

Comparing the Performance of Multiple Linear Regression, Random Forest,

and Artificial Neural Networks for the Prediction of Weather on Mars

by

Jared Frazier

A thesis presented to the Honors College of

Middle Tennessee State University in partial fulfillment of

the requirements for graduation from the University Honors College

Fall 2021

Thesis Committee:

Dr. Salvador Barbosa, Thesis Director

Dr. Joshua Phillips, Second Reader

Dr. Mary Evins, Thesis Committee Chair

Comparing the Performance of Multiple Linear Regression, Random Forest,

and Artificial Neural Networks for the Prediction of Weather on Mars

by Jared Frazier

APPROVED:

Dr. Salvador Barbosa, Thesis Director

Associate Professor, Computer Science

Dr. Joshua Phillips, Second Reader

Associate Professor, Computer Science

Dr. Mary Evins, Thesis Committee Chair

Research Professor, University Honors College

i

Dedication

To my beloved parents and brother, without whom nothing I have ever

accomplished would be possible.

ii

Acknowledgments

 I would like to acknowledge all the phenomenal faculty at MTSU who have

facilitated and encouraged my academic and personal growth. These individuals have

pushed me to give my best efforts and consistently challenged me intellectually: Dr.

Mengliang Zhang, Dr. Greg Van Patten, Dr. Sal Barbosa, Dr. Josh Phillips, Dr. David

Butler, Dr. Jamie Burriss, and Ms. Laura Clippard. Additionally, this work was supported

by an MTSU Silver Undergraduate Research Experience and Creative Activity Grant.

iii

Abstract

 This thesis explores several machine learning methods for time series forecasting

for weather prediction on Mars. The colonization of Mars has been proposed and funded

by both public and private organizations like the National Aeronautics and Space

Administration (NASA) and the aerospace corporation Boeing. The colonization of Mars

has many challenges, one of which is the reliable prediction of weather. Traditional

weather prediction techniques, such as numerical weather prediction, are not feasible on

Mars given the lack of infrastructure needed for such powerful methods. In this thesis,

several machine learning methods were implemented to circumvent these computational

requirements: multiple linear regression (MLR), random forest (RFs), and artificial neural

networks (ANNs). The work done for this thesis will inform the research questions of

future atmospheric informaticians investigating the colonization of Mars and will serve as

a strong baseline for model performance and methodology. Code and data are freely

available at https://github.com/jfdev001/mars-ml-mtsu-honors-thesis.

iv

Table of Contents

List of Tables……………………………………………………………………………………….v

List of Figures……………………………………………………………………………………..vi

List of Symbols and Abbreviations…………….………………………………………………..viii

I. BACKGROUND…………………………………………………………………………………1

II. THESIS STATEMENT…………………………………………………………………………4

III. METHODOLOGY…………………………………………………………………………….5

A. Research Framework……….……………………………………………………...5

B. Dataset….………………………………………………………………………….6

C. Preprocessing for Time Series Forecasting……………….……………………….7

D. Independent, Joint, and Iterative Models for Time Series Forecasting…………..10

E. Multiple Linear Regression……………………………………………………….11

F. Random Forests…………………………………………………………………..13

G. Artificial Neural Networks ……………………………………………………….16

H. Recurrent Neural Networks………………………………………………………18

I. Convolutional Neural Networks………………………………………………….22

J. Cross Validation and Hyperparameter Tuning………………………….……….25

K. Performance Metrics and Final Evaluation ………………………………….….28

IV. RESULTS AND DISCUSSION……………………………………………………………...29

A. Multiple Linear Regression………………………………………………………30

B. Random Forests…………………………………………………………………..32

C. Artificial Neural Networks ……………………………………………………….34

V. CONCLUSIONS AND FUTURE WORK……………………………………………………41

REFERENCES…………………………………………………………………………………...42

APPENDICES……………………………………………………………………………………49

v

List of Tables

Table I: Features and targets for study. ……………………………………………………………6

Table II: Possible MLR models.………………………….………………………………………12

Table III: Sample time series.……………………..,……………………………………………..19

Table IV: Metrics for all models. …………………..…………………………………………….29

Table V: Assumption violations for linear regression……………………………………………30

Table VI: RF hyperparameters……………………………………...……………………………32

Table VII: CNN hyperparameters ……………...………………………………………………...34

Table VIII: LSTM hyperparameters……………………………………………………………...35

Table IX: GRU hyperparameters ………………………………………………………………...36

Table X: MAE with confidence intervals ………………………………………………………..49

Table XI: MSE with confidence intervals………………………………………………………..49

Table XII: RMSE with confidence intervals……………………………………………………..50

Table XIII: Neural network early stopping epochs with confidence intervals…………………...50

vi

List of Figures

Figure 1: The research framework ………………………………………………………………...5

Figure 2: Decision tree ………………………………………………………………..………….14

Figure 3: Feedforward neural net ………………………………………………………………...17

Figure 4: Unrolling recurrent neural net………………………………………………….……....20

Figure 5: RNN architecture……………………………………………………………….………21

Figure 6: Convolution…………………………………………………………………………….23

Figure 7: CNN architecture ………………………………………...…………………………….25

Figure 8: Time series split………………………………………………………………………..26

Figure 9: MAE for all models ……………………………………………………………………38

Figure 10: MSE for all models…………………………………………………………………...39

Figure 11: RMSE for all models …………………………………………………………………40

Figure 12: MLR metrics at timesteps…………………………………………………...………..51

Figure 13: RF metrics at timesteps……………………………………………………………….51

Figure 14: CNN metrics at timesteps …………………………………………………………….52

Figure 15: LSTM USJ metrics at timesteps ……………………………………………………...53

Figure 16: LSTM USI metrics at timesteps………………………………………………………53

Figure 17: LSTM SJ metrics at timesteps ………………………………………………………..54

vii

Figure 18: LSTM SI metrics at timesteps ………………………………………………………..54

Figure 19: GRU USJ metrics at timesteps ……………………………………………………….55

Figure 20: GRU USI metrics at timesteps………………………………………………………..55

Figure 21: GRU SJ metrics at timesteps …………………………………………………………56

Figure 22: GRU SI metrics at timesteps………………………………………………………….56

viii

List of Symbols and Abbreviations

1. National Aeronautics and Space Administration: NASA

2. Multiple Linear Regression: MLR

3. Random Forest: RF

4. Artificial Neural Network: ANN

5. Recurrent Neural Network: RNN

6. Convolutional Neural Network: CNN

7. Mean Absolute Error: MAE

8. Mean Squared Error: MSE

9. Root Mean Squared Error: RMSE

10. Kelvin (unit of temperature): K

11. Pascal (unit of pressure): Pa

12. Gated Recurrent Unit: GRU

13. Long-Short Term Memory: LSTM

14. Cross Validation: CV

15. Rover Environmental Monitoring Station: REMS

16. Rolling-Origin-Recalibration Cross Validation (aka Walk-Forward Validation):

RORCV

17. Mars Recurrent Neural Network: MarsRNN

18. Autoregressive: AR

19. Mars Autoregressive Net: MarsARNet

20. Unstacked Iterative Joint Model: USJ

21. Unstacked Stacked Iterative Model: USI

ix

22. Stacked Joint Model: SJ

23. Stacked Iterative Model: SI

24. Bayesian Optimization: BOPT

25. Hyperparameter: HP

26. Variance Inflation Factor: VIF

1

I. BACKGROUND

At any given moment, a devastating cosmic event could wipe all life on Earth

from existence. In combination with pressures humanity places on Earth’s biosphere,

extinction may be inevitable [1]. Moreover, an understanding of extra-terrestrial climatic

conditions is critical for future unmanned missions [2]. Going beyond our domain, further

from the sun, and to the terrestrial planet Mars may be one way to reduce the possibility

of human extinction [3].

Despite this lofty goal, the hostile Martian weather conditions differ vastly from

those on Earth, and the ability to predict those conditions would be invaluable for

successful colonization and further exploration. In particular, the extremely wide range of

temperatures (-225 °F to 70°F) are a significant barrier to implementing human

infrastructure [1], [4]. Further, traditional weather prediction techniques (e.g., numerical

weather prediction) are computationally expensive and are not always stable due to the

volatile physical conditions of the Earth’s atmosphere [3], [5]. While such techniques

have steadily improved over the past few decades, they require significant technological

infrastructure such as super-computing facilities, weather satellites, and other telemetry

instruments that are not present on Mars [6].

Supervised machine learning is the process whereby computers are given training

inputs (the specific values of independent variables) and the known outputs

corresponding to these inputs in order to learn a rule, or function, that maps inputs to

2

outputs [7]. A simple example of a supervised learning problem pertaining to weather

prediction might be the following: given a set of input values for humidity (70%, 20%,

30%) and a corresponding set of outputs for whether it will rain (Will Rain, Won’t Rain,

Will Rain), then the task of supervised learning is to learn a rule for predicting whether it

will rain or not based on the humidity. Supervised machine learning is resistant to the

incomplete understanding of atmospheric conditions that introduces uncertainties to

numerical weather prediction and is therefore ideal for the even less understood Martian

atmosphere [8]. Machine learning has also successfully been used for weather forecasting

in a number of studies [9]–[16]. Additionally, a recent study implemented many machine

learning methods—which are like those utilized in this thesis—using a smaller subset of

NASA’s Curiosity Rover data for the analysis of weather; however, the study does not

enumerate data preparation, cross validation, or hyperparameter tuning techniques [13].

Despite known non-linear—in particular, sporadic or quasi-unpredictable—

responses in weather, it has also been demonstrated that there is some degree of linearity

that is present between certain input variables and certain output variables (e.g., the

percent of dry days for a given year and total annual rainfall, respectively) [16].

Therefore, a multiple linear regression (MLR) model is also appropriate since it was

unknown whether the current system’s (Mars’ Gale Crater) predictor variables and the

response variables would demonstrate a linear relationship [10].

Random forest (RF) models—which combine decision trees to produce an

average output—have been successfully implemented for the prediction of both severe

and normal weather conditions [17], [11]. Therefore, this model is a suitable choice for

the volatile Martian atmosphere.

3

Finally, artificial neural networks (ANNs) are strong candidates for weather

forecasting since they can capture the non-linear output of future weather conditions from

past weather conditions [18], [9]. Additionally, the developer has much more control over

the design of ANNs for a given problem and therefore ANNs can be implemented with

much greater agency than either RFs or MLR.

4

II. THESIS STATEMENT

 The objectives of this study are to (1) implement MLR, several ANN

architectures such as recurrent neural networks (RNNs) and convolutional neural

networks (CNNs), and RF models to predict mean ambient air temperature in a region of

Mars known as the Gale Crater; and (2) use the root mean squared error (RMSE), mean

squared error (MSE), and mean absolute error (MAE) as metrics to evaluate which model

can most accurately generate a 7-sol forecast for the mean ambient air temperature on

Mars when given 28 prior sols of weather data. This study is important not only in

comparing the predictive capabilities of various machine learning algorithms but is also a

unique study since to our knowledge none of the NASA Mars Science Laboratory Teams

have attempted similar efforts [19]. This thesis is relevant to atmospheric scientists,

applied mathematicians, and machine learning engineers as it compares a breadth of

techniques on a novel system. Finally, this thesis is relevant to the author’s academic and

personal growth since the author plans to attend graduate school for Computational

Science, and the techniques learned are applicable to computational experimentation in

general.

5

III. METHODOLOGY

A: Research Framework

Figure 1. The research framework. The letter X indicates a non-applicable step for a

model while a check mark ✓ indicates an applicable step for a model.

This study consists of several distinct phases depicted in the above figure: (1) data

collection and preprocessing; (2) designing of models; (3) tuning of models; and (4)

5-fold cross validation (CV) and subsequent comparison of the performance metrics of all

models for forecasting mean ambient air temperature in Mars’ Gale Crater. Explicit

tuning does not occur for MLR in this study since this model is most heavily impacted by

the selection of inputs (i.e., data). This study is not an investigation into the different

regression algorithms themselves, but rather it is an applied study of their comparative

performance on the selected dataset.

MLR

Curiosity eather

 ata

 ata

 reprocessing

RF

ANN

6

B: Dataset

Table I. Features and targets for study.

Feature* Description Target

Ground Temperature (K) The brightness

temperature measured

by a thermopile on

boom 1.

Mean

Ambient Air

Temperature

(K)

Boom Air Temperatures (K) Separate local air

temperatures for

REMS booms 1 and 2.

Local Relative Humidity

(%)

Local relative

humidity at humidity

sensor.

Atmospheric Pressure (Pa) Pressure.

Ambient Air Temperature**

(K)

Estimated ambient air

temperature.

28 x 17 Total Features, 7 x 1 Total Targets

*The minimum, maximum, and mean of a feature each of 28 sols prior.

**Only the minimum and maximum of this feature were computed.

The weather data used in this study are available through NASA’s Planetary Data

System (PDS). Data for 2837 Martian days (sols) were collected via the Rover

Environmental Monitoring System (REMS) onboard NASA’s Curiosity Rover. Note,

Martian sols are approximately equivalent in duration to Earth days, and thus the word

sol and day are often used interchangeably. Each row of a data product representing one

sol is composed of different columns for time references, wind sensor products, ground

temperature products, air temperature products, ultraviolet sensor products, humidity

sensor products, and pressure sensor products [20].

Sampling for each row is taken at 1 Hz maximum, with baseline operation of 5

minutes every hour. While each sol therefore contains time series data, only medium-

7

range (3-7 days) forecasting was be attempted in this study. Consequently, Table I lists

the relevant features (independent variables), which are estimators (minimum, mean, of a

maximum) of a given sol, that were used in this study. The estimators of a given sol were

selected because the same estimators were used in the datasets of several previous studies

[21]–[23].

C: Preprocessing for Time Series Forecasting

 Time series data are data that are sequential with respect to time. There are many

common examples of time series data, such as fluctuating sea level, counts of sunspots,

and daily closing values for stock market indices [24]–[26]. In all cases, some variable is

always considered with respect to the time at which such information was collected. In

weather prediction, the relevance and structure is quite intuitive since the reader has

likely referred to weather forecasts in his or her daily life when making decisions about

what to wear, whether to carry an umbrella, etc.

To understand the format of weather data, consider a single variable such as

temperature. On the present-day t, the temperature might be 70 °F while the two previous

days (days t-1 and t-2) might be 67 and 68 °F, respectively. However, the temperature of

the next 7 days is unknown. The expression that can represent the list, or window, of the

next 7 days temperature is this: (t+1, t+2, t+3, t+4, t+5, t+6, t+7). Fundamentally, this is

how time series data are divided and the “previous-day” window is called the time lag

while the “future-day” window is called the forecast horizon.

8

For this study, data were windowed with a time lag of 28 (i.e., t, t-1, t-2, …, t-27)

and a forecast horizon of 7 (i.e., t+1, t+2, …, t+7). The size of the time lag and forecast

horizon are problem specific and often influenced by some interpretable concept such as

quarters of a year (in the case of financial data) or, in this study’s case, 1 previous month

of data for a 7-sol forecast.

 Moreover, it is important to divide data into a training, validation, and test set. If

this procedure is not followed, then any evaluation of the model will be positively biased,

that is the model will appear to be much better than it is. Data are split in the following

proportions: 60% training, 20% validation, and 20% test. This is a typical splitting pattern

in machine learning projects [27].

Differentiating the validation and test set is important. The validation set is “seen”

multiple times by the model after it has been trained. The validation set is used to

evaluate how well the model can generalize to new cases. However, since the same

validation set is used multiple times after adjusting (i.e., optimizing) the hyperparameters

(learning rate, model architecture, etc.) of the model, the generalization error for different

models is only measured using a single validation set. Therefore, the test set contains data

that none of the candidate models—each with different hyperparameters—has ever

“seen,” and this set is used at the very end of the study to evaluate and select the best

candidate model [28], [29]. Moreover, at no point in the experimentation process do any

models have access to the test set. This includes during transformation processes such as

normalization and imputation, discussed shortly.

Min-max normalization was be applied to all features as given in [15]. This

practice transforms data to a common scale to (1) allow for a model to learn more

9

efficiently; and (2) to make the comparison of models straightforward and constant [30].

For this study, the min-max normalization range is from zero to one, thus all variables

(features and targets) were transformed to this range [31]. This follows the normalization

procedure of previous work [15].

𝑑𝑎𝑡𝑎 =

𝑑𝑎𝑡𝑎 −𝑚𝑖𝑛 (𝑑𝑎𝑡𝑎)

𝑚𝑎𝑥(𝑑𝑎𝑡𝑎) − 𝑚𝑖𝑛 (𝑑𝑎𝑡𝑎)

(1)

As is the nature of data collection, some data are missing. Instruments can fail or

data can be screened for anomalies that are subsequently removed. For this study,

approximately 4% of sols were missing from when collection started on sol 1 to when

collection ended on sol 2837. The task of generating values that are estimates of missing

values is known as imputation. There are many techniques in missing value imputation;

however, one of the most powerful imputation methods is known as the extra trees

method—which is similar to RFs but instead “views” an entire input dataset rather than

bootstrapped (random samples with replacement) samples [32]–[35]. While the extra

trees method suffers from higher variance due to using the entire input dataset for

training, imputation occurs more quickly and thus makes it preferable to the random

forest implementation on which the Scikit-Learn implementation is based [33], [36], [37].

For multivariate imputation, often the iterative imputation method (in this case

extra trees) will not converge to an optimal solution. For this study a max of 5 iterations

was selected for the imputer and the effects of non-convergence were safely ignored

10

since Oberman et al. [38] showed that inferential validity can be achieved after 5 to 10

iterations.

The input to all algorithms was 28 days of feature data, and the output was the

mean ambient air temperature for the next 7 sols (see Table I).

All data preprocessing and plotting were conducted using the Scikit-Learn,

NumPy, SciPy, Matplotlib, and Pandas libraries for Python [33], [39]–[42].

D: Independent, Joint, and Iterative Models for Time Series Forecasting

When building models to make predictions on time series data, three possible

strategies are available: independent, joint, and iterative models [43].

As discussed previously, a time series window for the future is called a forecast

horizon. For independent models, one constructs a model that specifically learns to

predict future values only at that time step. Both RF and MLR algorithms belong to this

class of strategies, so seven models are constructed for each algorithm, one model for

each day in the future. Neither MLR nor RFs are explicitly designed for multi-step

predictions, which is the case for this study since multiple steps (sols) in the future are

predicted. As a result, the independent model strategy is one strategy that can

accommodate the problem formulation for this study.

Joint models are singular models that predict all values in the forecast horizon at

once as opposed to constructing a separate model for each step in the forecast horizon (as

is the case for independent models). The single model strategy was implemented with one

11

variation of RNNs in this study. RNNs that predict all steps in the forecast horizon at

once are termed “joint” for this study.

Iterative models are those models that assume there is a relationship between

sequential timesteps that cannot be ignored. This relationship is known as

autocorrelation, and essentially requires that the model iteratively predict t+1 then use

t-27, t-26, …, t and t+1 to predict t+2. The model then adds t+2 to its internal list (or

state) and predicts iteratively until the weather data for t+7 are predicted. At the end of

iterative prediction process, the desired target variable will be predicted in a time indexed

list where each t is a timestep (day) like (t+1, t+2, t+3, t+4, t+5, t+6, t+7).

E: Multiple Linear Regression

The goal of multiple linear regression is to find a parametric function that

minimizes the squared difference between the prediction 𝑌̂ for ambient air temperature

and the actual value Y for the ambient air temperature. The function itself is a linear

combination of N total independent variables Xn plus random error ε [22]. The parameters

learned by MLR are the values 𝛽𝑛 that correspond to each Xn. More commonly the set of

independent variables is represented by an input vector XT = (X1, X2, …, Xn) and 𝑌̂ is a

function of each X. The relationship between 𝑌̂ and X is described in equation (2) from

[44].

 𝑌̂ = 𝑓(𝑋) = 𝛽0 + ∑ (𝛽𝑛𝑋𝑛)
𝑁
𝑛=1 + ε (2)

12

Since there are N = 476 possible independent variables (features) in this study,

then there are 2N = 2476 = 1.95 x 10143 possible parametric models that could be

considered to produce the best estimated response 𝑌̂ of the actual response Y [45], [46].

This means that there are more combinations of MLR models for this study than there are

atoms in the universe. To illustrate this concept with more manageable numbers, Table II

demonstrates the number of possible models if there are only two features (N = 2) [45].

Table II. Possible MLR Models Given N = 2 Features.

Model Equation

1. 𝑌̂1 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ε

2. 𝑌̂2 = 𝛽0 + 𝛽1𝑋1 + 𝜀

3. 𝑌̂3 = 𝛽0 + 𝛽2𝑋2 + 𝜀

4. 𝑌̂4 = 𝛽0 + 𝜀

 Testing each model combination would be impossible, and techniques such as

backward elimination and principal component analysis are commonly used to select the

most important features for a study [47]. However, while feature reduction techniques

were employed originally for this study, they were abandoned due to failure of the dataset

to meet assumptions that are required for MLR to be considered a robust and valid model

[48]. This concept is elucidated in the discussion and two statistical tests are used to

illustrate the dataset’s failure to meet the required assumptions [49], [50].

13

 MLR uses the method of ordinary least squares to adjust its parameters. In this

way, MLR learns a function with a number of parameters equal to the number of features

in the dataset. Such a function would essentially be Equation (2) but with 𝛽0 through 𝛽476

possessing different values that would uniquely modify the input data to produce the

desired output.

 The implementation of the MLR model was via Scikit-Learn and statistical tests

pertaining to the assumptions of MLR were carried out via Statsmodels [33], [51].

F: Random Forest

 RFs are an ensemble learning method. The RF learning mechanism is to

aggregate multiple individual decision trees for—in this study—regression problems and

produce an average prediction [52]. A decision tree is simply a tree-like model of

decisions and their possible consequences. The subsequent aggregation of all these

individual decision trees into a forest yields greater accuracy and prevents overfitting

associated with individual instances of decision trees [53].

14

Figure 2. Decision tree regressor for canonical iris flower dataset.

Since the subunit of a random forest is a decision tree, Figure 2 depicts both a

decision tree and the process by which it makes decisions. An adaptation of the well-

known iris flower classification problem is used to illustrate a decision tree regressor. The

adapted features for this problem are petal length, sepal length, and sepal width while the

target for the decision tree is to predict the petal width. Note that this adaptation is

somewhat trivial since if one possesses the iris flower, one can easily take the appropriate

measurements without relying on a decision tree. Nevertheless, at each square (node) in

the tree, information about a feature informs whether to proceed left or right down the

tree. For example, if an iris has a petal length that is less than or equal to 2.45 cm, then

the tree is traversed from the first node to the node on the left in the second row of nodes.

This process continues until a prediction is made.

The learning criteria for decision trees, and consequently random forests, is

minimizing the mean squared error (“mse” in the figure) between the current node’s

15

prediction (value) and the known target value. Nodes make predictions by averaging the

associated target values for the n samples of the node, and the ends (leaves or leaf nodes)

of the decision tree have the lowest mean squared error.

A hyperparameter, or those parameters that are intrinsic to a particular model, that

is also applicable to RFs for this study can be elucidated using Figure 2. The maximum

depth of the decision tree is the maximum number of branches (arrows) until a leaf node

is encountered. For Figure 2, the maximum depth is 3. This hyperparameter can be

changed to increase or decrease the risk of overfitting (overlearning a problem and failing

to generalize to new problems).

The random forest trains n decision trees known as n estimators and then averages

the predictions across all decision trees. However, unlike decision trees, which select the

best feature to split a node on based on the learning criteria for all features, the RF

searches for the best feature among a random subset of features [34]. Moreover, the

training set for the ith decision tree is a bootstrap sample of the original training set [31].

Bootstrapping is the act of randomly sampling with replacement. The bootstrapping

sampling method is known to provide a more diverse ensemble from which an accurate

RF model prediction could arise [54].

RFs are a reputable choice for high-dimensional data and are reported to have

ease of implementation for large datasets according to [55] and [23]. Additionally, RFs

are capable of handling complex, non-linear relationships and are one of the most

powerful machine learning algorithms available today [34].

16

The implementation of the RF model is available via Scikit-Learn [56]. The n

estimators and max depth hyperparameters that were tuned for RFs are discussed in the

results and discussion section.

G: Artificial Neural Networks

 The bulk of this study was spent designing, tuning, and troubleshooting the class

of machine learning algorithms known as artificial neural networks (ANNs).

 ANNs are biologically inspired algorithms that, like the previous models

discussed, learn parameters such that better predictions can be made [57]. ANNs are

composed of neurons and can have multiple layers to learn some complex function such

as the function that describes weather forecasting for a particular system. Figure 3 depicts

the simplest form of an ANN, commonly referred to as a multilayer perceptron. ANNs

are particularly useful as they do not require intimate knowledge of a system—like the

complicated numerical methods and computational fluid dynamics used in atmospheric

science—to make powerful predictions.

ANNs learn a function’s parameters for a given system by performing gradient

descent in error. The function that models the error between predictions and known

targets is referred to as an objective, cost, loss, or error function [58]. The proverbial

example of gradient descent is imagining a hiker trying to get the lowest point in a

mountain range. Many routes will lead up the mountain, many routes will lead to spots

that are lower than the hiker’s current point, but not necessarily the lowest possible point

in the mountain range. Thus, it is the task of the neural network to find such a path in a

17

(literally) unimaginable N-dimensional mountain range to the lowest point in said

mountain range.

Figure 3. Feedforward neural network architecture. Single hidden layer neural network

with k hidden neurons denoted by the black circles [33].

 As the culmination of the study’s complex models, a total of nine unique neural

networks were implemented using TensorFlow and Keras [59], [60]. The mean squared

error was used as the loss function for training of all neural networks (see Equation 3).

 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)
𝑁
𝑖=1

2
 (3)

18

The number of times the ANN “sees” the entire training dataset is called training epochs.

The number of epochs used for all ANNs was 32. To prevent overfitting, which is

learning parameters for a neural network such that the network performs poorly on

unseen data, early stopping is implemented with TensorFlow callbacks. The early

stopping value monitored was validation loss (the performance of a trained model after

each epoch on the validation batches). The early stopping criteria was to halt model

training if validation loss did not improve (i.e., decrease) after 4 consecutive epochs. The

batch size, which is the subsample of data that is used to make parameter updates, was

28. The batch size was set to 28 because cross validation (described later) required that

the data be divided into subsamples of 28 to meet the 28-day window corresponding to a

single Martian month. The Adam optimizer was used for all ANNs. Other

hyperparameters that apply to specific models for this study are listed as tables in the

results and discussion.

H: Recurrent Neural Networks

 As mentioned, weather data are time series data as they are collected at regular

temporal intervals and have some sequential relationship. This time dependence is ideal

for recurrent neural networks (RNNs) since RNNs can use their internal state to process

variable length sequential input for the task of weather forecasting [61].

 Several architectures exist for RNNs. The variations on the RNN are primarily

based on changing its fundamental unit known as the cell in order to mitigate problems

wherein long-sequences “confuse” the RNN and prevent it from learning a meaningful

19

function [62]. Thus, the LSTM and GRU cell were developed to alleviate instances where

an RNN would fail for long-sequences.

The number of cells in the RNN determines the output for a given time series. In

its simplest form, an RNN has cells equal to the number of time steps in a given input

matrix. A matrix, here, is simply a table where the number of the rows is the number of

timesteps for a set of data and the number of columns is the number of features for the

same data. Table III depicts example input to an RNN.

Table III. A sample time series window with two features.

Timestep Relative Humidity (%) Temperature (K)

0 0.97 300

1 0.53 275

2 0.75 286

The output from an RNN is one of three objects and is influenced by its own input

at each timestep in the time series window. The first object, called the hidden state at a

timestep t is denoted by ℎ𝑡+𝑖 where i is from 0 to the total number of timesteps T in the

time series window. Referring to Table III, T = 3. The ℎ𝑡+𝑖 object is the direct result of

the computations of the RNN cell and, as noted, there are three cells in Figure 3, one for

each timestep in Table III. The network is recurrent in that it passes the ℎ𝑡+𝑖 object to the

next cell in the sequence of RNN cells. If the cell is an LSTM cell, a special memory

state called the cell state 𝑐𝑡+𝑖 is passed to the next cell also. The final output of the RNN

20

is a matrix of hidden states consisting of a single hidden state per timestep, the last

hidden state computed in the RNN sequence, and (in the case of LSTM cell) the last cell

state computed in the RNN sequence.

Figure 4. Unrolling of recurrent neural network over T = 3 timesteps. An asterisk *

indicates an output that is only for the LSTM cell. Cells are depicted as black squares.

Cebeci [14] reported that both the Gated Recurrent Unit (GRU) and Long Short-

Term Memory (LSTM) architectures are ideal for weather data. However, while Cebeci

[14] reported that GRU-RNNs were computationally less expensive (faster) to train,

LSTM-RNNs were deemed more accurate and therefore preferable for weather

forecasting problems

 RNNs are implemented in one of many ways for this study: stacked (neural

network layers are stacked sequentially on one another to improve performance), RNNs

using GRU or LSTM cells, and/or RNNs making iterative or joint predictions—as

discussed previously. The iterative variation is implemented by using the last hidden

states of the previous RNN to “warm-up” the states of the autoregressive (AR) net. The

Internal

Memory

Mechanisms

 idden nit s

 + +

 + +

 +

 +

Final RNN utput Shapes

 =

21

AR neural net then iteratively predicts 7 more hidden states, 1 state for each step in the

forecast horizon. These 7 hidden states are then passed to a densely connected (see Figure

3 for dense connections) layer that outputs the 7-sol forecast for the mean ambient air

temperature. The iterative prediction architecture was inspired by a time series

forecasting tutorial written by the contributors to TensorFlow [59]. The figure below

depicts the variations of the RNN models designed for this study. Specific

hyperparameters for this model are detailed in the results and discussion section.

Figure 5. Recurrent neural network architecture. Items marked with an asterisk * indicate

they are an optional hyperparameter for the architecture. (A) Depiction of the iterative

prediction process. (B) The output from the MarsARNet is always of

shape (sample_size, timesteps = 7, num_labels = 1).

1 Month rior

 eather ata

MarsRNN

MarsARNet

 day Mean

Ambient Air Temp.

 redictions

Multilayer

GR LSTM RNN

Fully Connected Layer

t 1 t 2 t t

(Multilayer GR LSTM

RNN)

22

I: Convolutional Neural Networks

CNNs are inspired by the way the eye processes visual stimuli [63]. The process

can be applied to time series because much in the way visual perception is handled,

sub-windows of a given time lag (the previous days of a month in this study) can be used

to predict the forecast horizon. This method significantly reduces the number of

parameters needed to perform such a prediction, and a reduction of model complexity

favorably reduces model variance [64].

The convolution operation that is key to CNNs can be carried out in one of two

ways: non-causal or causal [65]. Also, 1D convolution was used for this study because

time series data, despite using a 3D input shape (samples, timesteps, dimensions), uses

the 1D convolution operation. Whether the convolution is causal or non-causal, the

convolution operation has two hyperparameters known as kernel and stride. The kernel is

essentially the size of a sliding window over an input, and the stride is the number of

steps in between subsequent sliding windows. The below figure shows how the time

series window evolves over time.

23

Figure 6. Convolution with kernel size 3 and stride length 1 on example time series data.

Below the input data in Figure 6, 4 sub-windows of length 3 appear. The size of the sub-

window is determined by the kernel, and the index difference between sub-windows is

determined by the stride. Since the stride in Figure 6 is 1, the difference between the first

elements of adjacent sub-windows is 1. Note that the final sub-window has a red question

mark “?” that denotes a failure of the remaining sub-window to slide over a value in the

input data. If this “failed” sub-window is simply dropped from the convolution operation,

this non-causal convolution employs valid padding [60]. If instead, the question mark is

replaced with a value of 0, this non-causal convolution employs same padding [60].

A disadvantage of the non-causal convolution is that when employing valid or

same padding, an input sequence can only be continued and not started. This means that

in non-causal convolution, the output is dependent on future inputs and predictions can

0 1 2 3 4

0 1 2

1 2 3

2 3 4

3 4

Input

24

only be made for future inputs in the input frame. In contrast, causal convolution left pads

an input sequence with zeros to make sure the output at timestep t does not depend on the

inputs at t + 1 [59], [63]. This padding technique is particularly useful when one wants to

prevent the network from “peeking” into the future—which one might intuitively want to

prevent for an autoregressive problem.

For both types of convolutions, the time series is chopped into smaller windows

and then passed on to deeper layers in the network

A common way to improve the performance of CNNs is to implement batch

normalization, which standardizes outputs between layers, and max pooling, which

subsamples hidden layer outputs to decrease computational complexity.

Many design considerations are readily apparent for CNNs, but for time series

analysis, this study included convolutional dilation that was influenced by the dilation

rate of the seminal WaveNet architecture [66]. As a result, the dilation rate was tuned to

be a power of 2n (e.g., 1, 2, 4, 8, …. 256, etc.) where the exponent n is determined by the

number of convolutional layers in the network. Alternatively, the dilation rate could be

held constant during tuning, though it has been shown that dilation improves model

performance in a variety of tasks [67]–[70]. Moreover, the previous work in machine

learning applications for mars using CNNs was also useful as a simple reference

architecture [13]. For the current study, both non-causal and causal convolution

techniques were tuned so valid, same, and causal padding were set as padding options.

Batch normalization and max pooling were also implemented to regularize the CNN and

thus improve its performance.

25

Figure 7. Convolutional neural network architecture. Items marked with an asterisk *

indicate they are an optional hyperparameter for the architecture.

J: Cross Validation and Hyperparameter Tuning

The aim of cross validation (CV) is to (1) split data once or several times; (2) train

a model with input and target outputs; and (3) evaluate how well the model performs on

what is initially an “unseen” validation dataset [71]. Often, the splitting of data once or

several times occurs randomly and involves the shuffling of data. Typical CV (k-fold

CV) disregards the intrinsic time dependence of time series data and is therefore not

ideal. For this study, rolling-origin-recalibration cross validation (RORCV) was be used

to maintain time dependence as well as test models with adjusted hyperparameters [72].

Sometimes called walk-forward cross validation, the RORCV method maintains

the temporal dependence of the data by adding the N+1 validation set to the current

1 Month rior

 eather ata

 day Mean

Ambient Air Temp.

 redictions

Multilayer

CNN lock

Fully Connected Layer

Convolutional

Layer

Max ooling Layer

 atch Normalization Layer

 ropout Layer

26

training set where N is the temporal split desired. The size of N is influenced by the data

itself, and a size N = 5 was selected since this divides the Martian data into 5 windows of

approximately 1 Martian year in length. In this way, sequential years are added to the

training set in temporal “blocks” until no more blocks are available (i.e., year 1 predicts

year 2, then year 1 and 2 predicts year 3, etc.). Refer to Figure 8 for a depiction of the

walk-forward cross validation indexing process.

Figure 8. Data partitioning using walk-forward cross validation [33].

 Hyperparameters are not parameters of the model itself, see Table II for a model

with two parameters 𝑋1 and 𝑋2, but rather those “settings” (e.g., number of hidden layers,

learning rate η, etc.) of the machine learning algorithm itself [73]. Comprehensive tables

of the hyperparameters are available in the results and discussion section.

27

Hyperparameters can be changed (tuned) such that a model performs with a better

desired performance metric. For this study, automatic hyperparameter tuning via

Bayesian optimization was be used. Hyperparameters differ for each machine learning

algorithm in this study; however, the MLR algorithm was not regularized and therefore

has no hyperparameters to tune. RFs, RNNs, and CNNs have many hyperparameters that

can be tuned but the following hyperparameters were selected for each model,

respectively: (1) number of decision trees in forest and max depth of trees; (2) number of

hidden units, number of hidden layers, GRU or LSTM unit for RNN cell, iterative or joint

model, and layer normalization rate; (3) number of convolutional filters, filter increase

rate between multiple layers, dropout rate, padding strategies, and dilation rate [74]. For

all ANNs, the learning rate for the Adam optimizer was also tuned. Further, Bayesian

optimization as an automatic hyperparameter tuning algorithm is a strong choice since the

RF and RNN models will not be applied to other datasets and the current dataset is not of

substantial size [75].

 Bayesian optimization was implemented using Keras-Tuner [76]. The maximum

number of trials for the Bayesian optimization was 10. As implemented in Keras-Tuner,

Bayesian optimization initially selects a random set of hyperparameters from a list of

choices for each hyperparameter. After this initial selection, which hyperparameters to

explore further is determined by training and validating via 5-fold time series cross

validation a given model and updating the ayesian optimization’s search parameters

based on the average validation loss for a particular model. This process repeats for a

total of 10 (i.e., max number of trials) times such that 10 combinations of

hyperparameters are tested and the best set of hyperparameters can be reported.

28

K: Performance Metrics and Final Evaluation

 MAE, MSE, and RMSE were used to compare the different models in this study.

These metrics are the most common for time series forecasting [77].

 The MAE is used to define the absolute difference between actual values of the

mean ambient air temperature y and a given model’s prediction 𝑦̂ over a sample of size N

[13].

 𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦̂𝑖|
𝑁
𝑖=1 (4)

The MSE (see Equation 4) is like MAE except the difference in model predictions

and actual values of the mean ambient air temperature are squared.

The RMSE is simply the square root of the MSE and is commonly reported in

forecasting domains.

𝑅𝑀𝑆𝐸 = √

1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)
𝑁
𝑖=1

2

(5)

 For each model, 5-fold cross validation allows for the computation of confidence

intervals, and this strategy was used for both the hyperparameter tuning and final

evaluation of the models. Confidence intervals (CIs) are the range of estimates for an

unknown parameter—in this case the MAE, MSE, RMSE—and the likelihood that the

unknown parameter falls within that range [78]. For this study, 95% confidence intervals

were used.

29

IV. RESULTS AND DISCUSSION

Table IV. Metrics for all models’ performance for 7-sol mean ambient temperature

forecasting. Sorted in ascending order along MAE.

Models
Metrics (K)

MAE MSE RMSE

gru_unstacked_iterative 2.31 10.98 3.25

lstm_stacked_iterative 2.39 11.58 3.38

cnn 2.76 14.98 3.87

mlr 2.88 15.78 3.93

lstm_stacked_joint 3.22 15.96 3.99

rf 3.23 15.53 3.92

gru_stacked_joint 4.1 25.29 4.99

lstm_unstacked_iterative 4.24 28.15 5.25

gru_unstacked_joint 4.28 27.38 5.19

gru_stacked_iterative 4.3 25.03 5

lstm_unstacked_joint 6.26 58.58 7.51

Table IV depicts the performance evaluation for all the models considered for this

study. In order of design, the algorithms considered for this study were MLR, RF, CNN,

GRU-unstacked-joint, GRU-unstacked-iterative, GRU-stacked-joint,

GRU-stacked-iterative, LSTM-unstacked-joint, LSTM-unstacked-iterative,

LSTM-stacked-joint, and LSTM-stacked-iterative. The statistical parameters used for the

evaluation were MAE, MSE, and RMSE.

Therefore, a total of eleven models were implemented for this study. All metrics

were computed by taking the mean of the metrics computed during 5-fold walk-forward

30

cross validation on the training set and validation1 set. MLR and RF do not have epoch

nor batch size hyperparameters, but for the ANNs the batch size was 28 to reflect the

number of sols in a Martian month, the number of epochs was 32 with the same early

stopping parameters as mentioned in the artificial neural networks section of the methods,

and the hyperparameters for all models will be discussed in the proceeding sections.

Table XII shows the mean epoch and 95% confidence intervals on which early stopping

occurred. Notably, the LSTM unstacked iterative model has a negative lower bound for

the confidence interval due to 4 out of the 5 cross validation folds terminating around 6

epochs, while 1 of the folds terminating near 30 epochs. This high variance led to the

physically uninterpretable lower bound for the CI.

A: Multiple Linear Regression

Table V. Assumption violations for linear regression.

Gauss-Markov Property VIFs > 5 Reject Goldfeld-Quandt H0

Multicollinearity True --

Homoscedasticity -- False

 From Table IV, the performance of MLR with respect to MAE and relative to all

other models made MLR the fourth best performing model. MLR’s value for MAE was

2.88 K and Table X in the appendices shows that the 95% CI is in (2.45, 3.30). Also from

Table IV, the performance of MLR with respect to RMSE and relative to all other models

made MLR the fifth best performing model. MLR’s value for RMSE was 3.93 K and

1 This is not the final evaluation of models but should approximate the test set’s error.

31

Table XII in the appendices shows that the 95% CI is in (3.13, 4.73). MSE and RMSE are

proportional, and values of MSEs are described both in the appendices and in Table IV.

 The RMSE indicates poorer model performance than the MAE; however, and this

will hold true for all discussions in this thesis regarding metrics, the RMSE is more

sensitive to the magnitude of errors and MAE is considered a more unambiguous

measure of inter-model performance [79].

Despite the performance of MLR relative to other models, the robustness and

statistical validity of MLR are questionable. MLR is subject to several key assumptions

known as the Gauss-Markov assumptions, and failure to meet one or more of these

assumptions about the distribution of errors, normality, and/or linearity can jeopardize the

integrity of the model [49].

Table V shows two assumptions that the MLR model was unable to meet: no

multicollinearity among features and the variance of errors is the same (aka

homoskedasticity).

Multicollinearity was tested by using variance inflation factors (VIFs) for each

feature in the dataset. If the VIF for a given feature is greater than five, then there exists

multicollinearity (or correlation) between that feature and at least one other feature in the

dataset [51]. For all 476 (28 * 17) features, the VIF was greater than five. Therefore, all

features in the dataset had multicollinearity with at least one other feature.

Multicollinearity can be alleviated by using backwards elimination or dimension

reduction techniques such as principal component analysis; however, to maintain a

constant dataset across models, these techniques were not performed [80], [81].

32

Homoscedasticity is the property that the variance of the residuals is a uniform

distribution, and the null hypothesis of the Goldfeld-Quandt test is that variance in one

subsample of residuals is larger than in the other subsample [51], [82]. If the null

hypothesis is rejected, then the alternative hypothesis is that the variance of residuals is

homoscedastic (or uniform). Table V shows that the null hypothesis was not rejected,

therefore it was concluded that the distribution of the residuals is non-uniform and

therefore heteroscedastic.

Given that MLR violates at least two core assumptions of the model, its

performance relative to the other models should be only tentatively accepted.

B: Random Forests

Table VI. Hyperparameter choices for random forest.

HP BOPT Choices HP Selected

max_depth 8, 16, 32 32

min_samples_leaf NA 1

min_samples_split NA 2

n_estimators 64, 128, 256 128

 From Table IV, the performance of RF with respect to MAE and relative to all

other models made RF the sixth best performing model. RF’s value for MAE was 3.23 K

and Table X in the appendices shows that the 95% CI is in (2.84, 3.62).

 From Table VI, the best hyperparameter for the maximum depth of the ith decision

tree in the random forest was 32 while the number of decision trees in the forest (aka

“n_estimators”) was 128. It is unsurprising that the RF model outperformed about half of

33

the ANNs since RFs are notoriously powerful and, since RFs are an independent value

model, the propagation of errors over time is expected to be minimized compared with

iterative neural network models [83].

Despite the intuition that the independent value model should have less error

propagation over time compared with the iterative models, the RF does not appear to

have substantially less variance. The evolution of all metrics over the 7-sol forecast is

depicted in the figures in the appendices. Figure 13 shows the evolution of MAE with

95% confidence intervals over each timestep. While the CIs for the RF appear narrower

in Figure 13 when compared to the LSTM-unstacked-iterative model in Figure 16, the

MAE over time for the LSTM-stacked-iterative model in Figure 18 appears to have a

narrower CI than the MAEs for the RF. These observations indicate that the RF avoids

the error propagation pitfalls of shallow, iterative LSTM models, but is not quite

comparable to the deeper, iterative LSTM models.

34

C: Artificial Neural Networks

Table VII. Hyperparameter choices for convolutional neural network.

HP BOPT Choices HP Selected

cnn_activation_function NA relu

num_layers 1, 2, 4, 8 2

padding valid, same, causal valid

strides NA 1

dilation_rate 1, 2 2

dropout_rate 0.0, 0.16, 0.32, 0.64 0.32

filter_increase_rate_per_layer 1, 2 2

filters 32, 64, 128 128

kernel_size NA 3x3

use_max_pooling NA true

pool_size NA 2

pool_padding NA valid

dense_size NA 7

dense_activation NA none

learning_rate 1e-2, 1e-3, 1e-4 1e-2

From Table IV, the performance of the CNN with respect to MAE and relative to

all other models made the CNN the third best performing model. The CNN’s value for

MAE was 2.76 K and Table X in the appendices shows that the 95% CI is in (2.53, 2.99).

 Table VII shows the best hyperparameters for the CNN. Unsurprisingly, the

dilation rate and filter increase rate per layer were the highest of the available BOPT

choices. The dilation rate agrees with the principles of many architectures that were

discussed under the convolutional neural networks section of the methods. Moreover, the

filter increase rate of 2 means that for subsequent layers, the number of filters is doubled.

This means for the first convolutional block, there were 128 filters, and the subsequent

block had 256 filters. It is unexpected that causal padding was not the optimal padding

strategy. The causal padding, which has had success on long sequence time series as

35

discussed in the methods section, was not the selected padding method. Instead, valid

padding was selected. One explanation for this might be that the time lag was not large

enough for causal padding to be effective at improving model performance. The time lag

was only 28 sols, which is a short sequence length compared to more complicated

sequences that are typically handled with causal padding.

Table VIII. Hyperparameter choices for LSTM model variants.

HP BOPT Choices
HP Selected for LSTM Model Variant

USJ USI SJ SI

autoregressive NA false true false true

dropout_rate** 0.0, 0.16, 0.32 0.0 0.32 0.0 0.0

rnn_cell NA lstm lstm lstm lstm

rnn_layers* 1, 2, 4, 8 1 1 2 4

rnn_size 32, 64, 128 32 128 32 32

learning_rate 1e-2, 1e-3, 1e-4 1e-3 1e-4 1e-3 1e-2

dense_size NA 7 7 7 7

dense_activation NA none none none none

*For the unstacked models, rnn_layers = 1 but for stacked models the choices are 2, 4, 8.

**Not recurrent (i.e., intra-layer) dropout but rather inter-layer dropout.

 From Table IV, the order of best model performance on MAE for the LSTM

variants: stacked-iterative > stacked-joint > unstacked-iterative > unstacked-joint. The

obvious observation here is that the deeper network outperforms the shallow network.

The respective mean MAE values (in Kelvin) and 95% CIs for these models are as

follows: 2.39 in (2.13, 2.66); 3.22 in (3.08, 3.37); 4.24 in (2.66, 5.82); and 6.26 in (3.53,

9.00).

 Of the LSTM models, the LSTM-stacked-iterative model was the second-best

performing model with respect to all models, while the LSTM-unstacked-joint model was

36

the worst-performing model with an upper bound on the confidence interval of ca. 1.5

times more than the upper bound of the second worst-performing model.

With far fewer hyperparameters, interpretation of the LSTM model variants in

Table VIII and their respective performance in Table IV is more straightforward. Even

when the unstacked-iterative model has more hidden neurons per single layer compared

with the stacked models, and the unstacked-iterative model has the slowest learning rate,

it cannot outperform the stacked models.

Table IX. Hyperparameter choices for GRU model variants.

HP BOPT Choices
HP Selected for GRU Model Variant

USJ USI SJ SI

autoregressive NA false true false true

dropout_rate** 0.0, 0.16, 0.32 0.32 0.16 0.16 0.32

rnn_cell NA gru gru gru gru

rnn_layers* 1, 2, 4, 8 1 1 8 8

rnn_size 32, 64, 128 32 32 32 64

learning_rate 1e-2, 1e-3, 1e-4 1e-4 1e-2 1e-4 1e-3

dense_size NA 7 7 7 7

dense_activation NA none none none none

*for the unstacked models, rnn_layers = 1 but for stacked models the choice are [2, 4, 8].

**not recurrent (i.e., intra-layer) dropout but rather inter-layer dropout.

From Table IV, the order of best model performance on MAE for the GRU

variants: unstacked-iterative > stacked-joint > unstacked-joint > unstacked-iterative. The

respective mean MAE values (in Kelvin) and 95% CIs for these models are as follows:

2.31 in (1.74, 2.89); 4.1 in (2.84, 5.37); 4.28 in (2.90, 5.65); and 4.30 in (3.94, 4.66).

Of the GRU models, the GRU-unstacked-iterative model was the best performing

model with respect to all models, while the remaining GRU models were in the bottom

half of the model performance.

37

GRU RNNs and LSTM RNNs have been shown to outperform one another on

some tasks while paradoxically performing so similarly as to be ambiguous on others

[14], [84]–[87]. To illustrate the overlapping intervals of all models, refer to Figure 9 that

compares cross validated model performance using MAE.

Despite the GRU-unstacked-iterative model performing the best with respect to

mean MAE across all cross validation folds, the CIs for the top 4 models all overlap. This

indicates that extensive hyperparameter tuning and careful cross validation were not

sufficient to demonstrate a clear best-performing model. This overlap might be resolved

by using N, 5-fold walk-forward cross validation with the random seed for weight

initialization set to different values for each CV replicate so that the neural networks

weight initialization and data shuffling is reproducible. Unfortunately, with deeper

models with more parameters, repeating cross validation can become computationally

expensive, though this avenue of experimentation could be pursued in the future.

What remains of the results section are the performance metric graphs for the

MAE, MSE, and RMSE. The appendices also contain the remaining CI tables and error

propagation tables over time for each model.

38

Figure 9. MAE for all models with 95% confidence interval.

39

Figure 10. MSE for all models with 95% confidence interval.

40

Figure 11. RMSE for all models with 95% confidence interval.

41

V. CONCLUSIONS AND FUTURE WORK

 Eleven machine learning models were implemented for the prediction of a 7-sol

forecast for mean ambient air temperature on Mars. Of those models, multiple linear

regression, random forest, several variants of recurrent neural nets, and finally

convolutional nets were explored. Bayesian optimization was used to hyperparameter

tune models while walk-forward cross validation was utilized to maintain temporal

dependencies between cross validation blocks. The best performing model based on

MAE was the GRU-unstacked-iterative RNN; however, the top performing models had

significant overlap in their confidence intervals. The work presented in this thesis is

progress toward more thorough studies in computational atmospheric sciences,

particularly those that would focus on space exploration. This work also makes the code

base used to develop and test these models freely available to the public for research and

recreational purposes (https://github.com/jfdev001/mars-ml-mtsu-honors-thesis).

 The techniques learned for this thesis are critical for all future computational

studies that the author will conduct. Future work could entail de-seasonalizing, de-

trending, or implementing graph/attention-based models for time series forecasting.

42

REFERENCES

[1] M. uchanan, “Colonizing Mars,” Nature Physics, vol. 13, no. 11, p. 1035, Nov.

2017, doi: 10.1038/nphys4311.

[2] S. . Faulk, J. M. Lora, J. L. Mitchell, and . C. . Milly, “Titan’s Climate

Patterns and Surface Methane Distribution Due to the Coupling of Land

 ydrology and Atmosphere,” Nature Astronomy, vol. 4, no. 4, pp. 390–398, 2020,

doi: 10.1038/s41550-019-0963-0.

[3] I. Levchenko, S. u, S. Mazouffre, M. Keidar, and K. azaka, “Space

Exploration: Mars Colonization: eyond Getting There,” Global Challenges, vol.

3, no. 1, p. 1970011, Jan. 2019, doi: 10.1002/gch2.201970011.

[4] . James, “Mars Facts,” NASA Quest. NASA, Jun. 2013. [Online]. Available:

https://web.archive.org/web/20130607140708/http://quest.nasa.gov/aero/planetary/

mars.html

[5] R. A. ielke, “Examples of Mesoscale Models,” in International Geophysics,

Elsevier, 2013, pp. 427–500. doi: 10.1016/B978-0-12-385237-3.00013-X.

[6] P. Bauer, A. Thorpe, and G. runet, “The Quiet Revolution of Numerical eather

 rediction,” Nature, vol. 525, no. 7567, pp. 47–55, 2015, doi:

10.1038/nature14956.

[7] . Michie, “Memo Functions and Machine Learning,” Nature, vol. 218, no. 5136,

pp. 19–22, Apr. 1968, doi: 10.1038/218019a0.

[8] M. G. Schultz et al., “Can eep Learning eat Numerical eather rediction ,”

Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences, vol. 379, no. 2194. Royal Society Publishing, Apr. 05,

2021. doi: 10.1098/rsta.2020.0097.

[9] M. . Gardner and S. R. orling, “Artificial Neural Networks (The Multilayer

 erceptron): A Review of Applications in the Atmospheric Sciences,” Atmospheric

Environment, vol. 32, no. 14–15, pp. 2627–2636, Aug. 1998, doi: 10.1016/s1352-

2310(97)00447-0.

[10] T. R. V. Anandharajan, G. A. Hariharan, K. K. Vignajeth, R. Jijendiran, and

Kushmita, “ eather Monitoring sing Artificial Intelligence,” in 2016 2nd

International Conference on Computational Intelligence and Networks (CINE),

Jan. 2016, pp. 106–111. doi: 10.1109/CINE.2016.26.

43

[11] A. J. ill, G. R. erman, and R. S. Schumacher, “Forecasting Severe eather

with Random Forests,” Monthly Weather Review, vol. 148, no. 5, pp. 2135–2161,

May 2020, doi: 10.1175/mwr-d-19-0344.1.

[12] N. Anusha, M. S. Chaithanya, and G. J. Reddy, “ eather rediction sing Multi

Linear Regression Algorithm,” IOP Conference Series: Materials Science and

Engineering, vol. 590, p. 12034, Oct. 2019, doi: 10.1088/1757-

899x/590/1/012034.

[13] I. riyadarshini and V. uri, “Mars eather ata Analysis Using Machine

Learning Techniques,” Earth Science Informatics, vol. 14, no. 4, pp. 1885–1898,

Dec. 2021, doi: 10.1007/s12145-021-00643-0.

[14] Y. E. Cebeci, “A Recurrent Neural Network Model for eather Forecasting,” Sep.

2019. doi: 10.1109/ubmk.2019.8907196.

[15] M. ossain, . Rekabdar, S. J. Louis, and S. ascalu, “Forecasting the eather of

Nevada: A eep Learning Approach,” Jul. 2015. doi:

10.1109/ijcnn.2015.7280812.

[16] S. Cramer, M. Kampouridis, A. A. Freitas, and A. K. Alexandridis, “An Extensive

Evaluation of Seven Machine Learning Methods for Rainfall Prediction in

 eather erivatives,” Expert Systems with Applications, vol. 85, pp. 169–181,

Nov. 2017, doi: 10.1016/j.eswa.2017.05.029.

[17] S. Dhamodaran, Ch. K. C. Varma, and C. D. Reddy, “ eather rediction Model

 sing Random Forest Algorithm and GIS ata Model,” in Innovative Data

Communication Technologies and Application, Springer International Publishing,

2020, pp. 306–311. doi: 10.1007/978-3-030-38040-3_35.

[18] N. Jones, “ ow Machine Learning Could elp to Improve Climate Forecasts,”

Nature, vol. 548, no. 7668, p. 379, Aug. 2017, doi: 10.1038/548379a.

[19] National Aeronautical and Space Administration, “Mars Science Laboratory Team

 apers,” 2020.

[20] J. Gomez-Elvira, “Mars Science Laboratory Rover Environmental Monitoring

Station R R ata V1.0,” NASA Planetary Data System. 2013.

[21] A. G. Salman, . Kanigoro, and Y. eryadi, “ eather Forecasting sing eep

Learning Techniques,” in 2015 International Conference on Advanced Computer

Science and Information Systems (ICACSIS), 2015, pp. 281–285. doi:

10.1109/ICACSIS.2015.7415154.

[22] M. A. I. Navid, “Multiple Linear Regressions for redicting Rainfall for

 angladesh,” Communications, vol. 6, no. 1, p. 1, 2018, doi:

10.11648/j.com.20180601.11.

44

[23] S. Karthick, . Malathi, and C. Arun, “ eather rediction Analysis sing

Random Forest Algorithm,” International Journal of Pure and Applied

Mathematics, vol. 118, no. 20, pp. 255–262, 2018.

[24] J. S. Löfgren, R. Haas, and H.-G. Scherneck, “Sea Level Time Series and cean

Tide Analysis from Multipath Signals at Five GPS Sites in Different Parts of the

 orld,” Journal of Geodynamics, vol. 80, pp. 66–80, 2014, doi:

https://doi.org/10.1016/j.jog.2014.02.012.

[25] Z. ala and R. Atici, “Forecasting Sunspot Time Series sing eep Learning

Methods,” Solar Physics, vol. 294, no. 5, p. 50, 2019, doi: 10.1007/s11207-019-

1434-6.

[26] . Le aron, . . Arthur, and R. almer, “Time Series roperties of an Artificial

Stock Market,” Journal of Economic Dynamics and Control, vol. 23, no. 9, pp.

1487–1516, 1999, doi: https://doi.org/10.1016/S0165-1889(98)00081-5.

[27] Y. u and R. Goodacre, “ n Splitting Training and Validation Set: A

Comparative Study of Cross-Validation, Bootstrap and Systematic Sampling for

Estimating the Generalization erformance of Supervised Learning,” Journal of

Analysis and Testing, vol. 2, no. 3, pp. 249–262, Jul. 2018, doi: 10.1007/s41664-

018-0068-2.

[28] A. Geron, “The Machine Learning Landscape,” in Hands-on Machine Learning

with Scikit-Learn, Keras & Tensorflow: Concepts, Tools, and Techniques to Build

Intelligent Systems, 2nd ed., ’Reilly Media Inc., 2019, pp. 30–31.

[29] B. D. Ripley, Pattern Recognition and Neural Networks. Cambridge University

Press, 1996. doi: 10.1017/cbo9780511812651.

[30] Y. Lecun, L. Bottou, G. Orr, and K.-R. Müller, “Efficient ack rop,” Aug. 2000.

[31] S. G. K. atro and K. K. Sahu, “Normalization: A reprocessing Stage.” 2015.

[32] R. J. A. Little and D. B. Rubin, Statistical Analysis with Missing Data., 2nd ed.

John Wiley & Sons, Inc., 2002.

[33] F. Pedregosa et al., “Scikit-learn: Machine Learning in ython,” Journal of

Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[34] A. Geron, “Ensemble Learning and Random Forests,” in Hands-on Machine

Learning with Scikit-Learn, Keras & Tensorflow: Concepts, Tools, and

Techniques to Build Intelligent Systems, 2nd ed., ’Reilly Media, Inc., 2019, pp.

192–198.

[35] . Aznar, “ hat is the ifference etween Extra Trees and Random Forest ,”

Quantdare, Jun. 2020. https://quantdare.com/what-is-the-difference-between-

extra-trees-and-random-forest/

45

[36] . Geurts, . Ernst, and L. ehenkel, “Extremely Randomized Trees,” Machine

Learning, vol. 63, no. 1, pp. 3–42, 2006, doi: 10.1007/s10994-006-6226-1.

[37] . J. Stekhoven and . ühlmann, “MissForest—Non-Parametric Missing Value

Imputation for Mixed-Type ata,” Bioinformatics, vol. 28, no. 1, pp. 112–118,

Jan. 2012, doi: 10.1093/bioinformatics/btr597.

[38] . I. berman, S. van uuren, and G. Vink, “Missing the oint: Non-Convergence

in Iterative Imputation Algorithms,” ct. 2021. [Online]. Available:

http://arxiv.org/abs/2110.11951

[39] C. R. Harris et al., “Array rogramming with Num y,” Nature, vol. 585, no. 7825,

pp. 357–362, Sep. 2020, doi: 10.1038/s41586-020-2649-2.

[40] P. Virtanen et al., “Sci y 1.0: Fundamental Algorithms for Scientific Computing

in ython,” Nature Methods, vol. 17, pp. 261–272, 2020, doi: 10.1038/s41592-

019-0686-2.

[41] J. . unter, “Matplotlib: A 2 Graphics Environment,” Computing in Science &

Engineering, vol. 9, no. 3, pp. 90–95, 2007, doi: 10.1109/MCSE.2007.55.

[42] . McKinney, “ ata Structures for Statistical Computing in ython,” in

Proceedings of the 9th Python in Science Conference, 2010, pp. 56–61.

[43] . M. Kline, “Methods for Multi-Step Time Series Forecasting Neural Networks,”

in Neural Networks in Business Forecasting, IGI Global, 2011, pp. 226–250. doi:

10.4018/978-1-59140-176-6.ch012.

[44] T. astie, R. Tibshirani, and J. Friedman, “Linear Methods for Regression,” in The

Elements of Statistical Learning, 2009, pp. 43–49. doi: 10.1007/978-0-387-84858-

7_3.

[45] J. Chan, “STAT 3022: Variable Selection: ackward and Forward.” niversity of

Sydney, 2020.

[46] J. intze, “ ser’s Guide III: Regression and Curve Fitting.” NCSS Statistical

Software, 2007.

[47] G. einze, C. allisch, and . unkler, “Variable Selection - A Review and

Recommendations for the racticing Statistician,” Biometrical Journal, vol. 60,

no. 3, pp. 431–449, Jan. 2018, doi: 10.1002/bimj.201700067.

[48] M. A. oole and . N. ’Farrell, “The Assumptions of the Linear Regression

Model,” Transactions of the Institute of British Geographers, no. 52, pp. 145–158,

1971, [Online]. Available: http://www.jstor.org/stable/621706

[49] M. Verbeek, “An Introduction to Linear Regression,” A Guide to Modern

Econometrics. Wiley, pp. 15–19, 2017.

46

[50] M. Verbeek, “ eteroskedasticity and Autocorrelation,” A Guide to Modern

Econometrics. Wiley, pp. 97–120, 2017.

[51] S. Seabold and J. erktold, “statsmodels: Econometric and Statistical Modeling

with ython,” 2010.

[52] T. K. o, “Random decision forests.” doi: 10.1109 icdar.1995.598994.

[53] T. astie, R. Tibshirani, and J. Friedman, “Random Forests,” in The Elements of

Statistical Learning, Springer New York, 2008, pp. 587–604. doi: 10.1007/978-0-

387-84858-7_15.

[54] K. Fawagreh, M. M. Gaber, and E. Elyan, “Random Forests: From Early

 evelopments to Recent Advancements,” Systems Science & Control Engineering,

vol. 2, no. 1, pp. 602–609, Oct. 2014, doi: 10.1080/21642583.2014.956265.

[55] E. W. Fox, J. M. ver oef, and A. R. lsen, “Comparing Spatial Regression to

Random Forests for Large Environmental ata Sets,” PLOS ONE, vol. 15, no. 3,

p. e0229509, Mar. 2020, doi: 10.1371/journal.pone.0229509.

[56] F. Pedregosa et al., “Scikit-learn: Machine Learning in ython,” Journal of

Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[57] I. Goodfellow, Y. engio, and A. Courville, “ eep Feedforward Networks,” Deep

Learning. MIT Press, p. 165, 2016.

[58] I. Goodfellow, Y. engio, and A. Courville, “Numerical Computation,” Deep

Learning. MIT Press, p. 80, 2016.

[59] M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous

 istributed Systems,” Mar. 2016. [nline]. Available:

http://arxiv.org/abs/1603.04467

[60] F. Chollet, “Keras.” Git ub, 2015. [nline]. Available:

https://github.com/fchollet/keras

[61] A. Tealab, “Time Series Forecasting sing Artificial Neural Networks

Methodologies: A Systematic Review,” Future Computing and Informatics

Journal, vol. 3, no. 2, pp. 334–340, Dec. 2018, doi: 10.1016/j.fcij.2018.10.003.

[62] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[63] A. Geron, “ eep Computer Vision sing Convolutional Neural Networks,” in

Hands-on Machine Learning with Scikit-Learn, Keras & Tensorflow: Concepts,

Tools, and Techniques to Build Intelligent Systems, 2nd ed., ’Reilly Media, Inc.,

2019, pp. 445–452.

[64] A. Geron, “Training Models,” in Hands-on Machine Learning with Scikit-Learn,

Keras & Tensorflow: Concepts, Tools, and Techniques to Build Intelligent

Systems, 2nd ed., ’Reilly Media, Inc., 2019, p. 134.

47

[65] R. S. Srinivasamurthy, “ nderstanding 1 Convolutional Neural Networks sing

Multiclass Time-Varying Signalss,” 2018.

[66] A. van den Oord et al., “ aveNet: A Generative Model for Raw Audio,” Sep.

2016. [Online]. Available: http://arxiv.org/abs/1609.03499

[67] Y. Li, . Zhang, and . Chen, “CSRNet: ilated Convolutional Neural Networks

for nderstanding the ighly Congested Scenes,” Feb. 2018. [Online]. Available:

http://arxiv.org/abs/1802.10062

[68] Y. Li, M. Liu, K. rossos, and T. Virtanen, “Sound Event etection Via ilated

Convolutional Recurrent Neural Networks,” in ICASSP 2020 - 2020 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

2020, pp. 286–290. doi: 10.1109/ICASSP40776.2020.9054433.

[69] G. Lin, Q. u, L. Qiu, and . uang, “Image Super-Resolution Using a Dilated

Convolutional Neural Network,” Neurocomputing, vol. 275, pp. 1219–1230, 2018,

doi: https://doi.org/10.1016/j.neucom.2017.09.062.

[70] A. Hatamizadeh, H. Hosseini, Z. Liu, S. D. Schwartz, and . Terzopoulos, “ eep

 ilated Convolutional Nets for the Automatic Segmentation of Retinal Vessels,”

May 2019. [Online]. Available: http://arxiv.org/abs/1905.12120

[71] S. Arlot and A. Celisse, “A Survey of Cross-Validation Procedures for Model

Selection,” Statistics Surveys, vol. 4, no. none, Jan. 2010, doi: 10.1214/09-SS054.

[72] C. ergmeir and J. M. enitez, “ n the se of Cross-Validation for Time Series

 redictor Evaluation,” Information Sciences, vol. 191, pp. 192–213, May 2012,

doi: 10.1016/j.ins.2011.12.028.

[73] I. Goodfellow, Y. engio, and A. Courville, “Machine Learning asics,” in Deep

Learning, MIT Press, 2016, p. 96.

[74] J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei, and S.-H. Deng,

“ yperparameter ptimization for Machine Learning Models Based on Bayesian

 ptimization,” Journal of Electronic Science and Technology, vol. 17, no. 1, pp.

26–40, 2019, doi: https://doi.org/10.11989/JEST.1674-862X.80904120.

[75] K. Swersky, J. Snoek, and R. . Adams, “Multi-Task Bayesian Optimization,”

Advances in Neural Information Processing Systems, Jan. 2013.

[76] T. ’Malley et al., “Keras Tuner.” 2019.

[77] A. otchkarev, “A New Typology esign of erformance Metrics to Measure

Errors in Machine Learning Regression Algorithms,” Interdisciplinary Journal of

Information, Knowledge, and Management, vol. 14, pp. 45–76, 2019, doi:

10.28945/4184.

48

[78] S. ates, T. astie, and R. Tibshirani, “Cross-Validation: What Does It Estimate

and ow ell oes It o It ,” Apr. 2021. [nline]. Available:

http://arxiv.org/abs/2104.00673

[79] C. illmott and K. Matsuura, “Advantages of the Mean Absolute Error (MAE)

Over the Root Mean Square Error (RMSE) in Assessing Average Model

 erformance,” Climate Research, vol. 30, no. 1, pp. 79–82, 2005, doi:

10.3354/cr030079.

[80] C. Agostinelli, “Robust Stepwise Regression,” Journal of Applied Statistics, vol.

29, no. 6, pp. 825–840, 2002.

[81] A. Z. Ul-Saufie, A. S. Yahya, and N. A. Ramli, “Improving Multiple Linear

Regression Model Using Principal Component Analysis for Predicting PM10

Concentration in Seberang rai, ulau inang,” International Journal of

Environmental Sciences, vol. 2, no. 2, pp. 403–410, 2011.

[82] . Greene, “ eteroskedasticity,” Econometric Analysis. Wiley, pp. 223–225,

2003.

[83] G. ontempi, S. ben Taieb, and Y. A. le orgne, “Machine Learning Strategies for

Time Series Forecasting,” in Lecture Notes in Business Information Processing,

2013, vol. 138 LNBIP, pp. 62–77. doi: 10.1007/978-3-642-36318-4_3.

[84] F. Shahid, A. Zameer, and M. Muneeb, “ redictions for C VI -19 with Deep

Learning Models of LSTM, GRU and Bi-LSTM,” Chaos, Solitons & Fractals, vol.

140, p. 110212, 2020.

[85] S. Yang, . Yu, and Y. Zhou, “LSTM and GR Neural Network erformance

Comparison Study: Taking Yelp Review ataset as an Example,” in 2020

International Workshop on Electronic Communication and Artificial Intelligence

(IWECAI), 2020, pp. 98–101.

[86] R. Fu, Z. Zhang, and L. Li, “ sing LSTM and GR Neural Network Methods for

Traffic Flow rediction,” in 2016 31st Youth Academic Annual Conference of

Chinese Association of Automation (YAC), 2016, pp. 324–328.

[87] S. Khandelwal, B. Lecouteux, and L. Besacier, “Comparing GR and LSTM for

Automatic Speech Recognition,” Jan. 2016. [nline]. Available:

https://hal.archives-ouvertes.fr/hal-01633254

49

APPENDICES

Table X. MAE for models with 95% confidence interval.

Models
CI Bounds

lower mean upper

gru_unstacked_iterative 1.74 2.31 2.89

lstm_stacked_iterative 2.13 2.39 2.66

cnn 2.53 2.76 2.99

mlr 2.45 2.88 3.3

lstm_stacked_joint 3.08 3.22 3.37

rf 2.84 3.23 3.62

gru_stacked_joint 2.84 4.1 5.37

lstm_unstacked_iterative 2.66 4.24 5.82

gru_unstacked_joint 2.9 4.28 5.65

gru_stacked_iterative 3.94 4.3 4.66

lstm_unstacked_joint 3.53 6.26 9

Table XI. MSE for models with 95% confidence interval.

Models
CI Bounds

lower mean lower

gru_unstacked_iterative 6.13 10.98 15.84

lstm_stacked_iterative 8.43 11.58 14.73

cnn 13.42 14.98 16.54

rf 10.73 15.53 20.33

mlr 10.15 15.78 21.42

lstm_stacked_joint 14.68 15.96 17.24

gru_stacked_iterative 24.33 25.03 25.73

gru_stacked_joint 16.7 25.29 33.88

gru_unstacked_joint 16.97 27.38 37.8

lstm_unstacked_iterative 16.48 28.15 39.83

lstm_unstacked_joint 25.2 58.58 91.97

50

Table XII. RMSE for models with 95% confidence interval

Models
CI Bounds

lower mean lower

gru_unstacked_iterative 2.38 3.25 4.13

lstm_stacked_iterative 2.88 3.38 3.89

cnn 3.66 3.87 4.07

rf 3.33 3.92 4.51

mlr 3.13 3.93 4.73

lstm_stacked_joint 3.83 3.99 4.16

gru_stacked_joint 4.17 4.99 5.82

gru_stacked_iterative 4.93 5 5.07

gru_unstacked_joint 4.22 5.19 6.15

lstm_unstacked_iterative 4.21 5.25 6.3

lstm_unstacked_joint 5.44 7.51 9.58

Table XIII. Number epochs before termination for early stopping of neural network

training with 95% confidence interval.

Models
CI Bounds

lower mean lower

gru_unstacked_joint 3.81 6.2 8.59

lstm_unstacked_joint 2.64 6.2 9.76

gru_stacked_iterative 3.74 6.6 9.46

lstm_stacked_joint 3.07 7 10.93

gru_stacked_joint 4.25 7.6 10.95

lstm_stacked_iterative 6.24 8 9.76

cnn 5.37 8.2 11.03

gru_unstacked_iterative 2.05 10.8 19.55

lstm_unstacked_iterative -0.78 11.8 24.38

gru_unstacked_joint 3.81 6.2 8.59

lstm_unstacked_joint 2.64 6.2 9.76

51

Figure 12. Performance of MLR at each timestep (sol) for all metrics

with 95% confidence intervals.

Figure 13. Performance of RF at each timestep (sol) for all metrics

with 95% confidence intervals.

52

Figure 14. Performance of CNN at each timestep (sol) for all metrics

with 95% confidence intervals.

53

Figure 15. Performance of LSTM Unstacked Joint Model at each timestep (sol) for all

metrics with 95% confidence intervals.

Figure 16. Performance of LSTM Unstacked Iterative Model at each timestep (sol) for all

metrics with 95% confidence intervals.

54

Figure 17. Performance of LSTM Stacked Joint Model at each timestep (sol) for all

metrics with 95% confidence intervals.

Figure 18. Performance of LSTM Stacked Iterative Model at each timestep (sol) for all

metrics with 95% confidence intervals.

55

Figure 19. Performance of GRU Unstacked Joint Model at each timestep (sol) for all

metrics with 95% confidence intervals.

Figure 20. Performance of GRU Unstacked Iterative Model at each timestep (sol) for all

metrics with 95% confidence intervals.

56

Figure 21. Performance of GRU Stacked Joint Model at each timestep (sol) for all

metrics with 95% confidence intervals.

Figure 22. Performance of GRU Stacked Iterative Model at each timestep (sol) for all

metrics with 95% confidence intervals.

