
  

 
 
 
 
 
 
 
 
 

Novel Role Filler Generalization for Recurrent Neural Networks  
Using Working Memory-Based Indirection 

 
 
 
 
 
 
 
 
 
 
 

by 
Blake Mullinax 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A thesis presented to the Honors College of Middle Tennessee State 
University in partial fulfillment of the requirements for graduation from 

the University Honors College 
 

Fall 2020  



  

 
 
 
 
 
 
 
 

Novel Role Filler Generalization for Recurrent Neural Networks  
Using Working Memory-Based Indirection  

 
 
 
 
 
 
 
 
 
 
 

by  
Blake Mullinax 

 
 
 
 
 
 
 
 
 
 
 
APPROVED:  

 
____________________________________ 
Dr. Joshua L. Phillips, Thesis Director 
Associate Professor, Computer Science 
      
        
____________________________________ 
Dr. Mary A. Evins, Thesis Committee Chair  
Research Professor, History and  
University Honors College



  iii 

 
ABSTRACT 

Humans encounter and adapt to novel situations every day. However, adaptation 

is not a trivial task to accomplish. In the field of machine learning, the statistical 

underpinnings of established deep learning architectures make it difficult for these 

architectures to handle certain types of novel situations. Previous research demonstrates 

how computational models could better handle novel situations through indirection, an 

idea inspired by the interaction between two regions of the human brain: the prefrontal 

cortex and the basal ganglia. This thesis demonstrates that combining the indirection 

model with deep learning methods outperforms current architectures.



  iv 

 

TABLE OF CONTENTS 

LIST OF FIGURES ............................................................................................................. v 

I.  INTRODUCTION ........................................................................................................... 1 

II.  BACKGROUND ........................................................................................................... 2 

III.  METHODOLOGY ....................................................................................................... 9 

A.  MODELS ................................................................................................................... 9 

B.  EXPERIMENTS ...................................................................................................... 13 

C.  ANALYSIS .............................................................................................................. 14 

IV.  RESULTS ................................................................................................................... 16 

V.  DISCUSSION .............................................................................................................. 18 

WORKS CITED ................................................................................................................ 21 

APPENDIX ....................................................................................................................... 22 

 

  



  v 

LIST OF FIGURES 

Figure 1: A representation of the working memory stripes and gates of the indirection 
model. The model consists of three stripes of working memory, each with their own input 
and output gate. Gates can be in closed states, like stripes one and three, or in opened. .. 22 
 
Figure 2: A demonstration of the encoder-decoder working in cooperation with the 
indirection model, split into three frames. The filler is presented to the encoder, and the 
encoding is stored in memory in the second frame. In the third frame, the encoding is 
outputted and given to the decoder to reproduce the filler. ............................................... 23 
 
Figure 3: The encoder-decoder in both coupled and decoupled form. Layers are 
represented by each oval. The encoder and decoder each receive one token as input 
through layer t. The token is wrapped up into a representation by the encoder, and the 
hidden states of the encoder are used to initialize the states of the decoder, seen as the 
dotted lines from the encoder to the decoder. .................................................................... 24 
 
Figure 4: An abstract overview of the nested indirection model. Each filler in the 
sentence is fed through the outer encoder, just like the indirection model. Then each 
encoding is given to the inner encoder, which wraps these into a single encoding for the 
sentence, seen at the top left. This process is then reversed, feeding the encoding to the 
inner decoder, which passes its output to the outer decoder. ............................................ 25 
 
Figure 5: Accuracies of indirection and nested encoder-decoder models for each of the 
four combination types. Error bars represent ± 1.96 standard errors and approximate 95% 
confidence. ......................................................................................................................... 25 
 
Figure 6: Accuracies for all variations of the end-to-end encoder-decoder. Error bars 
represent ± 1.96 standard errors and approximate 95% confidence. ................................. 26 
 
Figure 7: Accuracies for the nested encoder-decoder with a query time step. Error bars 
represent ± 1.96 standard errors and approximate 95% confidence. ................................. 26 
 



1 

 

I.  INTRODUCTION 

Every day, one encounters new experiences. Contexts may be similar, but one 

never experiences a day that is truly identical to the one that came before it, and yet, 

humans are able to adapt. An unexpected car wreck blocks the way to work one morning, 

and fleets of cars struggling to make it to work on time exchange the normal route for a 

detour. New slang becomes popular and suddenly a word takes on an entirely new 

meaning. Life is full of substitutions and improvisation. Humans handle unique scenarios 

daily. And although artificial neural networks draw inspiration from the human brain, this 

is no trivial task for machine learning to emulate. Neural networks are heavily dependent 

on past experiences. If the network has not experienced a particular scenario before, the 

new scenario will be treated in a manner similar to how the network has treated past 

experiences. Many times accommodating new scenarios in this way is a sufficient 

response and the desired outcome, but there are many cases where this does not lead to a 

correct response. For example, when humans encounter a new word, they need to be able 

to treat it as such, rather than replacing it with a word they are more familiar. Since 

humans are able to solve this task, one might then look more closely into neurobiology 

for inspiration to determine how neural networks might better solve these new 

experiences.  

  



  2 

 

II.  BACKGROUND 

Neural networks must undergo a training and testing process. Training is 

conducted by presenting many different “experiences” as input and feedback data for the 

neural network. Based on such training data, the network can learn how to respond in the 

future when given novel, but similar, inputs. If successful, the network will be able to 

generalize: apply useful knowledge gained from experience with the training data to then 

also respond appropriately to the novel testing data experiences. However, a factor that 

greatly influences the performance is the architecture of the network itself. Where a 

certain architecture of a neural network may perform poorly, another architecture may 

excel. Due to a statistical dependence on what they have been trained on, modern neural 

network architectures struggle when given situations they have not experienced, or novel 

inputs. Krete and Noelle, drawing inspiration from the brain, researched a method to 

improve performance when experiencing novel inputs. Krete and Noelle studied the 

relation between two areas of the brain known as the prefrontal cortex (PFC) and the 

basal ganglia (BG). In the prefrontal cortex there exist stripes of intensely intraconnected 

neurons, which are sparsely interconnected with each other (Elston et al., 2011; Pucak et 

al., 1996). The BG is connected to these stripes (Alexander, DeLong and Strick, 1986). It 

is believed that the BG working in tandem with the PFC controls the function of working 

memory (O'Reilly and Frank, 2006; Hazy, Frank and O'Reilly, 2006). When given 

information that must be used as contextual cues for a task, the stripes in the PFC hold 

this information in place. The BG controls whether to inhibit or excite this activity. This 

interaction between the BG and the stripes of neurons in the PFC is correlated with the 



  3 

function of working memory. Separate from short term and episodic memory, working 

memory is used to actively hold information used in a task at hand. For instance, when 

dialing a new phone number, one must actively hold the number in the mind. Kriete and 

Noelle hypothesize that working memory aids in the ability to handle novel combinations 

of previously experienced elements. An example they give is of one learning to play a 

new melody from previously learned chords. They believe this capability comes from the 

brain's ability to map values to "variables" to represent unique, new concepts, similar to 

the concept of a pointer in computer science. Rather than a stripe in memory storing a 

representation of a concept itself, the stripe might instead store a reference representation 

that points to the concept somewhere else in the brain. Kriete and Noelle created a 

computational model to simulate these processes in a neurobiologically plausible 

framework, based on the concept of indirection. Indirection refers to the ability of the 

PFC to serve as an abstract container for concepts already stored in memory. Instead of 

storing this concept anew, the stripes in memory can reference learned concepts and 

combine them in new and meaningful ways. 

Kriete and Noelle begin with a simple three-word sentence that contains an agent, 

a verb, and a patient. The concrete concept being stored in memory, in this case a word in 

a sentence, is known as a filler. However, the filler’s abstract function in the sentence, in 

this case agent, verb, or patient, is known as the role. Based on the role-filler 

combinations included in the training and testing set, the model’s performance is assessed 

on different types of word combination tasks. Three different types of combinations were 

tested: standard generalization, spurious anticorrelation, and full combinatorial. These 

different tasks each probe a different generalization capability: the ability to apply past 



  4 

knowledge appropriately to new experiences. For each task type, words are selected from 

a list of ten, giving one thousand possible sentence combinations. A simple recurrent 

network (SRN) was used as a control against which to compare their models. During 

testing for spurious anticorrelation and full combinatorial, Kriete and Noelle found that 

SRNs did not generalize well. The SRNs achieved a lower accuracy than the indirection 

model on all generalization tests and achieved below thirty percent accuracy on spurious 

anticorrelation and full combinatorial, which will be discussed in more detail below. 

Because SRNs learn from recurring patterns in the environment, lack of generalization in 

this case is to be expected. However, the indirection model did generalize well on 

spurious anticorrelation and even for full combinatorial. Through trial-and-error learning, 

the indirection model can match the appropriate roles (agent, verb, patient) to fillers (the 

words) and can do so for fillers that have not been seen in specific roles before. However, 

the model can only represent fillers that the model has seen before, so some preliminary 

word-recognition pretraining was required. Another downside is that the indirection 

model contains many neurobiologically-motivated details that make such models difficult 

to construct and slow to train in practice. 

Jovanovich builds upon the research from Kriete and Noelle by aiming to create a 

simplified model using modern neural network techniques that could be more easily 

reproduced, trained, and tested. In particular, the PFC components were replaced with 

holographic reduced representations (HRRs), and the BG components were replaced with 

temporal difference (TD) learning. 

Temporal Difference (TD) learning is a type of reinforcement learning. The 

model learns by receiving a reward signal, but this signal can be very sparse. It may take 



  5 

many actions before the model receives the reward signal.  By exploring the 

environment, the model can learn the policy. Learning the policy means the model can 

predict which actions will lead to the greatest reward in the future. Different types of TD 

learning algorithms exist. SARSA and Q-learning are two of which to take note of. 

Jovanovich used the SARSA algorithm in his model. The indirection model discussed in 

this paper will use Q-learning. Q-learning assigns values to state-action pairs. Given a 

particular state and an action, the Q-function returns an estimated value of discounted 

future rewards. The model will choose the state-action pair that returns the greatest value, 

hopefully leading to a reward signal. Through trial and error this function is updated to 

more accurately reflect the environment so that the model can more frequently obtain the 

reward signal.  

Plate introduced the idea of Holographic Reduced Representations (HRRs). 

Provided HRRs of sufficient size, one can create orthogonal encodings to represent any 

concept one desires. Through circular convolution, these vectors can be combined with 

one another to represent more complex concepts. For example, given an HRR for a light 

and an HRR for the color green, through circular convolution of these two vectors one 

could represent the concept of a green light. Because these encodings are orthogonal to 

each other, they can be used to represent independent concepts as inputs to a neural 

network. Orthogonality and circular convolution make HRRs convenient for use as inputs 

to neural networks. They can represent individual concepts as well as a compositional 

construction of those concepts. In the case of Jovanovich’s model, the HRRs can be used 

to represent the different roles and actions for the input and output gates which are 

discussed below. 



  6 

Jovanovich’s model consists of four discrete time steps: three learning steps and 

one query step. If the model responded correctly at the end of the query, then it was given 

a reward signal. If the model responded incorrectly, a reward signal was withheld. Using 

a single layer network with working memory and input and output gating, Jovanovich's 

model was able to perform with similar accuracy to Kriete and Noelle’s. Jovanovich 

tested for the same combinations as Kriete and Noelle in addition to a new combination: 

● Standard Generalization - During training, each filler has been seen in 

each role, and each filler has been seen in a sentence with all other fillers. 

The testing set consists of new sentences of these familiar role-filler pairs. 

For example, the model saw “a b c,” “e b a,” and “c a b” during training. 

The model is presented “c b a” during testing. A, b, and c were all seen 

together in a sentence during training. C was tested in the first role, and it 

had been trained in the first role. B was tested in the second role, and it 

had been trained in the second role. A was tested in the third role, and it 

had been trained in the third role. 

● Spurious Anticorrelation - Each filler has been seen in each role. 

However, pairs of fillers have not been seen in the sentence together with 

each other. Testing consists of introducing these unseen pairs of fillers into 

each sentence. For example, the model saw “e b a” and “c b e” during 

training. The model is presented “c b a” during testing. Because c and a 

have been seen in these roles before but not in the same sentence together, 

this is a spurious anticorrelation, which is anticipated to be a more 



  7 

challenging generalization to make compared to standard generalization 

above. 

● Full Combinatorial - Not all fillers have been seen in each role. During 

training, a subset of fillers is withheld from the agent role. During testing, 

the model is presented with these fillers in the agent role. For example, the 

model was trained on “e b c,” “e a c,” and “e b a.” The model is tested on 

“a b c.” Because the model never saw a as the agent during training, this is 

an example of full combinatorial generalization. 

● Novel Filler - A filler has never been seen before in any role. This is the 

most difficult for models to handle, as it involves a filler the model has no 

experience with whatsoever. During testing, the model is presented with a 

sentence containing this unseen, or novel, filler. For example, the model 

was trained on “a b c,” “b a c,” and “c a b.” The model is presented “z b c” 

during testing. Since the model never saw z during training but was still 

tested on the filler z, this is an example of novel filler. 

Jovanovich’s model with no assumed action lacks the mechanisms necessary to achieve a 

high accuracy. Due to architectural constraints and lack of pretraining, the model could 

only output as many representations as it had experience with. Jovanovich notes that, 

given the proper mechanisms, the model could reach higher performance, presumably as 

good as the pretrained model of Kriete and Noelle. 

An encoder-decoder is an architecture of neural networks that allows a set of 

input tokens to be mapped to a set of output tokens. Encoder-decoder networks are an 

established deep learning architecture that are often found in fields such as machine 



  8 

translation to translate between languages. In this way, the encoder-decoder architecture 

may be used to create a representation from a string of characters, i.e., a filler, that could 

be stored in memory to later be decoded. To our knowledge, besides basic LSTM models, 

encoder-decoder models have never been trained or tested on the generalization tasks 

described above. It is possible that the additional representational power provided by the 

encoder-decoder architectures may be successful on the tasks. While this would be 

unexpected, encoder-decoder performance would still provide a good baseline for 

comparison for indirection models. Before encoder-decoder models can be applied to a 

problem, they must be trained. Therefore, an end-to-end encoder-decoder that could 

handle both the encodings of fillers and the sentence task itself would be of interest. 

The indirection model alone was unable to solve novel fillers in Jovanovich’s 

research without an assumed action interpretation. The model relied on HRRs to store 

representations in memory. However, because these were created during training, the 

model did not have a method to output the filler when queried later during testing. To 

work around this limitation, the assumed action (AA) model was created which simply 

assumes that the stored representation released to downstream processes was the correct 

one for that filler. Therefore, the indirection model’s ability to represent a filler is 

dependent on the method used to encode fillers. However, its ability to store or retrieve a 

filler is independent of the representation of fillers. So, for the indirection model, how 

fillers are represented is abstracted away from the function of how fillers are stored and 

queried. 

  



  9 

 

III.  METHODOLOGY 

A.  MODELS 

Indirection 

The indirection model and all subsequent models were programmed in Python 

using Keras Tensorflow. The indirection model consists of three working memory 

stripes, shown in Figure 1. Each working memory stripe has its own input and output 

gate. Each memory stripe’s input and output gate exist to control whether fillers will be 

stored in the stripe or forwarded downstream, respectively. As seen in Figure 1, each gate 

can be in an opened position, as the input gate for stripe two, or in a closed position, as 

shown in stripes one and three. The input and output gates are controlled by single layer 

neural networks trained using Q-learning. The input gates are given an HRR as input to 

determine whether the word will be stored in the gate’s respective stripe of memory. A 

role HRR is convolved with the store HRR to represent the current experience of the 

agent. This HRR is then convolved with HRRs for the actions open and close, 

respectively, to create the input HRRs. These two HRRs represent the current state-action 

pairs being considered by the neural network, and the network’s job is to report Q-values 

for the two pairs. The HRR that produces the greater Q-value from the input gate 

determines whether the gate will open or close. For example, if the agent of the sentence 

is presented to the model, the input gate will receive an HRR representing agent, store, 

and open. The input gate then receives an HRR representing agent, store, and close. The 

action, open or close, that produces a higher output from the gate will be chosen. If 

opened, the filler will be allowed to pass through the gate and be stored in the working 



  10 

memory slot analogous to how the PFC stripes in the brain purportedly hold onto active 

task representations.  

In order to overcome the AA limitation, an encoder-decoder neural network is 

used which can perform the minimal generalization skills needed to represent novel 

fillers. Figure 2 illustrates how the encoder-decoder works in cooperation with the 

indirection model in three frames. In the first frame, the filler “John” is presented first to 

the encoder, which produces a corresponding representation. If an input gate decides to 

open for this role, the encoded filler will pass through the gate into that stripe of working 

memory, as in frame two. In the third frame, the output gate decides to open, and the 

encoding is passed through the gate to the decoder, which translates the encoding into the 

appropriate filler. 

Figure 3 demonstrates the architecture of the encoder-decoder model. Each oval 

represents a layer of the neural network. The encoder and decoder each contain their own 

Long Short Term Memory (LSTM) layer, seen in black. The encoder and decoder receive 

one token each as input through layer t. In the case of encoding and decoding fillers, each 

token represents one letter of the filler. Start and stop tokens were used for the decoder to 

delineate the beginning and ending of words. This delineation allows for variable lengths 

of tokens should one want to train on different lengths of words. The letters and start/stop 

tokens were represented using one-hot encodings. One-hot encodings are a standard 

method for encoding discrete data. A vector of zeros the size of the number of discrete 

items of data is created. The vector represents one of the discrete concepts depending on 

which element of the vector is “hot,” i.e., set to one. One-hot encodings are convenient 

for being used as neural network inputs and targets. The encoder-decoder is trained 



  11 

coupled together. The tokens are presented one by one during each time step. The token 

is wrapped up into a representation by the encoder, and the hidden states of the encoder 

are used to initialize the states of the decoder, seen as the dotted lines from the encoder to 

the decoder. After training, the encoder and decoder are split apart to be used in the 

indirection model. Instead of the initial state of the decoder being copied directly from 

the encoder, it is received through input layers. The separated encoder and decoder can 

then be placed into their respective roles in the indirection model. 

 

Nested Encoder-Decoder 

To compare the performance of modern architectures against the indirection 

model, a nested encoder-decoder was built. This model contrasts the indirection model by 

having a similar architecture but uses only established deep learning techniques. An outer 

encoder-decoder handles the representations for the fillers, just as it did for the 

indirection model. However, an inner encoder-decoder is used to encode the three word 

sentence instead of the indirection framework. Figure 4 illustrates this process, beginning 

in the bottom left corner. Each filler in the sentence is fed through the outer encoder, just 

like the indirection model. Then each encoding is given to the inner encoder, which 

wraps these into a single encoding for the sentence, seen at the top left of Figure 4. The 

sentence encoding is then given to the inner decoder, which unwraps the sentence 

encoding into the respective encodings for each filler in the sentence that was given to the 

model. The construction of the inner encoder-decoder is similar to that of the outer 

encoder-decoder with additional input and output layers. The inner encoder receives three 

tokens as input: two input layers for the encoding from the outer encoder and one input 



  12 

layer for a start and stop token. The start and stop token is represented through one-hot 

encoding and used to delineate the beginning and end of the sentence. The output of the 

decoder outputs these three tokens: two state vectors and a token for start and stop. When 

decoupled, the inner decoder receives two more input layers to initialize its internal state 

from the encoder.  

 

End-to-End Encoder-Decoder 

 To eliminate the need for pretraining the encoder-decoder, an end-to-end encoder-

decoder was built. The end-to-end encoder-decoder resembles the structure of the outer 

encoder-decoder. However, the encoding of each filler as well as the encoding of the 

sentence is accomplished through one model. Rather than having the nested structure of 

the previous model, the end-to-end architecture attempts to solve the problem with only 

one encoder-decoder. For example, “John”, “Ate”, and “Fish” would all be presented to 

the end-to-end encoder-decoder. Rather than producing intermediary encodings for the 

fillers, the end-to-end model directly produces the sentence encoding. This is a more 

difficult task to accomplish. Two levels of start and stop tokens were created. Sentence-

level start and stop tokens were used to delineate the beginning and ending of the 

sentence. Filler-level start and stop tokens were used to delineate between the fillers in 

the sentence. 

 

End-to-End Encoder-Decoder with Query 

In addition to the end-to-end encoder-decoder model, another end-to-end encoder-

decoder was created that could receive information about the roles of fillers and be 



  13 

queried about a given role. The architecture was the same as the previous model, but with 

one additional input layer to receive information about the roles. With this extra input 

layer, the model could be given roles to be associated with the fillers and could be 

queried. 

 

Nested Encoder-Decoder with Query 

A variation of the nested encoder-decoder was also built. This model can also 

accept information about the roles of the fillers and be queried, so that it more similarly 

resembles the sentence task for the indirection model. The outer encoder-decoder 

remained the same, but the inner encoder-decoder received an extra layer of input. This 

layer, like the end-to-end model, received information about the roles to be associated 

with the fillers, as well as the query for the filler to be outputted. 

B.  EXPERIMENTS 

 Each model was presented with the sentence task similar to that of Krete and 

Noelle and Jovanovich. A training and testing set was generated for each of the four types 

of combinations containing ten fillers. The size of the training set and testing set for each 

type of generalization was 200 sentences and 100 sentences, respectively. Each sentence 

contained three fillers, corresponding to the actor, verb, and patient. Fillers of a length of 

five letters were used. Each model was then presented with the three fillers of the 

sentence.  

 The sentence task for the indirection model involved four time steps: three store 

time steps plus one query time step. During each store time step, a filler from the 

sentence is presented to the model on each of the three store time steps. The filler is 



  14 

encoded and stored in a stripe of memory if an input gate opens. On the fourth time step, 

the model is queried for a randomly chosen role. If only one output gate opens containing 

the appropriate filler, then the model receives a reward signal of 1. A Huber Loss 

Function was used along with a stochastic gradient descent optimizer with a learning rate 

of 0.1. HRRs of size 1024 were used to encode the inputs to the input gate and output 

gate. An epsilon-greedy action selection policy with an epsilon value of .025 was used so 

that the model would occasionally choose a random action to explore more possibilities 

while learning. The encoder-decoder was constructed using the functional Application 

Programming Interface (API) in Keras. The encoder-decoder was pretrained on a corpus 

of ten thousand words for four hundred epochs. It achieved approximately 95% accuracy 

and a loss of approximately .16. 

 The sentence task for the nested encoder-decoder also involved four time steps. 

During the first three time steps the fillers of the sentence are presented to the model. 

During the fourth time step, the model reproduces the entire sentence as it was presented 

to it. The sentence task is identical for the end-to-end encoder-decoder model. 

C.  ANALYSIS 

Each model was run ten times for each type of combination. The indirection 

model was run until it achieved an accuracy of ninety-five percent or greater or until it 

reached 100000 epochs. The nested encoder-decoder and nested encoder-decoder with a 

query time step were run for 1600 epochs. The end-to-end models were run for 600 

epochs. Accuracy was calculated for both the words and letters. Word-level accuracy was 

calculated as the fraction of completely correct words the model outputted out of the total 

amount of words. Letter-level accuracy was calculated as the fraction of how many letters 



  15 

the model outputted correctly compared to the total number of letters in all of the words. 

Mean accuracies and the standard error of the means were calculated from the ten 

samples. Barplots and graphs for all accuracy data were generated using Python and 

Matplotlib.   



  16 

 

IV.  RESULTS 

 Figure 5 presents the accuracies of the indirection model and nested encoder-

decoder for all four types of combinations. The indirection model achieved one-hundred 

percent accuracy across all four types of combinations for both word-level and letter-

level accuracy. The nested encoder-decoder model achieved word-level and letter-level 

accuracies above ninety percent for two of the four combination types: standard 

generalization and spurious anticorrelation. For full combinatorial, the nested encoder-

decoder achieved a letter-level accuracy below forty percent and a word-level accuracy 

below twenty percent. Accuracy for novel filler is higher, with a letter-level accuracy of 

approximately sixty-one percent and a word level accuracy of approximately forty-nine 

percent. That the model would perform better on novel filler than full combinatorial is an 

unexpected result. Novel filler would appear to be the more difficult task, yet the nested 

encoder-decoder performs less optimally on full combinatorial. Letter-level accuracy is 

much higher than word-level accuracy. This indicates the model rarely gets an entire 

word correct but more frequently gets a majority of the letters in a word correct.  

 Figure 6 presents the accuracies for the end-to-end encoder-decoder model with a 

query time step. The prescient model achieved a word-level accuracy of approximately 

fifty percent with letter-level accuracy of approximately eighty-four percent on both 

standard generalization and spurious anticorrelation. For full combinatorial and novel 

filler, the end-to-end encoder-decoder achieved zero percent accuracy on the word level. 

For letter-level, the model achieved approximately fifty-seven percent and sixty-eight 

percent respectively. For the non-prescient model not given the roles, the model achieved 



  17 

a relatively consistent accuracy across all four combination tasks. The highest of which 

was for standard generalization, with an average word-level accuracy of thirty-seven 

percent and an average letter-level accuracy of thirty-eight percent. The end-to-end 

encoder-decoder model given the corresponding roles with one query time step achieved 

a mean word-level accuracy greater than that of the other end-to-end encoder-decoder 

models on all four combination types. For full combinatorial, it achieved a word and 

letter-level accuracy of approximately fifty-nine percent. For novel filler, it achieved 

approximately fifty-five and fifty-six percent accuracy for word-level and letter-level, 

respectively. 

 Figure 7 shows the accuracy of the nested encoder-decoder with a query time 

step. The model achieved less than thirty percent accuracy across all types of 

combinations. The word-level accuracy was 5.1 percent or less across all types of 

combinations. 

  



  18 

 

V.  DISCUSSION 

 The indirection model equipped with an encoder-decoder was able to match 

performance with Jovanovich’s assumed action model and was able to outperform the 

model for novel fillers. The indirection model also outperforms the established 

architectures for full combinatorial and novel filler. Full combinatorial and novel filler 

are much more difficult than standard generalization and spurious anticorrelation. To our 

knowledge, modern architectures have not been directly tested for novel fillers. When 

tested for full combinatorial and novel filler, established architectures suffer. These two 

types of combinations present the model with inputs that greatly differ from what was 

seen during training, and therefore performance greatly drops. The indirection model’s 

architecture allows it to not be focused on what the contents of the filler actually are. This 

allows it to focus on the roles of fillers. Through indirection, the model can achieve these 

higher accuracies. Statistical dependencies undergird previous models, and as a result the 

performance suffered. A higher order relational mechanism, i.e., indirection, was needed 

to improve performance. By abstracting away the details of the filler, the indirection 

model could overcome the statistical hurdles of full combinatorial and novel filler but 

lacked the means to output a novel word stored in memory. Coupling the indirection 

model with an encoder-decoder surmounts this problem. This novel indirection model 

does not suffer in performance when facing full combinatorial or novel filler tasks, as 

demonstrated by the results in Figure 5, and it outperformed established deep learning 

techniques across all four types of combinations. 



  19 

 The end-to-end models were designed to further test these architectures. As seen 

in Figure 6, the prescient model achieved a higher accuracy than the model given no roles 

during store time steps. The model without role information does not know what will be 

queried in the coming steps, while the prescient model knows from the beginning which 

role will be queried. This accounts for the prescient model’s higher performance. The 

end-to-end encoder-decoder with the best performance was given the corresponding role 

with each filler during the store time steps. This provided more information with which 

the model could form associations. The prescient model receives which role will be 

queried at the end but no direct input about which roles correspond to which fillers. The 

word-level accuracy dropped to zero for full combinatorial and novel filler. The drop in 

accuracy points to a problem of overfitting. The model sacrifices the word-level accuracy 

to achieve a higher letter-level accuracy. The model may be caught in a local minimum. 

Achieving a higher accuracy for both word-level and letter-level may require the model 

to first have a lower letter-level accuracy, thus causing the model to be trapped in a local 

minimum. One cause getting caught in a local minimum may be that loss is calculated at 

the letter level. If loss were calculated as a combination of word-level and letter-level, it 

may provide more of an incentive for the model to escape this kind of local minimum. 

Until these problems are solved, an end-to-end indirection model cannot be constructed. 

Solving these training issues is a nontrivial task that will require further exploration.  

Integration of the indirection model into the Keras library would make an end-to-

end indirection model more feasible. However, the nested structure of the model may 

interfere with performance. For instance, if the outer encoder-decoder is incorrect, but the 

indirection model opened the correct gate, should it be punished as well? If the 



  20 

indirection model opens the incorrect gate, but the decoder decodes the filler correctly, 

should the decoder be punished? How to resolve these issues is not yet clear and will 

require further research. 

 The nested encoder-decoder with a query time step achieved a poor accuracy and 

encountered an overfitting problem similar to that of the end-to-end encoder-decoder. In 

Figure 7, one can see the disparity between word-level and letter-level accuracies. Again, 

the drop in accuracy points to a problem of overfitting. The model is sacrificing word-

level accuracy to achieve higher letter-level accuracy. Further exploration will be 

required to determine how to make these models perform with better accuracy if possible. 

 Overall, the use of indirection appears necessary to solving the full combinatorial 

and novel filler tasks. Combining the indirection framework with deep-learning methods 

resulted in overcoming the assumed-action limitation observed by Jovanovich. While 

pretraining was still required due to unresolved technical limitations, the end-to-end deep 

learning models also clearly demonstrated an inability to solve these tasks. This inability 

suggests that future work integrating the indirection framework fully into 

Keras/Tensorflow to allow full end-to-end training is a promising direction for future 

research. 

  



  21 

 

WORKS CITED 

Alexander, G E, M R DeLong, and P L Strick. "Parallel Organization of Functionally 
Segregated Circuits Linking Basal Ganglia and Cortex." Annual Review of 
Neuroscience (1986): 357-81. 

 
Elston, G N, et al. "Pyramidal Cells in Prefrontal Cortex of Primates." Frontiers in 

Neuroanatomy (2011). 
 
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. 
 
Hazy, Thomas, Michael Frank, and Randall O'Reilly. "Banishing the Homunculus: 

Making Working Memory Work." Neuroscience (2006): 105-18. 
 
Jovanovich, Mike. "Biologically Inspired Task Abstraction and Generalization Models of 

Working Memory." Master's thesis, Middle Tennessee State University, 2017. 
http://jewlscholar.mtsu.edu/xmlui/handle/mtsu/5561. 

 
Kriete, Trenton, et al. "Indirection and Symbol-like Processing in the Prefrontal Cortex 

and Basal Ganglia." Proceedings of the National Academy of Sciences (2013): 
16390-95. 

 
O'Reilly, Randall C and Michael J Frank. "Making Working Memory Work: A 

Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia." 
Neural Comput. (2006): 283-328. 

 
Plate, Tony. Holographic Reduced Representations: Convolution Algebra for 

Compositional Distributed Representations. Sydney: Morgan Kaufmann 
Pubishers Inc., 1991. 

 
Pucak, Michele L, et al. "Patterns of Intrinsic and Associational Circuitry in Monkey 

Prefrontal Cortex." Journal of Comparative Neurology (1996): 614-30. 
 

  



  22 

 

APPENDIX 

Models and code pertaining to this thesis can be located at 
https://github.com/ChaningBlake/thesis 

 
 
 

 
Figure 1. A representation of the working memory stripes and gates of the indirection 
model. The model consists of three stripes of working memory, each with its own input 
and output gate. Gates can be in closed states, like stripes one and three, or in opened 
states. 



  23 

 

Figure 2. A demonstration of the encoder-decoder working in cooperation with the 
indirection model, split into three frames. The filler is presented to the encoder, and the 
encoding is stored in memory in the second frame. In the third frame, the encoding is 
outputted and given to the decoder to reproduce the filler. 



  24 

 

Figure 3. The encoder-decoder in both coupled and decoupled form. Layers are 
represented by each oval. The encoder and decoder receive one token as input through 
layer t. The token is wrapped up into a representation by the encoder, and the hidden 
states of the encoder are used to initialize the states of the decoder, seen as the dotted 
lines from the encoder to the decoder. 



  25 

 

Figure 4. An abstract overview of the nested indirection model. Each filler in the sentence 
is fed through the outer encoder, just like the indirection model. Then each encoding is 
given to the inner encoder, which wraps these into a single encoding for the sentence, 
seen at the top left. This process is then reversed, feeding the encoding to the inner 
decoder, which passes its output to the outer decoder. 

 

 
Figure 5. Accuracies of indirection and nested encoder-decoder models for each of the 
four combination types. Error bars represent ± 1.96 standard errors and approximate 95% 
confidence. The indirection model outperforms the nested encoder-decoder across all 
four types of combinations. 



  26 

 

Figure 6. Accuracies for all variations of the end-to-end encoder-decoder. Error bars 
represent ± 1.96 standard errors and approximate 95% confidence. The end-to-end suffer 
greatly for full combinatorial and novel filler. Large gaps between word-level and letter-
level accuracy can be seen for the prescient model, which signifies an overfitting 
problem. 

 
 
 

 
Figure 7. Accuracies for the nested encoder-decoder with a query time step. Error bars 
represent ± 1.96 standard errors and approximate 95% confidence. The nested encoder-
decoder achieves a low accuracy across all combination types. The wide disparity 
between word-level and letter-level accuracy signifies an overfitting problem.  


