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ABSTRACT

Here we study how the stage structure of a population of cells varies with the

distributions of times spent in each stage (which we will refer to as maturation time

distributions). We consider a model with two life stages. The first stage represents the

beginning of the first gap phase (early G1 phase). The second stage includes the end

of the G1 phase, the synthesis phase (S phase), the second gap phase (G2 phase), and

the mitosis phase (M phase). The evolution of the age density of cells in each stage

is governed by a system of partial differential equations (PDEs) which is presented

in Chapter 1. We use the method of characteristics to prove existence of solutions to

the model PDE system in Chapter 2. In Chapter 3 we discuss the computation of the

maturation rate and the numerical simulation of the system of PDEs. In Chapter 4

we simulate the model using two alternative maturation time distributions in order

to illustrate the importance of the maturation time distribution for the population’s

stage and age structure. Because drug therapies may target specific cell cycle stages,

this work can inform future studies aimed at developing more efficient drug therapies.
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CHAPTER I

INTRODUCTION

In this thesis, we study the stage structure of a population of cells. Specifically, we

investigate how the distribution of exit times from each stage of the cell cycle impacts

the stage structure of the population. For brevity, we will refer to the distribution

of exit times from a cell cycle stage as the maturation time distribution of the stage.

This research is motivated by a desire to understand the stage structure of mammalian

cell populations, as this structure can impact the efficacy of drug therapies [1, 2, 3].

Within the mammalian cell cycle there exists a checkpoint, known as the restric-

tion point or G1/S checkpoint, which controls entry into S phase [4, 5, 6, 7]. This

checkpoint is regulated by growth factor signaling. As such, mammalian cells can

coarsely be divided into those that have and those that have not received sufficient

growth signals (mitogenic signals) to begin the process of cellular division [4, 5, 6, 7].

Hence, we consider a model with two cell cycle stages, representing the stage prior

to restriction point passage (early G1) and the stage delineated by restriction point

passage and mitosis (late G1 through M). As mentioned above, we are especially

interested in how the maturation time distribution for each stage impacts the stage

structure of the population, i.e. the fractions of cells that have and have not passed

the restriction point.

This work builds on previous research [1, 8] which considered how division time

distributions impact the age or generation structure of a cellular population. For

example, [8] investigates the sensitivity of the generation structure to the distribu-

tion of division times (i.e. the intermitotic time distribution). The model in [8] is

substantially different from our own model in that generation number increases indef-
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initely while stages occur in a cycle. As a result, the models differ in their boundary

conditions. This difference may have a considerable impact on dynamics. The re-

search presented here also differs from that in [8] in that we consider more general

distributions of maturation times and more general initial age distributions, which

yield models for which an analytical solution formula does not exist. A second pa-

per of interest is [1] which develops methods for incorporating age dependency into

models of cellular populations and demonstrates the utility of this approach for the

study of drug therapy. Our work extends this research by modeling, in addition to

age, cell cycle stage. Thus the model can be used to investigate both age and stage-

dependent effects in relation to drug therapy. Indeed, cell cycle dynamics and the

stage structure of a cellular population are thought to be important for drug therapy

[2]. Finally, this work also relates to [2, 3] where stage-structured models were used

to study the impact of drug therapy on pancreatic cancer cells. These models assume

that in the absence of treatment or crowding the transition between cell cycle phases

is governed by an exponential distribution, i.e. that cells experience a constant per

capita maturation rate. In contrast, here we investigate the impact of non-constant

transition rates on the stage-structure of a cellular population. In summary, to the

best of our knowledge this is the first paper to consider the impact of maturation

time distributions on the stage structure of a cellular population.

Our model consists the following system of partial differential equations (PDEs),

∂g

∂t
(a, t) +

∂g

∂a
(a, t) = −βg(a)g(a, t); for a ≥ 0, t ≥ 0 (1)

∂f

∂t
(a, t) +

∂f

∂a
(a, t) = −βf (a)f(a, t); for a ≥ 0, t ≥ 0 (2)
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with boundary conditions:

g(a, 0) = g0(a) for a ≥ 0, (3)

g(0, t) = 2

∫ ∞
0

βf (a)f(a, t)da for t ≥ 0, (4)

f(a, 0) = f0(a) for a ≥ 0, (5)

f(0, t) =

∫ ∞
0

βg(a)g(a, t)da. for t ≥ 0, (6)

Here g gives the density of cells in the first stage, f gives the density of cells in the

second stage, a denotes the “age” of a cell relative to the time it entered its current

stage (that is, the time since it entered its current stage), and t denotes time. The

model assumes that cells enter the second stage from the first with an age-dependent,

per capita rate of βg(a). In addition, cells in the second stage divide, giving rise to

two cells in the first stage with an age-dependent, per capita rate of βf (a).



4

CHAPTER II

EXISTENCE OF SOLUTIONS

We establish the existence of solutions using the method of characteristics, which

is a technique for solving first-order partial differential equations [9, 10]. This method

involves solving an auxiliary system of ordinary differential equations, termed charac-

teristic equations. Below we give the characteristic equations associated with a, t, f,

and g in our model (1)-(2), along with their solutions. Here zg and zf correspond

to the value of the solutions g and f , respectively, along the characteristic curves

parameterized by s. That is zg(s) = g(a(s), t(s)) and zf (s) = f(a(s), t(s)). Note

that in fact we are working with a family of characteristic equations, parameterized

by points on the boundary, a ≡ 0 ∪ t ≡ 0, where the solution value is prescribed.

In the solutions below, Bg(s1, s2) =

∫ s2

s1

βg(α)dα and Bf (s1, s2) =

∫ s2

s1

βf (α)dα. In

addition, the initial data a(0), t(0), zg(0), and zf (0) is determined by the intersection

of the characteristic curve with the boundary.

da

ds
= 1; a(s) = s+ a(0) (7)

dt

ds
= 1; t(s) = s+ t(0) (8)

dzg
ds

= −βg(a(s))zg; zg(s) = zg(0)e−Bg(s) (9)

dzf
ds

= −βf (a(s))zf ; zf (s) = zf (0)e−Bf (s) (10)

From (7) and (8) we see that the characteristic curves parameterized as (a(s), t(s))

are parallel lines with slope one. To find the solution of (1)-(6) at (a0, t0), we first

find the characteristic curve through this point. There are two cases to consider:

Case 1: 0 ≤ a0 < t0

In this case, the characteristic curve through (a0, t0) intersects the boundary at (0, t0−
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a0). It follows that a(s) = s, t(s) = s+ t0 − a0 and zg(0) = g(0, t0 − a0), so that

g(a0, t0) = e−Bg(0,a0)

(
2

∫ ∞
0

βf (α)f(α, t0 − a0)dα

)
. (11)

Similarly, for a0 < t0 we have

f(a0, t0) = e−Bf (0,a0)

(∫ ∞
0

βg(α)g(α, t0 − a0)dα

)
. (12)

Case 2: 0 ≤ t0 < a0

In this case, the characteristic curve through (a0, t0) intersects the boundary at (a0−

t0, 0). It follows that a(s) = s+ a0 − t0, t(s) = s and zg(0) = g(a0 − t0, 0), so that

g(a0, t0) = g0(a0 − t0)e−Bg(a0−t0,a0). (13)

Similarly, for a0 > t0 we have

f(a0, t0) = f0(a0 − t0)e−Bf (a0−t0,a0). (14)

It is immediate that (13) and (14) solve (1)-(2) together with boundary conditions

(3) and (5) for a > t, provided f0 and g0 are differentiable and βg(α) and βf (α) are

continuous. Under additional assumptions, which allow one to differentiate through

the integral, (11) and (12) satisfy (1)-(2) together with the boundary conditions (4)

and (6) for a < t. In the next section we will employ formulas (11) and (12) to

establish the existence of solutions to (1)-(2) together with the boundary conditions

(4) and (6) for a < t.

II.1 Proof of existence of solutions

Here we show solutions of (1)-(6) exist. For this we employ an iterative method in

which an approximating sequence is shown to converge to a solution. This method
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of proof is similar to that from [11], where global existence was shown for a size-

structured model with a single stage and bounded size. We will denote the terms of

the approximating sequence by gn and fn. These functions are defined as solutions

of the following system of partial differential equations:

∂gn+1

∂t
(a, t) +

gn+1

∂a
(a, t) = −βg(a)gn+1(a, t); for a ≥ 0, t ≥ 0 (15)

∂fn+1

∂t
(a, t) +

fn+1

∂a
(a, t) = −βf (a)fn+1(a, t), ; for a ≥ 0, t ≥ 0 (16)

subject to the boundary conditions:

gn+1(a, 0) = g0(a) for a ≥ 0, (17)

gn+1(0, t) = 2

∫ ∞
0

βf (a)fn(a, t)da for t ≥ 0, (18)

fn+1(a, 0) = f0(a) for a ≥ 0, (19)

fn+1(0, t) =

∫ ∞
0

βg(a)gn(a, t)da for t ≥ 0, (20)

Notice that gn is approximating g, which is the distribution of the cells in the first

stage of the cell cycle, while fn is approximating f, which is the distribution of the

cells in the second stage of the cell cycle. Note that the solution value on the boundary

where a ≡ 0 is determined by the previous iterate. Since the characteristic equations

are identical to those for (1)-(2), we arrive at the following solution formulas.

Case 1: For 0 ≤ a0 < t0

gn+1(a0, t0) = e−Bg(0,a0)

(
2

∫ ∞
0

βf (α)fn(α, t0 − a0)dα

)
, (21)

fn+1(a0, t0) = e−Bf (0,a0)

(∫ ∞
0

βg(α)gn(α, t0 − a0)dα

)
. (22)
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Case 2: For 0 ≤ t0 < a0

gn+1(a0, t0) = g0(a0 − t0)e−Bg(a0−t0,a0), (23)

fn+1(a0, t0) = f0(a0 − t0)e−Bf (a0−t0,a0). (24)

Note that in the region t < a, gn and fn are independent of n and satisfy (15)-(16)

together with the boundary conditions (17) and (19). Under additional assumptions,

it can be shown that for a < t, gn and fn satisfy (15)-(16) together with the boundary

conditions (18) and (20). Indeed we have the following theorem.

Theorem II.1 Suppose

(i) f0 and g0 are nonnegative and continuously differentiable for a > 0,

(ii) ‖f0‖L1[0,∞), ‖g0‖L1[0,∞) , ‖f ′0‖L1[0,∞) , and ‖g′0‖L1[0,∞) are finite,

(iii) ‖f0‖∞ and ‖g0‖∞ are finite,

(iv) βf (α) and βg(α) are nonnegative, bounded and continuous, and

(v) there exists A∗ > 0, such that for every α > A∗, f ′0(α) is negative and increasing,

then for T sufficiently small there exists solutions of (1)-(6) on Ω = [0,∞) × [0, T ),

continuously differentiable, except possibly on the line a = t.

Since we have already found a solution for a > t, we focus our attention on the

set Ω1 = {(a, t)|0 ≤ a ≤ t < T} , where the solution formula is given by

gn(a0, t0) = 2e−Bg(0,a0)

∫ ∞
0

βf (α)fn−1(α, t0 − a0)dα.

Establishing the continuity and differentiability of the integral∫ ∞
0

βf (α)fn−1(α, t0 − a0)dα (25)
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is our primary task. Standard textbook theorems on this topic do not directly apply

due to the requirement that there exist an L1 function, M, such that, for every t

|fn−1(α, t)| ≤ |M(α)|. For this reason, we have adopted condition (v) of Theorem

2.1, and adapted standard proofs [12, 13] to work under this alternate condition.

In proving existence we consider C(Ω1), the Banach space of continuous, bounded

functions on Ω1 with the norm

||h||∞ := sup
x∈Ω1

h(x). (26)

We begin by establishing the following lemma.

Lemma II.2 For f0, g0, βf (α), and βg(α) as in Theorem 2.1

(i) gn and fn ∈ C(Ω1) and

(ii) g := limn→∞ gn and f := limn→∞ fn belong to C(Ω1).

Proof: The proof is by induction. First note that for (a0, t0) ∈ Ω1,

gn(a0, t0) = 2e−Bg(0,a0)

∫ ∞
0

βf (α)fn−1(α, t0 − a0)dα.

Since e−Bg(0,a0) is continuous, it suffices to show that
∫∞

0
βf (α)fn−1(α, t0 − a0)dα is

continuous in Ω1.

Suppose fn−1(a, t) is continuous in Ω1. Choose (a0, t0) ∈ Ω1, let ε > 0, and let

(ak, tk) be a sequence of points converging to (a0, t0) in Ω1.
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The integral of interest may be written as:

|
∫ ∞

0

βf (α)fn−1(α, tk − ak)dα −
∫ ∞

0

βf (α)fn−1(α, t0 − a0)dα| (27)

≤
∫ ∞

0

βf (α)|fn−1(α, tk − ak)− fn−1(α, t0 − a0)| dα

=

∫ A+T

0

βf (α)|fn−1(α, tk − ak)− fn−1(α, t0 − a0)| dα

+

∫ ∞
A+T

βf (α)|fn−1(α, tk − ak)− fn−1(α, t0 − a0)| dα,

where A is chosen so that ∫ ∞
A

|f0(α)| dα ≤ ε

2 ‖βf‖∞
.

Note by our assumptions, tk − ak < T and t0 − a0 < T. Hence, there ex-

ists τ < T so that tk − ak ≤ τ for k = 0, 1, . . .. Also, since fn−1(a, t) is con-

tinuous on the closed and bounded sets D1 = {(a, t)|0 ≤ a ≤ t ≤ τ} and D2 =

{(a, t)|0 ≤ t ≤ a ≤ A+ T, 0 ≤ t ≤ τ}, there exists a constant C so that fn−1(a, t) < C

on D1 ∪ D2, and, for every α ∈ [0, t0 − a0) ∪ (t0 − a0, A + T ], as (ak, tk) → (a0, t0),

fn−1(α, tk − ak) → fn−1(α, t0 − a0). Hence, by Lebesgue’s Dominated Convergence

Theorem [14],∫ A+T

0

βf (α)|fn−1(α, tk − ak)− fn−1(α, t0 − a0)| dα→ 0.

Now note that the final term to the right of the equality in (27) is bounded by

our choice of A. Indeed,

‖βf‖∞
∫ ∞
A+T

|f0(α− (tk − ak))e−Bf (α−(tk−ak),α) − f0(α− (t0 − a0))e−Bf (α−(t0−a0),α)| dα

≤ ‖βf‖∞
∫ ∞
A+T

|f0(α− (tk − ak))| dα

+ ‖βf‖∞
∫ ∞
A+T

|f0(α− (t0 − a0))| dα

≤ ε (28)
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Since ε was arbitrary, we see that gn is continuous in Ω1. Similarly, it can be

shown that fn is continuous in Ω1. This ends the proof that fn and gn are continuous

in Ω1.

Now we show that fn and gn have limits in C(Ω1). For a < t and n = 0 we have

|g1 − g0|(a, t) = Ne−Bg(0,a)

∫ ∞
0

f0(α)dα− g0(a) (29)

≤ N ‖f0‖L1 + ‖g0‖∞ ≤ ∞, (30)

|f1 − f0|(a, t) ≤ N ‖g0‖L1 + ‖f0‖∞ ≤ ∞. (31)

Where N := max
{

2 ‖βg‖∞ , ‖βf‖∞ , 2 ‖βf‖
2
∞ , 2 ‖βg‖

2
∞ , 2 ‖βf‖∞ ‖βg‖∞

}
. Hence, we

can define M := max {‖f1 − f0‖∞ , ‖g1 − g0‖∞} <∞.

In general,

gn+1(a, t)− gn(a, t) = e−Bg(0,a)

(∫ ∞
0

2βf (α)(fn(α, t− a)dα− fn−1(α, t− a))dα

)
.

(32)

Thus, for a < t < T

|gn+1(a, t)− gn(a, t)| =

∣∣∣∣e−Bg(0,a)

∫ ∞
0

2βf (α)(fn(α, t− a)− fn−1(α, t− a))dα

∣∣∣∣
≤ e−Bg(0,a)

∫ t−a

0

2βf (α)|fn − fn−1|dα

= Ne−Bg(0,a)(t− a) ‖fn − fn−1‖∞

≤ NT ‖fn − fn−1‖∞ (33)

That is,

‖gn+1 − gn‖∞ ≤ NT ‖fn − fn−1‖∞ . (34)

Similarly,

‖fn+1 − fn‖∞ ≤ NT ‖gn − gn−1‖∞ . (35)
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(Note that by the triangle inequality and since ‖fn‖∞ and ‖gn‖∞ are finite, ‖fn+1‖∞

and ‖gn+1‖∞ are finite as well.) We now have that

‖gn+1 − gn‖∞ ≤ NT ‖fn − fn−1‖∞ (36)

≤ (NT )n−1M, (37)

and

‖fn+1 − fn‖∞ ≤ NT ‖gn − gn−1‖∞ (38)

≤ (NT )n−1M. (39)

Since

gn = g0 +
n∑
i=1

(gi − gi−1), (40)

we see that

g := lim
n→∞

gn = g0 +
∞∑
i=1

(gi − gi−1) (41)

exists, and the convergence is uniform on Ω1 by the Weierstrass M-test, provided

T <
1

N
. (42)

Therefore, g ∈ C(Ω1). Similarly,

f := lim
n→∞

fn = f0 +
∞∑
i=1

(fi − fi−1) (43)

exists in C(Ω1). This concludes the proof of convergence, so we have established

Lemma 2.2. �

Assuming that we may differentiate through the integral in (21) - (22), and ac-

counting for the possible discontinuity at a = t we find:
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Case 1 : For 0 ≤ a < t

∂gn+1

∂a
(a, t) = −2e−Bg(0,a)

∫ ∞
0

βf (α)

(
βg(a)(fn(α, t− a) +

∂fn
∂t

(α, t− a)

)
dα

− 2βf (t− a)e−Bg(0,a)

(
lim

α→(t−a)−
fn(α, t− a)− lim

α→(t−a)+
fn(α, t− a)

)
(44)

∂gn+1

∂t
(a, t) = 2e−Bg(0,a)

∫ ∞
0

βf (α)
∂fn
∂t

(α, t− a)dα

+ 2βf (t− a)e−Bg(0,a)

(
lim

α→(t−a)−
fn(α, t− a)− lim

α→(t−a)+
fn(α, t− a)

)
(45)

∂fn+1

∂a
(a, t) = −e−Bf (0,a)

∫ ∞
0

βg(α)

(
βf (a)gn(α, t− a) +

∂gn
∂t

(α, t− a)

)
dα

− βg(t− a)e−Bf (0,a)

(
lim

α→(t−a)−
gn(α, t− a)− lim

α→(t−a)+
gn(α, t− a)

)
(46)

∂fn+1

∂t
(a, t) = e−Bf (0,a)

∫ ∞
0

βg(α)
∂gn
∂t

(α, t− a)dα

+ βg(t− a)e−Bf (0,a)

(
lim

α→(t−a)−
gn(α, t− a)− lim

α→(t−a)+
gn(α, t− a)

)
(47)

Case 2 : For 0 ≤ t < a

∂gn+1

∂a
(a, t) = e−Bg(a−t,a) (g′0(a− t) + βg(a− t)g0(a− t)− βg(a)g0(a− t)) (48)

∂gn+1

∂t
(a, t) = −e−Bg(a−t,a) (g′0(a− t)− βg(a− t)g0(a− t)) (49)

∂fn+1

∂a
(a, t) = e−Bf (a−t,a) (f ′0(a− t) + βf (a− t)f0(a− t)− βf (a)f0(a− t)) (50)

∂fn+1

∂t
(a, t) = −e−Bf (a−t,a) (f ′0(a− t)− βf (a− t)f0(a− t)) . (51)

From the above cases we see that gn and fn given by (21)-(24) will satisfy (15) -

(16) together with the boundary conditions (17) - (20), provided we may differentiate

through the integral.
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Shortly we will show that the first partial derivatives of gn and fn are given by

(44)-(47), but first we will establish the continuity of the expressions to the right

of each equality in (44)-(47). Moreover, we will show these expressions converge

uniformly in Ω1. For convenience, we refer to the integral expressions above as the

partial derivatives of fn and gn, however, in the following lemma and proof we do

not assume this to be the case. That is, in the following lemma ∂gn
∂a
, ∂gn
∂t
, ∂fn
∂a
, and ∂fn

∂t

stand for the expressions on the right-hand-side of (48)-(51), respectively.

Lemma II.3 Let f0, g0, βf (α) and βg(α) as in Theorem 2.1, and define
∂gn
∂t

,
∂fn
∂t

,

∂gn
∂a

, and
∂fn
∂a

by (45),(47),(44) and (46), respectively.

(i)
∂gn
∂t

,
∂fn
∂t

,
∂gn
∂a

, and
∂fn
∂a

belong to C(Ω1)

(ii) ∂fn
∂t

, ∂fn
∂a

, ∂gn
∂t

and ∂gn
∂a

converge uniformly on Ω1.

Proof: The continuity of
∂gn
∂t

,
∂fn
∂t

,
∂gn
∂a

, and
∂fn
∂a

on Ω1 follows by induction as in

the proof of Lemma 2.2.

Now we show the sequences ∂fn
∂t
, ∂fn
∂a

, ∂gn
∂t

and ∂gn
∂a

converge uniformly on Ω1. (Note

that these sequences are constant for a > t, and hence convergence is uniform in this

region as well.)

We see that

∣∣∣∣∂gn+1

∂t
− ∂gn

∂t

∣∣∣∣ ≤ Ne−Bg(0,a)

∫ t−a

0

∣∣∣∣∂fn∂t − ∂fn−1

∂t

∣∣∣∣ dα (52)

+ Ne−Bg(0,a)

∣∣∣∣ lim
α→(t−a)−

fn(α, t− a)− lim
α→(t−a)+

fn−1(α, t− a)

∣∣∣∣
≤ N(t− a)

∥∥∥∥∂fn∂t − ∂fn−1

∂t

∥∥∥∥
∞

+N ‖fn − fn−1‖∞ (53)

≤ NT

∥∥∥∥∂fn∂t − ∂fn−1

∂t

∥∥∥∥
∞

+N(NT )n−1M, (54)
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and∣∣∣∣∂fn+1

∂t
− ∂fn

∂t

∣∣∣∣ ≤ Ne−Bf (0,a)

∫ t−a

0

|∂gn
∂t
− ∂gn−1

∂t
dα| (55)

+ Ne−Bf (0,a)

∣∣∣∣ lim
α→(t−a)−

gn(α, t− a)− lim
α→(t−a)+

gn−1(α, t− a)

∣∣∣∣
≤ N(t− a)

∥∥∥∥∂gn∂t − ∂gn−1

∂t

∥∥∥∥
∞

+N ‖gn − gn−1‖∞ (56)

≤ NT

∥∥∥∥∂gn∂t − ∂gn−1

∂t

∥∥∥∥
∞

+N(NT )n−1M. (57)

Combining these two together :∥∥∥∥∂gn+1

∂t
− ∂gn

∂t

∥∥∥∥
∞
≤ NT

∥∥∥∥∂fn∂t − ∂fn−1

∂t

∥∥∥∥
∞

+N(NT )n−1M (58)∥∥∥∥∂fn+1

∂t
− ∂fn

∂t

∥∥∥∥
∞
≤ NT

∥∥∥∥∂gn∂t − ∂gn−1

∂t

∥∥∥∥
∞

+N(NT )n−1M (59)

Let M̂ := max

{∥∥∥∥∂f2

∂t
− ∂f1

∂t

∥∥∥∥
∞
,

∥∥∥∥∂g2

∂t
− ∂g1

∂t

∥∥∥∥
∞

}
. Then,∥∥∥∥∂gn+1

∂t
− ∂gn

∂t

∥∥∥∥
∞
≤ NT

∥∥∥∥∂fn∂t − ∂fn−1

∂t

∥∥∥∥
∞

+N(NT )n−1M (60)

≤ . . .

≤ M̂(NT )n−1 + (n− 1)NM(NT )n−1. (61)

Similarly, ∥∥∥∥∂fn+1

∂t
− ∂fn

∂t

∥∥∥∥
∞
≤ . . . ≤ M̂(NT )n−1 + (n− 1)NM(NT )n−1. (62)

Thus, provided M̂ is finite, the sequences of partial derivatives converge uniformly

for t ≤ T < 1
N

.

To show that M̂ is finite, we first consider the base case. For this, it is useful to

recall

f0(a, t) = f0(a). (63)

g0(a, t) = g0(a), (64)
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Also, for n > 0 and a < t,

∂gn+1

∂t
(a, t) = 2e−Bg(0,a)

∫ ∞
0

βf (α)
∂fn
∂t

(α, t− a)dα

+ 2βf (t− a)e−Bg(0,a)

(
lim

α→(t−a)−
fn(α, t− a)− lim

α→(t−a)+
fn(α, t− a)

)
(65)

∂fn+1

∂t
(a, t) = e−Bf (0,a)

∫ ∞
0

βg(α)
∂gn
∂t

(α, t− a)dα

+ βg(t− a)e−Bf (0,a)

(
lim

α→(t−a)−
gn(α, t− a)− lim

α→(t−a)+
gn(α, t− a)

)
,(66)

while for n > 0 and t < a

∂gn+1

∂t
(a, t) = −e−Bg(a−t,a)

(
g′0(a− t)− βg(a− t)g0(a− t)

)
(67)

∂fn+1

∂t
(a, t) = −e−Bf (a−t,a)

(
f ′0(a− t)− βf (a− t)f0(a− t)

)
. (68)

From (63) and (64)

∂g0

∂t
(a, t) = 0 for (a, t) ∈ (0,∞)× (0, T ) (69)

∂f0

∂t
(a, t) = 0 for (a, t) ∈ (0,∞)× (0, T ). (70)

Also, f0(a, t) ≡ f0(a) is continuous. Hence by (65) and (66)

∂g1

∂t
(a, t) = 0 for a < t (71)

∂f1

∂t
(a, t) = 0 for a < t. (72)

On the other hand, for t < a,
∂g1

∂t
and

∂f1

∂t
are given by (67) and (68), respectively.
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Having computed
∂g1

∂t
and

∂f1

∂t
we are ready to compute

∂g2

∂t
and

∂f2

∂t
. For a < t :

∂g2

∂t
(a, t) = 2e−Bg(0,a)

(∫ t−a

0
βf (α)

∂f1

∂t
(α, t− a)dα+

∫ ∞
t−a

βf (α)
∂f1

∂t
(α, t− a)dα

)
+ 2βf (t− a)e−Bg(0,a)

(
lim

α→(t−a)−
f1(α, t− a)− lim

α→(t−a)+
f1(α, t− a)

)
= −2e−Bg(0,a)

∫ ∞
t−a

βf (α)βf (α− (t− a))e−Bf (α−(t−a),α)f0(α− (t− a))dα

− 2e−Bg(0,a)

∫ ∞
t−a

βf (α)e−Bf (α−(t−a),α)f ′0(α− (t− a))dα

+ 2βf (t− a)e−Bg(0,a)e−Bf (0,t−a)

(∫ ∞
0

βg(α)g0(α)dα− f0(0)

)
(73)

For the first two terms to the right of the final equality above, let u = α − (t − a)

and du = dα, so that we obtain:

∂g2

∂t
(a, t) = − 2e−Bg(0,a)

∫ ∞
0

e−Bf (u,u+(t−a))βf (u+ (t− a))βf (u)f0(u)du

− 2e−Bg(0,a)

∫ ∞
0

e−Bf (u,u+(t−a))βf (u+ (t− a))f ′0(u)du. (74)

Thus for a < t

∣∣∣∣∂g2

∂t
(a, t)

∣∣∣∣ ≤ 2 ‖βf‖2
∞ ‖f0‖L1 + 2 ‖βf‖∞ ‖ f

′
0‖L1 + 2 ‖βf‖∞ ‖βg‖∞ ‖g0‖L1 + 2 ‖βf‖∞ ‖f0‖∞

≤ N(‖ f0‖L1 + ‖ g0‖L1 + ‖ f ′0‖L1 + ‖ f0‖∞). (75)

Therefore, ∥∥∥∥∂g2

∂t
− ∂g1

∂t

∥∥∥∥
∞
<∞. (76)

Similarly, ∥∥∥∥∂f2

∂t
− ∂f1

∂t

∥∥∥∥
∞
<∞. (77)

This shows that M̂ is finite, and the partial derivatives with respect to t converge

uniformly to their limits in Ω1 for T < 1
N

. Furthermore, from (44) and (46) we see
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that

∂gn+1

∂a
(a0, t0) = −∂gn+1

∂t
(a0, t0)− βg(a0)gn+1(a0, t0), (78)

∂fn+1

∂a
(a0, t0) = −∂fn+1

∂t
(a0, t0)− βf (a0)fn+1(a0, t0). (79)

Therefore, the uniform convergence of ∂gn
∂a

and ∂fn
∂a

follows from that of ∂gn
∂t

, ∂fn
∂t
, fn

and gn. �

Now we will show that for every n ∈ N, fn and gn are continuously differentiable

with respect to t. Moreover, we can compute ∂fn
∂t

and ∂gn
∂t

by differentiating through

the integral in (21) and (22). The proof is by induction.

Suppose that fn is continuously differentiable with respect to t in Ω1. Let (a, t) ∈

Ω1 and choose δ > 0 so that (a, t± δ) ∈ Ω1 (or, in case a = t, (a, t+ δ) ∈ Ω1). Also,

suppose δ > ∆t > 0. Since Ω1 is convex, we see that (a, t ± ∆t) ∈ Ω1 for any such

∆t. Given ε > 0, suppose that A > A∗ is chosen such that

‖βf‖∞
∫ ∞
A

|f ′0(α)| dα + ‖βf‖2
∞

∫ ∞
A

|f0(α)| dα < ε

2
.

This is possible since f ′0 and f0 are L1. Now we establish convergence of the difference
quotient:

∫ ∞
0

βf (α)(fn(α, t + ∆t− a) − fn(α, t− a))

∆t
dα =

∫ A+T

0

βf (α)(fn(α, t + ∆t− a) − fn(α, t− a))

∆t
dα

+

∫ ∞
A+T

βf (α)(fn(α, t + ∆t− a) − fn(α, t− a))

∆t
dα (80)

We will handle the first and second terms to the right if the inequality in (80)
separately. The first term can be expressed as

∫ A+T

0

βf (α)(fn(α, t + ∆t− a) − fn(α, t− a))

∆t
dα =

∫ t−a

0

βf (α)(fn(α, t + ∆t− a) − fn(α, t− a))

∆t
dα

+

∫ t−a+∆t

t−a

βf (α)(fn(α, t + ∆t− a) − fn(α, t− a))

∆t
dα

+

∫ A+T

t−a+∆t

βf (α)(fn(α, t + ∆t− a) − fn(α, t− a))

∆t
dα (81)

Since fn(α, t∗) and ∂fn
∂t

(α, t∗) are continuous on the setsD1 = {(α, t∗)|0 ≤ α ≤ t∗ ≤ t− a+ δ}

and D2 = {(α, t∗)|0 ≤ t∗ ≤ a ≤ A+ T, 0 ≤ t∗ ≤ t− a+ δ} , by the mean value theo-
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rem, the first and third terms to the right of the equality in (81) can be expressed

as:∫ t−a

0

βf (α)
fn(α, t+ ∆t− a)− fn(α, t− a)

∆t
dα =

∫ t−a

0

βf (α)
∂fn
∂t

(α, t∗(α))dα,

∫ A+T

t−a+∆t

βf (α)
fn(α, t+ ∆t− a)− fn(α, t− a)

∆t
dα =

∫ A+T

t−a+∆t

βf (α)
∂fn
∂t

(α, t∗(α))dα.

Where t∗(a) is between t− a and t− a+ ∆t. Since ∂fn
∂t

(α, t∗) is continuous on D1 and

D2, we have that ∂fn
∂t

(α, t∗(α))→ ∂fn
∂t

(α, t) point-wise as ∆t→ 0. Moreover, since D1

and D2 are closed and bounded, there exists a constant C so that ∂fn
∂t

(α, t∗) < C on

D1 ∪D2. Therefore, by Lebesgue’s dominated convergence theorem, as ∆t→ 0,∫ t−a

0

βf (α)
∂fn
∂t

(α, t∗(α))dα→
∫ t−a

0

βf (α)
∂fn
∂t

(α, t− a)dα

and ∫ A+T

t−a+∆t

βf (α)
∂fn
∂t

(α, t∗(α))dα→
∫ A+T

t−a+∆t

βf (α)
∂fn
∂t

(α, t− a)dα.

For the second term in (81) we have

∫ t−a+∆t

t−a
βf (α)

fn(α, t + ∆t− a) − fn(α, t− a)

∆t
dα =

1

∆t

∫ t−a+∆t

t−a
βf (α)fn(α, t + ∆t− a)dα

−
1

∆t

∫ t−a+∆t

t−a
βf (α)fn(α, t− a)dα (82)

Since fn(α, t∗) is uniformly continuous on D1, which contains the domain of integra-

tion for the first integral above, as ∆t→ 0,

1

∆t

∫ t−a+∆t

t−a
βf (α)fn(α, t+ ∆t− a)dα→ lim

α→(t−a)−
βf (α)fn(α, t− a).

Since fn(α, t∗) is uniformly continuous on the closed and bounded region D2, which

contains the domain of integration for the second integral above, as ∆t→ 0,

1

∆t

∫ t−a+∆t

t−a
βf (α)fn(α, t− a)dα→ lim

α→(t−a)+
βf (α)fn(α, t− a).
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Hence∫ A+T

0

βf (α)(fn(α, t+ ∆t− a)− fn(α, t− a))

∆t
dα→

∫ A+T

0

βf (α)
∂fn
∂t

(α, t− a)dα

+ lim
α→(t−a)−

βf (α)fn(α, t− a)

− lim
α→(t−a)+

βf (α)fn(α, t− a).

Now we show the convergence of the second term in (80). Applying the mean

value theorem to fn(α, t∗(α)) for α ≥ t∗,∣∣∣∣∫ ∞
A+T

βf (α)(fn(α, t+ ∆t− a)− fn(α, t− a))

∆t
dα

∣∣∣∣ =

∣∣∣∣∫ ∞
A+T

βf (α)
∂fn
∂t

(α, t∗(α))dα

∣∣∣∣
≤‖βf‖∞

∫ ∞
A+T

∣∣∣∣∂fn∂t (α, t∗(α))

∣∣∣∣ dα
(83)

where t∗(a) is between t − a and t − a + ∆t. The integral in the final term can be

expanded as:

‖βf‖∞
∫ ∞
A+T

∣∣∣∣∂fn∂t (α, t∗(α))

∣∣∣∣ dα
= ‖βf‖∞

∫ ∞
A+T

∣∣e−Bf (α−t∗(α),α) (f ′0(α− t∗(α)) + βf (α− t∗(α))f0(α− t∗(α)))
∣∣ dα

≤ ‖βf‖∞
∫ ∞
A+T

|f ′0(α− t∗(α))| dα + ‖βf‖2
∞

∫ ∞
A+T

|f0(α− t∗(α))| dα. (84)

Since (α − t∗(α)) ≥ (α − (t + ∆t − a)) ≥ A, by (v) of Theorem 2.1, we have that

|f ′0(α− t∗(α))| ≤ |f ′0(α− (t+ ∆t− a))| and |f0(α− t∗(α))| ≤ |f0(α− (t+ ∆t− a))| .
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Thus,

‖βf‖∞
∫ ∞
A+T

|f ′0(α− t∗(α))| dα + ‖βf‖2
∞

∫ ∞
A+T

|f0(α− t∗(α))| dα

≤ ‖βf‖∞
∫ ∞
A+T

|f ′0(α− (t+ ∆t− a))| dα + ‖βf‖2
∞

∫ ∞
A+T

|f0(α− (t+ ∆t− a))| dα

≤ ‖βf‖∞
∫ ∞
A

|f ′0(α)| dα + ‖βf‖2
∞

∫ ∞
A

|f0(α)| dα

≤ ε

2
. (85)

In summary,∣∣∣∣∫ ∞
A+T

βf (α)(fn(α, t+ ∆t− a)− fn(α, t− a))

∆t
dα

∣∣∣∣ < ε

2
.

Similarly∣∣∣∣∫ ∞
A+T

βf (α)
∂fn
∂t

(α, t− a)dα

∣∣∣∣
≤ ‖βf‖∞

∫ ∞
A+T

∣∣e−Bf (α−(t−a),α) (f ′0(α− (t− a)) + βf (α− (t− a))f0(α− (t− a)))
∣∣ dα

≤ ‖βf‖∞
∫ ∞
A+T

|f ′0(α− (t− a))| dα + ‖βf‖2
∞

∫ ∞
A+T

|f0(α− (t− a))| dα

≤ ‖βf‖∞
∫ ∞
A

|f ′0(α)| dα + ‖βf‖2
∞

∫ ∞
A

|f0(α)| dα

≤ ε

2
. (86)

Thus,

lim
∆t→0

∣∣∣∣∫ ∞
A+T

βf (α)(fn(α, t+ ∆t− a)− fn(α, t− a))

∆t
dα−

∫ ∞
A+T

βf (α)
∂fn
∂t

(α, t− a)dα

∣∣∣∣ ≤ ε.
Therefore the absolute value of∫ ∞

0

βf (α)(fn(α, t+ ∆t− a)− fn(α, t− a))

∆t
dα

−
(∫ ∞

0
βf (α)

∂fn
∂t

(α, t− a)dα+ lim
α→(t−a)−

βf (α)fn(α, t− a)− lim
α→(t−a)+

βf (α)fn(α, t− a)

)
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is less than ε. Since ε > 0 was arbitrary, for any (a, t) ∈ Ω1,

∂gn+1

∂t
(a, t) = 2e−Bg(0,a)

∫ ∞
0

βf (α)
∂fn
∂t

(α, t− a)dα

+ 2βf (t− a)e−Bg(0,a)

(
lim

α→(t−a)−
fn(α, t− a)− lim

α→(t−a)+
fn(α, t− a)

)
.(87)

From Lemma 2.3, the expression to the right of the equality above is continuous,

hence we have shown that gn is continuously differentiable with respect to t in Ω1.

Similarly, we find that fn and gn are continuously differentiable with respect to both

t and a in Ω1, and their derivatives are given by (44)-(47). Moreover, we see that gn

and fn satisfy (15)-(16). It then follows from the uniform convergence of the partial

derivatives of fn and gn together with the convergence of the sequences fn and gn,

that

lim
n→∞

∂fn
∂t

=
∂f

∂t
,

and

lim
n→∞

∂gn
∂a

=
∂g

∂t
.

Hence, taking the limit through (15)-(16), we see that f and g satisfy (1)-(2). More-

over, since the convergence is uniform, we have that f and g are continuously differ-

entiable on Ω1.

To complete the proof of Theorem 2.1, it remains to show that g and f satisfy the

boundary conditions (4) and (6). Note that:

gn+1(0, t) = 2

∫ ∞
0

βf (a)fn(a, t)da

= 2

∫ t

0

βf (a)fn(a, t)da+ 2

∫ ∞
t

βf (a)f0(a− t)e−Bf (a−t,a)da (88)

Since the domain of integration for the first integral is contained in Ω1 where fn
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converges uniformly to f we have that:

2

∫ t

0

βf (a)fn(a, t)da→ 2

∫ t

0

βf (a)f(a, t)da.

Thus,

gn+1(0, t) → 2

∫ t

0

βf (a)f(a, t)da+ 2

∫ ∞
t

βf (a)f0(a− t)e−Bf (a−t,a)da

= 2

∫ ∞
0

βf (a)f(a, t)da (89)

as desired. Similarly, we find that f satisfies the boundary condition (6). Thus, the

proof of Theorem 2.1 is complete. �

Theorem II.4 Assume that in addition to conditions (i) − (v) of Theorem 2.1, βg

and βf are differentiable and

(vi) For a > Â∗, β′g and β′f are non-postive and increasing,

then there exist continuously differentiable solutions of (1)-(2) together with the bound-

ary conditions (3)-(6) on Ω = {(a, t)|0 ≤ a, 0 ≤ t < T}, for all T > 0.

Proof: By Theorem 2.1 there exist solutions g and f of (1)-(2) together with the

boundary conditions (4) and (6) on Ω̄1 = {(a, t)|0 ≤ a ≤ t ≤ T}, for T = 1
2N
. We

may set f̂0(a) = f(a, T ) and ĝ0(a) = g(a, T ). Note that f̂0 and ĝ0 are continuous and

continuously differentiable for a 6= T at which point they are continuous from the left

and right, with a jump discontinuity. Also we have that f̂0 and ĝ0 are L∞. This is

because ‖gn − g‖∞ → 0 and ‖fn − f‖∞ → 0 in Ω̄1, and, in addition, f and g are L∞

for 0 ≤ t ≤ a by (13) and (14). Also, f̂0 and ĝ0 are L1. This follows from the fact

that f̂0 and ĝ0 are L∞ and given by (13) and (14) for a large, where f0 and g0 are L1.

Also we have that f̂ ′0 = ∂f
∂a

(a, T ) and ĝ′0 = ∂g
∂a

(a, T ) are L∞. This is because∥∥∂gn
∂a
− ∂g

∂a

∥∥
∞ → 0 and

∥∥∂fn
∂a
− ∂f

∂a

∥∥
∞ → 0 in Ω̄1, and, in addition, ∂f

∂a
(a, T ) and ∂f

∂a
(a, T )
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are L∞ for 0 ≤ t ≤ a by (48) and (50). Also, f̂ ′0 and ĝ′0 are L1. This follows from the

fact that f̂ ′0 and ĝ′0 are L∞ and given by (48) and (50) for a large, where βf , βg are

L∞ and f0, f ′0, g0 and g′0 are L1.

Now we will verify that f̂ ′0 and ĝ′0 satisfy condition v.

f̂ ′0(a) = f ′0(a− T )e−Bf (a−T,a) − f0(a− T )[βf (a− T )− βf (a)]e−Bf (a−T,a) (90)

Since f ′0(a) satisfies v and βf is decreasing for a > Â∗ we see that f̂ ′0(a) is non-positive

for a > A := max
{
A∗ + T, Â∗ + T

}
. Note also that the first term above,

f ′0(a− T )e−Bf (a−T,a),

is increasing for a > A. Indeed, e−Bf (a−T,a) is decreasing for a > A, and f ′0(a− T ) is

negative and increasing for a > A∗. Therefore for â > a > A,

f ′0(a− T )e−Bf (a−T,a) ≤ f ′0(â− T )e−Bf (a−T,a) ≤ f ′0(â− T )e−Bf (â−T,â)

Now, taking the derivative of the second term,

−f0(a− T )[βf (a− T )− βf (a)]e−Bf (a−T,a),

we get:

−f ′0(a− T )(βg(a− T )− βg(a))e−Bg(a−T,a) − f0(a− T )(β′g(a− T )− β′g(a)e−Bg(a−T,a)

+ f0(a− T )(β′g(a− T )− β′g(a))2e−Bg(a−T,a),

which is positive for a > A by conditions v and vi. Therefore f̂ ′0(a) is increasing for

a large. Similarly ĝ′0(a) is negative and increasing for a large. Therefore, f̂0 and ĝ0

satisfy condition (v) of Theorem 2.1.

Having verified these conditions we can begin to solve (1) and (2) subject to the

boundry conditions (4) and (6), with f̂0 and ĝ0 in place of f0 and g0, and f̂n and ĝn in
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place of fn and gn. For simplicity, we may change to time variable to τ = t−T, so that

the initial data corresponds to τ = 0. The characteristic equations are unchanged.

The only change is the jump discontinuity in f̂0 and ĝ0. Note that jump discontinuities

do not impact the continuity of the expressions in (21) and (22). Indeed, the proof

that these expressions are continuous assumed a jump discontinuity, at a = t. In our

new variables, that discontinuity is at a = τ + T ; ĝn and f̂n are in fact continuous at

a = τ. Indeed, since

f(0, T ) =

∫ ∞
0

βg(α)g(α, T )dα

and

g(0, T ) = 2

∫ ∞
0

βf (a)f(α, T )dα

f̂0 and ĝ0 satisfy the boundary conditions

ĝ0(0) = 2

∫ ∞
0

βf (α)f̂0(α)dα

and

f̂0(0) =

∫ ∞
0

βg(α)ĝ0(α)dα.

Therefore, when a = τ we have,

lim
a→τ−

ĝn(a, τ) = 2e−Bg(0,τ)

∫ ∞
0

βf (α)f̂0(α)dα

= e−Bg(0,τ)ĝ(0)

= lim
a→τ+

ĝn(a, τ) (91)

Similarly,

lim
a→τ−

f̂n(a, τ) = lim
a→τ+

f̂n(a, τ) (92)

Thus, f̂n and ĝn converge to continuously differentiable solutions of (15) and (16)

subject to (3)-(6), on {(a, τ)|0 ≤ τ ≤ T, 0 ≤ a ≤ T + τ} . Returning to our original
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variables, we extend our original solution to t ≤ 2T . Continuing in this way, for all

time, we can define solutions of (15) and (16) subject to the boundary conditions

(3)-(6), continuously differentiable for a 6= t.
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CHAPTER III

COMPUTATION

III.1 Characterization of β

In simulating the model, we need to compute the per capita maturation rates, βf and

βg, which can be calculated in terms of the maturation time probability densities If

and Ig. For this, let R(a, y0) denote the probability that a cell transitions (matures)

to the next stage after age a, given that the cell’s internal state had value y0 at

a = 0. We may sometimes fix y0 and just write R(a). Now let β(a)δa + o(δa)

(where limδa→0
o(δa)

δa
= 0) be the probability that a cell transitions over the interval

[a, a+ δa], given that it has not transitioned at age a. That is, β(a) is the transition

probability. Then on the one hand

R(a+ δa) = R(a)(1− β(a)δa− o(δa)).

That is, the probability that a cell transitions after age a+ δa is the probability that

the cell does not transition over [a, a + δa], given it did not transition up until age

a, ages the probability that the cell did not transition up until age a. On the other

hand,

R(a+ δa) = R(a) +R′(a)δa+ o(δa).

Equating these two expressions for R(a+ δa) and canceling like terms, we have

−β(a)R(a)δa = R′(a)δa+ o(δa).

Dividing by δa and taking the limit as δa goes to zero, we find

β(a) =
−R′(a)

R(a)
.
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Thus, we can determine the transition probability in terms of R(a). Note that,

R(a) =
∫∞
a
I(s)ds. Therefore

β(a) =
I(a)∫ ∞

a

I(s)ds

. (93)

If transition ages are exponentially distributed, β(a) ≡ β. In general, there may

not be a closed form for β, so that it must be approximated numerically. In this case,

a grows, the numerator and denominator in the expression for β approach zero. As a

result, the computation of β is challenging due to limits on floating point precision.

In the following paragraphs, we characterize several important features of β for

the inverse Gaussian probability density. First note we may use L’Hôpital’s rule, to

compute the asymptotic value of β(a). For

I(a) =
1√

2σ2πa3
e−

(µa−1)2

2aσ2

lim
a→∞

β(a) = lim
a→∞

I(a)∫ ∞
a

I(s)ds

= lim
a→∞
−I
′(a)

I(a)
= lim

a→∞

3

2

1

a
− 1

2σ2

1

a2
+

µ2

2σ2
=

µ2

2σ2
.

The following characterization of β also involves the ratio

−q(a) = −I
′(a)

I(a)
=

3

2

1

a
− 1

2σ2

1

a2
+

µ2

2σ2
.

Theorem III.5 The per capita maturation rate β(a) has exactly one critical point,

at which takes a maximum value. Moreover, if a∗ is the age at which β(a) takes its

maximum value, β(a) < −q(a) for a > a∗.

Let β(a) = I(a)∫ ∞
a

I(s)ds
and I ′(a) = I(a)q(a) , where −q(a) = 3

2
1
a
− 1

2σ2
1
a2 + µ2

2σ2 ,



28

then:

β′(a) =

∫ ∞
a

I(s)dsI(a)q(a) + I2(a)(∫ ∞
a

I(s)ds

)2 < 0 (94)

⇐⇒ β(a) < −q(a). (95)

Similarly,

β′(a) > 0 ⇐⇒ β(a) > −q(a). (96)

and

β′(a) = 0 ⇐⇒ β(a) = −q(a). (97)

Also note that as a → 0, β(a) → 0, and −q(a) → −∞. Therefore, for a small

β(a) > −q(a), and β′(a) > 0 for a small.

To show that β has a single critical point, we must also consider the behavior of

−q(a). Note that

−q′(a) = −3

2

1

a2
+

1

σ2

1

a3
= 0 ⇐⇒ −3

2
a+

1

σ2
= 0 ⇐⇒ a =

2

3

1

σ2

Set â = 2
3

1
σ2 . Considering the limits of −q′(a) as a → 0 and a → ∞ we have

−q′(a) > 0 for a < â and −q′(a) < 0 for a > â. Therefore −q(a) takes its maximum

value at â = 2
3σ2 .

Suppose toward a contradiction that β′(a) 6= 0 for all a > 0, then by continuity,

β′(a) > 0 for a > 0. Thus, β(a) > −q(a) for a > 0 by (96). Fixing a0 > â > 0 we

have β(a) > −q(a) and β′(a) > 0 > −q′(a) for a > a0 > â, so:

0 = lim
s→∞

β(s)+q(s) = lim
s→∞

∫ s

a0

β′(a)+q′(a)da+β(a0)+q(a0) > β(a0)+q(a0) > 0, (98)

which is a contradiction.
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Hence, we define

a∗ = inf {a > 0 | β′(a) = 0}

Note by continuity β′(a∗) = 0 and β(a∗) = −q(a∗). Note also, a∗ > 0, since β′(a) > 0

for a small. Therefore, by continuity, β′(a) > 0 for a < a∗, i.e. β is increasing for

a < a∗.

Case 1:

Suppose that β′(a∗) = 0 > −q′(a∗). Since β(a∗) = −q(a∗), by continuity there

exists an interval over which the above inequality holds. Thus, there exists δ > 0

such that β(a) > −q(a) for a∗ < a < a∗ + δ. Suppose there exists a > a∗ such

that β(a) < −q(a). Let s∗ = inf {a > a∗ | β(a) ≤ −q(a)} . Note s∗ 6= a∗. So for

a∗ < a < s∗ β(a) > −q(a) so β′(a) > 0 for a∗ < a < s∗, however, since −q has a

single critical point at which is takes a maximum, we know −q′(a) < 0 for a > a∗.

So, β′(a) > −q′(a) for a∗ < a < s∗ Thus;

β(s∗)− β(a∗) =

∫ s∗

a∗
β′(a)da >

∫ s∗

a∗
−q′(a)da = q(s∗)− β(a∗) (99)

Thus, β(s∗) > −q(s∗). By continuity and the definition of s∗, it must be that β(s∗) ≤

−q(s∗). Thus we have reached a contradiction.

It follows that {a > a∗ | β(a) ≤ −q(s)} is empty. That is, β(a) > −q(a) for a > a∗.

Hence

0 = lim
s→∞

β(s) + q(s) = lim
s→∞

∫ s

a∗
β′(a) + q′(a)da >

∫ a∗+1

a∗
β′(a) + q′(a)da > 0 (100)

Hence, this case does not occur.

Case 2:

Assume that 0 = β′(a∗) < −q′(a∗). Then, as in Case 1, there exists δ such that

β(a) < −q(a) for a∗ < a < a∗ + δ. Suppose toward a contradiction that there exists
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a > a∗, so that β(a) > −q(a). Let s∗ = inf {a > a∗ | β(a) ≥ −q(a)} . Note we have

s∗ > a∗, and by continuity β(s∗) = −q(s∗). However for a∗ < a < s∗, β(a) < −q(a),

and hence for a∗ < a < s∗, β′(a) < 0 by (94). Since we have already shown Case

I cannot happen we also know that 0 = β′(s∗) ≤ −q′(s∗). Since −q has a single

maximum, we see that in fact β′(a) < 0 < −q′(a), for a∗ < a < s∗. Thus β(s∗) <

−q(s∗), and we have reached a contradiction. Thus, there exists no a > a∗ such

that β(a) ≥ q(a). Therefore there exists a unique time a∗ at which β′(a∗) = 0, and

β(a) < −q(a) for a > a∗.

Case 3:

Assume that 0 = β′(a∗) = −q′(a∗). Then since −q(a) has a single critical point at

which it takes a maximum values, −q′(a) < 0 for a > a∗. Therefore, it cannot happen

that β(a) = −q(a), for a > a∗, since we previously showed Case I cannot happen.

Thus, in this case too, we see that there is a unique time a∗ at which β′(a∗) = 0.

Moreover, if there exists s∗ > a∗ so that β(s∗) > −q(s∗), then by continuity it must

be that β(a) > −q(a) for every a > a∗. Therefore, β′(a) > 0 > −q′(a) for a > a∗.

Contradicting that lima→∞β(a) = −q(a). Thus it must be that β(a) < −q(a) for

a > a∗.

Therefore, in any case there is a unique age a∗ at which β′(a∗) = 0. Moreover,

β(a) < −q(a) for a > a∗, so that β is decreasing for a > a∗. Since we have already

noted that β is increasing for a > a∗ we see that β takes its maximum value at a∗ as

desired. �

Next we derive an estimate of the maximum value of β and a lower bound on the

age at which β assumes its maximum value. For this note that since −q′(a∗) ≥ 0 and
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β′(a) < 0 for a∗ < a

max
{a>0}

β(a) ≤ max
{a>0}

(−q(a)) = −q(â) (101)

=
9

8
σ2 +

µ2

2σ2
(102)

Lemma III.6 For a∗ as above, µ2

2σ2 < β(a∗) ≤ 9
8
σ2 + µ2

2σ2 . Moreover, 1
3

1
σ2 < a∗.

To obtain the estimate on β(a∗) = max{a>0} β(a) and the lower bound on a∗, we

first consider the unique time, a∞, such that −q(a∞) = µ2

2σ2 . That is, we consider the

unique finite time at which −q(a) achieves the asymptotic value of β(a).

We have

−q(a∞) =
µ2

2σ2
⇐⇒ (103)

0 =
3

2

1

a∞
− 1

2σ2

1

a2
∞
⇐⇒ (104)

0 =
3

2
a∞ −

1

2σ2
⇐⇒ (105)

a∞ =
1

3

1

σ2
(106)

It follows that 1
3

1
σ2 = a∞ < a∗. Indeed we see that a∞ < â = 2

3σ2 , so −q is increasing

for a < a∞. Were a∗ < a∞, we would have β(a∗) = −q(a∗) < −q(a∞) = µ2

2σ2 .

However, this leads to a contradiction because β(a) is strictly decreasing for a > a∗

and approaches µ2

2σ2 as a → ∞. Therefore a∞ < a∗ as desired. Hence, β(a∗) >

β(a∞) > −q(a∞) = µ2

2σ2 . Where the final inequality follows from the fact that β is

increasing (i.e. β(a) > −q(a) for a < a∗.) �

The previous characterization of β is useful for validating the numerical approx-

imation of β. Figure (1(b)) and (2(b)) demonstrate the challenge of computing β

numerically. In figure (1(a)) and (1(b)) β was computed directly in MATLAB ac-

cording to (93). In figure (2(a)) and (2(b)) β was computed according to (93) with

the aid of MATLAB’s variable precision arithmetic function (vpa.m) [15].



32

(a) Maturation rate for stage g (b) Maturation rate for stage f

Figure 1: Direct numerical computation of maturation rates

(a) Maturation rate for stage g (b) Maturation rate for stage f

Figure 2: Numerical computation of maturation rates using MATLAB’s vpa.m

III.2 Numerical Method

In order to solve the system of PDEs numerically we discretize age and time in order to

numerically integrate along the model’s characteristic curves. The numerical scheme

is summarized below.

Given initial data g0(a), f0(a), with g0(a) = f0(a) = 0 for a > amax, we approxi-

mate the solution of our system for t < T as follow:

Let a = (0, h, 2h, . . . Ih), and t = (0, h, 2h, . . . Jh), where Jh = T, and Ih =
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T + amax. ĝ = (ĝij) ∈ R(I+1)×(J+1) and f̂ = (f̂ij) ∈ R(I+1)×(J+1) are matrices with

f̂i0 = f0(ai), i = 1, . . . I, (107)

ĝi0 = g0(ai) i = 1, . . . I, (108)

f̂0j = integral(0, aI , βgĝ:,j) j = 1, . . . J, (109)

ĝ0j = 2 integral(0, aI , βf f̂:,j) j = 1, . . . J, (110)

f̂i+1,j+1 = f̂ij exp {integral(ai, ai+1,−βf )} (111)

ĝi+1,j+1 = ĝij exp {integral(ai, ai+1,−βg)} (112)

where integral(ai, ai+1,−βf ) is the approximation of

∫ ai+1

ai

−βf (α)dα, using MAT-

LAB’s implementation of the trapezoid rule with a uniform grid over [ai, ai+1] with

four points, and integral(0, aI , βf f̂:,j) is the approximation of

∫ aI

0

βf (α)f̂(α, tj)dα

using the MATLAB’s implementation of the trapezoid rule with the grid values in a

and the corresponding entries of f̂:,j. The grid size h was initially set to .02 and was

reduced by half until the relative point-wise error was less than 10−2. The algorithm

is discussed in [16]. All simulations were performed in MATLAB.
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CHAPTER IV

RESULTS

Here we consider two different models for the per capita maturation rate β. These

rates correspond to two maturation time distributions, namely the Inverse Gaussian

and the exponential distributions. Hence we will refer to one as the inverse Gaussian

maturation rate and the other as the exponential maturation rate. Parameters for

the inverse Gaussian distribution were chosen to fit data on the division times of

MCF10A cells, as described in [17]. The parameters for the exponential distributions

were chosen to match the mean of the inverse Gaussian distribution as parameterized

by the MCF10A cell data. Thus the average time spent in early G1 and late G1-M

are the same in both models.

When the data is parameterized by the inverse Gaussian distribution, the fraction

of cells in early G1 and late G1-M is predicted to exhibit oscillations over multiple

days. However, the amplitude of the oscillations decreases through time so that the

population stage structure appears to approach a steady state wherein approximately

80% of cells are in late G1-M while approximately 20% of cells are in early G1 (see

[3(a)]).

When the data is parameterized by the exponential distribution the fraction of

cells in early G1 and late G1-M quickly stabilizes to yeild a stable stage structure

wherein approximately 30% of cells are in early G1 and approximately 70% of cells

are in late G1-M. It is interesting to note that the two models differ, not only in their

dynamics but in their predicted steady state stage distribution, despite the fact that

the time spent in early G1 and late G1-M is identical for the models as parameterized

(see [3(b)].



35

(a) Inverse Gaussian model. (b) Exponential model.

Figure 3: Fractions of cells in early G1 and late G1-M through time, as predicted

by parameterizing MCF10A cell division time data with inverse Gaussian and expo-

nential models as described in the text. Note that the initial stage structure is not

available from the data, hence it was chosen arbitrarily, but in consideration of the

average time spent in each cell cycle part. Model parameters for the inverse Gaussian

model: µ1 = .25, σ1 = 1, µ2 = .064 σ2 = .031. Model parameters for the exponential

model: λ1 = .25, λ2 = .064.

We can also compare the predicted age distributions for the models. Figures

[4(a)] and [4(b)] show how the predicted age distributions in early G1 and late G1-M

vary through time in the inverse Gaussian model. Figure [5(a)] and [5(b)] show how

the predicted age distributions in early G1 and late G1-M vary through time in the

exponential model. This figures demonstrate that similar to the stage distribution,

the age distribution is much slower to stabilize for the inverse Gaussian model.

These simulations suggest that the distribution of maturation times can have

a significant impact on the stage structure of the population, impacting both its

dynamics and steady state. Hence maturation time distributions could significantly
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(a) Early G1 age distribution (b) Late G1 through M age distribution

Figure 4: Normalized density of cells in early G1 and late G1-M as a function of time

and age for the inverse Gaussian model

(a) Early G1 age distribution (b) Late G1 through M age distribution

Figure 5: Normalized density of cells in early G1 and late G1-M as a function of time

and age for the exponential model

impact the outcome of drug therapy. We hope that the results and computer code

provided here can help in the development of more accurate, predictive models for

the evaluation of drug therapy. For this purpose, future work will incorporate drug

therapy into the model, for example. As parameterized, the model would be well-

suited to study the impact of CDK inhibitors, which impact restriction point passage

[18]. The model could also be reparameterized to study the impact of drugs which
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target S phase (e.g. gemcitabine) [3]. A secondary benefit of this work is that it

provides an additional means of validating models of stochastic cell cycle progression.

In particular after fitting a distribution model to intermitotic time data, we can then

examine the ability of the distribution to simultaneously describe the stage structure

of the population. In this way, the research presented here can contribute to the

process of model refinement and deepen our understanding of the fundamental process

of cell cycle progression.
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