
ENHANCED THROUGHPUT FOR WORKFLOW SCHEDULING USING
PARALELLISM COMPUTATION AND INFORMED SEARCH

By

Kaite Tang

A thesis submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE

in

Computer Science

Middle Tennessee State University

August 2017

Thesis Committee:

Dr Yi Gu,

Dr	Joshua L. Phillips,

Dr Cen Li

Dr	Medha Sarkar

	
	

ii	

ACKNOWLEDGEMENTS

This thesis would not have become possible without the support of the Department of

Computer Science at Middle Tennessee State University. I am grateful to all of those with

whom I have had the pleasure to work during my Master’s study.

First and foremost, I would like to express my deepest gratitude to my advisor, Dr. Yi Gu,

for her excellent guidance, caring, patience, and providing me with an excellent atmosphere

for doing research. I have learned not only academic knowledge and expertise, but also

methods and skills of how to do the research, which will benefit my entire life.

I would also like to thank the members of my committee, Dr. Joshua Phillips, Dr. Cen Li,

Dr. Medha Sarkar, for their valuable comments and suggestions, leading to a successful

thesis.

Finally, I am grateful to my parents, Mrs. Honglu Zhou and Mr. Jianping Tang, for their

spiritual and physical supports. Without their unconditional, unchanging, and unending

love and care, this work would never have come into existence.

	
	

iii	

ABSTRACT

Next-generation e-science is producing a huge amount of data that needs to be processed

by geographically isolated scientists and users through different steps, which can be

modeled as a Directed Acyclic Graph (DAG) structured computing workflow. Many big

data science applications, especially streaming applications with complex DAG-structured

workflows, require a smooth dataflow for the Quality of Service (QoS) guarantee. Even

with the ever-increasing computing power available in the High Performance Computing

(HPC) environments, i.e., parallel processing on a PC cluster, the execution time of such

high-demand streaming applications may still take a few hours or even days in some cases.

Therefore, supporting and optimizing the performance of such scientific workflows in

wide-area networks, especially in Grid and Cloud environments, are crucial to the success

of collaborative scientific discovery.

In this thesis, we focus on optimizing and improving the performance of an existing

workflow mapping algorithm, Layer-oriented Dynamic Programming (LDP), by (i)

parallelizing the workflow executions on a PC cluster using MPI and OpenMP, and (ii)

removing unnecessary search steps in order to reduce the algorithm runtime using informed

search techniques inspired by depth-first search (DFS) and breadth-first search (BFS). The

performance superiority of the modified algorithm is illustrated by an extensive set of

simulations in comparison to the original LDP algorithm in terms of both throughput and

runtime.

	
	

iv	

TABLE OF CONTENTS

 Page

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

LIST OF SYMBOLS AND ABBREVIATIONS .. viii

Chapter

I. INTRODUCTION ... 1

II. RELATED WORK ... 5

III. WORKFLOW MAPPING PROBLEM ... 8

 Cost Model ... 8

 Performance Metric ... 10

 Problem Formulation ... 11

IV. TECHNICAL SOLUTIONS ... 12

 Analysis of the Original LDP Algorithm ... 12

 Algorithm Runtime Analysis ... 14

 Optimization On Maximum Frame Rate Performance 15

 Optimization On Algorithm Runtime Performance 17

 Parallelizing the Workflow Mapping Executions 17

 Optimization on Search Minimum Bottleneck 19

 Depth-First Informed Search Solution 19

 Breadth-First Informed Search Solution 23

	
	

v	

V. PERFORMANCE EVALUATION ... 26

VI. CONCLUSION ... 31

BIBLIOGRAPHY ... 33

	
	

vi	

LIST OF TABLES

Table 1 – Parameters in the cost models and problem formulation 9

Table 2 – Problem case information ... 27

	
	

vii	

LIST OF FIGURES

Figure 1 – An example of workflow mapping .. 2	

Figure 2 – Original LDP algorithm ... 12

Figure 3 – An example of the original LDP algorithm without checking the local

minimum bottleneck ... 14

Figure 4 – Improved LDP algorithm .. 16

Figure 5 – Using MPI to parallel processing multiple workflow mappings 18

Figure 6 – Depth-First informed search solution example ... 21

Figure 7 – Pseudocode of informed search solution based on DFS 22

Figure 8 –Breadth-First informed search solution example ... 24

Figure 9 – Pseudocode of informed search solution based on BFS 25

Figure 10 – MFR comparison among four algorithms .. 28

Figure 11 –Runtime comparison among four algorithms ... 29

	
	

viii	

LIST OF SYMBOLS AND ABBREVIATIONS

BFS – Breadth-First Search

DFS – Depth-First Search

DP – Dynamic Programming

HPC – High Performance Computing

LDP – Layer-oriented Heuristic Algorithm Using a DP Procedure  	

MED – Minimum End-to-end Delay

MFR – Maximum Frame Rate

MPI – Message Passing Interface

1	

	

CHAPTER I

INTRODUCTION

Next-generation e-science is producing a huge amount of data that needs to be processed

by geographically isolated scientists and users through different steps, which can be

modeled as a Directed Acyclic Graph (DAG) structured computing workflow. Many big

data science applications, especially streaming applications with complex DAG-structured

workflows require a smooth data flow for the Quality of Service (QoS) guarantee. Even

with the ever-increasing computing power available in High Performance Computing

(HPC) environments, i.e., parallel processing at a PC cluster, the execution time of such

high demand streaming applications may still take a few hours or even days in some cases.

Thus, how to carefully choose an appropriate set of computer nodes and wisely allocate

available computing resources to the tasks are very critical for end-to-end performance of

the workflows. For example, task A is the preceding task of task B and has a large data

transfer to task B. If we choose two inappropriate computer nodes connected through slow

bandwidth, the data transfer time from task A to task B would determine the throughput of

entire workflow execution, which is known as a bottleneck (BN), and also increase the

latency of workflow executions.

In this thesis, we consider a streaming application modeled as a DAG-structure workflow

consisting of a set of computing modules with intricate inter-module dependencies. Each

module receives data (input) from each of its preceding modules and sends data (output)

to each of its succeeding modules, respectively. We define the underlying computer

network as a distributed heterogeneous environment consisting of a set of computer nodes

with different computing capabilities and communication links with different bandwidths

2	

	

and minimum link delays. The network is represented by a directed weighted graph, where

vertices represent computer nodes and edges denote communication links. Nodes may not

always have direct connections to each other as they may have different security policies

or belong to different domains. Note that when several concurrent modules are mapped

onto the same node and execute tasks simultaneously, the node’s processing power is

shared by a fair manner among those modules. The same policy applies when several

datasets are transferred on the same communication link. The bandwidth of that link is

fairly shared by the concurrent data transfers.

Figure 1. An Example of Workflow Mapping

3	

	

To illustrate the complexity of resource sharing among concurrent module executions and

data transfers, we use a smplified workflow and network secnario in Figure 1 as an example,

which consists of six computing modules and four computer nodes. Modules have

dependencies to each other and only start after all preceding modules finish execution and

transfer their datasets to subsequent module. In this example, we have node v" for the first

module w$ which starts workflow execution and node 𝑣& for the last module which

produces the final results for the workflow. The computer network is not a completely

connected network, for example, the start node v" has no direct connection to the

destination node v&.

The mapping scheme assigns modules w1, w2, and w4 to node v', where modules w1 and w2

may execute simultaneously and share computing resource of node v', while module w(

can exclusively use the resource of node v' during its execution time since w(is dependent

on modules w' and w). Many factors must be considered to make the whole workflow

execute efficiently, such as whether to choose a new node or reuse the previous node, or to

find all possible nodes and pick the best candidate for the module.

Since the workflow is represented by a DAG, we can sort different modules into different

layers based on their dependencies, which is known as topological sorting in graph theory.

In Figure 1, w$ is in layer 1; w',	w), w+ are in layer 2; w(is in layer 3; w, is in layer 4.

Modules within the same layer may or may not execute at the same time and thus may or

may not share resources. However, modules in different layers will not share resources

even if they are mapped to the same node because they are dependent on each other. The

difficulty of these problems essentially arises from the topological matching nature in the

4	

	

spatial domain, which is further compounded by the resource sharing complicacy in the

temporal dimension.

In this thesis, we analyze and improve the performance of an existing Layer-oriented

Dynamic Programming (LDP) algorithm to achieve better throughput and algorithm

runtime, respectively. We parallelize workflow executions on a PC cluster using MPI and

OpenMP and narrow the search space in order to reduce algorithm runtime using informed

search techniques inspired by depth-first search (DFS) and breadth-first search (BFS)

algorithms. The superiority of the proposed solutions is verified by an extensive set of

performance comparisons with the original LDP algorithm.

The rest of the thesis is organized as below. In Chapter II, we conduct an extensive and

thorough literature review. In Chapter III, we mathematically formulate the cost models

and the workflow mapping problem, and briefly introduce the existing algorithm to be

improved. We provide technical solutions in Chapter IV, including pseudocode and

implementation details. Experimental results and comparisons are presented in Chapter V,

and Chapter VI concludes our work.

5	

	

CHAPTER II

RELATED WORK

Workflow mapping problems have been studied in many disciplines because of their

importance and practicality [4,5,6]. The workflow mapping problem usually focuses on

two perspectives. One is to assign the subtasks in a computing workflow to an appropriate

set of selected computer nodes in order to achieve a certain Quality of Service (QoS)

guarantee. The other is to decide the order and resources shared on a computer node or

processor when running multiple concurrent tasks, which is not the focus of this thesis.

There are many existing workflow management systems with different mapping algorithms

[7,8,9,10]. For example, Apache Hadoop has Yarn as MapReduce2, which mainly focuses

on processing and splitting massive data and assigning on different nodes [8]. It has a

capacity scheduler which focuses on managing shared resource by virtualizing computing

resources to a predefined number of segments and assigns them to different tasks. However,

the Yarn scheduler does not support DAG workflows which means the users have to

manage the dependencies of tasks manually. Also, Yarn does not have a mechanism to

select which node would be appropriate to map. Condor DAGMan utilizes a Round Robin

approach which is an algorithm for allocating tasks among a group of eligible resources on

a cyclic basis [7]. Condor supports DAG workflows by defining the dependency between

tasks in XML file before workflow execution. Some workflow management systems, such

as Spark, not only have their own scheduler but can also use frameworks such as Mesos or

Hive [9,10]. For most of the workflow management applications, the scheduler does not

take the computer network environment and hardware condition of individual nodes into

6	

	

consideration to achieve maximum throughput. Instead, they mainly focus on maintaining

the task execution order or balancing resource utilization. In a heterogeneous network

environment, the bandwidth of network links vary. If we assign data transfers to a network

link with low bandwidth, it may take a long time to move the data. In addition, since the

hardware conditions of computer nodes are different, the workflow tasks may be mapped

to some nodes that do not have enough processing power while other idle nodes may have

enough powerful processors. Therefore, a well-balanced workflow mapping algorithm is

crucial for end-to-end performance in heterogeneous network environments.

Based on when the mapping is performed, workflow mapping algorithms can be classified

into static algorithms and dynamic algorithms. In a static algorithm, the entire mapping is

generated before the workflow is actually executed, while in a dynamic algorithm, the

mapping results are calculated dynamically during workflow execution [2].

There are several existing workflow algorithms, (i) Greedy 𝐴∗ [18] is a scheduling

algorithm that determines a static allocation of modules among a set of sensor nodes; (ii)

Streamline[17] maps the best resources to the most needy modules; (iii) Greedy makes the

locally optimal choice at each search stage; (iv) LDP[2] is a static workflow mapping

algorithm that focuses on how to obtain maximum throughput during resource allocation.

In [2], the author implements and tests four algorithms in several random generated

problem cases with different problem size. The experiment shows that the MFR

performance of LDP algorithm outperforms others in all problem cases.

The LDP algorithm first sorts the modules into different layers based on their dependencies,

and then layer-by-layer assigns the modules in the current layer to computer nodes

according to the modules’ computational requirements using a dynamic programming

7	

	

procedure. However, the original LDP algorithm has a high time complexity, resulting in

a long runtime when the sizes of the computing workflow and computer network increase,

respectively. For instance, it may take several hours to calculate the mapping scheme when

we try to map a computing workflow of around 100 modules to a network consisting of

around 100 computer nodes and 10000 communication links. Moreover, LDP may miss

some of the possible solutions in the search tree when the previous layer has a relatively

high bottleneck. To produce smooth data flow in streaming applications and achieve better

algorithm efficiency, we aim to optimize and improve LDP algorithm in terms of both

maximum frame rate (MFR) and runtime.

8	

	

CHAPTER III

WORKFLOW MAPPING PROBLEM

Cost Model

We specify the cost models for both computing workflows and computer networks. For

convenience, we tabulate the parameters defined in the cost models in Table 1. The

workflow can be modeled as a Directed Acyclic Graph 𝐺0 = (𝑉0, 𝐸0), |𝑉0 | = m, where

each computing model is represented as w7 ∈ 𝑉0. The workflow starts from module w0 and

ends at module w9:' . The dependency between two modules can be represented as a

directed edge e7,< ∈ 𝐸0. Module w< receives data input from each of its preceding modules,

including module w7. Each module has its own computational requirement 𝐶𝑅7 (i ∈	0,1 …

m – 1), which is calculated as 𝑧@A ∗ 𝜆7, where 𝑧@A is aggregated input data size of module

w7 and 𝜆7 is computational complexity of w7. Note that the complexity of a module is an

abstract quantity that not only depends on the computational complexity of the algorithm

defined in the module but also the implementation details such as the specific data

structures used in the program. In our workflow model, we assume there is always one start

module and one end module. An application with multiple start or end modules could be

converted to a single start and a single end model by inserting a virtual start or end module

of complexity zero connected to all source or destination modules with zero-sized output

or input data transfers. All other modules in the workflow may receive input datasets from

one or more preceding modules and generate output datasets to one or more succeeding

modules.

9	

	

The computer network can be modeled as a weighted graph 𝐺C = (𝑉C, 𝐸C), where |	𝑉C | = n

nodes and are connected by | 𝐸C | overlay links. A node is represented as 𝑣7 (i ∈ 0,1…n –

1). Each node has its own processing power as 𝑝7, and 𝑟7 represents the number of

modules that are currently running on the node vi. 𝑙7,<	is the link between 𝑣7 and 𝑣< and it

has the bandwidth 𝑏7,< and the minimum link delay 𝑑7,<. We assume there is a source

node 𝑣" to run the start module and a destination node 𝑣& to execute the end module.

We use 𝐿7 (i ∈ 1, 2…k) to represent the workflow layer, where |𝐿7 | = k, 𝐿' has the start

module mapped to the start node, and 𝐿J has the end module mapped to the end node.

Table 1. Parameters in the cost models and problem formulation
Parameters Definitions

𝐺0 = (𝑉0, 𝐸0) Workflow graph
w7 Module
e7 Dependency between modules
𝑧@A 	 Aggregated input data size of module w7
𝐶𝑅7 Computational requirement
𝜆7 Computational complexity

𝐺C = (𝑉C, 𝐸C) Network graph
𝑣7 Node
𝑝7 	 Node processing power
𝑙7,< Network link
𝑏7,< Bandwidth
𝑑7,< Minimum delay
𝑟7 Node reuse counter
𝐿7 Workflow layer

𝑇LMNO(P,Q)	 Data transfer time of edge e over link l 
𝑇PRPC(0,S)	 Execution time of module w on node v 
BN7 Bottleneck for one layer

10	

	

Performance Metric

When we map a module to a node, we have 𝑇LMNO(PA,QV,W), which is the data transfer time of

edge 𝑒7 over link 𝑙<, and 𝑇PRPC(0A,SW), which is execution time of module 𝑤7 on node 𝑣<.	We

use BN7 to define local bottleneck in each layer, which is calculated by selecting the longest

time among all module execution times and data transfer times computed from the start

module to every other module in the current layer. For each BN7, we find the largest one

as the global bottleneck time BNZQ[\NQ. The execution time of module w7 mapped to node

v< is defined as
]^_A∗M̀ W

a`W
. Since the node’s processing power is shared in a fair manner if

there are multiple modules running on same node, where 𝑟< is the counter which indicates

how many modules are running on node j. For the data transfer from node vJ to node v<,

the transfer time is calculated as
]^_A∗M̀ W

\V,W
	+ 	𝑑J,<. To find the bottleneck of the current

layer, we need to find all the module execution times and data transfer times in that layer.

So the global bottleneck time can be computed as:

BNZQ[\NQ = 	 max
0A,PA∈fg	SW,QW∈fh

(𝑇LMNO(PA,QV,W), 𝑇PRPC(0A,SW))

=	 max
0A,PA∈fg	SW,QW∈fh

(
𝐶𝑅@A ∗ 𝑟iW

𝑝iW
,
𝐶𝑅@A ∗ 𝑟iW
𝑏J,<

	+ 	𝑑J,<)

Frame rate or throughput is the inverse of global bottleneck time of the workflow. It can

be considered as the rate that data is produced at the last module, and the frame rate is the

most important performance index for streaming applications which continuously generate

datasets and feed them into workflow.

11	

	

Problem Formulation

The formal workflow mapping problem for MFR is defined as follows:

Definition 1. Given a DAG- structured computing workflow 𝐺0 = (𝑉0, 𝐸0) and a

heterogeneous computer network 𝐺C = (𝑉C, 𝐸C), the objective of the problem is to find an

appropriate mapping scheme that assigns each module to a node so that the mapped

workflow achieves the MFR, i.e.:

MFR = 	 max
NQQ	a[""7\QP	9Naa7OZ"

(
1

BNZQ[\NQ
)

where the maximum frame rate is analogous to producing smooth data flow in streaming

applications.

12	

	

CHAPTER IV

TECHNICAL SOLUTIONS

Analysis of the Original LDP Algorithm

Input: workflow graph 𝐺0 = (𝑉0, 𝐸0), network graph 𝐺C = (𝑉C, 𝐸C)
Output: workflow mapping
1: Topology sort 𝐺0 and categorize modules to different layer
2: For each layer 𝐿7:
3: get the module wn7 in layer 𝐿7
4: sort wn7 by CR
5: for each wn7:
6: get all node available for wn7
7: end for
8: initialize a 2 dimension DP matrix M, the row stands for one mapping
combination as COMB
9: set result bottleneck BNMP" and COMBMP" empty
10: for COMB< in M:
11: get the BNqrstWfor one combination
 12: if (BNqrstW < BNMP")
 13: update BNMP" = BNqrstW
 14: update COMBMP" = COMB<
 15: end if
 16: end for
 17: save the mapping with minimum BN for current layer
18: end for

Figure 2. Original LDP algorithm

Figure 2 shows the pseudocode of the original LDP algorithm. The algorithm tries to find

a proper mapping for the current layer with the minimum global bottleneck based on the

mapping in the previous layer, and then uses the mapping generated in this layer to

calculate the bottleneck in the next layer. For each module, based on the nodes where their

preceding modules are mapped, we can calculate a list of possible nodes for the current

13	

	

module that are connected to the previously selected nodes, and list all the combinations

for different mappings. We choose the mapping with the smallest bottleneck for the current

layer, and repeat this process for every layer until we obtain the global bottleneck of the

entire workflow which produces the maximum frame rate among all possible mapping

schemes. Sometimes the original LDP algorithm will calculate one bottleneck for every

map combination. It may not be able to choose optimal mapping in current layer when

there is a module or link from the previous layer with a higher bottleneck than the module

in the current layer.

Figure 3 shows an example when the bottleneck of the previous layer is larger than the

bottleneck of the current layer. We assume the mapping results for layer 1 and layer 2 have

already been calculated. In layer 1, module w$ is mapped to node v$. In layer 2, w' is

mapped to v', and w) is mapped to v) and has a longer module execution time. When we

try to map w(in layer 3, v) is still running during bottleneck time 200. From the previous

mapping results and the network topology we know that module w(can be mapped to 4

possible nodes, which are v' , v) , v+ and v, , respectively. If we map w(to v) , which

already has module w) running on it, it would increase the global bottleneck and thus the

algorithm will select other nodes. In Figure 3, if we map w(to v', the bottleneck would be

100, and nodes v(and v, will have bottlenecks of 50 and 30, respectively. Since the

original algorithm will only return a global bottleneck to make sure the overall performance

of the workflow is optimized, we may miss some of the better mapping solutions.

14	

	

Figure 3. An example of the original LDP algorithm without checking the local

minimum bottleneck

Algorithm Runtime Analysis

The original LDP algorithm has high time complexity. The runtime gets very large when

executing a workflow with a large number of modules and nodes. Here we analyze the time

complexity by workflow layers. On average, we assume there are n modules in each layer.

Each module has k proceeding modules and m candidate nodes can be used. From Figure

2 line 4 we know that we need to sort modules based on their computational requirements

in the current layer. If we use quick sort or merge sort, the time complexity is

o(nlog 𝑛)[14,15]. From Figure 2 line 5 and 6 we need to find all available mapping nodes

15	

	

of each module. This needs an intersection operation to all possible mapping nodes for the

module in the previous mapping, since the intersection operation for two sets of nodes is

𝑚) and each module on average has k proceeding modules[16]. The time complexity to

find all available mapping nodes is o(𝑛 ∗ 𝑘 ∗ 𝑚)). From Figure 2 line 8 to line 16 we

generate all possible combinations for the mappings and calculate the global minimum

bottleneck. We need to generate a DP array with size 𝑛 ∗ 𝑚O and traverse the entire table

to calculate the bottleneck for each combination. The bottleneck calculation for each

combination has o(n) time complexity. The time complexity of finding the minimum

bottleneck is o(𝑛) ∗ 𝑚O) . The time complexity of the mapping process in one layer is

o(𝑛) ∗ 𝑚O + nlog 𝑛 + 𝑛 ∗ 𝑘 ∗ 𝑚)). Therefore, increasing the sizes of the workflow or the

network will dramatically increase the algorithm’s runtime. Since the process of finding

the minimum bottleneck takes up most of the time, we should use better search schemes to

speed up this process.

Optimization On Maximum Frame Rate Performance

Sometimes the minimum bottleneck among all current combination mappings is not in the

current layer but in the previous layers. Since the original algorithm only returns a global

bottleneck value for the current combination mapping, there are several combination

mappings that all have the same bottleneck which is the minimum bottleneck, and we may

get a random selection in the current layer mapping. To solve this problem, two values are

generated every time after we finish the bottleneck calculation for one combination

mapping. One value holds the global bottleneck of the combination mapping and the other

holds the bottleneck for the current layer. If we find a smaller global bottleneck, we will

update the new global bottleneck, the new bottleneck of the current layer and the new

16	

	

combination mapping. If we find the combination mapping has the same global bottleneck

but smaller bottleneck for the current layer, we update the new bottleneck in the current

layer and the new combination mapping. The pseudocode of the newly improved LDP

algorithm is presented in Figure 4.

Input: workflow graph 𝐺0 = (𝑉0, 𝐸0), network graph 𝐺C = (𝑉C, 𝐸C)
Output: workflow mapping
1: Topologically sort 𝐺0 and categorize modules to different layers
2: For each layer 𝐿7:
3: get the module wn7 in layer 𝐿7
4: sort wn7 by CR
5: for each wn7:
6: get all node available for wn7
7: end for
8: initialize a 2 dimension DP matrix M, the row stands for one mapping
combination as COMB
9: set result bottleneck BNMP" and COMBMP" empty
10: for COMB< in M:
11: get the BNqrstWfor one combination
 12: if (BNqrstW < BNMP")
 13: update BNMP" = BNqrstW
 14: update COMBMP" = COMB<
15: update BN|}~����~���
16: else if (BNqrstW == BNMP" && BN|}~����~ < BN|}~����~���)
17: update BN|}~����~���
18: update COMBMP" = COMB<
 19: end if
 20: end for
 21: save the mapping with minimum BN for current layer
22: end for

Figure 4. Improved LDP algorithm

17	

	

Optimization On Algorithm Runtime Performance

When the algorithm processes the workflow with a large number of modules and nodes,

the runtime of the LDP algorithm largely increases. We design three approaches to

optimize the runtime of the algorithm. The first one is the optimization on runtime of

multiple workflow mappings. We use MPI to parallel process multiple workflow mappings

by sending workflow mapping tasks to a cluster. The second and the third ones are the

optimization on the process of searching the minimum bottleneck among all mapping

solutions. We use two informed search techniques inspired by depth-first search (DFS) and

breadth-first search (BFS). The depth-first informed search speeds up the search process

by skipping unpromising combination mapping. The breadth-first informed search uses the

greedy approach to process the module with the highest priority in each layer and

iteratively search the mapping solution.

Parallelizing the Workflow Mapping Executions

When multiple workflows need to be executed, we can send them to a PC cluster to speed

up the mapping calculation using MPI. To further speed up the workflow execution, we

also implement OpenMP inside some of the functions. This implementation largely reduces

the workflow mapping execution time, especially for large problem cases. The original

code was developed in Microsoft Visual Studios environment in C++ language. We adapt

the code to work in the Linux environment to use the cluster at MTSU. We use a Single

Program Multiple Data (SPMD) approach to implement the algorithm. The workflow

mapping tasks are stored in a text file. The root node will read those workflow mapping

tasks one by one and pass to all child nodes until all child nodes have a task. Then the root

18	

	

node takes the following mapping tasks. We repeat this process until all the tasks in the

text file are completed.

Figure 5. Using MPI to parallel processing multiple workflow mappings

Figure 5 shows an example of using MPI for parallel processing with multiple workflows.

The circles represent computer nodes in cluster, and the rectangles represent the mapping

tasks. We use 5 nodes to process 10 workflow mapping tasks. In this example, we set node

0 as root node. Node 0 will read workflow mapping tasks file and send those tasks to child

nodes. Node 1 will get the first mapping task which is task 0. After all child nodes have

one task to process, Node 0 will process task 4. We repeat such process until all mapping

tasks are completed. We provide the performance evaluation and comparison in Chapter

V. Due to the intricate dependencies among the implementation of the original LDP

algorithm, we only implement data parallelism. Thus it is beneficial for the scenarios when

multiple workflows need to be executed or multiple datasets of the same workflow need to

be processed for streaming applications. We need to explore more possibilities of task

parallelism in the LDP mapping algorithm to further improve the runtime performance.

19	

	

Optimization on Searching Minimum Bottleneck

Searching the bottleneck in the original LDP algorithm has a very high time complexity,

which may affect the workflow performance when we have a large computing workflow

or a computer network. To solve this problem, we design two solutions and implement

them to speed up the process of finding the minimum bottleneck. One solution uses depth-

first informed search technique, and the other uses breadth-first informed search technique

[11,12,13].

Depth-First Informed Search Solution

When we calculate the bottleneck for one mapping combination, we need to find the largest

value among all module execution times and data transfer times for this combination. When

a new module is mapped to a node, the module execution time and the data transfer time

are calculated and compared with the current minimum bottleneck. The current mapping

combination will not be the best solution for all future mappings if the minimum bottleneck

is smaller than any of the above two values. We can skip the current mapping combination

and move to the next one. Thus, some unnecessary computations can be reduced. If the

newly added module execution time and data transfer time are smaller than the current

minimum bottleneck, which means this mapping combination is still “promising”, we

continue to process the rest of unmapped modules and edges.

Figure 6 (a) is an example of using depth-first informed search. In layer 2, we need to map

modules w', w), w+, and the candidate nodes are v', v), v+. Figure 6 (b) is the partial

search tree of figure 6 (a). We assume that w', w) and w+ have already been sorted based

on their computational requirements. In node 4 of the search tree in Figure 6 (b), modules

20	

	

w', w) and w+ are all mapped to node v'. We set the minimum bottleneck in the current

mapping combination as the global minimum bottleneck.

In the following calculation, whenever we add a module to a node as a new combination,

we calculate the new module execute time or data transfer time. If the time for the newly

added module is less than the global minimum bottleneck, we continue to process the rest

of the mapping in the current combination. Otherwise, we stop this combination and do not

need to try any other combinations with higher bottlenecks. For example, in Figure 6 (b)

in node 7 of the search tree, if we map w) to v) and get a higher bottleneck than the global

bottleneck, we can skip all combinations with w' being mapped to v' and w) being

mapped to v) in all future calculations. The same situation may happen in nodes 8 or 9 of

the search tree.

21	

	

Figure 6. Depth-First informed search solution example

22	

	

Input: workflow graph 𝐺0 = (𝑉0, 𝐸0), network graph 𝐺C = 𝑉C, 𝐸C , current
layer module sorted list named ModList, available node list for each module
named NodeList, search index I, global minimum bottleneck 𝐵𝑁������
Output: minimum bottleneck for current layer
1: set global minimum bottle neck to +infinity, searchindex as 0
2: getMiniminBN(𝐺0, 𝐺C, ModList,NodeList, i, 𝐵𝑁������, 𝐵𝑁|}~~���)
3: if i == ModList.size()
4: if (𝐵𝑁|}~~��� < 𝐵𝑁������)
5: 𝐵𝑁������= 𝐵𝑁|}~~���
6: return
7: for ith Module
8: for node j in NodeList
9: add node j in mapping
10: update reuseConuter
11: calculate bottleneck for node j as 𝐵𝑁�
 12: if (𝐵𝑁� > 𝐵𝑁������)
 13: remove node j in mapping
 14: update reuseConuter
 15: continue
16: if (𝐵𝑁� > 𝐵𝑁|}~~���)
 17: 𝐵𝑁|}~~��� = 𝐵𝑁�
 18: getMiniminBN(𝐺0, 𝐺C, ModList,NodeList, i + 1,
𝐵𝑁������, 𝐵𝑁|}~~���)
19: end if
20: remove node j in mapping
21: update reuseConuter
22: end for
23: end for
24: return
25:end function

Figure 7. Pseudocode of informed search solution based on DFS

Figure 7 is the pseudocode for the depth-first informed search algorithm for finding the

minimum bottleneck. We go through all the modules, map them to available nodes, and

23	

	

see if the mapping is promising or not. Note that the reuseCounter is a counter associated

with each node in the network to check the number of modules being mapped to the

selected node. Every time when we map a new module to a new node, we need to update

reuseCounter to reflect the current resource sharing.

If we consider the search process as a search tree in Figure 6 (b), the algorithm will try

every possible combination mapping in the worst case. Since there are mO leaves, the

complexity of the worst case is o(mO). However, in most cases, the search process barely

reaches the leaves in the search tree because most search processes are stopped due to non-

promising mappings. Therefore, the complexity of the average case could be much smaller

than o(mO).

Breadth-First Informed Search Solution

Although the depth-first informed search solution has reduced the algorithm complexity

and runtime, in some mapping cases with a large number of nodes or modules, it may still

take too much time. To handle these types of computing workflows, we design and

implement another solution by using breadth-first informed search and greedy algorithm.

In large cases, normally there would be many more nodes available than modules in one

layer. The modules are very likely to be mapped to different nodes unless there are some

very powerful nodes which may still have low module execute time or data transfer time

even if multiple modules are executed at the same time.

Also, the module with the highest computational requirement is more likely to take more

time to execute if the module is not mapped properly, which means the modules with higher

computational requirements sometimes need to be mapped first in order to achieve lower

overall bottlenecks. Instead of traversing the search tree in depth-first informed search, we

24	

	

map the modules to the node with the lowest data transfer time or module execution time

among the node list based on computational requirements in a descending order. Then we

update the mapping result and iterate to the next module.

Figure 8. Breadth-First informed search solution example

Figure 8 is the mapping process for Figure 6 (a), in which we assume the modules are

sorted as w', w) and	w+. The BN value on top of each node is the time of mapping the

current module to the node. So we only need to go through the node list once and choose

the node with the smallest time. Note that when we process w) , w' has already been

mapped to v+. So even if v+ has some advantages like more powerful processor or shorter

data transfer time, the bottleneck time may still increase because multiple modules are

mapped to the same node.

25	

	

Input: workflow graph 𝐺0 = (𝑉0, 𝐸0), network graph 𝐺C = 𝑉C, 𝐸C current layer
module sorted list named ModList, available node list for each module named
NodeList, search index I, global minimum bottleneck 𝐵𝑁������
Output: minimum bottleneck for current layer
1: set global minimum bottleneck to +infinity,
2: getMiniminBN(𝐺0, 𝐺C, ModList,NodeList)
3: for ith Module
4: for each node j in NodeList
5: add node j in mapping
6: update reuseConuter
7: calculate BN for node j as 𝐵𝑁�
8: if (𝐵𝑁� < 𝐵𝑁������)
9: 𝐵𝑁������ = 𝐵𝑁�
10: if (𝐵𝑁� > 𝐵𝑁|}~~���)
11: 𝐵𝑁|}~~��� = 𝐵𝑁�
12: end if
13: end if
 14: remove node j
 15: update reuseConuter
 16: end for
17: set the mapping for node j
 18: end for
19: return
20: end function

Figure 9. Pseudocode of informed search solution based on BFS

Figure 9 is the pseudocode of breadth-first informed search for finding the minimum

bottleneck. We go through the module list and try each available node to find a minimum

bottleneck. The purpose of reuseCounter is the same as the one used in depth-first informed

search. Note that in this solution we do not go through every combination, so that the final

result may be trapped in the locally optimal choice. However, this solution does reduce the

time complexity dramatically as it only goes through all the modules and nodes once,

resulting in a lower time complexity o(mn).

26	

	

CHAPTER V

PERFORMANCE EVALUATION

We implement the depth-first informed search solution, the breadth-first informed search

solution and MPI parallel solution in C++ language1. The input of each algorithm is the

workflow graph and network graph, and the output is the maximum frame rate (MFR).

Both informed search solutions consider the optimization of the current layer bottleneck.

All experiments were performed on the MTSU ranger cluster. Each node has Intel Xeon

CPU E5-2640 of 2.60GHz. For comparison, we first provide the MFR comparison of the

original and the improved LDP algorithms by varying the problem sizes from small scales

to large ones. Theoretically, the depth-first informed search solution should traverse all

promising combination mapping to get the global optimal MFR result, and the breadth-first

informed search solution uses greedy approach and may be trapped in local optimal choice.

We also need to test the MFR performance of two informed search solutions. We provide

the MFR comparison of the original and two informed search solutions incorporated with

current layer bottleneck optimization. Finally, for the algorithm runtime comparison, we

compare the runtime and MFR performance among original algorithm, depth-first

informed search solution, breath-first informed search solution and MPI parallel solution.

																																																													
1 You can contact kt3j@mtmail.mtsu.edu for more implementation details

27	

	

Table 2. Problem case information
Problem case index Definitions

m, |𝐸0 |,n,|	𝐸C |
1 4,6,6,35
2 6,10,10,96
3 10,18,15,222
4 13,24,20,396
5 15,30,25,622
6 19,36,28,781
7 22,44,31,927
8 26,50,35,1215
9 30,62,40,1598
10 35,70,45,2008
11 38,73,47,2200
12 40,78,50,2478
13 45,96,60,3580
14 50,102,65,4220
15 55,124,70,4890

Table 2 is the information of different problem cases we use to evaluate the proposed

algorithm, where m is the number of modules, |𝐸0 | is the number of edges between a pair

of adjacent modules, n is the number of nodes, and |	𝐸C | is the network link between two

nodes. The sizes of the problem cases increase with the problem indices. The larger

problem cases are more, but not necessarily, likely to have a longer execution time. Since

MFR is not particularly related to the problem size, these results lack an obvious increasing

or decreasing trend in response to the increasing problem sizes.

28	

	

Figure 10. MFR comparison among four algorithms

Figure 10 shows the MFR comparison among the four algorithms. From the comparison

between original LDP and improved LDP, we observe that the MFR increases after we

optimize the bottleneck mapping in the current layer. Note that in the small cases like cases

1, 2 and 3, the MFR value stays the same as they have less mapping options. On average,

the MFR increases by 81.3%.

Both breadth-first informed search and depth-first informed search have already

incorporated with the current layer bottleneck optimization. From the figure, we observe

that the DFS has the best MFR performance that is the same as the improved LDP algorithm,

which means the depth-first informed search traverses all promising combination mappings

and gets the global optimal MFR result. Also, the figure shows the breadth-first informed

29	

	

search solution has lower MFR result than improved LDP algorithm, and hence this

solution is trapped in local optimal choice. However the MFR of breadth-first informed

search is still 7% higher than the original LDP algorithm. The algorithm is more focused

on algorithm runtime optimization and we will show the runtime comparison in the next

figure.

Figure11. Runtime comparison among four algorithms

Figure 11 shows the runtime comparison among the four algorithms. We run each problem

case ten times for each algorithm and use the average as the actual vaule in the figure. With

the increase of the problem sizes, the runtime of the original LDP algorithm increases

dramatically. However, the runtime of the depth-first informed search increases slowly,

while the parallel MPI and the breath-first informed search only take a few seconds. For

the largest case in Figure 11, the original LDP algorithm takes 40 seconds to complete the

30	

	

workflow mapping execution while the DFS costs less than 12 seconds and BFS only takes

less than 1 second. The parallel LDP with MPI uses 10 nodes to run 10 tasks in the cluster,

and each node gets one task each time. We calcualte the average runtimes and the standard

error per task of parallel LDP algorithm and plot them in Figure 11. Due to the overhead

of MPI message passing, the runtime parallel LDP algorithm is slightly larger than the

original algorithm for small problems. However when we increase the problem size, the

parallel LDP takes much less time than the original algorithm. It is also better than the

depth-first informed search but not as good as the breath-first informed search. Note that

although parallel LDP achieves better runtime performance, it uses more computing

resources.

31	

	

CHAPTER VI

CONCLUSION

In this thesis, we reviewed the original LDP algorithm and its cost model, and found that

the original LDP algorithm is not able to maintain the minimum bottleneck in the current

layer among all mapping combinations. We modified the mapping process of finding the

bottleneck in order to obtain a better global minimum bottleneck by checking the minimum

bottleneck in each layer. By implementing this optimization, the improved LDP algorithm

achieves a better maximum frame rate.

Moreover, since the original algorithm has high search complexity in the process of finding

the minimum bottleneck, especially when the sizes of the computing workflow and

computer network increase. We proposed two new informed search solutions to reduce the

search time. The depth-first informed search decreases runtime by skipping unnecessary

calculations for unpromising mappings. It can effectively decrease the search time while

still achieving better MFR results. The breadth-first informed search can speed up the

search time by using a greedy approach to search the mapping which most likely has the

minimum bottleneck with some sacrifice in MFR performance. However, BFS still results

in a better MFR than the original algorithm. We also implemented the parallel LDP

algorithm using MPI for sending multiple mapping tasks across a computing cluster. This

approach can reduce runtime but uses more computing resources.

In the current cost models, we used a normalized quantity to represent the processing power

and bandwidth for simplicity. However, a single constant is not always sufficient to

describe node computing and link transfer capabilities. It is of our future interest to

investigate more sophisticated cost models to characterize real-time node and link

32	

	

behaviors in dynamic network environments. Since the breadth-first informed search

solution has better runtime efficiency compared to the depth-first informed search solution,

we will try to further improve the performance of the breadth-first informed search solution

algorithm without sacrificing its runtime efficiency. We also plan to test the proposed

mapping solutions and evaluate their performance in real large-scale networks.

33	

	

BIBLIOGRAPHY

[1].Sriprayoonsakul, S., Uthayopas, P., Zheng, C., Lee, J., Livny, M., & Frey, J. (2008).
Interfacing SCMSWeb with Condor-G - A joint PRAGMA-Condor effort. Proceedings -
4th IEEE International Conference on eScience, eScience 2008, 570–575.

[2].Gu, Y., & Wu, C. Q. (2016). Performance Analysis and Optimization of Distributed
Workflows in Heterogeneous Network Environments. IEEE Trans, 65(4), 1266–1282.

[3].Sarwar, G., Boreli, R., Lochin, E., & Mifdaoui, A. (2012). Performance evaluation of
multipath transport protocol in heterogeneous network environments. 2012 International
Symposium on Communications and Information Technologies (ISCIT), 985–990.
Retrieved from

[4].Lin, C., Lu, S., Fei, X., Pai, D., & Hua, J. (2009). A task abstraction and mapping
approach to the shimming problem in scientific workflows. SCC 2009 - 2009 IEEE
International Conference on Services Computing, 284–291.
http://doi.org/10.1109/SCC.2009.77

[5].Wu, C. Q., & Cao, H. (2016). Optimizing the performance of big data workflows in
multi-cloud environments under budget constraint. Proceedings - 2016 IEEE
International Conference on Services Computing, SCC 2016, 138–145.
http://doi.org/10.1109/SCC.2016.25

[6].Li, Z., Ge, J., Hu, H., Song, W., Hu, H., & Luo, B. (2015). Cost and energy aware
scheduling algorithm for scientific workflows with deadline constraint in clouds. IEEE
Transactions on Services Computing, PP(99), 1–15.
http://doi.org/10.1109/TSC.2015.2466545

[7].Thomas Sterling, "Condor: A Distributed Job Scheduler," in Beowulf Cluster Computing
with Windows , 1, MIT Press, 2001, pp.307-343

[8].Dongyu Feng, Ligu Zhu, & Lei Zhang. (2016). Review of hadoop performance
optimization. 2016 2nd IEEE International Conference on Computer and
Communications (ICCC), 65–68.

[9].Liu, Y., Guo, S., Hu, S., Rabl, T., Jacobsen, H.-A., Li, J., & Wang, J. (2016).
Performance Evaluation and Optimization of Multi-dimensional Indexes in Hive. IEEE
Transactions on Services Computing, 14(8), 1–1.

[10].Li, Y., Zhang, J., & Liu, Q. (2016). Cluster resource adjustment based on an improved
artificial fish swarm algorithm in Mesos, 1843–1847.

[11].R. Tarjan, "Depth-first search and linear graph algorithms," 12th Annual Symposium on
Switching and Automata Theory (swat 1971), East Lansing, MI, USA, 1971, pp. 114-121.

[12].H. Milišić, D. Ahmić, H. Sinanović, E. Sarić, A. Asotić and A. Huseinović,
"Parallelization challenges of BFS traversal on dense graphs using the CUDA
platform," 2016 XI International Symposium on Telecommunications (BIHTEL),
Sarajevo, 2016, pp. 1-5.

[13].Tovey, C., & Koenig, S. (2003). Improved analysis of greedy mapping. Intelligent
Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International
Conference on, 4(October), 3251–3257.

34	

	

[14].W. Xiang, "Analysis of the Time Complexity of Quick Sort Algorithm," (2011)
International Conference on Information Management, Innovation Management and
Industrial Engineering, Shenzhen, pp. 408-410.

[15].C. E. Radke, "Merge-sort analysis by matrix techniques," (1966) in IBM Systems
Journal, vol. 5, no. 4, pp. 226-247.

[16].U. Tamm, "Communication complexity of functions related to set intersection,"
(2016) 2016 Information Theory and Applications Workshop (ITA), La Jolla, CA , pp. 1-
4.

[17].B. Agarwalla, N. Ahmed, D. Hilley, and U. Ramachandran, “Streamline: scheduling
streaming applications in a wide area environment,”(2007) Multimedia Systems, vol. 13,
no. 1, pp. 69–85.

[18].A. Sekhar, B. Manoj, and C. Murthy, “A state-space search approach for optimizing
reliability and cost of execution in dis- tributed sensor networks,”(2005) in Proc. Int.
Workshop Distrib. Comput. pp. 63–74.

