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ABSTRACT

This thesis describes a variety of projects on analyzing two common biomedical signals

known as Phonocardiogram (PCG) and Electrocardiogram (ECG/EKG) to detect early-

stage heart diseases. The projects include the design of prototypes to compress, denoise,

segment, and classify PCG and ECG signals accurately. PCG signal is the graphical rep-

resentation of heart sound which represents the mechanical activities of the human heart.

PCG signal contains useful information about the functionality and the condition of the

heart. ECG signal represents the electrical activities of the human heart. ECG signal has

been widely used in hospitals and clinics to diagnose cardiac diseases. Analysis of PCG and

ECG signals is critical in diagnosis of different cardiac diseases as they can provide early

indication of potential cardiac abnormalities. Extracting cardiac information from PCG and

ECG signals to diagnose heart diseases in the initial stage can play a vital role in remote

patient monitoring. In this thesis, we have combined different signal processing techniques,

Machine Learning (ML), and Deep Learning (DL) methods to compress, denoise, segment,

and classify PCG and ECG signals effectively and accurately. First, PCG signals are com-

pressed and denoised by using a multi-resolution analysis technique based on the Discrete

Wavelet Transform (DWT). Then, a segmentation algorithm, based on the Shannon energy

envelope and zero crossing is applied to segment the PCG signal into four major parts: the

first heart sound (S1), the systole interval, the second heart sound (S2), and the diastole inter-

val. Finally, Mel-scaled power spectrogram and Mel-frequency cepstral coefficients (MFCC)

are employed to extract informative features from PCG signals, which are then fed into a

classifier to classify each PCG signal into a normal or an abnormal signal. We have combined
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traditional ML and DL approaches to develop Deep Hybrid Learning (DHL) models. A Con-

volutional Neural Network (CNN) is used along with seven traditional ML methods including

Logistic Regression (LR), Random Forest (RF), K-Nearest Neighbors (KNN), Decision Tree

(DT), Naive Bayes (NB), Support Vector Machine (SVM), and AdaBoost (AB) to build

hybrid PCG classification models. Our experimental results have shown that significant im-

provements in the classification accuracy can be achieved by using DHL models compared

to traditional ML and DL models. We have also applied the same methods to analyze ECG

signals and got promising results. Besides providing valuable information regarding heart

condition, our proposed signal processing and DHL approaches can help cardiologists to take

appropriate and reliable steps toward diagnosis if any cardiovascular disorder is found in the

initial stage.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Heart failure is the one of the leading causes of death worldwide. Every year millions of people

in the world die due to heart diseases. Heart diseases are also the main reason of death in

the United States. Each year around 6,55,000 person die in the United States due to cardiac

diseases which is equal to 1 in every 4 deaths [1]. Many of these deaths could be prevented if

it was possible to detect cardiac diseases in the initial stage. Continuous patient monitoring

can play a vital role to detect cardiac abnormalities in the initial stage. The traditional health

care facilities require to schedule appointments in the clinics or hospitals for preventive health

check-ups. Though this model can successfully diagnose diseases in the early stage, it fails

to treat any chronic disease which has already progressed to the end stage. Moreover, it is

not always possible to detect diseases in the initial stage as accompanying symptoms may

be present for a brief amount of time which may lead to end-stage of a disease that cannot

be cured. So, the solution of this problem is continuous remote monitoring of ambulatory

patients using wearable sensors. This process can continuously collect data from human

body and provide a complete information about patient’s health. Similarly, to determine

the cause of cardiac abnormalities, a patient’s heart must be monitored continuously, so his

or her physician can diagnose the disorder accurately. This is very important as patients

can know the condition of their heart continuously and they can consult with cardiologist

instantly if any anomaly occurs.
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In this thesis, we have examined two common biomedical signals known as PCG and

ECG. These two signals play a vital role to detect cardiovascular diseases in the initial

stage. PCG is the graphical depiction of the heart sound signal that illustrates the condition

of the heart through intensity, frequency, time duration and other valuable information

regarding the heart valves [2]. Identifying pathological symptoms by hearing the heart

sound through the stethoscope is a very difficult skill and can take a long time to gain

and to be proficient in it. To use heart sounds for continuous monitoring of heart, it is

very important to track heart sound components repeatedly over a period of time. But

it’s not possible for doctors to listen heart sounds continuously for 24 hours. Moreover,

human ear has the limitation in hearing the sounds. Human ear can hear the sounds within

the frequency range of 20 Hz to 20 KHz and can discriminate lower frequencies less than

higher frequencies. The frequencies of the heart sound components are from 20 Hz to 500

Hz. Therefore, it’s very difficult to hear low frequency components of heart sound having

dominant frequencies of less than 100 Hz [3]. So, we need more objective tools like PCG to

extract informative characteristics of the heart sound that can’t be identified by the human

ear. PCG helps to analyze heart sounds and to detect abnormalities in the heart, thereby

improves overall diagnosis efficiency [4–7]. On the other hand, ECG is the most widely used

and powerful diagnostic tool to analyze the electrical activity of the heart and to detect

cardiac abnormalities. ECG signal is a recording of the bio-electric potential produced by

rhythmical cardiac activities. ECG has been extensively used for heart disease diagnosis in

hospitals, as well as patient monitoring at home, since it can provide valuable information

regarding the functional condition of the heart [8]. The functionality of the human heart can

be properly monitored, and cardiovascular diseases can be detected through analyzing ECG
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signals. Early detection of cardiac arrhythmia is also possible by analyzing ECG heartbeats

continuously. Millions of people in the world are suffering from cardiac arrhythmia which

refers to irregular heartbeats. Irregular heartbeats can be life-threatening in some cases if

it is not detected in the initial stage. So, accurate detection of irregular heartbeats in the

primary stage is very important to decrease the mortality rate caused by heart diseases [12].

Thus, PCG and ECG signals have considerable interest in the hospital and health community

to improve the cardiac patient survival rate and decrease their hospitalized rate.

In biomedical signal processing, the aim is to extract clinically relevant pathological in-

formation from raw signals to enhance the medical diagnosis process. Every organ of the

human body delivers pathological signals. These signals can be electrical, mechanical, or

chemical. The main task of signal processing in biomedical research is to pull out relevant

clinical information from those signals and filter out noise and redundant information. Dif-

ferent signal processing, ML, and DL techniques are available in the scientific literature to

extract pathological information from PCG and ECG signals for the proper clinical diagno-

sis. In continuous remote patient monitoring through PCG and ECG signals, it is required

to analyze signals without loosing any physiological and clinical information. Biomedical sig-

nals analysis techniques can be mainly categorized into three methods such as direct method,

transformation method, and parameter extraction method. The direct methods only analyze

signals in the time domain. The examples of this technique are Amplitude Zone Time Epoch

Coding (AZTEC), Improved modified AZTEC technique, Coordinate Reduction Time En-

coding system (CORTES), Turning point (TP), and so on. These techniques are relatively

old and showed poor performance to analyze non-stationary biomedical signals like ECG

and PCG. The transformed methods usually convert time domain to frequency domain and
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analyze signals based on their frequency. The examples of transformed method are Fourier

descriptor, Fourier Transform (FT), Wavelet Transform (WT), Discrete Cosine Transform

(DCT), and so on. In biomedical signals, pathological or clinical information are usually

hidden inside the frequency domain. So, transformed techniques usually show better perfor-

mance compared to direct methods to analyze biomedical signals. The parameter extraction

method is dependent on the extraction of dominant features from raw signals. Features can

be in the time domain, or in the frequency domain, or the combination of both domain [9].

ML and DL techniques have enhanced the importance of research on biomedical signals.

Modern ML techniques are dependent on the feature extraction process. Extracting appro-

priate features from the raw signal is very challenging. DL algorithms can solve this problem

by extracting high-quality optimal features through its own neural network and reduce the

need for feature engineering or the parameter extraction process. Thus, DL algorithms lead

to better performance and higher accuracy compared to ML algorithms [5, 6, 12]. In this

thesis we have applied different signal processing, ML, and DL techniques to analyze PCG

and ECG signals. Our proposed signal processing techniques provide significant information

regarding the heart condition that helps to detect heart diseases in the primary phase.

1.2 Objective

The main objective of this thesis is to develop a novel framework to continuously monitor the

heart. We have combined signal processing, ML, and DL approaches to compress, denoise,

encrypt, segment, and classify PCG and ECG signals. Until now, very little research has

been done on analyzing PCG and ECG signals which covers all five major techniques while
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continuous monitoring of the heart. Besides providing valuable information regarding heart

condition, this signal processing approach can help cardiologists take appropriate and reliable

steps toward diagnosis if any cardiovascular disorder is found in the initial stage. The major

contributions of this thesis are described below.

1.2.1 Compression algorithm

Extracting cardiac information from PCG and ECG signals to detect cardiac abnormalities

can play a vital role to diagnose heart diseases in the primary stage. This process can signif-

icantly decrease the mortality rate caused by cardiovascular diseases. Therefore, continuous

PCG and ECG monitoring are of great interests for remote patient monitoring. However, 24

hours of online monitoring generates a large amount of data to be transferred and stored at

healthcare facilities. It is also a very difficult task to get the proper information from PCG

and ECG signals, as these signals are usually mixed with different kinds of noise, murmurs,

and unnecessary information that may lead to an inaccurate clinical diagnosis. So, before

segmentation, it is required to remove these redundant pieces of information from PCG

and ECG signals to evaluate the proper functionality of the heart. Moreover, an end-to-

end encryption is also required to share the data without compromising privacy or security.

So, compression, denoising, and encryption are necessary for the continuous monitoring of

PCG and ECG signals [7, 17, 18]. FT and short-time Fourier transform (STFT) are com-

monly used tools for examining stationary signals. But they show limited performance in

examining non-stationary signals as they can’t provide simultaneous time and frequency lo-

calization [11, 17, 19]. Non-stationary signals like PCG and ECG can be analyzed properly

by using DWT, as it provides very good time-frequency localization [18, 20–22]. By using a
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multi-resolution analysis technique based on DWT, PCG and ECG signals can be decom-

posed into different sub-bands having different frequency range. The required sub-bands

which contain the valuable clinical information can be picked up for further analysis. The

other sub-bands which contain murmurs, noise or other unnecessary information can be dis-

carded [24, 26–28]. Furthermore, these compressed and denoised signals will be encrypted

while transferring, so that only the physician or doctor can decode the encrypted signal.

An average PCG compression of 93.67% and an average ECG compression of 74.57% were

achieved using our proposed compression technique. We compared our proposed compression

technique with other compression methods and our compression technique has outperformed

most of those techniques by a large margin.

1.2.2 Segmentation algorithm

The duration of heart sounds, systole, and diastole intervals, cardiac cycle, and the number

of heart beats per minute are important parameters to determine the cardiac function of

a person [26]. To extract these important characteristics from PCG signals, it is required

to segment PCG signals properly [29, 31, 58]. For the segmentation, normalized average

Shannon energy is used in our research to detect the components of the PCG signal by

calculating the envelope of its energy [32, 33]. The zero-crossing algorithm is used to detect

the starting and stopping points of the heart sounds [40]. Based on this information we can

obtain the duration and amplitude of each heart sound, systole interval, diastole interval,

one cardiac cycle, and heartbeat of a person [5]. Thus, it will continuously provide the values

of different important cardiac parameters of the heart. This will help patients to know the

condition of their heart continuously and they can consult with doctors if they find any
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cardiac abnormality during the very early stage of a disease.

1.2.3 Classification algorithm

Due to the significance of PCG and ECG signals to detect cardiac abnormalities, differ-

ent automatic PCG and ECG classification models have been developed using ML and DL

approaches. Recent advancements in ML and DL have played a vital role to detect abnor-

malities in hearts through PCG and ECG signals. Different ML algorithms such as NB, DT,

LR, RF, KNN, SV, and AB are usually used for PCG and heartbeat classification. All of

these classification models use feature extraction methods to remove redundant features and

to increase the classification accuracy. However, one of the major limitations of ML is the

feature extraction. Extracting appropriate features from the raw signal is very challenging.

DL algorithms can solve this problem by extracting high-quality optimal features through

its own neural network and reduce the need for feature engineering. Thus, DL algorithms

lead to better performance and high accuracy compared to ML algorithms [5,6,12]. But DL

algorithms also suffer from over fitting problem when the model is fed with unstructured or

less data. We have combined the advantages of ML and DL to develop DHL algorithms. Our

proposed DHL algorithms can overcome the limitation of traditional ML and DL algorithms.

DHL algorithms have less time and computational complexity compared to DL algorithms.

DHL algorithms also don’t require feature engineering technique like ML algorithms. Mel-

scaled power spectrogram and MFCC are used to extract informative features from the PCG

signals which are then fed into ML, DL, and DHL classifiers to classify each PCG signal into

a normal or an abnormal signal. To classify heartbeats from ECG signals, we used each ECG

beat as input to ML, DL, and DHL classification models. Our proposed DHL algorithms
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outperformed ML and DL algorithms by a large margin to classify PCG signals and ECG

beats. For the classification of PCG signals, our proposed CNN-RF classifier outperformed

other classifier by giving an accuracy of 94.30%. For the ECG heartbeat classification, among

all the ML, DL, and DHL models, an excellent testing accuracy of 98.60% is achieved using

our proposed CNN-RF model. The overall performance of the proposed PCG and ECG clas-

sification models are compared with other recent methods on PCG and ECG classification,

and we got better result compared to most of the classification techniques in terms of overall

accuracy.

1.3 Thesis outline

The organization of the thesis is as follows. Chapter 2 explains the background of heart,

PCG, and ECG signals. Chapter 3 presents the proposed compression technique. Chapter 4

demonstrates the proposed segmentation technique. Chapter 5 examines different ML and

DL algorithms and also describes the proposed DHL classification algorithms. Chapter 6

describes and analyzes the result of this research. Conclusion and future works are discussed

in chapter 7.
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CHAPTER 2

HEART, PCG, AND ECG

PCG and ECG are two most vital biomedical signals to evaluate the current condition of

the heart. PCG annotates the timing, duration and amplitude of different heart sounds and

can detect structural defects of the heart valves by analyzing heart sound signals. ECG

represents the electrical activity of a heart. ECG is used to monitor the cyclical contraction

and relaxation of the human heart muscles [8]. In this chapter, the structure of the human

heart and the characteristics of PCG and ECG signals are discussed.

2.1 Biological overview of the heart

2.1.1 Anatomy and physiology of the heart

Heart is one of the most important organs of the human body. The primary function of

the heart is to pump adequate blood to the entire body through the network of arteries

and veins. This process is known as the cardiovascular system. The surface of the heart is

surrounded by the coronary arteries which provide oxygen and nutrients rich blood to the

heart muscles and take way the waste products from the heart. This helps to maintain the

normal metabolism rate [13–16]. Fig. 1 shows the basic anatomy of the human heart.

The heart has four chambers: the right atrium, the right ventricle, the left atrium, and

the left ventricle. The right atrium receives blood from the veins and pumps it to the right

ventricle. The right ventricle receives blood from the right atrium and pumps it to the lungs.

Blood is loaded with oxygen in the lungs. The left atrium receives oxygenated blood from

the lungs and pumps it to the left ventricle. The left ventricle pumps oxygen-rich blood to
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Figure 1: The basic anatomy of the human heart [15]

the rest of the body [13–16].

2.1.2 Heart valves

The heart is composed of four valves in which blood goes by before lifting each chamber of

the heart. The valves keep away from the blood back flow. These valves are located on each

end of the two ventricles. They act as one-way entrance of blood on one side of a ventricle

and one-way entrance of blood on the other side of a ventricle. Normal valves have three

flaps except the mitral valve. The mitral valve has two flaps. The name of the four heart

valves are given below:

• Tricuspid valve: It is located between the right atrium and the right ventricle.

• Pulmonary valve: It is located between the right ventricle and the pulmonary artery.

• Mitral valve: It is located between the left atrium and the left ventricle.
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• Aortic valve: It is located between the left ventricle and the aorta.

The valves between the atria and the ventricles are called atrioventricular (AV) valves.

The left one is the mitral valve and the right one is the tricuspid valve. The valve between the

right ventricle and pulmonary trunk is the pulmonary semilunar valve. The valve between

the left ventricle and the aorta is the aortic semilunar valve. The pulmonary valve controls

the blood from the right ventricle into the pulmonary artery and the aortic valve regulates

blood from the left ventricle into the aorta [13–16].

2.1.3 Cardiac cycle

A cardiac cycle is defined as a complete heartbeat. It consists of a complete relaxation and

contraction of both the atria and ventricles. It defines the electrical and mechanical activities

of the heart throughout the systole and diastole interval. Systole interval is the duration of

the cardiac contraction and diastole interval is the duration of the cardiac relaxation. The

average duration of a cardiac cycle is around 0.8 second. Fig. 2 shows the heart systole and

diastole.

Figure 2: Heart diastole and systole [14]
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In a cardiac cycle, atria and ventricles contract and relax mutually to pump the blood to

move from the atria to the ventricles and then into the pulmonary. In the interval of diastole,

it allows filling up the chambers to get ready for the next contraction. Events that occur in

left chambers of heart is same as right chambers of heart [13–16] . For each chamber, the

cardiac cycle has seven phases which are explained below:

• Atrial contraction: The first stage is called the atrial contraction. In this stage the

atrium contracts and blood moves from the atrium to the ventricle.

• Isovolumetric contraction: The second stage is known as the isovolumetric contrac-

tion. This is the primary stage of the ventricular systole. In this stage the ventricles

start to contract. During this ventricular contraction both valves stay remain closed

and there is no change in the volume and size of the ventricle.

• Rapid ventricular ejection: The third stage is called the rapid ventricular ejection.

During this stage the aortic valve opens and blood rapidly ejects to the aorta. The

pressure transmitted to the aorta due to the change of pressure in the ventricles. In

this phase left ventricle and aorta behave as a single chamber.

• Slow ventricular ejection: The fourth stage is known as the slow ventricular ejec-

tion. In this stage mitral valve becomes closed. Pressure in the aorta also starts falling

and the aortic valve remains open which leads to the slow ejection of blood to aorta.

• Isovolumetric relaxation: The fifth stage is known as the isovolumetric relaxation.

In this stage ventricles start relaxing with closed valves and the ventricular pressure

decreases rapidly. Still, the pressure in ventricles is high enough compared to the
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pressure in the atrium.

• Rapid passive ventricular filling: The sixth stage is known as the rapid passive

ventricular filling. In this stage pressure in the ventricle becomes less than the pressure

in atrium which leads to the opening of the mitral valve. Blood rushes to ventricles

from the atrium.

• Slow passive ventricular filling: The seventh and the final stage is known as the

slow passive ventricular filling. In this stage atrioventricular valves open and blood

directly moves to the ventricle.

2.2 PCG signal

PCG is an automatic computer-aided diagnosis tool that is the graphical depiction of heart

sounds and murmurs. It helps to monitor various components of the heart sounds through

the heart cycle. Heart sounds are produced due to the flow of blood across the heart valves,

the opening and the closure of the heart valves, and from the mechanical actions of heart

muscles. These heart sounds are primary monitoring technique for diagnosing different

cardiac diseases. Doctors and cardiologists usually use stethoscope to hear the heart sounds

before any clinical diagnosis. Heart sounds are identical in all healthy hearts. Abnormal

heart sounds are related to cardiovascular diseases.

2.2.1 Shape of a PCG signal

A normal PCG signal consists of two fundamental heart sounds called the first heart sound

(S1) and the second heart sound (S2), which are generated due to the closure of the atri-
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oventricular valves and semilunar valves respectively. The interval from the starting point of

S1 to the starting point of S2 is called the systole interval (S1-S2 interval) and the interval

from the starting point of S2 to the starting point of S1 is called the diastole interval (S2-S1

interval) [2, 41]. Diastole interval is usually longer than the systole interval [42]. Beside

S1 and S2, two extra heart sounds known as third and fourth heart sound (S3 and S4) can

appear in both normal and pathological conditions. S3 appears just after S2, and S4 appears

just before S1 [14,41]. Table 1 shows different heart sounds and their properties.

Table 1: Different heart sounds and their properties

Sound S1 S2 S3 S4

Frequency 30-100 Hz Above 100 Hz 20-25 Hz Bellow 30 Hz
Time 50-100 ms 25-50 ms 120-150 ms 90 ms before S1
Occurrence Closure of the mi-

tral and tricuspid
valve.

Closure of the
aortic and pul-
monary valve.

Caused by the
rapid ventricular
filling in the early
diastole.

Caused by the
ventricular filling
due to the atrial
contraction.

Besides these heart sounds different kinds of heart murmurs may also present in the signal

which are produced because of the turbulent flow of blood across the valves and related to

the cardiac diseases. Murmurs may present in systole or diastole or in both intervals [41].

Murmurs usually have higher frequency compared to the heart sounds [43]. When the blood

circulates through the heart valves and chamber, sometimes it produces innocent murmurs

which is not related to any cardiac diseases. There are mainly three kinds of heart murmurs:

• Systolic murmurs: Start after S1 and ends before S2.

• Diastolic murmurs: Start after S2 and end before S1.

• Continuous murmurs: Usually occur throughout or some parts of the cardiac cycle.



7

Figure 3: A pathological PCG signal

Fig. 3 shows a PCG signal with murmurs and S3 with reference to S1 and S2.

Th recording of a PCG signal is very straight forward. Digital stethoscope, different

sensors or microphones can be placed on the skin of the chest to record heart sounds. The

main difficulty while recording a PCG signal is the existence of different kinds noise that

makes it difficult to segment and classify PCG signals.

2.3 ECG signal

ECG is the graphical record of changes in the magnitude and direction of the electrical activ-

ity of the heart. More specifically, the electric current that is generated by the depolarization

and repolarization of the atria and ventricles can be monitored through the ECG signal. The

ECG signal is captured through an array of electrode sensors known as leads. Leads are at-

tached to the skin to detect the electrical activity of the heart. This information is recorded

on a graph. As the electrical signal traverses through the heart, the graph shows each phase

of the signal. Under normal condition, the ECG signal has a very predictable direction,

duration, and amplitude. Any change in the ECG signal is related to cardiac cardiac ab-

normalities [8,13]. Therefore, by analyzing ECG signal continuously, it is possible to detect

any abnormal heart function in the primary stage which helps cardiologists for the proper

clinical diagnosis. However, reliable and efficient clinical applications are highly dependent
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on the accuracy of information extracted from the ECG recording. Usually ECG signals are

subjected to contamination by various noises. The sources of noise may be either cardiac

or extra-cardiac. Reduction or disappearance of the isoelectric interval, prolonged repolar-

ization, and atrial flutter are responsible for cardiac noise. Whereas, respiration, changes

of electrode position, muscle contraction, and power line interference cause extra-cardiac

noise. Moreover continuous recording of ECG signals requires large amount of storage. So,

compression and denoising of ECG signals without loosing any pathological information is

prerequisite for the continuous monitoring of heart through ECG signals.

2.3.1 Shape of an ECG signal

ECG signal is composited from 5 waves - P, Q, R, S and T. This signal could be measured

by electrodes from human body in typical engagement. Signals from these electrodes are

brought to simple electrical circuits with amplifiers and analogue to digital converters. The

muscle mass of the atria is small compared with the ventricles, and the electrical change of

the atria is very small. Contraction of atria associated with the ECG wave is called ’P’. For

the large mass of ventricular, it has large deflection which is called ’QRS’ complex. The ‘T’

wave of the ECG is associated with the return of the ventricular mass to its resting electrical

state [8, 13]. Fig. 4 shows the basic shape of a normal ECG signal.

Different ECG waves and their properties are given bellow:

• P-wave: It occurs due to the depolarization of atrial muscle. The amplitude of P

wave is around 0.25 mV.

• QRS-wave: It occurs due to the repolarization of atria and depolarization of ventri-
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Figure 4: Basic shape of a normal ECG signal [8]

cles. The amplitude of R wave is around 1.60 mV. The amplitude of Q wave is around

25% of R wave. The time duration QRS interval is around 0.09 second.

• T-wave: It happens due to the ventricular repolarization. The amplitude of T wave

is around 0.1 to 0.5 mV.

• U-wave: If present, it comes after potential in the ventricular muscle and represents

repolarization of the purkinje fibers.

In a normal cardiac cycle, the p wave occurs first, followed by the QRS complex and the

T wave. The section of the ECG between the waves and complexes are called segments and

interval such as the PR segment, the ST segment, the TP segment, the PR interval, the QT

interval, and the R-R interval. When the electrical activity of the heart is not being detected

the ECG is straight, flat line [8,13]. Different intervals and their properties are given bellow:

• P-Q interval: Delay of excitation in the fiber near the AV node.

• P-R interval: Start from P wave to start of QRS complex. The time duration of the

P-R interval is around 0.12 to 0.20 second.
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• Q-T interval: Start of QRS complex to end of T wave. The time duration of the Q-T

interval is around 0.35 to 0.44 second.

• S-T interval: End of QRS complex to start of T wave. The time duration of the S-T

interval is around 0.05 to 0.15 second.

2.3.2 Recording of an ECG signal

The electrical signal from the heart is detected at the surface of the body through array of

electrodes known as leads, which are joined to the ECG recorder by wires. Leads collect the

electrical activity of the heart from a particular angle across the body, obtained by using

different combination of wires. The most common technique to record an ECG signal is the

12-lead ECG method. The standard ECG has 12 leads. Six of the leads are considered as

limb leads, as they are placed on the arms and/or legs of the individual. The other six leads

are considered as chest leads because they are placed on the chest. The six limb leads are

called lead I, II, III, aVL, aVR and aVF. The letter “a” stands for “augmented,” as these

leads are calculated as a combination of leads I, II and III. The six chest leads are called

leads V1, V2, V3, V4, V5 and V6. Leads I, II and III are each making use of a pair of

electrodes (bipolar), with one electrode measuring between itself and the other. Leads aVR,

aVL, and aVF make use of all the connections to the patient. Each of the six pericardial or

chest electrodes (V1-V6) represent six different views and unique information that can’t be

derived from other leads [8].
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2.4 Relationship between ECG and PCG signals

PCG defines the mechanical activity of the heart and ECG defines electrical activity of the

heart. Mechanical activity of the heart is known as the opening and closure of heart valves

and the sound they produce during the cardiac cycle. This mechanical function relies on the

electrical operation of the heart. So, if there is any defect in the electrical action of the heart,

the mechanical function of the heart will also be interrupted. So, ECG and PCG signals are

correlated with each other [10]. Fig. 5 shows the time domain relationship between ECG

and PCG signals. From Fig. 5 we can see that the 1st heart sound (S1) appears 0.04 second

to 0.06 second after the beginning of the QRS complex. The second heart sound (S2) starts

at the end of the T wave. The third heart sound occurs after the T wave and before the P

wave. The fourth heart sound (S4) occurs after the P wave and before the QRS complex.

S3 and S4 both occur during the diastolic period. Based on this calculation it’s possible to

analyze the mechanical and electrical activities of the heart.

Figure 5: Time domain relationship between ECG and PCG signals [10]
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CHAPTER 3

COMPRESSION AND DENOISING OF PCG AND ECG SIGNALS USING

DWT

3.1 Signal compression

Telemedicine can play a vital role to the 24 hours cardiac monitoring of a patient suffering

from cardiac abnormalities. But 24 hours online monitoring requires huge amount of storage

to store the data and higher bandwidth to transfer the data from homes to physicians in

clinics. So, the main aim of an efficient compression process is to remove all the redundant

information without loosing any data containing pathological information. It can be achieved

by reducing the number of significant coefficients thus it will save the memory and less

bandwidth will be required [5, 7]. Computerized medical signal processing systems such as

PCG and ECG acquires a large amount of data that is difficult to store and transmit. Thus,

it is very important to use a compression technique to reduce the quantity of data without

loss of any important cardiac information. All data compression algorithms aim to minimize

the data storage by discarding the redundant information and noise. A high compression

ratio is wanted with very less distortion. An efficient data compression algorithm must have

the ability to compress the signal with acceptable fidelity. In biomedical data compression,

the clinical acceptability of the reconstructed signal depends on its fidelity which can be

measured by calculating the difference between the original signal and the reconstructed

signal. In biomedical signal processing, the main goal of an optimized compression is to

minimize the number of samples without losing the remarkable pathological information of
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the original signal in order to achieve a correct clinical diagnosis.

3.1.1 Performance evaluation of a compression algorithm

Several Performance analysis techniques are available to evaluate the quality of a compression

algorithm and also the fidelity of the reconstructed signal with respect to original signal.

Following techniques were used in our research:

Compression Ratio (CR) and Percentage of Compression (PC):

The Compression Ratio (CR) and percentage of compression (PC) both are used to measure

the compression efficiency of the compressed algorithm. The CR and PC are calculated using

these formulas:

CR =
a

b
(3.1.1)

PC =
a− b

a
× 100 (3.1.2)

where a is the size of the uncompressed original signal and b is the size of the compressed

signal.

Percent Root-mean-square Difference (PRD):

Percent Root-mean-square Difference (PRD) is used to measure the fidelity of the recon-

structed signal with respect to original signal. Mathematically PRD can be expressed as:

PRD =

√∑N
n=1(x1(n)− x2(n))2∑N

n=1(x1(n))
2

× 100 (3.1.3)

where x1(n) is the original signal and x2(n) is the reconstructed signal. N is the length of

the signal and n is an integer. The best result is achieved when the compression method has
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high CR and PC with a very low PRD.

Quality Score (QS):

Quality score (QS) is used to compare the performance of a compression technique with

other compression techniques. It is the ratio of the CR and PRD. QS can be expressed as:

QS =
CR

PRD
(3.1.4)

A compression method is considered to be more efficient if it has higher QS compared to the

other compression methods.

3.2 Signal denoising

Noise is an undesirable signal that usually does not contain any important information.

Noise usually overlaps with any desired signals and makes it difficult to extract the original

meaningful information from the original signal. Noise is the major factor that causes lim-

itation in biomedical data transfer and effects the accuracy level of the result. Thus, noise

elimination is necessary in biomedical signal processing. While recording, PCG and ECG

signal are usually interrupted by different kinds of noise and unnecessary information that

may cause inaccurate clinical diagnosis. So, before segmentation, it is required to remove

these redundant pieces of information from ECG and PCG signals to evaluate the proper

functionality of the heart [5, 7].

PCG signals usually suffer from different kinds of noise like the sounds by the mechanical

actions of lung, breathing, movement of the patients, talking, inaccurate connection of the

microphone to the human body, different environmental noises mixed with the signal and

so on, thus make it very difficult to extract the correct diagnostic information and features
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from PCG signals [5, 7, 25]. The common sources of noise in PCG signals are given below:

• Electronic noise: Noise come from electronic devices such as electrodes or sensors,

inaccurate connection of the microphone to the human body.

• Acoustic noise: Noise due to vibrations such as mechanical actions of lung, breathing,

movement and talking of patients.

• Electromagnetic noise: Due to the coupling of signals with radio-frequency spectral

components while transmission.

• Murmurs: Due to the turbulent flow of blood across the heart valves. Murmurs are

related to heart diseases.

The common sources of noise in ECG signals are given below [30]:

• Baseline Shift noise: It is a slow-moving and non-deterministic wave. It happens

due to the respiration.

• Muscle Noise: It is caused by the random firing of muscle fibers.

• Power line noise: it is picked up by the electrode leads from neighboring equipment.

• Electrode contact noise: It is caused by loss of contact between the electrode and

skin.

• Motion artifacts: Due to the change of the position of the electrodes in the skin and

patient movements.

• Noise generated by electronic devices: It happens due to the sound coming from

electronic devices.
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3.2.1 Performance evaluation of a denoising algorithm

The performance of any denoising algorithm can be evaluated by using Signal to Noise Ratio

(SNR). SNR is used to measure the amount of noise in the signal. SNR is defined as the ratio

of signal power to noise power and expressed in decibels [7]. mathematically the formula of

SNR can be written as:

SNR = 10 ∗ log10(
Esignal

Enoise

)2 db (3.2.1)

where Esignal is the Root-mean-square amplitude of the signal and Enoise is the Root-mean-

square amplitude of the noise.

3.3 DWT

DWT is a time-frequency signal analysis method based on the Fourier Transform. It has good

localization in both frequency and time domains. DWT has been widely used in biomedical

signal process. Although, FT and STFT are commonly used tools for examining stationary

signals, but they show limited performance in examining non-stationary signals, as they are

unable to provide simultaneous time and frequency localization [20]. Non-stationary signals

like PCG and ECG can be analyzed properly by using DWT, as DWT provides very good

time-frequency localization [20]. By using a multi-resolution analysis technique based on

DWT, PCG and ECG signals can be decomposed into different sub-bands having different

frequency ranges. The required sub-bands containing valuable clinical information can be

picked up for further analysis. The other sub-bands, which contain murmurs, noise, or other

unnecessary information, can be discarded [7, 44]. Multi-resolution analysis based on DWT
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can analyze the signal with different resolution at different frequencies. At high frequencies,

a good time resolution and poor frequency resolution can be achieved. Similarly at low

frequencies, a good frequency resolution and poor time resolution can be achieved by using

DWT. This feature is achieved by scaling and shifting of the mother wavelet. A mother

wavelet ψ(t) is defined as a function of zero mean:

∫ ∞

−∞
ψ(t)dt = 0 (3.3.1)

When this mother wavelet is scaled (or dilated) by factor of a and translated (or shifted) by

factor of b then the mother wavelet is denoted by ψa,b(t) and is defined as:

ψa,b(t) =
1√
a
ψ(
t− b

a
) (3.3.2)

In DWT, scaling and translation parameters are chosen such as the resulting wavelet set

forms an orthogonal set. The scaling factors are chosen as power of two. So the values of

a and b : a = n ∗ 2m and b = 2m, where n,m ϵ Z. So the mother wavelet in DWT can be

represented as:

ψm,n(t) = 2−
m
2 ψ(2−mt− n) (3.3.3)

And the DWT of the signal x(t) is given by:

XDWT =

∫ ∞

−∞
x(t)2−

m
2 ψ(2−mt− n)dt (3.3.4)

where m is the scaling factor and n is the translation factor. Scaling factor m depends

on the width of the mother wavelet and different wavelets have different width. Narrow

wavelets with high frequency are shifted by small steps and work like small data windows
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to analyze high frequency components and wider wavelets with low frequency are shifted by

large steps work like large data windows to analyze the low frequency components of the

signal. The time-frequency analysis of a signal x by using DWT can be calculated by passing

the signal through a series of high pass and low pass filter. First the samples of the signal

x are decomposed simultaneously using a low pass filter of impulse response g and a high

pass filter of impulse response h, which results the convolution of the signal x with the filters

presented bellow:

Y1[n] = (x ∗ g)[n] =
∞∑

k=−∞

x[k]g[n− k] (3.3.5)

Y2[n] = (x ∗ h)[n] =
∞∑

k=−∞

x[k]h[n− k] (3.3.6)

where n is an integer. The block diagram of the filter analysis is shown in Fig. 6.

Figure 6: Block diagram of the filter analysis

After the process of filtering, as half of the frequencies have been removed, half of the

total samples can be rejected according to the Nyquist’s rule. So the signal is sub-sampled

by 2 to discard half of the total samples from the signal. This process is called one level
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signal decomposition and mathematically can be expressed as:

Ylow[n] =
∞∑

k=−∞

x[k]g[2n− k] (3.3.7)

Yhigh[n] =
∞∑

k=−∞

x[k]h[2n− k] (3.3.8)

where Ylow[n] and Yhigh[n] are the outputs of the low pass and high pass filters respectively

after down-sampled by 2. As now only the half number of samples of the total samples are

representing the entire signal so the time resolution is halved. However since total frequency

spectrum now covers only half of the previous frequency spectrum, it doubles the frequency

resolution. So multi-resolution analysis is achieved. The output from high pass and low

pass filters are called the detailed and approximate coefficients respectively. These two filter

are dependent to each other and called quadrature mirror filters. Choosing the best mother

wavelet is also an important task of the filtering process as the detailed coefficients of the

filters correlate to the coefficients of the mother wavelet. Decomposition technique can be

repeated if further decomposition is required to get desired frequency spectrum from the

input signal. At each level of decomposition, the signal will split into low and high frequency

band, the time resolution will be halved and the frequency resolution will be doubled of the

previous one by the filtering and sub-sampling process [7, 20,44].

Figure 7: A DWT model of 3 levels decomposition
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Fig. 7 depicts this process as three level filter bank. The detail and approximate coef-

ficients of the decomposed signal enables to reconstruct a new signal. This reconstruction

process is called Inverse Discrete Wavelet Transform (IDWT) which is just opposite to the

DWT. The signals at each level are up-sampled by 2 and then passed through the high-pass

and low-pass filter respectively before adding with each other to reconstruct a new signal.



21

CHAPTER 4

SEGMENTATION OF PCG SIGNALS USING SHANNON ENERGY

ENVELOPE

4.1 Segmentation of PCG signals

A cardiac cycle or a complete heartbeat usually consists of the first heart sound (S1), the

systolic interval, the second heart sound (S2), and the diastolic intervals. These parameters

are very important to determine the cardiac condition of a person. Segmentation of the PCG

signal facilitates to get the exact position and duration of the heart sounds, systole and di-

astole intervals. But the presence of murmurs which produced by the turbulent blood flow is

the major reason for the false detection of the heart sounds. So the elimination of murmur is

necessary before segmentation. After discarding the murmurs, different segmentation algo-

rithms can be used to segment PCG signals.There are many PCG segmentation algorithms

available in the scientific literature. Most of the segmentation algorithms use ECG signal as

reference to identify the components of heart sound. But it is not convenient because of the

additional hardware requirements and also it is very expensive. In our research we used a

segmentation algorithm based on the normalized average Shannon energy. This algorithm

does not need any reference signal. Furthermore, this technique is more efficient and compu-

tationally less expensive compared to other segmentation algorithms. After discarding the

murmurs, Shannon energy envelope is used to detect the boundaries of each heart sound and

zero crossing algorithm is used to detect the point where the signal crosses the zero, thus

the location and duration of the heart sound can be attained. Then we locate the first heart
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sound, the systolic interval, the second heart sound and diastolic interval. Then the peaks

of the heart sounds are calculated to get their amplitude [5].

4.1.1 Shannon Energy Envelope

Different methods are available in the scientific literature to detect the envelope of the signal

like absolute value of the signal, the energy (square), Shannon entropy and Shannon energy.

The absolute value gives same weight to all the components thus it’s difficult to separate

the high amplitude signal from the low amplitude signals using this procedure. The energy

(square) gives weight to high amplitude rather than low amplitude signals. Shannon entropy

gives more weight to low intensity rather than high intensity signals. But Shannon energy

gives better result compared to all other methods by giving emphasize on the signal having

medium intensity and reduces the impact of low amplitude signal more than the signals

having high amplitude. Thus it’s possible to detect the difference of the envelope intensity

of the high and low amplitude sounds. Because of these beneficial effect Shannon energy is

used in our research to accurately identify boundaries of all the heart sounds (S1, S2, S3, S4)

and to discard the low frequency noise from the signal [32,33]. A threshold is set to discard

the effect of the noise and the low amplitude signal. The mathematical expression of this

procedure is given below:

Shannon Energy : E = −x2logx2 (4.1.1)

where is x is the denoised signal.The average Shannon energy is calculated in 0.02 second

continuous segments of the whole PCG signal with segment overlapping of 0.01 seconds. The
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average Shannon energy can be represented as:

Es = − 1

N

N∑
i=1

x2(i) ∗ logx2(i) (4.1.2)

where x(i) is the denoised PCG signal. N is the signal length or the number of coefficients

and i is an integer. At last the normalized average Shannon energy is calculated to get the

Shannon energy envelop of the signal. Mathematically normalized average Shannon energy

can be written as:

En =
N∑
i=1

(
Es(i)−M(Es(i))

max(|Es(i)|)
) (4.1.3)

where N is the signal length or the number of coefficients and i is an integer. En is the

normalized average Shannon energy. Es(i) is the average Shannon energy. M(Es(i)) is

the mean value of Es(i) and max(|Es(i)|) is the maximum absolute value among all the

coefficients of Es(i). After calculating the boundary of the heart sounds accurately, a zero

crossing algorithm is implemented to know the starting and stopping point of the signal by

calculating the points where the sign of the boundaries changes from positive to negative or

vice versa.

4.1.2 Peak detection

By detecting the peak of each heart sound the amplitude of the heart sounds can be com-

puted. For peak detection, the package peakUtils in python is used which provides different

utilities to detect the peak of an 1D signal [34]. This function detects the local maxima

within a fixed distance and by using a threshold. A local maxima can be considered as a

peak if it’s distance to the nearest peak and it’s amplitude is greater than the predefined dis-



24

tance and threshold respectively. Though this technique is used to detect the peak of all the

heart sounds in the database, distinguishing S1 from S2 is not possible with this technique.

S1 and S2 is differentiated based on the fact that distance from S1 to S2 (Systole interval) is

smaller than the distance from S2 to S1 (Diastole interval). So a peak is considered to be S1

if it’s distance to it’s next peak is smaller than the distance to it’s previous peak. Similarly

a peak is considered to be S2 if it’s distance to it’s next peak is larger than the distance to

it’s previous peak. In this way if we can detect the location of S1 and S2, based on their

location we can get the systole and diastole interval.
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CHAPTER 5

AN OVERVIEW OF ML AND DL APPROACHES

Artificial intelligence (AI) refers to the intelligence of machines to perform any difficult

task without the help of any human. AI enables machines to think. Without any human

intervention the machine will be able to take his own decision using AI. With the help of

AI, machines are capable of applying intelligence to a large amount of data and can derive

meaningful results. ML is a subset of AI which provides us statistical tools to explore the

data. ML algorithms are usually used to discover the similarity, patterns, and difference in

the data. Manual analysis of these huge amounts of data is very difficult and cumbersome

task, which ML algorithms can easily perform using it’s automatic learning process. In recent

days, DL has gained huge interest due to it’s supremacy in terms of accuracy when trained

with large amount of data. ML algorithms underperfom in presence huge amount of data.

DL can solve this problem through it’s hidden layer architecture. DL algorithms mimic the

function of human brain. In traditional ML architectures, important features need to be

identified by an domain expert in order to reduce the complexity of the data and increase

the accuracy. The main advantage of DL architectures is the capability to learn high-level

features from data when it is in large amounts and to eliminate the need of domain expertise

to extract important features [35, 36]. Fig. 8 and 9 show classification process of ML and

DL architectures.
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Figure 8: The classification process of ML algorithms

Figure 9: The classification process of DL algorithms
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5.1 ML algorithms

ML algorithms are mainly grouped into three categories. They are supervised, semi-supervised,

and reinforcement learning. Supervised learning algorithms are the most common ML algo-

rithms which depends on the labels of the sample input. Based on the input data and labels

it provides output. In biomedical signal processing supervised ML algorithms are widely

used for different classification. Most commonly used classical ML algorithms are NB, KNN,

LR, DT, AB, RF, and SVM [35, 36]. The concepts behind the most commonly used ML

algorithms are discussed briefly.

• LR: LR is a ML algorithm which usually uses a logistic function to model a binary

dependent variable and to overcome the limitation of the linear regression. In linear

regression misclassifications happen due to the independence between the features and

the outcome (dependent variable) and it can be any number. In LR, the log-odds of

the probability of an event is a linear combination of independent variables and the

outcome (dependent variable) has only a limited number of possible values basically

either ’0’ or ’1’. The outcomes of LR are obtained by utilizing the non-linear function

which is called the sigmoid function.

• NB: NB is a powerful ML algorithm which is based on the principle of Bayes theo-

rem with an assumption of independence among predictors. NB Classifier works on

the assumption that attributes are conditionally independent given the class variable.

Based on the prior information of conditions related with the event, it is possible to

find the probability of occurrence of an event using NB classifier. One of the main
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advantages of this approach is that it can classify efficiently using only a small amount

of training data. The conditional probability A given B calculated by Bayes theorem

is given below:

P (A|B) =
P (B|A) ∗ P (A)

P (B)
(5.1.1)

where, P (A|B) is the posterior probability, P (B|A) is the Likelihood, P (A) is the Prior

probability, P (B) is the marginal probability. Thus, if the class variable y is dependent

on features x1, x2, x3, ....xn, based on the conditional probability that the probability

of y occurring given the condition x1, x2, x3, ....xn can be represented as:

P (y|x1, x2, x3, ....xn) =
P (x1, x2, x3, ....xn|y) ∗ P (y)

P (x1, x2, x3, ....xn)
(5.1.2)

Using the above function, we can obtain the class, given the predictors.

• KNN: KNN is a ML algorithm which calculates the distance between two data points

and based on the distance it classifies them in different groups. There are differ-

ent methods to calculate the distance between two data points. Euclidean distance,

Manhattan distance, Hamming distance, Minkowski distance, cosine similarity are dif-

ferent distances measurement techniques which can be used for calculating the dis-

tance between the points. Among all of these methods, the Euclidean distance is the

most common and popular distance measurement method. This method calculates

the straight-line distance between two points. According to the Euclidean distance

formula, the distance between two points (x, y) and (a, b) is given by:

dist((x, y), (a, b)) =
√

(x− a)2 + (y − b)2 (5.1.3)
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With this very simple implementation and low dimension data, KNN performs well

to classify data. The performance of this algorithm becomes limited when the data

dimension is increased.

• DT: DT is another supervised ML algorithm where a training model can predict

the class or the target variable by learning decision rules from prior data. In this

algorithm a DT is constructed by continuously splitting the data. DT is comprised

of leaves and nodes where leaves are the results of each decision and nodes are the

decision processes. In DT, the calculation usually starts from the root of tree where

the values of root attribute are compared with the record’s attribute. The best outcome

which classifies the training data is chosen as the leaf. This process is continuous and

recursive until tree fits best for the training data. Each leaf is decided by calculating the

distance in entropies of the parent node and the children nodes. This process is know

as information gain which tries to estimate the entropy of each node. Entropy measures

the uncertainty or randomness in the data. Entropy can be written mathematically

by:

H(S) = −
∑
iϵX

(P (i) ∗ log2P (i)) (5.1.4)

where H(s) is the Shannon entropy over a finite set S. P (i) is the probability of an

outcome i. The information gain can be calculated using the formula given below:

IG(S, U) = H(S)−
n∑

i=0

(p(i) ∗H(i)) (5.1.5)

where H(S) is the entropy of the entire set. P(i) is the probability of event i to occur.

The value of the IG differs from 0 to 1. If the feature doesn’t have any significance
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than the IG should be 0 and if the feature has very high significance then IG will be 1.

• AB: AB is an ensemble ML classifier which helps to combine multiple weak classifiers

into a single strong classifier. This is a boosting process where the performance of

ML classifier can be boosted by iteratively to retrain the algorithm based on accuracy

of previous training. At every iteration, a weight is given to every trained classifier

based on the accuracy achieved by the classifier. AB works by putting more weight

on the items which were not correctly classified and less weight on the items which

were classified accurately. The items which have higher weight usually have higher

probability in next classifier. A positive or zero weight is assigned to any classifier

which has accuracy of 50% or more. The more accurate the classifier, the larger the

weight. Similarly, a negative weight is assigned to any classifier which has accuracy

of less than 50%. The accuracy of the classifier can be increased by increasing the

number of iterations.

• RF: RF algorithm is considered as the best ML algorithm for the classification. It is a

supervised learning algorithm where it builds the forest using ensemble of decision trees

(DT). DTs are usually trained with the ensemble learning method like bagging where

the overall result can be increased by the combination of learning models. This bagging

method also reduces the overfitting of data while making these DTs. Initially, multiple

DTs are created which are then merged to get the correct classification. Accuracy of

the algorithm is directly proportional to the number of DTs. In other words, higher

the number of DTs, higher the classification accuracy. RF usually gives very good

result without using optimization technique or hyper parameter tuning. RF can be
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used for both regression and classification tasks. The main limitation of RF is that it

becomes slow and ineffective in real time when it produces a large number of DTs in

the practical scenario.

• SVM: SVM is a ML algorithm which is used for classification and regression problems.

The objective of the SVM is to find a hyper-plane with the support vectors that

classifies the data points. Hyper-planes are decision boundaries to classify the data

points. To separate the two classes of data points, it is possible to choose different

hyper-planes. In SVM, the main objective is to find a plane that has the maximum

distance between data points of both classes. Data points can be assigned to different

classes if they fall on either side of the hyper-plane. The number of input features

controls the dimension of the hyper-plane. If the number of input features is 2, then

the hyper-plane is just a line. If the number of input features is 3, then the hyper-plane

becomes a two-dimensional plane. When the number of input features exceeds 3, it

becomes difficult to create the hyper-plane. SVM works very well when there is a clear

margin of separation between classes. The performance of the SVM becomes limited

where the number of features for each data point exceeds the number of training data

samples and also if the data set is too large.

5.2 DL algorithms

DL algorithms use layers of neural-network to convert raw input data to higher-level infor-

mation that increase the classification accuracy. There are different kinds of DL algorithms

such as CNN, Deep Neural Network (DNN) Recurrent Neural Network (RNN), Long Short
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Term Memory (LSTM) and so on. In our research we used DNN and CNN to classify PCG

and ECG signals and got very good accuracy compared to other ML algorithms [35,36]. The

concepts behind the DNN and CNN are discussed below:

• DNN: A DNN is the network of artificial neurons with multiple hidden layers between

input and output layers. These neurons usually create a complex network of different

layers. Neurons from one layer pass signals to other neurons in the next layer. Fig. 10

represents a DNN of N hidden layers.

Figure 10: A DNN architecture with N hidden layers

From Fig. 10, we can see that the input data is fed into the neurons of the input layer.

The output of the input layer works as input to the first hidden layer. This process will

continue until the final layer. The output of the final layer will give the final prediction.

Each layer can have one or more neurons and each neuron uses a threshold value in

the form of an activation function to pass the signal to the next connected neuron.
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Two neurons of consecutive layers are connected with a parameter called weight. The

function of the weight is to transform the input data within the hidden layers. While

training the model, DNN uses a backpropagation algorithm to provide feedback to

the network based on the output. The goal of the backpropagation algorithm is to

update each of the weights several times step-by-step, thereby minimizing the error

and gradually increase the overall accuracy [39]. After nth iteration the error at the

output of neuron p can be expressed as:

ep(n) = dp(n)− ap(n) (5.2.1)

where dp(n) and ap(n) are the desired and actual output of neuron p, respectively. The

instantaneous error energy at the output layer is defined as:

E(n) =
1

N

N∑
p=1

e2p(n) (5.2.2)

The above error can be reduced by using gradient descent method. The gradient

descent is the widely used optimization method to update the weights by calculating

the derivative of the error with respect to the weights of the network. This process can

be expressed as:

∆wp,j(n) = −η ∂E(n)

∂wp,j(n)
(5.2.3)

where η is known as the learning rate. Learning rate is a hyper-parameter, which

determines the adjustment of the weights with respect to the loss gradient. The range

of the learning rate is between 0 to 1. This process of updating the weights will

continue until the loss function is minimum. The final updated value of ∆wp,j(n) can
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be expressed as:

∆wp,j(n+ 1) = wp,j(n) + ∆wp,j(n) (5.2.4)

Thus, by minimizing the error we can find the optimal values for the weights of each

neuron that will give the best model performance.

• CNN: A CNN is a DL algorithm which uses a series of convolutions with different

filters to automatically learn important features directly from the raw data. A CNN

architecture usually composed of 3 layers. These layers are convolution layer, pooling

layer, and fully connected layer. Convolution can be 1D convolution, 2D convolution,

or 3D convolution. In our research we used 1D convolution. Convolution layer contains

filters that passes over the data to capture the optimal features. If the the dimension

of the feature is high it can be reduced by using pooling function. Pooling can be min,

max, or average pooling. Finally, the pooling features are passed into a fully connected

layer for the final classification. For a 1-D signal x(n) = [x(1), x(2), x(3)......., x(N)],

if it has K number of classes to classify and N is the signal length then initially a 1D

Convolution method is used to extract the optimal features from the raw input data

by applying a series of 1-D convolutions with different 1-D kernels. This process is

achieved by sliding a kernel h(n) with length of W samples along the input data. In

this way, the ith output yi(n) from the Conv1D layer can be expressed by:

yi(n) =
W−1∑
k=0

hi(k)x(n− k) (5.2.5)

where i = 1, ....., L and L is the number of filters. By adding a pooling layer to the
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output of the convolutional layer, it is possible to extract only the effective features from

the feature map. Different kinds pooling layers can be used based on the application.

These significant features are then fed into the fully connected layer which concatenates

its inputs data into a long single features vector. For example, if we use L kernels in

the CNN model, then we have L different outputs from the Conv1D and Pooling layers.

Consequently, the output vector V of the FC layer can be represented as follows:

V = [V1(n), V2(n), V3(n), ...., VL(n)] (5.2.6)

A non linear activation function called Rectified Linear Unit (ReLu) is applied to the

output of the convolutional and Pooling layers to introduce non-linearity. To obtain

the estimated probability for each class, Sigmoid or Softmax activation function is

used at the final output of the fully connected layer. If the classification is binary then

Sigmoid activation function is used. If it is a multi-class classification then Softmax

activation should be used. Fig. 11 represents a simple CNN architecture.

Figure 11: A CNN architecture
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5.3 DHL algorithms

DHL combines the advantages of traditional ML and DL techniques. Though DL models

usually outperform ML models in classifying PCG and ECG signals, optimal classification

can be achieved if we combine these two architectures to build a single classification model.

A CNN is used along with seven traditional ML methods including LR, RF, KNN, DT,

NB, SVM, and AB to build hybrid PCG and ECG classification models. DHL models are

less computationally expensive and have less time complexity compared to traditional DL

algorithms. The final classification layer of a DL model usually results in overfitting when

the model is fed with unstructured or less data. This overfitting problem increases the time

and computational complexity of traditional DL models, which is not present in traditional

ML algorithms. In DHL models, fully connected neural networks in the DL model are fol-

lowed by the ML models. Thus, DHL models are faster and do not require additional time

for processing compared to traditional standalone DL models. In addition, DHL models

remove the need for feature engineering techniques on which all traditional ML algorithms

are dependent. Fig. 12 represents a DHL architecture of N hidden layers. Alabandi [36]

implemented DHL on four different data sets such as small human activity dataset, large hu-

man activity dataset, small emotion dataset, and the dataset for emotion analysis using eeg,

physiological and video signals (DEAP). Their experimental results showed that their hybrid

approach outperformed DL and traditional ML algorithms when those are used separately.

Bhattacharya [37] also proposed a fusion approach by combining ML with DL to diagnose

various diseases from large chest x-ray image dataset. He also showed, DHL networks per-

formed better than standalone DNN and ML models with respect to precision, recall, and
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accuracy. Sengupta et al. [38] also proposed DHL pipelines for accurate diagnosis of ovarian

cancer based on nuclear morphology image dataset and achieved 100% testing accuracy.

Figure 12: A DHL architecture

5.4 Performance evaluation

Classification accuracy of any learning model can be evaluated by investigating the confusion

matrix. Several parameters such as sensitivity/recall, specificity, and precision are used to

analyze the prediction accuracy of any classification models. The sensitivity/recall indicates

the true positive rate and measures the proportion of the correctly identified actual positives.

The specificity indicates the true negative rate and measures the proportion of the correctly

identified actual negatives. Out of predictive positive, how many of them are actual positive

is defined by the precision metric. All of these parameters can be calculated by using the

confusion matrix. Another important metric used to evaluate the classification model is

known as accuracy, which is the number of correctly predicted data points out of all the

data points [5, 6, 12, 35, 36]. Sensitivity, specificity, and accuracy can be calculated by using
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these formulas:

Sensitivity/Recall =
TP

TP + FN
(5.4.1)

Specificity =
TN

FP + TN
(5.4.2)

Precision =
TP

TP + FP
(5.4.3)

Accuracy =
TP + TN

TP + TN + FP + FN
(5.4.4)

where TP (True Positive) is the number of sick people correctly identified as sick, TN

(True Negative) is the number of healthy people correctly identified as healthy, FP (False

Positive) is the number of healthy people incorrectly identified as sick, and FN (False Neg-

ative) is the number of sick people incorrectly identified as healthy.

5.5 Feature extraction

Feature extraction is a process of deriving a compact and useful representation of the in-

formation from any signal. Feature extraction considered to be one of the main steps of

PCG and ECG classification systems. The performance of classifiers highly depend on the

extracting features and the performance will decrease if the features are not selected prop-

erly. PCG and ECG signals are redundant in nature and highly non-stationary signals. So,

we need to extract the required and meaningful representation from the signal to train the

model. In the feature extraction process the dimension of the signal should be reduced to

a lower dimension that contains useful information to differentiate different signals. For
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the classification of ECG signals, we used the ECG beat as the input to the classification

model. We did not need to extract any feature from each ECG beat manually, as our deep

intelligent model used different layers of CNN and more computation to identify important

features from each heart beat to classify different heartbeats. The heart sound signals in

the database are redundant in nature and contain lots of noise and unnecessary information.

Therefore, we need to extract the necessary and meaningful features from PCG signals to

train the model. Mel-scaled power spectrogram and MFCC are used in our research to ex-

tract important and meaningful features from PCG signals. The features of the Mel-scaled

power spectrogram and the MFCC are biologically inspired and resemble the resolution of

the human auditory system, which (features) are proven to be more efficient to discriminate

between two different sound signals [72].

5.5.1 Mel-scaled Power Spectrogram

Time vs. Frequency representation of a signal is called the spectrogram of the signal. A

spectrogram visually represents the change of the frequency of a signal with respect to time,

which helps the model to recognize the sound accurately [72]. The Mel-scale aims to mimic

the non-linear human ear perception of sound, by being more distinctive at lower frequencies

and less distinctive at higher frequencies. The Mel-scaled filters are non-uniformly placed

in the frequency axis to simulate human ear properties. Thus, there are more filters in the

low-frequency region and fewer filters in the high-frequency region. A Mel-scaled power

spectrogram of a signal can be found by applying Mel-scaled filters to the power spectrum

of a signal and the neural network works much better if the Mel-scaled power spectrogram is

used instead of the spectrogram [72]. First, the signal is divided equally into small sections
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of short duration (20 to 30 ms) known as frames. Then, each frame is multiplied by the

Hamming window. The Hamming window can be expressed as:

w[n] = 0.54− 0.46cos(
2πn

N − 1
) (5.5.1)

where 0 ≤ n ≤ N −1, and N is the window length. Then, the Discrete Fourier transform

(DFT) is applied to convert the signal from the time domain to the frequency domain. The

Mel-scale filter-banks are computed as follows:

m = 2595 ln(
f

700
+ 1) (5.5.2)

where f is the frequency in the linear scale, and m is the resulting frequency in Mel-scale.

Now, the Mel-scaled power spectrogram of the signal is obtained by applying Mel-scale filter-

banks to the power spectrum of the signal and the log of the energy output of each filter.

This can be expressed as:

S[m] = log(
N−1∑
k=0

|x[k]|2Hm[k]) (5.5.3)

where Hm[k] is the filter-banks, and m is the number of the filter-bank. The process of

obtaining the Mel-scaled power spectrogram of a signal is shown in Fig. 13.

Figure 13: Feature extraction process by using Mel-scaled power spectrogram and MFCC
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Fig. 14 shows the Mel-scaled power spectrogram of a normal signal (without murmurs)

and an abnormal signal (with murmurs), respectively.

Figure 14: a) Mel-scaled power spectrogram of a normal PCG signal b) Mel-scaled power
spectrogram of a PCG signal with murmurs

5.5.2 MFCC

MFCC is the compressed representation of the Mel-scaled power spectrogram, which can be

found by taking the Discrete Cosine Transform (DCT) of a log power spectrum on a nonlinear

Mel-scale of frequency [72]. The process of obtaining the Mel-scaled power spectrogram of a

signal is shown in Fig. 15. The DCT of the spectrum to obtain the MFCC can be represented

as:

c[n] =
M−1∑
m=0

S[m] cos(
πn

M
(m− 1

2
)), n = 0, 1, 2, ....,M (5.5.4)

where M is the total number of filter banks. Fig. 15 shows the MFCC of a normal signal

(without murmurs) and an abnormal signal (with murmurs), respectively.
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Figure 15: a) MFCC of a normal PCG signal b) MFCC of a PCG signal with murmurs

5.6 Hyper parameters tuning and resampling techniques

Hyper parameters play a very pivotal role to design ML and DL models. They are the

variables which define the basic structure of the model. The training processes of the ML

and DL models also depend on hyper parameters. In our research, we used hyper parameters

optimization technique to tune different parameters for better performance. We used grid

search method to tune the following parameters for the optimized final result:

• Hidden Layers: Hidden layers stay between input and output layers. We tuned

the number of hidden layers with regularization technique to increase the accuracy by

reducing underfitting.

• Dropout: It is a regularization technique which we tuned to increase validation ac-

curacy by avoiding overfitting.

• Weight Initialization and Activation Function: Weight initialization and activa-

tion function help to prevent activation outputs from exploding or vanishing gradients

during forward propagation and back propagation.Thus it will take long time to con-

verge. We tuned different weight initialization techniques and activation functions to



43

avoid these problems.

• Learning Rate: The learning rate defines the step size by which a network update

its parameter to minimize the loss function. A higher learning rate may increase the

speed but network won’t converge. On the other hand, a lower learning rate may cause

under fitting. So, choosing the optimal learning rate is critical to design a model. We

tuned the learning rate to increase the accuracy.

• Number of Neurons and Epochs: There is no technique yet to determine the

number of neurons and epochs which will give the best result. The preferred way is

to repeat the process by changing the number of neurons and epochs. We tuned the

number of neurons and number of epochs to get our desired result.

• Batch Size: Batch size defines the number of training samples sent to the model after

which parameters get updated. We also checked with different batch sizes to get the

optimized result.

The data set we used in our research is not balanced. The imbalance ratio of normal

signal to abnormal signal is 1:4. We needed equal number of samples for each class to increase

the classification accuracy as ML and DL algorithms fail if the data set is not balanced. So,

beside hyper parameters tuning, we also used over sampling and under sampling techniques

to make the data set balanced.
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CHAPTER 6

RESULTS AND ANALYSIS

In this section, we verified the performance of the proposed compression, denoising, segmen-

tation, and classification algorithms, respectively. An extensive simulation was carried out

using the Python programming language to implement these algorithms.

6.1 PCG dataset

In this paper, the well-known University of Michigan Heart Sound and Murmur Library

[73] and the 2016 PhysioNet Computing in Cardiology Challenge database [59] were used

for evaluating the performance of different algorithms. There are 23 PCG signals in the

University of Michigan Heart Sound and Murmur Library database including 5 normal and

18 pathological. The 2016 PhysioNet Computing in Cardiology Challenge database consists

of 6 datasets (A through F) containing a total of 3,240 unique heart sound recordings. The

recordings from these 2 databases were collected from both healthy people and patients

with confirmed cardiac diseases. A total of 123 unique PCG signals were used from these

2 databases to validate our segmentation algorithm. For the classification, we used all the

3,240 PCG signals available in the 2016 PhysioNet Computing in Cardiology Challenge

database. These 2 databases are not balanced. The imbalance ratio of normal heart sounds

to abnormal heart sounds is 1:4.
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6.2 ECG dataset

we used the labeled MIT- BIH Arrhythmia dataset [74]. This dataset has been widely used to

classify different cardiac arrhythmias. This dataset consists of 48 ECG recordings collected

from 47 different patients of Beth Israel Hospital (BIH). Each recording is a minimum of

30 minutes long and sampled at 360 Hz. Each heartbeat was annotated by at least two

cardiovascular specialists. Annotations in this dataset were used to create 1,09,449 heart

beats. This database is not balanced. The imbalance ratio of normal beat to other beat

categories is 1:4. Table 2 shows the number of beats in each class. Fig. 16 shows 1 beat

ECG of every category.

Table 2: Breakdown of the heartbeats of five different classes

Type Number of beats

Normal 90592
Atrial premature 2781
Premature ventricular contraction 7235
Fusion of ventricular 802
Fusion of paced/unclassifiable 8039
Total 109449

Figure 16: 1 beat ECG of total five categories
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6.3 Results of the compression and denoising of PCG signals

The main aim of an efficient compression process is to remove all the redundant information

from the signal without losing any data containing pathological information [45]. It can be

accomplished by decreasing the significant coefficients, thus it will save the memory, less

bandwidth will be required, and the transmission will be faster [44,46,47]. Furthermore, the

presence of different kinds of noise and murmurs make it very difficult to extract the correct

diagnostic information and features from PCG signals. In some cases it is almost impossible

to segment PCG signals because of the noise. Therefore, it is necessary to eliminate noise

and isolate murmurs from PCG signals before segmentation. These isolated murmurs can

be picked up for further processing. Our proposed compression algorithm consists of decom-

posing the acquired signal first using DWT, then replacing the small wavelet coefficients by

using an adaptive multilevel thresholding method based on the energy compaction property

of the wavelet coefficients. Run-length encoding (RLE) is used to encode and to reduce

the physical size of the repeating characters in the sender end. This compressed, denoised

and encoded signal will be transferred to the physician through the wireless network. At

the receiver end this compressed signal will be decoded by Run-length decoding (RLD) and

then the signal will be reconstructed by using IDWT for proper cardiac diagnosis [47, 48].

Thus maximal redundant data retrenchment and denoising is possible by preserving all the

pathological information [5, 7, 44].



47

6.3.1 DWT of PCG signals

PCG signals are decomposed with 6 layers multi-scale wavelet transform. The optimized

compression of a signal depends on the decomposition level which is related to the sampling

frequency of the signal [29]. According to the sampling theorem, the highest frequency of

a signal is half of its sampling frequency. So, the highest frequency of all the PCG signals

in the database is 22050 Hz. Now the signals are decomposed in such a way that their

approximation band (lowest resolution band) contain most of the information as well as the

energy. Fig. 17 shows the frequency spectrum of a normal PCG signal , which shows most

of the information of the signal are within 0−250 Hz range. So, the signal is decomposed up

to 6th level to cover 0− 250 Hz by approximation band. Each sub-band and their frequency

spectrum are shown in the Table 3.

Figure 17: Frequency spectrum of a normal PCG signal

The selection of the best mother wavelet is also very crucial for the perfect reconstruction

of the compressed signal [49, 50]. To evaluate the performance of the best mother wavelet

an extensive simulation is carried out among 20 wavelets from Daubechies family, 5 wavelets
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Table 3: Different levels of PCG signals and their corresponding coefficients and frequency
spectrum

Levels Frequency Range (Hz) Coefficients Sub-Bands

6 0 to 344.531 3135 App. Band (A6)
6 344.531 to 689.025 3135 Detail Band (D6)
5 689.0625 to 1378.125 6235 Detail Band (D5)
4 1378.125 to 2756.25 12435 Detail Band (D4)
3 2756.25 to 5512.5 24836 Detail Band (D3)
2 5512.5 to 11025 49638 Detail Band (D2)
1 11025 to 22050 99242 Detail Band (D1)

from Coiflets family and 15 wavelets from both Biorthogonal and Reverse-biorthogonal fam-

ilies (total 55 orthogonal wavelets). Among all of these wavelets db18 wavelet was chosen

from the Daubechies family as it outperformed all other wavelets by giving the smallest value

of PRD with maximum energy in the approximation band. The performances of 14 different

mother wavelets are shown in Table 4, which shows that best result was achieved with db18

as it gave very low PRD and highest energy in the approximation band compared to the

other wavelets.

Table 4: Performance Analysis of 14 different wavelets to reconstruct PCG signals

Wavelets PRD (%) App. Band
Energy (%)

Wavelets PRD (%) App. Band
Energy (%)

db1 10.5011 95.6588 bior2.2 0.5949 99.8650
db3 0.4303 99.9243 bior3.7 0.1003 99.9880
db11 0.0676 99.9935 bior4.4 0.1458 99.9813
db18 0.0613 99.9964 rbio2.2 5.0183 98.8315
db20 0.0651 99.9944 rbio3.7 0.2036 99.9423
coif1 1.5591 99.6369 rbio4.4 0.3055 99.9389
coif3 0.0959 99.9845 rbio6.8 0.0924 99.9829

6.3.2 Threshold of the DWT coefficients

Among all the DWT coefficients of different sub-bands, only a small number of coefficients

hold significant diagnostic information while the others hold negligible details [51]. So, the

goal of the thresholding is to extract those all important coefficients by ignoring others to
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discard the redundant information from the signal. Though a high data shrinkage is possible

by using a large threshold value, it will produce a low quality reconstructed signal. Similarly,

a small threshold will give a high quality reconstructed signal but it will give very low data

compression [53]. So, choosing an optimal threshold value is the prerequisite for an efficient

data compression. In our research, an adaptive multilevel thresholding is used based on

the energy of the coefficients [23, 52, 54, 55]. From Table 3, we can see that approximation

sub-band has the lowest frequency spectrum but it contains most of the information as well

as the energy of the signal. On the other hand detail sub-bands contain less information as

well as less energy with low amplitude.

The energy packing efficiency (EPE) is a percentage quantity which is known as the ratio

of the energy of the coefficients of a fixed sub-band and the energy of all the coefficients of

the signal [45,54]. The mathematical expression of EPE is given below:

EPE =

∑ki
n=1[c(n)]

2∑k
n=1[c(n)]

2
× 100% (6.3.1)

where n is an integer, ki is the number of DWT coefficients in ith sub-band and k is the

number of all the DWT coefficients. The contribution of the energy of each sub-band with

the number of coefficients is shown in Table 5. Different signals in different sub-bands are

shown in Fig. 18.

Table 5: EPE of different sub-bands

Sub-bands Energy Value of EPE (%) Coefficients

App. Band (A6) 6259.3340 99.9964 3135
Detail Band (D6) 0.2257 3.605× 10−05 3135
Detail Band (D5) 0.0024 3.689× 10−07 6235
Detail Band (D4) 1.7669× 10−05 2.823× 10−09 12435
Detail Band (D3) 5.9396× 10−06 9.489× 10−10 24836
Detail Band (D2) 9.6516× 10−06 1.542× 10−09 49638
Detail Band (D1) 1.5877× 10−05 2.5365× 10−09 99242
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Figure 18: Different levels and their corresponding signals

The total energy of the signal is 6259.5620 with 198656 coefficients. Table 5 shows that

about 99.9964% of the energy is stored in the 3135 coefficients of the approximation band

while the other 195521 detail coefficients contain only the 0.0032% of the total energy of the

signal. But we can’t discard all the detail coefficients as it will cause signal distortion. So,

sub-bands are separated into two groups for thresholding. Group A includes the approxima-

tion and detail band coefficients (A6 and D6) of level 6 and group B consists of the detail

coefficients from level 1 to 5 (D1-D5). The sub-bands under group A are kept unchanged and

the value of the threshold for all the sub-bands under group B is calculated in such a way

that after thresholding, the conserved energy in all the detail sub-bands of group B is α%

of their previous energy level before thresholding. The value of α can be adjusted further

to change the threshold. Then the value of the coefficients below the threshold level are

converted to zero in each sub-band belongs to group B. Thus the number of zero increased

after the thresholding. The number of total coefficients, significant coefficients, and zeros
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before and after the thresholding in the decomposed signal are shown in Table 6.

Table 6: Significant coefficients and zero coefficients before and after thresholding

Total Coefficients Significant Coefficients Zero Coefficients

Before Threshold 198656 197401 1285
After Threshold 198656 6236 192420

From Table 6, it can be observed that after thresholding, the number of significant

coefficients decreased about 96.84%, that means only 3.14% coefficients of the total number

of coefficients are now representing the whole signal without any distortion.

6.3.3 RLE technique to encode signals

In order to take advantage of DWT for signal compression, encoding is necessary. RLE is

used in our research as it is the simplest encoding method and very easy to implement.

RLE method compresses any signal by reducing the size of any type of repeating data

sequence [48,56]. It represents any consecutive runs of the identical value in the data as the

count followed by the value, thus compresses the size. Repeating data values are typically

encoded into two bytes. If a data value is represented by d and it runs n consecutive times

then by using RLE it can be represented as <n d>. Here both count and values are 1 byte

respectively [47,48]. An example of RLE is shown in Fig. 19.

Figure 19: RLE of a signal with repeating characters
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After RLE the total number of coefficients decreased from 198656 to only 6236 that means

the number of coefficients reduced about 96.85%. If we convert this signal to an audio signal,

we will find that the size of the compressed audio signal is only 25048 bytes whereas the

size of the signal before the compression was 396944 bytes. That means the physical size

of the signal decreased by 93.70%. So, it will require less storage to store the signal and

less bandwidth to transfer the signal from sender end to receiver end. Another advantage

of this encoding process is that the signal can be transferred securely by keeping all the

information hidden. Only the receiver can decode the signal. So, secure signal transmission

is also possible with our compression algorithm.

6.3.4 Signal reconstruction

After receiver received the encoded signal it’s information is extracted by using RLD and

IDWT in the receiver end. RLD is just opposite of RLE. RLD decompress the signal (restore

all the zeros) and then the signal is reconstructed using IDWT [7].

6.3.5 Adding noise

Our proposed compression algorithm will not only compress and encrypt PCG signals but

will also denoise PCG signals by removing high frequency noises and murmurs. We also

checked the effectiveness of DWT to denoise PCG signals by adding some noises in PCG

signals. The best way for evaluating the performance of a denoising algorithm is to add noise

with the signal [7, 14]. Fig. 20 represents a normal original PCG signal and the signal after

adding noise.

From the Fig. 20 we can see that white Gaussian noise is added to the signal to evaluate
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Figure 20: a) Original PCG signal b) Noisy PCG signal

the performance of the denoising algorithm. It can be defined as:

XW (n) = X(n) +W (n) (6.3.2)

where X(n) is the original PCG signal, W(n) is the White Gaussian noise and XW (n) is the

noisy PCG signal.

6.3.6 DWT and filtering

The noisy signal is again decomposed with 6 layers multi-scale filter bank for getting the

approximation and the detail sub-bands shown in Table 3. Then this reconstructed signal is

filtered using digital lfilter available in SciPy library in python to discard the low frequency

noise below 344.531 Hz [57]. The choice of mother wavelet is also very important for de-

noising, as a better signal to noise ratio (SNR) can be achieved by using the wavelet which

resembles the signal most and has high oscillation [29,58]. A total of 55 orthogonal wavelets
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were tested and bior4.4 wavelet from Bi-orthogonal family was selected as it outperformed

all other wavelets. The performance of 14 different mother wavelets for denoising the PCG

signal is shown in Table 7.

Table 7: Performance analysis of 14 different wavelets to denoise PCG signals

Wavelet SNR (db) Wavelet SNR (db)

db1 15.79 bior2.2 21.12
db3 22.22 bior3.7 21.90
db11 20.10 bior4.4 22.87
db18 15.68 rbio2.2 7.85
db20 14.66 rbio2.2 7.85
coif1 17.30 rbio3.7 21.62
coif3 21.40 rbio6.8 21.37

6.3.7 Simulation result

The compression algorithm is applied to all of the signals available in the database and both

high compression and SNR are achieved by maintaining the signal fidelity. Fig. 21 shows

the original and compressed form of a PCG signal. Fig. 22 represents a noisy PCG signal

and that PCG signal after removing noise.

Figure 21: a) Original PCG signal b) Compressed PCG signal
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Figure 22: a) Noisy PCG signal b) Denoised PCG signal

The values of CR, PC, PRD, SNR before denoising and SNR after denoising of different

recordings are presented in Table 8.

Table 8: The values of CR, PC, PRD and SNR of different PCG records

Records CR PC (%) PRD (%) SNR Before
Denoising

SNR After
Denoising

1 15.80 93.66 0.038 1.95 19.40
2 15.86 93.68 0.075 3.94 21.17
3 15.86 93.68 0.084 4.25 21.88
4 15.86 93.68 0.077 3.00 20.37
5 16.02 93.76 0.040 2.05 19.73
6 15.86 93.68 0.091 3.53 14.84
7 15.86 93.68 1.115 3.56 15.01
8 15.86 93.68 0.495 4.42 20.01
9 15.86 93.68 0.747 4.93 16.87
10 15.86 93.68 0.310 3.00 20.42
11 15.86 93.68 0.677 3.17 18.55
12 15.86 93.68 0.825 3.41 16.00
13 15.79 93.66 0.434 0.92 18.77
14 15.87 93.69 0.061 4.99 22.87
15 15.85 93.68 0.154 1.73 18.5
16 15.85 93.68 0.161 1.27 19.03
17 15.85 93.68 0.602 1.82 17.50
18 15.85 93.68 0.061 4.99 12.98
19 15.85 93.68 0.071 4.29 21.87
20 15.85 93.68 0.066 3.97 21.90
21 15.80 93.66 0.605 3.48 20.90
22 15.85 93.68 0.133 4.65 20.83
23 15.80 93.66 0.665 3.38 20.53

From the above figures (Fig. 21 and 22) and Table 8, we can see that the signals are

compressed about 93.68% with an average small PRD of< 0.50% and also all the pathological

information is preserved in the signal. Moreover, a high SNR can also be achieved by using
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our proposed compression algorithm.

6.3.8 Comparison with other PCG compression methods

The performance of this compression technique is compared with other compression tech-

niques presented in the paper [9]. By comparing the QS of different algorithms we can

evaluate their performance. Table 9 shows the QS of our proposed algorithm along with the

QS of those algorithms reported in paper [9].

Table 9: Performance comparison of different compression algorithms

Compression Technique CR PRD (%) QS

Amplitude Zone Time Epoch Coding 10.00 28.00 0.36
Improved Amplitude Zone Time Epoch Coding 9.91 7.99 1.24
Coordinate Reduction Time Encoding System 4.80 7.00 0.69
Turning Point 2.00 5.10 0.40
Wavelet packet compression 8.00 2.60 3.08
Set Partitioning in Hierarchical Trees Algorithm 8.00 1.18 6.78
Linear prediction of the wavelet coefficients 11.60 5.30 2.19
Perceptual masks & Discrete Cosine Transform 3.50 1.24 2.82
Neural Network 12.74 0.61 20.89
Huffman coding 11.06 2.73 4.05
Wavelet Transform 12.00 0.98 12.25
Discrete Cosine Transform (Min CR) 6.20 1.50 4.13
Discrete Cosine Transform (Max CR) 10.90 3.00 3.63
ASCII character encoding 15.72 7.89 1.99
JPEG2000 20.00 3.26 6.134
DC equalization and complexity sorting 8.00 0.86 9.30
Mother wavelet modification 23.10 1.60 14.43
Fourier descriptors 7.40 7.00 1.05
Fast Fourier Transform 6.28 0.75 8.37
Fourier Transform (fixed strategy) 14.67 1.06 13.84
Fourier Transform (adaptive strategy) 16.58 1.07 15.49
Proposed model 15.84 0.50 31.68

From the Table 9, we can see that the average QS of the proposed method is around

31.68 while the QS of the other algorithms range from 0.357 to 20.885 which proved that the

proposed compression algorithm outperformed all the other compression algorithms. Reddy

et al. [75] used Fourier descriptors to compress the signal and achieved a QS of 1.05. They

converted each signal as closed contour. Coordinates of each contour were represented as

complex sequences. Then they did the FT of those complex sequences and calculated the
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significant coefficients which are also known as Fourier descriptors. Shinde et al. [76] have

used Fast Fourier Transform (FFT) to compress signals and got a QS of 8.37. Sadhukhan et

al. [77] have increased the QS by applying fixed strategy and adaptive strategy of FT. The

fixed strategy was based on the selection of a fixed band-limiting frequency, and the adap-

tive strategy was dependent on the spectral energy distribution of signals. They encoded

significant coefficients to optimize the usage of bit and compress signals. By applying the

significant coefficients they achieved a QS of 13.84 which was further improved to 15.49 by

applying the adaptive strategy method. The AZTEC algorithm converts raw signals into

plateaus. The amplitude and length of each plateau are stored for reconstruction. A poor

QS of 0.36 was achieved through the AZTEC technique which was then improved to 1.24

through the improved AZTEC technique. Improved AZTEC algorithm optimizes the trade

off between CR and PRD. The TP data reduction algorithm reduces the sampling frequency

of signals to compress the signal which has very low QS of 0.40. The CORTES algorithm

is a hybrid approach of AZTEC and TP to achieve high CR of the AZTEC and the low

reconstruction error of the TP technique. The DCT technique compress signals by restoring

the signal information in a fixed number of DCT coefficients. Other techniques such as Huff-

man coding, ASCII character encoding, JPEG2000, Set Partitioning in Hierarchical Trees

Algorithm (SPIHT), DC equalization and complexity sorting, and Neural Network (NN) are

also applied to compress 1-D signals [9]. DWT outperformed these previous techniques to

compress 1-D non-stationary signals by giving high CR with low PRD.
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6.4 Results of the segmentation of PCG signals

Segmentation of the PCG signals facilitates to get the exact position and duration of the

heart sounds, systole and diastole intervals. But the presence of murmurs which produced

by turbulent blood flow is the major reason for the false detection of heart sounds. So

the elimination of murmur is necessary before segmentation. After discarding the murmurs,

Shannon energy envelope is used to detect the boundaries of each heart sound and zero

crossing algorithm is used to detect the point where the signal crosses the zero and thus the

location and duration of the heart sound can be attained. Then the peak of the heart sounds

is calculated to get their amplitude. Fig. 23 shows the block diagram of the segmentation

algorithm.

Denoised
PCG
Signal

Isola-
tion of

Murmurs
using
DWT

Shannon
Energy
Envelope

Zero
Crossing
Algorithm

Peak
Detection

Figure 23: Function Diagram of the segmentation algorithm

6.4.1 DWT to separate murmurs

Murmurs usually exhibit higher frequency than the heart sounds. So to isolate murmurs we

need to discard the frequencies higher than the frequency range of heart sounds. Fig. 24

represents the frequency spectrum of a normal and an abnormal PCG signal. Fig. 24 shows

that heart sounds stay within the frequency range of 10 to 150 Hz and murmurs exhibit

higher frequency than heart sounds. So by using DWT at the 7th level of decomposition the

frequency range of the approximation band (0 Hz to 172.28 Hz) covers the frequency spec-
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trum of the heart sounds. Murmurs with the higher frequency are eliminated by discarding

all other sub-bands except the approximation band. Fig. 25 represents a pathological PCG

signal with murmurs and after the isolation of the murmurs from that PCG signal.

Figure 24: Frequency Spectrum of PCG signals: a) Without murmurs b) With murmurs

Figure 25: a) Pathological PCG signal with murmurs b) PCG signal after the isolation of
the murmurs
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6.4.2 Simulation results

The segmentation technique, based on the Shannon energy envelope and the zero-crossing

algorithm, effectively extracted all the important characteristics of PCG signals. A thresh-

old was set to discard the effect of the noise and the low amplitude signal. Fig. 26 and 27

represent the original signal, the signal after removing noise and murmurs, Shannon energy

envelope, zero-crossing, and peak detection of a normal and an abnormal PCG signal, re-

spectively. The time duration and amplitude of the four basic heart sounds, systole interval,

diastole interval, one cardiac cycle, and heart rate information extracted from a normal and

an abnormal PCG signal are shown in Table 10.

Table 10: Extraction of the cardiac information from PCG signals

Cardiac parameter Value in a normal signal Value in an abnormal signal

Duration of S1 0.06 second 0.04 second
Duration of S2 0.08 second 0.07 second
Duration of S3 – 0.07 second
Amplitude of S1 0.94 0.30
Amplitude of S2 1.10 0.98
Amplitude of S3 – 0.52
Systole interval 0.32 second 0.30 second
Diastole interval 0.54 second 0.47 second
One cardiac cycle 0.86 second 0.77 second
Heart rate 70 beats per minute 80 beats per minute

6.5 Results of the classification of PCG signals

In this section, we verified the performance of the proposed PCG classification models. We

have used the Python programming language to implement these architectures. To evaluate

the effectiveness of the proposed DNN and CNN models, we have compared the performance

of these DL models with other traditional ML algorithms in terms of sensitivity/recall,

specificity, and accuracy.
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Figure 26: a) Original normal PCG signal b) Shannon energy envelope of the PCG signal c)
Zero-crossing of the PCG signal d) Peak detection of the heart sounds

Figure 27: a) Original abnormal PCG signal. b) Denoising and isolation of the murmurs
from the PCG signal after reconstruction. c) Shannon energy envelope of the PCG Signal
d) Zero-crossing of the PCG signal e) Peak detection of the heart sounds
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6.5.1 Proposed DNN model to classify PCG signals

A 5-layer sequential feed-forward DNN model trained by Keras was used in our research to

classify the PCG signal into two categories, either normal or abnormal. Keras is the high-

level API of TensorFlow, which we used to train our classifying model with great speed.

Mel-scaled power spectrogram and MFCC were used to extract meaningful features from

each heart sound of the database. A total of 40 features were achieved from each of the

PCG signals using these two methods, which were then fed into the DNN to train the model.

Afterwards, 5 hidden layers with 256, 512, 768, 1,024, and 1,280 filters were implemented with

the ReLU activation function for non-linearity. In the output layer, the Sigmoid activation

function was used to get the probability distribution, which we applied on the cross-entropy

cost function. The cross-entropy cost function was used to measure how far apart the output

of the model was from that of the desired or target output. The Adam optimizer was used to

minimize the cost function. The training started with a learning rate of 0.0001 and continued

until it reached the maximum number of epochs. The dropout technique was used in the

model to reduce independent learning among the neurons and to handle overfitting. Hyper

parameter optimization technique was used to get optimal hyper parameters for the DNN

model. After training the model its prediction capability was tested on the testing set. Fig.

28 shows the proposed DNN model of five layers to classify PCG signals.

6.5.2 Proposed CNN model to classify PCG signals

A 4-layer sequential CNN model trained by Keras was used in our research to classify the

PCG signal into two categories, either normal or abnormal. Keras is we used to train our
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Figure 28: Proposed DNN model to classify PCG signals

classifying model with great speed. Mel-scaled power spectrogram and MFCC were used to

extract meaningful features from each heart sound of the database. A total of 40 features

were achieved from each of the PCG signals using these two methods, which were then

fed into the CNN to train the model. We proposed a 1D CNN model of 4 hidden layers

to classify each PCG signal in the database. Four hidden layers with 256, 512, 1024, and

2048 filters were implemented with the ReLU activation function. Each layer had the same

kernel size of 4 to combine the number of input features with the number of new output

features. A max-pooling layer of kernel size 2 was also used in each layer to downsample the

input and to reduce the number of dimensions. In the output layer, the Sigmoid activation

function was used to predict the final classification output. A regularization technique called

dropout was used in the model to reduce independent learning among the neurons and to

handle overfitting. While training the model, the dropout technique usually deletes random

samples of the activation by making them zero and helps the network to learn robust features

that are useful to increase classification accuracy. The training started with a learning



64

rate of 0.0001 and continued until it reached the maximum number of epochs. Network

weights had been updated iteratively in each epoch based on training data using the Adam

optimization algorithm. Hyper parameter optimization technique was used to get optimal

hyper parameters for the CNN model. After training, the model’s prediction capability was

tested on the testing set. Fig. 29 shows the proposed CNN model of four layers to classify

PCG signals.

Figure 29: Proposed CNN model to to classify PCG signals

6.5.3 Proposed DHL models to classify PCG signals

Fig. 30 illustrates the design of the proposed deep hybrid architecture. It has four 1D

convolution layers with 256, 512, 1,024, and 2048 filters, respectively. All the layers have the

same kernel size of 2. Each convolution layer uses a Rectified Linear Unit (ReLU) activation

function, and each max pooling layer is of size 2. A dropout layer with 10% dropping rate

is connected with each convolution layer to handle overfitting. After the convolution and

max pooling, the learned features are flattened to one long vector and are passed to a fully

connected layer with 512 filters. The fully connected layer also used the ReLU activation

function and 20% dropout rate to reduce overfitting problems. The fully connected layer
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works as a buffer between the learned features and the output. The cost function is minimized

by using the Adam optimizer. The number of training epochs, batch size, and the learning

rate are set to 100, 64, and 0.0001, respectively. After optimizing and training the CNN, the

learned features from the fully connected layer are passed on to the ML classifiers for the

final prediction task.

Figure 30: The proposed DHL model architecture to classify PCG signals

6.5.4 Simulation results

Our proposed DL models can discriminate between normal and abnormal PCG signals with

great accuracy compared to other traditional ML algorithms. Our proposed DL models

outperformed ML algorithms in terms of sensitivity, specificity and accuracy. We have used

the 10-fold cross validation technique to test the performance of ML, DL, and DHL models.

We got almost similar accuracy with our proposed DNN and CNN models. Our proposed

DNN model detected normal and abnormal PCG signals with a very good testing accuracy

of 91.70%. The achieved sensitivity/recall and the specificity of the proposed DNN model
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were 85.45% and 92.93%, respectively. The CNN model gave an accuracy of 92.00%. The

achieved sensitivity/recall and the specificity of the CNN model were 87.69% and 93.05%,

respectively.

Table 11: Comparison of the proposed DL models with ML models to classify PCG signals

Classification Model Sensitivity (%) Specificity (%) Accuracy (%)

DT 70.30 88.00 84.60
RF 78.13 90.70 88.30
LR 71.85 63.47 65.10
SVM 76.50 58.85 62.30
KNN 75.00 82.70 81.20
AB 76.50 84.23 82.70
NB 34.38 78.07 69.40
CNN 87.69 93.05 92.00
DNN 85.45 92.93 91.70

Table 11 shows the performance of the proposed DNN and CNN models with the other

traditional ML models. The performance of the proposed hybrid models and other traditional

ML and DL models with separate implementations are shown in Table 12.

Table 12: Comparison of the proposed DHL models with ML and DL classification models
implemented separately

Classification Model Sensitivity (%) Specificity (%) Accuracy (%)

CNN 87.69 93.44 92.00
LR 72.33 66.25 67.50
CNN-LR 94.58 92.27 92.70
RF 75.48 85.35 83.33
CNN-RF 92.03 94.83 94.30
KNN 75.19 80.12 79.10
CNN-KNN 95.33 90.79 91.72
DT 78.19 76.42 76.79
CNN-DT 92.03 92.47 92.37
NB 70.22 67.30 75.33
CNN-NB 97.00 90.17 91.60
SVM 77.29 80.15 79.56
CNN-SVM 93.30 91.80 92.10
AB 74.14 81.13 79.70
CNN-AB 94.14 92.23 92.62

As shown in Table 12, among all the ML classifiers, LR classifier performed worst with

67.50% accuracy, and best result is achieved by the RF classifier with 83.33% accuracy. The

classifier learned with a single CNN model performed better than all other ML models with
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a classification accuracy of 92.00%. Our proposed deep hybrid CNN-ML methods were able

to improve the accuracy obtained from a single CNN model and seven ML models which

were implemented separately. The best classification accuracy of 94.30% is achieved by

CNN-RF models followed by CNN-LR (92.70%), CNN-AB (92.62%), CNN-DT (92.37%),

and CNN-SVM (92.10%) models. Though CNN-KNN and CNN-NB hybrid models showed

around 92.00% accuracy, which is the same as the single CNN model, they showed significant

improvement in the sensitivity of the model. The sensitivity of CNN-KNN and CNN-NB

models are 95.33% and 97.00%, respectively. The sensitivity of both models is higher than

that of the single CNN model (87.69%). The specificity of the single CNN model is 93.44%.

For the specificity, there is a 3.00% reduction from the single CNN to the CNN-KNN and

CNN-NB models, respectively. Fig. 31 shows the accuracy of the proposed DHL model and

Fig. 32 shows the reduction of the cost with respect to epochs of the proposed DHL model.

Figure 31: Training and testing accuracy of the proposed DHL model with respect to epochs

Figure 32: Training and testing loss of the proposed DHL model with respect to epochs
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Based on the result, our proposed DHL models can be a promising solution to detect

early-stage heart diseases by picking up potential abnormal PCG signals from a series of

normal PCG signals.

6.5.5 Comparison with other PCG classification models

The main goal of the 2016 PhysioNet Computing in Cardiology Challenge [59] was to build a

robust intelligent system that can detect anomaly in the PCG signal and can classify a PCG

signal as normal or abnormal based on its features. The best overall accuracy achieved in the

official phase of the 2016 PhysioNet Computing in Cardiology Challenge was 86.02% with

sensitivity and specificity of 94.24% and 77.81%, respectively. Table 13 shows the comparison

of our proposed PCG classification model with 12 other state-of-the-art PCG classification

models. All these models used the same dataset published by the 2016 PhysioNet Computing

in Cardiology Challenge. Presently, this is the largest database of PCG signals in the world.

Table 13: Comparison of the proposed DHL model with other PCG classification models

Author Approach Sen. (%) Spec. (%) Acc. (%)

Potes, (2016) Time-Freq. features & AB-CNN 94.24 77.81 86.02
Nassralla, (2017) Time-Freq. features & RF 78.00 98.00 92.00
Whitaker, (2017) Sparse coding & SVM 90.00 88.45 89.26
Langley, (2017) FFT-WT & DT 77.00 80.00 79.00
Han, (2018) Segmentation & CNN 98.33 84.67 91.50
Tang, (2018) Time-Freq. features & SVM 88.00 87.00 88.00
Dominguez, (2018) Images & AlexNet 93.20 95.12 97.00
Sotaquirá, (2018) DNN & Probability comparisons 91.30 93.80 92.60
Singh, (2019) Time-Freq. features & KNN 93.00 90.00 90.00
Nogueira, (2019) WT & SVM 90.45 85.25 87.85
Sing, (2020) Time-Freq. features & AB 94.08 91.95 92.47
Krishnan, (2020) Segmentation & DNN 86.73 84.75 85.65
Proposed Model Time-Freq. features & CNN-RF 92.03 94.83 94.30

As shown in Table 13, the classification accuracy achieved from the previous models var-

ied between 79.00% to 97.00%, whereas the range of the sensitivity and specificity varied
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between 77.00% to 98.33% and 77.81% to 98.00%, respectively. It is noteworthy to mention

that the AB-CNN model proposed by Potes et al. [60] was ranked 1st in the 2016 PhysioNet

Computing in Cardiology Challenge. Nassaralla et al. [61] extracted time and frequency fea-

tures of PCG signals to build a learning model using RF and DNN. Nassaralla et al obtained

a very good accuracy and specificity of 92.00% and 98.00%, respectively, but low sensitivity

of 78.00% using the RF classifier. On the other hand, Han et al. [64] reached an overall

good accuracy and sensitivity of 91.50% and 98.33%, respectively, but with less specificity of

84.67%. They used complex segmentation of heart sounds and CNN to identify PCG signals.

Krishnan et al. [71] also implemented segmentation of the cardiac cycle and achieved 85.65%

accuracy. Sotaquirá et al. [67] used DNN and weighted probability comparison of each card

cycle and got high accuracy of 92.60%. Langley et al. [63] obtained 79.00% accuracy with-

out using complex segmentation technique. They used threshold-based classification tree for

PCG classification. Singh et al. [68] initially applied KNN on unsegmented heart sounds

recording and got 90.00% accuracy. Later, Singh et al. [70] improved the accuracy to 92.47%

by applying AB classifiers. Whitaker et al. [62], Tang et al. [65], and Nogueira et al. [69]

employed SVM with different structures to build their models and achieved 89.26%, 88.00%,

and 87.85% accuracy, respectively. Dominguez et. al. [66] attained a great accuracy of

97.00% by employing the modified version of the AlexNet model but this model has high

computational complexity.
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6.6 Results of the compression and denoising of ECG signals

6.6.1 DWT of ECG signals

ECG signals are decomposed with 2 layers multi-scale DWT. The optimized compression of

a signal depends on the decomposition level which is related to the sampling frequency of

the signal [29]. According to the sampling theorem, the highest frequency of a signal is half

of its sampling frequency. So, the highest frequency of all the ECG signals in the database

is 180 Hz. The signal was decomposed in such a way that their approximation band (lowest

resolution band) contain most of the information as well as the energy. So, signals were

decomposed up to 2nd level to cover 0− 45 Hz by the approximation band. Each sub-band

and their frequency spectrum are shown in the Fig. 33 and Table 14.

Figure 33: Different levels of ECG signals and their corresponding graphs
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To evaluate the performance of the best mother wavelet an extensive simulation was

carried out among 33 wavelets from Daubechies family, 10 wavelets from Coiflets family

and 7 wavelets from both Biorthogonal (total 50 orthogonal wavelets). Among all of these

wavelets coif6 wavelet is chosen from the coiflet family as it outperformed all other wavelets

by giving the smallest value of PRD with maximum energy in the approximation band. The

performances of 14 different mother wavelets are shown in Table 15, which shows that best

result was achieved with coif6 as it gave very low PRD and highest QS compared to the

other wavelets.

Table 14: Different levels of ECG signals and their corresponding coefficients and frequency
spectrum

Levels Frequency range (Hz) Coefficients Sub-bands

2 0 to 45 2526 App. Band (A2)
2 45 to 90 2526 Detail Band (D2)
1 90 to 180 5017 Detail Band (D1)

Table 15: Performance analysis of 14 different wavelets to reconstruct ECG signals

Wavelets PRD (%) CR (%) Wavelets PRD (%) CR (%)

db1 0.91 3.98 bior2.2 0.34 3.98
db3 0.35 3.97 bior1.5 0.96 3.95
db11 0.20 3.91 bior1.3 0.94 3.97
db18 0.19 3.87 coif3 0.23 3.93
db20 0.19 3.85 coif10 0.18 3.78
coif1 0.50 3.97 bio4.4 0.24 3.95
coif6 0.17 3.95 bio6.8 0.21 3.93

6.6.2 Threshold of the DWT coefficients

From Table 14, we can see that approximation sub-band has the lowest frequency spectrum

but it contains most of the information as well as the energy of the signal. On the other

hand detail sub-bands contain less information as well as less energy with low amplitude.



72

The contribution of the energy of each sub-band with the number of coefficients are shown

in Table 16.

Table 16: EPE of different sub-bands

Sub-bands Energy Value of EPE (%) Coefficients

App. Band (A2) 7066.6520 99.9996 2526
Detail Band (D2) 0.01339 1.89× 10−06 2526
Detail Band (D1) 0.0088 1.24× 10−06 5017

The total energy of the signal is 7066.6743 with 10069 coefficients. Table 16 shows that

about 99.9964% of the energy is stored in the 2526 coefficients of the approximation band

while the other 7543 detail coefficients contain only the 0.0032% of the total energy of the

signal. But we can’t discard all the detail coefficients as it will cause signal distortion. So sub-

bands are separated into two groups for thresholding. Group A includes the approximation

band coefficients (A2) of level 2 and group B consists of the detail coefficients from level

1 and 2 (D1 & D2). The sub-bands under group A are kept unchanged and the value of

the threshold for all the sub-bands under group B is calculated in such a way that after

thresholding, the conserved energy in all the detail sub-bands of group B is α% of their

previous energy level before thresholding. The value of α can be adjusted further to change

the threshold. Then the value of the coefficients below the threshold level are converted

to zero in each sub-band belongs to group B. Thus the number of zero increased after the

thresholding. The number of total coefficients, significant coefficients, and zeros before and

after the thresholding in the decomposed signal are shown in Table 17.

Table 17: Significant coefficients and zero coefficients before and after thresholding

Total Coefficients Significant Coefficients Zero Coefficients

Before Threshold 10069 10069 0
After Threshold 10069 2531 7538
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From Table 17, it can be observed that after thresholding, the number of significant

coefficients decreased about 74.87%, that means only 25.16% coefficients of the total number

of coefficients are now representing the whole signal without any distortion. This compressed

signal is then encode with RLE method. After RLE the total number of coefficients decreased

from 10069 to only 2531 that means the number of coefficients reduced about 74.57%. The

advantage of this encoding process is that the signal can be transferred securely by keeping

all the information hidden. Only the receiver can decode the signal. So, secure signal

transmission is also possible with our compression algorithm.

6.6.3 Signal reconstruction

After receiver received the encoded signal, it’s information can be extracted by using RLD

and IDWT in the receiver end.

6.6.4 Simulation result

Figure 34: a) Original ECG signal b) Compressed ECG signal

The compression algorithm is applied to several ECG signals available in the database

and a high compression is achieved by maintaining the signal fidelity. Fig. 34 shows the
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original and compressed form of record 117. The values of CR, PC and PRD of several

recordings of the database are presented in Table 17. From the Fig. 34 and Table 18, we

can see that the signal is compressed about 74.80% with an average small PRD of 0.20%.

Table 18: The values of CR, PC, and PRD after compressing different ECG records

Records CR PC (%) PRD(%)

105 3.97 74.78 0.35
109 3.96 74.76 0.25
111 3.93 74.76 0.23
112 3.97 74.54 0.16
117 3.97 74.80 0.16
121 3.92 74.50 0.12
124 3.97 74.78 0.18
201 3.95 74.70 0.18
202 3.93 74.52 0.22
205 3.97 74.78 0.21
207 3.96 74.76 0.22
210 3.96 74.61 0.22
223 3.97 74.80 0.24
230 3.97 74.80 0.20
232 3.97 74.78 0.21
233 3.97 74.67 0.17
234 3.97 74.70 0.15

This ECG compression method will preserve all the pathological information and other

sub-bands with noise and unnecessary information will be discarded from the original signal

[6]-[8]. This technique will not only compress and denoise the signal but also the signal will

be encrypted while transferring from home to clinic. These compressed and denoised ECG

signals are then used to classify heartbeats into five different arrhythmias by using AI.

6.6.5 Comparison with other ECG compression methods

The performance of this ECG compression technique is compared with 21 other compression

techniques presented in the paper [9]. By comparing the QS of different algorithms we can

evaluate their performance. Table 19 shows the QS of our proposed algorithm along with

the QS of those algorithms reported in the paper [9]. From the Table 19 we can see that the

average QS of the proposed method is around 19.40 while the QS of the other algorithms
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range from 0.357 to 20.885. The best QS was 20.885 followed by 14.43, which proved that

the proposed compression algorithm outperformed 20 other compression algorithms out of 21

algorithms. Reddy et al. [75] used Fourier descriptors to compress the signal and achieved a

Table 19: Performance comparison of different compression algorithms

Compression Technique CR PRD (%) QS

Amplitude Zone Time Epoch Coding 10.00 28.00 0.36
Improved Amplitude Zone Time Epoch Coding 9.91 7.99 1.24
Coordinate Reduction Time Encoding System 4.80 7.00 0.69
Turning Point 2.00 5.10 0.40
Wavelet packet compression 8.00 2.60 3.08
Set Partitioning in Hierarchical Trees Algorithm 8.00 1.18 6.78
Linear prediction of the wavelet coefficients 11.60 5.30 2.19
Perceptual masks & Discrete Cosine Transform 3.50 1.24 2.82
Neural Network 12.74 0.61 20.89
Huffman coding 11.06 2.73 4.05
Wavelet Transform 12.00 0.98 12.25
Discrete Cosine Transform (Min CR) 6.20 1.50 4.13
Discrete Cosine Transform (Max CR) 10.90 3.00 3.63
ASCII character encoding 15.72 7.89 1.99
JPEG2000 20.00 3.26 6.134
DC equalization and complexity sorting 8.00 0.86 9.30
Mother wavelet modification 23.10 1.60 14.43
Fourier descriptors 7.40 7.00 1.05
Fast Fourier Transform 6.28 0.75 8.37
Fourier Transform (fixed strategy) 14.67 1.06 13.84
Fourier Transform (adaptive strategy) 16.58 1.07 15.49
Proposed model 3.96 0.20 19.40

QS of 1.05. They converted each signal as closed contour. Coordinates of each contour were

represented as complex sequences. Then they did the FT of those complex sequences and

calculated the significant coefficients which are also known as Fourier descriptors. Shinde et

al. [76] have used FFT to compress signals and got a QS of 8.37. Sadhukhan et al. [77] have

increased the QS by applying fixed strategy and adaptive strategy of FT. The fixed strategy

was based on the selection of a fixed band-limiting frequency, and the adaptive strategy

was dependent on the spectral energy distribution of signals. They encoded significant

coefficients to optimize the usage of bit and compress signals. By applying the significant

coefficients they achieved a QS of 13.84 which was further improved to 15.49 by applying

the adaptive strategy method. The AZTEC algorithm converts raw signals into plateaus.
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The amplitude and length of each plateau are stored for reconstruction. A poor QS of 0.36

was achieved through the AZTEC technique which was then improved to 1.24 through the

improved AZTEC technique. Improved AZTEC algorithm optimizes the trade off between

CR and PRD. The TP data reduction algorithm reduces the sampling frequency of signals to

compress the signal which has very low QS of 0.40. CORTES algorithm is a hybrid approach

of AZTEC and TP to achieve high CR of the AZTEC and the low reconstruction error

of the TP technique. DCT compress signals by restoring the signal information in a fixed

number of DCT coefficients. Other techniques such as Huffman coding, ASCII character

encoding, JPEG2000, SPIHT, and DC equalization and complexity sorting are also applied

to compress 1-D signals [9]. DWT outperformed these previous techniques to compress 1-

D non-stationary signals by giving high CR with low PRD. The highest QS of 20.89 was

achieved by using the NN method.

6.7 Results of the classification of ECG signals

In this section, we verified the performance of the proposed ECG classification models. We

have used the Python programming language to implement these architectures. To evaluate

the effectiveness of the proposed DNN and CNN models, we compared the performance

of these DL models with other traditional ML algorithms in terms of sensitivity/recall,

precision, and accuracy.

6.7.1 Proposed DNN model to classify ECG beats

A 5-layer sequential feed-forward DNN model trained by Keras was used in our research to

classify ECG heartbeats into five categories. Keras is the high-level API of TensorFlow, which
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we used to train our classifying model with great speed. In our proposed method we used

each ECG beat as input to our deep learning model. A total of 168 features were achieved

from each heartbeat, which were then fed into the DNN to train the model. Afterwards, 5

hidden layers with 32,64, 128, 256, 512 filters were implemented with the ReLU activation

function for non-linearity. In the output layer, the softmax activation function was used to

get the probability distribution, which we applied on the cross-entropy cost function. The

cross-entropy cost function was used to measure how far apart the output of the model was

from that of the desired or target output. The Adam optimizer was used to minimize the

cost function. The training started with a learning rate of 0.0001 and continued until it

reached the maximum number of epochs. The dropout technique was used in the model to

reduce independent learning among the neurons and to handle overfitting. Hyper parameter

optimization technique was used to get optimal hyper parameters for the DNN model. After

training the model its prediction capability was tested on the testing set. Fig. 35 shows the

proposed DNN model of five layers to classify heartbeats.

Figure 35: Proposed DNN model to classify heart beats
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6.7.2 Proposed CNN model to classify ECG beats

We used a 1D CNN model of 4 hidden layers in our research to classify each heartbeat

in the database. Four hidden layers (1st layer with 32 filters, 2nd layer with 64 filters,

3rd layer with 128 filters, 4th layer with 256 filters) were implemented with the ReLU

activation function for non-linearity. Each layer had the same kernel size of 4 to combine

the number of input features with the number of new output features. A max-pooling layer

of kernel size 2 was also deployed in each layer to downsample the input and to reduce the

number of dimensions. The last hidden layer of the CNN was connected with a final dense

layer having 64 nodes. In the output layer, the SoftMax activation function was used to

predict output class probabilities. The dropout technique was used in the model to reduce

independent learning among the neurons and to handle overfitting. Adam optimization

algorithm was used to update network weights iteratively based on training data. Hyper

parameter optimization technique was used to get optimal hyper parameters for the CNN

model. After training the model its prediction capability was tested on the testing set. Fig.

36 shows the proposed CNN model of four layers to classify heartbeats.

Figure 36: Proposed CNN model to classify heart beats
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6.7.3 Proposed DHL models to classify ECG beats

Fig. 37 illustrates the design of the proposed deep hybrid architecture. It has four 1D

convolution layers with 32, 64, 128, and 256 filters, respectively. All the layers have the

same kernel size of 2. Each convolution layer uses a Rectified Linear Unit (ReLU) activation

function, and each max pooling layer is of size 2. A dropout layer with 10% dropping rate

is connected with each convolution layer to handle overfitting. After the convolution and

max pooling, the learned features are flattened to one long vector and are passed to a fully

connected layer with 512 filters. The fully connected layer also used the ReLU activation

function and 20% dropout rate to reduce overfitting problems. The fully connected layer

works as a buffer between the learned features and the output. The cost function is minimized

by using the Adam optimizer. The number of training epochs, batch size, and the learning

rate are set to 20, 64, and 0.0001, respectively. After optimizing and training the CNN, the

learned features from the fully connected layer are passed on to the ML classifiers for the

final prediction task.

Figure 37: The proposed DHL models architecture to classify heart beats
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6.7.4 Simulation results

Our proposed DL models can classify five different heartbeats with great accuracy compared

to other traditional ML algorithms. Our proposed DL models outperformed ML algorithms

in terms of sensitivity/recall, precision and accuracy. We used 80% of the data as the training

set to develop the prediction ability of the model, and the remaining 20% of the data was

used as the testing set to validate the model. Our proposed DNN model classified heart

beats with a very good testing accuracy of 94.70%. The achieved precision and the recall of

the proposed DNN model were 96.30% and 93.90%, respectively. We got better classification

accuracy with our proposed CNN model compared to DNN model. The CNN model gave a

testing accuracy of 97.90%. The achieved precision and the recall of the model were 98.10%

and 97.80%, respectively.

Table 20: Comparison of the proposed DL models with ML models to classify ECG beats

Classification Model Precision (%) Recall (%) Accuracy (%)

DT 94.50 93.70 93.70
RF 97.80 97.80 97.80
LR 88.10 66.00 66.00
SVM 95.70 91.00 91.00
KNN 95.80 94.30 94.30
AB 88.20 52.90 52.90
NB 79.90 19.00 19.00
DNN 96.30 93.90 94.70
CNN 98.10 97.80 97.90

Table 20 shows the performance of the proposed DNN, CNN, and the other traditional

ML models. The performance of the proposed DHL models and other traditional ML and DL

models with separate implementations are shown in Table 21. As shown in Table 21, among

all the ML classifiers, NB classifier performed worst with 19.00% accuracy, and best result

is achieved by the RF classifier with 97.80% accuracy. Our proposed deep hybrid CNN-ML

methods were able to improve the accuracy obtained from a single CNN model and 7 ML
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Table 21: Comparison of the proposed DHL models with ML and DL classification models
implemented separately

Classification Model Precision (%) Recall (%) Accuracy (%)

CNN 98.10 97.80 97.90
LR 88.10 66.00 66.00
CNN-LR 98.30 98.30 98.30
RF 97.80 97.80 97.80
CNN-RF 98.50 98.60 98.60
KNN 95.80 94.30 94.30
CNN-KNN 98.20 98.10 98.10
DT 94.50 93.70 93.70
CNN-DT 97.60 97.50 97.50
NB 79.90 19.00 19.00
CNN-NB 98.20 98.30 98.20
SVM 95.70 91.00 91.00
CNN-SVM 98.30 98.30 98.30
AB 88.20 52.90 52.90
CNN-AB 97.40 97.50 97.50

models which were implemented separately. The best classification accuracy of 98.60% is

achieved by CNN-RF models followed by CNN-LR (98.30%), CNN-SVM (98.30%), CNN-

NB (98.20%), and CNN-KNN (98.10%) models. CNN-DT (97.50%) and CNN-AB (97.50%)

model didn’t show any improvement over single ML and DL models. Fig. 38 shows the

accuracy and Fig. 39 shows the reduction of the cost of the proposed DHL model.

Figure 38: Training and testing accuracy of the proposed DHL model with respect to epochs

Figure 39: Training and testing loss of the proposed DHL model with respect to epochs
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6.7.5 Comparison with other ECG heartbeat classification models

Table 22 shows the comparison of our proposed ECG heart beat classification models with 11

other state-of-the-art heart beat classification models. All these models used the same MIT-

BIH Arrhythmia dataset. As shown in Table 22, the classification accuracy achieved from

the previous models varied between 92.70% to 99.28%. Among all the models, DL models

performed better to classify ECG heartbeats due to their potential to extract important and

meaningful features automatically from raw data. Martis et al. [80, 87–89] used different

approaches to classify ECG beats and achieved the accuracy of 94.52%, 98.11%, 93.48%,

and 99.28% respectively. They used principal component analysis (PCA) and Independent

Component Analysis (ICA) to reduce the dimensions of DWT coefficients, segmented ECG

beats, and error signals of linear prediction model. These features were used to classify

ECG beats using DNN and Least Square-Support Vector Machine (LS-SVM). They got

98.11% accuracy by applying PCA on segmented ECG beats and then sending those features

to a DNN model [87]. Later, they applied PCA on bispectrum features of ECG beats.

They sent those features to SVM and DNN models and got 93.48% and 94.52% accuracy,

respectively [80,88]. They achieved state of the art accuracy of 99.28% by applying ICA on

the DWT coefficients of ECG beats. These reduced features were sent to a DNN model for

the final classification [89]. Li et al. [81] achieved 94.61% accuracy by using DWT and RF

classifier. Elhaj et al. [82] used ICA to reduce the dimension of non-linear features such as

high order statistics and cumulants. Then PCA was used to reduce the dimension of DWT.

They got 98.91% accuracy by sending these features to a DNN model. Zubair et al. [84] has

achieved 92.70% accuracy by directly sending raw signals to a CNN model having 7 hidden
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layers. Acharya et al. [79] developed a 9-layer deep CNN to classify heartbeats and got

93.47% testing accuracy. Kachuee et al. [78] used deep residual CNN consisting of 13 weight

layers and achieved an accuracy of 93.40%. Yang et al. [85,86] used ICA and PCA networks

(ICA-PCANets) to extract features from raw ECG signals. After extracting features, they

used different ML classifiers such as SVM, KNN, and RF to classify ECG beats. Among

them, the combination of ICA-PCANet and linear SVM achieved the highest accuracy of

98.63% followed by the combination of PCA and SVM which is 97.80%.

Table 22: Comparison of the proposed DHL model with other ECG classification models

Author Methods Precision (%) Recall (%) Accuracy (%)

Martis, (2012) PCA & DNN – 99.90 98.11
Martis, (2013) Bispectrum-PCA & SVM – 99.27 93.48
Martis, (2013) PCA & DNN – 98.61 94.52
Martis, (2013) DWT-ICA & DNN – 99.97 99.28
Li, (2016) DWT & RFC – – 94.61
Elhaj, (2016) ICA-DWT-PCA & SVM – 98.91 98.91
Zubair, (2016) CNN – – 92.70
Acharya, (2017) Augmentation & CNN – 96.01 93.47
Kachuee, (2018) Deep residual CNN – – 93.40
Yang, (2018) PCA & SVM – – 97.80
Yang, (2020) ICA-PCA & SVM – – 98.63
Proposed Model CNN-RF 98.50 98.60 98.60
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CHAPTER 7

CONCLUSION AND FUTURE WORKS

7.1 Conclusion

PCG and ECG signals have been used for decades to detect cardiac abnormalities. The

continuous extraction of important cardiac information from these two major signals and

the detection of the abnormality in the primary stage can play a vital role to decrease the

death rate caused by cardiovascular diseases. The main goal of this research is to develop

algorithms to accurately detect cardiac abnormalities in the primary stage while continuous

monitoring of heart. We have combined the application of signal processing, ML, and DL

approaches in PCG and ECG signals to detect abnormalities in the heart during the very

primary stage without the need of any doctor or cardiologist. The proposed heart monitoring

technique has the following three steps:

• Compression, Denoising, and Encryption: We have used DWT to compress and

denoise both PCG and ECG signals without loosing any pathological information.

Thus, it will not only save the storage but will also reduce the noise and unnecessary

information that make the data collection process very difficult while continuous moni-

toring. We have compressed PCG and ECG signals to 93.67% and 74.57%, respectively.

An encoding process named RLE process is also applied with DWT to encrypt the data

and to ensure patient confidentiality while transferring data from home to clinic.

• Segmentation: A segmentation algorithm based on Shannon energy envelope is used

to obtain important cardiac parameters of the heart from PCG signals. These cardiac
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parameters are crucial to get the overall picture of the heart. With our proposed PCG

segmentation algorithm we have successfully determined the durations and amplitudes

of basic heart sounds as well as the duration of systole interval, diastole interval,

and cardiac cycles properly. This method will also continuously calculate the heart

beats of a patient and will notify the patient immediately if it finds any inconsistent

cardiovascular parameters. One of the main advantage of this segmentation algorithm

is that it doesn’t require any ECG signal as reference to segment heart sounds.

• Classification: We have combined DL and ML models to build DHL models which

can classify PCG and ECG signals with great accuracy. Our proposed DHL algorithm

showed better testing accuracy compared to ML and DL models implemented sep-

arately. As PCG is an audio signal, Mel-scaled power spectrogram and MFCC are

employed to extract informative features from the PCG signal, which are then fed

into a classifier to classify each PCG signal into a normal or an abnormal signal. For

the classification of heart beats we have directly used the raw ECG beats to classify

heartbeats into five different beat categories. For the classification of PCG and ECG

signals, we got around 94.30% and 98.60% accuracy, respectively, which is better than

many other state-of-the-art PCG and ECG classification methods. This automatic

classification process can certainly help doctors and cardiologists to detect different

cardiac abnormalities and irregular heartbeats in the initial stage.

7.2 Summary of the research work

Summary of the research work is given below:
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• Our proposed method is robust enough to compress PCG and ECG signals without

loosing any pathological information. Denoising of PCG signals with high SNR is also

achieved using our PCG compression algorithm.

• Using our proposed encryption technique it’s possible to encrypt signals while trans-

ferring from home to clinic. Thus it can maintain patient confidentiality.

• Our proposed segmentation algorithm can automatically segment PCG signals and

provide the values of different important cardiac parameters to detect early stage heart

diseases.

• Our proposed PCG classification algorithm can detect the structural defects of the

heart valves by classifying PCG signals into two categories: as normal and abnormal.

• Our proposed ECG classifier can accurately detect the irregular heartbeats in the

primary stage by classifying ECG signals into five different arrhythmia.

• Our proposed DHL models are less computationally expensive and have less time com-

plexity compared to traditional DL algorithms. The final classification layer of a DL

model usually results in overfitting when the model is fed with unstructured or less

data. This overfitting problem increases the time and computational complexity of

traditional DL models, which is not present in traditional ML algorithms. In our

proposed DHL models, fully connected neural networks in the DL model are followed

by the ML models. Thus, our proposed DHL models are faster and do not require

additional time for processing compared to traditional standalone DL models. In ad-

dition, our proposed DHL models remove the need for feature engineering techniques
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on which all traditional ML algorithms are dependent. This automatic classification

process can better help doctors and cardiologists to detect cardiac abnormalities and

irregular heartbeats in the initial stage.

• This technique can also be applied to analyze brain signal and obstructive sleep apena.

7.3 My contributions

My contributions to this research are given below:

• To develop this unique technique which is a complete package of compression, de-

noising, encryption, and classification of PCG and ECG signals. Until now, very little

research has been done on analyzing PCG and ECG signals which covers all four major

techniques.

• To develop the proposed PCG segmentation algorithm that doesn’t need any ECG

signal as reference. This segmentation technique can not only segment PCG signals

but also extracts cardiac information from raw PCG signals. These cardiac information

can be analyzed to detect early stage cardiac diseases.

• To develop DHL algorithms that combine the advantages of ML and DL algorithms

and overcome their limitations to classify PCG signals and ECG heartbeats with high

accuracy.
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7.4 Future works

Although, we have achieved a certain level of result, additional research is needed to further

improve the overall result and accuracy. Our future works are given below:

• Noise reduction: The main limitation of our proposed algorithm is the existence

of noise within the frequency range of the basic heart sounds. The efficiency of the

PCG segmentation algorithm becomes limited in the presence of a large number of

murmurs and noise overlapping with heart sounds. In this case, the Shannon energy

is affected by noise and it is very difficult to accurately identify the boundaries of each

heart sound. In the presence of high intensity noise, the Shannon energy envelope

is too noisy to read and will provide incorrect output. The DWT reconstructs the

PCG signal by separating high-frequency murmurs and noise from the low-frequency

heart sounds. However, when the heart sounds, murmurs. and noise share the same

frequency band, separating murmurs and noise from the PCG signal will eliminate

some of the major details of heart sounds. This will cause potential loss of the cardiac

information. Additional research is needed to solve this problem.

• Require more PCG signals for the classification: It should be noted that the

proposed method requires a large amount of data to train the model. We got better

accuracy in the ECG heartbeat classification compared to the PCG classification. The

main reason behind this is that we didn’t have enough PCG data to train the DL

models. We had 1,09,449 heartbeats to classify ECG heartbeats whereas the number

of PCG signals was only 3240 which was inadequate to train the model. Therefore,

in future work, it is necessary to evaluate the performance of our proposed model by
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using PCG signals from more subjects.

• Feature extraction: Clinically, it is essential to extract as many possible features

from the PCG signal for the correct classification. However, not all of the features

carry important information, and there can be some redundancy. We will focus on

exploring other important features to improve the classification performance.

• Find the best deep learning model for the classification: In the future, other

neural network models such as RNN, LSTM, and GRU will be combined with ML mod-

els to increase the sensitivity, specificity, and accuracy of the DHL models if possible,

near 100%.
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