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ABSTRACT 

Next-generation e-science is producing a huge amount of data that needs to be processed 

by geographically isolated scientists and users through different steps, which can be 

modeled as a Directed Acyclic Graph (DAG) structured computing workflow. Many big 

data science applications, especially streaming applications with complex DAG-structured 

workflows, require a smooth dataflow for the Quality of Service (QoS) guarantee. Even 

with the ever-increasing computing power available in the High Performance Computing 

(HPC) environments, i.e., parallel processing on a PC cluster, the execution time of such 

high-demand streaming applications may still take a few hours or even days in some cases. 

Therefore, supporting and optimizing the performance of such scientific workflows in 

wide-area networks, especially in Grid and Cloud environments, are crucial to the success 

of collaborative scientific discovery. 

In this thesis, we focus on optimizing and improving the performance of an existing 

workflow mapping algorithm, Layer-oriented Dynamic Programming (LDP), by (i) 

parallelizing the workflow executions on a PC cluster using MPI and OpenMP, and (ii) 

removing unnecessary search steps in order to reduce the algorithm runtime using informed 

search techniques inspired by depth-first search (DFS) and breadth-first search (BFS). The 

performance superiority of the modified algorithm is illustrated by an extensive set of 

simulations in comparison to the original LDP algorithm in terms of both throughput and 

runtime.  
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CHAPTER I 

INTRODUCTION 

Next-generation e-science is producing a huge amount of data that needs to be processed 

by geographically isolated scientists and users through different steps, which can be 

modeled as a Directed Acyclic Graph (DAG) structured computing workflow. Many big 

data science applications, especially streaming applications with complex DAG-structured 

workflows require a smooth data flow for the Quality of Service (QoS) guarantee. Even 

with the ever-increasing computing power available in High Performance Computing 

(HPC) environments, i.e., parallel processing at a PC cluster, the execution time of such 

high demand streaming applications may still take a few hours or even days in some cases. 

Thus, how to carefully choose an appropriate set of computer nodes and wisely allocate 

available computing resources to the tasks are very critical for end-to-end performance of 

the workflows. For example, task A is the preceding task of task B and has a large data 

transfer to task B. If we choose two inappropriate computer nodes connected through slow 

bandwidth, the data transfer time from task A to task B would determine the throughput of 

entire workflow execution, which is known as a bottleneck (BN), and also increase the 

latency of workflow executions. 

In this thesis, we consider a streaming application modeled as a DAG-structure workflow 

consisting of a set of computing modules with intricate inter-module dependencies. Each 

module receives data (input) from each of its preceding modules and sends data (output) 

to each of its succeeding modules, respectively. We define the underlying computer 

network as a distributed heterogeneous environment consisting of a set of computer nodes 

with different computing capabilities and communication links with different bandwidths 
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and minimum link delays. The network is represented by a directed weighted graph, where 

vertices represent computer nodes and edges denote communication links. Nodes may not 

always have direct connections to each other as they may have different security policies 

or belong to different domains. Note that when several concurrent modules are mapped 

onto the same node and execute tasks simultaneously, the node’s processing power is 

shared by a fair manner among those modules. The same policy applies when several 

datasets are transferred on the same communication link. The bandwidth of that link is 

fairly shared by the concurrent data transfers. 

 

Figure 1. An Example of Workflow Mapping 
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To illustrate the complexity of resource sharing among concurrent module executions and 

data transfers, we use a smplified workflow and network secnario in Figure 1 as an example, 

which consists of six computing modules and four computer nodes. Modules have 

dependencies to each other and only start after all preceding modules finish execution and 

transfer their datasets to subsequent module. In this example, we have node v"  for the first 

module w$  which starts workflow execution and node 𝑣&  for the last module which 

produces the final results for the workflow. The computer network is not a completely 

connected network, for example, the start node v"  has no direct connection to the 

destination node v&. 

The mapping scheme assigns modules w1, w2, and w4 to node v', where modules w1 and w2 

may execute simultaneously and share computing resource of node v', while module w( 

can exclusively use the resource of node v' during its execution time since w( is dependent 

on modules w' and w). Many factors must be considered to make the whole workflow 

execute efficiently, such as whether to choose a new node or reuse the previous node, or to 

find all possible nodes and pick the best candidate for the module.  

Since the workflow is represented by a DAG, we can sort different modules into different 

layers based on their dependencies, which is known as topological sorting in graph theory. 

In Figure 1, w$ is in layer 1; w',	w), w+ are in layer 2;  w(   is in layer 3; w, is in layer 4. 

Modules within the same layer may or may not execute at the same time and thus may or 

may not share resources. However, modules in different layers will not share resources 

even if they are mapped to the same node because they are dependent on each other. The 

difficulty of these problems essentially arises from the topological matching nature in the 
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spatial domain, which is further compounded by the resource sharing complicacy in the 

temporal dimension. 

In this thesis, we analyze and improve the performance of an existing Layer-oriented 

Dynamic Programming (LDP) algorithm to achieve better throughput and algorithm 

runtime, respectively. We parallelize workflow executions on a PC cluster using MPI and 

OpenMP and narrow the search space in order to reduce algorithm runtime using informed 

search techniques inspired by depth-first search (DFS) and breadth-first search (BFS) 

algorithms. The superiority of the proposed solutions is verified by an extensive set of 

performance comparisons with the original LDP algorithm. 

The rest of the thesis is organized as below. In Chapter II, we conduct an extensive and 

thorough literature review. In Chapter III, we mathematically formulate the cost models 

and the workflow mapping problem, and briefly introduce the existing algorithm to be 

improved. We provide technical solutions in Chapter IV, including pseudocode and 

implementation details. Experimental results and comparisons are presented in Chapter V, 

and Chapter VI concludes our work. 
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CHAPTER II 

RELATED WORK 

Workflow mapping problems have been studied in many disciplines because of their 

importance and practicality [4,5,6]. The workflow mapping problem usually focuses on 

two perspectives. One is to assign the subtasks in a computing workflow to an appropriate 

set of selected computer nodes in order to achieve a certain Quality of Service (QoS) 

guarantee. The other is to decide the order and resources shared on a computer node or 

processor when running multiple concurrent tasks, which is not the focus of this thesis. 

There are many existing workflow management systems with different mapping algorithms 

[7,8,9,10]. For example, Apache Hadoop has Yarn as MapReduce2, which mainly focuses 

on processing and splitting massive data and assigning on different nodes [8]. It has a 

capacity scheduler which focuses on managing shared resource by virtualizing computing 

resources to a predefined number of segments and assigns them to different tasks. However, 

the Yarn scheduler does not support DAG workflows which means the users have to 

manage the dependencies of tasks manually. Also, Yarn does not have a mechanism to 

select which node would be appropriate to map. Condor DAGMan utilizes a Round Robin 

approach which is an algorithm for allocating tasks among a group of eligible resources on 

a cyclic basis [7]. Condor supports DAG workflows by defining the dependency between 

tasks in XML file before workflow execution. Some workflow management systems, such 

as Spark, not only have their own scheduler but can also use frameworks such as Mesos or 

Hive [9,10]. For most of the workflow management applications, the scheduler does not 

take the computer network environment and hardware condition of individual nodes into 
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consideration to achieve maximum throughput. Instead, they mainly focus on maintaining 

the task execution order or balancing resource utilization. In a heterogeneous network 

environment, the bandwidth of network links vary. If we assign data transfers to a network 

link with low bandwidth, it may take a long time to move the data. In addition, since the 

hardware conditions of computer nodes are different, the workflow tasks may be mapped 

to some nodes that do not have enough processing power while other idle nodes may have 

enough powerful processors. Therefore, a well-balanced workflow mapping algorithm is 

crucial for end-to-end performance in heterogeneous network environments. 

Based on when the mapping is performed, workflow mapping algorithms can be classified 

into static algorithms and dynamic algorithms. In a static algorithm, the entire mapping is 

generated before the workflow is actually executed, while in a dynamic algorithm, the 

mapping results are calculated dynamically during workflow execution [2].  

There are several existing workflow algorithms, (i) Greedy 𝐴∗ [18] is  a scheduling 

algorithm that determines a static allocation of modules among a set of sensor nodes; (ii) 

Streamline[17] maps the best resources to the most needy modules; (iii) Greedy makes the 

locally optimal choice at each search stage; (iv) LDP[2] is a static workflow mapping 

algorithm that focuses on how to obtain maximum throughput during resource allocation. 

In [2], the author implements and tests four algorithms in several random generated 

problem cases with different problem size. The experiment shows that the MFR 

performance of LDP algorithm outperforms others in all problem cases.  

The LDP algorithm first sorts the modules into different layers based on their dependencies, 

and then layer-by-layer assigns the modules in the current layer to computer nodes 

according to the modules’ computational requirements using a dynamic programming 
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procedure. However, the original LDP algorithm has a high time complexity, resulting in 

a long runtime when the sizes of the computing workflow and computer network increase, 

respectively. For instance, it may take several hours to calculate the mapping scheme when 

we try to map a computing workflow of around 100 modules to a network consisting of 

around 100 computer nodes and 10000 communication links. Moreover, LDP may miss 

some of the possible solutions in the search tree when the previous layer has a relatively 

high bottleneck. To produce smooth data flow in streaming applications and achieve better 

algorithm efficiency, we aim to optimize and improve LDP algorithm in terms of both 

maximum frame rate (MFR) and runtime. 
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CHAPTER III 

WORKFLOW MAPPING PROBLEM 

Cost Model 

We specify the cost models for both computing workflows and computer networks. For 

convenience, we tabulate the parameters defined in the cost models in Table 1. The 

workflow can be modeled as a Directed Acyclic Graph 𝐺0 = (𝑉0, 𝐸0), |𝑉0 | = m, where 

each computing model is represented as w7 ∈ 𝑉0. The workflow starts from module w0 and 

ends at module w9:' . The dependency between two modules can be represented as a 

directed edge e7,<  ∈ 𝐸0. Module w<  receives data input from each of its preceding modules, 

including module w7. Each module has its own computational requirement 𝐶𝑅7 ( i ∈	0,1 … 

m – 1 ), which is calculated as 𝑧@A ∗ 𝜆7, where 𝑧@A is aggregated input data size of module 

w7 and 𝜆7 is computational complexity of w7. Note that the complexity of a module is an 

abstract quantity that not only depends on the computational complexity of the algorithm 

defined in the module but also the implementation details such as the specific data 

structures used in the program. In our workflow model, we assume there is always one start 

module and one end module. An application with multiple start or end modules could be 

converted to a single start and a single end model by inserting a virtual start or end module 

of complexity zero connected to all source or destination modules with zero-sized output 

or input data transfers. All other modules in the workflow may receive input datasets from 

one or more preceding modules and generate output datasets to one or more succeeding 

modules. 
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The computer network can be modeled as a weighted graph 𝐺C = (𝑉C, 𝐸C), where |	𝑉C | = n 

nodes and are connected by | 𝐸C | overlay links. A node is represented as 𝑣7 (i ∈ 0,1…n – 

1 ). Each node has its own processing power as 𝑝7, and 𝑟7 represents the number of 

modules that are currently running on the node vi. 𝑙7,<	is the link between 𝑣7 and 𝑣< and it 

has the bandwidth 𝑏7,< and the minimum link delay 𝑑7,<. We assume there is a source 

node 𝑣" to run the start module and a destination node 𝑣& to execute the end module.  

We use 𝐿7 ( i ∈ 1, 2…k) to represent the workflow layer, where |𝐿7 | = k, 𝐿' has the start 

module mapped to the start node, and 𝐿J  has the end module mapped to the end node.  

Table 1. Parameters in the cost models and problem formulation  
Parameters Definitions 

𝐺0 = (𝑉0, 𝐸0) Workflow graph 
w7 Module 
e7 Dependency between modules 
𝑧@A 	 Aggregated input data size of module w7 
𝐶𝑅7 Computational requirement 
𝜆7 Computational complexity 

𝐺C = (𝑉C, 𝐸C) Network graph 
𝑣7 Node 
𝑝7 	 Node processing power 
𝑙7,< Network link 
𝑏7,< Bandwidth 
𝑑7,< Minimum delay 
𝑟7 Node reuse counter 
𝐿7 Workflow layer 

𝑇LMNO(P,Q)	 Data transfer time of edge e over link l  
𝑇PRPC(0,S)	 Execution time of module w on node v  
BN7 Bottleneck for one layer 
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Performance Metric 

When we map a module to a node, we have 𝑇LMNO(PA,QV,W), which is the data transfer time of 

edge 𝑒7 over link 𝑙<, and 𝑇PRPC(0A,SW), which is execution time of module 𝑤7 on node 𝑣<.	We 

use BN7 to define local bottleneck in each layer, which is calculated by selecting the longest 

time among all module execution times and data transfer times computed from the start 

module to every other module in the current layer. For each BN7, we find the largest one 

as the global bottleneck time BNZQ[\NQ. The execution time of module w7 mapped to node 

v< is defined as 
]^_A∗M̀ W

a`W
. Since the node’s processing power is shared in a fair manner if 

there are multiple modules running on same node, where 𝑟< is the counter which indicates 

how many modules are running on node j. For the data transfer from node vJ to node v<, 

the transfer time is calculated as 
]^_A∗M̀ W

\V,W
	+ 	𝑑J,<.  To find the bottleneck of the current 

layer, we need to find all the module execution times and data transfer times in that layer. 

So the global bottleneck time can be computed as: 

BNZQ[\NQ = 	 max
0A,PA∈fg	SW,QW∈fh

(𝑇LMNO(PA,QV,W), 𝑇PRPC(0A,SW)) 

=	 max
0A,PA∈fg	SW,QW∈fh

(
𝐶𝑅@A ∗ 𝑟iW

𝑝iW
,
𝐶𝑅@A ∗ 𝑟iW
𝑏J,<

	+ 	𝑑J,<) 

Frame rate or throughput is the inverse of global bottleneck time of the workflow. It can 

be considered as the rate that data is produced at the last module, and the frame rate is the 

most important performance index for streaming applications which continuously generate 

datasets and feed them into workflow.  
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Problem Formulation 

The formal workflow mapping problem for MFR is defined as follows: 

Definition 1. Given a DAG- structured computing workflow 𝐺0 = (𝑉0, 𝐸0)  and a 

heterogeneous computer network 𝐺C = (𝑉C, 𝐸C), the objective of the problem is to find an 

appropriate mapping scheme that assigns each module to a node so that the mapped 

workflow achieves the MFR, i.e.: 

MFR = 	 max
NQQ	a[""7\QP	9Naa7OZ"

(
1

BNZQ[\NQ
) 

where the maximum frame rate is analogous to producing smooth data flow in streaming 

applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



12	

	

CHAPTER IV 

TECHNICAL SOLUTIONS 

Analysis of the Original LDP Algorithm  

  
Input: workflow graph 𝐺0 = (𝑉0, 𝐸0),  network graph 𝐺C = (𝑉C, 𝐸C) 
Output: workflow mapping 
1: Topology sort 𝐺0 and categorize modules to different layer 
2: For each layer 𝐿7: 
3: get the module wn7 in layer 𝐿7 
4: sort wn7 by CR 
5:  for each wn7: 
6:  get all node available for wn7 
7: end for 
8: initialize a 2 dimension DP matrix M, the row stands for one mapping 
combination as COMB 
9: set result bottleneck BNMP"  and COMBMP" empty 
10: for COMB< in M: 
11:  get the BNqrstWfor one combination  
 12: if (BNqrstW < BNMP") 
 13:  update BNMP" = BNqrstW 
 14:  update COMBMP" = COMB< 
 15: end if 
 16: end for 
 17: save the mapping with minimum BN for current layer 
18: end for 

 

 
Figure 2. Original LDP algorithm  

 
 

 
Figure 2 shows the pseudocode of the original LDP algorithm. The algorithm tries to find 

a proper mapping for the current layer with the minimum global bottleneck based on the 

mapping in the previous layer, and then uses the mapping generated in this layer to 

calculate the bottleneck in the next layer. For each module, based on the nodes where their 

preceding modules are mapped, we can calculate a list of possible nodes for the current 
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module that are connected to the previously selected nodes, and list all the combinations 

for different mappings. We choose the mapping with the smallest bottleneck for the current 

layer, and repeat this process for every layer until we obtain the global bottleneck of the 

entire workflow which produces the maximum frame rate among all possible mapping 

schemes. Sometimes the original LDP algorithm will calculate one bottleneck for every 

map combination. It may not be able to choose optimal mapping in current layer when 

there is a module or link from the previous layer with a higher bottleneck than the module 

in the current layer.  

Figure 3 shows an example when the bottleneck of the previous layer is larger than the 

bottleneck of the current layer. We assume the mapping results for layer 1 and layer 2 have 

already been calculated. In layer 1, module w$ is mapped to node v$. In layer 2, w' is 

mapped to v', and w) is mapped to v) and has a longer module execution time. When we 

try to map w( in layer 3, v) is still running during bottleneck time 200. From the previous 

mapping results and the network topology we know that module w( can be mapped to 4 

possible nodes, which are v' , v) , v+  and v, , respectively. If we map w(  to v) , which 

already has module w) running on it, it would increase the global bottleneck and thus the 

algorithm will select other nodes. In Figure 3, if we map w( to v', the bottleneck would be 

100, and nodes v(  and v,  will have bottlenecks of 50 and 30, respectively. Since the 

original algorithm will only return a global bottleneck to make sure the overall performance 

of the workflow is optimized, we may miss some of the better mapping solutions. 
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Figure 3. An example of the original LDP algorithm without checking the local 

minimum bottleneck 
 
 
 

Algorithm Runtime Analysis 

The original LDP algorithm has high time complexity. The runtime gets very large when 

executing a workflow with a large number of modules and nodes. Here we analyze the time 

complexity by workflow layers. On average, we assume there are n modules in each layer. 

Each module has k proceeding modules and m candidate nodes can be used. From Figure 

2 line 4 we know that we need to sort modules based on their computational requirements 

in the current layer. If we use quick sort or merge sort, the time complexity is 

o(nlog 𝑛)[14,15]. From Figure 2 line 5 and 6 we need to find all available mapping nodes 
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of each module. This needs an intersection operation to all possible mapping nodes for the 

module in the previous mapping, since the intersection operation for two sets of nodes is 

𝑚) and each module on average has k proceeding modules[16]. The time complexity to 

find all available mapping nodes is o(𝑛 ∗ 𝑘 ∗ 𝑚)). From Figure 2 line 8 to line 16 we 

generate all possible combinations for the mappings and calculate the global minimum 

bottleneck. We need to generate a DP array with size 𝑛 ∗ 𝑚O and traverse the entire table 

to calculate the bottleneck for each combination. The bottleneck calculation for each 

combination has o(n) time complexity. The time complexity of finding the minimum 

bottleneck is o(𝑛) ∗ 𝑚O) . The time complexity of the mapping process in one layer is 

o(𝑛) ∗ 𝑚O + nlog 𝑛 + 𝑛 ∗ 𝑘 ∗ 𝑚)). Therefore, increasing the sizes of the workflow or the 

network will dramatically increase the algorithm’s runtime. Since the process of finding 

the minimum bottleneck takes up most of the time, we should use better search schemes to 

speed up this process. 

Optimization On Maximum Frame Rate Performance 

Sometimes the minimum bottleneck among all current combination mappings is not in the 

current layer but in the previous layers. Since the original algorithm only returns a global 

bottleneck value for the current combination mapping, there are several combination 

mappings that all have the same bottleneck which is the minimum bottleneck, and we may 

get a random selection in the current layer mapping. To solve this problem, two values are 

generated every time after we finish the bottleneck calculation for one combination 

mapping. One value holds the global bottleneck of the combination mapping and the other 

holds the bottleneck for the current layer. If we find a smaller global bottleneck, we will 

update the new global bottleneck, the new bottleneck of the current layer and the new 
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combination mapping. If we find the combination mapping has the same global bottleneck 

but smaller bottleneck for the current layer, we update the new bottleneck in the current 

layer and the new combination mapping. The pseudocode of the newly improved LDP 

algorithm is presented in Figure 4.  

  
Input: workflow graph 𝐺0 = (𝑉0, 𝐸0),  network graph 𝐺C = (𝑉C, 𝐸C) 
Output: workflow mapping 
1: Topologically sort 𝐺0 and categorize modules to different layers 
2: For each layer 𝐿7: 
3: get the module wn7 in layer 𝐿7 
4: sort wn7 by CR 
5:  for each wn7: 
6:  get all node available for wn7 
7: end for 
8: initialize a 2 dimension DP matrix M, the row stands for one mapping 
combination as COMB 
9: set result bottleneck BNMP"  and COMBMP" empty 
10: for COMB< in M: 
11:  get the BNqrstWfor one combination  
 12:  if (BNqrstW < BNMP") 
 13:   update BNMP" = BNqrstW 
 14:   update COMBMP" = COMB< 
15:   update BN|}~����~��� 
16:  else if (BNqrstW  == BNMP" && BN|}~����~ < BN|}~����~���) 
17:   update BN|}~����~��� 
18:   update COMBMP" = COMB< 
 19:  end if 
 20:  end for 
 21: save the mapping with minimum BN for current layer 
22: end for 

 

 
Figure 4. Improved LDP algorithm 
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Optimization On Algorithm Runtime Performance 

When the algorithm processes the workflow with a large number of modules and nodes, 

the runtime of the LDP algorithm largely increases. We design three approaches to 

optimize the runtime of the algorithm. The first one is the optimization on runtime of 

multiple workflow mappings. We use MPI to parallel process multiple workflow mappings 

by sending workflow mapping tasks to a cluster. The second and the third ones are the 

optimization on the process of searching the minimum bottleneck among all mapping 

solutions. We use two informed search techniques inspired by depth-first search (DFS) and 

breadth-first search (BFS). The depth-first informed search speeds up the search process 

by skipping unpromising combination mapping. The breadth-first informed search uses the 

greedy approach to process the module with the highest priority in each layer and 

iteratively search the mapping solution. 

Parallelizing the Workflow Mapping Executions 

When multiple workflows need to be executed, we can send them to a PC cluster to speed 

up the mapping calculation using MPI. To further speed up the workflow execution, we 

also implement OpenMP inside some of the functions. This implementation largely reduces 

the workflow mapping execution time, especially for large problem cases. The original 

code was developed in Microsoft Visual Studios environment in C++ language. We adapt 

the code to work in the Linux environment to use the cluster at MTSU. We use a Single 

Program Multiple Data (SPMD) approach to implement the algorithm. The workflow 

mapping tasks are stored in a text file. The root node will read those workflow mapping 

tasks one by one and pass to all child nodes until all child nodes have a task. Then the root 
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node takes the following mapping tasks. We repeat this process until all the tasks in the 

text file are completed.  

 

Figure 5. Using MPI to parallel processing multiple workflow mappings 
 
 
 
Figure 5 shows an example of using MPI for parallel processing with multiple workflows. 

The circles represent computer nodes in cluster, and the rectangles represent the mapping 

tasks. We use 5 nodes to process 10 workflow mapping tasks. In this example, we set node 

0 as root node. Node 0 will read workflow mapping tasks file and send those tasks to child 

nodes. Node 1 will get the first mapping task which is task 0. After all child nodes have 

one task to process, Node 0 will process task 4. We repeat such process until all mapping 

tasks are completed. We provide the performance evaluation and comparison in Chapter 

V. Due to the intricate dependencies among the implementation of the original LDP 

algorithm, we only implement data parallelism. Thus it is beneficial for the scenarios when 

multiple workflows need to be executed or multiple datasets of the same workflow need to 

be processed for streaming applications. We need to explore more possibilities of task 

parallelism in the LDP mapping algorithm to further improve the runtime performance. 
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Optimization on Searching Minimum Bottleneck 

Searching the bottleneck in the original LDP algorithm has a very high time complexity, 

which may affect the workflow performance when we have a large computing workflow 

or a computer network. To solve this problem, we design two solutions and implement 

them to speed up the process of finding the minimum bottleneck. One solution uses depth-

first informed search technique, and the other uses breadth-first informed search technique 

[11,12,13]. 

Depth-First Informed Search Solution 

When we calculate the bottleneck for one mapping combination, we need to find the largest 

value among all module execution times and data transfer times for this combination. When 

a new module is mapped to a node, the module execution time and the data transfer time 

are calculated and compared with the current minimum bottleneck. The current mapping 

combination will not be the best solution for all future mappings if the minimum bottleneck 

is smaller than any of the above two values. We can skip the current mapping combination 

and move to the next one. Thus, some unnecessary computations can be reduced. If the 

newly added module execution time and data transfer time are smaller than the current 

minimum bottleneck, which means this mapping combination is still “promising”, we 

continue to process the rest of unmapped modules and edges.  

Figure 6 (a) is an example of using depth-first informed search. In layer 2, we need to map 

modules w', w), w+, and the candidate nodes are v', v), v+. Figure 6 (b) is the partial 

search tree of figure 6 (a). We assume that w', w) and w+ have already been sorted based 

on their computational requirements. In node 4 of the search tree in Figure 6 (b), modules 
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w', w) and w+ are all mapped to node v'. We set the minimum bottleneck in the current 

mapping combination as the global minimum bottleneck. 

In the following calculation, whenever we add a module to a node as a new combination, 

we calculate the new module execute time or data transfer time. If the time for the newly 

added module is less than the global minimum bottleneck, we continue to process the rest 

of the mapping in the current combination. Otherwise, we stop this combination and do not 

need to try any other combinations with higher bottlenecks. For example, in Figure 6 (b) 

in node 7 of the search tree, if we map w) to v)  and get a higher bottleneck than the global 

bottleneck, we can skip all combinations with w'  being mapped to v'  and w)  being 

mapped to v) in all future calculations. The same situation may happen in nodes 8 or 9 of 

the search tree. 
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Figure 6. Depth-First informed search solution example  
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Input: workflow graph 𝐺0 = (𝑉0, 𝐸0),  network graph 𝐺C = 𝑉C, 𝐸C  , current 
layer module sorted list named ModList, available node list for each module 
named NodeList, search index I, global minimum bottleneck 𝐵𝑁������  
Output: minimum bottleneck for current layer 
1: set global minimum bottle neck to +infinity, searchindex as 0 
2: getMiniminBN(𝐺0, 𝐺C, ModList,NodeList, i, 𝐵𝑁������, 𝐵𝑁|}~~���) 
3: if i == ModList.size() 
4:  if (𝐵𝑁|}~~��� < 𝐵𝑁������) 
5:    𝐵𝑁������= 𝐵𝑁|}~~��� 
6:  return 
7: for ith Module 
8:  for node j in NodeList 
9:   add node j in mapping 
10:   update reuseConuter 
11:   calculate bottleneck for node j as 𝐵𝑁�  
 12:   if (𝐵𝑁� > 𝐵𝑁������) 
 13:    remove node j in mapping 
 14:    update reuseConuter 
 15:    continue 
16:   if (𝐵𝑁� > 𝐵𝑁|}~~���) 
 17:     𝐵𝑁|}~~��� = 𝐵𝑁� 
 18:     getMiniminBN(𝐺0, 𝐺C, ModList,NodeList, i + 1, 
𝐵𝑁������, 𝐵𝑁|}~~���) 
19:   end if 
20:    remove node j in mapping 
21:   update reuseConuter 
22:  end for 
23: end for 
24: return 
25:end function  

 

 
Figure 7. Pseudocode of informed search solution based on DFS 

 
 
 

Figure 7 is the pseudocode for the depth-first informed search algorithm for finding the 

minimum bottleneck. We go through all the modules, map them to available nodes, and 
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see if the mapping is promising or not. Note that the reuseCounter is a counter associated 

with each node in the network to check the number of modules being mapped to the 

selected node. Every time when we map a new module to a new node, we need to update 

reuseCounter to reflect the current resource sharing.  

If we consider the search process as a search tree in Figure 6 (b), the algorithm will try 

every possible combination mapping in the worst case. Since there are mO  leaves, the 

complexity of the worst case is o(mO). However, in most cases, the search process barely 

reaches the leaves in the search tree because most search processes are stopped due to non-

promising mappings. Therefore, the complexity of the average case could be much smaller 

than o(mO). 

Breadth-First Informed Search Solution 

Although the depth-first informed search solution has reduced the algorithm complexity 

and runtime, in some mapping cases with a large number of nodes or modules, it may still 

take too much time. To handle these types of computing workflows, we design and 

implement another solution by using breadth-first informed search and greedy algorithm. 

In large cases, normally there would be many more nodes available than modules in one 

layer. The modules are very likely to be mapped to different nodes unless there are some 

very powerful nodes which may still have low module execute time or data transfer time 

even if multiple modules are executed at the same time. 

Also, the module with the highest computational requirement is more likely to take more 

time to execute if the module is not mapped properly, which means the modules with higher 

computational requirements sometimes need to be mapped first in order to achieve lower 

overall bottlenecks. Instead of traversing the search tree in depth-first informed search, we 
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map the modules to the node with the lowest data transfer time or module execution time 

among the node list based on computational requirements in a descending order. Then we 

update the mapping result and iterate to the next module. 

 

Figure 8. Breadth-First informed search solution example 
 
 
 

Figure 8 is the mapping process for Figure 6 (a), in which we assume the modules are 

sorted as w', w) and	w+. The BN value on top of each node is the time of mapping the 

current module to the node. So we only need to go through the node list once and choose 

the node with the smallest time. Note that when we process w) , w'  has already been 

mapped to v+. So even if  v+ has some advantages like more powerful processor or shorter 

data transfer time, the bottleneck time may still increase because multiple modules are 

mapped to the same node.   
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Input: workflow graph 𝐺0 = (𝑉0, 𝐸0),  network graph 𝐺C = 𝑉C, 𝐸C  current layer 
module sorted list named ModList, available node list for each module named 
NodeList, search index I, global minimum bottleneck 𝐵𝑁������  
Output: minimum bottleneck for current layer 
1: set global minimum bottleneck to +infinity, 
2: getMiniminBN(𝐺0, 𝐺C, ModList,NodeList) 
3: for ith Module 
4:  for each node j in NodeList 
5:    add node j in mapping 
6:   update reuseConuter 
7:   calculate BN for node j as 𝐵𝑁�  
8:   if (𝐵𝑁� < 𝐵𝑁������) 
9:    𝐵𝑁������ = 𝐵𝑁� 
10:    if (𝐵𝑁� > 𝐵𝑁|}~~���) 
11:     𝐵𝑁|}~~��� = 𝐵𝑁� 
12:    end if 
13:   end if 
 14:   remove node j 
 15:   update reuseConuter 
 16:  end for 
17:  set the mapping for node j 
 18:  end for  
19: return 
20: end function      
  

Figure 9. Pseudocode of informed search solution based on BFS 
 
 
 
Figure 9 is the pseudocode of breadth-first informed search for finding the minimum 

bottleneck. We go through the module list and try each available node to find a minimum 

bottleneck. The purpose of reuseCounter is the same as the one used in depth-first informed 

search. Note that in this solution we do not go through every combination, so that the final 

result may be trapped in the locally optimal choice. However, this solution does reduce the 

time complexity dramatically as it only goes through all the modules and nodes once, 

resulting in a lower time complexity o(mn). 
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CHAPTER V 

PERFORMANCE EVALUATION 

We implement the depth-first informed search solution, the breadth-first informed search 

solution and MPI parallel solution in C++ language1. The input of each algorithm is the 

workflow graph and network graph, and the output is the maximum frame rate (MFR). 

Both informed search solutions consider the optimization of the current layer bottleneck. 

All experiments were performed on the MTSU ranger cluster. Each node has Intel Xeon 

CPU E5-2640 of 2.60GHz. For comparison, we first provide the MFR comparison of the 

original and the improved LDP algorithms by varying the problem sizes from small scales 

to large ones. Theoretically, the depth-first informed search solution should traverse all 

promising combination mapping to get the global optimal MFR result, and the breadth-first 

informed search solution uses greedy approach and may be trapped in local optimal choice. 

We also need to test the MFR performance of two informed search solutions. We provide 

the MFR comparison of the original and two informed search solutions incorporated with 

current layer bottleneck optimization. Finally, for the algorithm runtime comparison, we 

compare the runtime and MFR performance among original algorithm, depth-first 

informed search solution, breath-first informed search solution and MPI parallel solution. 

 
 
 
 
 
 
 
 
 

																																																													
1 You can contact kt3j@mtmail.mtsu.edu for more implementation details 
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Table 2. Problem case information  
Problem case index Definitions 

m, |𝐸0 |,n,|	𝐸C | 
1 4,6,6,35 
2 6,10,10,96 
3 10,18,15,222 
4 13,24,20,396 
5 15,30,25,622 
6 19,36,28,781 
7 22,44,31,927 
8 26,50,35,1215 
9 30,62,40,1598 
10 35,70,45,2008 
11 38,73,47,2200 
12 40,78,50,2478 
13 45,96,60,3580 
14 50,102,65,4220 
15 55,124,70,4890 

 
 
 
Table 2 is the information of different problem cases we use to evaluate the proposed 

algorithm, where m is the number of modules, |𝐸0 | is the number of edges between a pair 

of adjacent modules, n is the number of nodes, and |	𝐸C | is the network link between two 

nodes. The sizes of the problem cases increase with the problem indices. The larger 

problem cases are more, but not necessarily, likely to have a longer execution time. Since 

MFR is not particularly related to the problem size, these results lack an obvious increasing 

or decreasing trend in response to the increasing problem sizes.   
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Figure 10. MFR comparison among four algorithms 
 
 
 

Figure 10 shows the MFR comparison among the four algorithms. From the comparison 

between original LDP and improved LDP, we observe that the MFR increases after we 

optimize the bottleneck mapping in the current layer. Note that in the small cases like cases 

1, 2 and 3, the MFR value stays the same as they have less mapping options. On average, 

the MFR increases by 81.3%. 

Both breadth-first informed search and depth-first informed search have already 

incorporated with the current layer bottleneck optimization. From the figure, we observe 

that the DFS has the best MFR performance that is the same as the improved LDP algorithm, 

which means the depth-first informed search traverses all promising combination mappings 

and gets the global optimal MFR result. Also, the figure shows the breadth-first informed 
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search solution has lower MFR result than improved LDP algorithm, and hence this 

solution is trapped in local optimal choice. However the MFR of breadth-first informed 

search is still 7% higher than the original LDP algorithm. The algorithm is more focused 

on algorithm runtime optimization and we will show the runtime comparison in the next 

figure. 

 

Figure11. Runtime comparison among four algorithms 
 
 
 

Figure 11 shows the runtime comparison among the four algorithms. We run each problem 

case ten times for each algorithm and use the average as the actual vaule in the figure. With 

the increase of the problem sizes, the runtime of the original LDP algorithm increases 

dramatically. However, the runtime of the depth-first informed search increases slowly, 

while the parallel MPI and the breath-first informed search only take a few seconds. For 

the largest case in Figure 11, the original LDP algorithm takes 40 seconds to complete the 
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workflow mapping execution while the DFS costs less than 12 seconds and BFS only takes 

less than 1 second. The parallel LDP with MPI uses 10 nodes to run 10 tasks in the cluster, 

and each node gets one task each time. We  calcualte the average runtimes and the standard 

error per task of parallel LDP algorithm and plot them in Figure 11. Due to the overhead 

of MPI message passing, the runtime parallel LDP algorithm is slightly larger than the 

original algorithm for small problems. However when we increase the problem size, the 

parallel LDP takes much less time than the original algorithm. It is also better than the 

depth-first informed search but not as good as the breath-first informed search. Note that 

although parallel LDP achieves better runtime performance, it uses more computing 

resources. 
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CHAPTER VI 

CONCLUSION 

In this thesis, we reviewed the original LDP algorithm and its cost model, and found that 

the original LDP algorithm is not able to maintain the minimum bottleneck in the current 

layer among all mapping combinations. We modified the mapping process of finding the 

bottleneck in order to obtain a better global minimum bottleneck by checking the minimum 

bottleneck in each layer. By implementing this optimization, the improved LDP algorithm 

achieves a better maximum frame rate.  

Moreover, since the original algorithm has high search complexity in the process of finding 

the minimum bottleneck, especially when the sizes of the computing workflow and 

computer network increase. We proposed two new informed search solutions to reduce the 

search time. The depth-first informed search decreases runtime by skipping unnecessary 

calculations for unpromising mappings. It can effectively decrease the search time while 

still achieving better MFR results. The breadth-first informed search can speed up the 

search time by using a greedy approach to search the mapping which most likely has the 

minimum bottleneck with some sacrifice in MFR performance. However, BFS still results 

in a better MFR than the original algorithm. We also implemented the parallel LDP 

algorithm using MPI for sending multiple mapping tasks across a computing cluster. This 

approach can reduce runtime but uses more computing resources.  

In the current cost models, we used a normalized quantity to represent the processing power 

and bandwidth for simplicity. However, a single constant is not always sufficient to 

describe node computing and link transfer capabilities. It is of our future interest to 

investigate more sophisticated cost models to characterize real-time node and link 
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behaviors in dynamic network environments. Since the breadth-first informed search 

solution has better runtime efficiency compared to the depth-first informed search solution, 

we will try to further improve the performance of the breadth-first informed search solution 

algorithm without sacrificing its runtime efficiency. We also plan to test the proposed 

mapping solutions and evaluate their performance in real large-scale networks. 
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