PREDICTING THE DISTRIBUTION OF SUITABLE HABITAT OF
ARmillaria Mellea (Agaricales, Physalacriaceae) USING
ECOLOGICAL NICHE MODELING

by

Bryce Allen Kerr

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of
Master of Science in Biology

Middle Tennessee State University
August 2018

Thesis Committee:
Dr. Sarah E. Bergemann, Chair
Dr. R. Stephen Howard
Dr. Ashley B. Morris
ACKNOWLEDGEMENTS

I would like to sincerely thank my adviser, Dr. Sarah Bergemann, for her continued support throughout my time as a graduate student. I thank the other members of my thesis committee, Dr. Ashley Morris and Dr. R. Stephen Howard, for providing additional guidance during my time in this program. I further thank Middle Tennessee State University for providing access to resources and grants, and I thank the other Biology graduate students.

Outside of MTSU, I would like to thank Jay Justice who collected several of the specimens in the southern United States in this study. This project would also not have been possible without the contribution of vouchered specimens from the herbaria mentioned in this thesis.

While they did not contribute directly to this project, I thank my parents Robin and Rebecca Kerr, and my sister, Mandi Phipps. I remember my childhood dog, Gabby, who passed in May of 2016 for being my closest and truest friend. I thank my four pet rats for keeping me relatively entertained. Finally, I express gratitude to my partner, Jess, for tolerating my persistent pessimism over these past three years.
ABSTRACT

Armillaria mellea is an economically and ecologically significant fungal pathogen; however, the distribution of this fungus in eastern North America is not well understood. This study aims to use ecological niche modeling to predict the extent of suitable habitat of the species and identify the environmental predictors that affect its ecogeographic distribution. In this study, herbarium vouchers and mycelia obtained from cultures were selected to document occurrences, which were identified and annotated using a combination of morphological and molecular analyses. The records of all specimens that were confidently identified were georeferenced. Environmental variables were compiled from relevant databases, values of variable importance were estimated given prior constraints, and a smaller subset of abiotic variables were identified that were important for predicting habitat suitability of *A. mellea* in eastern North America. Annual mean temperature had the greatest importance on the predicted suitable habitat of *A. mellea*. Five other variables (annual mean moisture index, mean temperature of the driest quarter, mean diurnal temperature range, annual precipitation, and precipitation seasonality) were identified as significant in contributing to the model. This study assembled a collection of annotated herbarium vouchers that represent the occurrence of *A. mellea* in eastern North America. The results of the present study indicate that niche modeling may be used to understand the suitable habitat of an important pathogenic fungus.
TABLE OF CONTENTS

LIST OF TABLES ... v

LIST OF FIGURES .. vi

LIST OF APPENDICES .. vii

CHAPTER 1. INTRODUCTION .. 1

CHAPTER 2. METHODS .. 6

 2.1. Sample acquisition ... 6

 2.2. DNA Extraction, PCR amplification and sequencing of nuclear loci 7

 2.3. Phylogenetic analyses .. 9

 2.4. Restriction fragment length polymorphisms (RFLPs) of nuclear ribosomal intergenic spacer (IGS1) ... 9

 2.5. Morphological analyses ... 10

 2.6. Ecological niche modeling ... 13

CHAPTER 3. RESULTS .. 16

CHAPTER 4. DISCUSSION ... 27

REFERENCES .. 33

APPENDIX .. 40
LIST OF TABLES

Table 1. Variable importance of environmental predictors used for ecological niche modeling of *Armillaria mellea* in eastern North America................................. 15
LIST OF FIGURES

Figure 1. The geographic location of all specimens used to predict the distribution and potential suitable habitat of *Armillaria mellea* in eastern North America ... 12

Figure 2. Maximum likelihood phylogram of specimens for species identification of *Armillaria mellea* using the *actin*–1 gene ... 18

Figure 3. Maximum likelihood phylogram of specimens for species identification of *Armillaria mellea* using the *tef1* gene ... 19

Figure 4. Receiver operator characteristic (ROC) curve of the best fitted model in Maxent for predicting the distribution and potential suitable habitat of *Armillaria mellea* in eastern North America ... 21

Figure 5. The predicted distribution and potential suitable habitat of *Armillaria mellea* in eastern North America .. 22

Figure 6. Jackknife estimates of the variable importance for the model predicting the distribution and potential suitable habitat of *Armillaria mellea* in eastern North America .. 24

Figure 7. Response curves of each environmental variable in the best fitted model used to predict the distribution and potential suitable habitat of *Armillaria mellea* in eastern North America .. 26
APPENDIX

Appendix. Specimens used to model the distribution and potential suitable habitat of *Armillaria mellea* ...

40
CHAPTER 1. INTRODUCTION

Ecological niche modeling (ENM) uses associations between environmental predictors and the occurrence of a species to identify suitable habitats across the geographic range of a species (Guisan and Zimmermann, 2000; Peterson, 2001; Soberon and Peterson, 2005). Models are often referred to as “ecological niche” (Alvarado-Serrano and Knowles, 2014) and “species distribution” (Pineda and Lobo, 2009); however, the methodological approaches are very similar. First, the study area is modeled as a map composed of grid cells at a specified resolution dependent on the geographic scale of the study. Geographic data representing species’ occurrence, typically in the form of presence or absence data, are selected. The dependent variable of ENM is the distribution of the species and a set of environmental variables is used to describe the environmental characteristics of each cell, and a probability distribution of the species occurrence is generated, given prior constraints to assess the degree to which cells are suitable or unsuitable for the species (Elith et al., 2011; Peterson and Nakazawa, 2008).

In the absence of extensive surveys, only presence data are available to indicate the occurrence of the species. In this case, the Maximum entropy (Maxent) algorithm is often used for modeling the species distribution (Baldwin, 2009; Pineda and Lobo, 2009; Warren and Seifert, 2011).

ENM has been performed for a handful of macrofungi (Ponce et al., 2011; Sato et al., 2012; Smith et al., 2016; Wolfe et al., 2010; Wollan et al., 2008). For these fungi, vegetative structures are mostly subterranean, and therefore, largely cryptic, and sexual or asexual structures are sporadically produced and ephemeral. Consequently, accurate
presence data are difficult to obtain. ENM predicts the extent of suitable habitat of a species, which is largely dependent on the accuracy of species identification (Canhos et al., 2004; Loiselle et al., 2008; Smith et al., 2016). For most species of fungi, obtaining occurrence data for use in ENM is challenging since the geographic data are sparse, the collections gathered are typically obtained using opportunistic sampling, and generally, the collections of most macrofungi are underrepresented in surveys. In these cases, vouchers in herbaria provide an additional source of historical occurrence data for use in ENM.

Armillaria (Fr.) Staude is a genus of plant pathogens that cause some of the most destructive forest diseases worldwide (Baumgartner et al., 2011). *Armillaria* are white rot fungi that can efficiently decompose all components of plants (including lignin) and are also necrotrophs; the fungus colonizes plant roots, kills the host tissues, and utilizes the dead tissues as a source of nutrition (Baumgartner et al., 2011). *Armillaria* is often identified by its rhizomorphs, which are hyphal aggregates (1–3 mm in diameter) (Morrison, 2004; Prospero et al., 2006). Similar to mycelia, rhizomorphs form a network in the soil that can reach immense sizes by colonization of multiple hosts and wood (Ferguson et al., 2003; Smith et al., 1992). Root contact by rhizomorphs is the main mode of expansion in forests; however, long distance dispersal is facilitated by forcible discharge of airborne basidiospores from basidiomata (Travadon et al., 2012). Basidiospores can disperse long distances (ca. 2000 km) which allows fungal individuals to colonize new territories (Baumgartner et al., 2010b).
In recent decades, the development of DNA sequence-based analysis has improved the accuracy of species identification for Armillaria (Physalaciaceae, Basidiomycota) (Elías-Román et al., 2018; Harrington and Wingfield, 1995; Tsykun et al., 2013). The ribosomal RNA genes (rDNA), including the internal transcribed spacers 1 and 2 (ITS) with the intervening 5.8S (ITS) and the intergenic spacer 1 (IGS1), have been useful in distinguishing some Armillaria species but not all (Chillali et al., 1998; Harrington and Wingfield, 1995; White et al., 1998). More recently, low-copy nuclear loci such as the translation elongation factor-1 alpha (tef1) region have successfully been used to identify Armillaria species (Coetzee et al., 2011; Maphosa et al., 2006). Since DNA sequence-based methods can identify Armillaria species with a high level of accuracy, this approach provides a better method for species identification.

One of the more ecologically and economically important species, A. mellea, occurs in temperate regions of the northern hemisphere with disjunct populations located in Asia, Europe, and North America (Coetzee et al., 2011). In Europe, it is a highly virulent pathogen that can cause increased levels of mortality in hosts (Guillaumin et al., 1993). In North America, the pathogen occurs in the western US and eastern US and Canada (Baumgartner and Rizzo, 2001a, 2001b; Bruhn et al., 1997, 2000; Harrington and Rizzo, 1993; McLaughlin 2001. Analysis of genetic diversity for populations from North America demonstrate that these are two, geographically isolated populations that are genetically divergent (Baumgartner et al., 2010b).

In eastern North America, A. mellea is considered a secondary pathogen that often attacks trees infected by other pathogens or that are affected by environmental stressors
In all regions, *A. mellea* infects multiple hosts and more often, hardwoods (Banik et al., 1995; Harrington and Rizzo, 1993; McLaughlin 2001). The species is often identified as a causal agent of oak decline (Marçais and Bréda, 2006; Thomas et al., 2002).

While prior studies have described the distribution of *Armillaria* for western North America (Baumgartner and Rizzo, 2001b), there is no such description of *A. mellea* in eastern North America. Surveys have provided a basis for understanding local distributions of *Armillaria* species through sampling in federal and state as well as larger regions (e.g. states or provinces) of eastern North America (Banik et al., 1995; Bruhn et al., 1997, 2000; McLaughlin 2001); however, the local sampling methods limit inference of the geographic extent of the population. More extensive sampling for population genetics and phylogenetic studies of *A. mellea* in eastern North America have also provided a wealth of occurrence data (Baumgartner et al., 2010b; Hughes et al., 2013); however, there are no studies that have collated occurrence data from multiple sources to predict the extent of suitable habitat of *A. mellea* in eastern North America.

This study focuses on assessing the distribution and extent of suitable habitat of *A. mellea* in eastern North America. Vouchers from herbaria and mycelia from culture repositories were obtained. Species identification was performed to provide an annotated collection of occurrence data for *A. mellea* that can be used in ENM. The primary objectives of the present study were as follows: i) the collation of an annotated collection of herbarium vouchers and environmental samples of *A. mellea* that describe the known occurrence of the species in eastern North America; ii) to predict the extent of suitable
habitat of *A. mellea* in eastern North America using ecological niche modeling, and; iii) to evaluate the importance of the environmental predictors used to predict suitable habitats of *A. mellea* when compared to optimal growth requirements identified from laboratory studies.
CHAPTER 2. MATERIALS AND METHODS

2.1. Sample acquisition

The ability to reliably model the distribution of suitable habitat of *A. mellea* required accurate identification of all collections. Three methods for species identification were used: i) partial sequences of two low-copy nuclear loci (*actin*-1 and *tefl*) were obtained and phylogenetic analyses were performed for each locus separately; ii) in the absence of PCR amplification or successful sequencing, restriction fragment length polymorphisms (RFLPs) of the IGS1 rDNA were employed and; iii) morphological identification based on macroscopic and microscopic characters of the basidiomata was conducted on vouchers that were not identified by sequencing or RFLPs. The herbaria providing vouchered material in this study include: USDA Center for Forest Mycology Research (CFMR), State University of New York at Cortland (CORT), Davis and Elkins College Herbarium (DEWV), Duke University Herbarium (DUKE), Field Museum of Natural History Herbarium (F), William Sherman Turrel Herbarium at Miami University (MU), University of Tennessee Fungal Herbarium (TENN), and Massey Herbarium at Virginia Tech University (VPI). Vouchers of basidiomata from these herbaria (*n* = 115), vouchers collected over the duration of the study (*n* = 10), and cultures obtained from Clemson University, Ontario Forest Research Institute, United States Department of Agriculture (USDA) Forest Products Lab, University of Missouri, and the University of Tennessee (*n* = 13) were identified in this study. The vouchers obtained from herbaria were selected to increase the geographic coverage of occurrence data and specimens were sampled from the last 30 years of
collections to increase the success of DNA extraction, PCR amplification, and sequencing. Information including collector ID, herbarium accession number, herbarium code, GenBank accession number, collector, description of collecting locale, year collected, host, coordinates, and method of species identification were provided for collections identified in this study ($n = 105$) (Appendix).

2.2. DNA Extraction, PCR amplification, and sequencing of nuclear loci

Mycelia or tramal tissues from the pilei or stipes of the basidiomata were placed in 1.5 mL tubes with two, 6 mm glass beads, lyophilized for 30 min in a Labconco Freeze Dryer 8 (Kansas City MO USA) and pulverized for 20 seconds with a QBioGene FastPrep 120 (Carlsbad CA USA). DNA extractions were performed on pulverized tissues by overnight incubation at 65°C with 2× cetyltrimethylammonium bromide (CTAB) extraction buffer. DNAs were further purified by adding phenol-chloroform-isoamyl alcohol (25:24:1) following the procedures in Kluting et al. (2014). The supernatants were transferred to a new 1.5 mL centrifuge tube, and 800 μL of MP Biomedicals Genomic salt solution (Solon OH USA) was added. Supernatants were washed by binding genomic DNA to a glass milk column (MP Biomedicals, Solon OH USA), adding 70% ethanol and washing by centrifugation for 1 min. DNAs were eluted in 35 μL of 0.1× TE buffer and samples were stored at -20°C in a non-frost freezer.

Two, low-copy, partial, nuclear gene regions, actin-1 subunit (actin-1) and translation elongation factor subunit-1 alpha (tef1) (Baumgartner et al., 2010a; Maphosa et al., 2006) were selected for analysis due to previously documented high levels of
variability and consequential success in distinguishing among Armillaria species. PCRs for both regions were performed in 25 μL reactions using 1× PCR buffer, 2 mM of magnesium chloride (MgCl2), 2mM of each dNTP, 1 μM of forward and reverse primers, 0.2 mg/mL bovine serum albumin (BSA), 0.5 M betaine, 0.025 U Taq (Promega, Madison WI USA) and 3-5 μL of template DNA. PCRs of the actin-1 subunit were obtained following the PCR amplification and cycling protocols outlined in Baumgartner et al. (2012).

PCRs of the tef1 region were obtained using two sets of primers. For the initial amplifications, primers designed to amplify A. mellea (Ef-AMf and Ef-AM785r) were selected (Baumgartner et al., 2010a). Cycling protocols followed Baumgartner et al. (2010a). In the absence of positive amplification of the tef1 gene using primers specifically designed to amplify A. mellea, PCR reactions were generated using degenerative primers, EF595F and EF1160R (Maphosa et al., 2006). PCRs employed PCR amplification and cycling protocols described in Maphosa et al. (2006) after reducing the annealing temperature of the cycling protocol to 54°C.

PCRs were purified using Exo-SAP-IT (GE Healthcare, Little Chalfont UK) following the protocols detailed in Kluting et al. (2014). Forward and reverse sequences were generated using the protocol in Kluting et al. (2014) and obtained by bi-directional sequencing using an Applied Biosystems 3130xl Genetic Analyzer at Middle Tennessee State University or GenHunter Corporation (Nashville, TN USA). Sequencher 4.8.0 (GeneCodes Corporation, Ann Arbor MI USA) was used to manually edit chromatograms for use in phylogenetic analyses. Alignments were generated for each
region separately using multiple sequence alignment with the default parameters in MUSCLE 3.8.31 (Edgar, 2004) and subsequently manually aligned in Mesquite 3.31 (Maddison and Maddision, 2018). Additional sequences of Armillaria, Desarmillaria, and outgroups selected from genera with prior use in Armillaria identification (Baumgartner et al., 2012) from GenBank were also used in phylogenetic analyses.

2.3. Phylogenetic analyses

For actin-1 and tef1, introns were delimited using Augustus 3.2 and excluded before performing phylogenetic analyses (Stanke et al., 2004). Phylogenetic analyses for each locus were analyzed individually using Maximum Likelihood (ML) analysis in RAxML-HPC 8.2.10 (Stamatakis, 2006) with the CIPRES Gateway (Miller et al., 2010). Phylogenies from each locus were inferred by 1000 ML replicate analyses and assumed a GTR model with a gamma distribution. Levels of support were inferred with ML bootstrap (MLBS) values. MLBS analyses were employed in RAxML with 1000 multiparametric bootstrap replicates. The RaxML manual states the GTR model is most appropriate for this software, thus the GTRCAT model of nucleotide substitution was selected. Phylograms were viewed with FigTree 1.4.3 (Rambaut, 2012) and edited in Adobe Illustrator22.1 (San Jose CA USA).

2.4. Restriction fragment length polymorphisms (RFLPs) analysis of nuclear ribosomal intergenic spacer (IGS1)

If PCR amplification or direct sequences for either actin-1 or tef1 was not
successful, restriction fragment length polymorphisms (RFLPs) of the nuclear ribosomal intergenic spacer 1 (IGS1) were performed. Harrington and Wingfield (1995) found that by PCR amplification of the IGS1 region and then restricting with Alu I endonuclease, most species of *Armillaria* in North America were differentiated by RFLP patterns. Here, the nuclear ribosomal IGS1 region of *Armillaria* spp. common to eastern North America (*A. calvescens, A. gallica, A. gemina, A. mellea, A. sinapina,* and *Desarmillaria tabescens* (formerly *A. tabescens*)) and vouchers (*n* = 28) for which sequences were not obtained were PCR amplified and digested with Alu I. PCR reactions were performed in 25 μL reactions using the primers LR12R (Veldman et al., 1981) and O-1 (Duchesne and Anderson, 1990) following the procedures of Harrington and Wingfield (1995). PCR cycling protocols were employed at 95°C for 3 min, with 34 cycles at 94°C for 30 s, 60°C for 40 s, and 72°C for 1 min, followed by 10 min at 72°C. Restriction digests were prepared in 35 μL reactions with 16 μL PCR product, 2 units of Alu I enzyme and 3 μL of buffer. Digests were incubated at 37°C for 2 hours. Products were visualized in agarose gels.

2.5. Morphological analyses

When PCR amplification, sequencing of low-copy nuclear loci or RFLPs were unsuccessful, more extensive morphological examination of vouchered specimens was employed (*n* = 14) (see Appendix for vouchers used). First, vouchered specimens were screened for macroscopic features following the characters for species identification as described by Watling et al. (1982). Since many macroscopic characters are difficult to
distinguish on dried basidiomata, microscopic characters were also used. Small sections (ca. 2 mm²) of dried lamellar tissue were rehydrated in 95% ethanol for 1 min and submerged in dH₂O. Tissues were mounted in 3% potassium hydroxide (KOH) and 1% congo red stain. The absence of clamp connections at the base of the basidia was used to distinguish between *A. mellea* and other *Armillaria* species (Korhonen, 1980; Motta and Korhonen, 1986; Ullrich and Anderson, 1978). Microscopic features were examined at 1000× under an oil immersion lens with a Zeiss Axio Scope A.1 (Oberkochen BW DE).
Figure 1. The geographic location of all specimens used to predict the distribution and potential suitable habitat of *Armillaria mellea* in eastern North America.
2.6. Ecological niche modeling

Maxent 3.4.1 (Phillips et al., 2017) was used to model the distribution and potential suitable habitat of \textit{A. mellea}. A raster data file containing variable information from georeferenced locales within grids of equal size represented each environmental variable. Raster cell size was scaled to the range of the study (10 arc-minutes). Maxent was used to predict the distribution of \textit{A. mellea} by utilizing the cell values that contained occurrence points to generate a distribution of probable species occurrence (Phillips et al., 2006).

All location data for \textit{A. mellea} were georeferenced using GEOLocate 2.0 (Tulane University, New Orleans LA USA) and transferred to ArcMap 10.0 (ESRI, Redlands CA USA). To avoid spatial autocorrelation, presence data were projected for the raster resolution and points were selectively removed until a single locale occurred \((n = 102)\) in each cell (Dormann et al., 2007; Segurado et al., 2006) (Fig. 1). Environmental data were imported from the CliMond database (Kriticos et al., 2012).

Once the initial model was generated, a subset of presence data was treated as “testing” data to assess model accuracy; the remaining distribution points were used as “training” data to generate the model (Jiménez-Valverde and Lobo, 2006; Pearce and Boyce, 2006). Model performance was evaluated with a receiver operator characteristic (ROC) curve by comparing the model obtained from testing data to the probabilities of occurrence that were generated from training and testing data. The area under the curve (AUC) was calculated to provide estimates of model accuracy. A regularization modifier was applied to multiply each cell by a fixed value \((\times 1.5)\) to reduce overfitting due to
sampling bias. After employing a regularization modifier, an AUC value of ≥ 0.85 was considered acceptable for model performance (Warren and Seifert, 2011).

The models were generated without equal weighting of environmental variables, by analyzing the contribution of each layer for the predicted occurrence (Phillips et al., 2006). Maxent also estimates logistic response curves of the impact of each variable and heuristic and jackknife estimates of variable importance. These estimates were made by determining the AUC, the testing gain and training gain for each variable independently, and then by excluding each variable in the model (van Gils et al., 2014). Jackknife estimations were used to generate a set of models for each variable and all other variables excluding the variable under investigation (Pearson et al., 2007).

Correlation between environmental variables can influence ENM output by overestimating the impact of environmental variables. This study employed a step-wise variable removal process (van Gils et al. 2014), which used correlation coefficients and the generated values of variable importance to remove highly correlated variables. After removing correlated variables, six variables identified by iterant models (AUC < 0.85) were used to model the distribution and habitat suitability of A. mellea (Table 1).
Table 1.
Variable importance of environmental predictors used for ecological niche modeling of *Armillaria mellea* in eastern North America.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Source ID</th>
<th>Percent Contribution</th>
<th>Permutation Importance</th>
<th>Testing gain</th>
<th>Training gain</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>annual mean temperature</td>
<td>Bio01</td>
<td>63</td>
<td>51</td>
<td>0.745</td>
<td>1.263</td>
<td>0.955</td>
</tr>
<tr>
<td>annual mean moisture index</td>
<td>Bio28</td>
<td>18</td>
<td>27</td>
<td>0.251</td>
<td>0.166</td>
<td>0.655</td>
</tr>
<tr>
<td>mean temperature of the driest quarter</td>
<td>Bio09</td>
<td>7</td>
<td>3</td>
<td>0.470</td>
<td>0.776</td>
<td>0.853</td>
</tr>
<tr>
<td>mean diurnal temperature range</td>
<td>Bio02</td>
<td>6</td>
<td>12</td>
<td>0.180</td>
<td>0.121</td>
<td>0.601</td>
</tr>
<tr>
<td>annual precipitation</td>
<td>Bio12</td>
<td>4</td>
<td>1</td>
<td>0.247</td>
<td>0.302</td>
<td>0.603</td>
</tr>
<tr>
<td>precipitation seasonality</td>
<td>Bio15</td>
<td>1</td>
<td>6</td>
<td>0.323</td>
<td>0.409</td>
<td>0.748</td>
</tr>
</tbody>
</table>
CHAPTER 3. RESULTS

Identification of *A. mellea* collections employed three main methods: maximum likelihood analyses of partial sequences from two, nuclear loci (*n* = 91 attempted), RFLP analyses of nuclear IGS1 rDNA (*n* = 28 attempted), or morphological identification (*n* = 12 attempted). For the phylogenetic analyses performed, 61 *actin-1* and 59 *tef1* sequences were generated for the purposes of this study (Appendix). From the *actin-1* and *tef1* sequences, 88 of the 91 collections (97%) were identified as *A. mellea*. In both phylogenetic analyses, *A. mellea* was monophyletic and recovered with strong support (*actin-1*, MLBS = 99; *tef1*, MLBS = 95) (Figs. 2, 3). Trees of both gene regions supported the separation of *A. mellea* into monophyletic groups consistent with their geographic origins; however, the relationships among the monophyletic groups were, for the most part, was unsupported (Figs. 2, 3). In this case, all specimens collected from eastern North America were separated from collections from western North America, Asia, and Europe (Figs. 2, 3). All samples used for ENM analysis were grouped with the eastern North American clade (Figs. 2, 3).

To identify the isolates based on previously described RFLPs (Harrington and Wingfield, 1995), the IGS1 region was PCR amplified and restricted with *Alu I* for vouchers when the *actin-1* nor *tef1* genes could not be PCR amplified or sequenced. In the RFLP analysis, the patterns produced by digests resulted in 8 distinct RFLP patterns. Since not all RFLP patterns were recognizable with sample DNAs from *Armillaria* species, only isolates with RFLPs identical to *A. mellea* were scored. Of the 28 vouchers included, 39% (*n* = 11) were positively identified as *A. mellea*. Among the vouchers
identified as *A. mellea*, two patterns were present, referred to as types A (490, 180 bp) and B (320, 155 bp) by Harrington and Wingfield (1995), with type A being the most common of the two RFLP patterns observed in the vouchered specimens.
Figure 2. Maximum likelihood phylogram of specimens for species identification of *Armillaria mellea* using the *actin-1* gene. Maximum likelihood bootstrap (MLBS) values are reported for branches (MLBS ≥ 80); MLBS for *Armillaria mellea* = 99. Truncated branches are denoted with three slanted lines.
Figure 3. Maximum likelihood phylogram of specimens for species identification of Armillaria mellea using the tef1 gene. Maximum likelihood bootstrap (MLBS) values are reported for branches (MLBS ≥ 80); MLBS for Armillaria mellea = 99. Truncated branches are denoted with three slanted lines.
The remaining vouchers \((n = 12)\) were identified based on morphological characters. Ten of the vouchers were identified as \(A.\ mellea\) based on the macroscopic morphology of basidiomata and the absence of clamp connections at the base of the basidia.

Georeferenced locales of \(A.\ mellea\) \((n = 102)\) were used to predict the probabilities of occurrence based on the environmental predictors and included only those occurrence data that represented a unique geographic location. In total, six environmental predictors were identified that contributed to model fit of all replicate analyses and the conservation of variable importance across training, testing, and AUC (Table 1). The best fitted model across ten replicate runs showed a training gain of AUC of 0.899 (testing AUC = 0.956, testing SD = 0.013) (Fig. 4).

Using Maxent, a predictive map of occurrence probability for \(A.\ mellea\) in eastern North America was generated (Fig. 5). In this model, the distribution of \(A.\ mellea\) was constrained at 46°N, and regions of moderate to high suitability were predicted from 33-40°N (Fig. 5). In the northern extent of the range, the absence of suitable habitat was apparent to the east at longitudes > 68°W and to the west at longitudes > 97°W with moderate habitat suitability from 72-92°W (Fig 5). The geographic extent of the highest predicted probabilities (> 0.7) occurred in areas of the southeast, further west in the Ozark Mountains and northeastern US (40-44°N) including the Appalachian Mountains, the Adirondack Mountains, and the southern extent of the White Mountains (Fig. 5).
Figure 4. Receiver operator characteristic (ROC) curve of the best fitted model in Maxent for predicting the distribution and potential suitable habitat of *Armillaria mellea* in eastern North America.
Figure 5. The distribution and potential suitable habitat of *Armillaria mellea* in eastern North America. Predicted probabilities of occurrence are divided into four categories.
The importance of environmental variables in model generation was assessed through two main approaches: i) analyses during model training, and; ii) jackknife estimations. During model training, annual mean temperature (63%) and annual mean moisture index (18%) had the highest percent contributions (Fig. 7). These variables also produced the highest permutation importance (51% and 27% respectively) accounting for 78% of variation in the model (Table 1).

Jackknife analysis of variables showed that the annual mean temperature contributed the most information that was not captured by other environmental predictors (Fig. 6). Mean temperature of the driest quarter and precipitation seasonality also had a significant contribution; however, the model performance was lower for models of training gain, testing gain, and AUC when these two variables were excluded (Fig. 6). Annual mean temperature, annual mean moisture index, and mean diurnal temperature range had the greatest importance after their removal (Fig. 6).
Figure 6. Jackknife estimates of the variable importance for the model predicting the distribution and potential suitable habitat of *Armillaria mellea* in eastern North America: A) regularized training gain; B) Area Under the Curve for training gain and; C) testing gain.
Response curves were produced for all variables that were included in the ENM. When predicting the distribution of *A. mellea* in eastern North America, cells containing high annual moisture index values often corresponded with areas of higher predicted occurrence (Fig. 7A). The occurrence of *A. mellea* was highest when mean annual temperature was 10°C (±1 SD = 6-14°C) (Fig. 8B). The occurrence of *A. mellea* was higher when annual precipitation was < 400 mm per year and exhibited a decrease as precipitation increased to 1200 mm annually (Fig. 7C). Mean diurnal temperatures showed a higher occurrence of *A. mellea* as the difference between minimum and maximum annual temperatures increased (Fig. 7D). The mean temperature of the driest quarter variable was most predictive at -10°C and decreased as temperature increased (Fig. 7E). The occurrence of *A. mellea* was higher as the CV of precipitation decreased (Fig. 7F).
Figure 7. Response curves of each environmental variable in the best fitted Maxent model used to predict the distribution and potential suitable habitat of *Armillaria mellea* in eastern North America. Curves show logistic probability of occurrence of environmental variables used in the model: A) annual mean moisture index; B) annual mean temperature; C) annual precipitation; D) mean diurnal temperature range; E) mean temperature of the driest quarter and; F) precipitation seasonality.
CHAPTER 4. DISCUSSION

Several studies have examined the distribution of *A. mellea* in eastern North America at smaller geographic scales than this study (Banik et al., 1995; Baumgartner et al., 2010b; Bruhn et al., 2000; Harrington and Rizzo, 1993; McLaughlin 2001), and this is the first such study to accurately describe the distribution of the population in eastern North America and the annotation of historical and modern occurrence records to generate accurate distributions. Two of the variables used in the ENM explained > 50% of the ENM’s prediction and were related to temperature, suggesting that temperature has significant control on the distribution of *A. mellea*. Five other variables were also important to predicting habitat suitability for *A. mellea* and an ecogeographical distribution based on ENM is provided for the first time.

Prior to this study, the distribution of *A. mellea* in eastern North America was described as predominantly southeastern with a decline in occurrence at northern latitudes and westward to the Great Plains (Burdsall and Volk, 1993). In this study, we observed that there is suitable habitat for *A. mellea* in the southeast, but areas with higher predicted probabilities of occurrences are limited to smaller spatial scales of mountainous habitats at higher elevations (e.g., Appalachian mountains). The northern geographic limit is defined by latitude and the colder temperatures of the northeastern US and Canada prevent the colonization and spread of *A. mellea*.

Armillaria species are broadly distributed in eastern North America, have overlapping ranges, and in most cases, similar macro-morphology (e.g. all species of *Armillaria* are annulate). As a consequence, when using historical data to predict species
distributions, the correct identification of voucher specimens is of critical importance. In this study, a small, but significant percentage of the vouchers obtained were inaccurately identified by the herbaria. This is likely a common scenario for many species, particularly among fungi, when either the lack of experience with a species or inadequate methods for proper identification are employed.

This study supports the concept that ENM based on confirmed, georeferenced, occurrence records is a suitable method to obtain accurate occurrence data for *A. mellea*. Collating the data from multiple sources (herbaria, field and samples obtained from culturing symptomatic tissues) was not insignificant, as it required many confirmed and georeferenced records to predict the occurrence of *A. mellea*. *Armillaria mellea* is often adequately represented in repositories (e.g. New York Botanical Garden William and Lynda Steere Herbarium contains 447 vouchers of *A. mellea*); however, in this case, many of the historical collections could not be used for this study since the success of molecular identification depends on age, condition of the specimen when collected, and the curation environment. Ideally, and as in the present case, species identification was confirmed from annotated vouchers with sequence data, which allowed for phylogenetic testing of species concepts in *Armillaria* using two, low-copy nuclear loci to resolve the evolutionary relationships for most of the specimens obtained. In addition, morphological data also served as an important source for occurrence data since a small number of vouchers were carefully examined using microscopic analysis.

Here, ENM were produced to predict the distribution and suitable habitat of *A. mellea* in eastern North America and generate the probability of occurrence areas of
habitat suitability. The ENM performed here extends the occurrence data amassed by surveys by predicting the fundamental niche of *A. mellea* in this region. At local scales, the resulting ENM produced in this study aligns closely with the occurrence of *A. mellea* obtained by extensive surveys of *Armillaria* species (Banik et al., 1995; Bruhn et al., 1997, 2000; Harrington and Rizzo, 1993; McLaughlin 2001).

The decline in the predicted probability of occurrence of *A. mellea* above 46°N, below 33°N, and westward beyond 97°W suggests that the abiotic conditions are unfavorable for establishment and growth for *A. mellea*. Banik et al. (1995) reported a decline in the occurrence of *A. mellea* compared to *A. gallica, A. calvescens*, and *A. ostoyae* (Banik et al., 1995; McLaughlin 2001) at higher latitudes in Wisconsin, Minnesota and Michigan. Similarly, McLaughlin (2001) reported a decline in the occurrence for *A. mellea* at the most northern latitudes in Quebec. Taken together, these results suggest that temperature is an important determinant of suitable habitat of *A. mellea* and climate limits the northern distribution.

In the southern extent of the distribution, *A. mellea* is often cited as a causal agent of oak decline (Marçais and Bréda, 2006; Thomas et al., 2002). Bruhn et al. (2000) determined that *A. mellea* was more frequent and exhibited higher levels of virulence on *Quercus* when compared to other hosts of *Armillaria*. Hardwoods dominate the forest covers in the 13 states in the southeastern US, with about two-thirds of the area in upland hardwood, bottomland hardwood or oak-pine mixtures (Haavik et al., 2015; Hodges, 1997; Keča et al., 2009) and many of the hosts in these forest types are susceptible to attack by *A. mellea* (Baumgartner et al., 2011; Raabe, 1962; Schnabel et al., 2005).
Despite suitable hosts in the region, a lower probability of occurrence was predicted for much of the ecogeographic region below 38°N. Higher water saturation and temperatures are found in the lower elevations of the Mississippi flood plain (Bailey, 1995) compared to the surrounding region and this may be an important factor reducing the probability of occurrence of *A. mellea*. Similarly, Mihail (2002) reported that soil saturation reduced the formation of *A. mellea* rhizomorphs. However, the mean temperature of the driest quarter was the predictor that was the highest importance for predicting the occurrence of *A. mellea*. In laboratory studies, the extent of mycelial growth of *A. mellea* was also conditioned by temperature (optimal growth occurs between 20-22°C) (Keča, 2005).

While ENM is a useful tool in this context for understanding the abiotic conditions that govern the distribution of *A. mellea*, it also has its limitations. The data used to predict *A. mellea* occurrence in eastern North America are limited by the potential influence of sampling bias. Spatial bias within the sampling area (sampling bias) may lead to false negatives, i.e. sampling points in which the species occurs but has not been sampled, which makes the geographic boundaries more difficult to discern. However, if effective spatial autocorrelation tests are performed, this helps to reduce this sampling bias by reducing the risk of false pseudo-absence data (Dormann et al., 2012; Lobo et al., 2008). Also, many of the collections used here were originally obtained for use in prior research (Baumgartner et al., 2010b, 2012; Bruhn et al., 1997, 2000; Hughes et al., 2013; Mclaughlin 2001; Wargo 1983) and it is possible that over-representation of occurrence reduces the accuracy of the model. This problem was addressed by background manipulation and spatial filtering to reduce autocorrelation and, while sampling bias
introduces uncertainties to the boundaries of the model, it will not likely affect the identification of suitable habitat, if the sample size is sufficient for the scale of the study.

Another consideration that is not captured in estimating the fundamental niche of *A. mellea* by ENM analysis is the importance of biotic interactions in governing the suitable habitat of *Armillaria* species. For example, the prevalence of suitable habitat for *A. mellea* may decline due to interspecific or intraspecific competition with other *Armillaria* species that overlap in range and distribution. Bruhn et al. (2000) observed a decrease in the occurrence of *A. mellea* in the presence to *A. gallica* due to the latter’s higher rhizomorph production, restricting much of the *A. mellea* distribution within the study area to where *A. gallica* is less prevalent. Guillaumin et al. (1993) suggested that *A. mellea* in western Europe was a better competitor in suitable habitats at low to mid-elevations when compared to other *Armillaria* species with overlapping geographic ranges. The results of the present study could be combined with similar ENM distributions of other *Armillaria* species to compare where biotic interactions may most influence *A. mellea* habitat suitability.

This study provides an annotated collection of vouchers and cultures for *A. mellea* distributed throughout eastern North America. The ENM applied here predicts ecogeographical distribution of suitable habitat for *A. mellea* in eastern North America and demonstrates how ENM can be used to obtain the realized niche of an important plant pathogen with a broad host distribution. Here, ENM models were consistently produced with a high level of accuracy based on model statistics and demonstrate that habitat suitability maintains the distribution of *A. mellea*. In future research, the
ecogeographical distribution may be refined and utilized for the purposes of
understanding the fluctuations in the historical and modern geographic range of *A. mellea*
and may be an important tool for assessing the severity of disease under future climate
change.
REFERENCES

APPENDIX

Appendix. Specimens used to model the distribution and potential suitable habitat of *Armillaria mellea*.

<table>
<thead>
<tr>
<th>Species</th>
<th>Collection Identifier/Gen Bank Identifier</th>
<th>Herbarium Accession No.</th>
<th>Herbarium Identifier</th>
<th>Collector(s), Location and Year</th>
<th>Host or substrate</th>
<th>Longitude (°W)</th>
<th>Latitude (°N)</th>
<th>Identification Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. calvescens</td>
<td>GP92</td>
<td>C0227792F</td>
<td>F</td>
<td>G. Perlow, Downers Grove, DuPage County, IL, USA, 1993</td>
<td>on ground</td>
<td>88.0153</td>
<td>41.7776</td>
<td>S<sup>a</sup></td>
</tr>
<tr>
<td>A. gallica</td>
<td>JS13</td>
<td>DUKE1929 90</td>
<td>DUKE</td>
<td>J. Sogani, Craven County, NC, USA, 1990</td>
<td>Quercus sp.</td>
<td>77.0563</td>
<td>34.9143</td>
<td>S<sup>a</sup></td>
</tr>
<tr>
<td>A. mellea</td>
<td>JJ007<sup>b</sup></td>
<td>NJJ16_038</td>
<td></td>
<td>J. Justice, St. Genevieve County, MO, USA, 2016</td>
<td>Quercus sp.</td>
<td>90.2324</td>
<td>37.8347</td>
<td>S<sup>a</sup></td>
</tr>
<tr>
<td>A. mellea</td>
<td>JJ001<sup>b</sup></td>
<td>NJJ16_038</td>
<td></td>
<td>J. Justice, USA, Oconee County, SC, USA, 2016</td>
<td></td>
<td>90.2324</td>
<td>34.9667</td>
<td>RFLP<sup>c</sup></td>
</tr>
<tr>
<td>A. mellea</td>
<td>JJ004<sup>b</sup></td>
<td>NJJ16_032</td>
<td></td>
<td>J. Justice, Faulkner County, AK, USA, 2016</td>
<td></td>
<td>92.27948</td>
<td>35.2901</td>
<td>RFLP<sup>c</sup></td>
</tr>
<tr>
<td>A. mellea</td>
<td>JJ005<sup>b</sup></td>
<td>NJJ16_033</td>
<td></td>
<td>J. Justice, Faulkner County, AK, USA, 2016</td>
<td></td>
<td>92.27793</td>
<td>35.2906</td>
<td>RFLP<sup>c</sup></td>
</tr>
<tr>
<td>A. mellea</td>
<td>JJ006<sup>b</sup></td>
<td>NJJ16_037</td>
<td></td>
<td>J. Justice, St. Genevieve County, MO, USA, 2016</td>
<td></td>
<td>90.2324</td>
<td>37.830</td>
<td>RFLP<sup>c</sup></td>
</tr>
<tr>
<td>A. mellea</td>
<td>JJ008<sup>b</sup></td>
<td></td>
<td></td>
<td>J. Justice, Hardin County, TX, USA, 2016</td>
<td></td>
<td></td>
<td></td>
<td>RFLP<sup>c</sup></td>
</tr>
<tr>
<td>A. mellea</td>
<td>115<sup>e</sup></td>
<td></td>
<td></td>
<td>D. Mclaughlin, Grattan Township, Pembroke District, Ontario, Canada, 1999</td>
<td>Q. rubra</td>
<td>76.9941</td>
<td>45.7280</td>
<td>S<sup>a</sup></td>
</tr>
<tr>
<td>A. mellea</td>
<td>232<sup>e</sup></td>
<td></td>
<td></td>
<td>D. Mclaughlin, Dalhousie Township, Lanark County, Ontario, Canada, 1999</td>
<td>Fagus grandifolia</td>
<td>76.4726</td>
<td>45.0443</td>
<td>S<sup>a</sup></td>
</tr>
<tr>
<td>A. mellea</td>
<td>253<sup>e</sup></td>
<td></td>
<td></td>
<td>D. Mclaughlin, Tweed Township, Hastings County, Ontario, Canada, 1999</td>
<td>Betula papyrifera</td>
<td>77.3211</td>
<td>44.2925</td>
<td>S<sup>a</sup></td>
</tr>
<tr>
<td>A. mellea</td>
<td>323<sup>e</sup></td>
<td></td>
<td></td>
<td>D. Mclaughlin, Regional Municipality of Niagara, Ontario, Canada, 1999</td>
<td>F. grandifolia</td>
<td>79.3726</td>
<td>43.1414</td>
<td>S<sup>a</sup></td>
</tr>
<tr>
<td>Plant</td>
<td>Code</td>
<td>Location Details</td>
<td>GPS Coordinates</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>--</td>
<td>-----------------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>LJ001</td>
<td>L. Jarnigan, Johnston Shut-ins State Park, Reynolds County, MO, USA, 2016</td>
<td>90.88493</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>JJ002</td>
<td>J. Justice, Oconee Co., SC, USA, 2016</td>
<td>83.12509</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>JJ003</td>
<td>J. Justice, Faulkner County, AK, USA, 2016</td>
<td>92.27965</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>BAK137</td>
<td>B. Kerr, Cumberland Mountain State Park, Cumberland County, TN, USA 2016</td>
<td>84.9975</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>Ovrebo-3230</td>
<td>Leflore, OK, USA, 1991</td>
<td>94.69619</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>HHB-12555</td>
<td>HH Burdsall Jr, Sauk County, WI, USA 1988</td>
<td>89.6388</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>OZ-604f</td>
<td>Carter County, MO, USA, 1995</td>
<td>81.2362</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>OZ-623f</td>
<td>Carter County, MO, USA, 1995</td>
<td>91.9623</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>OZ-1330f</td>
<td>Shannon County, MO, USA, 2003</td>
<td>91.1328</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>OZ-1592f</td>
<td>Shannon County, MO, USA, 2005</td>
<td>91.0274</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>OKM-3704</td>
<td>Beltsville, Prince George’s County, MD, USA, 1966</td>
<td>76.9177</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>OKM-4700</td>
<td>Bowie, Prince George’s County, MD, USA, 1966</td>
<td>76.9177</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>JMS-339</td>
<td>Livonia, Centre County, PA, USA</td>
<td>77.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>Wargo-842</td>
<td>P. Wargo, Tuscarora State Forest, Carlisle County, PA, USA, 1986</td>
<td>77.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>OR-138</td>
<td>Oak Ridge, Roane County, TN, USA, 1995</td>
<td>84.2192</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>DU-1-T</td>
<td>Elk Mound, Dunn County, WI, USA, 1990</td>
<td>89.30845</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>FP-101989-Sp</td>
<td>One mile south of Wyocena, WI, USA, 1984</td>
<td>89.30845</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Accession</td>
<td>CFMR</td>
<td>Location Details</td>
<td>Coordinates</td>
<td>Genus</td>
<td>Coordinates</td>
<td>Genus</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>------</td>
<td>--</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>FP-102028-T</td>
<td>3206</td>
<td>Hancock Experimental Station, Hancock, WI, USA, 1984</td>
<td>42.62318</td>
<td>Q. macrocarpa</td>
<td>44.1335</td>
<td>S^a</td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>Mad-703-Sp</td>
<td>3302</td>
<td>Wisconsin Rapids, Wood County, WI, USA</td>
<td>42.81735</td>
<td>Q. macrocarpa</td>
<td>44.3835</td>
<td>S^a</td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>MI-3(T-1)</td>
<td>3306</td>
<td>Baraga County, MI, USA, 1991</td>
<td>42.48901</td>
<td>Quercus sp.</td>
<td>46.7785</td>
<td>S^a</td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>OH-2-T</td>
<td>3314</td>
<td>Barrancas, Lucas County, OH, USA, 1991</td>
<td>42.831269</td>
<td>Quercus sp.</td>
<td>41.6621</td>
<td>S^a</td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>SC00i147</td>
<td></td>
<td>Spartanburg County, SC USA, 1987</td>
<td>82.95777</td>
<td>Prunus persica</td>
<td>35.1497</td>
<td>S^a</td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>SCNP04</td>
<td></td>
<td>Anderson County, SC, USA, 2004</td>
<td>82.83736</td>
<td>Prunus persica</td>
<td>34.6834</td>
<td>S^a</td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>FP-104077-Sp</td>
<td>3210</td>
<td>Duval County, FL, USA, 1954</td>
<td>81.47877</td>
<td>Castanea alnifolia</td>
<td>30.4158</td>
<td>S^a</td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>HHB-138-Sp</td>
<td>3270</td>
<td>Laurel County, MD, USA, 1967</td>
<td>76.90747</td>
<td>Quercus sp.</td>
<td>39.0348</td>
<td>S^a</td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>TJVIL-40-T</td>
<td>2930</td>
<td>T. Volk, Jo Daviess County, IL, USA, 1992</td>
<td>90.27957</td>
<td>Quercus sp.</td>
<td>42.2564</td>
<td>S^a</td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>LC314</td>
<td>2957</td>
<td>Lanphear-Cook, Juneau, Necedah, WI, USA, 1989</td>
<td>90.07402</td>
<td>Q. palustris</td>
<td>44.0260</td>
<td>S^a</td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>LC355</td>
<td>2958</td>
<td>Lanphear-Cook, Portage County, WI, USA, 1989</td>
<td>89.27345</td>
<td>hardwood</td>
<td>44.5747</td>
<td>S^a</td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>2263TJB</td>
<td>CORT</td>
<td>TJ Baroni, Hampshire County, MA, USA, 1975</td>
<td>72.51278</td>
<td>Quercus sp.</td>
<td>42.3900</td>
<td>RFLP^c</td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>2639TJB</td>
<td>CORT</td>
<td>TJ Baroni, Conway State Forest, Franklin County, MA, USA, 1976</td>
<td>72.7108</td>
<td>Quercus sp.</td>
<td>42.4674</td>
<td>S^a</td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>6483TJB</td>
<td>CORT</td>
<td>TJ Baroni, Tompkins Co., Ringwood Preserve, NY, USA, 1990</td>
<td>76.1561</td>
<td>F. grandifolia</td>
<td>42.4501</td>
<td>S^a</td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>8868MC</td>
<td>CORT</td>
<td>Tompkins Co., Ringwood Preserve, NY, USA, 1998</td>
<td>76.1561</td>
<td>hardwood</td>
<td>42.4501</td>
<td>Sa</td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>6540TJB</td>
<td>CORT</td>
<td>T. Baroni, Onondago Rand Tract, NY, USA, 1991</td>
<td>76.1561</td>
<td>Q. rubra</td>
<td>42.9947</td>
<td>S^a</td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>DMWV00-867</td>
<td>DEWV</td>
<td>D. Mitchell, Pine Crest Cemetery, Pendleton County, WV, USA, 2000</td>
<td>79.3128</td>
<td>Quercus sp.</td>
<td>38.6648</td>
<td>S^a</td>
<td></td>
</tr>
</tbody>
</table>
A. mellea
DPWV00-1044 DEWV-F-000601 DEWV I. Phares, Walton League, Randolph County, WV, USA, 2000
Quercus sp.
79.8338 38.7957 S°

A. mellea
WRWV00-735 DEWV-F-000814 DEWV W. Roody, Blue Bend Recreation Area, Greenbrier County, WV, USA, 2000 mixed hardwoods
80.2724 37.9181 S°

A. mellea
DMWV01-202 DEWV-F-001508 DEWV D. Mitchell, Thorn Creek WMA, Pendleton County, WV, USA, 2001 hardwood
81.1331 37.5052 S°

A. mellea
WRWV04-975 DEWV-F-005308 DEWV W. Roody, Moncove Lake State Park, Monroe, WV, USA, 2004 Quercus sp., F. grandifolia
80.3549 37.6157 S°

A. mellea
DMWV01-110 DEWV-F-001464 DEWV D. Mitchell, Mercer County, WV, USA, 2001 Acer sp., F. grandifolia
82.3848 37.9888 S°

A. mellea
WRWV01-1338 DEWV-F-002391 DEWV W. Roody, Wayne County, WV, USA, 2001 Liquidambar styraciflua, P. strobus
82.3518 37.9742 S°

A. mellea
WRWV02-542B DEWV-F-003343 DEWV W. Roody, Kanawha County, WV, USA, 2002 Quercus sp., Pinus sp., Carpinus americanus
81.5733 38.3852 S°

A. mellea
WRWV02-813 DEWV-F-003535 DEWV W. Roody, Sleepy Creek, Berkeley County, WV, USA, 2002 mixed Quercus sp., Pinus sp., Carpya sp.
78.1678 39.6706 S°

A. mellea
WRWV03-1076 DEWV-F-004825 DEWV W. Roody, Monongalia County, WV, USA, 2003 Quercus sp.
81.2220 37.3678 S°

A. mellea
WRWV04-1211 DEWV-F-006504 DEWV W. Roody, Wood County, WV, USA, 2004 Quercus sp.
81.2931 39.2407 S°

A. mellea
CSWV06-903 DEWV-F-008680 DEWV C. Stihler, Elk River Wildlife Management Area, Braxton County, WV, USA, 2006 hardwood
80.6433 38.6231 S°

A. mellea
WRWV06-928 DEWV-F-008705 DEWV W. Roody, Terra Alt Camp, Preston County, WV, USA, 2006 hardwood
79.5277 39.4545 S°
<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Repository</th>
<th>Geographic Information</th>
<th>Species</th>
<th>Geographic Coordinates</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRWV10-105A</td>
<td>DEWV-F-010306</td>
<td>W. Roody, French Creek Game Farm, Upshur County, WV, USA, 2010</td>
<td>Quercus sp.</td>
<td>80.3213 38.8738</td>
<td>S*</td>
</tr>
<tr>
<td>WRWV02-793</td>
<td>DEWV-F-003695</td>
<td>W. Roody, Hardy County, WV, USA, 2002</td>
<td>Quercus sp.</td>
<td>78.92125 38.8950</td>
<td>S*</td>
</tr>
<tr>
<td>JJ15</td>
<td>DUKE 0042215</td>
<td>J. Johnson, Buncombe County, NC, USA, 1993</td>
<td>hardwood</td>
<td>82.6273 35.4854</td>
<td>S*</td>
</tr>
<tr>
<td>Guan17</td>
<td>DUKE 0193473</td>
<td>Guan, Beaufort County, NC, USA, 2009</td>
<td>hardwood</td>
<td>76.6473 34.7259</td>
<td>S*</td>
</tr>
<tr>
<td>JDG12</td>
<td>DUKE 0192947</td>
<td>J. Green, Buncombe County, NC, USA, 2009</td>
<td>hardwood</td>
<td>76.6473 34.7259</td>
<td>S*</td>
</tr>
<tr>
<td>RP17</td>
<td>DUKE 0193475</td>
<td>R. Palmer, Durham, Eno River State Park, NC, USA, 2009</td>
<td>hardwood</td>
<td>79.0069 36.0780</td>
<td>S*</td>
</tr>
<tr>
<td>CHC17</td>
<td>DUKE 0350840</td>
<td>C. Cannon, Raven Rock State Park, Harnett County, NC, USA, 1995</td>
<td>Quercus sp.</td>
<td>78.9048 35.4610</td>
<td>S*</td>
</tr>
<tr>
<td>CKG17</td>
<td>DUKE 0348589</td>
<td>CKG, Duke Forest, Durham County, NC, USA, 1996</td>
<td></td>
<td>78.9830 36.0200</td>
<td>S*</td>
</tr>
<tr>
<td>MDP362</td>
<td>C0213449F</td>
<td>P. County, IN, USA, 1998</td>
<td>Quercus sp.</td>
<td>87.0897 41.6458</td>
<td>RFLP</td>
</tr>
<tr>
<td>SAB352</td>
<td>C0213485F</td>
<td>S. Berge, Cook County, IL, USA, 1997</td>
<td>Quercus sp.</td>
<td>87.8644 41.6761</td>
<td>S*</td>
</tr>
<tr>
<td>JPS782</td>
<td>C0213459F</td>
<td>J. Schmit, Indiana Dunes National Lakeshore, Porter County, IN, USA, 1994</td>
<td>hardwood</td>
<td>87.0423 41.6657</td>
<td>S*</td>
</tr>
<tr>
<td>DR140</td>
<td>C0213524F</td>
<td>D. Richter, North Canal Entry Park, Houghton County, MI, USA, 1985</td>
<td>Alnus serrulata</td>
<td>88.6338 47.2285</td>
<td>S*</td>
</tr>
<tr>
<td>WCG2503</td>
<td>C0257792F</td>
<td>W. Gaswick, Warren Woods, Berrien County, MI, USA, 2011</td>
<td>Liriodendron tulipifera</td>
<td>86.6306 41.8395</td>
<td>S*</td>
</tr>
<tr>
<td>IMA9132</td>
<td>C0257793F</td>
<td>J. Ware, Volo Bog, Lake County, IL, USA, 1994</td>
<td></td>
<td>88.1911 42.3545</td>
<td>S*</td>
</tr>
<tr>
<td>NAMA2013-010</td>
<td>C0257784F</td>
<td>Ozark National Forest, Baxter County, AK, USA, 2013</td>
<td>hardwood</td>
<td>92.353 36.0298</td>
<td>S*</td>
</tr>
<tr>
<td>JM2614</td>
<td>C0213518F</td>
<td>J.M. Murphy, Manistee County, MI, USA, 1995</td>
<td>Pinus strobus</td>
<td>86.1066 44.2908</td>
<td>S*</td>
</tr>
<tr>
<td>Accession</td>
<td>Year</td>
<td>Location</td>
<td>Coordinates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>----------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea PRL10404</td>
<td>2012</td>
<td>Wonder Lake, McHenry County, IL, USA</td>
<td>88.3699, 42.4209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea PRL8618</td>
<td>2010</td>
<td>Big Rock Visitor Station, DuPage County, IL, USA</td>
<td>88.045, 41.8183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea PRL10432</td>
<td>2012</td>
<td>Glacial Park, McHenry County, IL, USA</td>
<td>88.327, 42.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea PRL3268</td>
<td>2010</td>
<td>Palos Park, Cook County, IL, USA</td>
<td>87.8641, 41.6758</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea PRL10471</td>
<td>2012</td>
<td>Lake County, IL, USA</td>
<td>88.1946, 42.2291</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea JPS1322</td>
<td>1996</td>
<td>Singer County, IL, USA</td>
<td>87.8601, 41.6681</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea MDP538</td>
<td>1998</td>
<td>Cook County, IL, USA</td>
<td>87.8644, 41.6761</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea N-5178</td>
<td>1996</td>
<td>Cook County, IL, USA</td>
<td>88.4333, 41.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea WBC44787</td>
<td>1998</td>
<td>Union County, OH, USA</td>
<td>83.28514, 40.2026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea WBC49618</td>
<td>1974</td>
<td>Greene County, OH, USA</td>
<td>83.5531, 39.7901</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea WBC59796</td>
<td>1979</td>
<td>Hamilton County, OH, USA</td>
<td>84.39909, 39.0736</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea WBC49553</td>
<td>1974</td>
<td>Hocking County, OH, USA</td>
<td>82.57658, 39.4575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea WBC44982</td>
<td>1971</td>
<td>Tuscarawas County, OH, USA</td>
<td>81.55762, 40.6370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea WBC45112</td>
<td>1971</td>
<td>Adams County, OH, USA</td>
<td>83.40699, 38.7593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea WBC51700</td>
<td>1975</td>
<td>Pike County, OH, USA</td>
<td>83.21717, 39.1599</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea TL024</td>
<td>1992</td>
<td>Butler County, OH, USA</td>
<td>84.72619, 39.5125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea MAV6434</td>
<td>1993</td>
<td>Columbiana County, OH, USA</td>
<td>80.58598, 40.7106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea MAV3492</td>
<td>1989</td>
<td>Lake County, OH, USA</td>
<td>81.3368, 41.6105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea WBC46015</td>
<td>1972</td>
<td>Scioto Trail State Forest, Ross County, OH, USA</td>
<td>83.4063, 39.2220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. mellea</td>
<td>WBC41521</td>
<td>MU000150</td>
<td>MU</td>
<td>Hueston Woods, Preble County, OH, USA, 1969</td>
<td>A. nigrum</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>A. mellea</td>
<td>WBC47093</td>
<td>MU000150</td>
<td>MU</td>
<td>The Seven Caves, Highland County, OH, USA, 1972</td>
<td>hardwood</td>
</tr>
<tr>
<td>A. mellea</td>
<td>13439</td>
<td>TENN-F-061702</td>
<td>TENN</td>
<td>Cataloochee Cove, Haywood County, TN, USA, 2006</td>
<td>83.1208</td>
</tr>
<tr>
<td>A. mellea</td>
<td>12071</td>
<td>TENN-F-060319</td>
<td>TENN</td>
<td>Cades Cove, Blount County, TN, USA, 2004</td>
<td>83.8136</td>
</tr>
<tr>
<td>A. mellea</td>
<td>12931</td>
<td>TENN-F-061396</td>
<td>TENN</td>
<td>Cades Cove, Blount County, TN, USA, 2005</td>
<td>83.7825</td>
</tr>
<tr>
<td>A. mellea</td>
<td>GM909</td>
<td>TENN-F-044687</td>
<td>TENN</td>
<td>Oconee, TN, USA</td>
<td>82.9930</td>
</tr>
<tr>
<td>A. mellea</td>
<td>OKM-2636</td>
<td>VPI-F-0000497</td>
<td>VPI</td>
<td>O. Miller, VA, Giles, Mt. Lake Biol. Station, 1995</td>
<td>Quercus sp.</td>
</tr>
<tr>
<td>A. mellea</td>
<td>OKM-8160</td>
<td>VPI-F-0000496</td>
<td>VPI</td>
<td>O. Miller, Prince Georges County, MD, USA, 1969</td>
<td>hardwood</td>
</tr>
<tr>
<td>A. mellea</td>
<td>OKM-9281</td>
<td>VPI-F-0000501</td>
<td>VPI</td>
<td>O. Miller, Craig County, VA, USA</td>
<td>Q. alba, Q. rubra</td>
</tr>
<tr>
<td>A. mellea</td>
<td>TFW-12508</td>
<td>VPI-F-0000488</td>
<td>VPI</td>
<td>T. Wiedboldt, Giles County, VA, USA</td>
<td>hardwood</td>
</tr>
<tr>
<td>A. mellea</td>
<td>OKM-17896</td>
<td>VPI-F-0000494</td>
<td>VPI</td>
<td>Roanoke County, VA, USA</td>
<td>hardwood</td>
</tr>
<tr>
<td>A. ostoyae</td>
<td>#86-T</td>
<td>3161</td>
<td>CFMR</td>
<td>Houghton County, MI, USA, 1985</td>
<td>88.44167</td>
</tr>
</tbody>
</table>

^a Samples were delimited through phylogenetic analyses of the tef1 and actin-1 sequences.

^b Vouchers collected for the duration of this study and currently at Middle Tennessee State University, Murfreesboro, Tennessee, USA (MTSU).

^c Vouchers were delimited with restriction fragment length polymorphisms of the nuclear ribosomal IGS1 region.

^d Vouchers were delimited with morphological analyses.

^e Records georeferenced from Mclaughlin et al., (2001).

^f Records georeferenced from Bruhn et al., (2000).