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Abstract 

 This thesis explores several machine learning methods for time series forecasting 

for weather prediction on Mars. The colonization of Mars has been proposed and funded 

by both public and private organizations like the National Aeronautics and Space 

Administration (NASA) and the aerospace corporation Boeing. The colonization of Mars 

has many challenges, one of which is the reliable prediction of weather. Traditional 

weather prediction techniques, such as numerical weather prediction, are not feasible on 

Mars given the lack of infrastructure needed for such powerful methods. In this thesis, 

several machine learning methods were implemented to circumvent these computational 

requirements: multiple linear regression (MLR), random forest (RFs), and artificial neural 

networks (ANNs). The work done for this thesis will inform the research questions of 

future atmospheric informaticians investigating the colonization of Mars and will serve as 

a strong baseline for model performance and methodology. Code and data are freely 

available at https://github.com/jfdev001/mars-ml-mtsu-honors-thesis. 
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I. BACKGROUND 

 

At any given moment, a devastating cosmic event could wipe all life on Earth 

from existence. In combination with pressures humanity places on Earth’s biosphere, 

extinction may be inevitable [1]. Moreover, an understanding of extra-terrestrial climatic 

conditions is critical for future unmanned missions [2]. Going beyond our domain, further 

from the sun, and to the terrestrial planet Mars may be one way to reduce the possibility 

of human extinction [3].  

Despite this lofty goal, the hostile Martian weather conditions differ vastly from 

those on Earth, and the ability to predict those conditions would be invaluable for 

successful colonization and further exploration. In particular, the extremely wide range of 

temperatures (-225 °F to 70°F) are a significant barrier to implementing human 

infrastructure [1], [4]. Further, traditional weather prediction techniques (e.g., numerical 

weather prediction) are computationally expensive and are not always stable due to the 

volatile physical conditions of the Earth’s atmosphere [3], [5]. While such techniques 

have steadily improved over the past few decades, they require significant technological 

infrastructure such as super-computing facilities, weather satellites, and other telemetry 

instruments that are not present on Mars [6]. 

Supervised machine learning is the process whereby computers are given training 

inputs (the specific values of independent variables) and the known outputs 

corresponding to these inputs in order to learn a rule, or function, that maps inputs to 
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outputs [7]. A simple example of a supervised learning problem pertaining to weather 

prediction might be the following: given a set of input values for humidity (70%, 20%, 

30%) and a corresponding set of outputs for whether it will rain (Will Rain, Won’t Rain, 

Will Rain), then the task of supervised learning is to learn a rule for predicting whether it 

will rain or not based on the humidity.  Supervised machine learning is resistant to the 

incomplete understanding of atmospheric conditions that introduces uncertainties to 

numerical weather prediction and is therefore ideal for the even less understood Martian 

atmosphere [8]. Machine learning has also successfully been used for weather forecasting 

in a number of studies [9]–[16]. Additionally, a recent study implemented many machine 

learning methods—which are like those utilized in this thesis—using a smaller subset of 

NASA’s Curiosity Rover data for the analysis of weather; however, the study does not 

enumerate data preparation, cross validation, or hyperparameter tuning techniques [13]. 

Despite known non-linear—in particular, sporadic or quasi-unpredictable—

responses in weather, it has also been demonstrated that there is some degree of linearity 

that is present between certain input variables and certain output variables (e.g., the 

percent of dry days for a given year and total annual rainfall, respectively) [16]. 

Therefore, a multiple linear regression (MLR) model is also appropriate since it was 

unknown whether the current system’s (Mars’ Gale Crater) predictor variables and the 

response variables would demonstrate a linear relationship [10].  

Random forest (RF) models—which combine decision trees to produce an 

average output—have been successfully implemented for the prediction of both severe 

and normal weather conditions [17], [11]. Therefore, this model is a suitable choice for 

the volatile Martian atmosphere. 
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Finally, artificial neural networks (ANNs) are strong candidates for weather 

forecasting since they can capture the non-linear output of future weather conditions from 

past weather conditions [18], [9]. Additionally, the developer has much more control over 

the design of ANNs for a given problem and therefore ANNs can be implemented with 

much greater agency than either RFs or MLR. 
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II. THESIS STATEMENT 

 

 The objectives of this study are to (1) implement MLR, several ANN 

architectures such as recurrent neural networks (RNNs) and convolutional neural 

networks (CNNs), and RF models to predict mean ambient air temperature in a region of 

Mars known as the Gale Crater; and (2) use the root mean squared error (RMSE), mean 

squared error (MSE), and mean absolute error (MAE) as metrics to evaluate which model 

can most accurately generate a 7-sol forecast for the mean ambient air temperature on 

Mars when given 28 prior sols of weather data. This study is important not only in 

comparing the predictive capabilities of various machine learning algorithms but is also a 

unique study since to our knowledge none of the NASA Mars Science Laboratory Teams 

have attempted similar efforts [19]. This thesis is relevant to atmospheric scientists, 

applied mathematicians, and machine learning engineers as it compares a breadth of 

techniques on a novel system. Finally, this thesis is relevant to the author’s academic and 

personal growth since the author plans to attend graduate school for Computational 

Science, and the techniques learned are applicable to computational experimentation in 

general. 
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III. METHODOLOGY 

 

A: Research Framework 

 

Figure 1. The research framework. The letter X indicates a non-applicable step for a 

model while a check mark ✓ indicates an applicable step for a model. 

 

This study consists of several distinct phases depicted in the above figure: (1) data 

collection and preprocessing; (2) designing of models; (3) tuning of models; and (4) 

5-fold cross validation (CV) and subsequent comparison of the performance metrics of all 

models for forecasting mean ambient air temperature in Mars’ Gale Crater. Explicit 

tuning does not occur for MLR in this study since this model is most heavily impacted by 

the selection of inputs (i.e., data). This study is not an investigation into the different 

regression algorithms themselves, but rather it is an applied study of their comparative 

performance on the selected dataset. 
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B: Dataset 

 

Table I. Features and targets for study. 

Feature* Description Target 

Ground Temperature (K) The brightness 

temperature measured 

by a thermopile on 

boom 1. 

Mean 

Ambient Air 

Temperature 

(K) 

Boom Air Temperatures (K) Separate local air 

temperatures for 

REMS booms 1 and 2. 

Local Relative Humidity 

(%) 

Local relative 

humidity at humidity 

sensor. 

Atmospheric Pressure (Pa) Pressure. 

Ambient Air Temperature** 

(K) 

Estimated ambient air 

temperature. 

28 x 17 Total Features, 7 x 1 Total Targets 

*The minimum, maximum, and mean of a feature each of 28 sols prior. 

**Only the minimum and maximum of this feature were computed. 

 

The weather data used in this study are available through NASA’s Planetary Data 

System (PDS). Data for 2837 Martian days (sols) were collected via the Rover 

Environmental Monitoring System (REMS) onboard NASA’s Curiosity Rover. Note, 

Martian sols are approximately equivalent in duration to Earth days, and thus the word 

sol and day are often used interchangeably. Each row of a data product representing one 

sol is composed of different columns for time references, wind sensor products, ground 

temperature products, air temperature products, ultraviolet sensor products, humidity 

sensor products, and pressure sensor products [20].  

Sampling for each row is taken at 1 Hz maximum, with baseline operation of 5 

minutes every hour. While each sol therefore contains time series data, only medium-
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range (3-7 days) forecasting was be attempted in this study. Consequently, Table I lists 

the relevant features (independent variables), which are estimators (minimum, mean, of a 

maximum) of a given sol, that were used in this study. The estimators of a given sol were 

selected because the same estimators were used in the datasets of several previous studies 

[21]–[23].  

 

C: Preprocessing for Time Series Forecasting 

 Time series data are data that are sequential with respect to time. There are many 

common examples of time series data, such as fluctuating sea level, counts of sunspots, 

and daily closing values for stock market indices [24]–[26]. In all cases, some variable is 

always considered with respect to the time at which such information was collected. In 

weather prediction, the relevance and structure is quite intuitive since the reader has 

likely referred to weather forecasts in his or her daily life when making decisions about 

what to wear, whether to carry an umbrella, etc. 

To understand the format of weather data, consider a single variable such as 

temperature. On the present-day t, the temperature might be 70 °F while the two previous 

days (days t-1 and t-2) might be 67 and 68 °F, respectively. However, the temperature of 

the next 7 days is unknown. The expression that can represent the list, or window, of the 

next 7 days temperature is this: (t+1, t+2, t+3, t+4, t+5, t+6, t+7). Fundamentally, this is 

how time series data are divided and the “previous-day” window is called the time lag 

while the “future-day” window is called the forecast horizon. 
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For this study, data were windowed with a time lag of 28 (i.e., t, t-1, t-2, …, t-27) 

and a forecast horizon of 7 (i.e., t+1, t+2, …, t+7). The size of the time lag and forecast 

horizon are problem specific and often influenced by some interpretable concept such as 

quarters of a year (in the case of financial data) or, in this study’s case, 1 previous month 

of data for a 7-sol forecast.  

 Moreover, it is important to divide data into a training, validation, and test set. If 

this procedure is not followed, then any evaluation of the model will be positively biased, 

that is the model will appear to be much better than it is. Data are split in the following 

proportions: 60% training, 20% validation, and 20% test. This is a typical splitting pattern 

in machine learning projects [27]. 

Differentiating the validation and test set is important. The validation set is “seen” 

multiple times by the model after it has been trained. The validation set is used to 

evaluate how well the model can generalize to new cases. However, since the same 

validation set is used multiple times after adjusting (i.e., optimizing) the hyperparameters 

(learning rate, model architecture, etc.) of the model, the generalization error for different 

models is only measured using a single validation set. Therefore, the test set contains data 

that none of the candidate models—each with different hyperparameters—has ever 

“seen,” and this set is used at the very end of the study to evaluate and select the best 

candidate model [28], [29].  Moreover, at no point in the experimentation process do any 

models have access to the test set. This includes during transformation processes such as 

normalization and imputation, discussed shortly. 

Min-max normalization was be applied to all features as given in [15]. This 

practice transforms data to a common scale to (1) allow for a model to learn more 
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efficiently; and (2) to make the comparison of models straightforward and constant [30]. 

For this study, the min-max normalization range is from zero to one, thus all variables 

(features and targets) were transformed to this range [31]. This follows the normalization 

procedure of previous work [15]. 

 

 
𝑑𝑎𝑡𝑎 =  

𝑑𝑎𝑡𝑎 −𝑚𝑖𝑛 (𝑑𝑎𝑡𝑎)

𝑚𝑎𝑥(𝑑𝑎𝑡𝑎) − 𝑚𝑖𝑛 (𝑑𝑎𝑡𝑎)
 

( 1 ) 

 

As is the nature of data collection, some data are missing. Instruments can fail or 

data can be screened for anomalies that are subsequently removed. For this study, 

approximately 4% of sols were missing from when collection started on sol 1 to when 

collection ended on sol 2837. The task of generating values that are estimates of missing 

values is known as imputation. There are many techniques in missing value imputation; 

however, one of the most powerful imputation methods is known as the extra trees 

method—which is similar to RFs but instead “views” an entire input dataset rather than 

bootstrapped (random samples with replacement) samples [32]–[35]. While the extra 

trees method suffers from higher variance due to using the entire input dataset for 

training, imputation occurs more quickly and thus makes it preferable to the random 

forest implementation on which the Scikit-Learn implementation is based [33], [36], [37]. 

For multivariate imputation, often the iterative imputation method (in this case 

extra trees) will not converge to an optimal solution. For this study a max of 5 iterations 

was selected for the imputer and the effects of non-convergence were safely ignored 
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since Oberman et al. [38] showed that inferential validity can be achieved after 5 to 10 

iterations. 

The input to all algorithms was 28 days of feature data, and the output was the 

mean ambient air temperature for the next 7 sols (see Table I).  

All data preprocessing and plotting were conducted using the Scikit-Learn, 

NumPy, SciPy, Matplotlib, and Pandas libraries for Python [33], [39]–[42].  

 

D: Independent, Joint, and Iterative Models for Time Series Forecasting 

When building models to make predictions on time series data, three possible 

strategies are available: independent, joint, and iterative models [43].  

As discussed previously, a time series window for the future is called a forecast 

horizon. For independent models, one constructs a model that specifically learns to 

predict future values only at that time step. Both RF and MLR algorithms belong to this 

class of strategies, so seven models are constructed for each algorithm, one model for 

each day in the future. Neither MLR nor RFs are explicitly designed for multi-step 

predictions, which is the case for this study since multiple steps (sols) in the future are 

predicted. As a result, the independent model strategy is one strategy that can 

accommodate the problem formulation for this study. 

Joint models are singular models that predict all values in the forecast horizon at 

once as opposed to constructing a separate model for each step in the forecast horizon (as 

is the case for independent models). The single model strategy was implemented with one 
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variation of RNNs in this study. RNNs that predict all steps in the forecast horizon at 

once are termed “joint” for this study. 

Iterative models are those models that assume there is a relationship between 

sequential timesteps that cannot be ignored. This relationship is known as 

autocorrelation, and essentially requires that the model iteratively predict t+1 then use 

t-27, t-26, …, t and t+1 to predict t+2. The model then adds t+2 to its internal list (or 

state) and predicts iteratively until the weather data for t+7 are predicted. At the end of 

iterative prediction process, the desired target variable will be predicted in a time indexed 

list where each t is a timestep (day) like (t+1, t+2, t+3, t+4, t+5, t+6, t+7). 

 

E: Multiple Linear Regression 

The goal of multiple linear regression is to find a parametric function that 

minimizes the squared difference between the prediction �̂� for ambient air temperature 

and the actual value Y for the ambient air temperature. The function itself is a linear 

combination of N total independent variables Xn plus random error ε [22]. The parameters 

learned by MLR are the values 𝛽𝑛 that correspond to each Xn. More commonly the set of 

independent variables is represented by an input vector XT = (X1, X2, …, Xn) and �̂� is a 

function of each X. The relationship between �̂� and X is described in equation (2) from 

[44]. 

 

 �̂� = 𝑓(𝑋) = 𝛽0 + ∑ (𝛽𝑛𝑋𝑛)
𝑁
𝑛=1 + ε  ( 2 ) 
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Since there are N = 476 possible independent variables (features) in this study, 

then there are 2N = 2476 = 1.95 x 10143 possible parametric models that could be 

considered to produce the best estimated response �̂� of the actual response Y  [45], [46]. 

This means that there are more combinations of MLR models for this study than there are 

atoms in the universe. To illustrate this concept with more manageable numbers, Table II 

demonstrates the number of possible models if there are only two features (N = 2) [45]. 

 

Table II. Possible MLR Models Given N = 2 Features. 

Model Equation 

1. �̂�1 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ε 

2. �̂�2 = 𝛽0 + 𝛽1𝑋1 + 𝜀 

3. �̂�3 = 𝛽0 + 𝛽2𝑋2 + 𝜀 

4. �̂�4 = 𝛽0 + 𝜀 

 

 

 Testing each model combination would be impossible, and techniques such as 

backward elimination and principal component analysis are commonly used to select the 

most important features for a study [47]. However, while feature reduction techniques 

were employed originally for this study, they were abandoned due to failure of the dataset 

to meet assumptions that are required for MLR to be considered a robust and valid model 

[48]. This concept is elucidated in the discussion and two statistical tests are used to 

illustrate the dataset’s failure to meet the required assumptions [49], [50]. 
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 MLR uses the method of ordinary least squares to adjust its parameters. In this 

way, MLR learns a function with a number of parameters equal to the number of features 

in the dataset. Such a function would essentially be Equation (2) but with 𝛽0 through 𝛽476 

possessing different values that would uniquely modify the input data to produce the 

desired output. 

 The implementation of the MLR model was via Scikit-Learn and statistical tests 

pertaining to the assumptions of MLR were carried out via Statsmodels [33], [51]. 

 

F: Random Forest 

 RFs are an ensemble learning method. The RF learning mechanism is to 

aggregate multiple individual decision trees for—in this study—regression problems and 

produce an average prediction [52]. A decision tree is simply a tree-like model of 

decisions and their possible consequences. The subsequent aggregation of all these 

individual decision trees into a forest yields greater accuracy and prevents overfitting 

associated with individual instances of decision trees [53]. 
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Figure 2. Decision tree regressor for canonical iris flower dataset. 

 

Since the subunit of a random forest is a decision tree, Figure 2 depicts both a 

decision tree and the process by which it makes decisions. An adaptation of the well-

known iris flower classification problem is used to illustrate a decision tree regressor. The 

adapted features for this problem are petal length, sepal length, and sepal width while the 

target for the decision tree is to predict the petal width. Note that this adaptation is 

somewhat trivial since if one possesses the iris flower, one can easily take the appropriate 

measurements without relying on a decision tree. Nevertheless, at each square (node) in 

the tree, information about a feature informs whether to proceed left or right down the 

tree. For example, if an iris has a petal length that is less than or equal to 2.45 cm, then 

the tree is traversed from the first node to the node on the left in the second row of nodes. 

This process continues until a prediction is made.  

The learning criteria for decision trees, and consequently random forests, is 

minimizing the mean squared error (“mse” in the figure) between the current node’s 
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prediction (value) and the known target value. Nodes make predictions by averaging the 

associated target values for the n samples of the node, and the ends (leaves or leaf nodes) 

of the decision tree have the lowest mean squared error.  

A hyperparameter, or those parameters that are intrinsic to a particular model, that 

is also applicable to RFs for this study can be elucidated using Figure 2. The maximum 

depth of the decision tree is the maximum number of branches (arrows) until a leaf node 

is encountered. For Figure 2, the maximum depth is 3. This hyperparameter can be 

changed to increase or decrease the risk of overfitting (overlearning a problem and failing 

to generalize to new problems). 

The random forest trains n decision trees known as n estimators and then averages 

the predictions across all decision trees. However, unlike decision trees, which select the 

best feature to split a node on based on the learning criteria for all features, the RF 

searches for the best feature among a random subset of features [34]. Moreover, the 

training set for the ith decision tree is a bootstrap sample of the original training set [31]. 

Bootstrapping is the act of randomly sampling with replacement. The bootstrapping 

sampling method is known to provide a more diverse ensemble from which an accurate 

RF model prediction could arise [54].  

RFs are a reputable choice for high-dimensional data and are reported to have 

ease of implementation for large datasets according to [55] and [23]. Additionally, RFs 

are capable of handling complex, non-linear relationships and are one of the most 

powerful machine learning algorithms available today [34].  
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The implementation of the RF model is available via Scikit-Learn [56]. The n 

estimators and max depth hyperparameters that were tuned for RFs are discussed in the 

results and discussion section. 

 

G: Artificial Neural Networks 

 The bulk of this study was spent designing, tuning, and troubleshooting the class 

of machine learning algorithms known as artificial neural networks (ANNs).  

 ANNs are biologically inspired algorithms that, like the previous models 

discussed, learn parameters such that better predictions can be made [57]. ANNs are 

composed of neurons and can have multiple layers to learn some complex function such 

as the function that describes weather forecasting for a particular system. Figure 3 depicts 

the simplest form of an ANN, commonly referred to as a multilayer perceptron. ANNs 

are particularly useful as they do not require intimate knowledge of a system—like the 

complicated numerical methods and computational fluid dynamics used in atmospheric 

science—to make powerful predictions.  

ANNs learn a function’s parameters for a given system by performing gradient 

descent in error. The function that models the error between predictions and known 

targets is referred to as an objective, cost, loss, or error function [58]. The proverbial 

example of gradient descent is imagining a hiker trying to get the lowest point in a 

mountain range. Many routes will lead up the mountain, many routes will lead to spots 

that are lower than the hiker’s current point, but not necessarily the lowest possible point 

in the mountain range. Thus, it is the task of the neural network to find such a path in a 
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(literally) unimaginable N-dimensional mountain range to the lowest point in said 

mountain range. 

 

 

Figure 3. Feedforward neural network architecture.  Single hidden layer neural network 

with k hidden neurons denoted by the black circles [33]. 

 

 As the culmination of the study’s complex models, a total of nine unique neural 

networks were implemented using TensorFlow and Keras [59], [60]. The mean squared 

error was used as the loss function for training of all neural networks (see Equation 3).   

 

 𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑦𝑖 − �̂�𝑖)
𝑁
𝑖=1

2
  ( 3 ) 
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The number of times the ANN “sees” the entire training dataset is called training epochs. 

The number of epochs used for all ANNs was 32. To prevent overfitting, which is 

learning parameters for a neural network such that the network performs poorly on 

unseen data, early stopping is implemented with TensorFlow callbacks. The early 

stopping value monitored was validation loss (the performance of a trained model after 

each epoch on the validation batches). The early stopping criteria was to halt model 

training if validation loss did not improve (i.e., decrease) after 4 consecutive epochs. The 

batch size, which is the subsample of data that is used to make parameter updates, was 

28. The batch size was set to 28 because cross validation (described later) required that 

the data be divided into subsamples of 28 to meet the 28-day window corresponding to a 

single Martian month. The Adam optimizer was used for all ANNs. Other 

hyperparameters that apply to specific models for this study are listed as tables in the 

results and discussion. 

 

H: Recurrent Neural Networks 

 As mentioned, weather data are time series data as they are collected at regular 

temporal intervals and have some sequential relationship. This time dependence is ideal 

for recurrent neural networks (RNNs) since RNNs can use their internal state to process 

variable length sequential input for the task of weather forecasting [61]. 

 Several architectures exist for RNNs. The variations on the RNN are primarily 

based on changing its fundamental unit known as the cell in order to mitigate problems 

wherein long-sequences “confuse” the RNN and prevent it from learning a meaningful 
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function [62]. Thus, the LSTM and GRU cell were developed to alleviate instances where 

an RNN would fail for long-sequences.  

The number of cells in the RNN determines the output for a given time series. In 

its simplest form, an RNN has cells equal to the number of time steps in a given input 

matrix. A matrix, here, is simply a table where the number of the rows is the number of 

timesteps for a set of data and the number of columns is the number of features for the 

same data. Table III depicts example input to an RNN. 

 

Table III. A sample time series window with two features. 

Timestep Relative Humidity (%) Temperature (K) 

0 0.97 300 

1 0.53 275 

2 0.75 286 

 

The output from an RNN is one of three objects and is influenced by its own input 

at each timestep in the time series window. The first object, called the hidden state at a 

timestep t is denoted by ℎ𝑡+𝑖 where i is from 0 to the total number of timesteps T in the 

time series window. Referring to Table III, T = 3. The ℎ𝑡+𝑖 object is the direct result of 

the computations of the RNN cell and, as noted, there are three cells in Figure 3, one for 

each timestep in Table III. The network is recurrent in that it passes the ℎ𝑡+𝑖 object to the 

next cell in the sequence of RNN cells. If the cell is an LSTM cell, a special memory 

state called the cell state 𝑐𝑡+𝑖 is passed to the next cell also. The final output of the RNN 
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is a matrix of hidden states consisting of a single hidden state per timestep, the last 

hidden state computed in the RNN sequence, and (in the case of LSTM cell) the last cell 

state computed in the RNN sequence. 

 

 

Figure 4. Unrolling of recurrent neural network over T = 3 timesteps. An asterisk * 

indicates an output that is only for the LSTM cell. Cells are depicted as black squares. 

 

Cebeci [14] reported that both the Gated Recurrent Unit (GRU) and Long Short-

Term Memory (LSTM) architectures are ideal for weather data. However, while Cebeci 

[14] reported that GRU-RNNs were computationally less expensive (faster) to train, 

LSTM-RNNs were deemed more accurate and therefore preferable for weather 

forecasting problems  

 RNNs are implemented in one of many ways for this study: stacked (neural 

network layers are stacked sequentially on one another to improve performance), RNNs 

using GRU or LSTM cells, and/or RNNs making iterative or joint predictions—as 

discussed previously. The iterative variation is implemented by using the last hidden 

states of the previous RNN to “warm-up” the states of the autoregressive (AR) net. The 
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AR neural net then iteratively predicts 7 more hidden states, 1 state for each step in the 

forecast horizon. These 7 hidden states are then passed to a densely connected (see Figure 

3 for dense connections) layer that outputs the 7-sol forecast for the mean ambient air 

temperature. The iterative prediction architecture was inspired by a time series 

forecasting tutorial written by the contributors to TensorFlow [59]. The figure below 

depicts the variations of the RNN models designed for this study. Specific 

hyperparameters for this model are detailed in the results and discussion section. 

 

 

Figure 5. Recurrent neural network architecture. Items marked with an asterisk * indicate 

they are an optional hyperparameter for the architecture. (A) Depiction of the iterative 

prediction process. (B) The output from the MarsARNet is always of  

shape (sample_size, timesteps = 7, num_labels = 1). 

 

 

1 Month  rior 

 eather  ata

MarsRNN

MarsARNet 

  day Mean 

Ambient Air Temp. 

 redictions

Multilayer  

GR  LSTM RNN

Fully Connected Layer

t 1 t 2 t t  

(Multilayer GR  LSTM 

RNN) 

   

   



22 
 

I: Convolutional Neural Networks 

CNNs are inspired by the way the eye processes visual stimuli [63]. The process 

can be applied to time series because much in the way visual perception is handled, 

sub-windows of a given time lag (the previous days of a month in this study) can be used 

to predict the forecast horizon. This method significantly reduces the number of 

parameters needed to perform such a prediction, and a reduction of model complexity 

favorably reduces model variance [64]. 

The convolution operation that is key to CNNs can be carried out in one of two 

ways: non-causal or causal [65]. Also, 1D convolution was used for this study because 

time series data, despite using a 3D input shape (samples, timesteps, dimensions), uses 

the 1D convolution operation. Whether the convolution is causal or non-causal, the 

convolution operation has two hyperparameters known as kernel and stride. The kernel is 

essentially the size of a sliding window over an input, and the stride is the number of 

steps in between subsequent sliding windows. The below figure shows how the time 

series window evolves over time.  
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Figure 6. Convolution with kernel size 3 and stride length 1 on example time series data. 

 

Below the input data in Figure 6, 4 sub-windows of length 3 appear. The size of the sub-

window is determined by the kernel, and the index difference between sub-windows is 

determined by the stride. Since the stride in Figure 6 is 1, the difference between the first 

elements of adjacent sub-windows is 1. Note that the final sub-window has a red question 

mark “?” that denotes a failure of the remaining sub-window to slide over a value in the 

input data. If this “failed” sub-window is simply dropped from the convolution operation, 

this non-causal convolution employs valid padding [60]. If instead, the question mark is 

replaced with a value of 0, this non-causal convolution employs same padding [60].  

A disadvantage of the non-causal convolution is that when employing valid or 

same padding, an input sequence can only be continued and not started. This means that 

in non-causal convolution, the output is dependent on future inputs and predictions can 
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only be made for future inputs in the input frame. In contrast, causal convolution left pads 

an input sequence with zeros to make sure the output at timestep t does not depend on the 

inputs at t + 1 [59], [63]. This padding technique is particularly useful when one wants to 

prevent the network from “peeking” into the future—which one might intuitively want to 

prevent for an autoregressive problem. 

For both types of convolutions, the time series is chopped into smaller windows 

and then passed on to deeper layers in the network 

A common way to improve the performance of CNNs is to implement batch 

normalization, which standardizes outputs between layers, and max pooling, which 

subsamples hidden layer outputs to decrease computational complexity.  

Many design considerations are readily apparent for CNNs, but for time series 

analysis, this study included convolutional dilation that was influenced by the dilation 

rate of the seminal WaveNet architecture [66]. As a result, the dilation rate was tuned to 

be a power of 2n (e.g., 1, 2, 4, 8, …. 256, etc.) where the exponent n is determined by the 

number of convolutional layers in the network. Alternatively, the dilation rate could be 

held constant during tuning, though it has been shown that dilation improves model 

performance in a variety of tasks [67]–[70]. Moreover, the previous work in machine 

learning applications for mars using CNNs was also useful as a simple reference 

architecture [13]. For the current study, both non-causal and causal convolution 

techniques were tuned so valid, same, and causal padding were set as padding options. 

Batch normalization and max pooling were also implemented to regularize the CNN and 

thus improve its performance. 
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Figure 7. Convolutional neural network architecture. Items marked with an asterisk * 

indicate they are an optional hyperparameter for the architecture. 

 

J: Cross Validation and Hyperparameter Tuning 

The aim of cross validation (CV) is to (1) split data once or several times; (2) train 

a model with input and target outputs; and (3) evaluate how well the model performs on 

what is initially an “unseen” validation dataset [71]. Often, the splitting of data once or 

several times occurs randomly and involves the shuffling of data. Typical CV (k-fold 

CV) disregards the intrinsic time dependence of time series data and is therefore not 

ideal. For this study, rolling-origin-recalibration cross validation (RORCV) was be used 

to maintain time dependence as well as test models with adjusted hyperparameters [72].  

Sometimes called walk-forward cross validation, the RORCV method maintains 

the temporal dependence of the data by adding the N+1 validation set to the current 
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training set where N is the temporal split desired. The size of N is influenced by the data 

itself, and a size N = 5 was selected since this divides the Martian data into 5 windows of 

approximately 1 Martian year in length. In this way, sequential years are added to the 

training set in temporal “blocks” until no more blocks are available (i.e., year 1 predicts 

year 2, then year 1 and 2 predicts year 3, etc.). Refer to Figure 8 for a depiction of the 

walk-forward cross validation indexing process. 

 

 

Figure 8. Data partitioning using walk-forward cross validation [33]. 

 

 Hyperparameters are not parameters of the model itself, see Table II for a model 

with two parameters 𝑋1 and 𝑋2, but rather those “settings” (e.g., number of hidden layers, 

learning rate η, etc.) of the machine learning algorithm itself [73]. Comprehensive tables 

of the hyperparameters are available in the results and discussion section.  
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Hyperparameters can be changed (tuned) such that a model performs with a better 

desired performance metric. For this study, automatic hyperparameter tuning via 

Bayesian optimization was be used. Hyperparameters differ for each machine learning 

algorithm in this study; however, the MLR algorithm was not regularized and therefore 

has no hyperparameters to tune. RFs, RNNs, and CNNs have many hyperparameters that 

can be tuned but the following hyperparameters were selected for each model, 

respectively: (1) number of decision trees in forest and max depth of trees; (2) number of 

hidden units, number of hidden layers, GRU or LSTM unit for RNN cell, iterative or joint 

model, and layer normalization rate; (3) number of convolutional filters, filter increase 

rate between multiple layers, dropout rate, padding strategies, and dilation rate [74]. For 

all ANNs, the learning rate for the Adam optimizer was also tuned. Further, Bayesian 

optimization as an automatic hyperparameter tuning algorithm is a strong choice since the 

RF and RNN models will not be applied to other datasets and the current dataset is not of 

substantial size [75].  

 Bayesian optimization was implemented using Keras-Tuner [76]. The maximum 

number of trials for the Bayesian optimization was 10. As implemented in Keras-Tuner, 

Bayesian optimization initially selects a random set of hyperparameters from a list of 

choices for each hyperparameter. After this initial selection, which hyperparameters to 

explore further is determined by training and validating via 5-fold time series cross 

validation a given model and updating the  ayesian optimization’s search parameters 

based on the average validation loss for a particular model. This process repeats for a 

total of 10 (i.e., max number of trials) times such that 10 combinations of 

hyperparameters are tested and the best set of hyperparameters can be reported. 
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K: Performance Metrics and Final Evaluation 

 MAE, MSE, and RMSE were used to compare the different models in this study. 

These metrics are the most common for time series forecasting [77].  

 The MAE is used to define the absolute difference between actual values of the 

mean ambient air temperature y and a given model’s prediction �̂� over a sample of size N 

[13]. 

 𝑀𝐴𝐸 = 
1

𝑁
∑ |𝑦𝑖 − �̂�𝑖|
𝑁
𝑖=1   ( 4 ) 

The MSE (see Equation 4) is like MAE except the difference in model predictions 

and actual values of the mean ambient air temperature are squared. 

The RMSE is simply the square root of the MSE and is commonly reported in 

forecasting domains. 

 
𝑅𝑀𝑆𝐸 = √

1

𝑁
∑ (𝑦𝑖 − �̂�𝑖)
𝑁
𝑖=1

2
  

( 5 ) 

 For each model, 5-fold cross validation allows for the computation of confidence 

intervals, and this strategy was used for both the hyperparameter tuning and final 

evaluation of the models. Confidence intervals (CIs) are the range of estimates for an 

unknown parameter—in this case the MAE, MSE, RMSE—and the likelihood that the 

unknown parameter falls within that range [78]. For this study, 95% confidence intervals 

were used.   
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IV. RESULTS AND DISCUSSION 

 

Table IV. Metrics for all models’ performance for 7-sol mean ambient temperature 

forecasting. Sorted in ascending order along MAE. 

 

Models 
Metrics (K) 

MAE MSE RMSE 

gru_unstacked_iterative 2.31 10.98 3.25 

lstm_stacked_iterative 2.39 11.58 3.38 

cnn 2.76 14.98 3.87 

mlr 2.88 15.78 3.93 

lstm_stacked_joint 3.22 15.96 3.99 

rf 3.23 15.53 3.92 

gru_stacked_joint 4.1 25.29 4.99 

lstm_unstacked_iterative 4.24 28.15 5.25 

gru_unstacked_joint 4.28 27.38 5.19 

gru_stacked_iterative 4.3 25.03 5 

lstm_unstacked_joint 6.26 58.58 7.51 

 

Table IV depicts the performance evaluation for all the models considered for this 

study. In order of design, the algorithms considered for this study were MLR, RF, CNN, 

GRU-unstacked-joint, GRU-unstacked-iterative, GRU-stacked-joint, 

GRU-stacked-iterative, LSTM-unstacked-joint, LSTM-unstacked-iterative, 

LSTM-stacked-joint, and LSTM-stacked-iterative. The statistical parameters used for the 

evaluation were MAE, MSE, and RMSE. 

Therefore, a total of eleven models were implemented for this study. All metrics 

were computed by taking the mean of the metrics computed during 5-fold walk-forward 
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cross validation on the training set and validation1 set. MLR and RF do not have epoch 

nor batch size hyperparameters, but for the ANNs the batch size was 28 to reflect the 

number of sols in a Martian month, the number of epochs was 32 with the same early 

stopping parameters as mentioned in the artificial neural networks section of the methods, 

and the hyperparameters for all models will be discussed in the proceeding sections. 

Table XII shows the mean epoch and 95% confidence intervals on which early stopping 

occurred. Notably, the LSTM unstacked iterative model has a negative lower bound for 

the confidence interval due to 4 out of the 5 cross validation folds terminating around 6 

epochs, while 1 of the folds terminating near 30 epochs. This high variance led to the 

physically uninterpretable lower bound for the CI. 

 

A: Multiple Linear Regression 

 

Table V. Assumption violations for linear regression. 

Gauss-Markov Property VIFs > 5 Reject Goldfeld-Quandt H0 

Multicollinearity True -- 

Homoscedasticity -- False 

  

 From Table IV, the performance of MLR with respect to MAE and relative to all 

other models made MLR the fourth best performing model. MLR’s value for MAE was 

2.88 K and Table X in the appendices shows that the 95% CI is in (2.45, 3.30). Also from 

Table IV, the performance of MLR with respect to RMSE and relative to all other models 

made MLR the fifth best performing model. MLR’s value for RMSE was 3.93 K and 

 
1 This is not the final evaluation of models but should approximate the test set’s error. 
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Table XII in the appendices shows that the 95% CI is in (3.13, 4.73). MSE and RMSE are 

proportional, and values of MSEs are described both in the appendices and in Table IV. 

 The RMSE indicates poorer model performance than the MAE; however, and this 

will hold true for all discussions in this thesis regarding metrics, the RMSE is more 

sensitive to the magnitude of errors and MAE is considered a more unambiguous 

measure of inter-model performance [79].  

Despite the performance of MLR relative to other models, the robustness and 

statistical validity of MLR are questionable. MLR is subject to several key assumptions 

known as the Gauss-Markov assumptions, and failure to meet one or more of these 

assumptions about the distribution of errors, normality, and/or linearity can jeopardize the 

integrity of the model [49].  

Table V shows two assumptions that the MLR model was unable to meet: no 

multicollinearity among features and the variance of errors is the same (aka 

homoskedasticity).  

Multicollinearity was tested by using variance inflation factors (VIFs) for each 

feature in the dataset. If the VIF for a given feature is greater than five, then there exists 

multicollinearity (or correlation) between that feature and at least one other feature in the 

dataset [51]. For all 476 (28 * 17) features, the VIF was greater than five. Therefore, all 

features in the dataset had multicollinearity with at least one other feature. 

Multicollinearity can be alleviated by using backwards elimination or dimension 

reduction techniques such as principal component analysis; however, to maintain a 

constant dataset across models, these techniques were not performed [80], [81].  
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Homoscedasticity is the property that the variance of the residuals is a uniform 

distribution, and the null hypothesis of the Goldfeld-Quandt test is that variance in one 

subsample of residuals is larger than in the other subsample [51], [82]. If the null 

hypothesis is rejected, then the alternative hypothesis is that the variance of residuals is 

homoscedastic (or uniform). Table V shows that the null hypothesis was not rejected, 

therefore it was concluded that the distribution of the residuals is non-uniform and 

therefore heteroscedastic.  

Given that MLR violates at least two core assumptions of the model, its 

performance relative to the other models should be only tentatively accepted. 

 

B: Random Forests 

Table VI. Hyperparameter choices for random forest. 

HP BOPT Choices HP Selected 

max_depth 8, 16, 32 32 

min_samples_leaf NA 1 

min_samples_split NA 2 

n_estimators 64, 128, 256 128 

 

 From Table IV, the performance of RF with respect to MAE and relative to all 

other models made RF the sixth best performing model. RF’s value for MAE was 3.23 K 

and Table X in the appendices shows that the 95% CI is in (2.84, 3.62).  

 From Table VI, the best hyperparameter for the maximum depth of the ith decision 

tree in the random forest was 32 while the number of decision trees in the forest (aka 

“n_estimators”) was 128. It is unsurprising that the RF model outperformed about half of 
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the ANNs since RFs are notoriously powerful and, since RFs are an independent value 

model, the propagation of errors over time is expected to be minimized compared with 

iterative neural network models [83].  

Despite the intuition that the independent value model should have less error 

propagation over time compared with the iterative models, the RF does not appear to 

have substantially less variance. The evolution of all metrics over the 7-sol forecast is 

depicted in the figures in the appendices. Figure 13 shows the evolution of MAE with 

95% confidence intervals over each timestep. While the CIs for the RF appear narrower 

in Figure 13 when compared to the LSTM-unstacked-iterative model in Figure 16, the 

MAE over time for the LSTM-stacked-iterative model in Figure 18 appears to have a 

narrower CI than the MAEs for the RF. These observations indicate that the RF avoids 

the error propagation pitfalls of shallow, iterative LSTM models, but is not quite 

comparable to the deeper, iterative LSTM models. 
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C: Artificial Neural Networks 

 

Table VII. Hyperparameter choices for convolutional neural network. 

HP BOPT Choices HP Selected 

cnn_activation_function NA relu 

num_layers 1, 2, 4, 8 2 

padding valid, same, causal valid 

strides NA 1 

dilation_rate 1, 2 2 

dropout_rate 0.0, 0.16, 0.32, 0.64 0.32 

filter_increase_rate_per_layer 1, 2 2 

filters 32, 64, 128 128 

kernel_size NA 3x3 

use_max_pooling NA true 

pool_size NA 2 

pool_padding NA valid 

dense_size NA 7 

dense_activation NA none 

learning_rate 1e-2, 1e-3, 1e-4 1e-2 

 

From Table IV, the performance of the CNN with respect to MAE and relative to 

all other models made the CNN the third best performing model. The CNN’s value for 

MAE was 2.76 K and Table X in the appendices shows that the 95% CI is in (2.53, 2.99). 

 Table VII shows the best hyperparameters for the CNN. Unsurprisingly, the 

dilation rate and filter increase rate per layer were the highest of the available BOPT 

choices. The dilation rate agrees with the principles of many architectures that were 

discussed under the convolutional neural networks section of the methods. Moreover, the 

filter increase rate of 2 means that for subsequent layers, the number of filters is doubled. 

This means for the first convolutional block, there were 128 filters, and the subsequent 

block had 256 filters. It is unexpected that causal padding was not the optimal padding 

strategy. The causal padding, which has had success on long sequence time series as 
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discussed in the methods section, was not the selected padding method. Instead, valid 

padding was selected. One explanation for this might be that the time lag was not large 

enough for causal padding to be effective at improving model performance. The time lag 

was only 28 sols, which is a short sequence length compared to more complicated 

sequences that are typically handled with causal padding. 

 

Table VIII. Hyperparameter choices for LSTM model variants. 

HP BOPT Choices 
HP Selected for LSTM Model Variant 

USJ USI SJ SI 

autoregressive NA false true false true 

dropout_rate** 0.0, 0.16, 0.32 0.0 0.32 0.0 0.0 

rnn_cell NA lstm lstm lstm lstm 

rnn_layers* 1, 2, 4, 8 1 1 2 4 

rnn_size 32, 64, 128 32 128 32 32 

learning_rate 1e-2, 1e-3, 1e-4 1e-3 1e-4 1e-3 1e-2 

dense_size NA 7 7 7 7 

dense_activation NA none none none none 

*For the unstacked models, rnn_layers = 1 but for stacked models the choices are 2, 4, 8. 

**Not recurrent (i.e., intra-layer) dropout but rather inter-layer dropout. 

 

 

 From Table IV, the order of best model performance on MAE for the LSTM 

variants: stacked-iterative > stacked-joint > unstacked-iterative > unstacked-joint. The 

obvious observation here is that the deeper network outperforms the shallow network. 

The respective mean MAE values (in Kelvin) and 95% CIs for these models are as 

follows: 2.39 in (2.13, 2.66); 3.22 in (3.08, 3.37); 4.24 in (2.66, 5.82); and 6.26 in (3.53, 

9.00). 

 Of the LSTM models, the LSTM-stacked-iterative model was the second-best 

performing model with respect to all models, while the LSTM-unstacked-joint model was 
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the worst-performing model with an upper bound on the confidence interval of ca. 1.5 

times more than the upper bound of the second worst-performing model. 

With far fewer hyperparameters, interpretation of the LSTM model variants in 

Table VIII and their respective performance in Table IV is more straightforward. Even 

when the unstacked-iterative model has more hidden neurons per single layer compared 

with the stacked models, and the unstacked-iterative model has the slowest learning rate, 

it cannot outperform the stacked models.  

 

 

Table IX. Hyperparameter choices for GRU model variants. 

HP BOPT Choices 
HP Selected for GRU Model Variant 

USJ USI SJ SI 

autoregressive NA false true false true 

dropout_rate** 0.0, 0.16, 0.32 0.32 0.16 0.16 0.32 

rnn_cell NA gru gru gru gru 

rnn_layers* 1, 2, 4, 8 1 1 8 8 

rnn_size 32, 64, 128 32 32 32 64 

learning_rate 1e-2, 1e-3, 1e-4 1e-4 1e-2 1e-4 1e-3 

dense_size NA 7 7 7 7 

dense_activation NA none none none none 

*for the unstacked models, rnn_layers = 1 but for stacked models the choice are [2, 4, 8]. 

**not recurrent (i.e., intra-layer) dropout but rather inter-layer dropout. 

 

 

 

From Table IV, the order of best model performance on MAE for the GRU 

variants: unstacked-iterative > stacked-joint > unstacked-joint > unstacked-iterative. The 

respective mean MAE values (in Kelvin) and 95% CIs for these models are as follows: 

2.31 in (1.74, 2.89); 4.1 in (2.84, 5.37); 4.28 in (2.90, 5.65); and 4.30 in (3.94, 4.66).  

Of the GRU models, the GRU-unstacked-iterative model was the best performing 

model with respect to all models, while the remaining GRU models were in the bottom 

half of the model performance.  
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GRU RNNs and LSTM RNNs have been shown to outperform one another on 

some tasks while paradoxically performing so similarly as to be ambiguous on others 

[14], [84]–[87]. To illustrate the overlapping intervals of all models, refer to Figure 9 that 

compares cross validated model performance using MAE. 

Despite the GRU-unstacked-iterative model performing the best with respect to 

mean MAE across all cross validation folds, the CIs for the top 4 models all overlap. This 

indicates that extensive hyperparameter tuning and careful cross validation were not 

sufficient to demonstrate a clear best-performing model. This overlap might be resolved 

by using N, 5-fold walk-forward cross validation with the random seed for weight 

initialization set to different values for each CV replicate so that the neural networks 

weight initialization and data shuffling is reproducible. Unfortunately, with deeper 

models with more parameters, repeating cross validation can become computationally 

expensive, though this avenue of experimentation could be pursued in the future. 

What remains of the results section are the performance metric graphs for the 

MAE, MSE, and RMSE. The appendices also contain the remaining CI tables and error 

propagation tables over time for each model. 
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Figure 9. MAE for all models with 95% confidence interval. 
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Figure 10. MSE for all models with 95% confidence interval. 
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Figure 11. RMSE for all models with 95% confidence interval. 
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V. CONCLUSIONS AND FUTURE WORK 

 

 Eleven machine learning models were implemented for the prediction of a 7-sol 

forecast for mean ambient air temperature on Mars. Of those models, multiple linear 

regression, random forest, several variants of recurrent neural nets, and finally 

convolutional nets were explored. Bayesian optimization was used to hyperparameter 

tune models while walk-forward cross validation was utilized to maintain temporal 

dependencies between cross validation blocks. The best performing model based on 

MAE was the GRU-unstacked-iterative RNN; however, the top performing models had 

significant overlap in their confidence intervals. The work presented in this thesis is 

progress toward more thorough studies in computational atmospheric sciences, 

particularly those that would focus on space exploration. This work also makes the code 

base used to develop and test these models freely available to the public for research and 

recreational purposes (https://github.com/jfdev001/mars-ml-mtsu-honors-thesis).  

 The techniques learned for this thesis are critical for all future computational 

studies that the author will conduct. Future work could entail de-seasonalizing, de-

trending, or implementing graph/attention-based models for time series forecasting. 
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APPENDICES 

 

Table X. MAE for models with 95% confidence interval. 

Models 
CI Bounds 

lower mean upper 

gru_unstacked_iterative 1.74 2.31 2.89 

lstm_stacked_iterative 2.13 2.39 2.66 

cnn 2.53 2.76 2.99 

mlr 2.45 2.88 3.3 

lstm_stacked_joint 3.08 3.22 3.37 

rf 2.84 3.23 3.62 

gru_stacked_joint 2.84 4.1 5.37 

lstm_unstacked_iterative 2.66 4.24 5.82 

gru_unstacked_joint 2.9 4.28 5.65 

gru_stacked_iterative 3.94 4.3 4.66 

lstm_unstacked_joint 3.53 6.26 9 

 

Table XI. MSE for models with 95% confidence interval. 

Models 
CI Bounds 

lower mean lower 

gru_unstacked_iterative 6.13 10.98 15.84 

lstm_stacked_iterative 8.43 11.58 14.73 

cnn 13.42 14.98 16.54 

rf 10.73 15.53 20.33 

mlr 10.15 15.78 21.42 

lstm_stacked_joint 14.68 15.96 17.24 

gru_stacked_iterative 24.33 25.03 25.73 

gru_stacked_joint 16.7 25.29 33.88 

gru_unstacked_joint 16.97 27.38 37.8 

lstm_unstacked_iterative 16.48 28.15 39.83 

lstm_unstacked_joint 25.2 58.58 91.97 
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Table XII. RMSE for models with 95% confidence interval 

Models 
CI Bounds 

lower mean lower 

gru_unstacked_iterative 2.38 3.25 4.13 

lstm_stacked_iterative 2.88 3.38 3.89 

cnn 3.66 3.87 4.07 

rf 3.33 3.92 4.51 

mlr 3.13 3.93 4.73 

lstm_stacked_joint 3.83 3.99 4.16 

gru_stacked_joint 4.17 4.99 5.82 

gru_stacked_iterative 4.93 5 5.07 

gru_unstacked_joint 4.22 5.19 6.15 

lstm_unstacked_iterative 4.21 5.25 6.3 

lstm_unstacked_joint 5.44 7.51 9.58 

 

Table XIII. Number epochs before termination for early stopping of neural network 

training with 95% confidence interval. 

Models 
CI Bounds 

lower mean lower 

gru_unstacked_joint 3.81 6.2 8.59 

lstm_unstacked_joint 2.64 6.2 9.76 

gru_stacked_iterative 3.74 6.6 9.46 

lstm_stacked_joint 3.07 7 10.93 

gru_stacked_joint 4.25 7.6 10.95 

lstm_stacked_iterative 6.24 8 9.76 

cnn 5.37 8.2 11.03 

gru_unstacked_iterative 2.05 10.8 19.55 

lstm_unstacked_iterative -0.78 11.8 24.38 

gru_unstacked_joint 3.81 6.2 8.59 

lstm_unstacked_joint 2.64 6.2 9.76 
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Figure 12. Performance of MLR at each timestep (sol) for all metrics  

with 95% confidence intervals. 

 

 

Figure 13. Performance of RF at each timestep (sol) for all metrics  

with 95% confidence intervals. 
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Figure 14. Performance of CNN at each timestep (sol) for all metrics  

with 95% confidence intervals. 
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Figure 15. Performance of LSTM Unstacked Joint Model at each timestep (sol) for all 

metrics with 95% confidence intervals. 

 

 

Figure 16. Performance of LSTM Unstacked Iterative Model at each timestep (sol) for all 

metrics with 95% confidence intervals. 
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Figure 17. Performance of LSTM Stacked Joint Model at each timestep (sol) for all 

metrics with 95% confidence intervals. 

 

Figure 18. Performance of LSTM Stacked Iterative Model at each timestep (sol) for all 

metrics with 95% confidence intervals. 
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Figure 19. Performance of GRU Unstacked Joint Model at each timestep (sol) for all 

metrics with 95% confidence intervals. 

 

Figure 20. Performance of GRU Unstacked Iterative Model at each timestep (sol) for all 

metrics with 95% confidence intervals. 
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Figure 21. Performance of GRU Stacked Joint Model at each timestep (sol) for all 

metrics with 95% confidence intervals. 

 

 

Figure 22. Performance of GRU Stacked Iterative Model at each timestep (sol) for all 

metrics with 95% confidence intervals. 


