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ABSTRACT 

What is mathematics? What does it mean to be a mathematician? What should 

students understand about the nature of mathematical knowledge and inquiry? Research 

in the field of mathematics education has found that students often have naïve views 

about the nature of mathematics. Some believe that mathematics is a body of unchanging 

knowledge, a collection of arbitrary rules and procedures that must be memorized. 

Mathematics is seen as an impersonal and uncreative subject. To combat the naïve view, 

we need a humanistic vision and explicit goals for what we hope students understand 

about the nature of mathematics. The goal of this dissertation was to begin a systematic 

inquiry into the nature of mathematics by identifying humanistic characteristics of 

mathematics that may serve as goals for student understanding, and to tell real-life stories 

to illuminate those characteristics. Using the methodological framework of heuristic 

inquiry, the researcher identified such characteristics by collaborating with a professional 

mathematician, by co-teaching an undergraduate transition-to-proof course, and being 

open to mathematics wherever it appeared in life. The results of this study are the IDEA 

Framework for the Nature of Pure Mathematics and ten corresponding stories that 

illuminate the characteristics of the framework. The IDEA framework consists of four 

foundational characteristics: Our mathematical ideas and practices are part of our 

Identity; mathematical ideas and knowledge are Dynamic and forever refined; 

mathematical inquiry is an emotional Exploration of ideas; and mathematical ideas and 

knowledge are socially vetted through Argumentation. The stories that are told to 

illustrate the IDEA framework capture various experiences of the researcher, from 
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conversations with his son to emotional classroom discussions between undergraduates in 

a transition-to-proof course. The researcher draws several implications for teaching and 

research. He argues that the IDEA framework should be tested in future research for its 

effectiveness as an aid in designing instruction that fosters humanistic conceptions of the 

nature of mathematics in the minds of students. He calls for a cultural renewal of 

undergraduate mathematics instruction, and he questions the focus on logic and set theory 

within transition-to-proof courses. Some instructional alternatives are presented. The 

final recommendation is that nature of mathematics become a subject in its own right for 

both students and teachers. If students and teachers are to revise their beliefs about the 

nature of mathematics, then they must have the opportunities to reflect on what they 

believe about mathematics and be confronted with experiences that challenge those 

beliefs.   
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CHAPTER ONE: INTRODUCTION 

Introduction 

[Benny] believes there are rules for every type of problem: “In fractions, we have 

100 different kinds of rules.” He thought these rules were invented “by a man or 

someone who was very smart.” This was an enormous task because, “It must have 

took this guy a long time ... about 50 years ... because to get the rules he had to 

work all of the problems out like that…”. […] Benny’s view about rules and 

answers reveals how he learns mathematics. Mathematics consists of different 

rules for different types of problems. These rules have all been invented. [...] 

Therefore, mathematics is not a rational and logical subject in which one has to 

reason, analyze, seek relationships, make generalizations and verify answers. His 

purpose in learning mathematics is to discover the rules and to use them to solve 

problems. There is only one rule for each type of problem, and he does not 

consider the possibility that there could be other ways of solving the same 

problem. Since the rules have already been invented, changing a rule was wrong 

because the answer “would come out different” (Erlwanger, 1973, p. 54).  

The case of Benny, as presented by Erlwanger (1973), provides a vivid illustration of 

how a student’s conception of mathematics can influence how he or she learns the 

subject. Because he believed that mathematics consists of arbitrary rules for solving 

various problems, Benny believed his role as a student of mathematics was to figure out 

these rules and the problems they apply to. In his dissertation, Erlwanger (1974) 
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documented the cases of other students who developed similar conceptions of 

mathematics. For these students “mathematics was a system of rules or methods 

involving symbolic and spatial patterns. That is, their individual conception of 

mathematics differed in many respects from the adult conception of mathematics” (p. 

205). 

While Erlwanger’s (1973, 1974) studies demonstrated that a student’s conception 

of mathematics can influence mathematical learning, other scholars have claimed that a 

teacher’s conception of mathematics can influence instruction. Thompson (1992) noted 

that when a teacher views mathematics as “a discipline characterized by accurate results 

and infallible procedures” this “can lead to instruction that places undue emphasis on the 

manipulation of symbols whose meanings are rarely addressed” (p. 127). Beswick (2012) 

found that teachers possessed conflicting views of school mathematics and mathematics 

as a discipline, and hypothesized that teacher education programs were not doing enough 

to help prospective teachers gain an informed view of the discipline of mathematics. 

Hersh (1997) contended that “misconception of the nature of mathematics” (p. xii) was 

one of the major causes of the failure of mathematics education in the United States. 

Similarly, Boaler (2016) wrote, “I strongly believe that if school math classrooms 

presented the true nature of the discipline, we would not have this nationwide dislike of 

math and widespread math underachievement” (pp. 22-23).  

As a field, mathematics education scholars must conduct a systematic inquiry into 

student and teacher understandings of the nature of mathematics and come to a consensus 
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about the kind of conceptions of mathematics we hope students develop as a result of 

mathematics instruction. Not only must researchers use empirical science to understand 

the views of mathematics that students and teachers develop in school, but we must also 

consider and formulate goals for students’ and teachers’ conceptions of the nature of 

mathematics. If we are to prevent future students of mathematics from viewing 

mathematics as arbitrary rules and procedures and teachers from emphasizing symbol 

manipulation in the mathematics classroom, then we must work to ensure that standards, 

curricula, and instruction explicitly promote an alternative view.  

Alternative Conceptions of Mathematics as a Human Activity 

Of course, mathematics education scholars do recognize that there is an 

alternative view. If mathematics was simply a collection of arbitrary rules then few of us 

would be in the business of mathematics education. We believe mathematics is a 

rewarding human activity and believe students should “enjoy the triumph of 

[mathematical] discovery” (Pólya, 1957, p. v). We know new mathematical discoveries 

are made every day, and that “Mathematics is a dynamic field that is ever changing” 

(NCTM, 2014, p. 72). We also acknowledge that mathematics is a fundamental aspect of 

human culture (Bishop, 1988), plays a role in shaping society (Skovmose, 2016), has 

applications in the natural sciences (Steen, 1988), and is a creative, emotional subject 

(Burton, 1999). Boaler (2016) noted,  

Mathematics is a cultural phenomenon; a set of ideas, connections, and 

relationships that we can use to make sense of the world. At its core, mathematics 
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is about patterns. We can lay a mathematical lens upon the world, and when we 

do, we see patterns everywhere; and it is through our understanding of the 

patterns, developed through mathematical study, that new and powerful 

knowledge is created. (p. 23) 

One important influence on mathematics education scholars’ conceptions of the 

discipline of mathematics is humanistic philosophy of mathematics (Presmeg, 2007). 

Humanistic philosophers work from the simple assumption that mathematics is a human 

activity and product (Hersh, 1997). The preeminent philosopher in this tradition, Imre 

Lakatos, utilized the history of mathematics in order to describe the activities of 

mathematicians that contribute to the growth and revision of mathematical knowledge. 

Lakatos’s book Proofs and Refutations (1976) is a major source of influence in the 

mathematics education community (Lerman, 2000). According to Lerman, the 

importance of Proofs and Refutations is “the humanistic image of mathematics it 

presents, as a quasiempiricist enterprise of the community of mathematicians over time 

rather than a monotonically increasing body of certain knowledge” (p. 22). Mathematics 

education scholars such as Lampert (1990) and Ball (1988) drew upon Lakatos’s work 

and made his ideas the foundation of their approaches to teaching elementary 

mathematics. Consider Lampert’s (1990) description of a research project in which she 

taught a fifth grade class.  

My research examined whether it was possible to make knowing mathematics in 

the classroom more like knowing mathematics in the discipline. My organizing 
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ideas have been the “humility and courage” that Lakatos and Pólya take to be 

essential to doing mathematics. […] What has been described here thus is a new 

kind of practice of teaching and learning, one that engages the participants in 

authentic mathematical activity. (p. 58) 

In her dissertation, Ball (1988) grounded what she called “mathematical pedagogy” on 

Lakatos’s philosophy, particularly his notion of the fallibilist or revisionary nature of 

mathematical knowledge.  

Mathematics is not presented as a finished body of knowledge, but rather as 

something that changes and grows over time through a process of working from 

what you know to what you don’t. […] Thus, when second graders think that the 

next number after 2 is 3, they are right—given what they know at that point. As 

members of a mathematical community, everyone in the class would agree. Once 

students encounter the set of rational numbers, perhaps through division, then the 

question of what the next number after 2 is becomes debatable, and the old 

answer—3—is clearly refuted. In this way, pupils’ encounters with mathematics 

represent Lakatos’s conception of the discipline. (pp. 200-201) 

Lakatos’s ideas, and the ideas of others in the humanistic tradition (e.g. Ernest, 1991; 

Hersh, 1997; Kitcher, 1983; Tymoczko, 1988) have influenced mathematics education 

scholarship and continue to be incorporated in current literature and research (e.g. Boaler, 

2016; Komatsu, 2016; Larsen & Zandieh, 2008; Weber, Inglis, & Mejia-Ramos, 2014).  
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Mathematics education scholars’ conception of the discipline of mathematics as a 

human activity influences research, instructional designs, and our hopes for school 

mathematics. And yet, students and teachers generally hold views of mathematics that are 

dissimilar to those of mathematics education scholars (Picker & Berry, 2000). Perhaps 

this is because there has not been a concerted and systematic effort within mathematics 

education to promote these views amongst students and teachers (Kean, 2012; Jankvist, 

2015; White-Fredette, 2010). There may be a shared vision amongst many mathematics 

education scholars about the perceptions of mathematics we hope students and teachers 

develop, but if our vision is to be realized, then we need to fully articulate our goals for 

student and teacher understandings of the nature of mathematics. I suggest we look to 

science education, where significant progress has been made in articulating goals for 

student and teacher understanding of the nature of science.  

The Nature of Science 

In science education, scholars have long argued that students and teachers not 

only need to understand the facts of science, but also need to possess a general 

understanding of both science as a discipline and the nature of scientific knowledge 

(Lederman & Lederman, 2014; McComas, Almazroa & Clough, 1998; Peters-Burton, 

2013). Proponents for teaching the nature of science (NOS) are concerned with providing 

students and teachers a general understanding of the scientific enterprise. As Hurd (1960) 

noted, “A student should learn something about the character of scientific knowledge, 

how it has been developed, and how it is used” (p. 34). The problem within science 
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education is that “science continues to be primarily taught as a rigid body of knowledge 

rather than a way of knowing” (Peters-Burton, 2013). Scholars argue that students should 

appreciate science as a part of human culture, and that an understanding of NOS is 

important for scientific literacy (McComas et al., 1998).  

Similar arguments have been made in mathematics education. Educators have 

recommended that students understand “mathematics as a part of cultural heritage” 

(NCTM, 2000, p. 4). In the National Council of Teachers of Mathematics’ (NCTM) 

Principles and Standards for School Mathematics (2000) it is written that, “Mathematics 

is one of the greatest cultural and intellectual achievements of humankind, and citizens 

should develop an appreciation and understanding of that achievement, including its 

aesthetic and even recreational aspects” (p. 4). As an influential element of contemporary 

culture, students should be aware of the cultural significance of mathematics (Bishop, 

1988) and understand the role mathematics plays in shaping society (Skovmose, 2016). 

Research in science education indicates that understanding NOS assists students 

in learning science content. Peters-Burton (2013) noted that “students who normally 

don’t consider themselves ‘science-minded’ may become more engaged when they are 

more empowered to learn how knowledge is developed and validated in the discipline of 

science” (p. 164). Students enjoy learning about NOS and lament when social/historical 

aspects of science are left out of instruction. According to McComas et al. (1998), 

“Incorporating the nature of science while teaching science content humanizes the 

sciences and conveys a great adventure rather than memorizing trivial outcomes of the 
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process” (p. 519). Even at a very young age students can understand important NOS 

aspects (Lederman & Lederman, 2014). Perhaps similar positive outcomes would be seen 

if students had the opportunity to learn about the nature of mathematics and its cultural-

historical significance, but little work has been done in this area (Jankvist, 2015). 

Statement of the Problem 

Researchers in mathematics education have generally not concentrated efforts on 

the nature of mathematics to the extent that science educators have focused on the nature 

of science (Kean, 2012). For example, while the Next Generation Science Standards 

(NGSS, 2013) contain an appendix on the nature of science that addresses the 

understandings that K-12 students should develop related to scientific inquiry and 

scientific knowledge, the Common Core State Standards (CCSSI, 2010) do not explicitly 

address student understandings of the nature of mathematics. The Common Core 

document does contain the Standards of Mathematical Practice—practices influenced by 

mathematics education scholars’ understanding of the discipline of mathematics and the 

practices of mathematicians. These standards outline the types of mathematical behavior 

scholars hope students engage in (e.g. persevere in problem solving), but the standards do 

not express specific goals about the knowledge students should have about the 

mathematical enterprise (e.g. mathematicians’ work on unsolved conjectures). Similarly 

NCTM’s (2000) process standards of problem solving, reasoning and proof, 

communication, connections, and representation are goals for students’ mathematical 

activity. These process goals were informed by scholars’ knowledge of the discipline of 
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mathematics, but it is not made explicit that students (like scholars) should understand 

that these processes are fundamental to the work of practicing mathematicians. There is 

one exception regarding the reasoning and proof standard. According to this standard, not 

only are students expected to create and evaluate proofs, but also to “Recognize 

reasoning and proof as fundamental aspects of mathematics” (p. 402). This is a rare 

example of an explicit goal for student beliefs about the nature of mathematics.  

The field of mathematics education has not only generally neglected to outline 

explicit goals for students’ understandings of the nature of mathematics but teachers’ 

understandings as well. Thompson (1992) noted, “Very few cases of teachers with an 

informed historical and philosophical perspective of mathematics have been documented 

in the literature. This observation may suggest the need to revise curricula to include 

courses in the history and philosophy of mathematics” (p. 141). Although courses in the 

history and philosophy of mathematics now exist to address this need, more work needs 

to be done in conceptualizing our goals for teacher understandings of the nature of 

mathematics before such courses can be effective. Without an explicit outline of the 

understandings that we hope teachers develop, how can we move forward with designing 

teacher education programs that do foster an informed conception of the nature of 

mathematics? Once we have a guiding framework(s) that outlines what students and 

teachers should know about the nature of mathematics, we can conduct a systematic 

inquiry into the teaching and learning of the nature of mathematics, and consider the 

instructional designs that are likely to realize our vision.  
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The Value of a List 

In science education, scholars have done significant work conceptualizing the 

construct of nature of science (NOS), and have conducted research to understand how 

NOS can be taught to students and teachers (Irzik & Nola, 2014). Research on the 

teaching and learning of NOS is guided by frameworks or lists that explicitly outline an 

informed conception of NOS and goals for learning. According to Lederman and 

Lederman (2014), 

Lists serve an important function, as they help provide a concise organization of 

the often complex ideas and concepts they include. […] In the hands of an expert 

teacher, listings of desired student outcomes help guide instruction and help 

identify prerequisite knowledge students need to master before they can achieve a 

sophisticated understanding of the concept on the list. (p. 615) 

For instance, the Next Generation Science Standards (NGSS, 2013) contain an appendix 

that lists in detail understandings of NOS that K-12 students should develop. Students 

should understand for example that “Scientific knowledge is open to revision in light of 

new evidence” (p. 4) and “Scientific models, laws, mechanisms, and theories explain 

natural phenomena” (p. 4). The NGSS provides detailed descriptions of how student 

understandings of these aspects of science should look across various grade levels.    

An analogous list does not exist within mathematics education. Of course lists do 

exist that outline important mathematical practices (e.g. CCSSI, 2010; NCTM, 2000), 

mathematical habits of mind (e.g. Cuoco, Goldenberg, & Mark, 1996), and cultural 
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features of mathematics (e.g. Boaler, 2016). However, these lists, while informed by 

scholars’ understandings of the nature of mathematics, have not served to provide goals 

for student or teacher understandings of the nature of mathematics. Perhaps an implicit 

assumption is that if students are doing mathematics (i.e. engaging in the Standards for 

Mathematical Practice) then they will also come to understand the nature of mathematics. 

But research in science education supports the view that doing science, even engaging in 

laboratory apprenticeships, does not necessarily translate into an understanding of NOS 

(Bell, Blair, Crawford, & Lederman, 2003). Research suggests that in order for students 

to understand NOS, it must be explicitly addressed, and “brought to the forefront” (Bell 

et al., 2003, p. 504) of students’ activity.  

Will students be able to understand the nature of mathematics by doing 

mathematics in the classroom, or is an explicit discussion of the characteristics of 

mathematics required for such understanding to develop? As a systematic inquiry into the 

teaching and learning of the nature of mathematics has not been conducted, we are not in 

a position to answer this question. As Jankvist (2015) noted, “Only rarely is the act of 

providing students or teachers with certain beliefs, e.g. by changing existing ones, about 

mathematics or mathematics as an established and (scientifically) practiced discipline 

considered a goal in itself within mathematics education research” (p. 41).  

A first step in conducting a systematic inquiry into the teaching and learning of 

the nature of mathematics is to consider the characteristics of the nature of mathematics 

that students or teachers should understand, and compile them into a framework/list with 
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the purpose of conducting further research into student and teacher understandings of 

those characteristics. After we determine what features of the nature of mathematics can 

be taught and learned, we can make progress toward ensuring that students and teachers 

possess an informed view of the nature of mathematics. 

Purpose of the Dissertation 

My goal with this dissertation is to begin the work of “conceptualizing the 

construct” (Lederman & Lederman, 2014, p. 600) of the nature of mathematics (NOM) as 

has been done with the nature of science (NOS) in science education. My aim is to 

produce a humanistic framework for the nature of mathematics that highlights key 

features of the mathematics that may serve as goals for student and teacher 

understanding, together with corresponding narratives that illuminate these features. 

Through the literature review described in Chapter Two and the study outlined in Chapter 

Three, I have worked to produce The IDEA Framework for the Nature of Pure 

Mathematics. This framework and corresponding narratives are presented in Chapter 

Four. It is my hope that this framework may guide research, professional development, 

the design of curricula, and other work in mathematics education. 

The first step in the creation of the framework was a thorough literature review in 

which I investigated humanistic philosophy of mathematics and the mathematics 

education research that has been influenced by this philosophy. After completing this 

review of the literature and compiling an initial list of characteristics of mathematics, I 

deepened my understanding of NOM and revised the framework by conducting heuristic 
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self-search inquiry (Douglass & Moustakas, 1985; Moustakas, 1990; Sela-Smith, 2002). 

By documenting and reflecting on my own experience collaborating with a research 

mathematician while also teaching an undergraduate mathematics course, I had 

experiences highly relevant to the nature of mathematics and its teaching and learning. 

Drawing from these experiences, I have drafted narratives that illuminate key features of 

the nature of mathematics. Two research questions guided my study:  

What is the nature of mathematics? What should students understand about the 

nature of mathematics?1  

To reiterate, my goal has been, through a review of the literature and heuristic self-search 

inquiry, to explicate key humanistic characteristics of the nature of mathematics in the 

form of a list, and to complement this list with supporting narratives that illuminate the 

characteristics.  

Significance of Study 

I have outlined the need for the field of mathematics education to make explicit its 

goals for student and teacher understandings of the nature of mathematics. Only if these 

goals are made explicit can we move forward with research to investigate the best ways 

to meet these goals. In creating a humanistic framework that explicitly highlights key 

characteristics of the nature of mathematics, I hope that my work will move the field of 

mathematics education forward in this important area.  

                                                 
1 As will be discussed in Chapter Three, the focus of these questions was narrowed for the purposes of my 

study.  
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The Value of Stories in Educational Research 

During my time as a doctoral student, the mathematics education articles that 

have had the most influence on me have been stories. Erlwanger (1973) presented the 

story of Benny, a boy who constructed his own non-standard mathematical rules and 

beliefs while working in the Individually Prescribed Instruction (IPI) mathematics 

program. Benny’s story illuminated the limitations of a behaviorist approach to 

mathematics learning. It was a particularly powerful critique in part due to the empathy a 

reader could feel for Benny. By telling stories about her third grade classroom, Ball 

(1993) demonstrated the conflicts a teacher may encounter when striving to both honor 

student thinking and respect the discipline of mathematics. These stories, such as the one 

about “Sean numbers,” are enjoyable to read, and also incite significant discussion in the 

field of mathematics education (Bass & Ball, 2014). In another of my favorite journal 

articles, Lampert (1990) told the story of her fifth grade class. This story functions as an 

existence proof that it is possible for school students to engage in authentic mathematical 

practices. My purpose in recalling the stories, told by other mathematics education 

scholars, is to underscore the value that narratives have for educational research. My 

hope is that the narratives presented in Chapter Four adequately illuminate key 

characteristics of the nature of mathematics for future readers. I hope the narratives may 

be useful for fostering discussion, research, and understanding of the nature of 

mathematics within the field of mathematics education. These narratives are not fictional, 
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but are true stories of what I experienced during my heuristic inquiry into the nature of 

mathematics. 

 Research Program 

I do not intend for my dissertation work to be the final chapter in my own 

understanding of the teaching and learning of the nature of mathematics, but the 

beginning of a long research program. For this dissertation I created a framework that 

will be revised over time as needed. As seen in Figure 1, this dissertation work is the 

beginning of a research trajectory. The purpose of this dissertation has been to develop an 

initial framework and corresponding narratives. In the future, I would like to interview 

mathematicians and mathematics educators in order to confirm that the nature of 

mathematics characteristics I have outlined are consistent with others’ beliefs, values, and 

goals. Furthermore, it will be important to consider if students and teachers can 

understand these characteristics of the nature of mathematics and to explore how these 

characteristics can be taught and understood. Subsequently, researchers may consider 

examining empirical studies within science education related to the nature of science and 

adopt similar methods to study the nature of mathematics within the field of mathematics 

education. 
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Figure 1. The Long-Term Development of a Framework for the Nature of Mathematics 

Definition of Terms 

Nature of Mathematics (NOM) 

I conceive the nature of mathematics (NOM) to be a philosophical notion, 

signifying that mathematics has a nature that can be described. As I discuss in Chapter 

Two, this nature may vary across particular human contexts. To be clear, NOM is not 

simply the list of characteristics I will highlight in this dissertation. NOM is a vast 

philosophical concept that cannot easily be pinned down (cf. Kean, 2012). My intent has 

been to draw out some of the humanistic characteristics of NOM that may be important 

for people-in-society to know and understand in order to combat naïve views.  

Several times in this chapter I have referred to NOM implicitly in terms of the 

discipline practiced by professional mathematicians. However there are many types of 

professional mathematicians. Steen (1988) noted, 

Today's mathematical sciences […] can be divided into three parts of roughly 

comparable size: statistical science, core [pure] mathematics, and applied 
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mathematics. […] Although the boundaries between these parts overlap 

considerably, each province has an identifiable character that corresponds well 

with the three stages of the mathematical paradigm established by Newton: data, 

deduction, and observation. (p. 612) 

However, mathematics is not only the practice of professional mathematicians. 

Bishop (1988) discussed fundamental mathematical practices (e.g. counting, locating, and 

measuring) that exist within all human cultures. According to Bishop, mathematics as 

practiced by professional mathematicians is only one form of mathematics. Ultimately, I 

envision a NOM framework that fully outlines mathematics as a broad cultural activity 

and delineates important characteristics of different types of mathematics. In Chapter 

Two, I have done some preliminary work in this broad direction, discussing 

ethnomathematics as well as some categories of mathematics that exist within cultures 

(e.g. artisan, commercial-administrative). Also the beginnings of a broad NOM 

framework are presented in Chapter Five with recommendations for future development.   

In order to narrow the focus of my dissertation, I chose to concentrate on the 

mathematical practices and knowledge of pure mathematicians. Browder (1976) defined 

pure mathematics as “that part of mathematical activity that is done without explicit or 

immediate consideration of direct application to other intellectual domains or domains of 

human practice” (p. 542). I view pure mathematics as mathematics that is done for its 

own sake.  
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One reason that I choose to focus on pure mathematics in my dissertation study is 

that most of my experience as a scholar has been related to pure mathematics. It is the 

aspect of mathematics that I know and love. As a master’s student, nearly all of the 

mathematics courses I enrolled in were pure mathematics courses. I also wrote a pure 

mathematics master’s thesis in graph theory. In addition, my doctoral studies in 

mathematics education have primarily been focused on undergraduates’ learning of 

mathematical proof, a key feature of pure mathematical knowledge.  

Throughout this chapter I have mentioned the “discipline” of mathematics. Unless 

otherwise noted, I am referring to the knowledge and practices of pure mathematicians 

when I use this term. As I discuss in Chapter Two, my framework for the nature of 

mathematics as a discipline is grounded in humanistic philosophy of mathematics (e.g. 

Ernest, 1991; Hersh, 1997; Lakatos, 1978).  This philosophy is grounded upon the 

premise that mathematics is a human activity. Philosophers in this tradition typically 

focus on the discipline of pure mathematics, but acknowledge the importance of the 

applied (Hersh, 1997). I do not argue that pure mathematics should be valued over other 

forms of mathematics. I believe it is important for students to understand the complexity 

of the discipline of mathematics and also understand mathematics as a fundamental 

aspect of human cultures. I suggest an in-depth study of the nature of applied 

mathematics, statistics, and other forms of mathematics should be conducted by 

interested researchers.  
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The Nature of Mathematical Inquiry versus the Nature of Mathematical Knowledge  

When considering pure mathematics as a discipline, I conceive of two aspects of 

NOM that may be fruitful to distinguish: the nature of mathematical inquiry (NOMI) and 

the nature of mathematical knowledge (NOMK). NOMI refers to the practices that 

mathematicians engage in when creating knowledge (e.g. conjecturing, proving, 

communicating, etc.…) and the human experience of such activity (e.g. emotional). 

NOMK refers to the nature of the knowledge that mathematician’s produce (for instance, 

is mathematical knowledge absolute or subject to revision?). It should be noted that this 

distinction is not always clear cut. For instance, would conjecturing be categorized as 

NOMI or NOMK? One can make the case for NOMI—conjecturing is an important 

mathematical practice that plays a role in the creation of mathematical knowledge. On 

the other hand, established theorems were once conjectures. This would place conjectures 

in the category of NOMK. My point here is that while I believe it will be valuable to 

distinguish between the nature of the inquiry of mathematicians (NOMI) and the nature 

of the knowledge mathematicians produce (NOMK), the distinctions between knowledge 

and practice are not clear cut. These distinctions will be further discussed in Chapter 

Two. 

Chapter Summary 

In this chapter I have argued that the field of mathematics education needs a 

framework that outlines key characteristics of the nature of mathematics that students and 

teachers should know and understand. I agree with Hersh (1997) that “What’s needed is 
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an explication of what mathematicians do—as part of general human culture” (p. 19). We 

need a guiding framework to begin the work of reforming student misconceptions of the 

nature of mathematics so they may possess a more informed, humanistic view of the 

subject. My goals with this dissertation have been, through empirical means, to begin the 

process of designing an educational framework for the nature of mathematics, and to tell 

stories grounded in data that illuminate key characteristics of the nature of mathematics. 

My aim has been to portray mathematics as a human activity. The first draft of such a 

framework is presented in Chapter Two, and is based upon a review of the relevant 

literature in mathematics education and humanistic philosophy of mathematics.   
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CHAPTER TWO: REVIEW OF LITERATURE 

Introduction 

Students and teachers frequently have a limited view of the nature of mathematics 

and may believe mathematics is a static body of knowledge consisting of arbitrary rules 

and procedures (Beswick, 2012; Erlwanger, 1974; Muis, 2004; Presmeg, 2007; 

Thompson, 1992). These naïve views may negatively affect the teaching (Thompson, 

1992; White-Fredette, 2010) and learning (Erlwanger, 1974) of mathematics. In contrast 

to these naïve views, many mathematics education scholars view and describe 

mathematical knowledge as a dynamic human product (Boaler, 2016), and emphasize the 

human aspects of mathematical work such as creativity (Burton, 1999) and fallibility 

(Ernest, 1991). These modern views are influenced by cultural approaches to 

mathematics (Bishop, 1988), theories of embodied cognition (Lakoff & Nuñez, 2000), 

humanistic philosophy of mathematics (Ernest, 1991), or perhaps scholars’ own 

experiences doing mathematical work (e.g. Hersh, 1997). According to Hersh (1997), 

“misconception of the nature of mathematics” (p. xii) is one of the major causes of the 

failure of mathematics education in the United States. Thompson (1992) noted that “Very 

few cases of teachers with an informed historical and philosophical perspective of 

mathematics have been documented in the literature” (p. 141). The gap between 

uninformed views of mathematics (largely held by students and teachers) and the 

informed cultural-historic perspectives held by scholars needs to be addressed within 

mathematics education. 
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In Chapter One I made the case that the field of mathematics education needs to 

begin a systematic inquiry into the teaching and learning of the nature of mathematics 

(NOM), with a first step being the creation of an explicit framework highlighting key 

features of NOM that will serve as goals for student and teacher understanding. Such a 

framework should be useful in order to inform research, professional development, the 

design of curricula, and other work in mathematics education. The preliminary NOM 

framework in Figure 2 is informed by my study of the work of humanistic philosophers 

of mathematics (e.g. Ernest, 1991; Hersh, 1997; Lakatos, 1976), mathematics education 

scholars who emphasize the cultural dimensions of mathematical knowledge (e.g. 

Bishop, 1988, Izmirli, 2011), critical scholars (e.g. Borba & Skovmose, 1997; Harouni, 

2015) and other mathematics education scholars whose work is relevant to NOM (e.g. 

Burton, 1995; Weber, 2010).  

This first iteration of a NOM framework is clearly incomplete. I present further 

iterations in Chapters Four and Five based on my dissertation study, but I also believe 

further modifications will also need to be made post-dissertation. It is important to note 

that as I conducted my dissertation study, the characteristics of mathematics described in 

this initial framework gave me a starting place for identifying features of the nature of 

mathematics at work in my own mathematical research and teaching. Through 

completion of the study I recognized that some of these initial characteristics may not be 

the best goals for student understanding, but I have left this initial framework intact since 

it was influential to my thinking during the dissertation study.  
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Mathematics as a Fundamental Part of Human Cultures 

 Mathematical knowledge is influenced by cultural values (Bishop, 1988; Hersh, 

1997). 

 Mathematical knowledge is embedded within the work of artisans (Harouni, 

2015). 

 The purpose of commercial-administrative mathematical knowledge is 

calculation for economic purposes. The efficiency and accuracy of 

mathematical procedures is valued and there is no need to understand why a 

procedure works (Harouni, 2015).  

 Western academic mathematics is one (but not the only) form of mathematics 

(Bishop, 1988; Izmirli, 2011). 

The Nature of Pure Mathematics as a Discipline 

Nature of Mathematical Knowledge (NOMK) 

 Mathematical knowledge is subject to revision (Hersh, 1997; Lakatos, 1976). 

 Mathematical knowledge is socially validated (Ernest, 1991; Lakatos, 1976). 

 Proofs are bearers of mathematical knowledge (Hanna & Barbeau, 2008; 

Weber 2010). 

 Informal mathematical work is the foundation of formal knowledge (Hersh, 

1997; Lakatos, 1976). 

Nature of Mathematical Inquiry (NOMI) 

 Mathematical inquiry can be creative, emotional, and collaborative (Burton, 

1995). 

 Each sub-discipline of mathematics has different norms, values, and standards 

(Burton, 1999, Weber, 2008). 

Statistical and Applied Mathematics 

 Mathematical knowledge is used to shape society, but cannot be considered an 

absolute judge (Borba &Skovmose, 1997).  

Figure 2. First Iteration of a Nature of Mathematics (NOM) Framework 

In this chapter, I will review the literature that is relevant to the teaching and 

learning of the nature of mathematics (NOM). Much of this literature has influenced the 

categories and characteristics of NOM that are listed in Figure 2, but the discussion will 

not be limited to those categories and characteristics. First we will begin by considering 

mathematics as a fundamental part of human culture (Bishop, 1988). This discussion will 
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examine the way mathematics is embedded in the everyday life of various human groups, 

and contrast different forms of mathematical knowledge, for example artisanal, 

commercial-administrative, and philosophical (Harouni, 2015). Pure academic 

mathematics will be situated as one form of mathematics with its own unique value-laden 

characteristics. This discussion will lead to an examination of the philosophy of 

mathematics literature. Note that the question “What is the nature of mathematics?” is a 

philosophical one; it is thus fitting that in designing an educational framework for the 

nature of mathematics we draw from the philosophy of mathematics. As Ernest (1991) 

noted, “The philosophy of mathematics is the branch of philosophy whose task is to 

reflect on, and account for the nature of mathematics” (p. 3). Humanistic philosophy of 

mathematics has had a profound influence within mathematics education (Lerman, 2000; 

Toumasis, 1997), and this philosophy has had a guiding influence on my dissertation 

study. The philosophies of Platonism and formalism, which continue to have influence 

within mathematics education (Dossey, 1992, White-Fredette, 2010), will be addressed to 

provide a contrast to the humanistic ideas. Finally, by incorporating the work of Steen 

(1988), the chapter will conclude with a brief description of statistical and applied 

mathematics. I acknowledge that more conceptualization in these areas is needed in 

future research projects. 

Before beginning the review of the literature, it is pertinent that I provide some 

insight into my personal stance as a researcher regarding the nature of mathematics and 

the purposes of education. Not only because this will provide the reader some insight into 
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how I interpret the literature, but also because the inquiry framework that I am using for 

my dissertation study necessitates that the researcher’s personal stance be made explicit.  

Theoretical Orientation of the Researcher 

In order to develop a useful educational framework for the nature of mathematics, 

I conceived that it would be beneficial to collaborate with a research mathematician and 

reflect on my own experience doing mathematics as the basis of my dissertation study. 

Because of its emphasis on the personal experience of the researcher, the methodological 

framework of heuristic self-search inquiry (Douglass & Moustakas, 1985; Moustakas, 

1990; Sela-Smith, 2002) seemed to be a good fit for the type of work I desired to 

undertake. Patton (2015) noted, 

[H]euristic research epitomizes the phenomenological emphasis on meanings and 

knowing through personal experience; it exemplifies and places at the fore the 

way in which the researcher is the primary instrument in qualitative inquiry; and it 

challenges traditional scientific concerns about researcher objectivity and 

detachment. (p. 119) 

I chose heuristic self-search inquiry because I thought it wise to examine deeply 

my own experience conducting mathematical research so that I will have some authority 

to speak on the characteristics of pure mathematical inquiry and knowledge for the 

purposes of mathematics education1. But heuristic inquiry is a method that not only 

                                                 
1 See Chapter 1 for my description of mathematics as a discipline and the affinity I have for pure 

mathematics.   
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informs data collection but also the entire research process from the very beginnings of 

research to the final stages. As Moustakas (1990) noted, "The self of the researcher is 

present throughout the process and, while understanding the phenomenon with increasing 

depth, the researcher also experiences growing self-awareness and self-knowledge” (p. 

9). Crucial to this process is what Moustakas called the “internal frame of reference” (p. 

26). Bach (2002) noted, “The internal frame of reference is a guiding concept in heuristic 

research and makes possible all other processes within the model. The personal is the 

basic foundation, the beginning of a knowledge base” (p. 94). Thus before I provide a 

thorough review of the literature, I offer a glimpse into my own perceptions, thoughts, 

and identity, the “internal frame of reference” that influences my work. 

Internal Frame of Reference 

I tend to work from a humanistic-critical-theistic perspective. In describing 

humanistic mathematics education, Brown (1996) noted that the goal of education should 

be to gain an understanding of self and what it means to be human. From the critical 

perspective (e.g. Borba & Skovmose, 1997; Harouni, 2015; Pais, 2013) a goal of 

education is to empower individuals and ultimately to challenge and change an unjust 

social order. My humanistic-critical concerns are rooted in an underlying belief in a 

loving creator God. In a previous paper regarding the nature of mathematical knowledge 

(Pair, 2015) I wrote, 

My belief in God is a conscious commitment I have made in light of personal 

experiences—experiences in which the existence of God seemed undeniable. The 
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commitment could be called faith. […] I believe that my accomplishments are 

made possible because of my trust in God. […] What needs to be transmitted to 

the reader is that the belief in God is central to my reality. I would be deceiving 

my self and others if I did not recognize that any position I take will necessarily 

be influenced by this belief. (p. 3) 

In that paper I described how I came to the conclusion that “God and humans are co-

creators of mathematics.” (p. 6). I do not intend for such a statement to make it into a 

framework for the nature of mathematics. Rather I intend to focus on the humanistic 

premise that humans are creators of mathematics. I believe humanistic concerns can unite 

people of different perspectives. 

I have always believed that a purpose of mathematics education should be to 

develop in people the ability to think critically about their lives so that they may consider 

ways in which the nature of society can be revitalized. But I have become more aware of 

this desire through the dissertation process. I want to make this explicit by taking a 

critical stance. This stance is grounded in spiritual concerns for human welfare and 

manifests itself as an alignment and admiration for critical theorists in mathematics 

education (e.g. Ernest, Sriraman, & Ernest, 2016). I do acknowledge that there are 

differences in my views and those of critical theorists, particularly religious differences. 

But in spirit with other critical mathematics education scholars, my purpose is not to 

imagine how to teach the nature of mathematics within society as it is, but to teach the 

nature of mathematics in a way that challenges that which is contrary to the well-being of 
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humans. My vision is that the learning of mathematics will not be an oppressive 

experience, but an enlightening one. I acknowledge that my increasing awareness of my 

personal stance is no less than the beginnings of a personal transformation which Sela-

Smith (2002) claimed to be the dominant purpose of heuristic self-search inquiry. She 

wrote, “[A] relentless inward focus can lead to greater self-understanding, self-

transformation, and reconstruction of a hindering worldview” (p. 80). 

This dissertation is written from my internal frame of reference, and I am explicit 

about the ways in which my thinking has been transformed through this work. At the start 

of this project, my thoughts regarding the nature of mathematics were exclusively related 

to the practices and knowledge of pure mathematicians; and indeed pure mathematics has 

been the focus of this dissertation. But as I began to review the literature, I became 

increasingly aware of the fact that pure mathematics is not the only real mathematics. 

Mathematical ideas have always been part of human culture, and mathematical 

knowledge takes on a distinct character depending upon the cultural context in which it 

plays a role.  

Mathematics as a Part of Human Culture 

Many scholars in mathematics education have taken cultural approaches in 

describing the nature of mathematics (e.g. Bishop, 1988; D’Ambrosio, 2016; Presmeg, 

2007). From this perspective, mathematics is viewed as a fundamental part of all human 

cultures. According to Bishop (1988), there are six cultural activities “necessary and 

sufficient for the development of mathematical knowledge” (p. 182): counting, locating, 
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measuring, designing, playing, and explaining. It is from these activities that 

mathematical knowledge is uniquely developed in each culture. 

Mathematical Knowledge is Influenced by Cultural Values  

Mathematics plays a formatting role in society (Borba & Skovmose, 1997), and as 

a part of culture, is necessarily influenced by cultural values (Bishop, 1988). We will 

examine this influence by considering the differences between mathematical knowledge 

of people in different contexts.  

Mathematical knowledge is embedded within the work of artisans. 

Mathematics may be so fundamental to our lives that it is indistinguishable from 

our activities. Harouni (2015) noted that this is precisely the case for the artisan (e.g. a 

mason, shipbuilder, or a carpenter). There is no distinction between mathematical 

knowledge and the practice of a craft: 

The carpenter’s act of measuring planks, for example, might involve operations 

similar to what one learns in school today, but the artisan’s math is intertwined 

with the materials and instruments of his work (Smith, 2004). The ruler he uses 

defines the meaning of numbers for him. (p. 54) 

The mathematical knowledge of the artisan is not distinct from his work and must be 

transmitted through apprenticeship. As artisanal mathematics is intertwined with the craft 

it is not identified as mathematics, and the artisan is not likely to claim to have 

mathematical knowledge. And although we can use the mathematics taught in Western 
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schools to classify the practices of a craftsman as mathematical, the knowledge of the 

artisan is not generally developed in the West.  

Artisanal learning did not help shape public schooling because of the rise of 

industrial capitalism, which rapidly eroded the influence of the artisan class. By 

the late seventeenth century in Europe, apprenticeships were proving expensive 

and outdated (De Munck, 2007). Technological progress limited the skills needed 

by the majority of workers on the shop floor, and increasingly the combination of 

simple wage labor and machinery replaced the work of trained artisans.  (Harouni, 

2015, p. 63) 

Thus the mathematical knowledge taught in Western schools today is shaped by a lack of 

value related to the artisan’s craft. 

The Economic Role of Mathematics in the Modern West 

As a fundamental part of culture, mathematical knowledge is not value-free2 

(Bishop, 1988). Mathematics will take on a different character depending on the values 

associated with a culture. Because mathematics is embedded within and part of a culture, 

there is a dynamic interplay as the culture influences mathematics and vice versa. Bishop 

noted,  

Western culture’s world-view appears to be dominated by material objects… One 

of the ways mathematics has gained its power is through the activity of 

                                                 
2 Some scholars in science education (e.g. Lederman, Antink, & Bartos, 2014) maintain that a goal is for 

students to understand the value-laden nature of scientific knowledge. 
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objectivising the abstractions from reality. Through its symbols (letters, numerals, 

figures) mathematics has taught people how to deal with abstract entities, as if 

they were objects. (p. 186) 

The objectification of number serves economic needs, and decontextualization is 

necessary for determining exchange value of goods and labor within an economic system 

(Harouni, 2015). The high degree of certainty we are able to achieve in mathematics may 

be due to the historical need to create invariant objects to deal with accounting (Ernest, 

2016). Ernest maintained that “at the heart of systems of numeration and measurement is 

the human requirement that processes of accounting should conserve the material 

resources being recorded and hence, by proxy, be invariant with respect to the quantities, 

numbers and calculations involved” (p. 382). The objectification and tendency to 

decontextualize number is a key feature of what Harouni (2015) termed commercial-

administrative mathematics, or reckoner’s mathematics. 

The nature of commercial-administrative mathematical knowledge.  

Reckoning schools appeared in fourteenth century Italy and were valuable to 

merchants and accountants who sent their children to such schools to be taught by a 

reckonmaster (Harouni, 2015). The curriculum of a reckoning school resembles the 

content that characterizes what is today sometimes called traditional elementary 

mathematics instruction. Harouni noted that a typical fourteenth century curriculum 

consisted of the following seven sections: 
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1. Addition, subtraction, and multiplication (including memorization of 

algorithms and fact tables) 

2. Division by a single digit  

3. Division by a two-digit number 

4. Division by a three-digit number or more  

5. Fractions (basic operations, used in problem situations) 

6. Rule of three 

7. Principles of the Florentine monetary system. (p. 55) 

A key feature of the reckoner’s mathematical practice was that it was not 

important to understand why mathematical procedures and algorithms work, but merely 

have confidence that they do always produce the right answer (Harouni, 2015). There 

was no need for justification in a reckoner’s school, and the reckonmaster or textbook 

was the sole source of mathematical authority. The mathematics education scholar 

Lampert (1990) seems to be describing a reckoner’s school when she outlined what it 

means to know mathematics in modern schools.  

Commonly, mathematics is associated with certainty: knowing it, with being able 

to get the right answer, quickly… These cultural assumptions are shaped by 

school experience, in which doing mathematics means following the rules laid 

down by the teacher; knowing mathematics means remembering and applying the 

correct rule when the teacher asks a question; and mathematical truth is 

determined when the answer is ratified by the teacher. Beliefs about how to do 
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mathematics and what is means to know it in school are acquired through years of 

watching, listening, and practicing. (p. 32) 

It is clear that the mathematical knowledge of the reckoner is influenced by 

economic values. Harouni (2015) claimed that “due to reckoning mathematics’ economic 

significance, it continues to dominate the lay perception of mathematics” (p. 60). 

Furthermore, 

In the case of mathematics education, we are dealing with an overwhelming 

economic fact that we hold in common with sixteenth-century Europe: 

commercial and administrative calculation is still the dominant intellectual 

activity of our societies. We are not merely inheritors of reckoning. We are 

reckoners—and perhaps academics, artisans, politicians, and so on—and the math 

we teach contains our attitudes. (p. 58) 

Western Academic Mathematics is One (but not the only) Form of Mathematics 

Due to political-economic reasons, artisanal mathematics is generally ignored in 

schools while the characteristics of commercial-administrative mathematics continue to 

be valued. But Harouni (2015) noted there is one other form of mathematics that is often 

found competing with commercial-administrative mathematics in school. 

We can think of it as philosophical mathematics, using philosophy as a blanket 

term to cover also priestly and academic activities. It is exemplified in the work of 

Euclid, in the astronomical and astrological discourses of Muslim scholars, and in 

the discipline of pure math that is the practice of academic mathematicians. […] 
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Philosophical mathematics loves patterns. It draws them out because they hint at 

meaning, and meaning is the priest’s and philosopher’s sustenance. (p. 64) 

In the past, if my students said they did not like mathematics, I may have told 

them that it is because they had never studied real mathematics. I get warm and fuzzy 

feelings when I read the work of scholars who make the case that students might actually 

enjoy mathematics if they studied the real thing—creating proofs, formulating 

conjectures, and experiencing the creativity and beauty of mathematics (Boaler, 2016; 

Lockhart, 2009). Clearly my favorite version of mathematics is priestly, philosophical 

mathematics. The mathematics I love is the mathematics of patterns. I believe that pure 

mathematics is valuable enough that every person should have the opportunity to know 

and experience it. This entails coming to understand the nature of pure mathematical 

practice and knowledge. But pure mathematics, the mathematics that I love, is not the 

only real mathematics. 

Ethnomathematics. 

Izmirli (2011) claimed that non-Western cultures have been “excluded from the 

mainstream history of mathematics, and formal, academic mathematics” (p. 33) and that 

“all quantitative and qualitative practices, such as counting, weighing, and measuring, 

comparing, sorting and classifying, which have been accumulated through generations in 

diverse cultures, should be encompassed as legitimate ways of doing mathematics” (p . 

34). Within mathematics education, some scholars have devoted themselves to 

incorporating the mathematics of non-Western cultures into the Western classroom. This 
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has largely been conducted under the research program of ethnomathematics 

(D’Ambrosio, 2016). According to D’Ambrosio (2004), ethnomathematics is “the 

mathematics which is practiced among identifiable cultural groups” (p. 196). An 

identifiable cultural group may be the collective of practicing mathematicians (Bishop, 

1988; Mesquita & Restivo, 2013), but usually refers to non-academic groups, such as 

“national tribal societies […] [or] builders and welldiggers and shack-raisers in the 

slums” (D’Ambrosio, 2004, p. 196). D’Ambrosio (2016) claimed, “The main goal of 

Ethnomathematics is building up a civilization free of truculence, arrogance, intolerance, 

discrimination, inequity, bigotry and hatred” (p. 25).  

As our students experience multicultural mathematical activities that reflect the 

knowledge and behavior of people from diverse cultural environments, they may 

not only learn to value the mathematics but, just as important, may develop a 

greater respect for those that are different from themselves (D’Ambrosio, 2001, p. 

303).  

Other researchers in this tradition support students in connecting the mathematics of 

everyday life to the academic mathematics learned in school (Presmeg, 2007). 

As I investigated the ethnomathematics literature I came across a criticism of 

ethnomathematics written by Pais (2011). Key to Pais’s critique is that mathematics 

education must be conceived within the broader economic system of our times, i.e. global 

capitalism. Any pedagogical approach aimed at changing society may be compromised 

due to this economic reality. Instead of leading to multicultural appreciation, the 
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incorporation of a revolutionary pedagogy into the classroom may be superficially 

perverted to fit inside the system of schooling. In the case of ethnomathematics, the 

mathematics of another culture may be used not as a tool to make students more 

culturally sensitive, but merely as an aid to teaching the “official curriculum” (Pais, 2011, 

p. 224). Any cultural insight that could be gained may be ignored for the sake of teaching 

Western mathematics, the mathematics which plays a significant role in the economic 

system. Pais noted, “[T]he process of bringing diversity and ethno-mathematical ideas 

into the classroom may end up conveying practices opposed to the benevolent 

multicultural ideas these researchers want to enforce, by promoting a desubstantialized 

view of Other's culture” (p. 227).  

The influence of the economic system may inadvertently thwart our aims in 

mathematics education in other ways. Pais (2015) argued that within mathematics 

education, researchers repress the fact that mathematics education serves a role in the 

political economy. Why do students desire to learn mathematics? Pais (2013) wrote that 

“Mathematics allows students to accumulate credit in the school system that will allow 

them to continue studying and later to achieve a place in the sun” (p. 20). The ideology of 

the mathematics education scholar often ignores this reality, in hopes that students will 

desire to learn mathematics for its own sake. We must be aware that for many students, 

mathematical knowledge is a required commodity. Students have learned that to do 

mathematics means to complete exercises for the purposes of obtaining school credit. We 



37 

 

 

 

cannot ignore the economic reality as we work to transform students’ and teachers’ 

conceptions of the nature of mathematics.     

Implications and Summary of Ideas: Mathematics and Culture 

I contend it may be valuable for students and teachers to understand that there are 

many different types of mathematics. Teachers may use this knowledge to incorporate 

into their instruction the mathematical practices most likely to meet their educational 

goals. I conjecture that even mathematics education scholars (especially those of 

philosophical leanings) may benefit from considering the reality of commercial-

administrative mathematics. Our proposed reforms are often pitted against this cultural 

inheritance. In some sense, the reform movement has resulted in school being a 

combination of commercial-administrative mathematics and pure mathematics. Students 

are still expected to learn the reckoners’ algorithms but also understand the meaning of 

the algorithms as a pure mathematician would. 

The production of contemporary math curriculum represents the outcome of a 

particular dialectical battle between philosophical mathematics and commercial-

administrative mathematics. In a strong money economy, as soon as philosophical 

mathematics leaves its specialized cloisters and addresses itself to the general 

public, it is fated to meet commercial-administrative mathematics. While 

commerce and administration, which rely heavily on mathematics, want 

philosophical math to submit to and reinforce their agenda, the philosophical 

mathematician wants to reassert her independent identity and in that attempt 
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brandishes her stronger, more scientific version of mathematics. This dynamic 

brings about a synthesis that can take a variety of forms depending on the 

battleground. In public education, the result tends to be disappointing to 

proponents both of reckoning and of philosophical math, as they do not intend to 

change their own practice or view of the purpose of math but only the way in 

which the future generation is trained in it. (Harouni, 2015, p. 66) 

I have described how mathematics is a fundamental aspect of human culture, 

mathematical knowledge is influenced by cultural values, and academic mathematics is 

only one form of mathematics (Bishop, 1988). I contend it may be valuable for students 

and teachers to understand the cultural-embeddedness of mathematics and understand 

that artisanal, commercial-administrative, and philosophical mathematics are distinct 

forms of mathematics. I hypothesize that students may appreciate glimpses into the 

mathematics of other cultures (perhaps the work of artisans) and an understanding that 

mathematics is an intricate part of life. I strongly contend that more attention needs to be 

paid to the characteristics of commercial-administrative mathematics. 

Decontextualization reflects the values of a mathematics designed for economic purposes 

where the efficiency and accuracy of mathematical procedures is valued (there is no 

value in understanding why a procedure works). More research is needed to determine 

the benefits of and methods for helping students and teachers understand that 

mathematical knowledge is shaped by human values.  
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The Nature of Pure Mathematics as a Discipline  

Is even pure mathematical knowledge subject to the values of culture? There is a 

perception that mathematical knowledge has a timeless objective quality (Hersh, 1997). 

Does the fact that 2+2 equals 4 not transcend one’s humanity? In the next portion of this 

literature review I turn our attention to the philosophy of mathematics, particularly as it is 

relevant to pure, academic mathematics as a discipline. Philosophers of mathematics 

primarily seek to understand and describe the discipline of mathematics and the nature of 

its corresponding knowledge (Kitcher, 1983). As thorough expositions of the history of 

philosophy of mathematics have been put forth by others (e.g. Dossey, 1992; Ernest, 

1991; Hersh, 1997; White-Fredette, 2010), I do not intend to put forth a complete 

exposition here.  

Humanistic philosophy of mathematics (Ernest, 1991; Hersh, 1997; Lakatos, 

1976), has informed the characteristics of the nature of pure mathematics as a discipline I 

outlined in Figure 2. Humanistic approaches are unique in that they take as foundational 

the notion that mathematical knowledge is a human product. As Hersh (1997) wrote, “To 

the humanist, mathematics is ours—our tool, our plaything” (p. 60). I will also 

incorporate a discussion of traditional philosophies of mathematics (Platonism and 

formalism), which have typically served to proliferate the idea that mathematical 

knowledge is absolute and value-free. These philosophical positions have had a 

considerable amount of influence (typically perceived as negative) on the teaching and 
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learning of mathematics (Dossey, 1992; White-Fredette, 2010). They will provide a 

contrast to humanistic views.  

When considering mathematics as a discipline I conceive of two aspects of NOM 

that may be fruitful to distinguish: the nature of mathematical knowledge (NOMK) and 

the nature of mathematical inquiry (NOMI). NOMK refers to the nature of the knowledge 

that mathematician’s produce (for instance, is mathematical knowledge absolute or 

subject to revision?). NOMI refers to the practices that mathematicians engage in when 

creating knowledge (e.g. conjecturing, proving, communicating, etc.…) and the human 

experience of such activity (e.g. emotion). In Chapter One, I claimed that the boundaries 

between NOMI and NOMK are not always clear cut. Nevertheless, it may be important to 

make the distinction when possible as there has been confusion in science education 

when scholars have conflated the nature of scientific knowledge and scientific inquiry 

when discussing nature of science (Lederman & Lederman, 2014). The remainder of this 

chapter will generally follow the outline of Figure 2, first with a discussion of key 

features of NOMK before turning to NOMI. 

Mathematical Knowledge is Subject to Revision (NOMK) 

Humanistic philosophers work from the simple assumption that mathematics is a 

human activity and product. Thus mathematics necessarily influences and is influenced 

by human culture (Hersh, 1997). As a human product, mathematical knowledge is 

necessarily imperfect, fallible, and subject to revision (Ernest, 1991). Imre Lakatos is 

typically credited with the fallibilist view of mathematical knowledge (Kitcher, 1983). 
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Lakatos’s (1976) Proofs and Refutations is a classroom narrative in which the instructor 

and students’ discussions parallel the historical-conceptual development of an Eulerian 

conjecture as carried out by mathematicians such as Euler, Cauchy, Lhuilier, etc.… 

Through the story told in Proofs and Refutations, Lakatos demonstrates the fallible, 

revisionary nature of mathematical knowledge—as counterexamples are found to what 

are believed to be solid proofs and theorems, mathematics grows and changes. This view 

contrasts more traditional views such as Platonism and formalism. 

Platonism. 

The Platonic view of mathematical knowledge is one of the most traditional and 

widespread (Hersh, 1997). According to Dossey (1992), “Plato took the position that the 

objects of mathematics had an existence of their own, beyond the mind, in the external 

world” (p. 40)3. Brown (2008), a modern Platonist, wrote “Mathematical objects are 

perfectly real and exist independently of us” (p. 12), and we gain access to these objects 

through “the mind’s eye” (p. 14). If mathematical objects are conceived to have a 

transcendental existence, then mathematical truth exists independently of humans and 

awaits human discovery. Although a standard objection against Platonism is the problem 

of how humans access the immaterial realm of mathematics (Ernest, 1991; Hersh, 1997), 

I claim the Platonic position has fallen out of favor with modern philosophers primarily 

because such a position “violate[s] the empiricism of modern science” (Hersh, 1997, p. 

12). Modern philosophers seek to explain mathematics without appealing to a belief in 

                                                 
3 Note that under the Platonic position, mathematical knowledge is necessarily free of cultural influence. 
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God (Pair, 2015). When we can no longer make that appeal, and we abandon Platonism, 

we lose our ability to assume that mathematical knowledge is timeless and objectively 

true.  

 The Euclidean (deductivist) paradigm. 

The Platonic perspective formed the foundation of the Euclidean paradigm that 

has dominated mathematics for 2,500 years (Ernest, 1991). This view is that humans can 

arrive at certain mathematical truth by following the deductive process. A few self-

evident truths called postulates are assumed along with some definitions of mathematical 

terms. Then, beginning from these postulates and definitions, one can proceed by logical 

deduction to arrive at other certain truths. But mathematicians eventually found they 

could create new bodies of useful mathematical knowledge, non-Euclidean geometries, 

by withholding Euclid’s assumption about parallel lines (Ernest, 1991). Thus, what were 

considered postulates could no longer be considered obvious truths, as a different “truth” 

could be arrived at when one began with a different set of assumptions. According to 

Hersh (1997), “Geometry served from the time of Plato as proof that certainty is possible 

in human knowledge…. Loss of certainty in geometry threatened loss of all certainty” (p. 

136). Mathematicians responded to this loss of certainty by attempting to ground the 

foundation of mathematics in logic, arithmetic or set theory, but these attempts led to 

contradictions (Hersh, 1997). Formalism, the attempt “to characterize mathematical ideas 

in terms of formal axiomatic systems” (Dossey, 1992, p. 41) emerged in response to these 

conundrums.  
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Formalism. 

 Under the formalist paradigm, mathematics begins with a collection of formal 

axioms and definitions. From these axioms and definitions theorems are logically 

deduced. Perhaps the key difference between formalism and the Euclidean paradigm is 

the replacement of the notion of postulate with the term axiom (although the terms are 

often conflated). In contrast to a postulate, which is believed to be obviously true, an 

axiom is not necessarily true or false, but a starting point. If we adopt Axioms X, Y, Z we 

arrive at one branch of mathematics; or we can adopt Axioms W, X, Y and arrive at a 

different branch. Under formalism, neither branch of mathematics is truer than the other. 

In describing today’s formalist, Hersh (1997) wrote,   

For him, all mathematics, from arithmetic on up, is a game of logical deduction. 

He defines mathematics as the science of rigorous proof. […] All mathematicians 

can say is whether the theorem follows logically from the axioms. Mathematical 

theorems have no content; they’re not about anything. On the other hand, they’re 

absolutely free of doubt or error, because a rigorous proof has no gaps or 

loopholes. (p. 163)  

So in a sense, formalism allows the mathematician to regain a sense of absolute certainty. 

But Ernest (1991) argued that it is impossible for formalism (or any deductivist 

paradigm) to serve as a means of arriving at absolute truth in mathematics. 

Mathematical truth ultimately depends on an irreducible set of assumptions, 

which are adopted without demonstration. But to qualify as true knowledge, the 
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assumptions require a warrant for their assertion. There is no valid warrant for 

mathematical knowledge other than demonstration or proof. Therefore the 

assumptions are beliefs, not knowledge, and remain open to challenge, and thus to 

doubt. (p. 14) 

Hersh (1997) noted that while formalism may be the official view, and dominant in 

mathematics textbooks, it is problematic in practice.  

Indeed, formalism contradicts ordinary mathematical experience. Every school 

teacher talks about ‘facts of arithmetic’ or ‘facts of geometry.’ In high school the 

Pythagorean theorem and the prime factorization theorem are learned as true 

statements about right triangles or about natural numbers. Yet the formalist says 

any talk of facts or truth is incorrect. (p. 163) 

Hersh (1997) claimed that the working mathematician is caught between 

Platonism and formalism. “[W]hen he is doing mathematics, he is convinced that he is 

dealing with an objective reality… But then, when challenged to give a philosophical 

account of this reality, he finds it easiest to pretend that he does not believe in it after all” 

(p. 11). Perhaps Platonism and formalism continue to have influence in mathematics 

because people are not aware there is an alternative to these views. Hersh (1997) wrote, 

“To abandon both, we must abandon absolute certainty, and develop a philosophy faithful 

to mathematical experience” (p. 43).  

Both Platonism and formalism (or a melding of the two) perpetuate the absolutist 

view that mathematical knowledge “consists of certain and unchallengeable truths” 
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(Ernest, 1991, p. 7). Humanists adopt the fallibilist view: mathematics is an imperfect 

human activity, and so mathematical knowledge is subject to revision. According to 

humanistic philosophers, we need not hold onto the idea that mathematical knowledge is 

absolutely certain, or that mathematics is restricted to axioms, definitions, and proof. 

Hersh (1997) noted, “Mathematical knowledge isn’t infallible. Like science, mathematics 

can advance by making mistakes, correcting and recorrecting them” (p.22). Lakatos’s 

(1976) Proofs and Refutations highlighted the way mathematical knowledge can be 

revised over time as mathematicians find new counterexamples to established proofs 

(even proofs that were widely regarded as correct may be eventually be refuted). As 

Hersh (1997) noted, “For two millennia, mathematicians and philosophers accepted 

reasoning that they later rejected. Can we be sure that we, unlike our predecessors, are 

not overlooking big gaps? We can’t. Our mathematics can’t be certain” (p. 45).  

Fallibilism within mathematics education. 

Within mathematics education, scholars have called for a reform of school 

mathematics to align with the fallibilist view. Sometimes the fallibilist view is implicit in 

reform documents such as NCTM’s (1989) standards (Toumasis, 1997). Other times the 

fallibilist view is passionately articulated by mathematics education scholars (Ball, 1988; 

Burton, 1995; Lampert, 1990). Burton (1995) noted that if we consider mathematics to 

consist of a body of absolute truths then “the purpose of education is to convey [the 

truths] into the heads of learners” (p. 276). When mathematics is presented as 

“information which should not be questioned” (p. 276), some learners may perceive that 
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mathematics is a subject that only a few people have the ability to understand. Thus an 

absolutist conception of the nature of mathematics, in addition to being philosophically 

indefensible (Ernest, 1991; Hersh, 1997), also disempowers learners who do not 

immediately perceive the “truth” of what the teacher is trying to convey in the classroom. 

Burton (1995) advocated for a humanist/feminist view of mathematical knowledge in 

school, claiming that “Re-telling mathematics, both in terms of context and person-ness, 

would consequently demystify and therefore seem to offer opportunities for greater 

inclusivity” (p. 280).  

We have some empirical evidence related to the influence of teachers’ fallibilist 

or absolutist views on mathematics instruction, but as Thompson (1992) noted, “Very 

few cases of teachers with an informed historical and philosophical perspective of 

mathematics have been documented in the literature” (p. 141). Lerman (1990) conducted 

a study with four student teachers, two who held absolutist views, and two who held 

fallibilist views. After watching a video extract from a secondary mathematics lesson, 

“the two student teachers who were the most ‘absolutist’ felt that the teacher in the 

extract was not directing the students enough and was too open, whereas the most 

‘fallibilist’ thought she was not open enough, and was too directed” (p. 59).  

Beswick (2012) conducted case studies with two mathematics teachers, 

incorporating Ernest’s (1989) three categories of teacher beliefs about mathematics: 

instrumentalist, Platonic, and problem-solving. The instrumentalist view is that 

mathematics consists of isolated rules; the Platonic that mathematics is discoverable body 
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of absolute knowledge; and the problem-solving view is that mathematics is a dynamic 

body of knowledge created by humans (similar to the fallibilist view). Beswick (2012) 

sought to determine if teachers could hold disparate views of school mathematics and the 

discipline of mathematics, understand how these disparities might arise, and consider 

what implications they held for practice. Sally, an experienced secondary teacher, 

possessed a problem solving view of school mathematics and a Platonic view of the 

discipline. Her problem solving view was likely a result of the influence of the reform 

agenda, particularly during her three years as a Senior Curriculum Officer for her district. 

It appears she rarely reflected on mathematics as a discipline, since she had been a school 

teacher for 18 years. Sally’s teaching practice was influenced by her problem solving 

view of school mathematics rather than her Platonic perspective of the discipline. 

Jennifer, a novice middle grades teacher, possessed an instrumentalist/Platonic view of 

mathematics. Although she tried to incorporate student-centered teaching approaches in 

her classroom, “[s]he appeared to be struggling to reconcile her predominantly Platonist 

beliefs about the nature of mathematics with a desire to teach mathematics consistently 

with a problem solving perspective” (p. 143). Beswick noted that Jennifer had 

participated in some professional learning that “appears to have been effective in 

inspiring her to try different approaches to teaching but not to have addressed her beliefs 

about what mathematics is; hence her conflict” (p. 144). 

Based on the studies of Lerman (1990) and Beswick (2012) we cannot draw 

strong conclusions about the relationship between teachers’ (absolutist/fallibilist) views 
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of mathematics and their teaching practice. In Lerman’s study, there were clear 

distinctions between the ways teachers with absolutist/fallibilist views interpreted 

teaching; the case of Jennifer (Beswick, 2012) corroborates this finding, being another 

instance of a teacher with absolutist views tending to prefer lecture-centered instruction. 

However the case of Sally (Beswick, 2012) seems to imply that it is possible for a teacher 

to buy into the reform movement’s implicit fallibilist message for school mathematics, 

while still holding a Platonic view of mathematical knowledge. More research is needed 

to understand the interactions between a teacher’s views of school mathematics, the 

discipline of mathematics, and teaching practice. 

Critics of fallibilism. 

It is in some sense revolutionary to adopt a fallibilist view of mathematical 

knowledge within the mathematics classroom. After all, are we not absolutely certain that 

2 + 2 = 4?4 Is this not a truth that is beyond human experience? Although 

acknowledging that mathematical knowledge is subject to revision in the discipline, de 

Villiers (2004) critiqued fallibilism as a philosophy of school mathematics. 

Undeniably, our mathematical results, once proven correctly (though perhaps 

subject to later revision), are still the most certain of all human knowledge. I am 

definitely (several orders of magnitude!) more certain of the universal validity of 

                                                 
4 Of course, when considering the set of integers {0, 1, 2} under the operation of addition modulo 3, we 

know that 2 + 2 = 1. Ernest (1991) discussed the crucial roles language and convention plays in the 

development of mathematical knowledge. Hersh (1997) distinguished between number as adjective and 

number as noun to explain why mathematical knowledge appears absolute (but really is not). 
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the Pythagorean theorem in the plane, than I am about whether the sun will rise 

tomorrow. Even if the earth were suddenly to be destroyed tomorrow, this would 

not alter the theorem’s validity elsewhere in the universe. It is misleading, 

therefore, and not in the best educational interests of our students, to deny the 

existence of this extremely high level of certainty in mathematics. (p. 409) 

This passage reminds me of a quote by Lakatos (1962), “Why not honestly admit 

mathematical fallibility, and try to defend the dignity of fallible knowledge from cynical 

skepticism[?]” (p.184). It is not harmful to teach students to have a high degree of 

certainty in their mathematical knowledge. The danger comes when we expect students to 

accept mathematical knowledge without understanding (or risk failing the course). We 

must treat mathematical knowledge in school as dynamic to guard against the trend that 

“Knowing mathematics in school [is] having a set of unexamined beliefs” (Lampert, 

1990, p. 154). For the active research mathematician, her certainty may increase over 

time as she considers the mathematical evidence. Students must be given the opportunity 

to develop certainty in the same manner instead of being forced to memorize absolutely 

certain “knowledge.”  

Mathematical Knowledge is Socially Validated (NOMK) 

Philosophers presenting a humanistic view of mathematics (e.g. Ernest, 1991; 

Hersh, 1997; Lakatos, 1976; Tymoczko, 1988) are frequently cited and have been 

influential in mathematics education (e.g. Ball, 1988; Boaler, 2016; Komatsu, 2016; 

Lampert, 1990; Larsen & Zandieh, 2008; Weber, Inglis, Mejia-Ramos, 2014). A key 
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feature of humanistic philosophy that finds its way into the classroom is the notion that 

mathematical knowledge is socially validated. 

Hersh (1997), an academic mathematician, emphasized the importance of proof in 

the social validation of knowledge. Hersh noted that for mathematicians, the primary 

purpose of proof is to convince other mathematicians that a claim is true (Hersh, 1993). 

But the truth of the statement is not within the proof itself, but in the refereeing. Hersh 

(1997) claimed, “What mathematicians at large sanction and accept is correct 

mathematics” (p. 50). Furthermore, “There are different versions of proof or rigor, 

depending on time, place, and other things” (p. 22). Using data from an interview study 

with mathematicians, Weber (2008) noted that mathematicians validated proofs 

differently depending if the proof was supposedly written by a student or by a 

professional mathematician. Thus mathematicians apply different standards depending on 

the community in which a proof is intended. Weber (2008) claimed that it may be 

valuable for students “to appreciate the social functions of proof in helping mathematical 

communities understand why certain theorems are true” (p. 452). How might students 

come to understand the social function of proof and the socially validated nature of 

mathematical knowledge? Although we do not have much research in this area, I propose 

that it may be valuable for students to be given some authority to judge what is correct 

through classroom discussions, and to negotiate standards of rigor and proof (cf. Ko, Yee, 

Bleiler-Baxter, & Boyle, 2016). 
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Ernest has described in detail the general process by which mathematical 

knowledge is socially validated in the discipline of mathematics. In his Philosophy of 

Mathematics Education (1991) Ernest presented his social constructivist philosophy of 

mathematics, a philosophy grounded in Lakatos’s work. Ernest contended that 

mathematical knowledge is created through a subjective/objective cycle. Individuals 

subjectively create knowledge, and it is validated inter-subjectively by other 

mathematicians so that it becomes objective knowledge accepted by wider communities 

(perhaps through publication). This objective knowledge can then inspire more individual 

thought as it is subjectively reconstructed, and this may lead to further subjective 

creations, which may then in turn become objective taken-as-shared knowledge. Because 

of the cyclic and social nature of this process, objective knowledge is seen as tentative 

and subject to revision.  

Mathematics students engaged in the social validation of knowledge. 

We see an example of Ernest’s cycle of knowledge construction in Deborah Ball’s 

(1993) third grade classroom. Ball’s teaching was directly influenced by Lakatos’s 

philosophy (see Ball, 1988). The students in her class were often engaged in discussing, 

conjecturing, formulating working definitions of mathematical concepts, or justifying 

their reasoning to others. One day a boy named Sean said that he was thinking about the 

number six. He reasoned the number six is both even and odd because it can be broken up 

into three groups of two; two is even, but three is odd. Thus six is odd (since it is made up 

of an odd number of groups of two). Through the lens of Ernest’s cycle of knowledge 
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construction we perceive Sean as having constructed subjective knowledge. The other 

students then attempted to refute Sean’s claim, barring it from objective status. For 

instance, Mei claimed that if six is even and odd, then there will be countless other odd 

numbers that are both even and odd, including ten. Ultimately, Sean’s idea does 

contribute to the objective knowledge of the community. Ball explains to the class that 

Sean has discovered a new type of number. Sean provides the definition for “Sean 

numbers,” numbers that can be formed using an odd number of groups of two. For the 

next several days in class students studied the properties of Sean numbers (e.g. the sum of 

four consecutive integers is always a Sean number.). At this stage the notion of Sean 

number had been accepted as objective knowledge by the classroom community. 

Furthermore the knowledge was subjectively reconstructed by the students and led to the 

refinement and growth of what was objective, taken-as-shared. 

Magdalene Lampert was one of Ball’s mentors, serving on her dissertation 

committee (Ball, 1988). She was also influenced by Lakatos’s philosophy5, and students 

in her fifth grade classroom were collectively responsible for the validation of 

mathematical knowledge. Lampert (1990) explicitly addressed how humanistic 

philosophy influenced her classroom practice, and she provided an existence proof that 

fifth grade students can engage in what she called authentic mathematical practices. 

Lampert described mathematics as a social process of conscious guessing, conjecturing, 

refuting, and generalizing where “reasoning and mathematical argument—not the teacher 

                                                 
5 Lampert (1990) also cites the influence of Póyla (1954). 
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or the textbook—are the primary source of an idea’s legitimacy” (p. 34).  Lampert 

showed it is possible for fifth grade students to hypothesize, argue for the legitimacy of 

their hypotheses, and develop acceptable norms for critiquing the reasoning of others and 

revising their own ideas. Lampert claimed “that the students had learned to regard 

themselves as a mathematical community of discourse, capable of ascertaining the 

legitimacy of any member’s assertions using a mathematical form of argument” (p. 42). 

Lampert’s role as a teacher was to provide a model of a mathematical expert, introduce 

students to tools and conventions, and “follow students’ arguments as they wander 

around in various mathematical terrain and muster evidence as appropriate to support or 

challenge their assertions, and then support students as they attempt to do the same thing 

with one another’s assertions” (p. 41). I believe Lampert’s work (along with Ball’s) 

provides insight into what classrooms might be like when a teacher possesses what 

Thompson (1992) called “an informed historical and philosophical perspective of 

mathematics” (p. 141). It is in such classrooms that students are most likely to experience 

and understand the socially validated nature of mathematical knowledge. 

Lampert (1990) inferred that the students in her class viewed mathematics 

differently than students in traditional classes. Yackel and Rasmussen (2002) made a 

similar claim about students in an inquiry-oriented undergraduate differential equations 

course. They wrote that some of the students took “seriously the obligations of 

developing personally-meaningful solutions, of listening to and attempting to make sense 

of the thinking of others, and of offering explanations and justifications of their 
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mathematical thinking” (p. 324). In other words, the students were engaged in the social 

validation of mathematical knowledge.  

The normative patterns of interaction serve to sustain the expectations and 

obligations on which they are based and thus to sustain individual participants’ 

beliefs about their role and about what constitutes mathematical activity in this 

classroom. (p. 324)  

Are the students in the classrooms described by Lampert (1990) and Yackel and 

Rasmussen (2002) developing a view of what constitutes mathematical activity in the 

discipline, or a view about “what constitutes mathematical activity in this classroom” 

(Yackel & Rasmussen, 2002, p. 324)? [emphasis added] That is, are students developing 

disparate notions of mathematics as a school subject versus mathematics as a discipline 

(cf. Beswick, 2012)? 

Research in science education has found that “doing science” will not necessarily 

lead to students’ understanding of the nature of scientific knowledge within the discipline 

(Bell, Blair, Crawford, & Lederman, 2003). The outcome may be different for 

mathematics instruction, but we need research to investigate this question. Perhaps if 

students are engaged in the social-validation of mathematical knowledge for a significant 

portion of their schooling then they may come to understand that mathematical 

knowledge is socially validated both in their own classrooms and within the discipline. 
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Proofs are Bearers of Mathematical Knowledge (NOMK) 

Central to humanistic philosophy of mathematics is the distinction between 

descriptive and prescriptive philosophy (Ernest, 1991). Philosophy of mathematics 

traditionally was driven by the notion of what mathematics ought to be. For a Platonist or 

formalist, mathematics is (or should be) the most certain and absolute of human 

knowledge; thus the purpose of philosophy of mathematics is to justify its absolute 

nature. For instance, even if most published mathematical proofs contain gaps in logic 

(Ernest, 1991; Hersh, 1997), proof ought (from a prescriptive perspective) to be a 

rigorous deductive argument from accepted premises to conclusion. 

Humanistic philosophers work from a descriptive perspective, basing their 

philosophy on what mathematicians actually do, rather than an ideal vision. Thus 

humanistic philosophy of mathematics is distinct from traditional philosophy because it 

incorporates sociological, anthropological, or historic studies of mathematics. Indeed the 

classroom discussions in Lakatos’s (1976) Proof and Refutations paralleled an account of 

the historical events surrounding the development of proof of an Eulerian conjecture. 

Hersh (1997) wrote “A humanist sees mathematics as a social-cultural-historic activity. 

In that case it’s clear that one can actually look, go to mathematical life and see how 

proof and intuition and certainty are seen or not seen there” (p. 48). The humanistic 

emphasis has relevance not only to philosophers, but also for mathematics education 

scholars who desire to understand the practices of mathematicians so that implications 

may be drawn to inform the teaching and learning of mathematics.  
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In his interviews with professional mathematicians, Weber (2010) found that 

mathematicians read proofs in order to learn new methods and techniques that could be 

used in their own work, in essence, filling their mathematical toolbox. It seems the 

implication for mathematics education is that it can be valuable for students to read and 

comprehend proofs, as they will learn new mathematical methods. Hanna & Barbeau 

(2008) describe a similar notion, that proofs are bearers of mathematical knowledge (Rav, 

1999). Hanna and Barbeau (2008) noted that students can fill their mathematical toolbox, 

learning methods as they work to comprehend unfamiliar proofs. As Weber (2010) noted, 

mathematicians read proofs to gain insight into methods that may be valuable to use in 

their own work.  

Pair and Bleiler (2015) reported that undergraduate students in a transition-to-

proofs course found value in reading classmate’s proofs in order to get new ideas to aid in 

their own proof construction. They described an instructional activity in the course called 

the “critiquing activity” during which students read several arguments for the same 

mathematical claim and identified the strengths and weaknesses of the arguments. One 

student, Krissy, wrote, “Every time we have engaged in this exercise, I have found new 

ideas and techniques for proof-writing that I eagerly attempted to use in my own proofs” 

(p. 14). This student reflection demonstrates that at least in an undergraduate transition-

to-proof course, proofs can be bearers of mathematical knowledge, providing students 

with the opportunity to acquire new mathematical techniques. Undergraduates should be 

aware that a key function of proof for mathematicians is the transmission of methods 
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(Weber, 2010). Students should be encouraged, when reading proofs, to get ideas for 

methods to incorporate in their own proofs. Students may also benefit from learning 

about the other roles proof serves for the discipline of mathematics (de Villiers, 1990).   

Informal Mathematical Work is the Foundation of Formal Knowledge (NOMK) 

Within mathematics education research, researchers have identified students who 

view mathematics as a collection of meaningless rules and procedures rather than a 

logical subject that can be made sense of (Boaler, 2000; Erlwanger, 1978). This neo-

formalist view is likely due to a teacher’s “emphasis on the manipulation of symbols 

whose meanings are rarely addressed” (Thompson, 1992, p. 127). An allegiance to 

formalism may also result in the delegitimization and rejection of informal mathematics. 

For instance, Brown (1996) described a formalist mathematics instructor in a graduate 

course. This instructor explained that the only valuable objects in mathematics were the 

formalisms: axioms, definitions, and logically deduced theorems. During the writing of a 

proof at the board, he became temporarily stumped and resorted to draw a diagram. After 

using the diagram to obtain the insight needed to finish the proof, the teacher hurriedly 

erased his diagram and resumed the formalist presentation. According to Hersh, the “grip 

of formalism” (p. 186) prevents mathematicians from accepting visuals or diagrams in or 

as proofs. Also the work that went into the creation of axioms and theorems is hidden 

behind the formal presentation. Lakatos (1976) wrote, 

This [deductivist] style starts with a painstakingly stated list of axioms, lemmas 

and/or definitions. The axioms and definitions frequently look artificial and 
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mystifyingly complicated. One is never told how these complications arose. [...] 

In the deductivist style, all propositions are true and all inferences valid. 

Mathematics is presented as an ever increasing set of eternal, immutable truths. 

(p.142) 

Axioms may be presented to students as having a divine status that is not to be 

questioned (Brown, 1996). From a humanistic perspective, students should have the 

opportunity to understand the concepts behind axioms and why those axioms were 

formulated. Hersh (1991) elaborated on the importance of informal mathematical work 

when he claimed that mathematics has a front and a back. The front is what is typically 

seen, in journals, and in textbooks (e.g. axioms, definitions, theorems, proofs). The front 

of mathematics is the polished, finished form of mathematics. But just as important and 

meaningful is the behind the scenes work, the creative emotional activity that serves as 

the basis for formal mathematical knowledge. Hersh noted that mathematics, being a 

human activity, is influenced by economic and social pressures. He explained that 

mathematics as an institution benefits from a presentation that hides the human struggle.  

The standard exposition purges mathematics of the personal, the controversial, the 

tentative, leaving little trace of humanity in the creator or the consumer. […] If 

mathematics were presented in the style in which it’s created, few would believe 

its universality, unity, certainty, or objectivity. These myths support the institution 

of mathematics. For mathematics is not only an art and a science, but also an 

institution, with budgets, administrations, rank, status, awards, and grants. (p. 38)  
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Students within a mathematics classroom, especially an undergraduate setting 

should understand the nature of the informal work that ultimately leads to polished 

theorems. Lakatos (1976) claimed mathematics is a quasi-empirical discipline. De 

Villiers (2004) summarized the notion of quasi-empiricism:  

[T]he objects in mathematics, though largely abstract and imaginary, can be 

subjected to empirical testing much as scientific theories are. Quasi-empiricism 

will, therefore, refer here to all non-deductive methods involving experimental, 

intuitive, inductive, or analogical reasoning. (p. 398) 

Lakatos (1976) showed how quasi-empirical methods (e.g. using a 

counterexample to refute a theorem statement), are implemented in practice and 

contribute to the development of mathematical knowledge. Mathematicians often use 

examples to look for patterns and make conjectures (de Villiers, 2004); it is this informal 

work that ultimately leads to the formal theorem. In interviews in which mathematicians 

were asked to determine if a proof was valid, Weber (2008) found that mathematicians 

used inductive examples to make sense of deductive inferences within a proof. Students 

should understand that mathematics is not only axioms, definitions and the following of 

deductive steps. Inductive methods also play a crucial role in creating (Lakatos, 1976) 

and validating (Weber, 2008) mathematical knowledge.  

Mathematical Inquiry can be Creative, Emotional, and Collaborative (NOMI) 

Note that in discussing informal knowledge, I have described both the nature of 

mathematical knowledge (formal knowledge is dependent upon informal work) but have 
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also touched on aspects of the informal practices of mathematical inquiry (e.g. inductive 

methods). The rest of this section will focus on characteristics of the nature of 

mathematical inquiry (NOMI).  

The mathematics education scholar Leone Burton (1999) wrote, “you cannot 

separate the mathematics from the people who produce it” (p. 134). Burton (1999) 

interviewed 35 female and 35 male research mathematicians. She focused on the 

participants’ “‘life history’ as mathematicians, especially their feelings about the nature 

of knowing mathematics, and how they come to know” (p. 122). Burton found that 

knowing mathematics was related not only to rationality and logic, but also emotion. 

So, coming to know, for my participants, was represented by feelings, the 

powerful sense of Aha! which is what holds them in mathematics […] Whether 

your knowing is robust, or not, for the moment that you know that you know the 

power of that knowledge lies in the feelings it evokes not externally in the 

mathematics [...] There is a chasm between this perspective on coming to know, 

and the transmission pedagogy of the classroom dependent as it is on acquiring 

the knowledge of the expert. (p. 135) 

Burton noted that the feelings described by the mathematicians (e.g. euphoria, 

excitement) contrast sharply with the descriptions often given by students (e.g. boring, 

frustrating, anxiety-causing). She wrote that mathematicians “gain pleasure and 

satisfaction from the feelings which are associated with knowing” (p. 134). Emotion is 

interconnected with conviction and can drive mathematical work. As Pólya (1954) noted, 
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one is often convinced that a mathematical claim is true before one begins a proof. 

Burton claimed that this conviction is a feeling that leads a mathematician to persevere: 

“because of your feelings you remain convinced that a path is there” (p. 134). Certainly a 

goal is for every mathematics student to have the opportunity to experience these human 

aspects of mathematics and understand that the work of the pure mathematician involves 

creativity, collaboration, and intuition. 

Each Sub-discipline of Mathematics has Different Norms, Values, and Standards 

(NOMI) 

Burton (1999), in her interviews with mathematicians from diverse sub-

disciplines, found that while there are similarities (e.g. collaboration, pressure to publish) 

across disciplines, each sub-discipline had its own culture. In his interviews with 

mathematicians, Weber (2008) found that proof techniques are context-dependent, i.e. 

proof techniques are valuable within certain domains of mathematics (e.g. algebra, graph 

theory, real analysis). He recommended that instead of viewing proof techniques as 

context-free, instructors should recognize that certain proof validation strategies “must be 

learned in the context of studying particular mathematical domains” (p. 452).   

Summary of Ideas Related to the Nature of Pure Mathematics 

In terms of the nature of mathematical knowledge (NOMK) I have discussed that 

mathematical knowledge is subject to revision (Hersh, 1997; Lakatos, 1976), 

mathematical knowledge is socially validated (Ernest, 1991; Lakatos, 1976), proofs are 

bearers of mathematical knowledge (Hanna & Barbeau, 2008, Weber 2010), and informal 
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mathematical work is the foundation of formal knowledge (Hersh, 1991; Lakatos, 1976). 

In terms of the nature of mathematical inquiry (NOMI) I discussed that mathematical 

inquiry can involve collaboration and be creative and emotional (Burton, 1995, 1999, 

2002), and that there is diversity of mathematical practice across sub-disciplines of 

academic mathematics (Burton, 1998; Weber, 2008). 

Statistical and Applied Mathematics 

Steen (1988) broke the mathematical sciences into three component parts: 

statistical science, core mathematics, and applied mathematics. I believe students should 

understand the difference between these three types of mathematics. We have already 

discussed core or pure mathematics, and will here briefly describe statistical and applied 

mathematics. It is beyond my level of expertise to provide a full description of the nature 

of these types of mathematics. More work must be done beyond this dissertation study to 

adequately articulate goals for student and teacher understanding related to these forms of 

mathematics. 

Steen (1988) noted that “Statistical science investigates problems associated with 

uncertainty in the collection, analysis, and interpretation of data” (p. 612). And “Applied 

mathematics fits mathematical methods to the observations and theories of science. It is a 

principal conduit for scientific ideas to stimulate mathematical innovation and for 

mathematical tools to solve scientific problems” (p. 612). Statistics and mathematical 

modeling are becoming increasingly important in society, and citizens should understand 
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the nature of each in order to make informed decisions on matters in which these types of 

mathematics are applied.  

Mathematical Knowledge is Used to Shape Society, but cannot be Considered an 

Absolute Judge 

Mathematics is often applied in society but this application sometimes portrays 

mathematics in an absolutist way. Borba and Skovmose (1997) noted that when 

mathematics is seen as above humans and free of human influence that it can be used to 

shape society in the guise of a neutral mechanism. When we problematize a human 

situation the mathematical outcome is not the end of the story. Mathematics is only one 

of many features that should be considered when making societal decisions. As Borba 

and Skovmose (1997) put it, “the problem arises when one believes that by applying ‘a 

perfect body of knowledge’ to a problem one will have ‘the solution’” (p. 18). In my 

view, it is critical that we not make decisions contrary to human interests simply because 

it is mathematically optimal. 

Borba and Skovmose (1997) argued that pedagogy focused on correct answers 

and procedures will reinforce the absolutist ideology of mathematics. Teachers should not 

only be aware of the influence of this ideology, but challenge it with alternative 

pedagogies. Alrø & Skovmose (1996) claimed that one way to combat the ideology of 

certainty is to focus on students’ good reasons for their mathematical actions rather than 

on correcting their mistakes. Such pedagogies must emphasize discussion and context 

rather than consistently present students with situations for which there is one right 
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answer. Students should be aware that when applied, mathematics is not an impartial 

judge, and cannot be a final arbiter in societal decisions. 

Chapter Summary 

In this chapter I have described mathematics as a fundamental cultural activity. I 

have situated pure mathematics as one type of mathematics among many, with its own 

unique practices and form of knowledge. I have articulated some characteristics of 

mathematics as a cultural activity, especially pure mathematics in particular, to form an 

initial draft of a NOM framework. This initial draft was foundational to my subsequent 

dissertation study in which I immersed myself in doing mathematics in order to shed light 

on NOM and its teaching and learning. This initial framework was also refined through 

my dissertation study, the details of which are described subsequently in Chapter Three.  
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CHAPTER THREE: METHODOLOGY 

Purpose and Research Questions 

The purpose of my dissertation is to begin the work of “conceptualizing the 

construct” (Lederman & Lederman, 2014, p. 600) of the nature of mathematics as has 

been done with the nature of science in science education scholarship. I have begun the 

creation of a humanistic educational framework for the nature of mathematics (NOM), 

and drafted narratives that help to clarify and illuminate key features of NOM. Two broad 

questions, “What is the nature of mathematics?” and “What should students understand 

about the nature of mathematics?” were explored in the previous chapters. These broad 

questions are not limited to one type of mathematics, say pure or applied, and they are not 

limited to a specific student demographic. But for my dissertation study, I narrowed my 

focus to one type of mathematics, pure mathematics, and I focused on undergraduate 

students’ understanding the nature of pure mathematics within a transition-to-proof 

course. I sought to understand, “What is the nature of pure mathematics?” and “What 

should undergraduate students in a transition-to-proof course understand about the nature 

of pure mathematics?” To answer these questions I worked together with a research 

mathematician on an unsolved conjecture in graph theory, and I co-taught an 

undergraduate transition-to-proof course with another mathematics education scholar. In 

regard to the framework presented in Chapter Two, my aim with the dissertation was to 

further conceptualize and revise the second major category: the nature of pure 

mathematics as a discipline. 
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A Focus on Pure Mathematics and Undergraduates 

In this dissertation, I have done some work in reflecting on various types of 

mathematics and goals for students’ understanding of NOM at all grade levels. But 

during my dissertation study, I made efforts to narrow my focus to pure mathematics and 

undergraduates’ understanding of NOM. In Chapter One, I provided a personal rationale 

for why I focused on pure mathematics based on my academic background. I now 

provide additional rationale for this decision and also provide rationale for my decision to 

narrow my focus to undergraduates. 

It is widely known in mathematics education that the public has little idea what 

pure mathematicians do (Picker & Berry, 2000). Picker and Berry found that for school 

students, “mathematicians are essentially invisible” (p. 88) and that “Pupils believe that 

mathematicians do applications similar to those they have seen in their own mathematics 

classes, including arithmetic computation, area and perimeter, and measurement” (p. 88). 

Certainly, students do not come to have a realistic image of the practicing mathematician 

by completing school; I believe school portrays mathematics as something wholly 

different from the work of mathematicians. Jo Boaler (2016) wrote, 

This wide gulf between real mathematics and school mathematics is at the heart 

of the math problems we face in education. I strongly believe that if school math 

classrooms presented the true nature of the discipline, we would not have this 

nationwide dislike of math and widespread math underachievement. (pp. 22-23) 
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But, in order for school mathematics to present the “true nature of the discipline,” we 

need an explication of the discipline in a form that educators can understand.  

If we hope, as Rock and Shaw (2000) did, that children see “mathematics as a 

modern-day career choice” (p. 554) then much more work must be done so that people in 

general, but especially mathematics teachers, understand the work that mathematicians 

do. I believe the university must take the lead in teaching NOM if we are to see effects in 

primary and secondary schools. The university is where mathematics teachers are 

educated; I agree with Fried (2014) that those who are “mathematically educated must 

feel at home with mathematics, appreciate its power, and know it as a part of one’s 

culture” (p. 30). The conceptions of NOM that future teachers develop in the university 

will likely stay with them as they begin to teach, and will likely have an influence on 

their students’ understanding1. If NOM cannot be taught at the university, the home of 

disciplinary mathematics, then where can it be taught?  

Methodological Framework: Heuristic Inquiry 

The methodological framework that I chose for this study is called heuristic 

inquiry, which was coined by the humanistic psychologist Clark Moustakas. Heuristic is 

an adjective, defined by google as “enabling a person to discover or learn something for 

themselves.” I sought to understand what is the nature of pure mathematics (NOM2)? But 

                                                 
1 Thompson (1984) noted that more research is needed to understand how and if a teacher’s conception of 

mathematics influences the conceptions’ of the students. In Thompson (1990) she again reiterated that 

virtually no research has been conducted in this area. Although I presented a few related studies in Chapter 

Two (e.g. Beswick, 2012; Lerman, 1990), to my knowledge scholars in mathematics education still have 

yet to thoroughly investigate this issue. 
2 In subsequent sections of this chapter, NOM refers almost exclusively to the nature of pure mathematics. 
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of course, pure mathematics is what mathematicians do (Ernest, 1991; Hersh, 1997). As 

Courant and Robbins (1941) claimed in the introduction to their book What is 

Mathematics?: “For scholars and laymen alike it is not philosophy but active experience 

in mathematics itself that can alone answer the question: What is mathematics? (p. xix)” I 

reasoned that if I wanted to understand the nature of pure mathematics, then I must have 

experience doing pure mathematics.  

I decided that the core of my dissertation would be the documentation of and 

reflection on my own experience doing pure mathematics research in collaboration with 

an established research mathematician. Patton (2015) wrote that the core question of 

heuristic inquiry is “What is my experience of this phenomenon and the essential 

experience of others who also experience this phenomenon intensely?” (p. 118). In this 

light, heuristic inquiry seemed to be a perfect fit to study my experience doing pure 

mathematics.  

Context and Data Collection 

Heuristic inquiry is a self-study, and the inquiry “brings to the fore the personal 

experience and insights of the researcher” (Patton, 2015, p. 118). A key feature of 

heuristic inquiry is the concept of immersion:  

The researcher is alert to all possibilities for meaning and enters fully into life 

with others wherever the theme is being expressed or talked about—in public 

settings, in social contexts, or in professional meetings. Virtually anything 

connected with the research question becomes raw material for immersion, for 
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staying with, and for maintaining a sustained focus and concentration. 

(Moustakas, 1990, p. 28) 

In order to honor the immersive spirit of heuristic inquiry I decided to collect a large 

amount of qualitative data in order to capture my experience of mathematics wherever it 

emerged over the course of one university semester. All the sources of data that were 

collected and analyzed in this study are listed in Figure 3 and then subsequently 

described. 

 

Mathematics Collaboration Data 

 Audio-recordings of discussions with mathematician 

 Hard copies of mathematical work (whiteboard photos 

and personal notebooks) 

Mathematics Course Data 

 Class materials (e.g. handouts, PowerPoint slides) 

 Audio recordings of whole class discussions 

 Audio recordings of discussions with co-instructor 

 Student homework, classwork, and exit tickets 

Journal Data 

 Journal in which the researcher reflected on his 

experiences doing mathematics, teaching mathematics, 

discussing NOM, and reading NOM literature  

Other Data 

 Informal Interviews 

 Personal Audio / Other Photos / Documents / Notes 

Figure 3: Data Sources 
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Mathematics Collaboration Data 

To deeply understand the nature of mathematics, I knew it was necessary for me 

to engage deeply in mathematical inquiry. To that end I sought collaboration with a graph 

theorist and we worked together on an unsolved conjecture. The graph theorist, whom I 

will refer to as Dr. Combinatorial, is a full professor and active research mathematician. I 

recorded all of our conversations in which we discussed the conjecture. I also kept hard 

copies or photos of all of our mathematical work. For instance, Figure 4 is a picture from 

the whiteboard in Dr. Combinatorial’s office. It shows many of the diagrams we drew for 

ourselves in order to communicate mathematical ideas to each other. 

 

Figure 4. Mathematical Work on Dr. Combinatorial’s White Board 
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Much of my mathematical work on the unsolved conjecture was done on my own 

time, and I kept a few mathematical notebooks in which I worked on the conjecture. 

These notebooks document my mathematical work and reflections. Throughout the 

process of working on the conjecture, I was not only doing mathematics, but I was 

constantly making an effort to reflect on my own experience as it was related to my 

research questions. The mathematics notebooks are filled with notes documenting my 

reflections on NOM in which I consider what students may benefit from understanding 

about NOMI and NOMK. For example, in the excerpt from my mathematics notebook 

shown below in Figure 5, there is a note, “I remembered Weber et al. 2014, sometimes 

trust an authority to discover or put forth effort into understanding it… If there are odd 

cycles, we must have a cycle of length 5?”  
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Figure 5. An Excerpt from a Mathematics Notebook 

That note references a mathematics education paper by Weber et al. (2014) in 

which the authors, drawing from interview studies with mathematicians, noted that 

sometimes mathematicians accept mathematical claims made by respected authorities 

without justifying those claims themselves or even reading a proof. As an educational 

implication, the authors claimed that undergraduate students may benefit from accepting 

the validity of an argument put forth by an authority and push themselves to make sense 
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of non-intuitive deductions within the argument. In my own case, I was unsure of a claim 

in Dr. Combinatorial’s unpublished paper. I reminded myself of the advice of Weber and 

colleagues, and I proceeded to try to make sense of the claim under the assumption that it 

was correct. The note is illustrative of my efforts to document my experience doing and 

reflecting on the nature of my own mathematical inquiry while also considering what 

may be valuable for undergraduate mathematics students to understand about the nature 

of mathematical inquiry and knowledge.  

Mathematics Course Data 

During this dissertation study I also co-taught a course required of undergraduate 

mathematics majors. The course is called “Foundations of Higher Mathematics” and is 

meant to serve as a transition course as students proceed from lower-level to upper-level 

mathematics coursework. The transition represents a shift from the traditional 

procedurally-based school mathematics to the work that more closely resembles that of 

pure mathematicians. Thus a key element of the course is teaching students about the role 

of conjectures, theorems, and proofs in the discipline of pure mathematics (i.e. teaching 

NOMI and NOMK). I co-taught this course with another mathematics education scholar, 

Dr. Amicable, who had designed the course and taught it for seven prior semesters. I fully 

took over teaching the last month of the semester as she had to take a leave of absence. 

The course was inquiry-based in nature and students were constantly working together to 

draft arguments, critique arguments, and discuss and debate mathematical ideas and proof 

writing techniques.  
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The data I gathered included audio recordings of discussions I had with the co-

instructor, audio of whole-class discussions, student homework, classwork, exit tickets, 

and all other class materials. Twenty three students from the course agreed to participate 

in my study. Dr. Amicable asked all of the students to decide which number type best 

captured their own personalities. See Appendix A for a description of Dr. Amicable and 

the undergraduate students along with their chosen number types, which I have chosen to 

be their pseudonyms in this study. I chose the number type Surreal as my own 

pseudonym. The students in the course had a variety of majors (e.g. mathematics 

education, industrial mathematics, aerospace, etc.…). These are also listed in the 

Appendix A if known. As an example of course data, Figure 6 is a photo of a poster that a 

small-group of students had produced and presented during one class session.  
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Figure 6: A Small Group’s Proof 

Journal Data 

A crucial feature of my data for this self-study is a personal journal that I kept in 

order to write and reflect about my daily experiences doing and teaching mathematics. 

My writings were particularly focused on documenting and reflecting on my experiences 

relevant to NOM and its teaching and learning. Sometimes these reflections were directly 

related to the data I was collecting in regard to the mathematics collaboration or the 
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mathematics course. For instance, consider the journal entry below which opens with a 

student’s exit ticket from class. 

---Has the math community changed over time when it comes to what counts as 

proof and what doesn’t? (Composite). 

Composite wrote that as her question today. I feel a mixture of helplessness and 

excitement. Excitement that I could design instruction so that Composite could 

understand that indeed the math community has evolved in this regard. But I am 

discouraged because I don’t see a way to disrupt the flow of Foundations of 

Higher Mathematics to make this possible. I imagine a future time when I am a 

faculty and I can design a lesson in which students critique proofs from 

mathematicians of different eras.  

Notice that in this journal entry I am excited a student is asking a question about NOM, 

and I am thinking about a possible instructional design so that I could teach the student 

that, yes, indeed standards of proof have evolved within the discipline of mathematics.  

The journal provided me a means to catalog meaningful events during data 

collection, and was used post data collection to identify critical NOM characteristics and 

corresponding narratives. It also served as an outlet for engaging in the concepts and 

processes of heuristic inquiry (Moustakas, 1990). For instance, one process of heuristic 

inquiry is self-dialogue: 

 One may enter into dialogue with the phenomenon, allowing the phenomenon to 

speak directly to one’s own experience, to be questioned by it. In this way, one is 
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able to encounter and examine it, to engage in a rhythmic flow with it—back and 

forth, again and again—until one has uncovered its multiple meanings” (p. 16).  

Here is an example of self-dialogue from my dissertation journal that was written after I 

worked through a proof of a well-known graph theory result after initially making a 

mistake: 

Skeptical Mathematician: What is this young mathematics education scholar think 

he is doing? He has just proven one of the most elementary results of graph 

theory. Clearly he does not have the knowledge or skill needed to conduct 

mathematical research or speak on the nature of mathematical knowledge. 

Me: Oh, I overheard you speaking about my work. Indeed you are justified in 

questioning my qualifications. There are many others more qualified than I to 

conduct mathematical research. But consider the mathematics student, learning 

mathematics for the first time. I wish to discover what aspects of the nature of 

mathematical knowledge they would consider fruitful. And I have something here 

in this excerpt. Mathematicians make mistakes. Mistakes are common in 

calculation. When we make a mistake, we may feel uneasy or puzzled. Such 

uneasiness can be a sign that we need to reconsider our mathematical work, and 

determine if we have made an error. It seems this might be valuable for the young 

elementary student as well as the undergraduate mathematics major just learning 

proof. 
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Other concepts central to heuristic inquiry which I sought to engage in were tacit 

knowing and intuition. During my study, I realized that the overall purpose of heuristic 

inquiry was what Sela-Smith (2002) called “a relentless inward focus” (p. 80). From my 

journal: “In essence I have decided that the unifying theme of heuristic inquiry is the 

relentless inward focus. Thus I try to articulate what is just barely perceptible within my 

consciousness.” When writing in my journal I always sought to bring to the surface and 

make explicit those thoughts and emotions what otherwise may have gone unnoticed.  

Other Data 

Informal Interviews. 

Another important source of data came from audio recordings of informal coffee-

shop style interviews that I conducted with persons whom I was interested in speaking to 

about NOM. These interviews generally consisted of conversations about NOM and 

interviewees’ opinions about what students should understand about NOM. Six people 

agreed to such interviews, and in some cases multiple interviews were conducted. Most 

notably are two mathematicians, Dr. Algebraic and Dr. Differential. When speaking to 

these mathematicians I was able to get feedback on my ideas about possible goals for 

students’ understanding of the nature of mathematics. Here is an example from an 

interview with Dr. Algebraic: 

Researcher: Do you think that it matters, say, for undergraduates to understand 

that mathematical knowledge is subject to revision? 
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Dr. Algebraic: I think it is. I wouldn’t say that isn’t. I wouldn’t say that the fate of 

nations hangs on them knowing that. But it would be a good thing for them to 

know that. I think it should be part of their undergraduate exposure to have that 

knowledge. I have had [graduate] students tell me that there has been no new 

mathematics in the last 300 years. In all seriousness tell me that.  

Researcher: Wow. 

Dr. Algebraic: Yeah it was kind of scary.  

Personal data. 

I collected other personal data to capture and document my experiences and 

reflections relevant to the nature of mathematics. Sometimes I made audio recordings 

with my iPhone to capture the ideas that were bouncing in my head while driving. Other 

times I would take notes on my iPhone, perhaps laying in my bed at night or at a social 

function, and wanting to capture emotions I was feeling or what I thought might be a 

significant NOM idea came to mind. Here are some examples: 

November 7, 2016 at 8:37pm 

I am sad. I thought I had made progress on the problem, but I still am at the same 

place… I have to make sense of Gallai’s theorem. 

November 14, 2016 at 7:51pm 

How is that for statistics? Trump for the win. Chainsaw videos. Email leaks at the 

last minute. “Trump protests sixth day in a row” is the headline on CNN. Children 

understand this mathematics. … Mathematics plays a part in the culture wars. 



80 

 

 

 

These quotations provide some insight into how I approached heuristic inquiry. 

Douglass and Moustakas (1985) wrote, “It is the focus on the human person in 

experience and that person’s reflective search, awareness, and discovery that constitutes 

the essential core of heuristic investigation” (p. 42). I sought to capture my experience of 

mathematics in whatever ways it entered into my consciousness. I wished to document 

my reflective search and discoveries. Consider one more example, the photo in Figure 7 

that I took while on an airplane on the way to a mathematics education workshop. 

Looking down I was fascinated with the geometric patterns I saw on the ground below. I 

could not help but reflect on the idea that mathematics shapes our world (Borba & 

Skovmose, 1997). As I was not sure which of my experiences would prove to provide me 

deep insight into the nature of mathematics, I documented as much of my experience as 

possible.  



81 

 

 

 

 

Figure 7: Mathematics Shapes Our World 

Data Analysis 

I collected a very large amount of data; and it was a challenge to organize and 

make sense of it in achieving my dissertation goals. I will provide a brief overview of my 

data analysis before going into greater detail in subsequent sections. Douglass & 

Moustakas (1985) noted that heuristic inquiry is a process but does not lend itself to a 

particular methodology: 

As a conceptual framework of human science, heuristics offers an attitude with 

which to approach research, but does not prescribe a methodology. […] It is the 

focus on the human person in experience and that person’s reflective search, 
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awareness, and discovery that constitutes the essential core of heuristic 

investigation. (p. 42) 

Although heuristic research does not prescribe a methodology, Moustakas (1990) did 

outline six phases of heuristic inquiry that he believed were crucial to the process: initial 

engagement, immersion, incubation, illumination, explication, and creative synthesis. I 

provide a brief overview of those phases as they were related to my work.   

Overview of the Analysis Process in Terms of the Phases of Heuristic Inquiry 

Initial engagement. 

Initial engagement (Moustakas, 1990) refers to the beginning stages of the 

research process during which the researcher identifies a personally important problem or 

research question. For my inquiry, this included the initial review of the literature and 

also the early stages of data collection. Moustakas wrote, 

The question lingers within the researcher and awaits the disciplined commitment 

that will reveal its underlying meanings. The engagement or encountering of a 

question that holds personal powers is a process that requires inner receptiveness, 

a willingness to enter fully into the theme, and to discover from within the 

spectrum of life experiences that will clarify and expand knowledge of the topic 

and illuminate the terms of the question. (p. 27) 

Immersion and illumination. 

The process of initial engagement (Moustakas, 1990) continued into the early 

stages of my data collection. Gradually I became immersed in mathematics as I 
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collaborated with a research mathematician, taught an undergraduate mathematics course, 

and reflected deeply on these experiences in my journal. Moustakas (1990) wrote, "the 

researcher lives the question in waking, sleeping, and even dream states. Everything in 

his or her life becomes crystallized around the question" (p. 28). Consider this excerpt 

from my research journal: 

Pretty sure I had a relevant dream about the nature of mathematics. Someone was 

presenting to me the solution to a mathematics problem. The problem involved a 

diagram. This person had partitioned off the diagram, with one important section. 

This important section was key to their argument. But it only became apparent 

why this was so important when they explained that there was a unit square such 

that this subsection could be partitioned into exactly a whole number of unit 

squares. Once that was explained I could visualize it perfectly… [continued 

below]  

By immersing myself in my research questions I was able to achieve insight as key 

features of the nature of mathematics were illuminated. Moustakas (1990) wrote that 

when "the researcher is open and receptive to tacit knowledge and intuition […] in a 

receptive mind without conscious striving or concentration, the insight or modification 

occurs" (p. 29). Consider the journal entry continued below after recounting my dream: 

[continued from above]… In mathematics the same problem likely exists. 

Mathematicians come up with ideas for proofs, but the final proof does not 

explain the insight. Why did you decide to partition the graph in this manner? 
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Was there some reason you thought it would be valuable to approach the proof 

this way? Proof is viewed just as a convincing argument; hence the intuition that 

led to the proof is believed to be not worth mentioning. Sometimes it is difficult to 

comprehend arguments or see their significance because of this. … [continued 

below] 

Heuristic inquiry is a very emotional process aimed at bringing to consciousness 

the tacit and repressed: "[T]he researcher may discover refinements of meaning and 

understanding or may penetrate to the core of the phenomenon until it suddenly yields 

glimmerings that lead to a unifying picture" (Douglass & Moustakas, 1985, p. 50). 

During data collection I put myself into the habit of expressing what was surfacing in my 

consciousness. No matter how left-field the ideas seemed, I let sub-conscious thoughts 

come to the surface. I often described this in my journal as recognizing thoughts 

“bubbling up”:  

…[continued from above] Another thing that is bubbling up from within my 

consciousness is pure mathematics is in the same class as football as regard to 

human activities that are pursued as ends in themselves and do little to bring about 

the kingdom of god on earth (or end injustice, etc.…). Of course, we can still play 

football, and football should be taught to those who have a passion for it. But 

football should not be forced on all members of the population. The same goes for 

pure mathematics. By the time a student is a senior in high school, the state has a 

responsibility to educate its citizens in the mathematics necessary to function 
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within society. This is not done. Common core mathematics is pure/applied 

mathematics. It is not societal mathematics. What should the curriculum of maths 

be? 

Incubation. 

Incubation is the phase of heuristic inquiry during which the researcher takes a 

rest period from the inquiry. I purposefully set aside time for incubation immediately 

following data collection. The goal of incubation is to allow the unconscious mind to 

process one’s experience so that new, tacit understandings emerge. Moustakas wrote 

(1990), “The period of incubation allows the inner workings of the tacit dimension and 

intuition to continue to clarify and extend understanding on levels outside the immediate 

awareness” (p. 29).  

Explication. 

Moustakas (1990) wrote that "The purpose of the explication phase is to fully 

examine what has awakened in consciousness, in order to understand its various layers of 

meaning" (p. 31). This occurred as I analyzed the data (described in more detail 

subsequently) and worked to create the final version of a humanistic framework for the 

nature of mathematics and related narratives.  

Creative Synthesis. 

Through data collection I documented my experience doing mathematics, 

teaching mathematics, and reflecting deeply on the nature of mathematical knowledge for 

the purposes of education. A goal of my dissertation was to draft narrative stories that 
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highlight key events or themes related to NOM. I see these stories as the creative 

synthesis that Moustakas (1990) described:  

Finally, the heuristic researcher develops a creative synthesis, an original 

integration of the material that reflects the researcher’s intuition, imagination, and 

personal knowledge of meanings and essences of the experience. The creative 

synthesis may take the form of a lyric poem, a song, a narrative description, a 

story, or a metaphoric tale. In this way the experience as a whole is presented, 

and, unlike most research studies, the individual persons remain intact. (p. 51) 

As Moustakas (1990) wrote, “Transcriptions, notes, and personal documents are 

gathered together and organized by the investigator into a sequence that tells the story of 

each research participant” (p. 49). These narratives put the person at the center of 

mathematics and will be useful for understanding the NOM aspects I identified through 

this inquiry. 

A Thorough Description of the Analysis Procedure 

Analysis during data collection.  

Patton (2015) describes heuristic inquiry as a method of analysis. Analysis is on-

going from the very beginning stages of the inquiry. I was engaged in analysis every time 

I wrote in my journal to reflect on what had happened in the undergraduate class or what 

I was experiencing through my collaboration with Dr. Combinatorial. I was constantly 

debating with myself in an effort to determine what undergraduate students should 

understand about the nature of mathematics and why. Two main ideas became very 
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prominent during the data collection phase: mathematics is an enjoyable exploration of 

ideas, and our mathematical ideas are part of our identity. I became very excited about 

these ideas during data collection, and I would talk about them to various people. Here is 

an example from a conversation I (Surreal) had with my co-instructor (Dr. Amicable) in 

the undergraduate course: 

Surreal: This math stuff has been really exciting lately. 

Dr. Amicable: Oh really? Have you made a breakthrough? 

Surreal: I think so.  

Dr. Amicable: Okay good! 

Surreal: ::laughing:: 

Dr. Amicable: It looks exciting. It looks like my undergrad research experiences 

on that paper [“that paper” referring to my mathematics notebook]. 

Surreal: Mmm yep. Math is this enjoyable experience of ideas. It is really 

exciting! 

Throughout the data collection process I had in mind the research question, “What 

should students understand about the nature of mathematics?” Whenever I had an idea for 

a possible NOM goal I wrote it out (often in my journal) and then saved it into a single 

word document. At the end of data collection I had the following list of fifteen possible 

candidates for a NOM framework (in addition to the initial characteristics identified in 

the literature review): 
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• NOMI - Mathematicians make mistakes. When a mistake is made, a 

mathematician may feel uneasiness or puzzlement that may be a signal 

that one should look for errors in their own work. A contrasting fact is that 

one may also feel emotion (perhaps related to the certainty one has) when 

one finds a correct solution. [inspired by my discovery that the number of 

edges in a complete graph of n vertices is n(n-1)/2] 

• NOM? - Mathematician’s practice is funded because mathematicians have 

proved valuable in wartime (Barany). 

• NOMK - The teaching of mathematics affects the knowledge of 

mathematics (standardization). 

• NOMI - Some mathematicians are able to achieve insights into problems 

by changing their focus or perception within a mathematical situation. The 

essence of research. 

• NOMI - It may be fruitful to suspend one’s desire for absolute conviction. 

Accept on fact that what an established mathematician has put forth is 

true. Use the mathematician’s method in one’s own proofs. Do not be 

worried about the details. Come up with a broad idea of a proof. Be 

critical later. Let it go. 

• NOMI - Mathematics is a dialectic of criticism and justification… 

refutations and proofs… they require different mindsets. .. humility and 

courage…  
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• NOMK - Mathematical concepts of previously invented objects are 

sometimes applied to different mathematical objects in order to generate 

new concepts! (radii of graphs). In other words, some advanced concepts 

are analogous to well-known concepts. (diameter of a graph).   

• NOMI - Mathematicians work on problems in their mind often, perhaps 

when participating in other activities (like mowing the grass). (10-5-16 

and earlier) 

• NOM - Mathematics plays a major role in the credit system which 

students have to move through within education. (Pais).  

• NOMI/K - Symbols and definitions need to be standardized for ease in 

communication. But oftentimes there are many different ways that a 

concept is defined in the literature. It is important to be clear how you 

define it. Some definitions are equivalent.  

• NOMI/K - Proof is viewed just as a convincing argument, hence the 

intuition that led to the proof is believed to be not worth mentioning. 

Sometimes it is difficult to comprehend arguments or see their 

significance because of this. Also some modern day concepts (function 

composition) seem totally pointless when introduced without also 

mentioning the motivation for their creation. The implication is we need to 

teach more history of math. 
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• NOM - School mathematics is also a phenomenon. It is influenced by 

conceptions of mathematics and other types of mathematics. Students 

learn school mathematics to earn credit. NOSM -School mathematics is 

malleable. But social, political, and cultural factors make it resistant to 

change. Of course the same could be said for pure mathematics I suppose.  

• NOMI - Mathematicians enjoy doing mathematics. 

• NOM - Mathematics involves criticism of people’s ideas and 

argumentation.  

• NOM - Ideas are the basis of mathematics. Numerals are distinct from 

numbers. (Lakoff & Nunez) What are numbers? Adjectives (Hersh), 

Embodied Mathematics (Lakoff & Nunez, Kitcher). 

Throughout data collection I frequently reflected on the NOM characteristics from 

this list. Often these ideas were the topics of conversation during the informal interviews, 

as I asked mathematicians and others if they considered these characteristics to be worthy 

goals for student understanding of the nature of mathematics. This NOM characteristics 

played an important role in the later stages of analysis.    

Post data collection analysis: early stage. 

After a semester of data collection, I took incubation (Moustakas, 1990) seriously. 

I put away my dissertation work for several weeks during the 2016-2017 winter break. 

This incubation period came to an end in early January when I received my first 
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invitation for an on-campus job interview for a university faculty position. Thus I went 

back to data analysis so I could present preliminary results at a job talk.  

I began to review my reflective journal as well as the journals in which I 

conducted mathematical research. I sought to identify features of the nature of 

mathematics for which I could tell clear and compelling stories. I used the qualitative 

data analysis software ATLAS.ti to open code my reflective journal. The codes I assigned 

were designed to summarize or capture the meaning expressed in interesting quotations 

within the data (Saldaña, 2012). This initial coding process primarily helped me to re-

familiarize myself with the data from my study post-incubation and identify possible 

NOM narratives. Based on this initial review, I identified three NOM characteristics and 

associated narratives:  

• Proofs are bearers of mathematical knowledge. (NOMK) 

• Mathematical knowledge is subject to revision. (NOMK) 

• Pure mathematics research is an exploration of mathematical ideas. (NOMI) 

I then worked to collect relevant pieces of data to support and tell these stories. I 

transcribed audio recordings of some whole-class discussions in the transition-to-proof 

course as well as some conversations that I had with Dr. Combinatorial. I made digital 

copies of my mathematics notebooks and identified important diagrams and text. I 

accessed relevant photos of the mathematical work Dr. Combinatorial and I had used to 

communicate on his whiteboard. 
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Through this process, I identified several other important NOM features that were 

related to the three I had originally identified. The narratives I drafted to present at the 

job talk ultimately highlighted the following elaborated NOM characteristics: 

• Proofs are bearers of mathematical knowledge. / By reading proofs a 

mathematician may learn about a method of proof that may be valuable in their 

own research.  

• Mathematical knowledge is subject to revision. / Mathematicians make mistakes. 

• Pure mathematics involves (an often enjoyable) exploration of mathematical 

ideas. / Mathematical ideas are part of our personal identity. / Mathematics 

involves argumentation and criticism of ideas. 

At this point the narratives were not in complete written form, but in the form of a 

PowerPoint presentation and verbal stories. I made similar presentations at a couple more 

universities, and I also gave a related presentation at the Twentieth Annual Conference on 

Research in Undergraduate Mathematics Education (RUME). At that talk (Pair, 2017) I 

discussed the four NOMK features that were in the initial Chapter Two framework:    

• Mathematical knowledge is subject to revision. 

• Mathematical knowledge is socially validated. 

• Proofs are bearers of mathematical knowledge. 

• Informal mathematical work is foundational to formal knowledge.  
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Although this talk was originally intended to be a purely theoretical presentation 

based on my literature review, I incorporated data from my dissertation to illuminate the 

four characteristics. As I gave all of these presentations, and I received helpful feedback 

that deepened my understanding of NOM and the related characteristics. One way in 

which this feedback influenced the NOM framework is in regard to the idea that 

“mathematical knowledge is subject to revision.” At RUME some mathematicians in the 

audience were critical of this idea, perhaps because of a conflation with knowledge and 

truth. I would contend that while pure mathematical truth may not be subject to revision, 

our knowledge is. Nevertheless, I reworded this statement so it would be less abrasive: 

“Mathematical knowledge is dynamic and refined over time.” It now appears in the final 

version of the framework as “Mathematical knowledge is dynamic and forever 

changing.” Although I am now considering revising it to, “Mathematical knowledge is 

dynamic and forever refined.” 

Post data collection analysis: intermediate stage. 

After the job presentations and RUME talk I began the process of transcribing all 

of the audio data. Originally, I only planned to transcribe critical moments that I had 

identified in my journal during data collection. However, sometimes as I examined the 

data, what at first seemed to me to be irrelevant to NOM later took on significance. In my 

journal I wrote, “I realize that I may go back and listen to these recordings, and discover 

something new… some new illuminations that I did not think were important at the 

time.” Thus, I decided to personally transcribe all of the audio data.  
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During this transcription process, I continued to engage in analysis, often pausing 

to reflect on the data and draw implications for the nature of mathematics. Consider the 

following transcription from a discussion in the undergraduate course. Notice that part of 

the text is bracketed []. I used brackets to block off my analytic notes within the 

transcriptions.  

Surreal (Me): So I want to pull your attention back to the definition, “all possible 

truth values of the constituent statements.” [This is so stale taking all this time to 

study truth tables and logical equivalence. It doesn’t capture this spirit that 

mathematics is ours, our tool, our plaything, to be used how we wish. Milos, 

Brian and the Seldens say they use a just in time approach with logic. Introduce it 

to the students if they need it—but they will invent proof by contradiction on their 

own. Why take several weeks doing these truth tables? I know Odd said 

something like this in his mid-semester reviews, that we spent too much time on 

logic. Why not just move past this myth that you have to have formal logic to do 

mathematics, that mathematics is essentially logic? Why not take an idea-based 

approach? Mathematics is an exploration of pure ideas. Logic can be a tool to 

help us construct arguments, but logic is not necessary to do mathematics. I need 

to study if it is possible to teach mathematics this way. Ideas. Not strictly logic or 

sets; those are not the foundations of higher mathematics. If visuals are the best 

way to portray mathematical ideas, then allow the students to use visuals or any 

other form of reasoning that best helps them construct ideas.] Both statements are 
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true or both false. Have we looked at all possible values of the constituent 

statements here? No. We’ve looked at one possibility in the case where they are 

all true. That’s a great learning opportunity, thank you all for that.  

These blocked sections of analysis served as signposts in the data that I could go back to 

later for further analysis.  

While still in the transcription process, I decided to draft several narratives in 

order to get feedback from my dissertation chairs. Written drafts of narratives were 

constructed for the following NOM characteristics: 

• Pure mathematics involves an exploration of ideas. (NOMI) 

• Our mathematical ideas are part of our identity. (NOMI/NOMK) 

• Mathematics involves argumentation and criticism of ideas.(NOMI) 

• Proofs are bearers of mathematical knowledge. (NOMK) 

• Mathematical knowledge is dynamic and refined over time. (NOMK) 

After drafting those narratives, I continued transcription and analysis, and I began 

making note of other possible narratives and NOM characteristics. When I was nearly 

finished with the transcriptions, I created the NOM framework shown in Figure 8 and 

included it in a presentation I gave as a guest speaker in a doctoral course in which 

students were studying the nature of mathematics and science.  
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Figure 8: Early Draft of Revised NOM Framework 

Post data collection analysis: nearing the final stage. 

After finishing the transcriptions, I decided to review and code all of the data one 

last time. I had several motivations for pursuing a final coding. I sought supporting 

evidence for the NOM characteristics I had already identified. I wanted to make sure I did 

not overlook any crucial events related to NOM. I also wished to code in such a way that 

I could organize my data so that it would aid in my construction of compelling stories for 

each NOM characteristic. But, I was not sure which method of coding would best help 

me achieve these goals.   

Recall that during the early stages of post-data collection analysis, I coded my 

research journal as well as a few other pieces of data. I decided to review the open codes 

I had produced during that early stage and determine if any were useful. There were 127 
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codes, most of which I judged would not be useful to recode my data. Some of the codes 

that were used most often were [credit system], [election], [ideas], [limitations], 

[methodology], and [mistakes].  

I decided to code the data based on the possible NOM characteristics I had 

identified up to that point of analysis. These selected NOM characteristics came from the 

initial framework in Chapter Two and also those ideas identified in subsequent analysis 

stages. I also created codes for methodology and implications.3 My plan, which I carried 

out, was to categorize all of the data according to these NOM characteristics and 

determine if there was sufficient data to draft a compelling narrative to illuminate the 

features of mathematics or to identify data that could supplement the narratives I had 

already created. I also reasoned this categorization of the data would be helpful in 

considering implications and summarizing methodological decisions I had made 

throughout the dissertation process. The codes and the corresponding descriptions that I 

began using for the final coding are listed below: 

• [culture] Mathematical knowledge is influenced by cultural values. 

• [artisan] Mathematical knowledge is embedded within the work of 

artisans. 

• [reckoner] The purpose of commercial-administrative (reckoners’) 

mathematical knowledge is calculation for economic purposes.  

                                                 
3 I also created the code [religion], but I did not include it in my final analysis.  
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• [ethno] Western academic mathematics is one (but not the only) form of 

mathematics. 

• [dynamic] Mathematical knowledge is subject to revision, dynamic, and 

refined over time. (NOMK) (Mathematicians make mistakes.) 

• [socially validated] Mathematical knowledge is socially validated 

(NOMK) 

• [proofs as bearers] Proofs are bearers of mathematical knowledge. 

(NOMK) 

• [informal] Informal work is foundational to formal knowledge. (NOMK/I) 

• [sub-disciplines] Each sub-discipline of mathematics has different norms, 

values, and standards. (NOMI) 

• [emotional] Mathematical inquiry can be emotional. (NOMI) (enjoy, 

happy, sad, frustrated, excited, etc.…) 

• [creative] Mathematical inquiry can be creative. (NOMI)  

• [collaborative] Mathematical inquiry is collaborative.  

• [statistics] 

• [applied] 

• [shape society] Mathematical knowledge is used to shape society, but 

cannot be considered an absolute judge.  

• [ideas] Pure Mathematics is an Exploration of Ideas. (NOMI) -ideas are 

the basis of mathematics.  
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• [criticism] Mathematics Involves Argumentation and Criticism of Ideas. 

(NOMI) 

• [identity] Our Ideas/Practices Are Part of Our Identity. (NOMK/I) 

• [change perspective] Some mathematicians are able to achieve insights 

into problems by changing their focus or perception within a mathematical 

situation (the essence of research). NOMI 

• [suspend conviction] It may be fruitful to suspend one’s desire for 

absolute conviction. Accept what an established mathematician has put 

forth as true. Be critical later. Let it go. NOMI 

• [conventional vs reasonable] There is mathematical knowledge related to 

convention and mathematical knowledge grounded in reasoning. 

• [style] style is important in mathematics (nomk/nomi?)  

• [credit system] Mathematics plays a major role in the credit system which 

students have to move through within education. NOSM (nature of school 

mathematics). 

• [implications]  

• [methodology] 

As I began to code the entire set of data using ATLAS.ti, I began to encounter 

some quotes that seemed relevant to NOM but did not fall under the codes I had created. 

So I created a few new codes:  
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• [elite] – Pure mathematics is perceived as an elite practice. (NOMI/K) 

• [communication] – Mathematicians communicate through proof. Symbols 

are important for mathematical communication. (NOMI/K) 

• [deduction] – A mathematical proof is a deductive argument—it starts 

from what we know to be true and demonstrates something new. 

(examples and diagrams play a role in the proving process). (NOMK) 

• [other] – Anything else that does not fit into the preexisting categories. 

During the coding process I also created analytic memos in ATLAS.ti and a 

separate WORD file to document further methodological decisions and reflect on 

implications. For instance, during this coding/analysis I noticed that mathematical 

knowledge being socially validated is closely related to the notion that mathematics 

involves argumentation and criticism of ideas. Ultimately, I decided to consolidate the 

two codes [criticism] and [socially validated] into one code, [argumentation]. In the final 

framework I capture both these ideas with the statement “Mathematical ideas and 

knowledge are socially vetted through argumentation.” 

After reviewing and coding all of the data, I used ATLAS.ti to produce an output 

of the pieces of data (quotations) associated with each code. I then reviewed each of these 

codes and the corresponding sets of data quotations and made notes on possible 

narratives or described my decision not to go further with the characteristic in regard to 

my NOM framework. For instance: 
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For the code [collaborative] Mathematical inquiry is collaborative.  I had only one 

quotation from a transcript of Foundations along with some initial analysis within 

the blocked text: Dr. Amicable: In your groups think about that. … [Dr. Amicable 

always puts it on the groups. Cooperative/collaborative learning.] 

Collaboration was a constant in the course. But there was not a story that jumped 

out to me as I coded the data. Of course, within the mathematical collaboration 

between Dr. Combinatorial and I, collaboration was prominent by nature of the 

relationship. It is certainly not a stretch to argue that mathematical inquiry is often 

collaborative, and I believe students should understand this aspect of the nature of 

mathematics. I believe we can take this is as a given and teach students the value 

of collaborative work in mathematics. Nevertheless, it does not occupy a place in 

the final framework due to the lack of compelling narratives. 

Post data collection analysis: final stage. 

After the final run-through of the data, I continued to draft narratives, and 

evaluate, reflect on, and refine the NOM framework. I struggled to get the framework 

into a final form that I was comfortable with. I wanted to rephrase all the NOM 

characteristics in my own words. I thought the list was too long. I recalled a talk given by 

Schoenfeld (2016) in which he recommended that any good framework have five or 

fewer categories because “If you have too many things to work on, it’s difficult to keep 

all of them in your mind.4” I was not sure if some characteristics should be sub-features 

                                                 
4 http://ats.berkeley.edu/publications/AHS_MAA_Talk_without_video.pdf 
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of others. For example, I wondered if the notion that “pure mathematical inquiry is an 

exploration of ideas” subsumed the idea that “informal mathematical knowledge is 

foundational to formal knowledge.”  I made a PowerPoint document in which I reworded 

characteristics, removed characteristics, and generally tried to put the framework into a 

satisfactory form. I sometimes printed these iterations and revised them (See Figure 9 for 

an example).  

 

Figure 9. Revising the Framework 

At times, I was frustrated. Instead of writing my dissertation I would pace in my 

home or take walks. Perhaps I was further engaged in incubation: “The period of 

incubation allows the inner workings of the tacit dimension and intuition to continue to 

clarify and extend understanding on levels outside the immediate awareness” 

(Moustakas, 1990, p. 29). Ultimately, I began to reflect on my entire dissertation study, 

and I decided I needed to produce a final framework that I was proud of and captured the 
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essence of my experience. I recalled the phase of creative synthesis within heuristic 

inquiry, and I realized that in addition to the narratives that I was creating, the final NOM 

framework was also part of my creative synthesis. I read again what Moustakas had 

written: “Finally, the heuristic researcher develops a creative synthesis, an original 

integration of the material that reflects the researcher’s intuition, imagination, and 

personal knowledge of meanings and essences of the experience” (p. 51). I underlined 

those words: intuition, imagination, personal knowledge, meanings and essences. I gave 

myself creative license to craft a NOM framework that was not only grounded in my data 

but also captured the core themes I experienced during heuristic inquiry.  

I went back to my NOM lists and thought more about which categories could be 

subsumed under the others. I wished to find the smallest number of characteristics that 

could provide a framework for teaching students about the humanistic nature of 

mathematics. At one point I had narrowed my list down to four categories: 1) Pure 

mathematical inquiry is an exploration of ideas; 2) Our mathematical ideas are part of our 

identity; 3) Mathematical knowledge is dynamic and ever changing; and 4) Mathematics 

involves social validation, argumentation, and criticism of ideas. After further reflection I 

decided (temporarily) to eliminate the fourth characteristic. I reasoned that one of the 

reasons mathematical knowledge is dynamic and forever changing is because of the 

process of social validation and argumentation. I decided to narrow the list down to the 

first three categories and eliminate the fourth. But after getting down to three categories, I 

was still not satisfied.  
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I again felt stuck. I knew I needed to write, but I was struggling. I sat down one 

night and opened a new word document titled “reflective analysis and discussion.” I 

wrote the following: 

Mathematical inquiry is an exploration of ideas.  

Mathematical ideas are part of our identity. 

Mathematical knowledge is dynamic and ever changing. 

DIE dynamic identity exploration. … Woe is me. Suffering through the final 

stages of a dissertation product. Completing a project unlike any other I have ever 

completed, for the first time. … 

The next day I put off going into my office to work until late in the afternoon. I 

decided to talk to my wife about the NOM framework. I told her I had narrowed my list 

down to three categories. I explained that mathematical ideas are part of our identity. She 

wanted evidence. I told her some of my stories (presented in Chapter Four), and she 

understood. I went on to explain that mathematical knowledge is dynamic, and that 

mathematics involves an exploration of ideas. Overall, she thought the categories were 

good.  

I felt better after talking to her, but still uneasy. I was about to go to my office to 

write more, but I stopped on my way out of the house and stood in the doorway. I told my 

wife how if you take the first letters from the key words in the three characteristics, it 

spells DIE (dynamic, identity, exploration). My wife recalls “I remember you were 

standing at the door. And you were talking about your framework or whatever you call it. 
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You were naming your keywords. You were like, ‘It spells DIE.’” She thought that was 

funny. And she said, “If only you had an A.” If only I had an A? I was not sure what she 

meant. She said, “Because then you could spell IDEA.” I immediately blurted out 

“Argumentation!” I now had my framework. I went to my office and excitedly shared my 

findings with a colleague. I then wrote the following in my “reflective analysis and 

discussion” document:  

Excited. I have been thinking about the framework for days. Can I condense 

categories? A selected few so that they are easy to remember? I was considering 

three. Mathematical ideas and practices are part of our (human) identity (both 

individual and collective). Mathematical inquiry is an exploration of ideas. 

Mathematical knowledge is dynamic and forever changing (both individually and 

collectively). I discussed these with my wife (she asked me what my evidence 

was.) I told her that there was an acronym: DIE. Then she said, if only you had an 

A. So then you could have IDEA. !! Argumentation was the fourth on my list. 

Thank God for this.   

Here are the four characteristics that I ultimately decided upon: 1) Our 

mathematical ideas and practices are part of our identity; 2) Mathematical knowledge is 

dynamic and forever refined; 3) Pure mathematical inquiry is an exploration of ideas; and 

4) Mathematical ideas and knowledge are socially vetted through argumentation. These 

characteristics are the foundational categories of the “IDEA Framework for the Nature of 

Pure Mathematics” presented in Chapter Four.  
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After sharing this framework with my dissertation chairs, they suggested I go 

back to data analysis, and see if I could provide further justification for these four 

characteristics. Returning to ATLAS.ti, I produced a code frequency chart, shown in 

Figure 10, for all of the codes related to a NOM characteristic for which there were at 

least five coded quotations in the data. Notice that the four characteristics that I 

ultimately chose to be the basis of a NOM framework correspond to 4 out of 5 of the 

most used codes during data analysis ([ideas (exploration of)], [dynamic], [identity], 

[argumentation]5). By examining the frequency chart, I was able to verify that I had 

arrived at four NOM characteristics that I not only felt were crucial to my experience 

during this study, but were also grounded in the data. 

                                                 
5 Recall that the [argumentation] code was created after merging the [socially validated] and [criticism] 

codes. 
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Figure 10. Code Frequencies 

To further illustrate the encompassing nature of the four characteristics, I made a 

list of characteristics and sub-characteristics shown in Figure 11. This list demonstrates 

that many of the other NOM characteristics that I identified during my study are related 

to the four foundational categories. Some of these characteristics are further discussed in 

Chapters Four and Five.   
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Figure 11. An Association of NOM Characteristics 

Note that I did not choose to incorporate the characteristic “Mathematics plays a 

major role in the credit system which students have to move through within education” 

into my NOM framework even though it corresponded to the fourth highest number of 

data quotations. This notion, that there is a conflict between teaching the nature of pure 

mathematics and our current educational system, was on my mind throughout the 

dissertation process. But this is related more to implications regarding teaching NOM 

than the humanistic characteristics of mathematics I experienced during my dissertation 
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study. I discuss the conflict between the educational credit system and the promotion of a 

humanistic NOM vision in Chapter Five. 

Limitations and Delimitations 

Subjectivity and Storytelling 

I view this dissertation as being to the far-left end of a subjectivist/objectivist 

continuum. Critics may claim that any conclusions drawn from such a personal study 

may not be useful for informing mathematics education. I realize that when I choose a 

topic to write about, I do so because of some personal interest usually grounded in my 

experience. If I am able to successfully tell my story through writing, then it becomes 

clearer why the topic is important to me, and how it may be relevant to other persons. As 

a young scholar, I saw this dissertation as a personal opportunity for self-transformation, 

the main purpose of heuristic self-search inquiry (Sela-Smith, 2002). My thinking on 

NOM has been transformed in many ways, and in Chapter Four these transformations are 

sometimes discussed. 

Brown, Cooney, & Jones (1990) noted that, “The question of the value of research 

from a humanistic perspective rests largely on whether one sees science as telling a story” 

(p. 650). Indeed, one of the criteria I considered essential for a NOM characteristic to be 

part of my framework was for there to exist compelling stories that illuminated that 

characteristic. I have already received very positive feedback on these stories from 

colleagues. People have told me that they identify with my work. Others have said they 

see the nature of mathematics in a new light. Patton (2015) wrote that stories help “us 
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learn about specific individuals and society and culture more generally” (p. 128). 

However, the results I present in Chapter Four arose out of a particular context. If this 

study was conducted by a different scholar, with a different mathematician, in a different 

field of mathematics, in a different course, and at a different university, then the 

framework and narratives would have been different. Recall (from Chapter One) that I 

conceive of this dissertation as being the first step in a long research progression. One 

important next step is to get feedback from others regarding the value of the NOM 

characteristics I have identified.    

Some Notes on my Qualifications to Engage in a Mathematics Collaboration 

Because this was a personal self-study, it is important that the reader gets a sense 

of who I am as a person and my relevant qualifications. I have already written about my 

theoretical orientation in Chapter Two and my affinity for pure mathematics in Chapter 

One, but I also note here that I am uniquely qualified for philosophical work and for pure 

mathematical research. My undergraduate studies were not in mathematics, but 

philosophy (I earned a Bachelor of Arts Degree). I did study a bit of undergraduate 

mathematics as a physics minor. This mathematical study, along with my experience 

tutoring mathematics professionally for a few years, was enough for me to conditionally 

meet the requirements to enter a master’s program in mathematics. I completed the 

master’s degree, taking predominantly courses in pure mathematics, and I defended a 

thesis in the field of graph theory. I have had prior experience conducting mathematical 
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research, and this experience provided me the confidence and experience I needed to 

work with a professional mathematician for this dissertation project.  

One limitation to this study is that the mathematical collaboration lasted for only 

one semester. The research mathematician and I have still not accomplished the goal of 

the mathematics collaboration, which was to prove an open conjecture in the field of 

graph theory. If we had succeeded in this task, and gone through the steps of writing a 

communicative research paper for publication, then my conclusions about the nature of 

mathematics may have been different.  

Comments on Data Collection 

 This was an immersive study for which I collected different types of data from a 

variety of sources. Even so, I recognize that other data sources and methods of data 

collection could have provided me more insight into the nature of mathematics and its 

teaching and learning.  

In regard to the mathematics collaboration, video data may have been helpful. I 

made audio recordings of all of the conversations between Dr. Combinatorial and I. And I 

took pictures of all our mathematical work. But sometimes I found it difficult to reconcile 

these two sources and determine which feature of a diagram from a photo was being 

referred to in an audio-recording. While it is possible video data may have been useful, it 

is also possible that collecting video data may have created an awkward situation in 

which Dr. Combinatorial or I may have acted in a reserved manner. 
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In regard to the undergraduate transition-to-proof course, I believe the audio 

recording of whole class discussions worked well. But it would have been nice to also 

have recordings of small-group conversations. This would have required significantly 

more resources and time commitment to collect and analyze this data, but I am sure 

students said things in small groups that would have provided insight into their 

understanding of the nature of mathematics that did not come out in whole group 

discussions. 

Chapter Summary 

In this chapter I have outlined the methodology for my dissertation study. By 

doing mathematics with an active research mathematician, and by teaching 

undergraduates in a transition to higher mathematics course, I have had experiences 

highly relevant to the nature of mathematics (NOM). I have reflected deeply on these 

experiences and considered the aspects of NOM that undergraduate mathematics students 

and instructors should know and understand. Heuristic self-search inquiry has provided 

the important conceptual tools (e.g. immersion, illumination) that have enabled me to be 

in touch with my emotions and inner awareness, so that I was able to create narratives 

that inform a humanistic educational NOM framework.  
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CHAPTER FOUR: RESULTS 

Introduction 

I now present a humanistic educational framework for the nature of pure 

mathematics along with corresponding narratives that illuminate the features of the 

framework. The chapter begins with the framework, followed by some mathematical 

preliminaries before the illuminating narratives are presented. Through heuristic inquiry, 

I have documented my work doing mathematics with an active research mathematician, 

teaching undergraduates in a transition to higher mathematics course, and engaging in 

other activities related to my work as a mathematics education scholar. I have reflected 

deeply on these experiences and considered humanistic aspects of the nature of pure 

mathematics that undergraduate mathematics students in a transition-to-proof course 

should understand. I have sought to articulate these aspects so that the field of 

mathematics education has a framework that can guide both research and teaching related 

to the nature of mathematics.  

The IDEA Framework for the Nature of Pure Mathematics 

I have chosen four characteristics of the nature of mathematics (NOM) to serve as 

the basis of a humanistic educational framework: 1) Our mathematical ideas and practices 

are part of our identity; 2) Mathematical knowledge is dynamic and forever changing; 3) 

Pure mathematical inquiry is an exploration of ideas; and 4) Mathematical ideas and 

knowledge are socially vetted through argumentation. I call the framework of which 

these characteristics are foundational as “The IDEA Framework for the Nature of Pure 
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Mathematics” and it is shown in Figure 12. Note that IDEA corresponds to the key 

concepts of each of the four characteristics: I-Identity, D-Dynamic, E-Exploration, and 

A-Argumentation.  

 

Figure 12. The IDEA Framework for the Nature of Pure Mathematics. 

I believe it is important to have a modest list of NOM categories to guide our 

general efforts teaching NOM, but no list will ever exhaustively outline all that students 

should understand about NOM. In addition to the four primary categories of the IDEA 

framework, the narratives in this chapter also feature four secondary categories that were 

significant to my study: 1) Mathematical inquiry and argumentation can be emotional. 2) 

Informal mathematical work is foundational to formal knowledge. 3) Mathematicians 

change focus in a mathematical situation to achieve insight. 4) Proofs are bearers of 

mathematical knowledge. These secondary categories are related to, but not necessarily 
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subcomponents of, the four foundational categories in the IDEA framework. All of these 

characteristics of NOM will be illuminated in the subsequent narratives. See Figure 13 

for a list of all the NOM characteristics together with the names of the narratives for 

which each NOM characteristic plays a role.  
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Nature of Mathematics Characteristics Corresponding Stories 

Foundational IDEA Characteristics 

I - Our mathematical ideas and practices 

are part of our identity. 

• If No One Agrees With You  

• Toothpicks, etc.  

• Odd, Even, Odd, Even 

• Coloring 

D - Mathematical knowledge is dynamic 

and forever changing. 

• Mistakes 

• If No One Agrees With You  

• Odd, Even, Odd, Even  

• Levels 

• Cases  

• Coloring  

• We Are the Future 

E - Pure mathematical inquiry is an 

exploration of ideas. 

• Tension 

• Toothpicks, etc.  

• Odd, Even, Odd, Even 

• Levels  

• Mistakes 

• Coloring 

• The Essence of Research 

A - Mathematical ideas and knowledge 

are socially vetted through argumentation. 

• If No One Agrees With You  

• Cases 

• Mistakes 

• We Are the Future 

Secondary Characteristics 

Mathematical inquiry and argumentation 

can be emotional. 

• Tension 

• Toothpicks, etc.  

• Odd, Even, Odd, Even  

• Coloring 

Informal mathematical work is 

foundational to formal knowledge. 

• Tension. Toothpicks, etc.  

• Coloring 

Mathematicians change focus in a 

mathematical situation to achieve insight. 

• Coloring 

• The Essence of Research 

Proofs are bearers of mathematical 

knowledge. 

• Levels 

• Cases 

Figure 13. List of NOM Characteristics and Corresponding Narratives 
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Some Notes on the Narratives 

In creating the following narratives, I have strived to capture the humanistic side 

of pure mathematics. Mathematics is a human activity—an activity for which I have 

much affection. But mathematics is often presented to students as a body of absolute 

knowledge, separate and distinct from humanity (Burton, 1995; Ernest, 1991). Scholars 

have argued instead for a humanistic view of mathematics, putting the person at the 

center of mathematics (Burton, 1995). Ernest (1991) noted that “Anything else [than a 

human view of mathematics] alienates and disempowers learners” (p. xii). Similarly, 

Burton (1995) argued, from a feminist perspective, that “Re-telling mathematics, both in 

terms of context and person-ness, would consequently demystify and therefore seem to 

offer opportunities for greater inclusivity” (p. 280). As Hersh (1997) wrote, “To the 

humanist, mathematics is ours—our tool, our plaything” (p. 60). I have tried to capture 

this humanist spirit in both the IDEA framework as well as the corresponding narratives.   

The narratives in this chapter capture my experience doing mathematics, teaching 

mathematics, and reflecting deeply on the nature of mathematical inquiry and knowledge 

for the purposes of education. I see these stories as the creative synthesis that Moustakas 

(1990) described:  

Finally, the heuristic researcher develops a creative synthesis, an original 

integration of the material that reflects the researcher’s intuition, imagination, and 

personal knowledge of meanings and essences of the experience. The creative 

synthesis may take the form of a lyric poem, a song, a narrative description, a 
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story, or a metaphoric tale. In this way, the experience as a whole is presented, 

and, unlike most research studies, the individual persons remain intact. (p. 51) 

The narratives I have drafted feature direct quotations and excerpts from the data. 

As Moustakas (1990) wrote, “Transcriptions, notes, and personal documents are gathered 

together and organized by the investigator into a sequence that tells the story of each 

research participant” (p. 49). With these narratives, I have put people at the center of 

mathematics. 

Context, Setting, and Pseudonyms 

Before presenting the narratives, I will remind the reader of the context for this 

study and also discuss some mathematical preliminaries. Many of the experiences 

described took place at a state university within a city in the southeastern United States. 

At that university, data was collected from an undergraduate transition-to-proof course, 

which I co-taught. For an introductory assignment, the students were asked to consider a 

number type that best represented their selves. Students chose number types such as 

binary, permutation, whole, natural, real, positive, infinitely repeating decimal, etc.… I 

have chosen to use their personally-selected number types as pseudonyms for the 

students. In the event a participant did not choose a number type, I have chosen one for 

them. I have chosen the number type Surreal for myself. The co-instructor of the 

transition-to-proof course is Dr. Amicable. The research mathematician with whom I 

worked on an unsolved conjecture in graph theory will be referred to as Dr. 

Combinatorial. In Appendix A you will find a detailed list of each of the participants of 
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this study, as well as some descriptions of the participants and some demographic 

information. 

Mathematical Preliminaries 

In order to best convey my results, I need you to step into the world of graph 

theory, at least get your feet wet a bit, in order to understand the context of my work. I 

will present an intuitive overview of some of the concepts that were involved in my 

mathematics research that served as a backdrop for my reflection on the nature of pure 

mathematics.  

A (Very) Brief Introduction to Graph Theory 

A graph is a collection of vertices and edges. The graph in Figure 14 has three 

vertices and three edges. It is called a 3-cycle, or a triangle. The graph in Figure 15 is a 4-

cycle. I will call it a square; although we could draw it so it looks nothing like a square as 

in Figure 16.  

 

Figure 14. 3-cycle (Triangle) 
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Figure 15. 4-cycle (Square) 

 

Figure 16. 4-cycle (That Looks Nothing Like a Square) 

We say that these two graphs in Figures 15 and 16 are isomorphic as the 

connectivity relationship between the vertices is the same for each graph. Please take a 

moment to answer this question: If we were to color the vertices of the triangle and 

square so that no two adjacent1 vertices shared the same color, then what is the minimum 

number of colors we would need? (Turn to the next page and see Figure 17 for the 

answer). 

  

                                                 
1 If an edge connects two vertices, then we say the vertices are adjacent. 
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Figure 17: Colorings of the Triangle and Square 

For the triangle we need three colors, but for the square we can get away with two! The 

minimum number of colors one can use to color the vertices of a graph so that no two 

adjacent vertices share the same color is called the chromatic number. What is the 

chromatic number of the pentagon shown in Figure 18? Figure this out yourself before 

turning to the next page. 

 

Figure 18: 5-cycle (Pentagon) 
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The chromatic number is three! Good, you are quick! Here is one possible 3-coloring in 

Figure 19. How about the chromatic number of the Petersen graph (see Figure 20)? 

 

Figure 19. 3-coloring of the Pentagon 

 

Figure 20. The Petersen Graph 
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I will not give the chromatic number of the Petersen graph away just yet (take 

some time to think about it!). The Petersen graph has several interesting properties and 

has been the subject of many research articles and even books (e.g. Holton & Sheehan, 

1993). If you take some time to study it, you may discover some of these properties. For 

instance, you might observe that the Petersen graph does not have any triangles or 

squares, i.e. no 3-cycles or 4-cycles. But you can find several 5-cycles. Since the size of 

the smallest cycle is five, a graph theorist would say that the girth (size of the smallest 

cycle) of this graph is five. Another interesting fact is that every odd cycle greater than a 

length of five has a chord, an edge that is not part of the cycle that joins two vertices of 

the cycle. For instance, consider Figure 21. 

 

Figure 21. A 9-cycle Within the Petersen Graph 
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In green I have traced a 9-cycle within the Petersen Graph. Notice that there are a 

few chords: edges that are not part of the cycle but connect two cycle vertices (these 

chords are not green but connect two green vertices). If you examine the picture you can 

find three such edges (shown in red in Figure 22).  

 

Figure 22: Three Chords of the 9-cycle 

Let us take these interesting properties of the Petersen graph and generalize to a 

broader class of graphs. Imagine the class of all graphs with no 3-cycles, no 4-cycles, at 

least one 5-cycle, and such that any cycles of odd length greater than 5 must have 

chords.2 The graph theorist, Dr. Combinatorial, whom I collaborated with for this 

dissertation project, did a lot of work on connectivity with this class of graphs, and has 

conjectured that the chromatic number for the class is 3. Indeed, the Petersen graph’s 

chromatic number is 3 (see the 3-coloring in Figure 23). 

                                                 
2 In math speak, we are referring to graphs with girth 5 and no induced odd cycles (no odd holes) of length 

greater than 5. 
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Figure 23. A 3-coloring of the Petersen Graph 

The purpose of Dr. Combinatorial and my collaboration was ultimately aimed at 

proving his conjecture (the chromatic number is three for the class of graphs with no 

triangles, no squares, at least one pentagon, and such that any other odd cycles have a 

chord). It was in this context and through our work on this conjecture that I reflected on 

the nature of pure mathematical inquiry and knowledge.  

I think that should be sufficient for you to follow the mathematics discussed in the 

narratives that follow. Some new concepts will be introduced as needed. But before 

moving on to the narratives, and to ensure that you understand the class of graphs the 

conjecture refers to, try to prove the following: Any graph in the class described above 

does not contain a 7-cycle. Really, try it! No pressure! If you are unable to find a proof, 

do not worry! I will discuss this more in the first narrative.  



126 

 

 

 

Introduction to the Nature of Mathematics Narratives 

As the original intention of these narratives was to convey essential features of the 

nature of mathematics, I will briefly introduce each narrative and point the reader to the 

NOM characteristics they might see at work in the narratives. Not only are the four 

characteristics of the IDEA framework highlighted, but I also discuss some additional 

NOM characteristics. I believe the four characteristics of the IDEA framework are 

foundational to a humanistic understanding of the nature of mathematics; but with any 

subject, one can always go deeper. The structure of the chapter is as follows. The title of 

the narrative will be in bold, followed by a brief introduction in italics, and the remainder 

of the narrative in regular text. 

Tension 

The first narrative, Tension, introduces the notion that pure mathematical inquiry 

is an exploration of ideas. Furthermore, this exploration of ideas can be very enjoyable—

an example of the emotional nature of mathematical inquiry. The reader may also 

observe the importance of informal mathematical work (e.g. diagrams) to the 

development of mathematical understanding.   

One of the first significant realizations I had during my inquiry into pure 

mathematics was that to engage with pure mathematics involves an exploration of ideas. 

One night I began to work on Dr. Combinatorial’s conjecture, and I wanted to summarize 

the important theorems I had just begun to understand. I wished to solidify them in my 

own mind so that I could make progress on the conjecture. I sat on my bed at home, and 
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in my notebook, I wrote the text and diagrams shown in Figure 24. I now explain this text 

in detail.  

 

Figure 24. Excerpt from Mathematics Notebook 

The first thing I did was to imagine an arbitrary graph from the class of graphs 

pertaining to the conjecture and remind myself of some related meanings: “Assume 𝐺 ∈

𝒢, [𝐺 is a graph in our class] the set of all graphs with girth 5 and no induced odd cycles 

of length greater than 5. Recall an induced cycle contains no chords.” You should also 

recall girth is the size of the smallest cycle in a graph; and since our graph contains no 3-

cycles and no 4-cycles, but it does contain a 5-cycle, the girth is 5.  
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Next, I proved the theorem mentioned previously (have you tried yourself yet?) 

that our graph G has no 7-cycles. To prove this I worked by contradiction. I assumed that 

G did have a 7-cycle. I called the cycle 𝑢1 − 𝑢2 − 𝑢3 − 𝑢4 − 𝑢5 − 𝑢6 − 𝑢7 − 𝑢1. Recall 

that for our class of graphs any odd cycle of length greater than five must have a chord3. 

Thus the 7-cycle must have a chord, but where is it? Notice how I drew a diagram in the 

upper right of the page. This diagram is of a 7-cycle and I have reproduced it below in 

Figure 25.  

 

Figure 25: 7-Cycle with Possible chords 

Also notice how I drew some dashed lines. These represent possible chords (we 

said the 7-cycle must have at least one chord, so it has to go somewhere!). Since there is 

some symmetry with the 7-cycle, I arbitrarily picked the uppermost vertex on the paper 

and drew all possible chords from there. What did I notice? Consider the right-most 

chord. Do you see the little triangular 3-cycle? Good!  Move on to the next chord to the 

left. If you start at the top vertex, move straight down this chord, and then to the right 

(counterclockwise) you will trace a total of four edges before you get back to the original 

                                                 
3 We call cycles without chords induced cycles, another name that is used for the same concept is hole. 
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vertex, a 4-cycle. You can check that the other two chords will also create either a 4-cycle 

or a 3-cycle. Since we have assumed our graph does not have 3-cycles or 4-cycles, we 

have reached a contradiction. I wrote, “But the chord, wherever placed, would create a 𝐶3 

[3-cycle] or a 𝐶4 [4-cycle] violating our girth assumption.” 4  So we have proved that any 

graph within the class does not have a 7-cycle. It is a nice little baby theorem, that proved 

very helpful in subsequent work.  

What does my experience proving this say about the nature of mathematical 

inquiry being an exploration of ideas? What I now notice is that there is a tension in my 

written proof. That night when I sat down to write, my purpose was to solidify in my 

mind what I knew could be proven, and move on to try to prove new things. The tension 

is between this purpose and a conflicting purpose of writing to satisfy some norms of 

proof writing that I learned in school. In at least one line, it is clear that I was writing the 

proof as I would write them in my graduate mathematics courses as if I expected it to be 

read and graded. Notice that I labeled the 7-cycle as 𝑢1 − 𝑢2 − 𝑢3 − 𝑢4 − 𝑢5 − 𝑢6 −

𝑢7 − 𝑢1, but I did not use this symbolization elsewhere in the proof. The diagram and my 

counting of chords was sufficient to convince me that the theorem was true, and I 

understood why it was true. The last line is a bit of a hand-wave. “But the chord wherever 

placed would create a 𝐶3 [3-cycle] or a 𝐶4 [4-cycle].”  I could have opted to write some 

sort of argument: Arbitrarily choose vertex 𝑢1; if we form the chord 𝑢1 − 𝑢3 then a 3-

                                                 
4 Note that the notation 𝐶𝑘 is sometimes used to denote a cycle of size k (k is a natural number). 
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cycle 𝑢1 − 𝑢2 − 𝑢3 − 𝑢1 is formed. etc… Can you see the tension? On the one hand, 

working for personal understanding and on the other writing with the standards of rigor I 

believe are expected in mathematical writing. The conflict is between a personal 

exploration and understanding of ideas versus the crafting of a communicative proof that 

satisfies perceived norms of rigor and symbolization. 

After proving that theorem I moved onto another one, which needed a proof by 

induction. I will spare you the details of that proof for now, and draw your attention to 

the underlined words on the page, reproduced in Figure 26.  

 

Figure 26. Underlined Text 

These words come after I wrote out minute details of the basis step for the 𝑛 = 0 

and 𝑛 = 1 cases that were already clear in my own mind (but may not have been clear to 

a reader). The underlined text reads, “I find myself realizing this proof is more for me 

than another. I don’t need to communicate all the details. The magic of mathematics is in 

the ideas one experiences when proving.” Essentially I was giving myself permission, 

with those words, to drop any unnecessary symbolism and tedious explication, and just 
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explore the mathematical ideas (and document that exploration). The very next thing I 

wrote was, “Out of curiosity, can I show [the 𝑛 = 2 case]?” I already knew a proof by 

induction could prove for all cases, but I decided to look at a specific case so I could 

better understand the general argument. My subsequent work is shown below in Figure 

27. 

 

Figure 27. Exploring the Second Case 

I worked through this case myself, drawing the very interesting figures shown 

above as an aid. Then I wanted to keep going. I moved on to the 𝑛 = 3 case even though 
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in the past I had worked through an induction proof by Dr. Combinatorial and his 

colleagues that covers all the cases. I was enjoying looking at the individual cases, and 

gaining insight through my work on them. I found the ideas involved in these types of 

proofs intellectually stimulating. What I really want to communicate to the reader is that 

as I began exploring the mathematical ideas related to this conjecture, I found deep 

satisfaction. Pure mathematics is an enjoyable exploration of ideas. The mathematics 

came alive through the proving process. Consider this journal entry. 

It is interesting how I see the problem forming. The proof of the problem is 

different in nature than the class of graphs the proof refers to. The proof has its 

own concept imagery in my mind—different mathematical processes and 

procedures disjoint from the class of graphs itself. … The mathematics is alive 

within the proof. When I imagine the truth of the conjecture, it is some sad lonely 

objective reality. But the proof is where the magic is. It is where my mind is. It is 

where the structure can be seen.  

Toothpicks, Popsicle Sticks, Coffee Stirrers, and Pick-Up Sticks 

This narrative continues with the themes of mathematical inquiry being an 

exploration of ideas, mathematics being emotional, and informal work being essential to 

mathematical understanding. Although more subtle, one can see two additional NOM 

characteristics from the IDEA framework. This story takes place just after I had a 

breakthrough in my understanding and I desired to push my understanding to an even 

higher level—mathematical knowledge is dynamic and forever refined. Also observe that 
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the Petersen graph and related ideas were not only part of Petersen’s identity, but are 

now part of my own.  

Late one night, close to midnight, I had a breakthrough in my work. While 

working in my home office I realized there was a crucial structure involving even cycles 

that kept showing up in the class of graphs I had been studying (with girth five and no 

odd holes greater than length five). The key insight came when I found an alternate 

representation of the Petersen graph. I drew it in my notebook and wrote, “Who was 

Petersen?” See Figure 28.  

 

Figure 28. An Alternative Drawing of the Petersen Graph 

In Figure 29 below are the typical drawing of the Petersen graph in the upper left 

corner and the isomorphic drawing that I discovered in the lower right corner. 
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Figure 29: Two Drawings of the Petersen Graph 

After discovering this alternate representation, I wanted to better understand its 

structure. I wanted to visualize it in a different way, so I decided to create a 3-

dimensional model. I brainstormed for building supplies. I went to my children’s room 

for playdough. The room was dark and the children were sleeping so I was as quiet as 

possible. Next I made my way to the kitchen for toothpicks. Shortly thereafter I had 

created the (sad) graph shown in Figure 30.  
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Figure 30. My First Attempt at a 3-Dimensional Petersen Graph 

Even though the graph I had created was not perfect, I was still excited and proud. 

I found my wife (in bed but still awake) and showed her my creation. I expressed my 

dissatisfaction with the model, and showed her the original drawings that inspired me. 

She said the alternate drawing for the Petersen graph looked like “a funky boat.” She very 

excitedly took over the process of building a better model. We were no longer only 

studying graph theory, but also engineering and geometry. The toothpicks were not long 

enough. Our efforts kept collapsing. My wife decided to get some Popsicle sticks and 

coffee stirrers. Eventually we were somewhat satisfied with the 3-dimensional model 

shown in Figure 31. 
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Figure 31. 3-Dimensional Petersen Graph Made with a Variety of Sticks and Playdough 

After we created this model, I briefly pursued another question while lying in bed. 

Who was Petersen? It was late at night so I did not pursue this question long (I only 

looked on Wikipedia an a few other websites). I found out that Julius Petersen was 

Danish, and had written a famous paper in graph theory called “Die theorie der regularen 

graphs” which was published in December of 1891. The Petersen graph was created as a 

counterexample to a mathematical statement attributed to Peter Guthrie Tait.   

A couple of weeks later I visited another mathematician’s office, Dr. Algebraic, 

and I found that he had similar 3-D structures that he created for his dissertation. I have 

placed a photo of my coffee stirrer/popsicle/toothpick/play-dough model alongside his 

modeling-clay/pick-up stick lattices for comparison in Figure 32.  
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Figure 32. 3-Dimensional Structures (Both Photos Coincidentally with Black Cats) 

I have found that pure mathematics involves an enjoyable exploration of 

interesting structure. The mathematics was so enjoyable and interesting that my wife and 

I stayed up late at night making 3-D mathematical structures. It was also evident from my 

collaboration with Dr. Combinatorial, that he also found great enjoyment from doing 

mathematics. Here is an excerpt from one of our conversations 

Surreal: It’s fun. I’m sort of starting to see what you mean. The good thing about 

mathematics is you can think about it all the time. 

Dr. Combinatorial: ::laughing:: 

Surreal: It is very enjoyable work. 

Dr. Combinatorial: If you have something in your mind you just cannot get rid of 

it. 
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Dr. Combinatorial is a full professor, and he continues to be an active researcher. 

He genuinely enjoys working on mathematics problems. Mathematics is what Dr. 

Combinatorial does when he has spare time. “If you have something in your mind, you 

just cannot get rid of it.” What we have in our minds are mathematical ideas and 

unsolved puzzles. To work on these puzzles and explore these ideas is fascinating and 

enjoyable. We need to find a way to help students realize that this is what pure 

mathematics is all about. 

If No One Agrees With You 

I now tell the story of Binary, a first generation college student, whose idea was 

subject to the scrutiny of the classroom community. In this narrative, we can see at least 

three characteristics of the IDEA framework at play. We see a clear example of how 

mathematical ideas are socially vetted through argumentation in an inquiry-oriented 

classroom. The reader will also observe how I first came to understand that 

mathematical ideas are part of our personal identity. Also note the dynamic nature of 

mathematical knowledge for this particular classroom community and its individual 

members. Most of this story is told in present tense. 

One day in Foundations of Higher Mathematics some small groups are working to 

create group proofs for different theorems and presenting their proofs of those theorems 

to the class. The Yellow Team, consisting of team members Positive, Natural, and Odd 

create the poster shown in Figure 33 and present their proof to the class. 
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Figure 33. Yellow Team’s Poster 

In general, the class as a whole likes the group’s argument and does not have 

many questions. Infinitely Repeating Decimal’s comments are representative of the class: 

“It is pretty straightforward, it doesn’t get more concise than that.” However, Binary does 

have an important question. He asks, “If instead of having the x, if you did put k, would it 

make the argument less strong?” Looking at the poster, we see Binary is referring to the 

original delineation of the odd numbers l and m as 𝑙 = 2𝑘 + 1 and 𝑚 = 2𝑥 + 1 where k 

and x are integers. Would the argument be less strong if we simply defined 𝑙 = 2𝑘 + 1 

and 𝑚 = 2𝑘 + 1? One of the presenters, Odd, responds “Oh so like k here and k here?” 
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(pointing to the k and x in the original delineations). “Yeah,” Binary replies. Odd 

explains, “Yeah, because basically what you did was, you didn’t say that it’s any two odd 

integers, you said the same integers. So you basically just said 𝑙 + 𝑙.” Binary attempts to 

explain that he thinks k is sufficient by appealing to the definition of odd number. But he 

is interrupted as another student, Whole, interjects “If you want to stick with k you could 

be like k subscript 1 and k subscript 2.” The dialogue continues: 

Binary: I just feel like if they both were k it would still make a strong, same, 

strong argument.  

Odd: Cause you’ve got basically, If l equals 2k+1 and m equals 2k+1, as k 

increases the other k is increasing so l and m would always be equal.  

Binary: But it’s still going to be odd. That’s what I am saying.   

Odd: It’s an odd number but it’s the same odd number. So it doesn’t cover any 

combination of two odd numbers. So basically you would only be able to say like 

3+3 or 6 err, not 6. Or 7+7. But with this, because these are different, we could 

say like, let l be equal to 3 and m be equal to 7.  

 Real: So it hits the rubric on, to be more general. Make it more universal. Cover 

all cases instead of something specific. 

Infinitely Repeating Decimal: If you really wanted them to be k’s you could use 

subscripts like 𝑘1 and 𝑘2.  

Odd: Yeah. 
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Infinitely Repeating Decimal: You just need to show that they are not the same 

integer. 

Binary: Yeah. I am just trying to figure out if I just left that as k, and he had that. 

Would I get less points?  

At this point several members of the class laugh and some chime in that indeed 

the argument would receive less points. Dr. Amicable brings the class’s attention back to 

the mathematics. She asks for a show of hands to see how many students understand 

Odd’s explanation, and asks Infinity to explain in her own words.  

Infinity: Yeah if you made both the variables, the k and the x the same. If you did 

make them both k then they would be the same number. So you would get the 

same outcome of l and m. And so your numbers wouldn’t vary. So like he was 

talking about how the answer would be consistently the same throughout. … If 

you make both of those 𝑘’s in the equation where x is. Then you are going to get 

the same exact number.  

Dr. Amicable: Hmm. So is it right, if I were to summarize what you are saying 

Infinity; would it be right to say that essentially we are changing this condition to 

if l and m are the same odd integers?  Then 𝑙 + 𝑚…   

Infinity: Yea. Because you would be plugging in…. You would be using the same 

variables.  

Dr. Amicable: Okay. Binary what do you think? 
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At this point I had expected Binary to jump on board with the class consensus. But he 

stands firm.  

Binary: I am just saying. In general if you were to use examples, then yeah. But just 

in general I feel like no matter what you put in, by the definition of an odd number, 

it’s going to come back to the exact same thing.  

Whole (interrupting): But you have to have some kind of variance in it when you 

are adding two.  

Binary: But not in the way he did, maybe in another proof, yes. But… 

Whole: It’s the same principle though.  

Composite(2): Okay but if you do use k in both l and m… If you say 2𝑘 + 1 is equal 

to l and 2𝑘 + 1 is equal to m. You are going to go to the next step where it adds, 

and you will have 2𝑘 + 1 plus 2𝑘 + 1. And then instead of being 2𝑘 + 2𝑥 it’s 

going to be 2𝑘 + 2𝑘 which equals 4𝑘. And you are going to have 4𝑘 + 2 which is 

not going to be something that looks like the definition of an even number.   

Binary: [emotional] Yes you will. You pull out 2.  

Odd: It would still be even. 

Binary: It would still be even.  

Binary stated “It would still be even” with conviction and several people in the class 

begin to talk. Of course the result 4𝑘 + 2 = 2(2𝑘 + 1) is in the form of an even number 

and several members of the class agree. But they also stress that by using 𝑙 = 2𝑘 + 1 and 

𝑚 = 2𝑘 + 1 the result is “more narrow” because “you’ve got to cover the spectrum.” 
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Subsequently the students and instructors begin to consider examples that may serve to 

change Binary’s mind. Binary still does not. “I understand what ya’ll are saying. It makes 

perfect sense to me what ya’ll are saying. Don’t get me wrong. What ya’ll are saying is 

100% correct. But I’m saying that this way still satisfies everything to me for an odd 

number.”  

Time runs out for the class and the students are required to write one big idea for 

the day and one question they have for their exit tickets. Whole wrote “Clarity is key to 

success. You need to be able to differentiate variables.” Integer’s exit slip reads, 

“Differentiating variables in a proof is a basic, but really important issue.” Binary’s big 

idea was “If no one agrees with you, you’re wrong.”  

After class Surreal and Dr. Amicable were very happy about the discussion that 

students had engaged in regarding Binary’s question. Like any good mathematics 

education scholar should be, they were very pleased with the level of mathematical 

discourse in the classroom. As students left the room, Even asked if she could stop by Dr. 

Amicable’s office. Later on, Dr. Amicable and Surreal had this e-mail exchange: 

Dr. Amicable: … we will need to chat about Even’s concern. In brief, she felt that 

Binary was under attack today in class and it made her feel very 

uncomfortable. She recognizes that Binary may not have felt under attack, but she 

felt that for him.  I appreciated her coming to share her feelings.  Perhaps we can 

address the best ways to critique and also remain professional in our classroom 
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setting (at the beginning of next class), but I'd like to chat with you about your 

thoughts. 

Surreal: Okay we can chat. I did not think Binary was under attack. Only his idea 

was under attack! But I also recognize that students have never experienced 

mathematical argumentation and so it may be hard for some of the students to 

deal with it. Although I do not have immediate thoughts about what we would tell 

students, I think engaging in a dialogue with students may be productive.  

Dr. Amicable: I agree. I did not see it as an attack on Binary either, but it wouldn't 

hurt to talk with the students about critiquing an idea rather than a person. 

Notice that Surreal’s initial thought was that Binary was not under attack. “Only 

his idea was under attack!” But are our ideas not also our selves? When we criticize 

another person’s ideas, are we not criticizing the person as well?  

The next day in class Surreal began by asking students to talk about their big 

ideas and questions from the previous class. Many of the students said they had 

conversations outside of class about Binary’s ideas. Others said they were trying to think 

of new ways to convince Binary of their point of view. Infinitely Repeating Decimal’s 

big idea was “I’m really struggling to figure out a different way to represent that 𝑙 =

2𝑘 + 1 and 𝑚 = 2𝑘 + 1 only satisfies 𝑙 = 𝑚. There has got to be a way though!” He 

expanded upon this idea during class. 

Infinitely Repeating Decimal: You know, to me, the discussion we had on 

Tuesday, it was very clear that set of restrictions only satisfies 𝑙 = 𝑚, but to 
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someone else if it is not clear—like they think that can be interpreted differently. I 

think you have an obligation to make sure that everyone is on the same page. 

Whether one person or another changes their position, I think it is very important 

that everybody agrees on a given definition or theorem, etcetera. But I couldn't 

figure out any other way to represent that, to possibly represent it in another way 

that might make it more clear. 

Similarly, Real’s big idea was “How can we convince/persuade Binary to differentiate his 

𝑘’s.” The classroom dialogue continues:  

Real: Yeah I think clearly we spent a lot of time in class on it the other day, and 

it's an important point. Generality, or proving that something is universally true, is 

more valuable than obviously proving specific cases. I think it is important that 

we help Binary get to that point. But I just wasn't sure exactly how to persuade 

him that we needed to differentiate the k's in that specific example to ensure that 

we have a general case that our proof covers all the bases.  

Surreal: So it seems like Infinitely Repeating Decimal and Real are thinking, 

"We've got this idea and we want to convince Binary of it." And Binary felt, I 

think; how did you feel Binary? [Recall Binary’s big idea: “If no one agrees with 

you, you’re wrong.”] 

Binary: The big idea is like, yeah I agree with ya'll 100%. But ya'll are not 

listening to me when I say that. With Infinitely Repeating Decimal, what he's 

trying to say, I completely agree. But I'm not looking at it as just “𝑘.” When I see 
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that definition of odd—For me, I feel like two times any number in the world plus 

one would be odd. So I'm feeling like, when I see a definition I am taking that 

definition plussing that definition to get this new definition. So when I see that I 

just take 𝑘 and I make it like 𝑧 or like 2𝑧 + 1 equals odd, and that's how I'm 

seeing it. So even though the 𝑘 only satisfies 𝑙 = 𝑚. To me, I feel like just the 

definition alone, no matter the variable, is enough to prove the theorem.  

Surreal: Sure. I think that you're right. That's a good idea. I think that we are not 

used to mathematical argumentation. So we've got some ideas, we're trying to 

convince each other of our claims and it's important that we are criticizing each 

other's ideas. Right? Nobody, I do not think, was trying to attack Binary. Like, 

"You're wrong!" I don't think anybody was trying to do that. We are just trying to 

come to an agreement on these ideas and sometimes mathematical communication 

isn't easy. But has anybody ever had to argue mathematically in a math class 

before this one? 

::class is generally silent:: 

Odd: Not to this extent. 

Surreal: Odd? Maybe a little bit? So this is something different, we have to be 

sure we argue against people's ideas. We don't argue against any people. I don't 

think we are doing that. Dr. Amicable, do you want to add anything about that? 

Dr. Amicable: Yeah. I think this is an important idea and I want to make sure that 

we pause in this moment to really think about what it means to argue in 
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mathematics. Right? What it means to critique. So it's important that we just be 

professional in how we do that and emphasize that what we are critiquing is an 

idea, a mathematical idea, we are not pointing out a particular person. And 

Binary, like I said last time, I was really happy that you were standing your 

ground. And you were like "You know what? I still believe this, and I am going to 

stand firm in that." And that was really awesome to us. Surreal and I were 

reflecting on that. So let's just keep that in mind. Okay. So that we want to be kind 

to one another and respectful of one another's ideas. But also strong in our 

convictions of what is mathematically true.  

… 

Whole: This goes to what you said [Dr. Amicable]. And Binary I am not pointing 

at you. I am just talking about what she said. When you are talking about fighting 

for your convictions and stuff. At a certain point, if you are stuck on one idea, but 

that idea is wrong. But you haven't seen it as wrong yet. You are convinced that it 

is true. But the idea is wrong. When should you reach that point of coming to the 

idea of everyone else instead of sticking to your convictions? 

Dr. Amicable: Yeah that's a great question. I do not have the answer to that. I 

wish I did, I'd be a lot richer. But it's a great question right? Should Binary agree 

with everyone else just because everyone else says that? 

Odd: No because I say it. ::class laughing:: 

Surreal: No. ::laughing:: 
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Odd: Oh. I mean not that. 

Surreal: Even sometimes, I think, mathematicians are attacked; their ideas are 

attacked and everybody in the whole field thinks "this mathematician, his math 

isn't good." And then 2000 years later, this guy's math who was rejected is what 

we use now. So I know that we are not all mathematicians here, but maybe we 

want to be mathematicians right? We are apprentice mathematicians, some of us. 

And so I think it's important that we stand behind our convictions but also 

consider the other point of view. I think that is what is important. The ability to 

step back and say, "Okay what is everybody trying to say here? How is it different 

from my opinion? Is it really different?” Or maybe it is just a new idea under the 

surface that we haven't talked about that can generate a new concept. 

Dr. Amicable: I know when I have been to math conferences and mathematicians 

are presenting their work, sometimes it gets fairly heated in the room, right? 

Surreal, you've been to such sessions? 

Surreal: I don't know if I have been to those.  

::class laughing:: 

Dr. Amicable: No? Well I have seen things that were similar to what we saw in 

class on Tuesday where it's back and forth like "I'm not sure I understand why 

you can say that because I see it this way.” And what is uncomfortable for some 

of us in that situation is that we have sort of grown up in this system where we see 

math as black or white. It’s like one or the other. It’s right or it’s wrong. And what 



149 

 

 

 

we are learning, I hope what we are learning in this class, and as we move into 

upper level mathematics is that there is a lot more grey area in mathematics than 

we’re used to, than we’re accustomed perhaps, than we’re comfortable. Actually 

there is a lot of emotion involved in mathematics. And there is a lot of grey area 

involved. So Whole, I wish I could answer your question as in, this is when you 

should cater to the crowd, and this is when you should hold your convictions but 

it’s really a personal thing that you need to continue to work through. And 

Binary’s going to keep thinking about these ideas and we’re going to keep 

thinking about Binary’s idea. About this idea of variable and what it is 

representing in general. Okay? So let’s just keep thinking. I like what Surreal said 

about we need to keep thinking about one another’s ideas, and really try to 

understand the other idea. The more we can understand someone else’s idea, the 

deeper our own understanding will become. Alright? 

Binary: I think no one really understands my idea. I think people are just so 

focused on 2k+1 that they are not looking at the bigger picture here. 

Whole (interrupting): Well earlier before class today, Complex brought it up and 

we were talking about this ... And he brought it up that what you were saying 

break it down by the definition of variable—what the actual definition of variable 

is … 
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Over the course of two days, this was at least the fourth time that Whole 

interrupted Binary. Complex shares an idea, and Surreal, wanting to move on to other 

course content, asks Binary to explain his idea one last time.  

Binary: For me when I see 𝑘, I pretty much in my head, I put an odd number 

times 2, and I put the 𝑧 which means any real integer, plus 1. So I know if I see 

2𝑧 + 1 that represents any possible odd number. So I put (2𝑧 + 1)  + (2𝑧 +  1) 

equals an even number. That’s what’s in my head. So when I see 𝑧 I know I can 

put in any number imaginable and get an even number. And for this example I 

feel like that was enough proof. You didn’t need an example. You didn’t need any 

other variables, and that is the idea that I had.  

Surreal tries to get the class moving on to another task. “Can we move on now?” 

But the rest of the class wants to continue to argue and discuss. At one point Odd says 

“You can only fit one in there at one time. … Let’s separate 2𝑘 to be 𝑘 + 𝑘. Then 

suddenly it is not odd anymore because 𝑘 could be both 2 and 3 at the same time. Does 

that make sense?” Binary replies solemnly “You said it all wrong bro. You said it all 

wrong.” Later on, Dr. Amicable reiterates that the instructors value classroom discourse. 

She also recognizes that Binary has an advanced perspective of variable.  

Dr. Amicable: Yeah. I think that’s a really important idea…. You know this 

conversation; we’re allowing it to go so long and we are digging into it so deep 

because I value this type of thought. We value this type of thought. And the really 

cool thing is that, Binary, you have such an advanced perspective on this. Your 
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perspective is really advanced and really deep. You are seeing the generality of 

this situation in ways that I wish many of the students in my other classes could 

see. So we don’t mean to downplay your idea at all. Sometimes we need to 

communicate to people that don’t have that same depth of generality. 

… 

Dr. Amicable: What do you say we move on? 

Students: Awwwww. 

Dr. Amicable: Yeah we could probably talk for another hour about this. 

A couple weeks later, in my journal I wrote: 

Emotions today I remember Binary hasn’t talked the last two class periods. … We 

said we were not criticizing Binary, just his ideas. But Even took it as criticisms 

of him. Our ideas are our selves. NOM - mathematics involves criticism of 

people’s ideas and argumentation. Students are not ready for a class in which their 

ideas (and hence their selves) are criticized against the “objective” standard. Even 

in school math… a bad grade signifies bad ideas. The teacher is criticizing the 

ideas and evaluating them based on perceived objective standards. Filtering and 

homogenizing thought. I guess what typically happens is that students are told the 

“right” ideas. Take away the creative act. When we allow students to take part in 

the creation of the process, we can judge their ideas relative to objective 

standards. … I have a vision of pre-service teachers afraid to speak in class. 
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Mistakes are okay! Push our thinking forward as a community. Courage and 

humility.  

I was referring to Lampert (1990) when I wrote of courage and humility. She wrote,  

My argument about what is entailed in teaching students about the nature of 

mathematical knowledge draws on work in the history and philosophy of 

mathematics. This work supports a vision of knowing mathematics in the 

discipline that differs from knowing mathematics in conventional classrooms. My 

research examined whether it was possible to make knowing mathematics in the 

classroom more like knowing mathematics in the discipline. My organizing ideas 

have been the "humility and courage" that Lakatos and Pólya take to be essential 

to doing mathematics. I have treated these as social virtues, and I have explored 

whether and how they can be deliberately taught, nurtured, and acquired in a 

school mathematics class. I concluded that these virtues can be taught and 

learned. What has been described here thus is a new kind of practice of teaching 

and learning, one that engages the participants in authentic mathematical activity. 

(p. 59) 

If we are to open the classroom so that student ideas drive the discussion, we must 

recognize that these ideas are part of students’ personal identities. It will take courage for 

students to put their ideas forth to the classroom community for criticism, and humility 

for them to realize that their ideas may need to be refined in light of new evidence and 

ideas.  
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Odd, Even, Odd, Even 

This narrative is a transcription of a moment of conversation between Dr. 

Amicable and Surreal during one of their course planning meetings. Surreal tells Dr. 

Amicable a story about his then six-year old son. In this story we see at least three 

elements from the IDEA framework: pure mathematical inquiry is an exploration of 

ideas, mathematical ideas are part of our identity, and our knowledge is dynamic. My son 

is excited to share the results of his mathematical explorations, personally taking 

ownership of an idea after he learns that there are some mathematical ideas that no one 

has ever had before. 

Surreal: That’s what I want people to know about math. Mathematicians, at least 

some of them, really enjoy this work because it is exciting and it is interesting. 

And if that is never valued in the classroom then how will students ever learn that 

is something that can happen? You will never believe what my son said to me two 

days ago. So I told him two weeks ago I am working on an unsolved problem. 

Nobody has solved it before. And he was like “Wow not even your teacher?” And 

I was like “No. Nobody has solved it. Never before.” ::laughing:: So he thought 

that was really cool I think. So then the other night in bed he was like, “3, 6, 9, 12, 

15, 18, 21, I notice that if you count by threes then it goes odd even odd even odd 

even odd even.” And he was really excited about that idea. And then I said “Oh 

yeah, that’s really cool.” And then the next day I mentioned his idea again and he 

was like “I can’t believe that I was the first person who ever thought of that.” 
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::laughing:: 

Dr. Amicable: That’s awesome! 

Levels 

The following two narratives, Levels and Cases, are companions that were 

originally drafted together to highlight the NOM characteristic that proofs are bearers of 

mathematical knowledge. In terms of the IDEA framework, Levels can be viewed as a 

story about the exploration of mathematical ideas and of the dynamic nature of 

mathematical knowledge. The narrative begins with a lengthy quote from the 

mathematician and philosopher of mathematics, Yehuda Rav. As Rav explains the idea 

that proofs are bearers of mathematical knowledge, he also alludes to the fact that 

mathematics is an exploration of ideas, mathematical knowledge is socially vetted 

through argumentation, and the mathematician’s knowledge is dynamic.  

 [P]roofs rather than the statement-form of theorems are the bearers of 

mathematical knowledge. Theorems are in a sense just tags, labels for proofs, 

summaries of information, headlines of news, editorial devices. The whole arsenal 

of mathematical methodologies, concepts, strategies and techniques for solving 

problems, the establishment of interconnections between theories, the 

systematisation of results—the entire mathematical know-how is embedded in 

proofs. When mathematicians pick up a paper for study, they turn their attention 

to the proofs, since proofs are the centre of gravity of a research paper. Theorems 

indicate the subject matter, resume major points, and as every research 
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mathematician knows, they are usually formulated after a proof-strategy was 

developed, after innovative ideas were elaborated in the process of 'tossing ideas 

around'. Proofs are for the mathematician what experimental procedures are for 

the experimental scientist: in studying them one learns of new ideas, new 

concepts, new strategies—devices which can be assimilated for one's own 

research and be further developed. Needless to stress that in studying proofs—or 

experimental procedures—we are also engaged in a cumulative collective 

verification process. (Rav, 1999, p. 20).  

Keith Weber, a mathematics education scholar from Rutgers, collected evidence 

that corroborates Rav’s idea that proofs are bearers of mathematical knowledge in his 

interviews with professional mathematicians. Weber (2010) found that one of the reasons 

mathematicians read proofs is in order to learn new methods and new techniques that 

could be used in their own work, in essence, filling their mathematical toolbox (cf. Hanna 

& Barbeau, 2008).  

When I spoke to Dr. Combinatorial about my desire to begin mathematical 

research for the purposes of my dissertation, he e-mailed me some PowerPoint slides and 

told me to make sense of them and come back and talk to him after I had done so5. This 

was no easy task! I found myself reading chapters from graph theory textbooks (e.g. 

Harris, Hirst, and Mossinghoff, 2008; Dietstel, 2010) related to graph coloring and 

                                                 
5 After we agreed to work on his conjecture, he later sent me a paper that I also was tasked with making 

sense of and explaining to him. This paper was written by Dr. Combinatorial and two of his colleagues, and 

was under review for publication. 
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watching videos of mathematicians proving theorems related to the chromatic number to 

get acquainted with the ideas. Based on the work I had done in my review of the 

literature, I was well aware of the notion that proofs are bearers of mathematical 

knowledge. In an early journal entry I wrote, “I am excited reading this graph theory text 

with the knowledge that the proof techniques in this textbook may be valuable in my 

future work. I feel I did not understand this as I worked on my master’s thesis.” A couple 

days later, I came to a realization: “In everything I am reading, including the graph theory 

textbook, Dr. Combinatorial’s PowerPoint slides, this video by Seymour, the same proof 

method is being applied. Seymour called it a levelling…”  

For instance, here in Figure 34 is an excerpt from one of Dr. Combinatorial’s 

PowerPoint slides: 

 

Figure 34. Dr. Combinatorial’s PowerPoint Slide 
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I was unsure about the meaning of the notation, 𝐿𝑖 = 𝑓{𝑥: 𝑑𝐺(𝑢, 𝑥) = 𝑖} for 𝑖 =

0,1,2, … (One reason that I perhaps misunderstood is that there is a typo in the text! That f 

should not be there.) I was also struggling to understand the proof technique that Dr. 

Combinatorial was using. But finally it all clicked when I watched a YouTube video of 

the Princeton mathematician Paul Seymour6. What Seymour explained is that every graph 

can be partitioned into levels. For instance, let’s take a look at the Petersen graph shown 

in Figure 35. 

 

Figure 35. The Petersen Graph 

We will construct levels by first choosing any arbitrary vertex from the Petersen 

graph. For instance, choose the red vertex in the upper left corner, labeled 𝑢 in Figure 36. 

                                                 
6 https://www.youtube.com/watch?v=mlf8yhq9tJ4  

https://www.youtube.com/watch?v=mlf8yhq9tJ4
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Figure 36. Partitioning the Petersen Graph into Levels 

Notice that all the blue vertices are a distance of one edge away form 𝑢. We say 

that those vertices are in Level 1, denoted 𝐿1. Then all the orange vertices shown in 

Figure 36 are a distance (shortest path) of two edges away from 𝑢. We say those vertices 

are in Level 2 (𝐿2). We can then consider the induced subgraphs of these collections of 

vertices, which are the graphs formed by all the vertices and all the edges that connect 

those vertices. We denote these induced subgraphs by 𝐺[𝐿1] and 𝐺[𝐿2] respectively and 

they are shown in Figure 36. Try to make sense of these definitions and the diagrams 

above before continuing.   



159 

 

 

 

This method of partitioning a graph into levels is crucial to the approach Dr. 

Combinatorial and I used to prove lemmas related to our conjecture. It was our standard 

method of attack. In Figure 37 is an excerpt from one of my mathematics notebooks. At 

the time I drafted the work on this page I had a robust conception of the levelling process. 

I can reflect on the dynamic nature of my own knowledge as I gradually began to 

understand the technique. I understood that Dr. Combinatorial’s notation 𝐿𝑖 =

{𝑥: 𝑑𝐺(𝑢, 𝑥) = 𝑖} referred to the set of all vertices a distance of i edges away from some 

arbitrary vertex u. Each oval shape in Figure 37 represents the induced subgraph of a 

different level (again an induced subgraph consists of all the vertices a given distance 

from u along with all the edges that connect those vertices).  

 

Figure 37. Level after Level 
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Again, I want to emphasize that I did not understand this technique until I saw it 

in several places (Dr. Combinatorial’s PowerPoint slide, a math textbook, and finally a 

YouTube video). Proofs are bearers of mathematical knowledge, and mathematicians can 

read other people’s proofs to gain ideas about techniques to use in their own work. In my 

case, I had already inherited a technique from Dr. Combinatorial, but it was not until I 

read (or watched) other proofs that I fully understood it. Below in Figure 38 is a photo 

from Dr. Combinatorial’s whiteboard to further illustrate this concept.  

 

Figure 38. Dr. Combinatorial’s Whiteboard 
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Notice that in the lower left hand corner of the whiteboard there is the alternate 

representation of the Petersen graph I mentioned in a previous story. Notice how it is 

labeled according to the levels: first with the vertex 𝑢 and then levels 𝐿1 and 𝐿2. This 

levelling was a crucial technique that we used in our work.  

Cases 

It may be beneficial for students learning to construct proofs to know and 

understand that they may find new techniques and methods to use in their own work from 

other people’s proofs. The companion piece to Levels, Cases demonstrates how students 

may come to understand that proofs are bearers of mathematical knowledge in the 

classroom. In terms of the IDEA framework, it is another instance of the social vetting of 

mathematics through discourse and argumentation. In this case it was the validity of a 

proof technique that needed to be debated.  

One day in class, a group of three students, Whole, Permutation, and Binary 

presented their argument for the claim that “if p is an integer, then 𝑝2 + 3𝑝 + 2 is even” 

to the class. These students used a proof by cases. It was not clear to all the other students 

that this approach was valid. Consider the transcript below, beginning with a summary of 

the group’s proof. 

Proof: If p is even, then 𝑝 = 2𝑘 for some integer 𝑘. Then 

𝑝2 + 3𝑝 + 2 = (2𝑘)2 + 3(2𝑘) + 2 = 4𝑘2 + 6𝑘 + 2 = 2(2𝑘2 + 3𝑘 + 1). 

If p is odd, then 𝑝 = 2𝑗 + 1 for some integer 𝑗. Then  

𝑝2 + 3𝑝 + 2 = (2𝑗 + 1)2 + 3(2𝑗 + 1) + 2 = 4𝑗2 + 10𝑗 + 6 = 2(2𝑗2 + 5𝑗 + 3). 
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Even: I was slightly confused because it says “𝑝 is any integer.” That is the only 

thing that it says, and “𝑝2 + 3𝑝 + 2 is even.” So why did you go from 𝑝 is any 

integer to 𝑝 is even and 𝑝 is odd? 

Whole: So we could split it up and see how it applies to an even and odd. 

Permutation: Technically there are two subsets of the integers. Technically 𝑝 is an 

even integer or 𝑝 is an odd integer so we had to prove for both. 

Dr. Amicable: Even, do you buy that that covers all cases if they check for evens 

and they check for odds? 

Even: Ummm. I need a second to think. 

Dr. Amicable: Finite, what do you think?  

Finite: On the top part, the top proof, one problem I have is; so when 𝑝 is even, 

shouldn’t it be when 𝑝 is an integer? Because integers can be both even or odd.  

Prime: They did a proof for even numbers and then a proof for odd.  

Whole: But that proof for that one up there is for when 𝑝 is even. So it says when 

𝑝 is even, of course this is true for when 𝑝 is even. Then 𝑝2 + 3𝑝 + 2 is even, and 

then you look at the bottom. It says when 𝑝 is an odd integer, then that is going to 

be even as well. So it’s specifically for when 𝑝 is even, and then specifically for 

when 𝑝 is odd, showing for when it’s even or odd. It’s like what Permutation was 

saying earlier, you technically do have two subsets when it comes to integers you 

have the evens or odds.  
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Dr. Amicable: This is a unique strategy that we can put into our toolbox, right? 

That if we are trying to prove something in general for any integer. Then we could 

try to split it in two, this is what would be called a proof by cases. So we could 

split it into two cases where we test it for evens and we test it for odds, and since 

we have shown for both of those that it works, then it would work for all integers.  

I think it is great that Dr. Amicable legitimizes proof by cases as a method 

students can use in their future proofs, and in their future toolbox. What I think might 

also be good is being explicit, telling students that this is one reason mathematicians read 

proofs, and that they may also find it valuable in their own work. A couple of students 

mentioned that they may have learned something new on this day of class in their exit 

tickets: Finite wrote “Sometimes proving by parts is helpful.” Composite reflected, 

“Consider I can learn so much from seeing other people’s work! Really enjoyable too!” 

Mistakes 

This narrative primarily highlights the fact that the mathematician’s knowledge is 

dynamic and forever changing. One reason that our knowledge is dynamic is that humans 

(even mathematicians) make mistakes. The process of social vetting may even fail as 

several mathematicians are convinced that a proof is correct. Also the reader should 

observe the collaborative exploration of ideas between Dr. Combinatorial and I. Note 

how the social vetting process is crucial in helping Dr. Combinatorial and I revise our 

knowledge. The section begins with a discussion of Ernest’s distinction between 

subjective and objective knowledge.  
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Paul Ernest (1991) described his social constructivist philosophy of mathematics, 

and he argued that mathematical knowledge is generated through cyclical process. There 

is both objective knowledge, ratified and generally agreed upon by the mathematics 

community, and there is subjective knowledge of individuals. As members of the 

community become enculturated into this objective knowledge, they interpret it in their 

own way, perhaps creating new mathematical ideas and transforming what is objective. 

But also an individual mathematician’s subjective knowledge is sometimes transformed 

or revised (perhaps through discussions with other mathematicians). When we critique 

each other’s ideas and find flaws in each other’s reasoning, our knowledge is refined. See 

Figure 39 for my representation of Ernest’s cycle of knowledge construction in 

mathematics.  

 

Figure 39. Paul Ernest’s Cycle of Mathematical Knowledge Creation 
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It is not controversial that our subjective knowledge is revised. Another way of 

putting this is that mathematicians make mistakes. In my work with Dr. Combinatorial, I 

found that we often made mistakes. One day Dr. Combinatorial provided a verbal proof 

of a claim about any graph in the class of graphs we were interested in (graphs with no 3-

cycles, no 4-cycles, at least one 5-cycle, and all other odd cycles having a chord). I was 

very excited about his proof.  

Dr. Combinatorial claimed that when we partitioned the vertices of the graph into 

levels based on the distance each vertex was from some arbitrary vertex (as discussed in 

the Levels story), the induced subgraph of the vertices at the third level will form an 

independent set of vertices. In other words, Dr. Combinatorial claimed that none of the 

vertices in Level 3 are adjacent (there is no edge connecting any vertex of 𝐿3). His 

reasoning was by contradiction. He assumed that we did have an edge in Level 3. Figure 

40 is a picture of Dr. Combinatorial drawing this hypothetical edge. 
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Figure 40. Hypothetical Edge in Level Three 

So we have assumed there is an edge in Level 3. Now consider the two vertices 

that form the endpoints of that edge. Each of those must have a neighbor in Level 2. 

(Think about why this is true if it is not clear!) Furthermore, those neighbors must be 

distinct, or otherwise we would have a triangle! This is shown below in Figure 41.  
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Figure 41. The Neighbors in Level Two Must be Distinct 

Dr. Combinatorial used similar reasoning and explained that the vertices in Level 

2 must also have distinct neighbors in Level 1. Those vertices connect back to our 

arbitrary initial vertex u. Then if you count the number of edges all the way around (see 

Figure 42), you will find that you have a 7-cycle. Do you recall from the Tension 

narrative that our class of graphs has no 7-cycles? We have arrived at a contradiction, and 

thus we have proven our claim that Level 3 is independent.  
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Figure 42. The Diagram Dr. Combinatorial Used in his “Proof” That Level Three is 

Independent 

I was very excited about Dr. Combinatorial’s claim because, if it was true, then 

we could prove that as long as our graph only contained three levels, the chromatic 

number is 3. But over the course of the next week I began trying to reprove Dr. 

Combinatorial’s claim on my own, and I found that it was not true. I found some 

counterexamples. There must be a hole in his proof.   

In Figure 43 there is a counterexample that I drew on Dr. Combinatorial’s 

whiteboard a week later (The 6/5 circles are related to a different idea). 
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Figure 43. Counterexample on the Whiteboard 

Notice that in the lower left hand corner of the whiteboard I have drawn a graph 

(with girth 5 and no odd holes of greater length) and labeled the vertices according to 

levels after picking an arbitrary initial vertex 𝑢. Also notice that there are two vertices 

from Level 3 that are connected with an edge. This contradicts Dr. Combinatorial’s claim 

that the third level is independent. What is the problem with Dr. Combinatorial’s proof? 

Well let’s again assume we have an edge in Level 3 (shown in the uppermost diagram in 

Figure 43). Then the vertices that comprise that edge must have distinct neighbors in 

Level 2 (or else a triangle would form). But, those parent vertices need not have distinct 
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neighbors in Level 1 (as Dr. Combinatorial assumed). Rather they can connect to the 

same vertex, and we will have the 5-cycle shown in the top-most diagram in Figure 43.  

So I showed these counterexamples to Dr. Combinatorial, and here is a transcript 

of our conversation afterwards.  

Dr. Combinatorial: So that’s a problem with my claim?  

Surreal: Yeah, just the claim you made last week. 

Dr. Combinatorial: It’s not good, right? I have to clear my, some thoughts in my 

mind.   

::speaks softly while thinking and looking at the whiteboard for several seconds:: 

Dr. C:  This is not necessarily a 7-cycle? 

Surreal: No. 

Dr. Combinatorial: Okay. 

::long silence:: 

Dr. Combinatorial: We cannot uh, salvage this.  

But of course we could salvage it a bit. We were wrong, but we just needed to 

refine our knowledge. We now know that whenever there is an edge in Level 3, it must 

always be an edge of a five cycle that has a single vertex in Level 1.  

We made plenty of other mistakes during our collaboration. In the original 

PowerPoint Dr. Combinatorial had sent me through which I acquainted myself with his 

problem was the slide shown in Figure 44. 
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Figure 44. Claim that the Induced Subgraph of Level 2 Union Level 3 is Bipartite 

The slide contains the claim that the graph induced by the vertices in Level 2 

together with the vertices from Level 3 will form a bipartite graph (if the radius7 is five or 

less). A bipartite graph is a graph that can be partitioned into two sets of vertices, each 

independent of the other (i.e. there are no connections across the two sets). But in my 

work trying to prove this claim, I found the counterexample shown below in Figure 45. 

Notice there is a 5-cycle across the two levels.  

                                                 
7 The radius of a graph is analogous to the radius of a circle. To say the radius of the graph is 5 essentially 

says you can partition it into five or fewer levels using the techniques described in the Levels narrative. 
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Figure 45. Counterexample to the Claim that L2 Union L3 is Bipartite 

Dr. Combinatorial and I made mistakes. But the thing is, even though we made 

mistakes, they did not bring us down. When I discussed the mistake with Dr. 

Combinatorial, he said, “I am glad you see this.” When Dr. Combinatorial or I made 

mistakes it was a good thing. We are not going to prove the conjecture if we do not 

identify the flaws in our own knowledge and remedy them. Do our students also 

understand that mistakes are a major part of mathematical work? And that it is important 

we identify our mistakes so we can refine our knowledge and push our thinking forward?  

Coloring 

This collection of stories has an overarching mathematical theme of identity. The 

problems we choose to work on, and the ways in which we work on them (our practices) 

are part of our identity. One can also still see the concurrent themes of emotional 

exploration through informal ideas, and the dynamic nature of subjective knowledge.  
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One evening I was at home working on Dr. Combinatorial’s conjecture in my 

bedroom. My wife walked in on me and said “What are you doing in here? Are you 

coloring?” Although I was coloring, I replied, “No. I’m doing math.” To which my wife 

replied, “You can’t trick me. I see you coloring with your academic ways.” See Figure 

46. 

 

Figure 46. Partitioning with Real Colors 

Indeed I was doing mathematics, but I was also coloring. Reflecting back on the 

time during which I worked on the conjecture, I recall I was very pleased with the fact 
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that I could do both coloring and mathematics at the same time. The coloring seemed to 

make the mathematics more accessible to other people so that I could discuss my work. I 

could quickly explain what a graph was as well as the rules of the chromatic game (e.g. 

Color the vertices so that if two vertices are connected by an edge, they cannot have the 

same color. Then what is the smallest number of colors you need to color all the 

vertices?). One day I told Dr. Amicable how “yesterday I spent ten extra minutes at a 

tutoring session telling my student about this work. I am just really excited.” Coloring 

was also an avenue to get my family members interested in my research. I began to 

regularly ask my children to color different graphs. My youngest son would often color 

with me. See Figure 47 for a coloring he did of a 5-cycle.  

 

Figure 47. My Son’s Coloring 

One day I was working with Dr. Combinatorial in his office, and we were 

discussing some details of the coloring conjecture. Below is the brief dialogue along with 
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the related drawing from Dr. Combinatorial’s Whiteboard in Figure 48. Notice what Dr. 

Combinatorial says about using colors.  

Dr. Combinatorial: As long as these two are different we are fine. 

Surreal: Let me make sure I agree with you. So if this one is red. ::coloring:: And 

this one is green. ::coloring:: And then say this one is brown. ::coloring:: And this 

one is red or something. ::coloring:: Then I could just say well, I will color this 

one green and color all those green. That would be okay. Or color this one red and 

that one green? Yeah it would be okay. We could do that. So I guess the problem 

is. I am thinking these have to both be the same color. And these, one’s green, and 

one’s red. Is this the problem perhaps? Yeah that is a problem. Yep okay.  

 

Figure 48. Colors Versus Numerals 
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Dr. Combinatorial: Okay. Comments. If you are an English major, you use green 

red. If you are a mathematics major you use 1,2,3.  

Surreal: Why is that?  

Dr. Combinatorial: Because you are a mathematics major. 

Surreal: So? ::laughing:: 

Dr. Combinatorial: Because you may confuse color.  

Surreal: Ok. 

Dr. Combinatorial: To distinguish color is not as easy as to distinguish number.  

Surreal: But they are just labels though to me.  

Dr. Combinatorial: Yeah. Just labels. Different colors. Just labels. But if you 

label, using 1,2 is easier.  

Surreal: Okay. 

I could sort of see Dr. Combinatorial’s point. One may confuse the brown and the 

red. Certainly numerals would be a more efficient, quicker means of labeling. But what 

did he mean? An English major uses colors? But a mathematician uses numerals? I used 

to be an English major, and ultimately my undergraduate degree was in philosophy rather 

than mathematics. I prefer coloring to using numerals. Does this mean I am not a 

mathematics person?  

Of course I rejected Dr. Combinatorial’s advice. I took pride in being colorful 

with my work. I remember telling my wife that I was rebelling. A solitary, perhaps 
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narcissistic rebellion. In one of my notebooks I wrote, “I can rebel, but only in this 

privileged white male sort of way that means nothing.”  

In the coming weeks I became frustrated working on the conjecture. On the 

advice of Dr. Combinatorial I had begun to try different approaches attacking the 

problem. None of these approaches were fruitful. I could not see the big picture for how 

we would ultimately prove that any graph in our class would need only three colors. I 

remember feeling slightly defeated. Sitting in my home office I happened to look at a 

picture on my wall of some work I did as a master’s student. See Figure 49. 

 

Figure 49. The Beginnings of an Infinite-Triangle Composed Graph 
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I was inspired to use 5-cycles instead of triangles and do something similar. I 

began constructing an infinite graph composed of pentagons using the method shown in 

Figure 50.  

 

Figure 50. The Start of an Infinite Pentagon-Composed Graph 

My daughter and I did some work on the problem together. We did a few 

iterations and started coloring the outer “rings” first and then moved toward the center 

pentagon. Using this approach we needed four colors the first time we tried. Later we 

were able to achieve three. From my journal: “I remember we discovered 5, 10, 20, 40 is 

the number of vertices/edges in new rings (cycle circles). Also my daughter found the 
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pattern 1, 5, 10, 20 if we count pentagons instead of ring vertices.” She also told me to be 

sure and give her credit if this idea ever made it into a book.”  

It took me a few days to convince myself that we only needed three colors for the 

infinite pentagon-composed graph. Eventually I solved it by changing my focus. Instead 

of starting with an outer ring and coloring the vertices moving ring by ring to the inner 

pentagon, why not start with the inner pentagon and move out? When I changed my 

focus, I soon solved the problem. I found an algorithm for coloring each ring in which the 

red color served as an insulator between distinct blue/green paths. Figure 51 is the 

coloring that convinced me.  

 

Figure 51. Coloring the Five Rings of the Infinite Pentagon Graph 
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During the time I was working on the infinite pentagon graph, I was sharing this 

graph and a few other graphs (that could be extended to infinity) with my children. Figure 

52 has a triangle structure, and Figure 53 has a square structure. My wife called the 

square structure crystalline. My youngest son quickly figured out it only needed two 

colors, and we colored it together. I hung it on the wall in my home office.  

 

Figure 52. Triangulation 
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Figure 53. Crystalline 

A few nights later I wrote this in one of my mathematics notebooks: “Excited 

about the crystalline structure on my wall. Affront to identity when Dr. Combinatorial 

said an English major will use colors. I embrace that identity. A vision where 

mathematics can work for more than a solitary few. Inspired a bit by Piper’s ‘hire me’ 

blog. 8 Do what you love.” 

The Essence of Research 

In the Colors narrative, I described how a change in focus helped me to solve the 

problem related to the infinite pentagonal graph. Rather than focus on an arbitrary ring 

and move towards the center, I started from the center and moved outward. Sometimes 

                                                 
8 http://www.theliberatedmathematician.com/2016/05/hire-me/  

http://www.theliberatedmathematician.com/2016/05/hire-me/


182 

 

 

 

we can change our perspective, focus on mathematical ideas in a different way, or use a 

new method in order to gain insight into a problem. This narrative continues with that 

idea, which is also related to the notions that mathematics is an exploration of our ideas, 

and our knowledge is dynamic.  

Early on in my work I was working through a graph theory textbook, proving 

some basic results in coloring theory in order to familiarize myself with the content so 

that I would be prepared to do productive work on the unsolved conjecture. From my 

journal: 

I have been studying a graph theory textbook by Harris, Hirst, and Mossinghoff 

(2008). There is a Chapter on “Bounds of Chromatic Number.” Since I am 

researching this topic, I thought the textbook would be a nice way to expose 

myself to some of the standard results in the field as well as standard methods for 

proving the results. I was struggling to understand the theorem that for any graph, 

the chromatic number will be less than or equal to the maximum degree of the 

graph plus one, that is for any graph 𝐺, 𝜒(𝐺) ≤ ∆𝐺 + 1 where ∆𝐺 is the 

maximum degree of G.  

The degree of a vertex is the number of edges that emanate from it. For example, 

consider the triangle graph. All the vertices of the triangle graph have a degree of two, 

thus the maximum degree of the triangle graph is two. We know the chromatic number is 

three, which is one more than the maximum degree (two). This is a simple example of the 

theorem. I tried to work out my own proof for a general graph. I started the proof by 
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focusing on a vertex of max degree which I called v1. I reasoned I could give it a color, 

but then I needed to show we could color the rest of the graph with at most ∆𝐺 (the 

maximum degree of 𝐺) colors. I had trouble showing this so I took a break. From my 

journal:   

Later after a nap and food and several other interventions, I began to think about 

the problem again while I was playing Frisbee with my son. I realized that if I 

consider all the vertices around v1 to have already been assigned a color, then the 

worst case is they have all been assigned different colors, thus we need one more 

color, so the total number of colors is equal to the max degree plus 1. … The 

theorem seems clear to me now. I believe that I achieved an insight in this 

problem by slightly altering my focus within the graph. Rather than thinking I 

would color v1 and then be forced to color all the adjacent vertices, I imagined 

that all the adjacent vertices were already colored and I would then color v1. That 

change of focus was enough for me to see the truth of the theorem. Not sure what 

changing focus has to do with the NOMI. I suppose that (since there is at least 

one) some mathematicians are able to achieve insights into problems by changing 

their focus or perception within a mathematical situation. 

Dr. Combinatorial and I also changed our focus several times during our 

collaboration in our efforts to prove the conjecture. I learned that we were not the only 

mathematicians who tried to achieve insights into problems by changing perspective. 
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Consider the following conversation I had with Dr. Algebraic who called a shift in focus 

“the essence of research”: 

Dr. Algebraic: [A mathematician] invited me to come to a talk, and there was this 

conversation that came up about embedding graphs on the torus and how very 

very complicated it was, and how everybody around the world was kind of ground 

to a halt with this research because it was so complicated. And I was looking at it 

and thinking, I don’t understand this, but I don’t understand why they are doing it 

that way either. So I went back and started thinking about it. And I am trying to 

come up with a different way of approaching the whole problem now. Not that it 

was wrong. But it was just too hard. 

Surreal: So I think that is what I was trying to say earlier about changing focus. 

There is this way you are attacking a problem. You study the same problem but 

you just shift your focus slightly in some mathematical way. 

Dr. Algebraic: That is the essence of research really, is a shift in your focus. 

We Are the Future 

This final story features a classroom discussion that arose after a disagreement 

amongst students regarding best practices for proof writing. The class discussion leads to 

a commentary on acceptable mathematical practices both within the classroom and in the 

discipline of mathematics. The standards of the discipline are negotiated amongst 

mathematicians, and the discipline of mathematics has a dynamic nature due to the fact 

that its members are constantly changing.  
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Near the end of class, students have just debated how much detail they need to put 

into their proofs. If 𝑘 is an integer and 𝑗 is an integer, do you have to write 𝑘 + 𝑗 is an 

integer if you use it in your proof? Do you have to go even further and justify this by 

mentioning the closure property of the integers under addition? Some of the students say 

yes. Others say no. Others want to know if they will be “docked for points.”  

Dr. Amicable says that the students should do whatever the classroom community 

agrees is best for communication. She asks me what I am thinking and I say, “You 

probably don’t want to know.” Nevertheless, I mention that in professional mathematics 

papers, there will often be gaps. I say, “It is assumed the mathematician audience knows 

these things. This sometimes makes the papers difficult for me to read—for someone like 

me who is not a super mathematician. So I would maybe appreciate some clarity 

sometimes.” 

After further discussion, Dr. Amicable says she believes the students should 

always write their proofs with their classmates as the intended readers in mind, always 

knowing that they could be called upon to present their work to their peers in class. She 

also mentions the practice of “handwaving.” 

Dr. Amicable: I was talking to Infinitely Repeating Decimal the other day about 

handwaving. You can kind of like wave your hands and say, “Oh yeah this is true 

and I am sure Dr. Amicable would agree with that.”  

Odd: It can be shown that, dot, dot, dot.  
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Dr. Amicable: Yeah! Clearly. You will see that in textbooks. Clearly, dot, dot, 

dot. But it is not so clear to me. So let’s try to push ourselves. This is all about 

learning. Let’s push ourselves go the extra mile to clarify and communicate as 

best we can. To our peers. If you are communicating well to your peers then it is 

likely you are communicating to Surreal and I as well.  

Infinitely Repeating Decimal asks if he, or any other member of the class, were 

going to write up something for publication, “Would it be viewed in a negative light if it 

was too expository in areas in which it over explains?” Surreal explains that it is a 

difference of opinion. 

Surreal: Well when I did my thesis my professor was like, if we are going to 

publish this you will have to cut a bunch of stuff. But to me the papers are so hard 

to read. I would welcome someone coming into the mathematics community who 

was very explanatory. I just wish more mathematicians could really clearly 

convey their ideas. But it is just a difference of opinion. There is another 

mathematician I know who says, that is the fun of it. You have to go check 

everything yourself and make sure you do all the side work. 

::class laughing:: 

Odd recommends footnotes as a “happy medium” and Infinitely Repeating 

Decimal agrees. Then Dr. Amicable poses an interesting question taking the discussion to 

a new level: “You know who the next generation of mathematicians are right?” Someone 

hesitantly says “us.” 
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Dr. Amicable: Yes! Right? So you are the community. And you will be able to 

determine those things. What counts as proof is really determined by who is in the 

community.  So that’s what’s really neat. So if you all go out there and say I’m 

going to become a mathematician, and I’m going to change this. Just like Surreal. 

He is going to be right along with you. I want to change it so that it is a little bit 

easier to understand these arguments. Right? 

Infinitely Repeating Decimal: We are going to change the world. I am going to 

change the entire mathematics community just for you. 

Chapter Summary 

In this chapter I have presented the IDEA Framework for the Nature of Pure 

Mathematics. The framework consists of four foundational characteristics that may serve 

as goals for student understanding of the nature of mathematics: 1) Our mathematical 

ideas and practices are part of our identity; 2) Mathematical knowledge is dynamic and 

forever refined; 3) Pure mathematical inquiry is an exploration of ideas; and 4) 

Mathematical ideas and knowledge are socially vetted through argumentation. These 

characteristics, along with some secondary NOM characteristics were illuminated in ten 

complementary narratives.   
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CHAPTER FIVE: DISCUSSION 

Introduction 

In this final chapter, I synthesize the results from the previous chapters and 

discuss implications for teaching and research. I revisit the broad nature of mathematics 

(NOM) framework from Chapter Two, and merge it with the IDEA framework to 

produce an encompassing list of NOM characteristics that may be further explored and 

refined in future studies. I then argue that the IDEA Framework for the Nature of Pure 

Mathematics can be used to inform IDEA-based mathematics instruction, the goal of 

which is to open up a space for both the development of a humanistic conception of 

mathematics within the minds of students and the development of their mathematical 

knowledge through engagement in mathematical inquiry. Throughout this discussion, I 

draw implications for university instruction, and I encourage mathematics instructors to 

make instructional choices that position mathematical ideas as the focus of pure 

mathematics courses. I take issue with the foundationalist picture of mathematics that is 

implicitly promoted in many transition-to-proof courses, and I offer some alternatives 

based on the IDEA framework. I then discuss implications for school mathematics: more 

emphasis needs to be placed on ideas rather than symbols in school; and teachers need to 

be conscious whether they are teaching pure or other forms of mathematics (e.g. 

commercial-administrative). The chapter concludes with future directions and 

implications for research.  
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Revising the Broad Framework 

The broad framework presented in Chapter Two had three categories: 1) 

Mathematics as a fundamental part of human cultures; 2) Pure mathematics as a 

discipline; and 3) Statistical and applied mathematics. An aim of my dissertation study 

was to revise the second category, and I have replaced it with an expanded version of the 

IDEA framework (see Figure 54).  

Mathematics as a Fundamental Part of Human Cultures 

 

• Western academic mathematics is one (but not the only) form of mathematics 

• Mathematical knowledge is influenced by cultural values. 

• Mathematical knowledge is embedded within the work of artisans. 

• The purpose of commercial-administrative mathematical knowledge is 

calculation for economic purposes; the efficiency and accuracy of mathematical 

procedures is valued. 

The IDEA Framework for the Nature of Pure Mathematics 

 

• Our mathematical ideas and practices are part of our identity.  

• Mathematical knowledge is dynamic and forever changing.   

• Pure mathematical inquiry is an exploration of ideas.   

• Mathematical ideas and knowledge are socially vetted through argumentation.   

 

Secondary Characteristics 

 

• Proofs are bearers of mathematical knowledge. 

• Mathematics can be emotional and creative. 

• Informal mathematical work is foundational to formal knowledge. 

• Mathematicians change focus in a mathematical situation to achieve insight.  

Statistical and Applied Mathematics 

 

• Mathematical knowledge is used to shape society, but cannot be considered an 

absolute judge. 

Figure 54. Broad Framework for Continuing Research 
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The expanded version of the IDEA framework includes the four foundational 

NOM characteristics as well as the secondary characteristics discussed in Chapter Four. I 

believe each of these characteristics may be considered valuable for students, teachers, 

and scholars to understand; but research is needed to investigate the teaching and learning 

of these characteristics. I believe the field could benefit from in-depth studies of the 

nature of mathematics as a fundamental cultural activity, or the nature of statistical and 

applied mathematics. Heuristic inquiry could be fruitful for such endeavors.  

While the original framework divided the nature of pure mathematics as a 

discipline into the nature of mathematical knowledge (NOMK) and the nature of 

mathematical inquiry (NOMI), I do not make this distinction in the broad framework 

presented here. I do think researchers should understand these distinctions and be wary of 

possible difficulties that may occur from conflating these as has apparently has been done 

with the nature of scientific inquiry and knowledge within science education (Lederman 

& Lederman, 2014). However, I have yet to experience such difficulties. Furthermore, I 

believe the IDEA framework has pedagogical value for promoting a humanistic 

conception of the nature of mathematics. The distinction between NOMI and NOMK 

may be less important for practitioners than it is for researchers. While researchers 

interested in either cognition or practice may wish to make distinctions when conducting 

research, what mathematics teachers need is a tool to promote a new vision of the nature 

of mathematics. I believe the IDEA framework may serve this purpose.  
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A Discussion of the IDEA Framework for the Nature of Pure Mathematics 

During my study, I became passionate about pure mathematical ideas. Ideas are 

the heart of pure mathematics. Indeed, the unifying theme of ideas runs through the four 

characteristics of the IDEA framework. I believe students may benefit if we structure 

pure mathematics classrooms so that mathematical ideas are at the heart of students’ 

work and class discussions. Students should understand mathematics is an exploration of 

ideas. Students should develop confidence in creating and sharing their own personal 

ideas (even though their ideas will be subject to criticism). Students should understand 

that their ideas will be forever refined as long as they continue to study mathematics.  

Research is needed to investigate the potential of the IDEA framework to be a 

productive tool both for providing instructors with achievable goals for students’ 

understanding of the nature of mathematics and as a guide for structuring mathematical 

inquiry in the classroom. The promise of the IDEA framework is that by following it, the 

mathematics classroom will revolve around meaningful ideas, and students will develop a 

positive conception of mathematics. Ideas should be the focus of instruction. But, are 

ideas not already the focus of study within mathematics classrooms? I contend that ideas 

are not predominately the subject of instruction, but rather the subjects are conventions, 

symbolic manipulations, memorizations, and deductions. Students are often asked to 

prove theorems without regard to the underlying ideas. By following a deductive process 

students successfully write credit-worthy proofs. Consider a reflection from my journal:  
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Grading the problem set on mathematical induction. I realize that I can grade the 

proofs without even knowing what is being proved exactly. 𝑛! ≥ 2𝑛−1. I just 

follow the students’ induction steps and see if they have a valid deductive 

argument. Not a lot of idea exploration.  

While Dr. Amicable and I encouraged students to make meaning of statements 

before proving, perhaps by constructing examples, what was ultimately deemed credit-

worthy was a valid deductive proof. I believe students frequently engaged in a syntactical 

proof production process like that defined by Weber and Alcock (2004):   

We define a syntactic proof production as one which is written solely by 

manipulating correctly stated definitions and other relevant facts in a logically 

permissible way. […] In the mathematics community, a syntactic proof 

production can be colloquially defined as a proof in which all one does is ‘unwrap 

the definitions’ and ‘push symbols’. (p. 210) 

Regardless if the students’ proof production was syntactic or not, I was able to 

engage in a syntactic grading process (at least within the induction problem set). 

Students’ scores were based on my ability to follow their symbolic deductions; I paid no 

attention to the underlying ideas behind a theorem.  

The Fields Medalist William Thurston (1998) wrote, “We mathematicians need to 

put far greater effort into communicating mathematical ideas. To accomplish this, we 

need to pay much more attention to communicating not just our definitions, theorems, 

and proofs, but also our ways of thinking” (p. 346). In Foundations of Higher 



193 

 

 

 

Mathematics, students’ ability to write deductive proofs was prioritized over the ability to 

explore and communicate ideas. Perhaps it is a sign of the times. A result of the culture. 

According to Hersh (1997),  

Mathematics as an abstract deductive system is associated with our culture. But 

people created mathematical ideas long before there were abstract deductive 

systems. Perhaps mathematical ideas will be here after abstract deductive systems 

have had their day and passed on. (p. 232)  

Are we satisfied to be part of a culture in which instructors and students pay less 

attention to the ideas behind proofs and more attention on producing valid deductions? I 

believe that instructors of mathematics and scholars of mathematics education must put 

serious thought into how we structure pure mathematics courses. What is needed is a 

renewal of culture. To renew the culture of pure mathematics instruction will require a 

commitment from instructors and scholars to make choices that promote the values and 

vision that are expressed by humanistic philosophers of mathematics and represented in 

the IDEA framework. In the following sections, I continue this call for cultural renewal 

by focusing on each of the four characteristics of the IDEA framework. After making a 

few points for each characteristic, I suggest some IDEA-based instructional alternatives 

in transition-to-proof courses that depart from the standard foundationalist approach in 

which logic and set theory are privileged. 
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Our Mathematical Ideas and Practices are Part of Our Identity 

Mathematical ideas are part of our personal identity. Consider the language we 

use when we talk about mathematics. “I think no one really understands my idea” 

(Binary). “That is my conjecture… If you really want to work on this one, then I will 

work hard with you on it. I hope we can settle this” (Dr. Combinatorial). “I can’t believe 

that I was the first person who ever thought of that” (My Son). Boaler (2015) wrote, “All 

children start their lives motivated to come up with their own ideas—about mathematics 

and other things” (p. 172). Just last night1 I reminded my son of his original idea and he 

said, “Yeah and it works multiplying by fives too. 5, 10, 15, 20. It goes odd, even, odd, 

even…” How often do we give our undergraduate students the opportunity to create and 

be proud of their own ideas?  

I do not think many mathematicians would object to the notion that our ideas are 

part of our identity. But many students experience mathematical ideas differently. The 

instructor tells students up front what the right ideas are. It is up for the students to 

conform. When we teach pure mathematics in an authoritarian manner, we take away the 

creative act. If students are to see mathematical ideas as part of their identity, then the 

pure mathematics classroom needs to be a site of idea-generation rather than a site of 

indoctrination into what is “right.” 

The “right” ideas are those that have been socially vetted within the mathematics 

community—those concepts and methods at the crest of the wave of human mathematical 

                                                 
1 The date was Sunday May 28th, 2017. 
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achievement. Our human legacy, the power of the mind in full force. This objective 

mathematical knowledge is part of our collective identity. It is ours to appreciate and 

admire. Certainly students should have the opportunity to learn about these ideas if they 

desire. But when the focus of instruction is predominately on conveyance of the “right” 

ideas, then we will fail to open up a space for the personal. Boaler (2015) claimed that, 

“children are wrongly led to believe that all of the ideas already have been had and their 

job is simply to receive them” (p. 172). Do we teach undergraduates the same? The wave 

of mathematical knowledge is dynamic. It is fluid. It gains power and takes shape 

because of new human minds, eager to contribute to its evolving structure. 

Mathematical Knowledge is Dynamic and Forever Changing 

It was the awareness that mathematical knowledge is dynamic that provided my 

son with the impetus for exploring ideas and taking ownership of them. “Not even your 

teacher? Not even dead people?” he asked when I told him I was working on a problem 

that no one had solved. Up till that point in his life, his conception of mathematics was 

similar to that of Benny’s (Erlwanger, 1973). Benny and my son believed that all 

mathematics had already been invented long ago. Only after learning that there was still 

mathematics left to discover did my son have his original idea. Unless we treat 

knowledge as dynamic for our students, then they will not be able to understand the other 

three characteristics in the IDEA framework. If the instructor always tells students what 

is correct, then there is no room for argumentation. If all the ideas have already been 

discovered, then there is neither need for exploration. 
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In order to teach students that mathematical knowledge is dynamic, we must 

ensure they understand there are unresolved mathematical questions. Mathematicians 

make new discoveries every day. Dr. Algebraic remarked, “I have had [graduate] 

students tell me that there has been no new mathematics in the last 300 years. In all 

seriousness tell me that.” To what degree do our undergraduate mathematics majors 

understand the dynamic nature of mathematical knowledge? 

Many of the students in Foundations of Higher Mathematics were not familiar 

with what I consider to be the most famous unsolved problem, the twin primes 

conjecture. On an early assignment students were provided the statement “There are 

infinitely many twin primes.” They were asked to decide if it was a statement, if it was 

true or false, and to provide a rationale for their decisions. Consider some of the student 

responses: “Yes, it is a statement and it is true.” “This is a statement because it has been 

written and proven as a conjecture by multiple mathematicians.” “True because no matter 

how many you find there can always be more the higher/lower you count.” Infinitely 

Repeating Decimal created the “proof” shown in Figure 55. 
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Figure 55. Proof of the Twin Prime Conjecture 

We must do a better job teaching students that mathematical knowledge is 

dynamic. Undergraduates should be aware of outstanding conjectures and understand 

their epistemological status. Dr. Amicable and I tried to paint a dynamic picture of 

mathematics for our students. We told them they were the future of the discipline. We 

taught them that what counts as a proof is negotiated amongst mathematicians, and gave 

them the opportunity to debate what makes a good proof themselves. We encouraged 

them to see the value of mistakes in revising their knowledge. 
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To understand the dynamic nature of mathematical knowledge includes 

understanding how one’s personal knowledge and the knowledge of one’s community 

can change and grow. We have not reached the end of our knowledge of mathematics. 

Neither have we reached the end of mathematics instruction. We play a part in creating 

the world in which students will experience mathematical ideas. Let us, instructors and 

scholars, create classrooms in which original ideas are encouraged and students see the 

dynamic nature of knowledge. 

Pure Mathematical Inquiry is an Emotional Exploration of Ideas 

Through the narratives told in Chapter Four, I highlighted the enjoyable 

exploration of ideas that I experienced while working on Dr. Combinatorial’s conjecture. 

In the pure mathematics classroom, it is more important for student to experience the joy 

of mathematical exploration than to be forced to be familiar with the “right” ideas. How 

often do undergraduates have the opportunity for mathematical exploration? 

A senior mathematics major agreed to informal interviews as part of my 

dissertation study. I spoke to him one day during final exam week, about three hours 

before his exam in Number Theory. I was excited for him (who would not be excited 

about writing number theory proofs?). But he was discouraged. “Three hours of 

memorizing proofs,” he told me. “And then two hours of writing proofs.” I tried to 

encourage him. I said, “There are probably some really cool ideas underneath all these 

proofs!” Then he excitedly told me about how he had “accidentally started discovering 

partition theory halfway through the semester” and “there were some cool ideas.” He 
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said, “I accidentally studied that. I ended up doing a bunch of stuff that we didn’t cover, 

unintentionally without thinking about it. And this book made me realize people write 

their own stuff. Like, Oh!” The student told me about the Dirichlet divisor problem, and 

how he had attempted to map the Dirichlet divisor function to polynomial functions such 

that the roots would be prime. He was very excited about exploring ideas, but he 

considered this a distraction from his coursework. I replied, “To me the whole thing 

about undergraduate mathematics is, why don’t we just have students do what you did? 

Pursue mathematical ideas because they want to, rather than because they have to.”  

“Yeah. Honestly it is killing me this week,” he said. “I am just like ahhh!”    

How about we start supporting students in pursuing the topics that interest them? 

Let us give students the option of working on instructor selected problems or choosing 

their own path. Would it be that difficult to restructure our courses so that idea 

exploration is the expectation? From my journal:  

If students are persevering day after day to solve a problem, trying different 

approaches, thinking about possibilities, then they are mathematicians. Such 

students are at the pinnacle, pushing boundaries. If grades are given, they should 

receive the highest mark.  

Let us reward, rather than discourage, our students when they explore their own 

questions. Let us make idea exploration standard in pure mathematics courses.  
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Mathematical Ideas and Knowledge are Socially Vetted through Argumentation 

In the traditional environment, one is incorrect if one’s ideas differ from the 

teacher’s ideas. But how should mathematical ideas be treated in an inquiry-oriented 

classroom in which student ideas are the basis of instruction? It is widely accepted within 

the mathematics education community that the classroom should be a site of discourse in 

which students conjecture and debate mathematical ideas (NCTM, 2014). It is the 

responsibility of the classroom community to accept or reject ideas using mathematical 

justifications.  

One thing I learned from this study, especially from the story of Binary, is that it 

is not a simple task to open up the classroom to argumentation. Instructors must consider 

students’ prior experiences and feelings. Some of the undergraduates in the Foundations 

of Higher Mathematics course expressed apprehension when it came to sharing their 

ideas. On a self-evaluation, Even wrote, “I could do better on speaking up in class. I often 

feel like my ideas are wrong or weird… I feel I could say more things in class, but I’m 

nervous.” Exponential, who dropped the course, wrote,  

I don’t think I can really improve [on whole class-discussions] very much. Large 

class discussions are intimidating, and my opinion is usually not worth extra 

discussion. Plus, sometimes in class discussing may get a little out of hand and I 

don’t like to participate in arguments about something I’m not very familiar. 

We should not ignore such issues. Students need more low-stakes experiences 

with argumentation before they reach their upper-division courses. When I asked the 
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class if they had engaged in mathematical argumentation previously, only Odd said “not 

to this extent.” Binary did not speak for two class periods following the criticism of his 

idea. He was a first-generation college student, and he graduated the semester he 

completed Foundations of Higher Mathematics. What kind of stress do we put on 

students when it is not until their final year of college that they are asked to argue about 

mathematics? We need to teach argumentation earlier. We need more opportunities for 

proof and critique in lower-level undergraduate courses. Students should learn to argue in 

College Algebra, Pre-calculus, and Calculus. We must teach them that it takes courage to 

put forth a mathematical argument, and humility to know their ideas may need to be 

revised (Lampert, 1990). It is not the sole responsibility of K-12 mathematics teachers to 

facilitate argumentation. The onus is on the university to change the culture of 

mathematics education.  

Alternatives to the Foundationalist Picture of Mathematics 

If we hope students see mathematical ideas as part of their own identity, then the 

pure mathematics classroom cannot be a place where all the mathematical ideas students 

are to have are chosen up front before the semester begins. If we wish for students to 

experience the enjoyable exploration of mathematical ideas, then we must provide them 

with idea-rich mathematical contexts and conjectures to work on or support them in 

coming up with their own. If we wish that students see mathematical knowledge as 

dynamic, then we must allow the class as a whole to work for an extended duration on a 

problem, so they can see their knowledge grow. If they are to understand mathematical 
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knowledge is socially vetted through argumentation, they must have the opportunity to 

critique their peers’ ideas.  

Two of the goals of the Foundations of Higher Mathematics course were for 

students to 1) learn how to write deductive proofs and 2) understand the foundations of 

mathematics: logic and set theory. Figure 56 is a PowerPoint slide presented to students 

on the first day set theory was studied in class. It presents the foundationalist view of the 

nature of mathematics.  

 

Figure 56. The Foundationalist Picture of Mathematics 
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I question whether this foundationalist picture of mathematics is true or useful. Is 

an understanding of formal logic necessary to do mathematics? Are sets and functions the 

building blocks of mathematics? As a house cannot stand without its foundations, do we 

say that mathematics cannot stand without the logic and set theory students become 

acquainted with in transition-to-proof courses? I worry that the emphasis we place on 

these topics are a result of (failed) efforts to find indubitable foundations of mathematics. 

According to Ernest (1991),  

Logicism is the school of thought that regards pure mathematics as a part of logic. 

[…] If all mathematics can be expressed in purely logical terms and proved from 

logical principles alone, then the certainty of mathematical knowledge can be 

reduced to that of logic. Logic was considered to provide a certain foundation for 

truth. (pp. 8-9)  

In efforts to find a foundation of truth, mathematics was reduced to logic and set 

theory. In 1984, Goodman wrote, “Twenty years ago there was a firm consensus that 

mathematics is set theory” (p. 21). Mathematics is set theory? Do we need truth tables or 

set theory to understand that 1 + 1 = 2? Or to make a conjecture about the chromatic 

number of the Petersen graph? Or does explicit instruction in logic and set theory, and a 

focus on valid deductions, inhibit students from experiencing mathematics as an 

exploration of ideas?  

Recently I was engaged in an e-mail exchange with a mathematician, and I 

attempted to argue that we can do mathematics without set theory. I wrote, “I conjecture 



204 

 

 

 

that it was only fairly recently that mathematicians formalized comparisons and counting 

with sets and elements.” His reply:  

Significant progress WAS made consequent to the formalization of the theory of 

sets. But contrary to what Poincare (may not have been he, but somebody said it) 

prophesied, “set theory is a disease from which mathematics will eventually 

recover,” it has rather consolidated a foundation on which all of the rest of 

mathematics can be built and its language can be used universally within the 

discipline. 

We have a choice to make. On the one hand, if we believe that logic and set 

theory do provide the foundation of mathematical truth, then we should make this explicit 

to students. We could structure Foundations of Higher Mathematics in a way that 

students understand what they are attempting to do is to place mathematics on a 

foundation of indubitable truth. Students could learn logic and set theory in this context. 

The other option is to drop the “foundations” façade and teach transition-to-proof courses 

with a focus on mathematical ideas and the humanistic characteristics such as those 

outlined in the IDEA framework. Let students get their feet wet in research mathematics. 

Instructors may probe the mathematicians in their department and find some idea-rich, 

high-level problems for students (perhaps even unsolved conjectures!). We could allow 

the students the choice to work on the problems they are interested in, and encourage 

them to communicate their results to the class. Students could be supported in engaging 

in an exploration of mathematics for an entire semester. I hypothesize that students would 
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then naturally develop and refine their intuitive notions of logic and sets as needed. Either 

we teach foundations for what it is, an attempt to find an absolute indubitable foundation 

for mathematical truth, or we can take an IDEA-based humanistic approach, allowing 

students to explore mathematical ideas through their work proving rich conjectures.  

The university needs to take the lead with IDEA-based instruction, not only in 

traditional proof courses, but in other courses in which pure mathematics is studied. 

Whether the course is College Algebra, Pre-calculus, Calculus, or Linear Algebra, our 

students need to experience the humanistic side of mathematics. They need to know 

mathematics is a subject about ideas. Mathematics education scholars have been pushing 

a humanistic vision for school mathematics for at least thirty years. Perhaps it is time the 

university did its part. This will involve changing instructor beliefs about the purpose of 

mathematics instruction. Henderson, Beach, and Finkelstein, (2011) wrote, 

First, effective change strategies must be aligned with or seek to change the 

beliefs of the individuals involved. Second, change strategies need to involve 

long-term interventions, lasting a semester, a year, and longer. Third, colleges and 

universities are complex systems. Developing a successful change strategy means 

first understanding the system and then designing a strategy that is compatible 

with this system. (p. 978). 

Each university is a complex system, and will face different challenges to 

reforming undergraduate pure mathematics instruction. One challenge that I see as 

common to all universities concerns a possible conflict between teaching a humanistic 
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IDEA-based mathematics course, and the function of the university to provide students 

with economic credit. 

The Credit System 

Just as I was beginning the dissertation, I read several articles by Pais (2011, 

2013, 2015) in which he argued that the influence of the capitalist economic system may 

inadvertently thwart our aims in mathematics education. Students learn mathematics to 

earn credit. Every student in Foundations of Higher Mathematics needed course credit to 

complete their university degree. Grades were often on the students’ minds.  

Even: My question is how will the proofs be graded, point system or otherwise?  

Whole: Would that be docked for points? 

Composite2: So that’s a proof. That’s a 100 right there? Good work? 

Binary: Yeah. I am just trying to figure out if I just left that as k, and he had that. 

Would I get less points? 

We must be aware that for many students, mathematical knowledge is a required 

commodity. How do we support students in learning pure mathematics (which I 

described in Chapter One as mathematics that is done for its own sake), when there is 

always course credit at stake? How do we, as instructors, promote idea exploration when 

we are also part of the system? An excerpt from my journal:  

I just graded Even’s problem set 8, and I realize I am just playing the credit game. 

I took off 7 points from example 4.2 because she did not read the instructions 

carefully. I am not assessing mathematical understanding. I am assessing the 
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ability to follow instructions. I decided to only take off 5 points after writing this 

reflection.  

I do not have simple answers, but I believe we should be more aware of how the 

credit system affects our behavior as instructors and scholars. If we take IDEA-based 

mathematics instruction seriously, we will have to carefully consider how grades are 

assigned. How do we measure the degree to which a student has explored a mathematical 

idea? What can we do to ensure we value more than the students’ ability to write 

deductive proofs? 

One suggestion I have is to change the nature of assignments in an introduction-

to-proofs course. Rather than ask students to write proof after proof of what are often 

disjoint ideas, ask them to write an exposition, or a mini-paper, on a mathematical topic. 

Dr. Amicable has taught foundations of mathematics for several semesters, and one of 

her favorite days of instruction is when she assigns each group of students a different set 

theory concept (e.g. subset, empty set, power set) and asks them to become the class 

experts on that concept. The students become familiar with the concept definitions, and 

provide examples and non-examples in their presentations to the class. Students would 

not only be tasked with proving theorems related to an idea, but also demonstrate their 

understanding by providing examples or perhaps acknowledging some of the patterns 

they noticed during the proving process. Proof should not be treated as an isolated topic 

(for an entire course). It should be a mathematical tool that serves our purposes in 

understanding and exploring mathematical ideas. Mini-papers would give confidence to 
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some students who know how to generate examples but are still timid in writing proofs. 

Such assignments may eliminate the confusion students have regarding examples in a 

proof (examples do provide conviction, they just do not meet the deductive standard). 

Students could present the results of their idea explorations. Of course, part of the 

challenge is finding an idea-rich concept, such as the chromatic number of graphs. But I 

think we are up for it! 

Again, I wish to emphasize that university instructors have choices to make. We 

can continue with the current culture, doing what pays the bills without making a 

meaningful impact on students’ mathematical lives. Or we can make a commitment to 

cultural renewal, and do our best to reform our classrooms so that ideas become the 

focus. The choices we make extend beyond the university. The university has a huge 

impact on the general population’s perceptions of mathematics. Our teachers are educated 

at the university. What they experience in their undergraduate mathematics courses, they 

will carry with them into the schools.  

Implications for School Mathematics 

I now discuss some limited implications for school mathematics. What should 

school students and teachers understand about the nature of mathematics? For the 

dissertation study, I narrowed my focus to undergraduates in a pure mathematics course. 

Are the characteristics of the IDEA framework worthy goals for students’ understanding 

in school? My six year old son benefitted from understanding the dynamic nature of 
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mathematical knowledge. The understanding that mathematical knowledge is still in the 

making inspired him to explore his own ideas.  

More research is needed to understand the degree to which the IDEA framework 

may be applicable to other contexts beyond an undergraduate pure mathematics course. 

But the framework does capture the same humanistic spirit that we have seen in other 

mathematics education texts that push for reform in school mathematics. The beliefs 

mathematics education scholars collectively hold dear regarding mathematics and its 

teaching and learning have certainly influenced my creation of the IDEA framework, 

perhaps subconsciously. The Dynamic characteristic of the IDEA framework is closely 

related to one of the productive beliefs that NCTM (2014) presented in Principles to 

Actions: “Mathematics is a dynamic field that is ever changing” (p. 72). This idea, that 

the field is changing, is captured in the We Are the Future narrative. Indeed, the IDEA 

framework shares much in common with the ideas that the mathematics education 

community has taken as foundational for the last 30 years. Consider how the IDEA 

framework aligns with Sfard’s (2003) description of the NCTM standards documents in 

terms of the dynamic nature of knowledge:  

 The Standards documents of the National Council of Teachers of Mathematics 

(NCTM, 1989, 1991, 1995) are the result of a serious and comprehensive attempt 

to teach ‘mathematics with a human face.’ This means much care for both 

mathematics and the student. What is being taught is ‘mathematics in the making’ 

rather than mathematics as a static body of knowledge. (p. 353)  
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Also consider how Boaler’s (2016) description of what makes a mathematical mindset 

emphasizes idea exploration and dynamic knowledge: 

Children need to see math as a conceptual, growth subject that they should think 

about and make sense of. When students see math as a series of short questions, 

they cannot see the role for their own inner growth and learning. They think that 

math is a fixed set of methods that either they get or they don’t. When students 

see math as a broad landscape of unexplored puzzles in which they can wander 

around, asking questions and thinking about relationships, they understand that 

their role is thinking, sense making, and growing. When students see mathematics 

as a set of ideas and relationships and their role as one of thinking about the ideas, 

and making sense of them, they have a mathematical mindset. (p. 34) 

Historically, mathematics education scholars value student exploration of ideas 

and instruction that promotes a dynamic perspective of mathematical knowledge. The 

IDEA framework captures the spirit of mathematical pedagogy that guided Ball (1993) 

and Lampert’s (1990) instruction. Both scholars’ classrooms were environments where 

students were encouraged not only to create their own ideas and take ownership of them, 

but also engage in critique of their classmates’ ideas. Lampert (1990) wrote, “My 

organizing ideas have been the ‘humility and courage’ that Lakatos and Pólya take to be 

essential to doing mathematics” (p. 58). If we are to open the classroom so that student 

ideas drive the discussion, we must recognize that these ideas are part of students’ 

personal identity. It will take courage for students to put their ideas forth to the classroom 
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community for criticism, and humility for them to realize that their ideas may need to be 

refined in light of new evidence and ideas.  

The Symbolic Standard 

Certainly more efforts need to be made so that ideas are the focus of instruction 

when students learn pure mathematics in school. I opened Chapter One with a quote from 

Erlwanger (1973) in which he described 6th grade student Benny’s conception of 

mathematics. Benny did not understand that mathematics is about an exploration of ideas. 

He did not have the opportunity to have his own mathematical ideas. He thought that 

mathematical rules were invented years ago by one man, and he had no conception of the 

dynamic nature of mathematical knowledge. He had no experience in deepening his 

understanding through mathematical argumentation. To Benny, the mathematics was the 

symbols on the page and the manipulations of those symbols. Erlwanger wrote,  

But fractions, to Benny, are mostly just symbols of the form 
𝑎

𝑏
 added according to 

certain rules. This concept of fractions and rules leads to errors such as 
2

1
+

1

2
=

3

3
= 1. Further, 

2

1
+

1

2
 is “just like saying 

1

2
+

1

2
 because 

2

1
, reverse that, 

1

2
. So it will 

come out one whole no matter which way. 1 is 1.” (p. 92)  

If we fail to teach that mathematics is about ideas, then students tend to focus on 

the manipulation of symbols. Thompson (1992) noted that when a teacher views 

mathematics as “a discipline characterized by accurate results and infallible procedures” 

this “can lead to instruction that places undue emphasis on the manipulation of symbols 
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whose meanings are rarely addressed” (p. 127). All too often in school we focus on the 

symbols rather than the ideas and meanings behind them. 

We can teach students that mathematics is about ideas beginning in pre-school. 

Children should learn that the numeral 2 is a way to represent an idea, the number two. 

The numeral should not be equated with the number. If we fail to distinguish between 

ideas and the symbols representing them, then the root of the problem begins from day 

one. Students will see mathematics as the symbols. Mathematics is not in the symbols, it 

is in the ideas of which the symbols are created for various purposes. Taking the 

humanistic stance means to be critical of the symbolic standard, the dehumanizing 

mechanics of tending to symbols on a page.  

How do we overcome the symbolic standard, and promote a humanistic vision of 

mathematics in school? Working within the school credit system, many teachers believe 

they must train students to answer test questions. It will be difficult to implement IDEA-

based instruction in any classroom that focuses on right answers and correcting mistakes. 

Of course, some students claim to like mathematics because there are right and wrong 

answers. When we provide students with the right ideas up front, we save them from 

having to deal with the struggle of creativity. Students learn to memorize and reproduce 

actions repeatedly and as efficiently as possible. What sort of world are we creating, 

when we teach people that to attain the most prestigious knowledge (mathematical) is to 

engage in a creative-less act?  
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How do we Teach Other Forms of Mathematics? 

I believe school students would benefit from having the opportunity to explore 

and create mathematical ideas. Many students do not have this opportunity, and the IDEA 

framework may be useful for supporting teachers in creating classroom spaces in which 

students come to understand and experience the nature of pure mathematics. As Boaler 

(2016) noted, 

This wide gulf between real mathematics and school mathematics is at the heart 

of the math problems we face in education. I strongly believe that if school math 

classrooms presented the true nature of the discipline, we would not have this 

nationwide dislike of math and widespread math underachievement. (pp. 22-23)  

But let us think more carefully about Boaler’s claim. What is “real” mathematics? 

She wrote, “When we ask mathematicians what math is, they will say it is the study of 

patterns” (p. 22). Recall Harouni (2015) distinguished between three types of 

mathematics: artisanal, commercial-administrative, and philosophical. He wrote that, 

“Philosophical mathematics loves patterns,” (p. 64). Furthermore, 

The more we look at philosophical mathematics, the more we understand the 

regular complaint of academic mathematicians (e.g., Lockhart, 2009) that the 

subject taught in elementary and secondary classrooms is far removed from the 

mathematics that they know. (p. 65).  

In The Mathematician’s Lament, Lockhart (2009) wrote, “I’m not complaining 

about the presence of facts and formulas in our mathematics classes, I’m complaining 
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about the lack of mathematics in our mathematics classes” (p. 29). Lockhart, like Boaler, 

is implying that pure mathematics is the only real mathematics. But when we say that 

pure mathematics is the only real mathematics, we do injustice to other forms, perhaps 

implying that they are not real or even impure. If we continue with this analogy and 

consider Paul’s warning that “love of money is the root of all evil,” 2 then impure 

mathematics is commercial-administrative mathematics. One may view it not as a 

mathematics of exploration, but rather a mathematics of exploitation. I do not think it is 

the best idea to demonize other forms of mathematics, or consider them unreal. If the 

mathematics classroom is purged of commercial-administrative mathematics, then how 

will our citizens be productive in a society in which money matters? 

Teachers need to be conscious of the different types of mathematics because each 

are likely to require a different type of instruction. Historically, the pedagogy of teaching 

commercial-administrative mathematics, which was done in reckoning schools, 

emphasized efficiency and correctness in procedures rather than meaning making through 

exploration (Harouni, 2015). Teaching by demonstration and replication may be an 

effective way to teach the algorithms of commercial-administrative mathematics. My 

recommendation is that while school students would benefit from experiencing the joy of 

pure mathematical exploration, we cannot deceive ourselves and believe that pure 

mathematics is the only “real” mathematics. We must acknowledge that students need to 

learn about business mathematics, applied mathematics, and statistics. More thought is 

                                                 
2 1 Timothy 6:10 
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needed on the part of teachers and researchers regarding how we teach each of these 

forms of mathematics. It is naïve to think they can all be taught in the same manner.  

Future Directions for Research 

I do not intend for my dissertation work to be the final chapter in my own 

understanding of the teaching and learning of the nature of mathematics, but the 

beginning of a long research program. In the future, I would like to interview 

mathematicians and mathematics educators in order to confirm that the characteristics I 

have outlined in the IDEA framework are consistent with others’ values and goals. I wish 

to share my narratives with them and engage in a discussion about the value of teaching 

using the IDEA framework. Furthermore, it will be important to consider how these 

characteristics can be taught. In the future, the characteristics of the IDEA framework 

may need to be modified. Consider the research trajectory shown in Figure 57, which was 

originally presented in Chapter One. 

 

Figure 57. The Long-Term Development of a Framework for the Nature of Mathematics 
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In addition, researchers may consider examining empirical studies that have been 

completed within science education on the nature of science (NOS), and adopt similar 

methods to study NOM within the field of mathematics education. For instance, we may 

investigate explicit and reflective teaching in which NOM is “brought to the forefront” 

(Bell et al., 2003, p. 504) of students’ activity as has been done to teach NOS. Science 

education scholars have also developed research instruments designed to measure 

students’ understanding of NOS (Lederman, Abd-El-Khalick, Bell, & Schwartz, 2002). 

Similar open-ended measures may be useful for research into the effectiveness of 

instructional strategies for teaching students NOM. 

Implications for Research 

Heuristic inquiry may be a fruitful methodology for other scholars in mathematics 

education, and here I make some recommendations regarding this methodology for 

interested scholars. I have learned that heuristic inquiry is a deeply personal process. The 

essence of heuristic inquiry is a “relentless inward focus” (Sela-Smith, 2002, p. 80). It 

requires researcher creativity, not only because of the ultimate creative synthesis 

required, but also because the method “does not prescribe a methodology” (Douglass & 

Moustakas, 1985, p. 42). Heuristic inquiry is not the framework for a researcher who 

desires a straightforward project with a clear delineation of steps. Rather it is for brave 

researchers who have a desire to engage personally with a topic and are open to a 

transforming their understanding. The researcher must be prepared to tell his or her own 

story and the stories of those close to them.  
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One area in which I believe heuristic inquiry may be fruitful is in teaching 

undergraduate and graduate students about the nature of mathematics through thesis 

projects. As Courant and Robbins (1941) claimed, “For scholars and laymen alike it is 

not philosophy but active experience in mathematics itself that can alone answer the 

question: What is mathematics? (p. xix)” Undergraduate students are sometimes viewed 

as being inadequately prepared for mathematical research. But why not support them in 

research, not with the expectation that they will necessarily produce a result, but with the 

expectation that they will learn more about the nature of mathematics? In the future, I 

plan to continue working on Dr. Combinatorial’s conjecture. I envision working together 

with undergraduates, supporting them in their own heuristic inquiries into the nature of 

pure mathematics. One of my goals would be to teach my students about the four 

characteristics of the IDEA framework; but I would also support them in coming to their 

own conclusions about the nature of mathematics. Similar projects may also be valuable 

for master’s students in the field of mathematics education. Mathematics education 

majors are not usually expected to engage in mathematics research, but it may be 

valuable for them to collaborate with research mathematicians and reflect on the nature of 

mathematics. As teachers or future teachers, it is important that such students reflect on 

their own view of mathematics and consider what their current or future students should 

understand about the nature of mathematics.  

Moustakas (1990) wrote that “The heuristic process is autobiographic, yet with 

virtually every question that matters personally there is also a social—and perhaps 
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universal—significance” (p. 15). The IDEA Framework for the Nature of Pure 

Mathematics was born out of my personal experience doing and teaching mathematics. 

This list was a product of deep and long-term reflection. I believe the characteristics of 

the IDEA framework that I have identified do have social significance, and they will be 

valuable goals for students’ understanding of the nature of mathematics. However, we 

have to be careful how we use the list to research and teach NOM. 

Lederman and Lederman (2014) noted, “Each item on a list is just a label or 

symbol for a much more in-depth and detailed elaboration” (p. 615). It is crucial that 

educators must not use a list trivially as a checklist requirement. In reference to NOS 

lists, Matthews (2015) wrote, “The negative side is that the list can, despite the wishes of 

its creators, function as a mantra, as a catechism, as yet another something to be learned” 

(p. 393). It would be counter-productive for students to be given the statement 

“mathematical inquiry involves an exploration of ideas” and asked to respond true or 

false. The narratives in Chapter Four may be used as tools for providing instructors and 

students with a deeper understanding of the characteristics of the IDEA framework. Of 

course, individuals will not be able to fully understand that “mathematical inquiry 

involves an exploration of ideas” unless they have a chance to experience such an 

exploration themselves.  

In Chapter One, I argued that the field of mathematics education needs to conduct 

a systematic inquiry into the teaching and learning of NOM and ultimately arrive at a 

consensus NOM view as has been done in science education. But we must also remember 
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that NOM is a philosophical subject for which there are not absolute answers. We will 

never arrive at a definitive NOM list that represents the true nature of mathematics. Our 

lists, like our philosophy, are value-laden. The IDEA framework embodies a humanistic 

spirit and a vision for what I hope students, teachers, and scholars may come to 

understand about the nature of mathematics. I would be thrilled if scholars and teachers 

adopted the IDEA framework in research and teaching. However, I believe the real need 

is to open up a sustained dialogue about NOM both within mathematics education 

scholarship and in mathematics classrooms.  

How Do We Teach the Nature of Mathematics? 

How do we teach the nature of mathematics? This is not a simple question. One 

approach may be to choose an aspect of the IDEA framework and conduct research to 

understand the teaching and learning of that aspect. For instance, what instructional 

activities support students in coming to view mathematical knowledge as dynamic? Dr. 

Amicable and I often attempted to teach our students about the nature of mathematics by 

telling them about what mathematicians do. It may be valuable to have mathematicians as 

guest speakers so that they may provide a picture to the students of what mathematical 

work is like (e.g. telling them about the refereeing process or their own mathematical 

explorations). But if our students are really going to come to have robust conceptions of 

the nature of mathematics, then they need more than telling. I even contend that they 

need more than IDEA-based instruction.  

I believe that NOM should be treated as a philosophical subject, open to debate 
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within classroom communities. Students need opportunities to reflect and discuss NOM 

and come to their own conclusions. In Figure 58, there is a poster some doctoral students 

made after reading Lakatos and discussing the nature of mathematics (NOM) for a few 

weeks in one of their courses. I really like it!  

 

Figure 58. Doctoral Poster 

The poster in Figure 58 inspired me. I believe we need explicit instruction in 

which NOM is treated as a subject for study and debate within classrooms (like it was for 

the doctoral students who made the poster). For instance, students could create their own 
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NOM frameworks, perhaps both at the beginning and end of a course. With knowledge of 

the NOM conceptions that students bring to a course, an instructor could design 

instruction to challenge naïve views. While I do think it will be valuable to design 

instruction aimed at helping students come to understand the characteristics of the IDEA 

framework, I also believe we should encourage students to come to their own 

conclusions. A lesson I take away from this dissertation project is that we all can come to 

understand NOM by collectively learning through inquiry, rather than under strict 

authority. NOM is ours. It is what we make it.  

Chapter Summary 

In this chapter, I have made strong recommendations for pure mathematics 

instruction at the university level. I contend that if students are to understand the 

characteristics of mathematics presented in the IDEA framework, then a cultural renewal 

of university mathematics instruction is necessary. Ideas must be the focus of 

mathematics classrooms, and students must have the opportunity to create their own ideas 

through personal exploration. If we are to implement IDEA-based instruction, then we 

have to consider alternatives to the deductivist approach in which logic and set theory are 

the dominant topics of transition-to-proof courses. I propose students be provided the 

opportunity to explore rich conjectures and create expositions on mathematical topics. 

We also have to do better teaching our students about unsolved conjectures in 

mathematics and supporting them in productive mathematical argumentation. 
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I discussed implications for school mathematics, and recommended that scholars 

and teachers pay more attention to different types of mathematics. School mathematics 

includes the study of pure mathematics, statistics, applied mathematics, and commercial-

administrative mathematics; and different pedagogical methods may be needed to teach 

each type. Lastly, I discussed implications for future research. I recommend that the 

IDEA framework not be treated authoritatively as mathematical knowledge has been 

treated in school. Rather the framework and the corresponding narratives can be used as 

tools to foster discussion and reflection on the nature of mathematics. What is truly 

needed in order to bring about changes in students’ conceptions of mathematics is to 

provide them opportunities to explicitly reflect on their own beliefs while also being 

confronted with positions that challenge those beliefs.  
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APPENDIX A – DESCRIPTION OF CHARACTERS 

Major Participants 

Surreal: I (the researcher) have chosen to refer to myself as Surreal. Surreal is a 

privileged white male, mathematics education scholar, father, musician, and aspiring 

Christian. The Surreal Numbers were first “created” by John Conway in 1969 

(http://mathworld.wolfram.com/SurrealNumber.html). I first heard of the surreal numbers 

after the 2015 Conference on Research in Undergraduate Mathematics Education. It was 

a snowy night in Pittsburgh and I and several other graduate students were returning 

home from the bar. One young mathematician whom I had met was very fascinated with 

the surreal numbers, and excitedly tried to explain their significance to me. There is a 

novelette describing the Surreal Numbers by Knuth, “How two ex-students turned onto 

pure mathematics and found total happiness.” Why do the surreal numbers best represent 

me? I am not sure, but I can pick whichever number type I would like!  

Dr. Combinatorial: Dr. Combinatorial is the research mathematician that I 

collaborated with on an unsolved problem in graph theory. He formulated the conjecture 

that we are working on after having studied a particular class of graphs for several years. 

Most of his other work in the area is related to connectivity. He is a full professor, and 

active research mathematician in the field of combinatorics and graph theory. Dr. 

Combinatorial was born and raised in China before coming to the United States. Dr. 

Combinatorial is a Christian. 

http://mathworld.wolfram.com/SurrealNumber.html
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Dr. Amicable: Dr. Amicable is an assistant professor of mathematics, 

mathematics education scholar, and my co-instructor of the transition-to-proof course that 

was part of this study. Amicable numbers are two different numbers so related that the 

sum of the proper divisors of each is equal to the other number. Dr. Amicable explained 

that as a mathematics education scholar, her research informs her teaching and vice versa. 

All of the factors involved in her research sum to influence her teaching, and all the 

factors involved in her teaching sum to influence her research. Thus she is Dr. Amicable. 

She had taught the transition-to-proof course for six semesters prior to this study. She is a 

white American, and a Christian.  

Undergraduate Students 

Some of the students in this study provided their own descriptions for why they chose the 

number type they did as part of a course assignment at the beginning of the course. I 

present those here verbatim while also adding some demographic details. In the case 

where students did not complete this assignment, I have chosen a number type for them. 

Not all of the students listed here are referenced in the body of the dissertation.  

Integers (Psychology Major, Asian, Female, English Language Learner) - Integers 

can be positive and negative can be neutral & extreme – only exact (perfect) whole 

numbers. Me-sometimes be positive, sometimes not.-pretty lots of emotional ups and 

downs tend to expect extreme situations (both happiest situations and worst situations) – 

want to be a kind of perfectionist (a little obsession… ?)  
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Infinity (MathEd Major, White, Female) - Infinity is an abstract concept 

describing something without any bound or larger than any number. The number type 

that describes me best is infinity. Just like myself it doesn’t have a bound and it’s larger 

than any number. I perceive my life to have no boundaries, believing anything is possible 

if you have the right mindset. Although I’m not larger than “numbers” I am larger than 

anything else. You can overcome anything as long as you have the right method.  

Complex (MathEd, White, Male) – Complex numbers: real, imaginary, and sums 

and differences of real and imaginary numbers. Me: I am rooted in real life: reasoning, 

analyzing, and socializing. However, I am often found with my head in the clouds, 

thinking outside the box, and daydreaming. These come together in creativity and puns, 

but are separated by not focusing, and easily getting sidetracked.  

Permutation (Professional Mathematics, White, Female) – I feel that permutation 

(arrangement) numbers define my personality best. Like permutation numbers I logically 

look at every situation in my life and can see all the different pathways it can take. This 

often causes me to over-analyze all my decisions, but I feel more secure in making 

decisions after having explored every option available to me. Moreover, permutation 

numbers are most often used in probability problems which also play a large role in my 

decision making processes in life. I see each decision I make as having a certain 

probability set of outcomes and then choose the one most favorable to me. While nothing 

is for sure in life, I go each day analyzing permutations of different events and using 
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estimated probabilities to make decisions that give me a more secure, confident approach 

to my actions.  

Rational (Business Mathematics, White, Female). - I would be a rational number. 

I think Rational numbers best describe me because a rational number is one that can be 

expressed as a ratio. In the same way, I can be expressed as a ratio of the different aspects 

of my personality or of my life.  

Fibonacci (Aerospace Technology, White, Male) - Fibonacci Number Sequence. I 

find this relatable to myself because it seems to me that certain events in my life take 

shape because of two prior choices I made before that event. The sequence of events that 

follow that event are directly related by adding the previous two events. For example, 

when I was 18 I decided to take a year off before starting school. Taking a year off and 

making my own money led me to unproductive spending and a careless lifestyle. A 

careless lifestyle and unproductive spending led me to speeding tickets and going to 

traffic court which led me assessing where I was headed and where I want to be. This 

allowed me to recognize the choices I had to make in order to be in a place that I desire 

most. 

Composite: (Math Education, Asian American, Female) – The definition of a 

composite number is a “natural number which has at least three distinct natural number 

divisors or in simpler terms, a natural number that has more than two factors.” My 

number type is composite number because many important people and factors have 

influenced and made me who I am today. I have lived half of my life in Korea and half of 
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my life here, so ended up being influenced by Korean culture, American culture, which 

really is a mix of lots of different cultures already, Hispanic, and Korean American, 

which really ended up being really different than just Korean culture that I was used to. 

My dream of being a math teacher has been influenced by my dad, who loves math like I 

do, my favorite math teacher, Dr. Gardener, and the language barrier that I had to face 

when I moved from South Korea to United States. My most important life decision has 

always somehow included the input of my family, my friends, and some very close 

teachers. My religion of Christianity has been influenced by my parents, my friends, and 

social media, which may seem very shallow, but I had my reasons. I have also been told 

that my personality is really weird but I like to claim that it is just unique which is pretty 

much a mix of nice, mean, quiet, talkative, and just straight up crazy.  

Composite2 (Math Education, White, Female) - I am composite because I am 

made of many different “parts.” I am well-rounded. I speak Spanish. I’m a good cook. I 

love baking. I’m a wife. I’m a student. I’m a bank teller, etc… I play many ‘roles’ in life! 

Odd. (Industrial Mathematics, Physics Minor, White Male) - I chose this 

pseudonym. 

Rational2 (Computer Science, White Male) - Rational Numbers multiple 

representations – I can take complex ideas and replace terms to make the ideas simpler to 

understand.  

Infinitely Repeating Decimal (Professional Mathematics, White Male) - I feel that 

an infinitely repeating decimal is a good representation of me because outside of this 
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class I work as a session drummer and as a captain head of a high school drum line. Like 

the repeating decimal, the percussion section of a group keeps the constant pulse; 

unwavering and unchanging.  

Exponential Number: (Computer Science, White, Male, Dropped after a couple of 

months) - Exponential Number – Rising or Expanding at a steady and usually rapid rate. 

– I feel like this fits me very well because I’m about to graduate with my bachelors in 

computer science. I believe that my life will grow at an exponential rate. 

Binary: (Computer Science, Black, Male, First Generation College Student) -

Binary Numbers. Very simple once you get to know me. But can be very confusing if you 

don’t. 

Positive: (Mathematics(statistics)&Sociology, White, Female) - Positive numbers 

best describe me. I work my hardest to maintain a positive attitude about anything I do, 

and give off a positive vibe to anyone who is around me. Positive numbers are greater 

than 0, and generally seen with (+) sign in front of the number. 

Whole: (Math Education, white, male) - A number without fractions; whole 

number. A whole number is not complex at all. It doesn’t have any tricks up its sleeves. It 

doesn’t throw you through a loop or try to tag along any decimal friends. A whole 

number is simple, and it is non-chaotic. The reason I most associate with a whole number 

is because as a person, I am simple and non-chaotic. I do not have much complexity to 

me and I do not make things harder than they have to be. I am simple, I am organized, 

and what you see with me is what you get. I don’t add complexity when added to 
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situations. When I am involved, things are just easy. That is just like whole numbers. You 

start your mathematical career learning how to count with them. They are simple, they 

are noncomplex, and they are the numbers people flock to.  

Even (Advanced Mathematics, white, female). I chose this pseudonym. 

Natural (General Mathematics, Male, English Language Learner, I am not sure 

where Natural immigrated from) - My choice of the set of number from the list of set of 

numbers is natural number. Natural numbers is appealing to me because I love nature in 

its very nature. Natural numbers are beautiful and it helps me visualize in things better. It 

is easy to list them. It is easy to study. Natural numeral is used globally for mathematical 

operations. It reflects my natural way of growing up in a small village to a bigger city in 

the world Houston, TX. I was attached to nature. I love nature, I miss nature that is why I 

pick natural number. 

Real (Mathematics, White, Male) - Upon initial contemplation of the assignment 

to compare myself to a type of number, I thought it to be a bit of a challenge. Yes, we are 

all complex, but are we that similar to complex numbers? Making the case for 

‘imaginary’ might have been entertaining, but ultimately I decided to compare myself to 

the set of Real Numbers. While I do regard myself to be a genuine, straightforward, ‘what 

you see is what you get’ type of individual, my argument goes deeper than that. The reals 

are somewhat like an onion, or an ogre, with many layers, or subsets. My children 

occasionally accuse me of being grumpy. I do not recall being labeled an ogre. However 

many layers, or subsets of myself integrate to complete me. Naturally, at the core of my 
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relationship with my wife we are best friends. As husband and wife, we are whole. 

Parenting together certainly adds a layer, or three. Wrapped around all that (even though 

it may seem Irrational at first glance) we have been business partners for nearly eighteen 

years! Being a father and a dad to my three children is closely related, and yet separate 

set of the roles and relationships that make me who I am. 

Finite: (Math Education, Phillipino, Male). I chose this pseudonym.  

Prime: (Unknown major, White, Male). I chose this pseudonym.  

Quaternion: (Statistics, Black, Female). I chose this pseudonym.  

Cardinal: (Unknown, Unknown, Male). I chose this pseudonym.  

Finite2: (Unknown, White, Male). I chose this pseudonym.  

Other Participants 

Dr. Algebraic: Dr. Algebraic is an associate professor of mathematics with 

research interests in algebra and number theory. I met with Dr. Algebraic a few times 

over the semester to discuss my ideas related to the nature of mathematics. Dr. Algebraic 

is a white male, and a Christian.  

Dr. Differential: Dr. Differential is a retired mathematician. During his career his 

work was primarily in linear algebra and differential equations. He does not consider 

himself to be exclusively a pure or applied mathematician, but believes the distinction 

between the two types of mathematicians is somewhat arbitrary. However, he recognizes 

that he is a bit more applied than the typical mathematican. Dr. Differential is white and 
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92 years old. Although I did not quote him in the main text, he gave me important 

feedback on the NOM characteristics I was considering for my frameworks.  
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APPENDIX B: INSTITUTIONAL REVIEW BOARD APPROVAL 

IRB 

INSTITUTIONAL REVIEW BOARD 

Office of Research 

Compliance, 010A 

Sam Ingram Building, 

2269 Middle 

Tennessee Blvd 

Murfreesboro, TN 

37129 

IRBN001 - EXPEDITED PROTOCOL APPROVAL 

NOTICE 

Friday, August 12, 2016 
 

Investigator(s):  Jeffrey Pair (Student PI), Sarah Bleiler-Baxter (FA) and  
   Jeremy Strayer (FA)  

Investigator(s’) Email(s):    jeffrey.pair@mtsu.edu; sarah.bleiler@mtsu.edu;  

      jeremy.strayer@mtsu.edu  

Department:  Mathematics and Science Education 

 
Study Title: The nature of mathamatics: a heuristic inquiry 
Protocol ID: 16-2320 

 
Dear Investigator(s), 
The above identified research proposal has been reviewed by the MTSU Institutional 
Review Board (IRB) through the EXPEDITED mechanism under 45 CFR 46.110 and 
21 CFR 56.110 within the category (7) Research on individual or group characteristics 
or behavior A summary of the IRB action and other particulars in regard to this protocol 
application is tabulated as shown below: 

IRB Action APPROVED for one year from the date of this notification 

Date of expiration  8/12/2017  
Sample Size 100 (ONE HUNDRED) 

Participant Pool Adult (mix of several types of individuals) 

Exceptions Collection of voice recording and hand writing samples is permitted 

Restrictions Collection of signed informed consent is mandatory 

Comments NONE 

Amendments Date Post-approval Amendments 
NONE 

mailto:jeremy.strayer@mtsu.edu
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This protocol can be continued for up to THREE years (8/12/2019) by obtaining a 
continuation approval prior to 8/12/2017.  Refer to the following schedule to plan your 
annual project reports and be aware that you may not receive a separate reminder to 
complete your continuing reviews. Failure in obtaining an approval for continuation will 
automatically result in cancellation of this protocol. Moreover, the completion of this 
study MUST be notified to the Office of Compliance by filing a final report in order to close-
out the protocol. 
 
Continuing Review Schedule: 

Reporting Period Requisition Deadline IRB Comments 
First year report 7/12/2017 INCOMPLETE 

Second year report 7/12/2018 INCOMPLETE 

Final report 7/12/2019 INCOMPLETE 

 

The investigator(s) indicated in this notification should read and abide by all of the post-
approval conditions imposed with this approval. Refer to the post-approval guidelines 
posted in the MTSU IRB’s website. Any unanticipated harms to participants or adverse 
events must be reported to the Office of Compliance at (615) 494-8918 within 48 hours 
of the incident. Amendments to this protocol must be approved by the IRB. Inclusion of 
new researchers must also be approved by the Office of Compliance before they begin 
to work on the project. 

 
All of the research-related records, which include signed consent forms, investigator 
information and other documents related to the study, must be retained by the PI or the 
faculty advisor (if the PI is a student) at the secure location mentioned in the protocol 
application. The data storage must be maintained for at least three (3) years after 
study completion. Subsequently, the researcher may destroy the data in a manner 
that maintains confidentiality and anonymity. IRB reserves the right to modify, change 
or cancel the terms of this letter without prior notice. Be advised that IRB also reserves 
the right to inspect or audit your records if needed. 

 

Sincerely, 
 

Institutional Review Board 
Middle Tennessee State University 
Email: irb_information@mtsu.edu (for questions) 

irb_submissions@mtsu.edu (for documents) 
 

Quick Links: 

Click here for a detailed list of the post-approval 
responsibilities. More information on expedited 
procedures can be found here. 

mailto:irb_information@mtsu.edu
mailto:irb_submissions@mtsu.edu

