
1

Simulation of Multiple Inheritance(MI) in Java
Sonal Swaroop

College of Basic and Applied Sciences , Middle Tennessee State University 37132

Abstract
Multiple inheritance is a cornerstone of

OOPs paradigms with benefits such

as reusability (using methods of parent

class by child classes), extensibility

(extending the parent class logic as

per business logic of the child class),

data hiding (base class may keep

some data private so that it cannot be

altered by the derived class), and

lesser compilation time. But there is no

consensus among researchers on the

semantics of multiple inheritance in

the presence of method overriding and

potential conflicts due to multiple

definitions. C++, Common lisp and few

other languages supports multiple

inheritance while java doesn't

support it. It is just to remove

ambiguity, because multiple

inheritance can cause ambiguity in few

scenarios such as Diamond problem.

James Gosling quotes “JAVA omits

many rarely used, poorly understood,

confusing features of C++ that in our

experience bring more grief than

benefit. This primarily consists of

operator overloading and multiple

inheritance. Java creators provided

users with much easier and robust

alternative to multiple inheritance i.e.

interfaces, composition and abstract

classes that alleviate problem during

casting and constructor chaining. The

primary objective of this research

study is to develop a trade-off

between “multiple inheritance in C++”

and “substitution for multiple

inheritance in Java” and conclude if

multiple inheritance is good

programming technique and if Java

should introduce direct implementation

of multiple inheritance. The secondary

objective is to introduce novel ways to

substitute multiple inheritance in Java

such as “twin pattern” and “dynamic

multiple inheritance”, and conclude if

such implementations may bring much

easier and feasible alternatives to

“interfaces” .

Figure 1:MI in C++ Figure 2 :MI in Java

Background
•Diamond Problem has become one of

the major motivations for developers to

create a language without the evils of

MI such as Java.

•Java is the first language that has

separated polymorphism and

inheritance by providing interfaces

which represents a subtyping

relationship, whereas extending a

class represents the more traditional

combination of subtyping and behavior

inheritance.

•Java has various techniques such as

abstract classes, compositions, default

methods etc other then interfaces to

substitute for MI.

Methods
•In order to develop a tradeoff between

direct implementation in C++ and

substitution of MI in Java ,a

comparison table given as table1 will

be derived

•To develop a tradeoff, two sets of

programmers has been created , with

first .group having 2 developers, each

affluent in basic C++ and Java

programming and second group.

having one exclusive Java programmer

and one exclusive C++ programmer.

•A set of MI related programming

problems with 7-days time, has been

handed over to the first group of

programmers.

•Novel ways to introduce MI into Java :

Twin Pattern can be used to simulate

MI in a language that does not support

this feature. It also avoid certain

problems of multiple inheritance such

as name clashes.

Metrics / Platforms Java C++

Metrics of understandability

Metric of modifiability

DIT

NOC

Simplicity of Tree Structure

User Efficiency

Control over code

Error rate

Figure 3: Twin pattern structure

Parent 1

v1

M1()

Parent 2

v2

M2()

Child 1
v3
M1()
M3()

Child 2

M2()

. Novel ways to introduce MI

into Java : Java enables

dynamic combination of

classes which is complex

and unsafe, and the

resulting dynamic classes

are poorly integrated into

the program that create

them, so primary goal here

is to infuse dynamic MI in

Java in such a way that it is

safe in large sets and

useful.

Table 1 : Comparison over MI

Results
1)Trade off between C++

and Java: A set of MI

related programming

problems with 7-days time,

has been handed over to

the first group of

programmers.

2)Twin Pattern in Java

:Every child class is

responsible for the protocol

inherited from its parent. It

handles messages from

this protocol and forwards

other messages to its

partner class.

•Subclassing the Twin

pattern: If the twin pattern

should again be

subclassed, it is often

sufficient to subclass just

one of the partners, for

example Child1. This

solution has the problem

that Sub is only compatible

with Child1 but not with

Child2.

•More than two parent

classes. The Twin pattern

can be extended to more

than two parent classes in a

straightforward way. For

every parent class there

must be a child class. All

child classes have to be

mutually linked via fields. It

is rare that a class inherits

from more than two parent

classes.

3) With dynamic

inheritance, we create a

composite object with the

separate objects

wrapped together

according to their priority.

For the outside world,

they can call any of the

interface functions on the

composite object.

Dynamic inheritance is

useful when there are

lots of different

implementations possible

for each of the interface

functions.

This avoids creation of

large number of class

definitions with all the

possible combination of

interface functions.

References
1) Ernst, Erik. 2002. “Safe Dynamic Multiple Inheritance,” Journal

2)Thirunarayan, Krishnaprasad, Günter Kniesel, and HaripriyanHampapuram.

1999. “Simulating Multiple Inheritance and Generics in Java.” Computer Languages

25 (4): 189–210.1-22

3) Meyer B.1997. Object-oriented software construction. 2nd ed. Englewood Cli?s,

NJ: Prentice-Hall

4) Sakkinen M. 1992. Inheritance and Other Main Principles of C++ and Other

Object Oriented Languages. PhD thesis, University of Jyvaskyla.

5) Tempero E. and Biddle R. 2000. Simulating Multiple Inheritance in Java. Journal

of Information and Software Technology, (55):87–100.

6) Muhlhauser, Max,Gurevych, Iryna. 2008. Handbook of Research on Ubiquitous

Computing Technology for Real Time Enterprises. 62-67

7) Adriana B. Compagnoni and Benjamin C. Pierce. 1996. Higher order intersection

types and multiple inheritance. Mathematical Structures in Computer Science,

6(5):469–501,

8) Mössenböck, Hanspeter. 2000. “Twin — A Design Pattern for Modeling Multiple

Inheritance.” Perspectives of System Informatics 1755: 358–69. doi:10.1007/3-540-

46562-6_31.

9) Gosling ,James and McGilton ,Henry. 1996. The Java Language Environment,"

(Sun Microsystems)

10) Meyers ,Scott . (2nd Edition) (Addison-Wesley Professional

Computing) Effective C++: 50 Specific Ways to Improve Your Programs and

Design

11) Sutter,H. 1998. Uses and Abuses of Inheritance, Part 2(C++ Report, 10(9))

http://dl.acm.org/author_page.cfm?id=81439592239&coll=DL&dl=ACM&trk=0&cfid=580344661&cftoken=44429928
http://dl.acm.org/author_page.cfm?id=81310490167&coll=DL&dl=ACM&trk=0&cfid=580344661&cftoken=44429928
http://www.amazon.com/Scott-Meyers/e/B004BBEYYW/ref=dp_byline_cont_book_1

