energy gap becomes smaller due to the limitation of graphite [2].

Fowler [44] mentioned that the value of HOMO-LUMO energy gap sometimes cannot

be adequate for predicting the kinetic stability of fullerenes and sometimes it is. In general,

a molecule graph that has a large HOMO-LUMO energy gap is chemically unreactive

because it has a high kinetic stability which means adding electrons to a high-lying LUMO
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and removing electrons from a low-lying HOMO is undesirable [3, 84, 2]. Therefore,

the HOMO-LUMO energy gap cannot be used as an index of kinetic stability for higher

fullerenes with large π-electron systems.

4.4 Computational Results

This problem is solved by applying our small cycles algorithm that was described

previously in Chapter 2 to formulate the Clar number and Fries number problems and then

solving the problems by using integer linear programming. This is a similar method to what

was described in Chapter 3. Then, we calculate the Clar numbers for all fullerene isomers

from C20 to C60. On completion our program provides the results which are summarized in

Tables 4 and 5, showing the maximum and minimum Clar number values and Fries number

values over all fullerene isomers.

The computation the Clar numbers and Fries numbers for all fullerene isomers is written

in MATLAB(R2016a) and C++ (see Figure 40 shows the procedures). Our programs contain

thousands of lines of codes. All codes are performed and executed a MacBook Pro running

a 2.5 GHz Intel Core i5 processor, with 16 GB of 1600 MHz DDR3 memory, and with the

macOS Sierra 10.12.3 operating system.

The interaction between the ”frontier” electrons, the highest occupied energy (HOMO)

of a given molecule and the lowest unoccupied orbitals (LUMO) of another molecule has

an effective role in many chemical reactions [49]. The HOMO-LUMO energy gaps are

also calculated for all fullerene isomers from C24 to C100 in addition to C130 and C160(IPR).

Table 6 shows the maximum value of HOMO-LUMO energy gaps and corresponding isomer

number of fullerene graphs. Figure 38 shows the largest maximum gaps over all fullerene

isomers. Those fullerenes are C60 at isomer 1812, C72 at isomer 11190, C78 at isomer

24108, C84 at isomer 51588, C90 at isomer 99888, and C96 at isomer 191788 (Figure 41A

to 41F. The same results are presented by fowler (see [48]). HOMO-LUMO energy gaps of
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fullerene graphs C130 and C160(IPR) are 0.40 |β | and 0.39 |β | respectively. The table shows

that C60 has the largest HOMO-LUMO energy gap. And as the size of a fullerene increases,

the HOMO-LUMO energy gap decreases and converges slowly to zero (Figure 39).

Figure 38: HOMO-LUMO Gap Statistics of Fullerene Graphs from C24 to C100.
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Figure 39: The Mean of HOMO-LUMO Gaps of Fullerene Graphs from C24 to C100.
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Figure 40: Flow Chart for the Computation of Clar and Fries Numbers of Fullerenes.
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Table 6: The Maximum Value of HOMO-LUMO Energy Gaps

Fullerene Average Gap Maximum Gap Isomer Number (of max value)

C24 0 0 1

C26 .0669 0.0669 1

C28 0.0466 0.0933 1

C30 0.1542 0.4044 2

C32 0.1704 0.3942 5

C34 0.0499 0.1217 3

C36 0.0773 0.3002 14

C38 0.1008 0.3004 17

C40 0.1149 0.3731 39

C42 0.1264 0.2800 45

C44 0.1236 0.4241 72

C46 0.1145 0.3345 107

C48 0.1105 0.3842 163

C50 0.1045 0.4679 270

C52 0.1053 0.3516 333

C54 0.1093 0.3244 256

C56 0.1082 0.3929 865

C58 0.1048 0.3393 1049

C60 0.1049 0.7566 1812

C62 0.1029 0.3919 1997

C64 0.1057 0.4198 3452

C66 0.1044 0.4464 4152

Continued on next page
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Table 6 – continued from previous page

Fullerene Average Gap Maximum Gap Isomer Number (of max value)

C68 0.1033 0.4383 6290

C70 0.1004 0.5293 8149

C72 0.1015 0.7023 11190

C74 0.1013 0.4031 14095

C76 0.1003 0.3893 18720

C78 0.0986 0.6333 24108

C80 0.0983 0.4049 30469

C82 0.0978 0.4393 39269

C84 0.0978 0.6962 51588

C86 0.0966 0.4277 57799

C88 0.0959 0.4162 77956

C90 0.0951 0.6499 99888

C92 0.0947 0.4594 126351

C94 0.0941 0.4273 140420

C96 0.0935 0.6418 191788

C98 0.0926 0.4115 183270

C100 0.0923 0.4279 245666

4.5 Experimental Results

In 1985, C60 Buckminsterfullerene (or 60:1812) was the first synthesized fullerene by

Kroto et al. [71]. Krätschmer et al. [70] reported that all carbon molecules can be produced

in large quantities by the method of the evaporation of graphite. The C70 (or 70:8149) was
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produced by the same processed method. There are many method that are used to produce

fullerene molecules such as laser ablation, arc discharge, electron beam evaporation, heat

resistive and etc [129].

The experimental observation for higher fullerenes in general can be found as a mixture

of isomers. In 1991, Diederich et. al [27] used the method that presented by Krätschmer

[70] to produce IPR isomers of higher fullerenes. These are C78, C84, C90, and C96. How-

ever; C72 is not experimentally found [80]. These fullerene isomers plus C72 not only have

unusual large HOMO-LUMO gaps but also have large resonance energy [80]. Thus, they are

more stable than other IPR fullerene isomers [80]. Table.7 shows a list of fullerene isomers

that have the largest HOMO-LUMO gap values and the synthesized ones.

Table 7: Fullerenes with the Largest Maximum Value of HOMO-LUMO Energy Gaps.

Fullerene Isomer Number Maximum Gap IPR Synthesized

C60 1812 0.7566 Yes Yes
C70 8149 0.5293 Yes Yes
C72 11190 0.7023 Yes No
C78 24108 0.6333 Yes Yes
C84 51588 0.6962 Yes Yes
C90 99888 0.6499 Yes Yes
C96 191788 0.6418 Yes Yes
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(A) C60, Isomer Number 1812 (B) C72, Isomer Number 11190

(C) C78, Isomer Number 24108 (D) C84, Isomer Number 51588

(E) C90, Isomer Number 99888 (F) C96, Isomer Number 191788

Figure 41: Fullerene Isomers with the Largest HOMO-LUMO Gaps.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this work we develop an effective algorithm to reveal all small cycles of size 3 to

8 for any complex chemical graphs. This algorithm has several sections where it can be

applied at once or separately on a given graph to attain sets of all cycles of specific length.

This algorithm is applied to various chemical structures such as fullerene graphs, benzenoid

systems and others. There are some predictors of molecular stability like the Clar number,

Fries number, perfect matching, the HOMO-LUMO energy gap value, etc. The Small Cycles

algorithm is applied to the calculations of the Clar number and Fries number. After applying

the small cycles algorithm on cata-condensed benzenoid systems and fullerene graphs, we

compute the Clar numbers and Fries numbers for these chemical structures by using integer

linear programming. we investigates the Fries number and Clar number for hexagonal

systems, and show that a catacondensed hexagonal system has a maximum resonant set

containing a maximum independent resonant set, which is conjectured for all hexagonal

systems. Further, our computation results demonstrate that there exist many contra-pairs,

and, for stability predictor of hexagonal systems. We show that the Clar number is better

than Fries number.

In addition to calculating the HOMO-LUMO energy gap of all cata-condensed hexagonal

systems and fullerene isomers. We demonstrated that as a fullerene girth increases the

HOMO-LUMO energy gap decreases. However, Fullerenes C60 at isomer 1812, C72 at

isomer 11190, C78 at isomer 24108, C84 at isomer 51588, C90 at isomer 99888, and C96 at

isomer 191788 have the largest maximum HOMO-LUMO gaps; are the most stable isomers.
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5.2 Future Work

We are going to compute the perfect matching of catacondensed benzenoid isomers and

fullerene isomers by using integer linear programming. Then, we will try to prove if the

following conjuncture is true: Let H1 and H2 be isomers of a catacondensed benzenoid with

|V (H1)|= |V (H2)|, then φ(H1)≥ φ(H2) ⇐⇒ cl(H1)≥ cl(H2) where φ(H) is the number

of perfect matchings of H. If that conjuncture is not true, we will study the isomer cases

where it fails.

Also, for any given number n≡ 2 (mod 4), we can develop an algorithm to construct

a tree satisfying the properties in Theorem 3.1.9, and hence a catacondensed hexagonal

system with cl(H) = bn/6c.
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