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Ann, and to my husband, Alton, the love of my life.  These four have given me love, 

advice, support, challenge, joy, encouragement, and the best family life imagined. 

 

As a special memorial to Leah Christine Terry, it is with great honor that I acknowledge 

the first philosophy degree in the family to you.  Your literary piece inspired me to 

continue without ceasing to research, write, and complete.  You are missed. 

 

We Were Writers 

 We want immortality, so we try for it.  Better if we can do it by not dying, but 

we’ll take what we can get.  So we have to write, as insurance that we will continue 

forever and ever or until the world stops because that’s the only way we will. 

 We want to be original.  We want to write something new, we must.  Because 

when we write, we are translating ourselves onto paper.  We pour the contents of our 

being into every stroke of every pen and every tap of every key.  We believe that we are 

wasting ourselves, and nothing we write is ever enough.  But we want it to be.  Because it 

is the vessel in which we hold ourselves, so it is the only way we can know if we are 

enough. 

 We were writers, we thought, but writing is not an occupation for the living.  It is 

a speaker from the grave.  We were writers. 

  



 

 iii 

ACKNOWLEDGEMENTS 

 Foremost, I give glory to the God of all creation.  With Him all things are 

possible.  I placed this verse where I could see it as a daily reminder.  “Do not be anxious 

about anything, but in every situation, by prayer and petition, with thanksgiving, present 

your requests to God.  And the peace of God, which transcends all understanding, will 

guard your hearts and your minds in Christ Jesus” Phillipians 4:6-7.  

 I am forever grateful to my advisors Michaele Chappell and Angela Barlow.  You 

both challenged me to look deeper, reach farther, and persist to produce flourishing 

research.  The behind the scenes efforts are concealed by all barring me.  Like the wind 

that flutters through the leaves, your operative skills and energies are manifested in this 

work.  You two are my heroes of excellence and integrity in mathematics education. 

 This research would not have been possible without the stories from Shasta and 

Springer.  I am thankful for the investment of your time.  The majestic and fresh quality 

of your pedagogical practice was surely evident.  May you continue to produce 

innovative lesson designs with exemplary skill of CAS-rich instruction. 

 I acquired many new acquaintances through interviews, informal conversations at 

conferences, presentations, and through my literature review.  I am thrilled to have built 

new understandings about mathematics teaching and learning.  Thank you to Kaye Stacey 

and Robyn Pierce for the provision of a viable framework to enlighten my research 

question.  And to my committee members Nancy Caukin, Mary Martin, and Jeremy 

Strayer I am appreciative of your ideas, critiques, and recommendations. 

 To Patsy, thank you for creating the graphic design model.  It is perfection. 



 

 iv 

 This PhD journey began with my dear friend, Sam, and our MTF family.  I adore 

all of you and when I think of the MTF, I burst into laughter because of the joy from so 

many adventures.  Rick, Kyle, and Michaele, you created an environment for all of us to 

branch out and grow as educators.  The safety net was that at the end of a hard-days 

work, we would laugh, cry from laughter, and laugh some more.  Our MTF season ended, 

but Sam and I persisted in our terminal degrees.  It is an honor that we did this together. 

 Learning styles are so varied.  I always embrace opportunities to communicate 

and collaborate as a way to process my thinking.  As a result, many people have 

partnered with me on projects over the years, or have just been available to confer about 

ideas.  As well, an entire team of study buddies was essential to work through the 

independent requirements.  My valued members are listed in order from preliminary 

exam groups to writing groups: Kyle, Derek, Ameneh, Tasha, Jan, Shari, Kristin, Matt, 

and Amber.  You shared your workspace and work products with me.  Together we 

cleared the pathways throughout the journey.  That bond will always be strong—check 

back with me from time to time.  I also benefited as a result of in-class and out-of-class 

discussions from such insightful MSE peers. To my dear friends in the MSE program not 

already mentioned: Teresa, Angeline, Wes, Jennifer, Brandon, Rachel, Jeffrey, Chris, and 

countless others, it was an amazing journey together. 

  



 

 v 

ABSTRACT 

 Computer algebra systems (CAS) have been available for over 20 years and yet 

minimal CAS-rich opportunities present themselves formally to high school students.  

CAS tools have become readily accessible through free or inexpensive versions.  

Educators are emboldened to integrate essential mathematical tools in the reasoning and 

sense making of mathematical knowledge for students.  It is the teacher that is at the heart 

of technology instruction, creating authentic environments for all learners. 

 This study investigated two secondary teachers pedagogy in classes that exploited 

CAS in the development of mathematical knowledge.  A qualitative within-site case 

study design was used to explore each teacher’s instructional practices.  Teachers that 

exemplified qualities of CAS-infused instruction were purposively selected.  Rich 

descriptive lesson vignettes as captured from classroom observations, written reflections, 

and interviews revealed participants’ pedagogy.  The pedagogical map framework guided 

the identification of participant pedagogical affordances of the utilization of CAS.  Eight 

opportunities were observed as exploited by the participants that included subject level 

adjustments; classroom interpersonal dynamics with students; and mathematical tasks.  

Data revealed several emergent themes in operation as the teacher participants oriented 

their mathematics instruction: viewing CAS as a mathematical consultant, verifying 

answers, applying multiple representations, regulating access, providing guidance, and 

outsourcing procedures.  The components interlock with one another to form a cohesive 

depiction of pedagogical decisions in the presence of CAS-rich classroom instruction.  

The schema of CAS-oriented instruction serves as a methodology for educators to create 

opportunities that enrich the development of mathematical content knowledge.  
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 CHAPTER I: INTRODUCTION 

Introduction 

 Teachers’ instruction affords opportunities to exploit computer algebra systems 

(CAS) in the development of mathematical knowledge.  Consideration of CAS 

technologies and pedagogical practices from the perspective of secondary education 

teachers was investigated in this research using a qualitative case study.  United States 

high school teachers who currently integrate CAS technology in their teaching practices 

were selected as cases to illuminate the pedagogical practices utilized.  The study 

examined the ways two teachers integrated CAS into their classes to develop 

mathematical knowledge and understandings. Through interviews, observations, surveys, 

and the collection of lesson plan artifacts from two teachers I analyzed the pedagogical 

opportunities afforded by CAS technology and sought the perceived motivations of these 

individuals. 

 This chapter presents an overview of the significance of addressing technology in 

mathematics teaching, in particular, teaching with CAS as a cognitive tool.  Background 

of technology position statements, mathematical cognitive tools, and CAS technology are 

explicated.  Considerable research on CAS technology has materialized in the last 20 

years; so a brief history of these seminal inquiries will be summarized.  However, in 

considering teaching methodology, the pedagogical map (P-Map) first presented by 

Pierce and Stacey (2008) will be offered as a way to specify individual teacher choices 

afforded by CAS. 



 

 

2 

Background of Study 

 “The stage has been set for the systematic examination of the impact of 

technology on the teaching and learning of mathematics” (Heid & Blume, 2008, p. vii).  

Scientific, graphic, and numeric calculators are technological devices widespread in use 

by K-12 teachers as a result of researchers and teachers who explored pedagogy with 

these tools to expand student understanding of mathematical concepts (Fey, Cuoco, 

Kieran, McMullin, & Zbiek, 2003; Guin, Ruthven & Trouche, 2005).  CAS is another 

technology that emerged in the late 20 th century with capabilities of symbolic 

manipulation, a feature that can factor, expand, and solve equations as well as other 

characteristics.  This technology “provides both an aid and a challenge to students as they 

develop solid understandings of mathematical concepts and processes” (Heid, 2003, p. 

50).  However, the teacher is at the center of change through pedagogical decisions of 

technology integration (Ertmer, 1999; Ertmer & Ottenbreit-Leftwich, 2010; Pugalee, 

2001). 

  The teacher determines both when and how to implement CAS (Heid & Blume, 

2008; Heid, Thomas, & Zbiek, 2013; Simonsen & Dick, 1997; Zbiek & Hollebrands, 

2008).  “To use CAS in teaching to its full potential requires a particular set of skills and 

attitudes on the part of teachers, and so addressing teacher-related issues is crucial” (Heid 

et al., 2013, p. 631).  Teachers have the complex duty to determine the specific learning 

goals, select a problem or task to meet these goals, develop questioning strategies to pose 

to students, and assist the development of mathematical understandings from student 

work with the task (Hiebert, 2003; Heid & Blume, 2008; Zbiek & Hollebrands, 2008).  

Future studies are needed to delve into the activities of teachers as they make these 
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decisions and implement technologies (Fey, 2006; Pierce & Stacey, 2008; Zbiek & 

Hollebrands, 2008).   

Technology Position Statements 

 Position statements claiming the need for effective instruction regarding 

technology tools are readily available from both the mathematics education community 

and technology associations (e.g., Common Core State Standards Initiative [CCSSI], 

2010; International Society for Technology in Education [ISTE], 2008a, 2008b; National 

Council of Supervisors of Mathematics [NCSM], 2011; National Council of Teachers of 

Mathematics [NCTM], 2011, 2014).  These statements recommend integration of 

technology tools into teaching practices and regard technology as a support to sound 

educational practice by teachers.  The tools should be accessible to students and used to 

develop, create, and reinforce mathematical connections (NCTM, 2014).  Rather than 

teach the mechanics of the tool in separate coursework, technology should serve to 

sustain the goals of the curriculum (ISTE, 2008b).  NCSM and ISTE reiterate the need 

for fully integrated technologies as opposed to isolated elemental tools (ISTE, 2008b; 

NSCM, 2011).  

 NCTM (2014) indicated that technology is a rapidly changing landscape that 

currently encompasses interactive whiteboards, handheld devices, tablets, and desktop 

devices, all of which are used to assist in the learning of mathematics.  The technologies 

that are mathematics-specific include CAS along with applications of graphing tools, 

dynamic geometry, spreadsheets, three-dimensional modeling, and data analysis 

applications.  “An excellent mathematics program integrates the use of mathematical 

tools and technology as essential resources to help students learn and make sense of 
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mathematical ideas, reason mathematically, and communicate their mathematical 

thinking” (NCTM, 2014, p. 78).  

 The value of the educational tool depends on these factors: (a) the actions of the 

teacher as the initiator of implementation; (b) its utilization as a means to develop 

mathematical reasoning and sense making for learners; and (c) the development of 

creative and authentic learning environments (ISTE, 2008b; NCTM, 2014).  It is not the 

luxury of the tool alone, but how the teacher effectively uses technology to build 

mathematical understandings for students (NCSM, 2014; NCTM, 2011, 2014).  To 

strengthen understandings, teachers develop approaches to problems that may involve 

mental mathematics, paper-and-pencil, or a technology application (NCSM, 2011). As 

learners form familiarity with the available tools, they generate new ways to utilize these 

tools (Kaput, 1992; Pea, 1985).  Masterful teachers possess significant pedagogical 

content knowledge (PCK) (Shulman, 1986) with regard to instructional technology tools 

and that not only serves as an impetus to effective integration of technology tools but also 

inspires creativity in learning through authentic environments that utilize technology 

(ISTE, 2008b). “Effective teachers model and apply the ISTE Standards for Students as 

they design, implement, and assess learning experiences to engage students and improve 

learning” (ISTE, 2008a, p. 1).  

Technology Concerns  

 NCTM posited that no adverse affects have been attributed to the introduction of 

calculator technology (e.g., scientific, graphing, or CAS); however, not all in the 

mathematics education community view calculators as a positive addition to teaching 

(NCTM, 2011, 2014).  Merriweather and Tharpe (1999) revealed that eighth-grade 
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students had negative attitudes regarding graphing calculators.  Given access to graphing 

technology for two weeks, students found the tool complex thus making the mathematics 

problems more confusing.  Students preferred to rely on traditional paper-and-pencil 

methods.  As well, teachers preferred to teach paper-and-pencil techniques first, followed 

by technology utilization (Brown et al., 2007; Ivy & Franz, 2016; Lee & McDougall, 

2010).  Students and teachers alike choose by-hand procedures as precursory to learning 

automated technologies.  

 In a meta-analysis on the use of graphing calculators in high schools, Kastberg 

and Leatham (2005) looked at the access to three key factors: graphing calculators, 

curriculum, and pedagogy.  First, teachers limited student access to mathematics 

technology, even when graphing calculators were available.  Second, the “disconnect 

between graphing calculators and the curriculum impeded students’ ability to integrate 

various techniques learned” (p. 30).  Curriculum often included technology as 

supplemental, rather than integrated.  Finally, when teachers had technological tools 

available, pedagogy and teacher approaches to problems impacted the way students used 

the tools.  

 The NCTM Research Council recommended additional research regarding 

practitioner use of technology in the teaching and learning of mathematics and inquiry 

into the effectiveness of mathematics-specific technical tools.  “Technology integration is 

a complex phenomenon that involves understanding teachers’ motivations, perceptions, 

and beliefs about learning and technology” (Keengwe, Onchwari, & Wachira, 2008, p. 

560).  Additional concerns include the lack of professional learning experiences for 

teachers and the need for sustained opportunities to support teachers in their use of 
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technological tools (NCSM, 2014; NCTM, 2014).  These views are fortified by ongoing 

research that benefits classroom instruction for meaningful learning in mathematics 

(NCSM, 2014). 

Cognitive Tools and Technologies 

 Mathematical objects that are used in quantification, computation, and 

organization and also “facilitate the technical dimension of mathematical activity” (Pierce 

& Stacey, 2010, p. 3) are referred to using multiple labels: cognitive tools (Zbiek, Heid, 

Blume, & Dick, 2007); cognitive technologies (Pea, 1985); cognitive technological tools 

(Drijvers & Trouche, 2008); symbolic tools (Artigue & Diderot, 2002); digital 

technologies (Weigand, 2014); handheld technology (Trouche & Drijvers, 2010); 

mathematical action technologies (Dick & Hollebrands, 2011; NCTM 2014); 

mathematics analysis software (Pierce & Stacey, 2010); or simply tools and technologies 

(Maschietto & Trouche, 2010).  Tools have been used to develop understanding of 

mathematical concepts beginning with the use of compass and slide rules, physical 

manipulative materials (e.g., Diene’s base number blocks, pattern blocks, and geometric 

figures), numerical tables (e.g., trigonometric and logarithmic function values), and 

electronic tools of many varieties (Fey, 2006).  “Seen in a historical perspective, 

handheld tools have a long tradition of being at the heart of mathematical and scientific 

practice” (Trouche & Drijvers, 2010, p. 667).    

 The benefit of cognitive technologies is the potential to reshape how we think 

about things (Kaput, 1992; Pea, 1985; Trouche & Drijvers, 2010).  Initially, novices 

adapt to new tools while learning content knowledge, a theory referred to as instrumental 

genesis (Artigue & Diderot, 2002; Drijvers, 2015).  Once beyond the complexities, 
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learners become flexible with the device (Doerr & Zangor, 2000).  The tools provide 

access to multiple ways of representation and variations of notation (Kaput, 1992). 

“Technology should not be used as a replacement for basic understandings and 

intuitions” (NCTM, 2000, p. 25).  Rather the tools assist in the process of knowledge 

acquisition by providing inventive ways to perceive information.  As Pea (1985) stated, 

“A cognitive technology is provided by any medium that helps transcend the 

limitations of the mind, such as memory, in activities of thinking, learning, and 

problem solving” (p. 168).  

CAS Technology Background 

 The genesis of CAS began in the 1970s with computer programs that had 

rudimentary abilities to solve mathematical problems through symbolic algebra in 

response to the scientific community’s need to work complex calculations (Hamrick, 

2007; Pierce & Stacey, 2008; Roberts, Leung, & Lin, 2012).  Prior to the personal 

computer age, these algebra programs were not available to the general public, required a 

large complex computer system, and were limited in manipulations of inputs and outputs 

requiring the user to have strong knowledge about programming and mathematics 

(Demana & Waits, 1990; Lagrange, 2003).  In more recent years, CAS technology has 

advanced to user handheld devices, notably the Texas Instruments TI-NspireTM released 

in 2007 and Hewlett Packard Prime released in 2013 (Heid et al., 2013).  These devices 

provided easy access and opportunity for daily use of CAS in classroom settings (Heid et 

al., 2013).  As well, computer programs have advanced and given way to free or 

inexpensive online access and user-friendly interfaces, such as Wolfram Alpha, 

Mathematica, FX Math Pack, Desmos, and GeoGebra.  “This rapid development of 
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technology, from four function calculators to multi-representational connected devices, 

for a discipline that has evolved over thousands of years with a classroom tradition of 

teacher-centered exposition raises many questions and challenges for mathematics 

teachers”  (Pierce & Stacey, 2013, p. 324).   

CAS as an Essential Tool 

 Some mathematics educators believe that CAS technology must be recognized 

and utilized by all mathematics teachers and learners (Roschelle & Leinwand, 2011; 

Usiskin, 2006; Waits & Demana, 1998, 2000).  Justification for the use of CAS resides in 

three key areas.  First, CAS has the ability for non-standard numerical answers.  Demana 

and Waits (1990) claimed that although CAS can provide exact answers, many times in 

real-life situations, the exact number furnishes little insight into the mathematical model 

of the problem under consideration. Technology provides flexibility in the answer format, 

allowing the user to perceive the output as approximate or precise.  Likewise, problems 

need not be limited by the parameters provided in real-life situations, since calculations 

are not reliant on student proficiency of procedures.  Supporting that, the NCTM 

Technology Principle (2000) asserted that the study of algebra need not be limited to 

certain simple types of problems since CAS tools allow students access to a variety of 

unordinary solution sets.  

 A second justification is to outsource higher cognitive-demand procedures to the 

handheld device (Drijvers, 2015; Heid, 2003; Pierce & Stacey, 2010).  Traditional by-

hand complex procedures can be confounding to the learner especially when arriving at 

unordinary solution sets.  Therefore, outsourcing the procedures to the CAS can provide a 

more direct pathway to mathematical understandings (Heid, 2003).  Oftentimes, errors 
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occurred as students executed sub-procedures incorrectly, subsequently learners rely on 

CAS for correct calculations (Heid, 2003).   

 Finally, CAS is a tool in which learners conceived new ways of developing an 

understanding of mathematics (Heid & Blume, 2008; Heid et al., 2013; Kutzler, 2003; 

Pierce & Stacey, 2010; Zbiek & Hollebrands, 2008).  CAS offers the opportunity to 

investigate concepts (e.g., variable, function, expression, and equation) more deeply and 

emphasize concepts that might not otherwise be prominent (Heid et al., 2013).  Pierce 

and Stacey (2010) suggested that students were more active learners and, therefore, 

developed more robust understandings as each student reflected on his mathematical task 

in terms of outputs, representations, and multiple solution paths the CAS affords.  These 

new pathways for teaching and learning were realized through the use of CAS.  Usiskin 

(2006) claimed that it is each teacher’s obligation to provide instruction with the use of 

CAS, as the tool elicits the need for new pedagogy.  “If we truly wish to improve the use 

of mathematics in society, we have a moral obligation to further the use of instruments 

that can give so much power to people” (Usiskin, 2006, p. 5). 

CAS Literature Overview 

 After the onset of CAS systems, many educators discovered and explored 

possibilities of instruction utilizing CAS, forming a new type of discussion about 

teaching with technologies (Fey et al., 2003; Stacey, Chick, & Kendal, 2004).  Seminal 

research involved multiple representations, reorganization of curricula, the functional 

opportunities CAS provides, and dynamic features that interplay in those contexts using 

MuMath or Derive (Heid, 1988, 2003; Kutzler, 2010; Pierce & Stacey, 2002, 2008).  As a 

result of this research, the need for additional organizations and venues for sharing this 
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work emerged, along with volumes of compilations regarding these studies.  A selection 

of these pieces of literature is listed in Table 1. 

Table 1 

Compilations of Technology Research and Perspectives in Mathematics in Mathematics 

Year Location Editor(s) Title 

2003 United 
States 

Fey, J., Cuoco, A., 
Kieran, C., McMullin, 
L., & Zbiek, R. M. 

Computer Algebra Systems in 
Secondary Education 
Mathematics Education 

2004 Melbourne, 
Australia 

Stacey, K., Chick, H., 
& Kendal, M. 

The Future of Teaching and 
Learning of Algebra: The 12th 
ICMI Study 

2005 United 

Kingdom 

Guin, D., Ruthven, K., 

& Trouche, L. 

The Didactical Challenge of 

Symbolic Calculators: Turning 
a Computational Device into a 
Mathematical Instrument 

2008 United 
States 

Heid, M. K. & Blume, 
G. W. 

Research on Technology and 
the Teaching and Learning of 
Mathematics: Volume 1 

Research Synthesis 

2008 United 
States 

Blume, G. W. & Heid, 
M. K. 

Research on Technology and 
the Teaching and Learning of 
Mathematics: Volume 2 Cases 
and Perspectives 

2011 United 

States 

Dick, T. P. & 

Hollebrands, K. F. 

Focus in High School 

Mathematics: Technology to 
Support Reasoning and Sense 
Making 

 

 The NCTM publication Computer Algebra Systems in Secondary Education, 

edited by Fey et al. (2003), was the first to release and publish a series of monographs 

that represented research from the inception of CAS up to publication.  This handbook 
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consolidated research conducted throughout the world, providing perspectives of the 

implications and potential usage for CAS in mathematics education.  The comprehensive 

nature of the book provides a static and timeless resource for educators to consider 

pedagogical opportunities.  One chapter written by Ball and Stacey of Australia, 

University of Melbourne’s principal investigators in Victoria’s large-scale 

implementation of CAS in secondary schools, considered the written work of students 

when they used CAS as a tool in learning.  Stacey, Ball, and Pierce (2002-2013) have 

generated extensive work on CAS in secondary mathematics education.  Additional ideas 

funneled through these Australia educators were elucidated extensively through many 

research publications, including the one that follows. 

 Stacey et al. (2004) served as editor for an additional volume published as 

proceedings from the Twelfth International Commission on Mathematical Instruction 

(ICMI), through the University of Melbourne, Victoria, Australia.  In January 2000, the 

international program committee commenced to determine the members of the study 

conference on the topic of the future of teaching and learning algebra as new technologies 

have materialized.  Through a large response to a call for papers, the ICMI realized the 

widespread interest; hence, it selected a core group of international representatives to 

participate.  The reports from the various study groups formed the basis for the volume, 

The Future of Teaching and Learning of Algebra. 

         Finally, Research on Technology and the Teaching and Learning of Mathematics: 

Research Synthesis, edited by Heid and Blume (2008) synthesized discussion from 

researchers, teachers, educators, policy makers, and software designers that participated 

in the two international conferences sponsored by the National Science Foundation held 
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at Pennsylvania State University.  NCTM released this work in two volumes: Research 

Synthesis and Cases and Perspectives.  The first volume (Heid & Blume, 2008) contained 

research on instruction in a technological environment, illuminating specific 

mathematical topics and the nature of mathematics learning.  The second volume (Blume 

& Heid, 2008) provided detailed results from cases of research with technology in 

mathematics teaching and also overarching perspectives from leading researchers.  The 

last of these volumes published in 2008 exacted 10 years from current research.  Heid, 

Thomas, and Zbiek (2013)—while recognizing both empirical and theoretical findings— 

stressed the need for research focused in the teaching and learning of algebra with 

consideration of CAS’ functional capabilities.  Several recent dissertation studies have 

investigated aspects of CAS technologies (Fonger, 2012; Hicks, 2010; Ivy, 2011; 

Tokpah, 2008), but additional studies leave much to be developed. 

Summary 

 A growing concern among some mathematics educators is the potential change in 

curriculum and culture of mathematics instruction due to access to CAS technology (Heid 

et al., 2013; Usiskin, 2006).  Keeping in mind “that CAS technology can play a role in 

the conceptualization of models rather than simply being a tool that is used to solve a 

mathematical problem” (Heid et al., 2013, p. 633), the need for research continues.  The 

landscape of mathematical technologies is vast and actively advancing, perpetuating the 

challenge of timeliness of studies (Pierce & Stacey, 2010).  Leading national 

organizations (eg., ISTE, NCSM, NCTM) recognize the importance of continuing to 

address technology in teaching, but the literature is gradually becoming dated.  “The 
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rapid pace at which technology is evolving necessitates ongoing reexamination of the 

priorities of effective mathematics programs” (NCTM, 2014, p. 88). 

Theoretical Framework 

 The limited use of CAS in U.S. classrooms (Heid et al., 2013; Pierce & Stacey, 

2010; Schultz, 2003; Zbiek & Hollebrands, 2008) may not be fully understood without 

considering teachers’ conception and usage of CAS (Fey, 2006; Zbiek & Hollebrands, 

2008), as well as how teachers create opportunities in the classroom to instruct using 

CAS as a cognitive tool (Pierce & Stacey, 2008; Zbiek et al., 2007).  The route toward a 

new style of mathematics teaching, especially by teachers that may be hesitant to 

embrace CAS, is “more likely to be carried through an evolutionary process rather than a 

revolutionary one” (Beaudin & Bowers, 1997, p. 129).  Focusing on the spectrum of 

teacher usage and teaching craft will help to delineate developmental aspects of teacher 

transformations. 

 As teachers integrate CAS as an instructional tool, new prospects for the teaching 

and learning of mathematics may arise, shifting a perspective towards a rebalancing of 

skills, concepts, and applications (Pierce & Stacey, 2008).  After years of research on 

students and teachers in Australia who utilized CAS consistently, Pierce and Stacey 

(2008, 2013) came to realize the key opportunities CAS affords for pedagogical change.  

Stacey developed the P-Map (see  

Figure 1) that encompassed all the opportunities noted through a multitude of 

observations (Pierce & Stacey, 2010).  This map originates at the bottom with functional 

opportunities, curriculum and assessment change.  The functional opportunities permit 
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the 10 pedagogical opportunities the span around the center in gray blocks.  The blocks 

are coded with the red typeset for cross-referencing in evidence tables. 
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Figure 1.  Pedagogical Map (P-Map)  Adapted from “Mapping Pedagogical 

Opportunities Provided by Mathematics Analysis Software,” by R. Pierce and K. Stacey, 
2010, International Journal of Computers for Mathematical Learning , 15, p. 6.  
Copyright 2010 by Springer International Publishing AG. 
 

 Pierce and Stacey’s pedagogical framework (2010) was used to illuminate the 
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is referred to as the P-Map.  Pierce and Stacey (2010) originally considered just CAS but 

expanded their viewpoint to include all varieties of mathematical analysis software 

(MAS).  MAS is the “umbrella term to describe software with which the user can perform 

algorithmic processes required when working in one of more branches of mathematics” 

(Pierce & Stacey, 2010, p. 2).  MAS varieties include all cognitive tools that operate in 

the algebraic realm of symbolic manipulation, dynamic functions, statistical packages, 

and graphic capabilities.  “They facilitate the technical dimension of mathematical 

activity and allow the user to take action on mathematical objects or representations of 

those objects” (p. 2).  A brief overview of the P-Map follows and is substantiated in the 

literature review.  MAS as a functional machine is at the base of the map, illustrating its 

primary purpose to support users in the computation and manipulation of mathematical 

expressions and equations (Pierce & Stacey, 2008, 2010).  The capability to consider 

curricula and assessment arises from the presence of this technology.  Pierce and Stacey 

(2008, 2010) identified 10 unique affordances of technology put into instructional 

practice.  These opportunities for pedagogy are grouped into three types: tasks, 

classroom, and subject. 

 The P-Map captured the technological skills as applied during the teachers’ 

planning and instruction.  The P-Map created by Pierce and Stacey (2010) was intended 

to reveal the ways that CAS can be put into practice in the classroom. 

Statement of the Problem 

 The mathematics education community is ripe for technology infusion with the 

teacher at the heart of implementation (NCTM, 2014; Zbiek & Hollebrands, 2008).  CAS 

tools have continued to advance in their simplicity, functionality, and availability but are 
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still not a part of standard mathematics education practice (Heid et al., 2013).  The U.S. 

education system leaves the implementation of technology in control of the individual 

teacher, guided by the NCTM standards (Heid & Blume, 2008).  The language in 

Principles to Action (NCTM, 2014) strongly encourages teachers to consider putting 

research into practice, with one of the eight principles highlighting tools and technology.  

This technology standard stated, “An excellent mathematics program integrates the use of 

mathematical tools and technology as essential resources to help students learn and make 

sense of mathematical ideas, reason mathematically, and communicate their 

mathematical thinking” (NCTM, 2014, p. 5). 

 Yet, teachers lack pedagogical examples that reflect CAS-enhanced instruction 

and, hence, utilize technology both infrequently and in limited methodologies (NCTM, 

2014).  Furthermore, as a result teachers limit student access to multiple forms of 

technology (Kastberg & Leatham, 2005).  Obstacles to teaching with technology are 

numerous (Ertmer, 1999; Ertmer & Ottenbreit-Leftwich, 2010; Hicks, 2010; Kaput, 

1992).  Ertmer (1999) referred to obstacles as first- and second-order barriers to change 

and included both extrinsic and intrinsic concerns.  For example, limited equipment is a 

first-order barrier and is external to the teacher.  Pedagogical skills are classified in the 

latter as a second-order barrier to change.  Barriers will be examined further in the 

literature review.  In summary, with the reduction in barrier issues, the problem of 

pedagogy can be centralized and examined. 

Statement of Purpose and Research Questions 

 The purpose of this study was to understand: (a) what pedagogical opportunities 

mathematics teachers exploited with the presence of CAS; (b) how teachers aligned 
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lessons to develop mathematical understandings; and (c) why these teachers wanted to 

orient their focus to exploit CAS in the development of mathematical knowledge.  The 

following research question guided the study:  How do secondary mathematics teachers 

orient their instructional practices to exploit computer algebra systems (CAS) in the 

development of mathematical knowledge? 

Significance of Study 

 Technology integration to instruction is both inevitable and expected (CCSSI, 

2010; ISTE, 2008b; NCSM, 2011; NCTM, 2011, 2014), yet CAS’ incorporation into U.S. 

classrooms has been slow and non-existent in most cases, despite its availability (Garner 

& Pierce, 2016; Heid et al., 2013; Robert et al., 2012).  Furthermore, the ways teachers 

integrate technology effectively to promote mathematical understandings was not 

transparent.  “Future practitioner questions about calculator use for mathematics teaching 

and learning should advance from questions of whether or not they are effective to 

questions of what effective practices with calculators entail”  (NCTM, 2011, para. 7).  

Therefore, this study investigated secondary school teachers’ educational practice.    

 The results of this study emphasized the pedagogical opportunities of teachers 

who utilized CAS to facilitate students’ learning mathematics.  This study contributed 

evidence of functional usage of the technology and provided testimonies to regard CAS 

as an essential tool in learning mathematics.  Potential barriers to use, by either teacher or 

student, were intentionally minimized through research design, so that the teacher 

deliberately employed CAS through multiple prospects.  These events were recorded with 

rich descriptions that can be dispatched as potential uses to the mathematics education 

community.  Furthermore, in the presence of innovative CAS use, teacher motivations for 
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these pedagogies were illuminated and contributed to the literature.  Finally, Pierce and 

Stacey’s (2010) P-Map framework was a lens to provide reflection on technological and 

pedagogical content knowledge in the utilization of CAS technology in secondary 

mathematics classrooms, giving utility to this contemporary instrument.  

Definition of Terms 

 The following are terms that are used to inform the study.  These are the 

definitions that will be used throughout this report.  They are sequenced in the order in 

which they appear in the text and also as one definition relates to another. 

Computer Algebra Systems (CAS)   

 CAS is defined as “software that enhances numeric and graphic operations with 

tools for formal manipulation of symbolic expressions . . . [and that] perform a wide 

variety of the numeric, graphic, symbolic, and logical operations that form the core 

components of algebra” (Fey et al., 2003, pp. 1-2).  CAS can be used for: (a) exact 

numeric calculation; (b) exact symbolic calculation; (c) symbolic algebra; (d) symbolic 

manipulation; (e) dynamic representation of two- and three-dimensional graphs; (f) 

dynamic spreadsheet data tables; and (g) dynamic freelance geometric drawings.  

Additionally, calculus procedures of differentiation and integration can be performed on 

complex functions. 

Symbolic Algebra 

 Symbolic algebra refers specifically to the algebraic procedures of simplifying, 

expanding, manipulating, and solving of algebraic expressions and equations.  It may be 
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helpful to think of symbolic procedures as the traditional procedures taught in high 

school algebra classes: factor, solve, simplify, and function operations. 

Dynamic 

 Often with CAS systems a change is made in one value, and all other values 

linked to that value change simultaneously.  A change in value is one example of the 

dynamic features of CAS but it is not limited to values alone.  Differences may be a 

change to a geometric figure (e.g., a translation of a vertex of a polygon) or a graph of a 

function (e.g., a reflection).  Likewise, these dynamic changes are not limited to one page 

or place in the digital document.  A change can update simultaneously whenever the 

function or relation was identified symbolically elsewhere. 

CAS Platforms 

 CAS platforms are widespread and may be devices produced by any of the 

following companies: Texas Instruments TI series, TI-NspireTM, Wolfram (e.g., alpha and 

Mathematica), Geogebra, Desmos, Casio, HP Prime series, and others that are less 

common.  Often these platforms are thought of as handheld technology, but this study 

was not limited to any particular device and so encompassed CAS as a handheld, a tablet, 

or a computer device. 

Orientation 

 One meaning of orientation according to Collins English Dictionary (2012) is the 

state of ones’ philosophical beliefs, decisions, and choices.  Orientation also can have a 

positional meaning that may involve seeking the relationship of a current position to 

surroundings.  Orientation in this study used both interpretations; orientation is founded 
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on a person’s basic preferences and that position may adjust when connected to outside 

influences (e.g., teacher experience, student prior experience, distinct mathematics 

courses, or teacher pedagogical content knowledge). 

Pedagogical Opportunities 

 Pedagogical opportunities refer to the multiple instructional choices and strategies 

that teachers use to teach mathematics.  Pierce and Stacey (2008) claimed there is much 

variety in teaching when CAS is available and “different teachers make different choices 

about the changes they wish to make in their teaching style and approach to mathematics” 

(Pierce & Stacey, 2008, p. 6). 

P-Map 

 The pedagogical opportunities map will be referenced in this study using the 

abbreviation P-Map.  The focus of the P-Map (see Figure 1) developed by Pierce and 

Stacey (2010) is to identify, organize, and highlight those opportunities using this 

taxonomy as teachers integrate any type of MAS or technological cognitive tool.   

Task 

 The term task described any type of activity, problem, or action students or 

teachers used to elicit mathematical content knowledge in the classroom. 

Interpersonal Dimension of the Classroom 

 The dynamics of a mathematics CAS-driven classroom can have varying 

interpersonal dimensions.  The confines pertain to student-to-teacher and student-to-

student relations.  No longer is the teacher the soul authority; CAS can act as an expert in 
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mathematical and algebraic computations, thereby shifting the roles of teacher and 

student to consultant and fellow investigator (Pierce & Stacey, 2010).   

Mathematics Analysis Software (MAS) 

 MAS is the “umbrella term [used] to describe software with which the user can 

perform algorithmic processes required when working in one of more branches of 

mathematics” (Pierce & Stacey, 2010, p. 2).  Furthermore, “[The cognitive tools] 

facilitate the technical dimension of mathematical activity and allow the user to take 

action on mathematical objects or representations of those objects” (p. 2). 

Black Box versus White Box Technology 

 The phrases black box and white box, introduced by Buchberger (1990), 

associated known and unknown calculations of technological devices.  Black box is used 

to describe lack of insight into the inner workings of calculations and computations of a 

technological tool when an input is acted upon by the technology and an output is 

returned (Cedillo & Kieran, 2003).  In contrast white box technologies show step-by-step 

actions upon a mathematical expression, providing awareness to the procedures acted 

upon by the technology. 

Screencast 

 The ability to video capture a computer screen with an audio recording 

simultaneously is called a screencast.  The audio recording is similar to a podcast, but the 

benefit of a screencast is the ability to see the activities on the computer that accompany 

the voice narrative. 
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Mathematical Authority 

 The interpretation for mathematical authority used in this research was the 

reference to Amit and Fried’s definition, (2005) but paraphrased by Langer-Osuna 

(2017): “the most relevant type of authority is that of the expert who possesses 

mathematical knowledge that is taken as true” (p. 238). 

Chapter Summary 

 CAS is a cognitive tool that can be utilized in mathematics classrooms to develop 

understanding of mathematics (Fey at al., 2003; Heid et al., 2013).  A vast amount of 

research has already investigated some of the value for CAS, but much of it is 

international (Fey et al., 2003; Heid & Blume, 2008).  NCTM (2014) recommended 

technological tools as essential resources in the classroom to support students in the 

visualization and conceptualization of mathematical knowledge.  Teachers are the 

initiators of such new instruction.  Considering teachers’ moves and what those moves 

entail is the first step in addressing CAS technology integration.
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CHAPTER II: REVIEW OF LITERATURE 

Introduction  

 CAS technologies have become readily available tools in an ever-changing 

landscape of digital technology (NCTM, 2014).  These tools have the potential to reshape 

the ways that learners can approach mathematical knowledge (Blume & Heid, 2008; Fey 

et al., 2003; Pea, 1995; Usiskin, Anderson, & Zotto, 2010).  The teacher is viewed as the 

agent of change introducing novel pedagogies that integrate CAS technology in the 

teaching and learning of mathematics (Ertmer & Ottenbreit-Leftwich, 2010; Judson, 

2006; Kastberg & Leatham, 2005; Pugalee, 2001).  This study investigated two teachers’ 

pedagogy as they utilized CAS technology to construct mathematical knowledge. 

 The purpose of this study was to understand: (a) what pedagogical opportunities 

mathematics teachers exploited with the presence of CAS; (b) how teachers aligned 

lessons to develop mathematical understandings; and (c) why these teachers wanted to 

orient their focus to exploit CAS in the development of mathematical knowledge.  The 

following research question guided the study: How do secondary mathematics teachers 

orient their instructional practices to exploit CAS in the development of mathematical 

knowledge? 

 A discussion of teachers that utilize technology in their classrooms helps to garner 

a perspective in terms of the teacher as the primary agent of change (Ertmer, 1999; 

Ertmer & Ottenbreit-Leftwich, 2010; Pugalee, 2001) and, also, teacher beliefs regarding 

mathematics instruction (Ball, Thames, & Phelps, 2008; Ernest, 2012; Shulman, 1986; 

Thompson, 1992).  A look at some of the obstacles for the successful implementation of 

CAS technology will assist in understanding the lack of acceptance of CAS instructional 
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practices (Brickner, 1995; Ertmer, 1999; Ivy & Franz, 2016; Wachira & Keengwe, 2011).  

Awareness of deterrents to technology utilization hinged on teacher beliefs about CAS 

and its place in curricula for secondary education.  The P-Map created by Pierce and 

Stacey (2008) will be explicated as a framework in the research for this study.   

 The following pieces will be explained in the chapter.  First, a background of 

CAS technology in education will be shared.  Second, will be an account on the culture of 

mathematics education in terms of curriculum, teachers, and standards. Third, research 

literature regarding utilization of technology, teacher beliefs about technology, barriers 

and obstacles in technology integration will be described.  Finally, I will present a 

summary of several theoretical perspectives that emerged from CAS utilization by 

educators. 

Global Background of CAS 

 The integration of CAS into educational arenas around the world is riveting.  Its 

place merely serves as a backdrop and cultivation of CAS as a tool for educational 

purposes.  Although CAS was invented in the 1970s and then experimented with in 

classrooms in the 1980s, CAS has struggled to find a place in education amongst the 

debates on the spectrum of the extremes of stark use to incessant use (Tokpah, 2008).  

 The alphabetic listing below in Table 2 highlights the seminal research of CAS 

utilization in countries around the globe.  Difficulty arises in describing the chronological 

implications of the research, since pieces were conducted simultaneously beginning in the 

late 1980s and they continue to update to present times.  Table 2 provides a summary of 

these studies with a partial chronology including geographical location, researcher, and a 
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general topic.  The upcoming sections provide a brief overview highlighting the presence 

and impact of CAS for the geographical regions. 

Table 2  

Summary of Global Background of CAS 

Year Location Researcher(s) Topic 

1984 United 
States 

Heid, M. K. Effects of re-sequencing skills 
and concepts in a calculus 
class at college level 

1992 United 

States 

Zbiek, R. M. Prospective teachers 

mathematical understanding in 
a CAS-rich environment  

2001 United 
States 

Edwards, M. T. Comparison of two secondary 
algebra classes using CAS as a 

tool to develop mathematical 
understanding 

1984 Austria Aspetsberger, K. & RISC 
Institute, Johannes Kepler 

University of Linz 

MuMath in secondary schools: 
train in programming and 

usage for mathematics 

1990’s Austria Bohm, J., Buchberger, B., 
Kutzler, B. & Heugl, H. 

Austrian Center for Didactics 
of CAS white box/black box 
principles 

1994 France Artigue, M. & Lagrange, J. Instrumental Genesis 

1990’s  

 

Australia University of Melbourne 

Ball, L. Flynn, P., Pierce, R. & 
Stacey, K. 

CAS as a tool in secondary 

education 

2000-
2005 

Australia CAS-CAT Project Integration of CAS Use at the 
Secondary School 

2004 New 
Zealand 

Thomas, M. O. J., & Hong, Y. 
Y. 

One week college freshman  

 

2005 New 
Zealand 

Neill, A., & Maguire , T. One year secondary school 
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Australia 

 The University of Melbourne initiated a research project investigating CAS in the 

instruction of calculus in secondary education in 1998 (Kendal, Stacey, & Pierce, 2005).  

The basis of the study was to understand the development of conceptual understandings 

through multiple representations afforded by CAS technology.  In their observations, 

researchers noted that teachers chose different approaches to teaching concepts (Kendal 

et al., 2005).   As researchers, Stacey and Pierce continued to synthesize their 

understandings of teaching utilizing CAS.  They noted that “CAS affords a range of key 

opportunities to change and improve the teaching of mathematics” (Pierce & Stacey, 

2008, p. 6), formulating a framework referred to as a pedagogical map.  These 

pedagogical opportunities will be explained in detail later in the CAS theoretical 

perspectives section of this chapter. 

 Educational leaders in Victoria, Australia became notable for their decision to 

require CAS on the high school senior exam for one part of the graduation assessment.  

The effort was a partnership between the University of Melbourne, the Victorian 

Curriculum and Assessment Authority, and three calculator companies, Casio, Hewlett-

Packard, and Texas Instruments (Garner, 2004).  The title of the project was Computer 

Algebra Systems in Schools: Curriculum, Assessment, and Teaching (CAS-CAT) and 

extended through the years 2000-2005 (Garner, 2004; Heid et. al., 2013; Pierce, Ball, & 

Stacey, 2009).  This large-scale project mandated CAS instruction in secondary schools 

in preparation for the exams and later included all of the states of Australia that 

independently had included CAS for their instruction and comprehensive exams. 
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Austria 

 Klaus, Aspetsberger, and Buchberger (i.e., researchers from Johanns Kepler 

University of Linz) became pioneers in the development of pedagogy using CAS as a 

cognitive tool.  The researchers took leadership in 1984 integrating lessons teaching how 

to use the MuMath program (i.e., Derive) and performing symbolic calculations.  Soon 

after, the Austrian Center for Didactics of Computer Algebra (ACDCA) was formed, thus 

engaging many more researchers (Kutzler, 2010).  The intent was to develop pedagogical 

tools for the instructors in Austria and to supply teachers with support for utilizing CAS 

tools in meaningful and inventive ways (Bohm, 2007).  Simultaneously, in the early 

1990s, Austria’s government purchased a general license of Derive (e.g., CAS product) 

for use with the general population of teachers and students (Heugl, 1996).  The ACDCA 

initiated and supervised six projects in secondary schools in Austria through the years 

1993 and 2006 (Bohm, 2007) with the integration of updated CAS tools and continued 

research on the didactical practices.   

France 

 Studies about the conceptual dimensions of teaching and learning using Derive 

(i.e., CAS) began in secondary classrooms in 1994 in conjunction with the University of 

Paris (Lagrange, 2003).  Since France had a centralized curriculum, researchers were 

quick to integrate CAS in mathematics education.  The focus of interest was “toward the 

changes produced by the introduction of CAS in teaching and learning mathematics in 

everyday situations and toward the search for conditions that produce satisfactory results” 

(Lagrange, 2003, p. 270).  The findings from this first study did not show any 

enhancement in conceptual understanding and neither did they conclude a reduced 
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cognitive struggle occurred for learners.  Paper-and-pencil work challenges had been 

replaced by complications in syntax and other technical facilities.  Furthermore, through 

observations of teachers in their classrooms, researchers noted that little reflection time or 

developed questioning strategies were offered to assist in making mathematical 

connections. 

 The second phase of research commenced with the release of the TI-92 symbolic 

handheld calculators in 1996.  Widespread daily use of CAS became possible in French 

schools.  Using knowledge from the first study, researchers provided flexibility to choose 

paper-and-pencil methods or CAS techniques (Lagrange, 2003).  “We learned that 

students should have time to build CAS techniques for successful integration to take 

place” (Lagrange, 2003, p. 274).  Tasks were designed to support reflection on the 

mathematics and commands afforded by CAS.  Rich mathematical discussions were a 

significant part of the pedagogy. 

 Furthermore, the theory of instrumental genesis was developed through France’s 

transition to CAS as a way to understand cognitive tools (Artigue & Diderot, 2002).  The 

tool as an object by itself had sometimes been referred to as the artifact.  However, as 

CAS was utilized to build tasks one upon another by human gestures it becomes an 

instrument (Artigue & Diderot, 2002; Drijvers & Trouche, 2008; Maschietto & Trouche, 

2010).  The scheme created by the user of performing actions, operations, and evaluation 

of constraints on the device to create meaning from the input or output made the tool an 

instrument.  This scheme was referred to as the theoretical construct of instrumental 

genesis (Artigue & Diderot, 2002). 
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New Zealand 

 The University of Auckland initiated a one-week study with first-year college 

students to begin to understand how new users of CAS employ the technology when 

solving mathematics problems (Thomas & Hong, 2004).  This short-term study revealed 

results consistent with the view that instrumentation of a tool was a lengthy process in the 

development of skills and schemes that enable effective utilization of CAS (Thomas & 

Hong, 2004).  The schemes that these participants utilized were direct calculations, 

checks in work, investigations of a concept, and finally, direct complex procedures for 

either reducing cognitive load or reducing difficulty in by-hand computation. 

 A much larger scale study followed in secondary education a few years later 

conducted by the New Zealand Council for Educational Research.  The student 

participants were enrolled in one of the six schools scattered between the north and south 

islands, with two teachers at each school receiving extensive, quality professional 

development in the use of CAS as an exploratory tool (Neill & Maguire, 2005).  A major 

aim was to capture the stories of elements of effective practice in hopes of replication.  

The report concluded that teachers’ pedagogy was enhanced through a student-discovery 

approach developing mathematical understandings, but that assessments must reflect the 

change in pedagogy (Neill & Maguire, 2005).   

United States  

 During the period from the 1980s to the present, attention to CAS was influenced 

by three occurrences.  First, James Fey (University of Maryland) posed questions about 

CAS to his mathematics education doctoral students, engaging Kathleen Heid’s interest 

and seminal research on re-sequencing of concepts and skills in a college calculus class  
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(Heid, 1988).  Second, the NCTM’s publication edited by Fey, Computer Algebra 

Systems in Secondary Education, was released in 2003, and consolidated much of the 

research from CAS’ inception up to publication.  This handbook summarized research 

conducted throughout the world, providing perspectives for the potential of CAS in 

mathematics education.  Third, Mathematics Educators Exploring Computer Algebra 

Systems (MEECAS) was formed to advocate for CAS with partnership to the leadership 

of USACAS conferences.  The stated purposes for MEECAS are to improve the learning 

of mathematics through CAS tools, encourage experimentation with CAS, support 

research, and network with colleagues that share a similar vision 

(https://www.meecas.org/).  Additional dissertation work has considered CAS and 

graphing utilities (Edwards, 2001; Fonger, 2012; Hicks, 2010; Ivy, 2011; Tokpah, 2008; 

Zbiek, 1992). 

Summary of Global Background 

 Global studies were limited at the commencement of this study.  This list was not 

comprehensive; rather it highlighted some impactful research due to CAS availability.  

Primarily the studies were selected for review because the focus was on secondary school 

students and mathematics coursework at that level.  Australia, Austria, and France all 

addressed large-scale studies with the consequence of research related to pedagogy:  

Australia created the P-Map; Austria investigated didactics (i.e., pedagogy); and France 

developed the construct, theory of instrumental genesis.  In spite of the research, CAS 

continued to be an ambiguous tool (Heid & Blume, 2008; Fey et al., 2003). 



 

 

32 

Culture of Mathematics Instruction in the United States 

 The teaching and learning culture can further help frame the pervasive situation of 

mathematics education in the United States.  McCloskey (2014) developed a framework 

with the analytical lens of ritual to help describe the persistence of conventional 

pedagogical practice that remains in American classrooms.  She argued, “The concept of 

ritual may be a particularly promising way for researchers in mathematics education to 

notice, describe, and explain the enduring and cultural nature of mathematics classroom 

practices” (McCloskey, 2014, p. 20).  This work was generated as a response to the 

dilemma that Stigler and Hiebert (1999) discovered through the TIMMS video study. 

 United States mathematics teaching practices captured by videotapes in the 1990s 

(National Center for Education Statistics, 1995) reflected an abundance of valued 

methodology in which the student is a learner of algorithms, memorizer of formulas, and 

emitter of facts (Stigler & Hiebert, 1999).  These illustrations of American classrooms 

were not randomly chosen, but self-selected by the teacher or principal to represent the 

best teaching practices in their respective schools.  The sample educational settings 

showed the routines of each teacher’s classroom structure, tasks, questions, and 

explanations, which are all a part of the culture of teaching (Stigler & Hiebert, 1999).  

The classroom structure lies within a larger culture that must take into consideration not 

only global characteristics of education policies, centralization of standards, organization 

and types of schools, access and equity to education, but also teacher, parent, and student 

beliefs about hard work and learning (National Research Council [NRC], 2001).  “In 

every country, the complex system of school mathematics is situated in a cultural matrix” 
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(NRC, 2001, p. 31).  The foundational contribution to education is the curriculum, the 

teacher, and standards and will be discussed in the following sections. 

Curriculum 

 The United States curriculum traditionally “has been characterized as superficial” 

(NRC, 2001, p. 37).  Its tendency was to focus on a few critical topics for each grade and 

provide an overview of other topics, leaving insufficient time to master the new ideas 

(NRC, 2001).  Within the critical topics, only a narrow perspective was discussed 

(Hiebert, 2003).  The need for remediation superseded the advancement into new content. 

Additionally, “much of the curriculum deals with calculating and defining” (Hiebert, 

2003, p. 11).  This continual review of the material, lack of depth or concentrated study 

on new topics, and crowding of content has been the typical pattern in American 

education (NRC, 2001). 

 However, recent state legislation has adopted the CCSSI (2010) and NCTM 

(2014) released Principles to Actions, a guide to educators and policymakers that 

describe the essential elements of teaching and learning mathematics.  The intent for the 

design of CCSSI was to provide focus and coherency for teacher’s curricula (CCSSI, 

2010).  Additionally, NCTM’s Principles to Actions in its teaching and learning guiding 

principle states that “an excellent mathematics program requires effective teaching that 

engages students in meaningful learning through individual and collaborative experiences 

that promote their ability to make sense of mathematical ideas and reason 

mathematically” (NCTM, 2014, p. 5).  The goals of these documents are rigorous, 

growing out of the demand for research-based evidence in the field of mathematics 

education. 
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Teacher Practices 

  Teaching practices are inherited, not invented by teachers (Philipp, 2007; Stigler 

& Hiebert, 1999).  As observers have emerged with descriptions of classroom instruction, 

reports all reflect that at “the core of teaching– the way in which the teacher and students 

interact about the subject being taught– has changed very little over time” (NRC, 2001, p. 

48).  The activities, tasks, and assessments that occur in a classroom are clearly teacher 

choice (Stigler & Hiebert, 1999).  Often observed is “the traditional approach to solving 

problems— to teach a procedure and then assign students to practice the procedure” 

(Hiebert, 2003, p. 17).  This is the belief that teachers uphold to be fair to the learners 

(Hiebert, 2003; Philipp, 2007). 

Standards 

 NCTM released the first set of national mathematics educational standards in 

1989 marking the start of the standards-based education movement (NCTM, 2014).  

States followed with the adoption of similar state standards.  Yet, it was the CCSSI 

(2010) that bonded and created a near-consensus of the collective U.S. to develop 

consistency in standards throughout the nation (NCTM, 2014).  Gill and Boote (2012) 

interpreted reform practice as one in which the primary activity in mathematics classes is 

problem solving as a means to develop deep conceptual understandings.  However, Gill 

and Boote (2012) recognized that the culture in schools and classrooms do not reflect 

those standards.  “Despite the tremendous amount of effort devoted by many 

mathematics educators to promote, defend, and implement reform-based mathematics 

education, procedural mathematics persists” (Gill & Boote, 2012, p. 3).  Thus, Gill and 
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Boote (2012) considered aspects of educational culture in the U.S. as both procedural and 

conceptual knowledge.  

Procedural and Conceptual Understandings 

 Two inherent types of knowledge in the learning of mathematics are procedural 

and conceptual understandings (Brownell, 1947; Erlwanger, 1973; NRC, 2001; Skemp, 

1977; Stigler & Hiebert, 1999; NCTM, 2014).  Knowledge of the two ideas along with 

teacher goals characterize the variety of pedagogical practices in mathematics educations.  

Teachers choose one type of knowledge or both combined to determine focus of 

instruction.  A brief description of these historical perspectives and a review of 

terminology that frame the current outlook of mathematical teaching is provided in the 

next sections.  

Meanings Of and Meanings For  

 Brownell (1947) defined meaning in the teaching of mathematics in an effort to 

improve instruction.  He differentiated between learning arithmetic in connection with 

real-life examples and learning mathematics for the sake of having knowledge about 

arithmetic and its connections to other mathematics (Brownell, 1947).  The first was 

described as meanings for; the latter meanings of.  Moreover, Brownell depicted a 

continuum of learning with various degrees of meanings, relaying a notion that 

“meanings are relative, not absolute” (Brownell, 1947, p. 9). 

Rules without Reason 

 Erlwanger’s case study of Benny revealed misunderstandings of mathematics 

through interviews, although Benny reported correct answers during his practice and 

assessment (Erlwanger, 1973).  Benny participated in a sixth-grade, independent-study 
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curriculum.  The study involved a series of one-on-one interviews in which the researcher 

sought to understand Benny’s mathematical knowledge.  Extensive questioning revealed 

a weakness in Benny’s conceptions, “Benny emphasizes rules rather than reasons in his 

work” (p. 57).  This classic study gave rise to the concern of “mastery of content and 

skill” (p. 51) void of understanding.   

Relational versus Instrumental Understanding 

 Skemp (1977) expressed grave concern with the use of the term understanding 

purporting that relational understanding had deeper value in that it included both 

“knowing what to do and why” (p. 21).  However, most regard instrumental 

understandings as a worthy type of understanding, when in fact, this has been described 

as “rules without reason” (Skemp, 1977, p. 21).  Teachers and their students may have 

possessed a rule and applied it but not have understood the validity of the rule (Skemp, 

1977). 

Procedural Fluency and Conceptual Understanding 

 A more recent perspective by NCTM (2014) provided a mathematics teaching 

practice (MTP) to the effort of teachers aiding students in achieving procedural fluency 

while endorsing conceptual understanding.  NCTM recognized that to achieve fluency 

practice strategies are employed to that effort but not in the absence of creating an 

overview and connection to mathematical concepts through multiple strategies. “This 

idea supports students in developing the ability to understand and explain their 

procedures, choose flexibly among methods and strategies . . . and produce accurate 

answers efficiently” (NCTM, 2014, p. 46). 
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Summary of Procedural and Conceptual Understanding 

 The two perspectives of procedural and conceptual understanding embody a 

continuum (Brownell, 1947) or layering (Skemp, 1977) of understandings.  “Knowing 

how to execute procedures does not ensure that students know what they are doing” 

(Hiebert & Wearne, 2003, p. 3).  In support of that notion, the PISA report (OCED, 2012) 

found that students in the United States showed particular weakness in cognitively 

challenging demands such as formulating a problem from a text, but they showed 

strength in extracting values from formulas and also in the interpretation of results.  

Students demonstrated how to execute procedures and find results but were not always 

able to justify their solution, echoing Skemp’s (1977) rules without reason ideology.  Yet, 

“instruction can be designed to promote deeper conceptual understanding” (Hiebert, 

2003, p. 16).  The ideology of developing mathematical understandings rests at this 

critical juncture between traditional paper-and-pencil calculations and automated CAS 

calculations.  Teachers have been exploring the utilization of graphing calculators as a 

tool in their instructional practice, primarily performing both paper-and-pencil and CAS-

automated calculations, to ensure that deep conceptual connections were developed in the 

learner (Ivy & Franz, 2016; Lee & McDougall, 2010). 

Teachers Utilizing Technology in Teaching Practice 

 Technological tools, such as graphing calculator technology, computer 

applications, and CAS, have been integrated into mathematics teaching practices steadily 

as new devices were invented (Ertmer & Ottenbreit-Leftwich, 2010; Pea, 1985; Ronau et 

al., 2014).  Graphing calculator technology includes the features of scientific numeric 

calculation, graphing capabilities, programming capabilities, and basic statistical tools.  
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Studies involving teachers’ usage of these tools underpin that integration.  Selection 

criteria for studies in this section included those studies (a) conducted in fairly recent 

years (i.e., 1999-2016), (b) focused on secondary school teachers, (c) administered in the 

United States or Canada, and (d) represented teacher implementation of mathematics 

technology.  A review of studies involving teachers utilizing technology indicated these 

fundamental points: the teacher is the primary agent of change (Ertmer & Ottenbreit-

Leftwich, 2010; Judson, 2006; Kastberg & Leatham, 2005); the teacher beliefs about 

mathematics instruction with technology is central to technological pedagogical practice 

(Lee & McDougall, 2010; Wachira & Keengwe, 2011); multiple barriers exist that 

prevent teachers from shifting to technology usage (Ertmer, 1999; Ertmer & Ottenbreit-

Leftwich, 2010; Ivy & Franz, 2016; Wachira & Keengwe, 2011); the mathematics 

curriculum has changed in some ways to support instruction with technology (Kastberg & 

Leatham, 2005; Milou, 1999); and a need still exists for educational models that reflect 

technology-infused instruction (Bitner & Bitner, 2002: Dewey, Singletary, & Kinzel, 

2009; Lee & McDougall, 2010; Ostler & Grandgenett, 2001).  This section serves to 

support those points, although these studies focused on the use of graphing calculators 

unless otherwise noted. 

Teacher as an Agent of Change 

 Teachers are the agent of change for technology use in classrooms (Ertmer, 1999; 

Ertmer & Ottenbreit-Leftwich, 2010; Pugalee, 2001), and those changes can be viewed in 

terms of student access to technology (Judson, 2006; Kastberg & Leatham, 2005; Özgün-

Koca, Meagher, & Edwards, 2011).  Consideration of teacher demographics and teacher 

attributes inform the creation of technology pre-service training and professional 
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development.  Judson (2006) asserted that teachers harbor the authority of class reform 

and the potential for implementation of adopted policy, including technology-infused 

instructional practices.  “Issues of teacher change are central to any discussion of 

technology integration” (Ertmer & Ottenbreit-Leftwich, 2010, p. 258).  It is not merely 

the presence of technology, but the instructional moves by the teacher that incites a 

powerful effect on student learning (Ertmer & Ottenbreit-Leftwich, 2010).   

 Student access to technology.  Through an analysis of literature on research of 

graphing calculators at the secondary level, Kastberg and Leatham discovered with 

consistency that access to graphing calculators was being “mediated by the teacher” 

(Kastberg & Leatham, 2005, p. 26).  Regardless of the technology availability to students, 

the teacher made the decision as to when, how, and under what conditions the technology 

would be brought into classroom instruction.  Furthermore, the teacher moderated the 

type of activities: checking algebraic solutions, graphing related functions, and 

comparing the results with hand calculations (Kastberg & Leatham, 2005).   

 Similar findings revealed that teachers were the gatekeepers for instruction that 

utilized technology (Lee & MacDougall, 2010; Wachira & Keengwe, 2011).  The Lee 

and MacDougall (2010) multiple case study noted that for two of the three teachers that 

were observed, each brought out graphing calculators for use at special times with certain 

activities, thereby limiting access to technology.  Likewise, in a study that explored the 

teacher perspective of technology integration barriers, Wachira and Keengwe (2011) 

confirmed that decisions of using technology ultimately depended on the teacher in terms 

of availability of technology and the teacher’s beliefs about technology use.  Given the 
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importance of the teacher, identification of teacher consistency using technology and the 

characteristics of these teachers will be discussed. 

 Teacher consistency of technology use.  Studies have revealed that experienced 

teachers and those teaching more advanced mathematical topics, such as advanced 

coursework in secondary schools, used graphing calculator technology with greater 

frequency (Dewey et al., 2009; Milou, 1999).  Milou (1999) conducted a self-report 

survey study of grades 7-12 teachers, and it revealed algebra II teachers using technology 

more regularly than algebra I teachers.  Furthermore, Milou noted that high school 

teachers had greater frequency than middle school teachers in accessing technology as a 

teaching tool.  Dewey’s replicated survey study of 109 teachers provided an “indication 

that usage is higher among older teachers with more experience” (Dewey et al., 2009, p. 

390).  This was justified by the notion that senior teachers were often assigned to teach 

more advanced mathematics subjects to which the concepts lend to graphing calculator 

technology more readily than foundational mathematics concepts.  However, another 

likely argument was that senior teachers had developed confidence in their content 

knowledge and comfort with a variety of instructional practices (Dewey et al., 2009).  

Therefore, it was the seasoned teacher with a broader repertoire of experience that 

enabled the teacher to have more flexibility to engage students in using technology as a 

tool in his teaching practice (Dewey et al., 2009). 

 The same efficacious use of the graphing calculator resembled Doerr and 

Zangor’s Netherlands study (2000) beholding keen reflection from a single-teacher, two-

class case study.  The 20-year veteran teacher possessed graphing calculator expertise 

and was observed teaching precalculus classes.  It was ascertained that the teacher’s 
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confidence in content knowledge and skill led to flexible use of the graphing calculator 

during instruction (Doerr & Zangor, 2000).  The teacher portrayed a willingness to 

encourage students to adopt solutions through multiple methods with graphing calculator 

technology, as well as visibly share those methods on a projection device for a whole 

classroom discussion (Doerr & Zanger, 2000). 

 More advanced mathematics courses appear to involve more advanced uses of 

calculator technology (Dewey et. al.; 2008; Ivy & Franz, 2016; Milou, 1999).  Ivy and 

Franz’s (2016) multiple case study explored technological pedagogical content 

knowledge (TPACK) with contrasting data from two veteran teachers’ self-reported 

surveys and interviews, alongside the researchers’ lesson observations.  One teacher was 

observed teaching an algebra I class and the other a precalculus class.  The survey data 

indicated that both teachers regarded their technology integration as exemplary (Ivy & 

Franz, 2016).  The observation data, however, provided evidence of multiple factors that 

influenced the researchers’ decision to rank the algebra I teacher at the lowest TPACK 

level and the precalculus teacher at the top, the fourth of five levels (Ivy & Franz, 2016).  

The teacher of the advanced mathematics class was observed instructing at a higher level 

of TPACK rank, a parallel to Milou’s finding (1999).  Teachers that integrated 

technology with more advanced usage appeared to have a higher level of TPACK and 

also teach higher level of mathematics courses (Ivy & Franz, 2016; Milou, 1999). 

 In summary, these studies (i.e., Dewey et al., 2009; Doerr & Zangor, 2000; Ivy & 

Franz, 2016; Milou, 1999) reflect experienced teacher and greater TPACK with larger 

consistency of technology utilization.  Furthermore, teachers of advanced mathematics 

courses were more frequently using technology in their instructional approach to teaching 
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mathematics.  It followed that attributes of teachers who use technology need 

consideration to further understand the technology integration into teaching practice. 

 Teacher attributes.  Limited research exists on attributes for teachers who use 

MAS.  Often these studies rely on self-report data.  However, the following 

characteristics were themes in several case studies, literature reviews, and survey data: 

experience with personal use of technology (Doerr & Zangor, 2000; Lee & MacDougall, 

2010); practice of constructivist instruction (Judson, 2006; Lee & MacDougall, 2010); 

expertise in student inquiry (Doerr & Zangor, 2000; Ivy & Franz, 2016); and strength of 

PCK (Chamblee, Slough, & Wunsch, 2008; Ertmer & Ottenbreit-Leftwich, 2010; Ivy & 

Franz, 2016; Shulman, 1986; Wachira & Keengwe, 2011).  These four common 

characteristics for teachers who implement technology with fidelity will be examined in 

the next sections.  

Experience with personal use.  “Teachers who use technology for their personal 

use are more comfortable using technology in their classrooms” (Lee & MacDougall, 

2010, p. 858).  The inverse was also found to be true for a teacher utilizing CAS (Zbiek, 

2002).  In the analysis of a multiple case study, Zbiek noted one of the teachers had 

minimal CAS experience and was observed avoiding the use of CAS in her instruction, 

although the teacher was expected to teach with CAS.  Zbiek (2002) noted that the 

teacher exposed students first to by-hand skills and followed with CAS symbolic 

manipulations, justifying the need for students to understand the concept first. 

 Traditional versus constructivist approach.  Another distinguishing characteristic 

of teachers was their philosophical approach to teaching as either traditional or 

constructivist, and it paralleled teacher’s pedagogical uses of technology (Ertmer & 



 

 

43 

Ottenbreit-Leftwich, 2010; Judson, 2006).  “In general, teachers with more traditional 

beliefs will implement more traditional or low-level uses, whereas teachers with more 

constructivist beliefs will implement more student-centered or high-level technology 

uses” (Ertmer & Ottenbreit-Leftwich, 2010, p. 262).  A case study by Lee and McDougall 

(2010) disclosed that the teacher created “an environment in her classroom where 

constructivist-learning opportunities are possible” (p. 864).  As the teacher accessed 

utility of the graphing calculator he promoted exploration, analyzed comparisons of 

several handheld screens, and generated student discourse regarding those differences in 

outputs.  Constructivist instruction was evident throughout his instruction. 

 Questioning strategies.  Teachers who have expertise in student inquiry use 

questioning strategies while adapting technology tools for instructional goals (Doerr & 

Zangor, 2000; Ivy & Franz, 2016).  Doerr and Zangor (2000) cited the teacher as a 

mediator in the interpretation and explanation of calculator computations.  The mediator 

role often occurred through viewing outputs on the device and realizing the limitations of 

the calculator solutions that also prompted classroom discourse (Doerr & Zangor, 2000).  

Another example, a case study by Ivy and Franz (2016), cited a precalculus teacher who 

fostered a student-centered classroom with the teacher as a facilitator.  Students were 

provided preprinted guided questions on a task to be completed with the use of a 

handheld graphing device.  The teacher encouraged students to discuss technical issues 

on the device with one another, to allow for student-to-student discourse.  However, 

mathematical content questions connecting the task to the underlying concepts were 

generally addressed by large-group discussions that demonstrated teacher-to-student 

discourse through the use of technology (Ivy & Franz, 2016).  In both studies, the teacher 



 

 

44 

relied on his expertise of student inquiry combined with hands-on technology use to 

facilitate students’ development of mathematical understanding of concepts. 

 Level of PCK.  PCK describes a teacher’s ability to develop instruction that 

exposes concepts to students through the activities, questions, and lessons surrounding 

the content (Shulman, 1986).  Educators expect teachers to have a strong PCK base and 

the elemental technology skills in order to integrate technology both regularly and 

seamlessly into instruction (Chamblee et. al., 2008; Ertmer & Ottenbreit-Leftwich, 2010; 

Ivy & Franz, 2016; Wachira & Keengwe, 2011).  All of the teachers in these studies 

lacked exemplary mathematics teaching practices that demonstrated high-quality 

technology integration.  The research provided ample evidence of weak PCK paired with 

low levels of technology integration. 

 Ivy and Franz (2016) compared two teachers that appeared to have similar PCK, 

as determined through interviews.  However, they each exhibited fundamentally different 

pedagogies.  The classroom observations provided data that contradicted the use of 

technology as described by one case.  “Through examination of these two participants . . . 

it is suggested that significant PCK serves as an impetus to effective technology 

integration” (Ivy & Franz, 2016, p. 14).  Similarly, Wachira and Keengwe (2011) 

interviewed both mathematics coaches and teachers.  Consequently, they gleaned that 

teachers not only lacked skills to effectively utilize technology but also lacked pedagogy 

and expertise to create appropriate technology-infused activities.  Ertmer and Ottenbreit-

Leftwich (2010) concluded that teachers are challenged to develop instruction.  They 

contended that good examples of practitioners’ pedagogy were a necessary component 

not only to facilitate PCK but also to form beliefs about technology in education.  
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 Summary of teacher attributes.  Personal use of technology, constructivist 

instruction, expertise in student inquiry, and PCK all contributed to the fidelity of teacher 

technology utilization in instructional practices.  Teachers who had experience in 

personal use of technology were more likely to use technology in their classroom 

instruction (Lee & MacDougall, 2010; Zbiek, 2002).  Likewise, PCK, teacher inquiry 

experience, and other constructivist methodologies led to more advanced types of 

technological uses in the classroom (Doerr & Zangor, 2000; Ertmer & Ottenbreit-

Leftwich, 2010; Ivy & Franz, 2016). 

 Summary of teacher as an agent of change.  Teachers are the key to 

advancement of technology use in mathematics education (Chamblee et al., 2008; Ertmer 

& Ottenbreit-Leftwich, 2010; Wachira & Keengwe, 2011).  Studies showed that teacher 

background and experience demographics were linked to teachers’ technology usage in 

the classroom (Dewey et al, 2009; Doerr & Zangor, 2000; Ivy & Franz, 2016; Milou, 

1999).  Furthermore, some teacher attributes were a catalyst for teacher instruction that 

utilized teaching technology with fidelity.  Few studies acknowledged exemplary teacher 

utilization of technology; indeed, many teachers lacked the knowledge and expertise to 

integrate technology.  “Teachers did not know how to take advantage of technology as 

powerful tools to strengthen students’ understanding of mathematics” (Wachira & 

Keengwe, 2011, p. 23).  Repeatedly, studies revealed that teachers needed additional 

training and support to develop mathematics instructional practice with technology 

(Chamblee et al., 2008; Ertmer & Ottenbreit-Leftwich, 2010; Kastberg & Leatham, 2005; 

Simonsen & Dick, 1997; Wachira & Keengwe, 2011).  Therefore, without such training, 
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teachers will not gain the TPACK necessary to adopt instruction to ISTE and NCTM 

standards (ISTE, 2008b; NCTM, 2016). 

Teacher Beliefs about Mathematics Instruction 

 In the effort to understand teacher beliefs about mathematics instruction with 

technology one must consider three conceptions: (a) the nature of content knowledge for 

teaching (Ball et al., 2008; Ernest, 2012; Shulman, 1986; Thompson, 1992); (b) the 

nature of teacher beliefs about teaching and learning (Ernest, 2012, 2016; Garegae, 2016; 

Gill & Boote, 2012; Thompson, 1992); and (c) the interplay between teacher beliefs and 

teaching practice (NCTM, 2014).  Shulman (1986) conceived the notion of PCK, the 

unique knowledge of subject area and teaching, along with the representations and 

instructional conceptions for the subject area.  It is Ball et al. (2008) that parsed out the 

content knowledge for the teaching element of Shulman’s conception, specifically in 

terms of mathematical knowledge for teaching (MKT).  Yet, the value in understanding 

the nature of content knowledge for teaching and the nature of teacher beliefs about 

teaching and learning is that a strong correlation between teacher beliefs and pedagogical 

practice exists (Ravitz, Becker, & Wong, 2000; Thompson, 1992).  The distinguishing 

characteristics of content knowledge, beliefs about teaching, and the interplay between 

the two are shared in the sections that follow. 

 The nature of mathematical content knowledge for teaching.  Mathematical 

knowledge has traditionally been difficult to define, in particular to epistemology and 

ontology of mathematics for teaching (Ernest, 2012, 2016; Thompson, 1992).  

“Historically, mathematics has long been viewed as the paradigm of infallibly secure 

knowledge” (Ernest, 1998, p. 1), but Ernest began a 20-year discourse asserting 
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differences between this perspective of absolutism versus fallibilism philosophies of 

mathematical knowledge, introducing the notion of social constructivism as a construct 

for mathematical knowledge (Ernest, 1998).  The fallibilist view perceives mathematics 

knowledge as socially and humanly constructed, therefore, making it subject to fault 

(Ernest, 2012).  Ernest makes clear that reforming the definition of mathematics provided 

“an underpinning for the central focus of mathematics education, namely the teaching 

and learning of mathematics” (Ernest, 2012, p. 9).  In that quest Thompson (1992), 

Shulman (1986), and Ball et al. (2008) provide more detail about mathematical 

knowledge for teaching.  Thompson (1992) proposed, from a conglomeration of 

standards documents at the time, that mathematics knowledge for teaching is the activity 

of students engaging in mathematical problem solving, exploring, discovering, and 

creating that elicits learners to use reasoning, argumentation, and critical thinking skills.  

Ernest’ construct (1998) aligns with Thompson’s constructivist view (1992) and contrasts 

with the instrumentalist perspective of mastery of concepts, procedures, and algorithms.  

However, Ernest’ social constructivist view does not deny the value as a place in 

mathematics curriculum (Ernest, 2012; Garegae, 2016; Thompson, 1992). 

 A more general point of view about content knowledge from Shulman (1986) 

required the teacher to both understand that something exists and also know why it exists.   

The teacher need not only understand that something is so; the teacher must 

further understand why it is so, on what grounds its warrant can be asserted, and 

under what circumstances our belief in its justification can be weakened or even 

denied.  Moreover, we expect the teacher to understand why a given topic is 
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particularly central to a discipline whereas another may be somewhat peripheral. 

(Shulman, 1986, p. 9) 

Shulman’s PCK framework combines content knowledge and pedagogical knowledge to 

form a unique type of knowledge specific to teachers.  Although embracing Shulman’s 

PCK framework, Ball et al. (2008) claimed that the distinction of mathematical 

knowledge for teaching remained unclear, so advanced the discussion further by shifting 

toward how teachers used and applied knowledge in the work of teaching.  Ball et al. 

(2008) considered domains of mathematical knowledge through careful consideration of 

the specific activities of teachers, such as lesson planning, implementing, explaining, 

evaluating, and attending to other classroom concerns.  These are known as the Domains 

of MKT and are provided in Table 3.  These domains serve to map out teacher knowledge 

for individual teachers, pre-service teacher programs, and professional development.  

Table 3 

Domains of MKT 

Subject Matter Knowledge PCK 

Common content knowledge Knowledge of content and students 
Specialized content knowledge Knowledge of content and curriculum 
Horizon content knowledge Knowledge of content and teaching 

 
Note.  Adapted from “Content knowledge for teaching: What makes it special?” by Ball 
et al., 2008, Journal of Teacher Education, 59, p. 402-404. 

 

The nature of teacher beliefs about teaching and learning mathematics.  

Understanding teachers’ utilization of technology and the instructional moves that the 

teacher makes is related to teacher beliefs about teaching and learning (Thompson, 1992).  

Literature shows that teachers form their beliefs primarily from their individual 
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experiences as a student and those beliefs are part of teachers’ conscious and 

subconscious thoughts (Thompson, 1992).  Furthermore, teachers’ epistemological 

understanding about the nature of mathematics inferred connections to the development 

of knowledge, the methods for instruction, and the audience to be taught (Garegae, 2016).  

As a basis, Ernest (2012, 2016) conceived philosophies about the nature of mathematics.  

The following discussion follows from that foundation.   

  Ernest’s (2012, 2016) three philosophical perspectives facilitate an understanding 

of teacher beliefs: problem solving social-constructivist, Platonist, and instrumentalist 

views (Garegae, 2016).  The first view, social-constructivist, deduces mathematics as 

constructed through solving problems, and its fallibilistic nature of potentially possessing 

inaccuracies suggested that what was once verified may later prove false.  The second, 

Platonist, deems mathematics as a static content that is discovered.  Finally, the 

instrumentalist perspective regarded mathematics as rules, algorithms, and disconnected 

facts but none-the-less was regarded as truths.  Similar to Gill and Boote’s (2012) 

description of procedural mathematics, teacher beliefs can contain one or more of 

Ernest’s philosophies simultaneously (Garegae, 2016).  Ernest (2012, 2016) approached 

the teaching of mathematics from a philosophical position of intertwining learning 

theories with content knowledge.  He, therefore, anticipated that the learner constructed 

his knowledge through perspective content.  The argument builds to how teachers 

develop their conceptions, and ends with the NCTM Principles to Actions (2014) 

discussion about productive and unproductive beliefs. 

 Foremost are the two views: beliefs that are productive and those that are 

unproductive (NCTM, 2014); and beliefs that center on teachers’ views of active 
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engagement of students through social constructivist moves (Ernest, 2012).  Teachers 

often perceive that they are already implementing reform-based practices of a 

constructivist nature (Gill & Boote, 2012).  NCTM (2014) asserts that teachers should 

focus on developing conceptual knowledge through procedural knowledge, contextual 

problems, and also through engagement of students in explorative activities that foster 

perseverance through productive struggle.  This view of productive beliefs should not be 

viewed as good or bad, rather it promotes reflection by teachers to support and encourage 

student opportunity to learn (NCTM, 2014). 

 The interplay of teacher beliefs and teaching practice.  Implicit in NCTM’s 

(2014) productive and unproductive beliefs about teaching and learning mathematics was 

that no one theory existed as the absolute fixed belief that must be put into practice.  

Furthermore, the determination as to which begets the other, belief or practice, is not yet 

decided (Cobb, Wood, & Yackel, 1990; Ernest, 2016).  As a philosopher and 

mathematician, Ernest (2016) claimed that the aims of mathematics instruction arise 

through an organized social activity; therefore, purposes for teaching and learning 

mathematics contain many divergent views.  Likewise, knowing mathematics 

materialized through both a social and cognitive aspect (Cobb, Yackel, & Wood, 1992).  

Taking perspectives from Ernest (2016) and Cobb et al. (1990, 1992), knowing, learning, 

and teaching mathematics depend on social constructs to form beliefs that, in turn, forge 

mathematical instructional practices.  Thompson’s approach was the converse; the covert 

beliefs were recognized through teacher decisions (Thompson, 1992).  Thompson defined 

a teacher’s conceptions of teaching and learning mathematics by the elements that the 

teacher considered as goals, roles of teacher and student, instructional approaches, 
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appropriate activities, procedures, and sufficient aftermaths.  It is both convenient and 

appropriate to gather these artifacts, scrutinize each one, and draw conclusions about 

teacher beliefs.  Thompson’s primary concern was the link between what a teacher 

believed about mathematical knowledge and the way that knowledge was situated in the 

teaching and learning context (Thompson, 1992).  Cobb et al. (1990) considered teacher 

beliefs as they informed practice, and then how that impacted student learning through a 

linear relationship.  Cobb et al. suggested that “beliefs are expressed in practice, and 

problems or surprises encountered in practice give rise to opportunities to reorganize 

beliefs” (p. 145).  The interplay between beliefs and practice continually evolve, one 

informing the other (Cobb et al., 1990; Ernest, 2012, 2016).    

Summary of teacher beliefs about mathematics instruction.  First, a highly 

rated teacher would be knowledgeable in his field of study (Ball et al., 2008).  “What 

constitutes understanding of the content is only loosely defined” (p. 389).  Second, the 

expression teacher belief has been referred to with multiple terms: “Words like 

conceptions, perceptions, feelings, inferences, preferences, and attributions are used 

interchangeably in the literature” (Garegae, 2016, p. 2).  Third, teacher beliefs and 

content knowledge of mathematics have long posed the challenge of delineating the two 

(Ball et al., 2008; Shulman, 1986; Thompson, 1992).  Knowledge must satisfy a truth 

conviction (Thompson, 1992).  Each informs the other and their differences are subtle.  

Beliefs fall on a continuum of the degree of conviction and also carry the notion of 

disputability (Thompson, 1992). However, beliefs and knowledge about mathematics 

influence the aim of teaching, another complex domain (Ball et al., 2008; Ernest, 2016; 

Ravitz et al., 2000; Thompson, 1992).   
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Teacher Beliefs about Mathematics Technology Utilization 

 Technology is on the forefront in educational practice, and somewhat on the 

leading edge is discussion regarding teacher beliefs about teaching and learning 

mathematics when technology is used as a tool to develop mathematical understandings 

(Dewey et al., 2009; Ertmer & Ottenbreit-Leftwich, 2010; Lee & McDougall, 2010).  As 

computer technologies dawned in the educational arena, Pea (1985) astutely pointed out 

that the “cognitive technologies we invent serve as instruments of cultural redefinition” 

(p. 167).  Pea continued to exhort the need for reorientation of teaching and learning, but 

also embracing new means of mental functioning that occurred because of technology.  

This idea of reorientation originated in teachers’ beliefs about technology as a cognitive 

tool and the choices the teacher made towards technology-integrated curriculum (Heid & 

Blume, 2008; Thompson, 1992).  

 “Mathematics teachers should judiciously adopt technology that supports 

effective instruction but not simply for the sake of using more technology in the 

classroom” (NCTM, 2014, p. 80).  The authors stated that teachers often tend to student 

issues with technical procedures with calculators and then do not provide opportunities 

for students to connect the problems to the mathematical content.  Additionally, Ivy and 

Franz (2016) presented this finding regarding teacher’s PCK: “participants demonstrated 

inconsistences between their perceptions of their instructional practices and observed 

instructional practice” (p. 12).  Furthermore, Kastberg and Leatham (2005) found that 

graphing calculators were not accessed for advanced operations.  Obstacles to effective 

teaching with technology stem from unproductive beliefs and are listed in Table 4.  

NCTM recognized that the value of technology was dependent on the method and 
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purpose to which the tools are being used.  The shift towards technology utilization must 

be rooted in mathematical reasoning and sense making (NCTM, 2014). 
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Table 4 

Beliefs about Tools and Technology in Learning Mathematics 

Unproductive Beliefs Productive Beliefs 

Calculators and other tools are at best a frill or 
distraction and at worst a crutch that keeps 

students from learning mathematics.  Students 
should use these tools only after they have 

learned how to do procedures with paper-and-
pencil. 

 

Technology is an inescapable fact of life in 
the world in which we live and should be 

embraced as a powerful tool for doing 
mathematics.  Using technology can assist 

students in visualizing and understanding 
important mathematical concepts and support 

students’ mathematical reasoning and 

problem solving. 

School mathematics is static.  What students 

need to know about mathematics is unchanged 

(or maybe even threatened) by the presence of 
technology. 

 

Technology and other tools not only change 

how to teach but also affect what can be 

taught.  They can assist students in 
investigating mathematical ideas and 

problems that might otherwise be too difficult 
or time-consuming to explore. 

Physical and virtual manipulatives should be 

used only with very young children who need 
visuals and opportunities to explore by 

moving objects. 

Students at all grade levels can benefit from 

the use of physical and virtual manipulative 
materials to provide visual models of a range 

of mathematical ideas. 

Technology should be used primarily as a 
quick way to get correct answers to 

computations. 

Finding answers to a mathematical 
computation is not sufficient.  Students need 

to understand whether an answer is reasonable 

and how the results apply to a given context.  
They also need to be able to consider the 

relative usefulness of a range of tools in 
particular contexts. 

Only select individuals, such as the most 

advanced students or students who reside in 
districts that choose technology as a budgetary 

priority, should have access to technology and 
tools, since these are optional supplements to 

mathematics learning. 

All students should have access to technology 

and other tools that support the teaching and 
learning of mathematics. 

Using technology and other tools to teach is 
easy.  Just launch the app or website, or hand 

out the manipulatives, and let the students 

work on their own. 

Effective use of technology and other tools 
requires careful planning.  Teachers need 

appropriate professional development to learn 

how to use them effectively. 

Online instructional videos can replace 

classroom instruction. 

Online instructional videos must be 

judiciously adopted and used to support, not 

replace, effective instruction. 

Note. Adapted from Principles to actions: Ensuring mathematical success for all, by 
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National Council of Teachers of Mathematics, 2014, Reston, VA: Author, p. 82.  Copyright 2014 

by the National Council of Teachers of Mathematics, Inc. 

 Ivy and Franz (2016) expressed concern about teachers with low PCK and, hence, 

unproductive beliefs such as “teaching procedures and memorization over reasoning and 

conceptual understanding, mastering a set of basic skills prior to exploring and solving 

contextual problems, and a focus on step-by-step procedures to minimize classroom 

struggle” (p. 13).  In a similar way, Wachira and Keengwe (2011) referenced the fact that 

teachers in their study “did not know how to take advantage of technology as powerful 

tools to strengthen students’ understanding of mathematics” (p. 23).  As with Ivy and 

Franz (2016) report, teachers lacked the expertise of integrating technology with limited 

technological pedagogical content knowledge.  Unproductive beliefs constitute one type 

of barrier to teaching with technology. 

Barriers to Teachers Implementing Technology in the Classroom 

 Often classified as first-and second-order barriers to implementation, teaching 

with technology has presented challenges to teachers (Brickner, 1995; Ertmer, 1999).  

First-order barriers are viewed as external to the teacher; whereas second-order are 

considered internal (Brickner, 1995; Ertmer, 1999).  Some examples of first-order 

barriers are the lack of equipment, technical support, teacher release time, and 

professional development involving utilization (Ertmer, 1999).  Internal or second-order 

barriers are more difficult to isolate as they are interconnected to teacher beliefs about 

instruction with technology (Ertmer, 1999).  “These barriers relate to teachers’ beliefs 

about teacher-student roles as well as their traditional classroom practices including 

teaching methods, organizational and management styles, and assessment procedures” 

(Ertmer, 1999, p. 51).  Overcoming these barriers “requires teachers to restructure their 
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belief systems about computer implementation and their identity therein” (Brickner, 

1999, p. 274).  In trying to capture this perspective, selected studies (Ivy & Franz, 2016; 

Wachira & Keengwe, 2011) reflect concerns regarding Pea’s conception of a cultural 

redefinition and Brickner’s view of second-order barriers.  Through such lens, both Ivy 

and Franz (2016) and Wachira and Keengwe (2011) perceived teachers’ bearing minimal 

facility of the affordances of graphing calculator technology.  The teachers in these 

studies lacked provisions for student access and low-effectiveness in the utilization of the 

tools. 

 Wachira and Keengwe (2011) collected K-12 teacher perceptions on the 

integration of technology in the teaching of mathematics during a masters’ level graduate 

course entitled Teaching Mathematics with Technology.  The primary evidence cited 

internal barriers as lack of time, lack of pedagogical knowledge, and lack of confidence 

in teaching with technology (Wachira & Keengwe, 2011).  Teachers did not have 

sufficient training on technological tools and did not know how to use the tools to 

advance student understandings of mathematics concepts.  Teacher anxiety about making 

mistakes or failing to trouble-shoot problems during teaching surfaced in discussions.  

Also, teachers expressed a lack of creativity in regards to TPACK and using pedagogies 

to reshape how students learn mathematics. 

 A similar study framed with the TPACK Development Model (Niess et al., 2009) 

suggested a potential solution to overcome second-order barriers.  Ivy and Franz (2016) 

surveyed, interviewed, and observed seven secondary mathematics teachers who 

volunteered to participate in a teacher-perception-of-technology study.  Ivy and Franz 

acknowledged teachers’ PCK self-report data revealed perceptions that teachers had 
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positive and progressive beliefs, yet the actual teaching practice appeared as a mismatch 

rendering low-level uses of technology (Ivy & Franz, 2016).  One teacher maintained 

alignment at higher levels, managing to break through second-order barriers, thereby 

implementing more advanced levels of mathematics technology.  “It is suggested that 

significant PCK serves as an impetus to effective instructional technology integration” 

(Ivy & Franz, 2016, p. 14).   

 A primary barrier to teaching mathematics with technology is an issue regarding 

teacher beliefs about teaching and learning with technology (Ivy & Franz, 2016; Wachira 

& Keengwe, 2011).  However, it was suggested that improving access to software and 

equipment, teachers need training to strengthen TPACK, and conversing about 

instructional practices, teachers can overcome barriers to technology and find new roles 

to use mathematical technologies in the classroom (Ivy & Franz, 2016; Wachira & 

Keengwe, 2011). 

Roles of Technology in the Classroom 

 CAS can afford various pedagogical opportunities such as investigations (Brown, 

et al., 2007; Kastberg & Leatham, 2005), access to real-world problem contexts (Drijvers, 

2000; Kastberg & Leatham, 2005), multiple representational forms (Fonger, 2012; Zbiek 

& Hollebrands, 2008), and mathematical authority (Langer-Osuna, 2017; Schoenfeld, 

2016).  Teachers should consider multiple ways to utilize CAS in order to teach utility of 

the tool; to engage students in problem solving; to extend thinking for complex problems; 

and to consider models of problems through the use of the tool (Heid, 2003).  Various 

roles of technology are discussed in the sections that follow. 
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 Investigations.  The meta-analysis by Kastberg and Leatham (2005), a review of 

research on graphing calculator technology, found that many teachers developed 

pedagogy that encouraged student exploration and investigation of mathematics problems 

with technology.  Kastberg and Leatham reported technology provided students a 

multiple representational context that benefitted their opportunity to explore problems in 

multiple contexts and also to construct cognitive links between representational models.  

The tool’s efficiency to transition from one representation to another provided the context 

for students to easily access the concepts.  Similarly, Brown et al. (2007) noticed that 

teachers valued investigations perhaps because students had a more positive attitude 

towards mathematics.  The tool galvanized students to move to higher-level thinking 

processes and enhanced their learning experience (Brown et al., 2007).  Furthermore, 

Brown et al. (2007) reported that teachers’ perception of calculator use “led to better 

understanding, provided a stimulus, generated interest, and enhanced student 

performance” (p. 112). 

 Real-world problem contexts.  Drijvers (2000) chose a research approach of 

obstacles to learning in a secondary school CAS environment.  Through real world 

optimization problems and investigating solutions, students found challenges in the 

variation of outputs.  Those challenges came primarily through utilization of the device 

especially in terms of syntax.  Drijvers (2000) claimed that CAS introduced more issues 

than resolutions.  “An obstacle, now, is a barrier provided by the CAS that prevents the 

student from carrying out the [utilization] scheme that s/he has in mind.  As a result, the 

obstacle stops the process of shifting between the ‘pure’ mathematics and the problem 

situation” (p.195). 
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 In contrast, Kastberg and Leatham’s (2005) meta-analysis revealed that students 

with CAS exposure outperformed students with traditional instruction.  In particular, the 

University of Chicago School Mathematics Project (UCSMP) curriculum was developed 

to include application problems and the expectation that graphing calculators would be 

used as a tool in problem contexts.  Students who were instructed with this curriculum 

outperformed those students who were taught with traditional curricula (Kastberg & 

Leatham, 2005).  

 Drijvers (2000) and Kastberg and Leathams (2005) contrasting projects of real-

world problem contexts revealed elemental differences in student competency of the 

cognitive tool.  Technical activity with the tool created a challenge in the first study and 

curriculum written with technology integration benefitted learners in the second study.  

Given the theory of instrumental genesis (Artigue & Diderot, 2002), it is befitting that the 

teacher’s role is to assist in real-world problem contexts by first addressing instruction of 

CAS tools. 

 Multiple representations.  “The ability to shift between different representations 

of a problem can help students develop a deeper understanding of mathematical 

concepts” (NCTM, 2014, p. 84).  Zbiek and Hollebrands (2008) claimed a technology 

affordance is the opportunity to collect data and view linked representations to that data.  

They reported results from a SimCalc study with prospective teachers of the graphic 

representations and changes in the expression as features that were motivational to 

deepen conceptual understandings. 

   The idea that accessing different representations of mathematics problems can 

assist learners in developing conceptions in meaningful ways is not unfamiliar (Fonger, 
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2012; Heid, 2003; Kaput, 1992; Kutzler, 2010; Pierce & Stacey, 2002, 2008).  In fact, 

seminal research involved multiple representations and dynamic features that interplay in 

contexts using MuMath or Derive (Heid, 1998, 2001; Kutzler, 2010).  Instruction with 

multiple representations benefited students beyond their ability to just create the 

representation; those students had multiple methods and pathways to understand 

problems (Fonger, 2012; Heid, 1998, 2001).  CAS was an efficient tool to formulate 

multiple representations.   

 Authority shift.  The location of authority in the mathematics classroom—with 

the teacher, textbook, discipline of mathematics, or across students—has implications for 

sense-making opportunities (Hamm & Perry, 2002; O’Donnell, 2006).  “Classrooms in 

which authority is shared between the teacher and the students offer students 

opportunities to take ownership of their ideas, leading to greater conceptual 

understanding and greater identification with mathematics” (Langer-Osuna, 2017, p. 

238).  The mathematics community references other domains in the authority 

frameworks: intellectual (Langer-Osuna, 2017); anthropogogical (i.e., pedagogical 

authority) (Gerson & Bateman, 2010); and didactic contract (Pierce & Stacey, 2010).  

Pierce and Stacey suggested that CAS could change student perspective of mathematical 

authority in the classroom.  “MAS technology in the classroom introduces an ‘authority’ 

other than the teacher, and students may gain a new sense of personal authority” (Pierce 

& Stacey, 2010, p. 8). 

 Summary of the roles of technology.  Many roles for CAS technology have been 

employed; some with successful results (Fonger, 2012; Heid & Blume, 2008: Kastberg & 

Leatham, 2005; Pierce & Stacey, 2004, 2008, 2010, 2013).  The tool can introduce new 
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concerns of learning how to use it prior to accepting it as a viable helpful technology 

(Drijvers, 2000).  Artigue and Diderot (2002) theory of instrumental genesis may resolve 

concerns that evolve around the introduction of new technologies.  Access to 

technologies can advantage learners through investigations, explorations, multiple 

representation and real-world contexts (Fonger, 2012; Kastberg & Leatham, 2005; Zbiek 

& Hollebrands, 2008).  Finally, CAS technology can take on a new role of authority in 

the classroom (Langer-Osuna, 2017; Pierce & Stacey, 2010). 

CAS Theoretical Perspectives 

 Mathematics education researchers have generated multiple frameworks 

regarding cognitive technologies that assist in understanding CAS’ functional properties, 

its usefulness, and potential learning outcomes.  Mewborn (2005) presented a general use 

for frameworks (e.g., model, construct, theory, paradigm, framework).  First, a 

framework can guide a study by allowing a researcher to notice particular events or 

observations.  Second, a framework can allow the researcher to perceive similarities and 

differences between observations.  Third, a framework can provide orientation or 

perspective to the occurrences of a study within a context.  Lastly, words of caution are 

commissioned to the researcher to avoid confinement to an ideology.  Keeping 

Mewborn’s perspective in mind, I selected three frameworks to review:  Black Box and 

White Box (Buchberger, 1990), Heugl’s Competence Model (2005), and the P-Map 

(Pierce & Stacey, 2010).  In the following sections, each framework will be described.  

The purpose for selection of the P-Map framework for this study will be shared. 
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Black Box and White Box  

 Theoretical perspectives indicate CAS as a black box technology (Cedillo & 

Kieran, 2003; Drijvers, 2000; Heid & Edwards, 2001; Ozgun-Koca, 2009) upon which 

individuals operate with no comprehension or transparency of actions taken by the 

device.  This challenged mathematicians’ consideration of methods to reveal internal 

actions of CAS technology.  The user necessitated viewing the actions or steps in a 

sequential order, conceiving the viewpoint of white box technology.  Ozgun-Koca (2009) 

discussed a third prospect offering a resolution to the problem by accessing a symbolic 

mathematics guide (SMG).  The device software (e.g., SMG) contained a menu of 

choices in which the user chooses a decision to act upon the mathematics, thereby 

establishing a chain of procedures. 

 Two potential utilizations for the purpose of learning and doing mathematics 

were: (a) generating results quickly for pattern seeking (black box), and (b) performing 

step-by-step procedures (white box or SMG) (Ozgun-Koca, 2009).  The first purpose 

illuminates symbolic outputs for explorative purposes (Heid, 2003); the second affords 

the development of procedural fluency (Heid, 2003; Ozgun-Koca, 2009).  The three 

perspectives (i.e., black box, white box, and SMG) facilitate an understanding of CAS as 

well as pedagogy that can utilize CAS. 

Huegl’s Competence Model 

 The competence model for standards in mathematics education was adopted to 

include an emphasis on technology as a means by which learners engage in mathematical 

learning (Heugl, 2005).  The model included four performance classes and was presented 

to delineate different types of uses of CAS technology by students and teachers: (a) 
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modeling and representing, (b) operating and calculating, (c) interpreting and 

documenting, and (d) arguing and reasoning.  Huegl’s classes aligned with mathematics 

teaching practices (NCTM, 2014).  Furthermore, Heugl expected changes to standards 

and assessments to ensue concurrently with an influx of curricula that included 

technology use.  “We are sure that the use of technology will increase the joy and interest 

of the students and they will experience the learning of mathematics in a more 

meaningful way because we can offer them a more meaningful mathematics” (Heugl, 

2005, p. 11). 

Pedagogical-Map (P-Map) Framework 

 CAS offers multiple opportunities for use, unmistakably computational purposes 

and functional use, but also pedagogical applications (Pierce & Stacey, 2010).  The 

functional uses are the foundation for inventing MAS devices and have fulfilled many 

computational tasks.  “Pedagogical opportunities and their actualization are less evident 

to teachers” (Pierce & Stacey, 2010, p. 2).  The focus of the P-Map (Figure 1) developed 

by Pierce and Stacey (2010) is to identify, organize, and highlight those opportunities 

using this taxonomy as teachers integrate MAS or mathematical cognitive tools.  The 

map is oriented from the base as the functional opportunities of CAS elicit opportunities 

for education implications in curriculum, assessment, and pedagogical change; yet only 

pedagogical affordances continue to be exploited with the map. 

 The three classifications of the type of affordances on the P-Map are tasks, 

classroom, and subject.  Five different affordances make up category of tasks: scaffold 

by-hand skills; use of real data; exploration of regularity and variation; simulation of real 

situations; and the links to multiple representations.  The classroom category refers to 
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changes in both the social dynamics and didactic contracts that students and teachers 

experience.  The subject or content matter has the potential to affect pedagogy in three 

ways:  exploit the contrast between machine and ideal results; shift the balance of skills, 

concepts, and applications; and emphasize metacognition of the thinking processes in 

which learners are engaged during the lesson.  More details and examples for each of the 

ten pedagogical opportunities are provided in Table 5, an adaptation from Pierce and 

Stacey (2010). 
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Table 5 

Detailed Description of Pedagogical Opportunities 

Type Opportunity Description Example 

Subject 

Exploit Contrast 
of Ideal and 

Machine 
Mathematics 

Teachers deliberately use 
‘unexpected’ error messages, 

format of expressions, 
graphical displays as catalyst 
for rich mathematical 
discussion 

Syntax in the device 
provides an unexpected 

output, different from 
pen-and-paper solutions. 

Re-balance 
Emphasis on 
Skills, Concepts, 

and Applications 

Teacher adjusts goals: spend 
less time on routine skills; 
more time on concepts and 

applications.  Increase on 
mathematical thinking. 

Heid’s seminal research 
on re-sequencing of 
concepts and skills in a 

calculus course 
Dynamic geometry can 
shift from memorization 
of facts to conjecturing 
and proving through 
visual arguments 

Build 
Metacognition 
and Overview 

Teachers give overview as 
introduction or summation: 
link concepts through 
manipulation of symbolic 

expressions and use of 
multiple representations 

Promote curiosity or 
instill a question, 
questioning strategies for 
reflection on the 

mathematical concept(s)  

Class-

room 

Change 
Classroom Social 
Dynamics 

Teachers facilitate rather than 
dictate.  Encourage group 
work.  Encourage students to 
initiate discussion and share 
their learning with the class. 

Linking action with 
mathematical reflection 
Constructivist approach 
to instruction 

Change 
Classroom 
Didactic Contract 

Teachers allow technology to 
become a new authority.  
Change what is expected of 
students/teachers.  Permit or 
constrain explosion of 

available methods. 

Role changes for both 
teacher and student, 
possibly teacher as 
facilitator and student as 
consultant. 
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Type Opportunity Description Example 

Tasks 

Learn Pen-and-

paper Skills 

Use instant ‘answers’ as 

feedback when learning 
processes. 
 

Solve equations one step 

at a time. 
Use of a symbolic math 
guide (tutorial program 
within the device) 

Use Real Data Work on real problems 
involving calculations that, 
done by hand, are error prone 

and time consuming. 
 

Collect real data through 
the device, such as the 
height of a ball or the 

temperature of a cup of 
water. 

Explore 
Regularity and 
Variation 

Strategically vary 
computations. 
Search for patterns. 
Observe effects of parameters. 

Use general forms. 

Use of sliders to 
dynamically change the 
graph of a function. 
Alter a geometric shape 

with drag features. 
Expand or factor 
algebraic expressions and 
make observations. 

Simulate Real 
Situations 

Use dynamic diagrams, drag, 
and collect data for analysis.  

Use technology generated 
statistical data sets. 

Random function 
generator repeated times 

to create a histogram for 
1000 tosses of two dice. 
 

Link 
Representations 

Move fluidly between 
geometric, numeric, graphic, 
and symbolic representations. 

Equation of a circle in 
symbolic sense, input 
numerical values, 

graphed, and drawn with 
geometry tools 

 

Note. Adapted from “Mapping pedagogical opportunities provided by MAS,” by 

R. Pierce, & K. Stacey, 2010, International Journal of Computers for Mathematical 

Learning, 15, p. 6.  Copyright 2010 by Springer International Publishing AG. 
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Summary of Theoretical Perspectives 

 Three theoretical frameworks provided perspectives to characterize CAS 

technologies.  The Black Box and White Box (Buchberger, 1990) define particular usage 

of technologies with regard to symbolic computation.  The user can either know the inner 

workings of the device by utilizing step-by-step procedures or alternatively, have no 

knowledge.  The latter refers to a Black Box Technology.  The competence model 

presented by Heugl (2005) outlined four classes in which teachers and students may 

utilize CAS.  Finally, the P-Map framework represents 10 pedagogical affordances that 

teachers may use as they exploit MAS in the classroom.  The P-Map was chosen as the 

theoretical framework for this study as the events were well defined for identification.  

Furthermore, the P-Map framework provided a context to describe the observed lessons 

and teacher pedagogies.   

Chapter Summary 

 Teacher pedagogy is the logical first step to consider CAS as a useful cognitive 

tool to advance mathematical knowledge.  Teachers are the agent for change (Chamblee 

et al., 2008; Ertmer & Ottenbreit-Leftwich, 2010; Wachira & Keengwe, 2011).  

Implementation begins through innovative teacher pedagogy impacting learners and 

continues to learners’ receptibility for developing mathematical knowledge in a CAS-rich 

environment.  General beliefs regarding teaching with technology effectuates teacher 

utilization of technological tools.  In two studies, beliefs about teaching and learning 

mathematics impacted teacher’s level of technology implementation (Ivy & Franz, 2006; 

Wachira and Keengwe, 2011).  Teachers with low PCK implemented cognitive 

technologies with less advanced utilization. 
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 Knowledge of potential barriers provides the opportunity to address concerns 

prior to technology implementation.  Barriers or obstacles to teaching technology can be 

classified as extrinsic or intrinsic (Brickner, 1995; Ertmer, 1999).  Extrinsic barriers are 

those outside the teacher’s control, such as, equipment, professional development, and 

teacher release time for preparation.  Intrinsic barriers include teacher beliefs about 

mathematical learning and technology interfacing with curriculum and assessment.  

Studies revealed that teachers needed additional training and support to develop 

mathematics instructional practice with technology (Chamblee et al., 2008; Ertmer & 

Ottenbreit-Leftwich, 2010; Kastberg & Leatham, 2005; Simonsen & Dick, 1997; 

Wachira & Keengwe, 2011).   

 Mathematical tools have generated roles in educational practice: investigations, 

access to real-world problems, multiple representation models, and the potential for a 

shift in mathematical authority.  This study endeavored to reveal some roles through 

teacher observation in the classroom.  The P-Map framework was used to illuminate 

opportunities. 
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CHAPTER III: RESEARCH METHODOLOGY 

Introduction 

 The powerful functionality of CAS has the potential to affect mathematics 

instruction in secondary school mathematics (Heid & Blume, 2008; Pierce & Stacey, 

2010).  The multiple capabilities of symbolic algebra, the ease-of-use, and recent state-of-

the-art technology give rise to opportunity for inventive pedagogy.  Possibilities exist in 

which mathematics can be explored with new pedagogy and schemes (Fey et al., 2003; 

Guin et al., 2005).  It begins with the teacher as the facilitator of questions but extends to 

learners as they consider new inquiries.  Classroom activity on technological devices 

creates a story.  The goal of this study was to uncover two teachers’ decisions regarding 

their pedagogy, choices of adjustment to their instruction, and justifications to take 

opportunities for the design of CAS-oriented lessons.  Knowledge of those findings will 

inform education leaders of potential teaching practices that promote students’ 

development of mathematical knowledge. 

 This holistic (Creswell, 2007) qualitative study considered secondary teachers’ 

pedagogy as they incorporated CAS technology in their classrooms.  A multiple case 

study (Yin, 2009) was utilized to capture the essence of two teachers in their integration 

of CAS.  The following elements of this chapter constitute the approach and rationale for 

the type of study.  First, a research overview is provided, followed by a description of the 

research site, participants, instruments, data sources and the data analysis procedures.  

Finally, limitations, delimitations, ethical considerations, and trustworthiness will be 

discussed in this chapter. 
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Research Overview 

 The purpose of this study was to understand: (a) what pedagogical opportunities 

mathematics teachers exploited with the presence of CAS; (b) how teachers aligned 

lessons to develop mathematical understandings; and (c) why these teachers wanted to 

orient their focus to exploit CAS in the development of mathematical knowledge. The 

following research question guided the study:  How do secondary mathematics teachers 

orient their instructional practices to exploit computer algebra systems (CAS) in the 

development of mathematical knowledge? 

 The questions asked were by nature descriptive rather than experimental, 

characteristic of a qualitative study.  “The case study is preferred in examining 

contemporary events” (Yin, 2009, p. 11).  Additionally, this study did not manipulate any 

behavior of the teacher, students, or content.  Rather, I was an outside observer, probing, 

inquiring, and inspecting the teachers’ moves, seeking evidence of teachers’ perceptions 

and actions of adaptation to teaching pedagogy in the context of relatively new 

technologies.  A holistic analysis (Creswell, 2007; Yin, 2009) explicated the teacher 

pedagogy through multiple sources developing individual themes and interpretations for 

each case.  The two cases were synthesized for the cross-case analysis providing more 

robust findings than for individual cases (Yin, 2009). 

 A multiple-case design (two cases) was selected deliberately to garner separate 

examples of CAS utilization.  Yin (2009) claimed the potential for multiple cases 

outweighed the benefits of a single case for several reasons: (a) multiple cases always 

provide a more compelling study; (b) independent conclusions can corroborate one 

another; and (c) contrasting situations provide rich evidence.  As well, this study 



 

 

71 

employed a within-site scheme.  Gay, Mills, and Airasian (2012) argued that multisite 

studies furnish stronger results, allowing for greater generalizability.  However, this study 

was less interested in the reliability of replication.  By keeping the study limited to one 

school, the cultural aspects remain fixed: multiple teachers with numerous lessons were 

varied.   

 The lead mathematics teacher at the school site identified three other teachers as 

potential participants; this kept static other factors and outside influences to the 

instruction at this location.  However, after an on-site visit occurred, two participants 

were unable to provide additional data and, hence, were removed from the study.  Data 

from this study provided more robust results due to intentional replication of conditions 

of the two participants (Yin, 2009).  However, differences among teachers availed the 

opportunity for deeper analysis of the theoretical framework according to Yin (2009). 

Research Context 

 I chose a high school that had teachers currently utilizing CAS technology in their 

classroom practice.  The school was an independent, co-educational college preparatory 

day school with the reputation for excellence in teaching and learning.  The setting 

location was on the outskirts of a large metropolitan area in the northern Great Lakes 

region of the United States.  The school’s two territories house separate units of early 

childhood, lower school, middle school, and high school, with an enrollment of 

approximately 1,100 students.  The historic school recently underwent a renovation to 

incorporate a technology-rich environment and an open space concept.  A proud heritage 

of the school was to create a culture where students can develop their character and 

intellect through attention to real-world activities.  On several occasions the school 
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hosted mathematics technology-focused conferences, demonstrating a dedication to the 

utilization of CAS. 

 Grandview, pseudonym for the research school site, assumed over a 100-year 

history for serving the surrounding population of youth.  The day school educated 

approximately 1,082 students: 594 students in K-8 and 488 students in 9-12.  The middle 

school, grades 6-8, employed three mathematics teachers, one for each grade level.  

Grandview’s middle school location in the middle of a residential community with 

several businesses in close proximity provided access to many children.  Endowment 

funds granted opportunities for students in need of financial assistance.  The high school 

employed 12 math teachers; some teachers overlapped into STEM or science 

departments.  The high school facility was five miles outside of the city with widespread 

space.  Transportation was provided for students on an as-needed basis. 

 Students at Grandview were provided a laptop pre-loaded with TI-NspireTM CAS 

software (along with many other general applications) for access at school and at home.  

Teachers used a binder application to organize work for the classes and as a management 

system for students to share documents with the teacher.  Students took notes and 

completed assignments with a stylus pen through the touch-screen and keyboard that was 

organized in each individual’s digital binder. 

 In pursuit of teachers to meet the original criteria, another study was initiated that 

required an Institutional Review Board application (protocol #16-2097, approved 

November 2015) for an information gathering survey (See Appendix A).  This national 

search included sending and receiving anonymous surveys, analysis of open-ended 

responses, and follow-up phone interviews (see Appendix B).  An online survey was 
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created with questions regarding types of mathematics technology utilized and open-

ended prompts about particular use of those technologies.  Teachers were targeted who 

met one of the following criteria: recently attended or presented at a mathematics 

technology conference; or taught at a private secondary school. 

 The survey was sent electronically in November 2015 to approximately 305 

teachers, with allowable acceptance of responses up through January 2016.  Not all 

teachers proved to have authentic active email addresses.  Exactly 56 teachers responded 

to the survey, which provided the option to contact the participant for additional 

information.  Those that provided an email address became a sub-group of responders 

that were analyzed.  I probed for three criteria: a current secondary school teaching 

assignment in the traditional mathematics course(s); a response that emulated a revelation 

of substantial usage of CAS technology; and a willingness to participate in educational 

research. Thirteen teachers were identified who indicated an adequate knowledge of 

integrating mathematics technology in their teaching practice.  The teachers were ranked 

according to survey responses that revealed innovative lesson design using CAS.  The top 

seven teachers were selected for initial contact and potential interview, leaving the option 

to consider others at a later time. 

 Four teachers were available to participate in follow-up phone interviews.  Each 

was asked more specific questions regarding their online survey responses.  By probing 

into detail of teaching assignments and willingness to serve as an in-depth research 

participant, potential candidates were culled.  Very few of these four individuals were 

currently teaching the traditional mathematics classes, such as algebra 1, algebra 2, 

geometry, and precalculus.  However, one teacher (identified below as Mr. Shasta) 
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exhibited a high level of CAS use, taught an appropriate mathematics class, and 

conveyed a confidence that his school would accept such a research opportunity. 

 Therefore, out of the four phone surveys, Mr. Shasta was included as a potential 

research participant.  In communicating with Mr. Shasta, he guided my decision to secure 

three additional candidates.  The plan was to have all four participants employed at the 

same high school, exploiting the affordances of CAS, and teaching traditional college-

preparatory mathematics classes.  Data was collected from the four participants through 

the on-site phase of the study; however, limited participation by two teachers during the 

post-visit phase forced the issue to scale the four cases down to two cases. 

Research Participants 

 Research participants were selected according to purposeful (Creswell, 2007) or 

purposive sampling (Gay et al., 2012).  Teachers chosen for this study were depictive of 

skilled teachers who had utilized CAS technology in their classrooms.  Purposive 

sampling best served the study because the type of individual selected was central to 

understanding the phenomenon (Creswell, 2007; Gay et al., 2012).  In particular, it was 

the actions and perceptions of the participants that informed the study.  Two secondary 

mathematics teachers who worked within the same work environment served as the units 

of analysis. 

 The two teachers, Ms. Springer and Mr. Shasta (pseudonyms), served as 

participants with unique dispositions in utilizing CAS technology.  Their instructional 

practices were analyzed to reveal pedagogical affordances and justifications.  

Background information listed in Table 6 provides an introduction to the detailed 

descriptions of each participant.  
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Table 6 

Overview of Research Participants 

Teacher 

Course 

Observed 
& Grade 

Level 

Education 
Teaching 

Experience 
Years 

Experience 

Years 
Using 
CAS 

Springer 
Calculus 

12th grade 

BS Mathematics 
Education (7-12)  
MEd Instructional 
Technology  

Private 
School 

9 5 

Shasta 
Algebra 1 
8th grade 

BS Mathematics & 
Philosophy 
MS Mathematics 
EdM Education 
EdD Education & 

Administration 

Private 
Middle and 

High 
Schools 

28 28 

 

 

Ms. Springer 

 The Grandview mathematics department coordinator for grades 9-12 was Ms. 

Springer.  She had been at the school for nine years; amidst the year of the study she 

taught algebra 1, algebra 2, and calculus.  Her bachelor’s degree was in mathematics 

education, and during her tenure at Grandview she earned a master’s degree in 

educational technology.  For the study, the calculus class was featured in Springer’s 

lessons.  Students selected enrollment in the calculus class for their senior year as 

preparation for college-level calculus.  They chose the course over an advanced 

placement calculus class opting for extended time in the development of calculus 

concepts.  Springer stated that she enjoyed the relaxed pace and reduced pressure of the 

non-AP classes. 
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Mr. Shasta 

 Mr. Shasta served as the mathematics department chair for Preschool-12 at 

Grandview.  He had been at the school for five years, a portion of his 28-year teaching 

career.  One of his first propositions at Grandview was the request to consider utilizing 

CAS technologies in all mathematics classes.  Grandview’s administration was 

supportive of this decision, working out resources for both faculty and students to receive 

full access to CAS.  Shasta retained the role of onsite professional development expert, 

encouraging and sharing lesson ideas that were supported through CAS.  Personally, he 

had used CAS from his first days of teaching and continued during his nearly 30-year 

teaching career.  Generally, he had taught high school precalculus, statistics, and calculus 

courses, but during the year of this study he shifted to middle school filling an 

unexpected vacant mathematics teacher role.  Shasta’s eighth-grade algebra one classes 

contributed data to this research study.  Although Shasta secured this new position as an 

eighth-grade instructor during the year of this study, he had previous experience teaching 

eighth-grade mathematics. 

Instruments and Data Sources 

 The data collected for this study reflected instructional decisions and pedagogy 

that Springer and Shasta afforded when exploiting CAS in their teaching practices.  

Multiple sources of data aggregated during the pre-visit, on-site Visit, and post-visit 

provided the foundation for the research analysis.  Three primary sources were collected 

to answer the research questions, and multiple secondary sources of data facilitated the 

study and added depth to the descriptions.  Participant lesson observations, reflective 

writing prompts and semi-structured interviews were the primary data sources.  
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Secondary sources of data were: a demographic survey, researcher’s field journal, 

classroom observation protocol, screencasts of lessons, and audio recordings.  The survey 

provided demographic data.  The researcher’s field journal maintained an audit trail. 

Information from the screencasts and audio recordings generated inquiry for the primary 

data sources of writing artifacts and semi-structured interviews.  Each of the instruments 

is described in this section. 

Role of Researcher 

 As the researcher, I was a principal instrument in this study (Creswell, 2007).  I 

was involved in multiple functions: creating instruments; observing behavior; forming 

and asking questions; and gathering and analyzing data.  Additionally, as a researcher, it 

was my duty to reflect and interpret the data collected.  Multiple years in advanced 

graduate coursework in mathematics education, participation as a graduate assistant in 

qualitative research through the university, and execution of five educational action 

research projects rendered experience in research.  Furthermore, 27 years of teaching 

experience supported my awareness to details in a classroom.   

 “To further de-emphasize a power relationship, we may collaborate directly with 

participants by having them review our research questions, or by having them collaborate 

with us during the data analysis and interpretation phases of research” (Creswell, 2007, p. 

40).  I understood my role as an observer, disengaging in discussions that might influence 

or persuade.  Also, my questioning during semi-structured interviews was a tool to draw 

out participants’ perceptions of their decisions, approaches, goals, and assessment in their 

pedagogical practice.  Therefore, careful consideration and diplomacy were necessities in 

choosing writing prompts and interview questions.  
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Field Notes Journal  

 A field notes journal was kept as both a data source (Gay et al., 2012) and a tool 

for maintaining reliability (Yin, 2009).  Two basic types of data recorded in field notes 

were descriptive information and reflective observations (Gay et al., 2012).  Yin (2009) 

recommended establishing a “chain of evidence” (p. 122) that provided ground for a solid 

argument, which increased the quality of the study.  To maintain an audit trail, I recorded 

every data collection piece from the study.  Records included dates, times, utterances, 

communications, decisions, and reflections.   

Survey 

 Demographic information was the primary goal for the initial data collection of an 

electronic survey, sent to the four participants (Appendix B).  The survey served the 

purpose to introduce the research project, to collect demographic data, and set up 

communication conventions.  The survey collected descriptive background of the 

participants and facilitated capturing contextual data to plan for the classroom 

observations. 

Semi-Structured Interviews 

 Two phases of interviews were conducted: pre-interviews and post-interviews 

(see Appendix D).  The pre-interview consisted of open-ended questions about teaching 

assignment, perceived uses of CAS in lessons, decisions in lesson planning, and 

curricular alternatives.  The post-interview featured semi-structured questions and served 

the research in making clear particular attributes of each observed lesson.  The questions 

probed into the decisions the participants made either before the lesson or upon a 

breakthrough.  As well, the interview clarified any components of the lesson that lacked 
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transparency from the artifacts collected.  Finally, participants had the opportunity to 

reflect on the outcome of the lesson allowing them to share their perceptions of student 

reactions to the CAS utilization, that is, from the time of the lesson to the day of the 

interview.  A listing of the dates of post-interviews can be found in Table 7.  

Table 7 

Pre and Post Interview Dates 

Participant Pre-Interview Post- 

Interview 1 

Post- 

Interview 2 

Post- 

Interview 3 
Springer 10-02-17 10-15-17 11-08-17 12-06-17 

Shasta 10-02-17 10-04-17 11-06-17 12-22-17 
 

Reflective Writing Artifacts 

 Individualized writing prompts (see Appendix E) were prepared after lesson 

observations.  The purpose was to allow participants to reflect on CAS utilization 

regarding perceptions and attitudes, classroom dynamics, curriculum, and evaluation 

issues.  Questions were adapted from Simonsen and Dick’s (1997) interview protocol in 

which teachers’ perceptions of calculators in mathematics classrooms were analyzed.  

The questions were modified, deleted, or added onto, after viewing the screencast for 

each lesson.  Some questions were geared towards specific aspects of the lesson with the 

intent to draw out decisions and perceptions regarding teacher pedagogy.  Table 8 shows 

a record of dates from the data collection and the number of prompts used in the analysis.  



 

 

80 

Table 8 

Record of Written Reflections 

Participant Date Collected Number of Prompts 

Springer 10-13-17 5 
Springer 11-04-17 6 

Springer 11-30-17 9 
Shasta *10-04-17 6 
Shasta 10-13-17 5 
Shasta 12-20-17 6 

Note. *This reflection was collected via a post-interview and is cited as an interview. 
 
 
Lesson Artifacts 

 The primary lesson artifacts were screencasts, which captured a video of the 

computer screen and the participant’s voice during the lesson.  A backup audio recording 

was collected in some instances in the event that the computer microphone was of 

insufficient quality.  During the On-site Visit, I gathered any papers, plans, or work 

products from the participants.  Some of these artifacts were photographs of white board 

work, lesson plans, handouts, assessments, and screenshots of student computers that 

demonstrated innovative use of CAS tools. 

Classroom Observation Protocol 

 The classroom observation protocol (see Appendix F) developed from the P-Map 

framework by Pierce and Stacy (2010) supported the collection of data related to the 

infrastructure of the lessons.  Pierce and Stacy (2010) claimed that 10 pedagogical 

opportunities exist in the classroom, as documented in research and literature.  The P-

Map figure was part of the protocol, an expanded version was created from the literature 

providing descriptions and examples of pedagogical opportunities for quick reference.  

The P-Map served as a catalyst for examining the features of each lesson.  
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Procedures for Data Collection 

 The procedures of this study are described in the narrative that follows.  The 

details are organized in the phases of Pre-visit, On-site Visit, and Post-visit.  A research 

timeline is provided in Table 9.  Permissions were granted from the school site, prior to 

the Institutional Review Board (IRB) submission.   

Table 9 

Research Timeline 

Sent to IRB  IRB 
approval 

Begin Pre-
visit data 
collection 

On site 
visit 

Post-visit Begin data 
analysis 

Aug. 21 Sept. 28 Sept. 29 Oct. 2-6 Oct. 7 – 
Dec. 22 

Nov. 1 

 
 

Pre-visit: September 29 – October 1, 2017    

 This period extended three days from the time IRB approval protocol #18-2020 

(Appendix G) was granted to the day the on-site visit commenced. Shasta, the lead 

teacher at the school site was contacted via email. Contact information for potential 

participants was requested.  A video screencast was created for the purpose to introduce 

myself as a researcher, state the intent of the study, convey expectations for participants, 

and communicate the basic plan for follow-up.  The video screencast was sent via email 

and included the IRB consent document and a link to the survey instrument.  The first 

question on the survey required the respondent to authorize permission to participate in 

the study.  As an auxiliary, I obtained physical signed consent forms during the on-site 

visit.  The survey was completed during this phase or in the first day of the on-site visit.  

All four participants agreed to participate and provided consent.  The survey served the 
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purpose to introduce the research project, to collect demographic data, and set up 

communication conventions. 

 Shasta apprised me of a shift in his teaching assignment after the initial contact.  

An unexpected vacancy at the 6-8 school required him to modify the 9-12 teacher 

assignments and to absolve his responsibilities to fill that vacancy.  Upon receiving this 

information, an addendum to the IRB was submitted, October 1, to the compliance office 

requesting approval to add the middle school as a second location.  The compliance 

office granted the request on October 3.  Shasta was interviewed at the high school prior 

to that date; however, no contact was made at the middle school until after permissions 

were granted. 

On-site Visit: October 2 – October 6, 2017 

 The on-site visit allowed the researcher to conduct face-to-face classroom 

observations, collect lesson artifacts, administer lesson follow-up writing prompts, and 

conduct pre- and post-interviews.  The classroom observation included several means of 

capturing the essence of teacher moves: video screencasts, an audio recording of the 

teacher, and a classroom observation protocol.  Lesson plan worksheets, handouts, and 

blackboard work were collected with photographs to secure every aspect of the actual 

classroom experience.  Follow up for each lesson came by means of a written reflection 

and a post-interview.  One lesson cycle each for Springer and Shasta was conducted.  In 

addition, a second lesson conducted by Shasta was observed.  

 The description that follows constituted one lesson cycle in terms of items and 

sequence of data collection: lesson artifacts, audio recording, screencast, observation 

protocol, reflective writing prompt, and post-interview.  I collected three cycles for each 
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of the participants for a total of six lesson cycles.  The decision of which lesson to 

observe was given to the participant but with reminders of the goal of this project. 

Screencasts and audio recordings captured the lesson, in addition to a face-to-face 

observation.  Notes were scribed on the classroom observation protocol and pertinent 

lesson artifacts collected.  Questions selected for the writing prompt were decided post-

observation.  After reviewing the reflection, follow-up questions for a post-interview 

were organized. 

Post-visit: October 7 – December 22, 2017  

 In the final phase, participants orchestrated additional lessons and transferred the 

data electronically to the researcher.  In all, each teacher provided three lessons that 

utilized CAS technology.  Digital transfer of video screencasts and any other lesson 

artifacts were accessed via cloud technology.  Following each data transmission, 

participants were given a reflective writing prompt to both clarify and expand on 

thoughts from each lesson.  Upon receipt of the written reflection the post-interview was 

conducted.  The last phase of the study spanned 11 weeks.  The lesson cycles and data 

collected related to each cycle are summarized in Table 10. 
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Table 10 

Data Collected Related to Each Lesson Observation 

Participant Lesson Date Written 

Reflection 
Date 

Post-Interview 

Date 

Vignettes 

Generated 

Springer 10-06-17 10-13-17 10-15-17 1 
Springer 10-20-17 11-04-17 11-08-17 2, 3 
Springer 11-09-17 11-30-17 12-06-17 4, 5 
Shasta 10-04-17 10-04-17 10-04-17 1, 2 
Shasta 10-05-17 10-13-17 11-06-17 3 
Shasta 12-04-17 12-20-17 12-22-17 4 

Note.  This data represents only data that was used in this study. 
 

 A list of all the lessons and the follow-up written reflections and interviews are 

provided in Table 10.  Vignettes were generated as subsets from the lessons. The 

observed lesson descriptions aggregate the three data instruments for each lesson to tell 

the story. 

Procedures for Data Analysis  

 The data analysis stage began when data were received in October and continued 

for eight months.  Preparing and organizing the data for input to Atlas.ti (i.e., data 

analysis software) was ongoing as data were received.  Written reflective artifacts were 

named with a pseudonym as described earlier and added to a database.  Interviews were 

named, transcribed, and stored in the database.  All other documents were date stamped, 

stored, and recorded in the field notes journal.  Coding began in December and continued 

during the descriptive writing process.  The next sections will provide more detail about 

the holistic analysis of the individual cases, the coding scheme, and the cross-case 

synthesis. 
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Holistic Analysis  

 Each case was analyzed separately accessing a holistic approach (Creswell, 2007).  

The lessons, written reflections, and interviews provided data for rich, thick descriptions 

of the participant’s lessons, classified as vignettes.  Each vignette was pattern matched 

(Yin, 2009) to the P-Map framework (Pierce & Stacey, 2010).  Codes listed in Table 12  

were used to identify instances of pedagogical opportunities.  In the initial coding, I used 

a deductive process to assign hypothesis codes (Saldana, 2016) to selective pieces in the 

interviews and written artifacts.  An evidence table was generated for each vignette to 

summarize pedagogy that matched the framework. 

 Next, the case for each participant was written, first Springer then Shasta.  The 

five individual tables of evidence from Springer’s vignettes were combined into a single 

table to create a perspective of the type of pedagogical opportunities that were in 

common and also those never identified.  Consideration of each lesson was given once 

again to insure that no opportunities were omitted.  The vignettes were imported into 

Atlas.ti for a second round of coding.  Primarily the same P-Map codes for pattern coding 

were used; however, additional concept coding occurred simultaneously.  Springer’s case 

was completed first with the P-map themes aggregated.  That phase involved looking for 

“converging lines of inquiry” (Yin, 2009, p. 115) that would reveal interesting ideals and 

form triangulation from the data sources.  A nearly full analysis of Springer was 

completed prior to considering Shasta’s data.  The same procedures were followed for 

Shasta, except that only four lesson vignettes were produced. 
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Coding Scheme 

 The two primary coding schemes were hypothesis and concept coding.  Initial 

coding accessed the P-Map codes from the theoretical framework, described by Saldana 

(2016) as hypothesis coding.  P-map codes from Pierce & Stacey’s (2010) framework 

were pre-determined prior to collecting data.  The Classroom Observation Protocol (see 

Appendix F) guided the identification of P-Map codes prior to analysis.  Thus, the 

framework informed decisions to select questions in the follow-up interviews and written 

reflections.  Saldana names that coding method hypothesis coding from the basis of: 

“Application of a researcher-generated, predetermined list of codes . . . about what will 

be found in the data before they have been collected or analyzed” (p. 294).  Saldana 

asserts that the hypothesis-coding scheme can explain the data.  Simultaneously, while 

both holistic cases were analyzed by the P-Map codes, concept coding transpired.  

Saldana (2016) described concept coding as extracting big picture ideals.  The codes will 

be explained in the sections that follow. 

 P-Map codes.  Pierce and Stacey (2010) developed the taxonomy of various 

pedagogical opportunities that teachers take when utilizing MAS.  The P-Map considered 

functional opportunities as the primary purpose of MAS, supporting users in the 

computation and manipulation of mathematical expressions and equations (Pierce & 

Stacey, 2010).  The three levels of subject, classroom, and tasks categorize the 

opportunities.  The codes given in   A deductive analysis of the data occurred in the initial 

coding with the use of Table 11 codes. 

Table 11 identify the P-Map level, the focused hypothesis codes abbreviation, and the 

description for each code that came directly from the P-Map (Pierce & Stacey, 2010).  
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The abbreviated codes represent the pedagogical opportunities from the P-Map and are 

identified in each lesson vignette summary.  A deductive analysis of the data occurred in 

the initial coding with the use of Table 11 codes. 

Table 11 

Codes for Pedagogical Opportunities 

Level Code Opportunity 

Subject 

S1 Exploit Contrast of Ideal and Machine Mathematics 

S2 Re-balance Emphasis on Skills, Concepts, and Applications 

S3 Build Metacognition and Overview 

Class-
room 

C1 Change Classroom Social Dynamics 

C2 Change Classroom Didactic Contract 

Tasks 

T1 Learn Pen-and-paper Skills 

T2 Use Real Data 

T3 Explore Regularity and Variation 

T4 Simulate Real Situations 

T5 Link Representations 

Note. Adapted from “Mapping pedagogical opportunities provided by MAS,” by 

R. Pierce, & K. Stacey, 2010, International Journal of Computers for Mathematical 
Learning, 15, p. 6.  Copyright 2010 by Springer International Publishing AG. 
 

 Codes for emergent themes.  I documented my reflective thoughts in the field 

notes journal throughout the events of observing lessons, interviewing participants, 

transcribing lessons, writing the descriptions of lessons and coding all the data.  

Recurring thoughts became concept codes (Saldana, 2016) used in the analysis.  The 

codes were phrases, gerunds, and concepts that either came directly from the data or via 
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the literature review.  Once produced, codes were migrated to Atlas.ti to become part of 

the coding scheme.  Table 12 represents the concept codes showing the number of 

occurrences.  Included in the table due to overlapping ideas from the P-Map framework, 

is the code T5 Link representations. 
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Table 12 

Codes Grouped by Emergent Themes 

Emerging 

Themes 

Codes Number of 

Events 

Mathematical 
Consultant 

Efficiency 
Connections 
Accuracy  

Student CAS use outside of classroom 
Empower students 
Ease of use 

28 
22 
19 

12 
6 
5 

Verify 

Answers 

Procedural skills 
Student trial and error 
Verify or check 

23 
17 
17 

Multiple 
Representations 

*T5 Link representations 
Teacher valued multiple approaches 

41 
6 

Regulate 
Access 

Questions are different 
Creative (lesson design, questions, topics) 
Delay commands 

35 
12 
6 

Provide 
Guidance 

CAS commands 
Syntax issues 

Student struggles 
Teach the tool 
Flexible with approach during lesson 
Work-around within CAS 

49 
41 

31 
27 
18 
9 

Outsource 
Procedures 

Outsource complex procedure 
Multiple examples quickly 
Reduce tedious calculations 

28 
23 
16 

Not Connected Motivation for using CAS 
Enjoy 

Teacher new approach 
CAS platform choice 

61 
30 

24 
21 

Note.  *T5 was used in the P-Map code list also. 

Cross-case Synthesis 

 Two developments materialized in the cross-case synthesis: aggregation of the P-

Map findings and aggregation of the emergent themes.  Summary tables from the holistic 

case analysis were merged into one with just the total of occurrences as extracted from 
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the evidence tables for each lesson vignette.  This new table was generated as a reflective 

tool to understand the relationship of the P-Map to both pedagogical affordances in a 

general sense and comparison of the two cases.  A third round of coding the individual 

cases assisted in understanding the opportunities that participants were using to benefit 

their instruction.  It was during this phase that a realization of very different classroom 

stories converged on pedagogical practices.  The P-map similarities and differences were 

synthesized.  Emergent themes arose out of that process.  The individual case themes 

were explicated and the cross-case synthesis revealed six themes. 

Ethical Considerations and Trustworthiness 

 There were concerns of an ethical nature that involved the school site, 

participants, and the body of evidence.  Creswell (2007) noted that participants have little 

to gain from the research but still dedicate their time, energy, and emotions to the 

process.  Furthermore, “unanticipated and unreviewed ethical issues can arise and need to 

be resolved on the spot” (Gay et al., 2012, p. 22).  Alignment with an understanding of 

human subjects’ treatment was imperative for the researcher.  Gay et al. (2012) professed 

that participants may feel distressed about their activity and may desire knowledge of the 

researchers’ written product.  Also, the relationships that exist between researcher and 

participant can “create unintended influences on objectivity and data interpretation” (Gay 

et al., 2012, p. 22).  Outlined in the following sections are the steps taken to ensure 

transparency, credibility, dependability, and transferability. 

Transparency 

 It was imperative to take measures to maintain ethical standards in this research 

project.  First, I conducted a proper review at the university through which this study 
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commenced, submitting a proposal to the IRB.  Second, I made every effort to minimize 

disruption and interference of the normal routines established by the teachers at the 

research school site.  Third, no videos or photographs of individuals were secured: The 

video screencasts captured only the computer screen and audio in the room.  Audio 

recordings filtered just the participants’ voice and those participants signed proper 

consent forms before any data collection.  Photographs that were taken only contained 

textual data from written work on the board or paper and screen shots of calculator 

devices or computer screens.  Fourth, a dedicated journal of events documented the 

contact with participants, my perceptions of conversations, and any new questions 

necessary to explore.  The journal was a trail of evidence, but also a reflective tool for me 

to listen to my voice as a way to maintain objectivity throughout the study. 

Credibility 

 As a researcher, I had to consider only the elements of CAS utilization and not 

other classroom concerns such as classroom management, administrative disruptions or 

lack thereof, the pace of instruction, nor any other non-pedagogical issue.  As a veteran 

teacher, I realized my own potential biases about what I observe in classroom culture and 

also in lesson design.  However, the data collected were verifiable to ensure credible 

results.  Multiple data sources were secured to corroborate the perspective.  Triangulation 

from multiple data sources confirmed the process. 

Dependability 

 Detailed descriptions were provided for each data source and through the methods 

of data collection.  The researchers’ field notes journal documented every spontaneous 

thought and action, providing a chain of evidence.  Any quoted words from a participant 
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were cataloged, dated, and certified.  Concerning data analysis, qualitative data were 

analyzed using software tools that assisted in coding and quantifying information. 

Transferability 

 This study was unique in its selection of site and participants that have access, 

resources, and minimal barriers to instruct with CAS technology.  Since the study was 

context-bound, it was unlikely that a replication of this study at a different research site 

would match the findings.  The study alluded that methodologies do exist that utilize 

CAS and advance the development of mathematical knowledge.  Rich descriptions of 

lessons provided educational practitioners with lesson ideologies that have the potential 

for replication in other classes but not necessarily with similar outcomes.  Teacher 

perceptions regarding decisions may be insightful for mathematics educators and may 

convey meaningful discussion. 

Limitations 

 The limitations of this study foremost are not a result of the researcher’s design, 

rather a result of participant selection, data collection procedures, member checks but, 

also, researcher epistemological bias.  As one who has investigated this topic thoroughly, 

the perspective of viewing and identifying affordances may be gratuitous.  However, 

ethical considerations always remained at the forefront of my mind in the data collection 

and analysis phases.  The limitations are described in the following sections. 

Participants 

 The original criterion for consideration in this study was teachers who utilized 

CAS as part of mathematics high school coursework.  The researcher selected one 

participant, from the Information Gathering Survey results.  This participant recruited 
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three colleagues to participate in the study, with the knowledge of my criteria.  Additional 

screening was not done; these four were the original participants.  However, two of the 

participants were removed from the study during the post-visit phase.  No additional data 

were received from those two participants and the on-site visit data did not appear to be 

CAS-rich.  The two remaining participants provided ample evidence that was acceptable. 

Data Collection 

 Limitations exist in the data collection phase that were beyond the researcher’s 

control.  However, these characteristics may have impacted the data either adversely or 

positively.  First, participants selected lessons that represented a CAS-infused lesson.  

Second, one set of post-lesson data was collected the same day as the lesson.  The 

conveyance of data may be limited due to lack of time to reflect.  Alternatively, a 

different set of post-lesson data was collected one month after the lesson.  Limitations 

may be due to ample time, thus, making recollection of pedagogy a challenge (see Table 

10).  

 Screencasts may have limited the study in terms of the participant-selected 

lessons chosen for observation; three of the six lessons were observed via screencasts.  

The manner in which data were collected (i.e., screencasts) may have decreased the 

likelihood to observe particular kinds of classroom tasks, a limitation of the study.  After 

analyzing the data through the lens of the P-Map, it was noticed that two types of tasks 

were not observed during this study: use of real data and simulation of real situations.  As 

well, classroom level pedagogical opportunities, those that involve teacher-student and 

student-student interactions, could not be observed and, hence, were extrapolated from 
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the screencasts.  Teacher writing artifacts and interviews verified those researcher 

deductions. 

Time Placement in the Course 

  The participants talked about their limitations of their CAS-oriented pedagogy 

during the first semester of their courses.  Typically, students had little or no prior 

experience with CAS.  As such, the participant indicated that he or she had to instruct 

how to use the CAS tool and also, ensure students had developed procedural fluency in 

the mathematics content first.  The participants expressed that during the second semester 

students had greater knowledge both in the tool and in algebra skills, and, hence, 

classroom activities reflected more involved utilization of CAS.  As a limitation, it is less 

about when during the course, rather the longevity of data collection.  A broader length 

study may have disclosed additional findings. 

Member Check 

 The researcher solely conducted transcriptions of the classroom lessons and 

interviews.  Participants were asked to review their transcriptions for accuracy, 

verification, and clarification.  However, both participants declined. 

Delimitations 

 In general, utilization of CAS by secondary school teachers was rare; observing 

the avant-garde pedagogies was a unique opportunity.  This study considered just some of 

the pedagogical affordances that high school teachers made; opportunities acknowledged 

were from an eighth grade algebra 1 and a twelfth grade calculus class.  The prospect 

existed, in part, because access to CAS was not restricted at the school site.  Furthermore, 
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the scope only considered lessons that were offered to students one-fourth to one-half the 

way through the course.  

Chapter Summary 

 This study focused on the real life phenomenon of innovative teacher practices as 

contemporary technologies surfaced in education culture.  Therefore, a holistic qualitative 

multiple within-site case study was the chosen research method.  Gay et al. (2012) 

classified particularistic studies, those that focus on one phenomenon, as a case study.  

Inspecting the two cases of teachers’ administration of CAS in their classrooms 

enlightened aspects of how teachers integrate CAS-oriented instruction.  Follow-up 

questions helped to understand the decisions teachers made regarding pedagogy. 

 Data collected were observations of lessons, interviews, and writing artifacts.  

Three lesson observations occurred on-site and three lessons were conducted via screen 

capture in the Post-visit.  The data analysis phase included thick rich descriptions of nine 

lesson vignettes.  Interview and writing artifact data were integrated into the stories of the 

lessons.  Each lesson vignette was pattern matched to the P-Map framework using a 

deductive analysis.  Following the two individual cases was a cross-case synthesis, which 

applied hypothesis coding to develop common themes.  An emergent theme arrived from 

the analysis of both participants to answer the research question: How do secondary 

mathematics teachers orient their instructional practice to exploit CAS in the 

development of mathematical knowledge. 
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CHAPTER IV: FINDINGS 

Introduction 

 Secondary teachers have been slow to act on the utilization of CAS as a tool to 

develop mathematical thinking (Heid et al., 2013; Zbiek & Hollebrands, 2008) due, in 

part, to multiple first-order and second-order barriers (Ertmer, 1999; Ertmer & 

Ottenbreit-Leftwich, 2010).  This study considered a school that had minimized those 

obstacles and habituated instruction with CAS as a cognitive tool.  The integration of 

CAS into mathematics coursework begins with the teacher and his inventive pedagogy.  

This tool allows learners to participate in new ways of developing understandings of 

mathematics (Heid & Blume, 2008; Heid et al., 2013; Kutzler, 2003; Pierce & Stacey, 

2010; Zbiek & Hollebrands, 2008). 

 The language in Principles to Action (NCTM, 2014) strongly encourages teachers 

to consider putting research into practice, with one of the eight principles highlighting 

tools and technology.  This technology standard states, “An excellent mathematics 

program integrates the use of mathematical tools and technology as essential resources to 

help students learn and make sense of mathematical ideas, reason mathematically, and 

communicate their mathematical thinking” (NCTM, 2014, p. 5).  The data collected in 

this study potentially demonstrate that CAS technology is a tool that can be used to 

advance student reasoning and sense making through thoughtful presentation of 

mathematical content. 

 The purpose of this study was to understand (a) what pedagogical opportunities 

mathematics teachers exploit with the utilization of CAS, (b) how teachers align lessons 

to develop mathematical understandings, and (c) why these teachers wanted to orient 
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their focus to exploit CAS in the development of mathematical knowledge.  The 

following research question guided the study:  How do secondary mathematics teachers 

orient their instructional practices to exploit computer algebra systems in the 

development of mathematical knowledge?  

 The P-Map taxonomy of pedagogical opportunities described what secondary 

school teachers enacted with CAS technology.  A multiple-case study of two participants 

was utilized.  The data analysis involved pattern-matching logic (Yin, 2009) to ascertain 

features of lessons that bring about conceptual understanding in mathematics.  This 

explanatory method captured a perspective from two teachers’ points-of-view of the 

goals and intent of effectuating learning mathematics.  This section begins with a brief 

description of the framework.  Lesson vignettes from each participant will depict what 

occurred during instruction.  After each vignette, I will clarify the identification of 

pedagogical affordances.  Each participant’s case reveals how the teacher oriented his or 

her instruction.  Finally, a cross-case analysis will reveal similarities and differences 

between the two participants.  Through the synthesis of the two participants the emergent 

themes were developed to provide more clarity of the findings. 

Observed and Described Lessons  

 The lesson vignettes provided in the cases depict classroom practices that utilized 

CAS that I observed via face-to-face or a video screen capture (i.e., screencast).  

Participants completed interviews and responses to writing prompts immediately 

following each lesson to obtain clarity.  In the vignettes, participants’ spoken words from 

critical moments in the lesson are provided when available.  Unfortunately, poor quality 

of audio recordings and conversations away from the microphone limited the possibility 
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to detect precise words on occasion.  However, follow-up interviews and written 

reflections captured the intent of the teacher in retrospection.  Furthermore, questions 

asked post-lesson addressed pedagogical decisions.  Throughout the vignettes, a time 

stamp is recorded to the left of phrases.  Those times are formatted as minutes and 

seconds representing the amount of time into the recording of each lesson.  In addition, I 

have described classroom activity during any breaks in time as parenthetical commentary.  

Generally speaking, the teacher and students had interactions that did not affect the 

instruction of the lesson.  Rather those interactions may have been the teacher repeating 

instructions, clarifying points, waiting for students to engage, or answering off-topic 

questions that occurred as part of the culture of high school classroom activity.  

Transcriptions inserted represent the participants’ spoken words addressing the class.  

The figures provided were teacher-generated or researcher re-created to display the 

technical aspects of CAS as a screenshot that the participants and their students 

generated. 

 The set of data is organized first by the participant, then by chronological lessons.  

Each lesson vignette is pattern matched to the P-Map framework (Pierce & Stacey, 2010) 

to identify parts of the lesson that demonstrate the pedagogical opportunities that the 

participant took in the presence of CAS technologies.  "Such a logic compares an 

empirically based pattern with a predicted one.  If the patterns coincide, the results can 

help a case study strengthen its internal validity" (Yin, 2009, p. 136).  The discussion 

following the lesson vignette helps to describe what occurred to develop mathematical 

understanding. 
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The Case of Springer  

 The Grandview mathematics department coordinator for grades 9-12 was Ms. 

Springer.  She had been at the school for nine years, the entirety of her teaching career.  

Her undergraduate degree was in mathematics education, and during her tenure at 

Grandview she earned a master’s degree in educational technology.  She had been 

utilizing CAS in her teaching practice for five years.  During this study she taught high 

school courses: algebra 1, algebra 2, and calculus.  It was the calculus classes that were 

featured in the lessons and conversations. 

 The sections below outline five distinct lessons that utilize CAS from the 

perspective of Springer.  The narrative was created from lesson observations and was 

supported with the participant’s reflection post-observation.  After each vignette, 

components from her story that paired with pedagogical opportunities are identified, 

evidenced, and organized using the P-Map framework (Pierce & Stacey, 2010).  The case 

analysis for Springer follows the lesson vignettes.  Springer’s case is first summarized as 

to the affordances from all five lessons using the P-Map and then emergent themes are 

tied to the pedagogical opportunities. 

Springer Vignette 1: Finding Equations of Tangent Lines 

 A lesson using the define feature of the CAS involved students exploring the 

slope of the line tangent to the curve at a particular point defined on a function.  Springer 

started the lesson by asking students to use the application, Desmos, on their personal 

computers and type the commands that she demonstrated via her computer-projected 

screen.  The instruction was primarily teacher-centered, and Springer had students 

working through the technical procedures simultaneously as she modeled the 
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mathematical syntax on the TI-NspireTM.  At times when she asked questions, she paused 

to let students reflect and answer, but she did not call on individuals to respond.  The 

lesson was presented in a straightforward manner, in that the teacher explained the 

content and asked questions of the students.  Additionally, the mathematical content was 

typical for a calculus class—equations of tangent lines to the curve were written and 

checked. 

 Springer developed the idea of a limit to the slope of a line at the point of contact, 

in this case, x =1, by calculating the slope of a secant line from the point of contact and 

another very close point, using numeric values. She then transitioned to finding the slope 

by using a difference quotient and taking the limit.  This highlighted the definition of 

derivative by considering the limiting values of slope between two points with a 

horizontal distance of approximately zero.  Instructions from Springer’s lesson follow 

and are directly quoted.  Student activity is noted in parentheses when significant but 

never quoted in the text. 

1:17  Open up Desmos and go ahead and put in y = x2 and put in the point (1, 1).  We’ve 

done this problem before where we want to find the tangent line to y = x2 at the 

point (1, 1).  (Students prepared devices.) 

1:47  We were making a table in Desmos (pause) and then we were finding values 

really close to one.  And we were coming up with what we thought was the slope. 

Let’s also review how we did that on the Nspire. 

2:10  Let’s Define f(x) = x2.  This is my favorite command.   

 (Students questioned the teacher what and how to input.) 
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2:38  If we wanted to find slopes around one, we could do (𝑓(0.99) − 𝑓(1))/(0.99 − 1) 

and we get 1.99.  Does everyone remember that this is what we have been doing?  

 (Teacher talked about other course details unrelated to the lesson.) 

3:52  The table method utilizes this idea of limits; that we’re getting values really, 

really, really close to one.  But never does the calculator ever actually give us two, 

or if it does give us two, it’s a rounded two. It’s not a definitive two.  We were 

coming up with this estimating, guessing type of situation. What we are now 

going to get into today is actually, we can definitively come up with two. We 

practiced this a little bit last week.  We are going to use the difference quotient. 

We are going to take the limit of the difference quotient, and it will definitively 

give us two.  (Springer, Lesson, October 6, 2017) 

 Springer started with Desmos tools for graphical elements, but then shifted to the 

TI-NspireTM for the CAS capabilities. Using CAS’ define feature, she typed in the 

command “Define f(x) = x2,” projecting her CAS display on the wall while students 

keyed the same command into their personal devices.  They all found the slope by setting 

up the following computation (𝑓(0.99) − 𝑓(1))/(0.99 − 1) and received an output of 1.99 

shown in Figure 2.  Springer connected this idea to a previous similar lesson, expounding 

that she and the students could choose other points really close to (1, 1) but never arrive 

at a definitive slope of two using this method. She described this method of finding the 

slope, a guessing or estimating type of situation.  
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Figure 2.  Springer's TI-NspireTM textual commands projected from computer to the 
classroom wall. 
 
 

 Students were naturally pattern-seeking as the slope values got close to the 

number two.  Springer reflected upon this lesson in a post-interview, stating the value of 

repetitive calculations.   

So we were evaluating f(0.9), f(0.99), f(0.999) real quickly.  Generating those 

values and then we were calculating the slope, going back, and then grabbing 

those values and doing change in y over change in x. . . . We were able to come up 

with the values.  And eventually the kids said, "You know, why do we have to do 

five of these?  Why can't we just do f(0.999)?"  I said, “Well, that's the whole idea 

of a limit.  We are getting closer and closer and closer.” (Springer, Interview, 

October 15, 2017) 

Springer asked students to do these repetitive calculations with the hope that a 

meaningful shortcut would seem apparent to the students.  In the interview, she 

shared how monotonous the calculations were for students, even when completed 

on a CAS.  The recurrent task prepared the students for the definition of 

derivative. 

 The lesson then shifted to calculating the slope definitively using the limit of the 

difference quotient or the slope formula.  Springer provided the specific difference 
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quotient by using the function f(x) = x2 and performed by-hand symbolic substitution with 

the general form for slope (𝑓(𝑥 + ℎ) − 𝑓(𝑥))/ℎ , having written ((𝑥 + ℎ)2 − 𝑥2)/ℎ with a 

marker on the whiteboard.  She typed that expression into the CAS and got an output of 

2x + h.  Next, Springer did two things on the CAS.  First, she took the limit as h goes to 

zero.  Second, she evaluated the value of x at the x-value for this instance, one, that 

matched her previous example.  The computation involved using the CAS such that 

command and resulted in exactly the value of two as shown in Figure 3. 

 

 
 
Figure 3.  Springer’s TI-NspireTM textual commands projected from computer to the 
classroom wall. 

 

4:25 Let’s go ahead and do our difference quotient of x2.  (Springer wrote this on the 

whiteboard simultaneously speaking.) So, for f(x) = x2 we would have 

  
(𝑥+ℎ)2−𝑥2

ℎ
 .  

 So if your function is already defined to be x2 . . . (Teacher explained and helped 

students put it into the calculator through circulating the classroom.) 

5:00  So, now do (𝑓(𝑥 + ℎ) − 𝑓(𝑥))/ℎ [on CAS] and you should get this, 2x + h. 
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5:16  We’re going to take our limit as h goes to zero and we’re going to evaluate at the 

x value of whatever we want. If we take our limit as h goes to zero, what are we 

left with?  (Students responded with 2x. Other background discussion occurred.) 

5:38  If I am trying to find my tangent line when x is one . . . We replace x with one.  

You get definitively two.  That is the slope of the tangent line.  (Teacher reiterated 

what happened on the CAS with the difference quotient and also how it was 

arrived with symbolic calculations by directing attention to the whiteboard.)  

7:12  We are wanting the tangent line at this point (1, 1).  So by replacing x as one, we 

are actually getting the slope definitively two.  (Teacher directed students to put 

these ideas into their notes.) 

7:51  The slope of any tangent line is just the difference quotient where we take our 

limit as h goes to zero.  And then we plug in whatever x value it may be.  If you 

want the tangent line at the point (3, 1), we are going to plug in x to be three.  If 

we want it at the point (1, 0), x is going to be one.  (Teacher reiterated the same 

ideas.) 

8:53  Let’s fill in what we have here.  If we use point-slope for . . . I have this point    

(1, 1) and we figured out that two was our slope.  I’m just going to put that into 

Desmos, y – 1 = 2(x – 1).  So there’s our tangent line. 

9:24  It’s not that the table method doesn’t work anymore.  It’s technically just a little 

more efficient because you can just directly do it. You are taking away this 

estimating, guessing situation. Which got a couple of us lost. 

9:50  There is this piece of (pause) you are trying to approach something.   
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10:05 This is how we get the exact answer.  (Springer directed students to repeat this 

exercise with other functions. Considerable time was provided for students to try 

a variety of examples. Springer walked around and assisted students.) (Springer, 

Lesson, October 6, 2017) 

 Finally, the goal was to write the equation of the tangent line, which was fulfilled.  

Springer used the definitive slope of the tangent line and the point of contact in the point-

slope form to write the equation.  Springer returned to the Desmos graph from the start of 

the lesson.  She added in the equation of the tangent line, y – 1 = 2(x – 1).  This tactic 

provided a graphical representation that connected the given information of function and 

point with the computed equation of the tangent line.  It confirmed the accuracy of the 

answer as shown in Figure 4. 

 

 
 
Figure 4.  Springer’s Desmos textual commands projected from computer to the 

classroom wall. 
 
 
Springer Vignette 1: Pedagogical Opportunities 

 Springer’s lesson on equations of tangent lines demonstrated utilization of CAS in 

the areas of building metacognition, exploring regularity and variation, learning pen-and-

paper skills, and linking representations.  The evidence summarized in  
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Table 13 uses pattern matching logic (Yin, 2009) with the data and the P-Map 

Framework (Pierce & Stacey, 2010).  Descriptions from the vignettes facilitate how these 

characteristics were demonstrated.  Evidence of connections to P-Map will be cited with 

time stamps from the lesson vignette as appropriate. 

Table 13 

Springer Lesson Vignette 1 

P-Map Evidence 

S3 Use of the define tool to systematize slope calculations.  Extended 
to abstraction of h as a very small value in a difference quotient 
and taking the limit as h approaches zero with symbolic 

representations. 
T1 Springer uses the white board to perform by-hand algebraic 

simplification of the difference quotient. 
T3 Regularity in the slope calculations to promote pattern 

recognition. 
T5 Multiple representations of graphic, symbolic, and tabular forms. 

 

 Build metacognition and overview (S3).  The development of a tangent line to 

the curve by finding the slope of a secant line was prevalent in the lesson with the goal of 

understanding derivatives by outsourcing complicated procedures to the CAS.  Springer 

was able to systematize those calculations by using the define tool in CAS to calculate the 

slope of two very close values, those at x = 0.99 and x = 1 (Time stamp, 2:38).  She 

connected this computation to the theoretical value of a very small difference between the 

selected points, namely the difference quotient (𝑓(𝑥 + ℎ) − 𝑓(𝑥))/ℎ.  She used the CAS 

tools to demonstrate that the numerical computation is the same as for the algebraic 

computation.  The CAS afforded the teacher and learners symbolic manipulation to 

simplify quickly and insert values to determine the slope. “This lesson we were more 
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using CAS purely for the algebraic muscle of it to help us with the conceptual ideas of 

calculus” (Springer, Interview, October 15, 2017).  Furthermore, this lesson provided the 

learner with the opportunity to conceptualize the limit as h approaches a value of zero. 

 Learn pen-and-paper skills (T1).  There never seemed an intention to eliminate 

pen-and-paper skills; rather, Springer used an opportunity to review the simplification of 

the rational expression on the white board before keying the command into the CAS 

(4:25).  She connected the procedural results to the output on the CAS, verifying her 

answer through the accuracy of the CAS. 

 Explore regularity and variation (T3).   The slopes of the secant lines were 

calculated multiple times using progressively closer values to the point at which the line 

is tangent to the curve (3:52).  A typical calculator with the ability of multiple line 

display could have accomplished the same demonstration of regularity in this lesson as 

Springer merely repeated numerical calculations.  However, the ability to use the CAS 

command to define the function and display the values in function notation, as in Figure 2 

above, supported the conceptual development of the definition of derivative.  

 Link representations (T5).  Springer used multiple representations facilitated by 

the CAS tools to develop and verify the mathematical concepts.  In this lesson, she 

utilized graphs, tables, and symbolic manipulations.  Springer opened the lesson with a 

Desmos graph (1:17), building metacognition and an overview of the mathematical 

problem of finding the tangent line at a point.  In previous lessons, Springer used a table 

in Desmos to gather two points close together with the purpose of finding the slope.  Her 

discussion with the class pointed students to that recollection (1:47).  The graphical tools 

in Desmos were used to link the representation of the algebraic function, a single point on 
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the function, and the tangent line developed through CAS.  She directed students to the 

TI-NspireTM for symbolic manipulations of the algebraic function to find the slope (5:00).  

Once the slope was determined, the equation of the tangent line was written using the 

point-slope method using pen-and-paper tools.  Students then returned to the graphical 

representation to verify the tangent line by keying the data into Desmos (8:53).   

Springer Vignette 2: Development of the Concepts of Continuity and 

Differentiability  

 This lesson involved using the CAS define feature as in the previous lesson 

vignette but also required the comDenom command and a syntax input of the conjugate in 

the application of the formal definition of differentiation.  The primary goal of this lesson 

was to develop students’ conceptual understanding of continuity and differentiability at 

various domain values along the graph of the function.  Springer had prepared several 

functions to explore: quadratic, rational, and radical.  She also selected three points on 

each of those functions at critical places in the domain to lead students to reflect on the 

concept of differentiability.  Finally, she used algebraic procedures with symbolic 

features of the CAS and graphical representations through the application of Desmos to 

advance student understanding.  The format of the lesson was traditional in that several 

examples were explicated to facilitate the nuances of different function families.  Those 

functions are displayed in Table 14 and provide Springer’s class results that were 

discovered from this lesson vignette. 
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Table 14 

Springer Examples Selected and Summarized for Continuity and Differentiability  

Function Continuous Differentiable 

f(x) = x2 +4x 
 

(- ∞, ∞) (- ∞, ∞) 

f(x) = 1/x 
 

(- ∞, 0), (0, ∞) (- ∞, 0), (0, ∞) 

f(x) = √𝑥 + 5 [- 5, ∞) (- 5, ∞) 

 

 Quadratic function.  Springer demonstrated procedures on the CAS projecting 

her computer screen on the wall, as students simultaneously mimicked those procedures 

on their personal devices.  The first function she chose to explore was the quadratic 

function f(x) = x2 + 4x.  Her introduction to the lesson revealed Springer re-teaching the 

definition of derivative through the process of defining the function on the CAS, taking 

the difference quotient (f(x+h) – f(x))/h, and then finding the limit of that expression as h 

approaches zero.  After calculating the derivative, she proceeded with questions 

regarding continuity and differentiability at three pre-selected points.  Springer’s 

directions follow.  

0:08 We will explore evaluating derivatives at certain values.  And then talk about 

where is the function continuous and where is the function differentiable.  And 

we’re going to write that in interval notation.  Let’s go ahead and get the 

derivative of this function.   

0:45 Let’s go ahead and define our function, f(x) = x2 + 4x. And then what do we 

normally do? We are going to find the difference quotient.  Why do we do h = 0 

again?  (Students answered incorrectly.) So it has to do with the definition of the 
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derivative. What is the definition of the derivative?  (Students discussed amongst 

one another.) 

1:14  The definition of the derivative is (f(x+h) – f(x))/h and we take the limit as h goes 

to zero, right? So that’s why we evaluate h equal to zero.  It’s part of the definition of the 

derivative.  So now we are going to evaluate it at f’(-5), f’(0), and f’(5).  (Students and 

teacher worked through the mechanics to generate the computation as seen in Figure 5.) 

 

 

 
 
Figure 5.  Springer’s TI-NspireTM textual commands projected from computer to the 
classroom wall. 
 

2:34  Graph this on Desmos, x2 + 4x. Go ahead and get a visual of it. 

3:00   My next question is, where is this function continuous?  Where is this function 

differentiable?  So, just in case you weren’t sure what the graph looked like. 

 (Springer brings up the image of the graphed function on her compute.  Students 

are discussing thoughts with one another.) 

3:30  Differentiable just means, where can we take a derivative and evaluate it at let’s 

say at a number. So you see, for example, I picked a positive number, a negative 
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number, and zero.  (Springer displays the Desmos graph and directs attention at 

the points previously evaluated.)  Continuous from negative infinity to infinity . . . 

and you are differentiable from negative infinity to infinity. (Springer, Lesson, 

October 20, 2017)  

 Rational function.  The second function explored, f(x) = 1/x, required students to 

work more complicated syntax on the CAS.  This rational function differed from the last 

function because it allowed students to consider the break in continuity at x equal to zero.  

Springer keyed this example into her computer, directing students to enter on their 

devices.  Some students were confused with the use of the command comDenom that was 

allowing the CAS to get a common denominator and combine the two fractions in a 

single command (see Figure 6).  However, there were other discussions about syntax, 

regarding preferences of copying and pasting commands.  Also, there was a surprising 

output of negative infinity when evaluating the function at zero as can be seen in Figure 

6.  Springer brought the discussion together through the use of a Desmos graph and the 

point of discontinuity. 

4:08 Can you do your derivative for one over x? Define f(x) = 1/x, take the derivative, 

and evaluate at f’(2), f’(0), f’(5).  And you should get some different fractions.  

(Springer demonstrated on her device while students are keying this into their 

laptop computer.) 

4:36 We’ve got to do our comDenom, right?  (Springer noticed that the output from the 

difference quotient is a difference of two rational expressions.  To find the limit as 

h approaches zero, the expression will need to be as just one rational expression.  
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The command comDenom on the TI-Nspire combines the two expressions as can 

be seen in Figure 6. 

 

 

 
 
Figure 6.  Springer’s TI-NspireTM textual commands projected from computer to the 
classroom wall. 
 

4:48 So, we’ve got our derivative.  And then you are going to evaluate at f’(2), f’(0), 

f’(5).  (Student talked to Springer- inaudible. Springer copied and pasted the 

previous input and changed the x values, rather than retyping the entire 

command.)   

5:05 You just always retype it? (Further discussion by the student while Springer 

keyed commands into the CAS.) 

5:12  That’s kind of cool.  Do you see how it came up with infinity?  Yeah.  What it’s 

actually doing is, it’s giving you the fact that there’s an asymptote, right? (See 

Figure 7.)  
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Figure 7.  Springer’s TI-NspireTM textual commands projected from computer to the 

classroom wall. 
 

5:26  Let’s go ahead and look at that (on a graph) (see Figure 8).  I don’t think we have 

ever seen that before.  Do you see, when we try to evaluate the function at zero, as we are 

approaching zero, (Springer is dragging points on the graph that animate from negative 

values of x to zero and then positive values of x to zero) we have an asymptote at zero.  

Notice we don’t actually get out a number. 

 

 
 
Figure 8.  Springer’s Desmos textual commands projected from computer to the 
classroom wall. 
 

6:10 And f’(0), because it’s not actually giving us a number, I am going to put f’(0) as 

undefined.  Infinity is not actually a number.  So now, where would you say this 

function is continuous and where would you say this function is differentiable?  

 (Students are answering – inaudible.  Springer was recording the answers (- ∞, 0), 

(0, ∞) for continuous and then the same answer for differentiable.) 
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6:40 Some people have been asking about this.  What does it mean to be 

differentiable?  You can differentiate.  Differentiate means you can take a 

derivative at some point.  If you’re not actually getting out a value here, okay . . .   

This negative infinity is a little misleading.  It’s giving us something.  It’s not 

saying it’s undefined.  It’s saying negative infinity just because there is an 

asymptote, but it’s not actually getting out a real number.  Since we are not 

getting a value at f’(0), it is not differentiable.  (Springer, Lesson, October 20, 

2017) 

 Radical function.  The third and final function was a radical function that had a 

terminating point at one end of the function.  The left-side domain value of the function 

showed continuity and non-differentiability at the terminating point.  Springer displayed 

the graph in Desmos and used the command Define for the function 𝑓(𝑥) = √𝑥 + 5  on the 

TI-NspireTM.  She found the difference quotient and evaluated the limit at h equal to zero.  

Springer directed students to evaluate at several points of the derivative, in particular at x 

equal to negative five.  The procedures for finding the derivative were more complicated 

than previously.  The resultant difference quotient required multiplying the conjugate on 

the numerator and denominator prior to evaluating at h equal to zero.  At this point in the 

lesson students were confused at the syntax of the calculator inputs and outputs and also 

on the algebraic procedures.  The transcription below indicates Springer’s willingness to 

listen and backtrack to explain more thoroughly.  At the end, Springer attempted to focus 

attention on the endpoint negative five to build her case for continuity and non-

differentiability for radical functions.  It could not be determined from this transcription if 

she was effective. 
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7:15  We’re going to do one more like that.  Go ahead and do the function √𝑥 + 5.   

 (Students had difficulty with the undefined value when evaluating this difference 

quotient at h = 0.  Similar to the problem earlier, but this time undefined appeared 

in the output.  See Figure 9.)  

 

 
 
Figure 9.  Springer’s TI-NspireTM textual commands projected from computer to the 
classroom wall. 
 

8:27 The issue is when you’re setting the h equal to zero and it’s undefined, it’s 

because of this h in the denominator.  So what do we need to multiply by? Yeah, 

we have to do the conjugate.  So we are going to do the conjugate, and that’s 

giving you your numerator.  So that gives you your h, and then you have h times 

your conjugate in the denominator (as shown in Figure 10). 

 

 
 
Figure 10.  Springer’s TI-NspireTM textual commands projected from computer to the 

classroom wall. 
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9:05  (Student was talking to the teacher about the complexities of entering this into the 

computer.  He was confused and wanted Springer to slow down and re-explain.)  

It’s not that bad. You can’t do it all in one step. So that’s maybe why you don’t 

like it as much.  Once you define your function and do your difference quotient 

because you can’t evaluate with h equal to zero in the denominator. . . . That’s 

undefined initially.  All we need to do is one intermediary step where we multiply 

the numerator by its conjugate.  That is how we would do it algebraically, right?  

You can kind of highlight and copy and paste it.  So you take that times its 

conjugate.  When you multiply by the conjugate, it’s the numerator and 

denominator.  (Other students were confused about a second issue that outputs 

undefined as in Figure 11.  Yet, the output of undefined showed that the function 

was not differentiable.  Another student was still confused about the previous 

issue that required comDenom.) 

 

 
 

Figure 11.  Springer’s TI-NspireTM textual commands projected from computer to the 
classroom wall. 
 

9:56 Yeah, you should get negative five is undefined (pause) because you would have 

zero in the denominator.   
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10:30 Alright, which h?  Here?  When I got that h?  That was the numerator.  In the 

denominator, there is still an h in the numerator.  That is because I multiplied by 

the conjugate. 

11:15 Let me ask you, at the moment, we only got one value that’s undefined.  We only 

tried three values.  Let’s try a couple more values.  What if we try negative 6, 

what would come up?  (Shown in Figure 12.) 

 

 

 
 
Figure 12.  Springer’s TI-NspireTM textual commands projected from computer to the 
classroom wall. 

 

11:45 Negative five is undefined because we are dividing by zero.  What would happen 

if I put negative six, negative seven, or negative eight?   
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11:57 We can’t take the square root of a negative number.  That would give you a non-

zero result. 

12:10 Where is this graph continuous?  It’s continuous including negative five to 

infinity.  But differentiable is slightly different.  (Springer displayed the graph as 

shown in Figure 13.) 

 

 

Figure 13. Springer’s Desmos textual commands projected from computer to the 

classroom wall. 
 

12:37 Is the function differentiable on this exact same interval?  Go back here, notice at 

negative five, it was undefined.  So it’s not including negative five.  So that would 

be a parenthesis [on the interval].   

13:15 On the original graph, negative five is defined.  So we were continuous there.  So 

the idea is, you might be continuous and differentiable on the same interval.  So in 

both the first two here, we were continuous and differentiable on the exact same 

interval.  (Springer writes the answers on her screen of [- 5, ∞) and (- 5, ∞).) 

13:33 That is a scenario.  You might have a scenario where maybe, it’s a very similar 

interval, but the difference is a bracket or a parenthesis.  One other scenario could 

be that it is a totally different interval.  Any questions on that? (Springer, Lesson, 

October 20, 2017) 
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 The third example presented more challenging CAS utilization.  It required the 

use of CAS to multiply the output by the conjugate and that produced a mathematical 

expression to take the derivative.  The TI-NspireTM had limitations of how to manage 

this.  It did not permit the user to key in a fraction multiplied by another fraction without 

first automatically simplifying each fraction.  As a work-around, Springer explained how 

to multiply the numerator and denominator separately on the CAS and then put it all back 

into one expression. 

 The third example also gave surprising outputs.  In the instance of evaluating the 

derivative 1/(2√𝑥 + 5) at x = -5, the output was undefined.  However, in the second 

example when evaluating for zero in the derivative function, f(x) = -1/x2, the output was -

∞.  Both inputs involved a zero in the denominator, but gave different outputs.  In the 

third example a tangent line exists at x = -5 but it is a vertical tangent line, which has an 

undefined slope, hence making the derivative undefined.  In example two there is no 

tangent line at x = 0 since f(x) = 1/x is undefined at x = 0.  Without looking at the graph, it 

was difficult to comprehend the difference between the endpoint (example 3) and the 

asymptotic behavior (example 2) as compared with the symbolic expressions that were 

output on the CAS.  

 The lesson closure involved examining the last function possessing the 

characteristic of being continuous but not differentiable at the endpoint.  The first two 

examples illustrated functions where the intervals of continuity and differentiability were 

identical, whereas the third example highlighted the case where a function can be 

continuous to the right at a particular x-value, but not differentiable at that point.  This 

last example of a rational function should have conjured curiosity when the interval for 
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continuity and differentiability ended with different answers, unlike the other examples in 

which they were the same.  Table 14 summarized the three examples and shows the 

intervals of continuity and differentiability.  The graphs Springer showed during the 

lesson helped to clarify behavior at endpoints and asymptotes.  

Springer Vignette 2: Pedagogical Opportunities 

 The lesson on developing concepts of differentiability and continuity that utilized 

CAS accompanied subject area consideration and specific tasks.  The subject area 

pedagogy as identified in the P-Map afforded learning opportunities for the following: 

exploiting the contrast of ideal and machine mathematics; a re-balance of emphasis on 

skills and concepts; and building metacognition and overview.  Tasks utilized 

pedagogical opportunities of exploring regularity and linking representations.  The 

evidence summarized in Table 15 used pattern matching logic (Yin, 2009) with the data 

and the P-Map Framework (Pierce & Stacey, 2010).  Descriptions from the vignettes 

facilitate how these characteristics were demonstrated. 

Table 15 

Springer Lesson Vignette 2 

P-Map Evidence 

S1 1. The output from evaluating a value in the difference quotient 

was unexpected (infinity) 
2. Solution output required extra commands on the device 

S2  Less time on procedures, more time on development of concepts 
S3 Emphasis shifted from procedural skills to consideration of both 

symbolic and graphical outputs that demonstrate continuity and 
differentiability to gain insight. 

T3 Use of three different function families to compare and contrast 

T5 Multiple representations of graphical and symbolic forms 
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 Exploiting contrast of ideal and machine mathematics (S1).   Pierce and 

Stacey (2010) described a contrast of ideal and machine mathematics as the difference 

between traditional paper-and-pencil expected answers versus the outputs the CAS 

provided.  Often these issues are due to generalized mathematical conventions: a 

formatted difference, a rearrangement of terms, an error message, or an answer in a 

simplified form (Pierce & Stacey, 2010).  In this lesson vignette, Springer managed to 

turn unexpected answers as an opportunity to teach the mathematical content of limits 

and the need for additional procedures.  The first instance showed Springer evaluating the 

limit of a difference quotient for an indeterminate form, resulting in f’(x) = -1/x2, for 

which the output gave the symbol for negative infinity (5:12).  Syntax, in this case, 

provided the appropriate value, rather than simply “undefined.”  This surprised Springer 

and she reacted, “That’s kind of cool.  Do you see how it came up with infinity?  Yeah.  

What it’s actually doing is, it’s giving you the fact that there’s an asymptote, right?” 

(Springer, Lesson, October 20, 2017).  She took the opportunity to display the graph of 

the function on Desmos, which allowed students to reflect (5:26).   

 The second instance Springer spontaneously adjusted was when the difference 

quotient provided the resultant output of the difference between two rational functions 

(4:36).  Her response, “We’ve got to do our comDenom, right?”  (Springer, Lesson, 

October 20, 2017).  This command was used prior to this session, so it required students 

to recall this necessary mathematical procedure.  “When I am creating these lessons, I'm 

thinking it through, but sometimes I have to be in the moment to come up with these 

extra commands.  The Nspire has so many commands; so many little things.” (Springer, 
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Interview, November 8, 2017).  Springer remained flexible to adjust in the moment as the 

need arose for additional instruction of CAS commands (9:05).   

 Re-balance emphasis on skills, concepts, and applications (S2).  Mathematical 

skills and concepts were re-balanced because of the availability of the CAS.  Springer 

was able to spend less time on skills by outsourcing the complicated procedure of 

difference quotients on the CAS, hence, reducing cognitive load and thereby freeing up 

working memory for concept building of continuity and differentiability.  This 

outsourcing principle was apparent through the progression of challenging function 

examples (1:14, 4:48, and 7:15).  When asked the question, “How does CAS facilitate 

student understanding of differentiability?”  Springer wrote the reply, 

CAS facilitates student understanding of differentiability by the ease, speed, and 

accuracy of using the definition of the derivative to calculate derivatives and also 

evaluate derivatives at certain values.  This is great because we can calculate x = 

1, x = 2, x = 3 and see the calculator give us a value.  But, then it will give us a 

result of “undefined” if the function is not differentiable at that value.  (Springer, 

Written Reflection, November 4, 2017) 

The functional opportunity of the CAS cleared the way to direct attention to the 

mathematical content.  Springer justified this: “You need to know that the CAS gives 

you, like the accuracy and efficiency that allows you to just focus on the exploration and 

not like the work of it” (Springer, Interview, November 8, 2017).  The appropriate tools 

for the computation enhanced student awareness to the central goal.  

 Build metacognition and overview (S3).  Springer approached the topic of 

continuity and differentiability from a symbolic and graphic perspective, demonstrating 
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connections facilitated through a CAS.  She selected three types of functions (i.e ., 

quadratic, rational, and radical) and looked at the graphs and the symbolic manipulation 

of each function to ascertain continuity and differentiability.  She shifted away from the 

procedural skills and used CAS answers in the development of the mathematical 

concepts.  It was both the reflection on the outputs and the look at graphical 

representations that prompted student consideration in assembling connections to the 

concepts of continuity and differentiability. 

 Explore regularity and variation (T3).  The task considered the three types of 

functions mentioned as independent examples for comparing and contrasting the 

continuity and differentiability at particular points.  CAS’ efficiency supported the 

possibility of exploring those comparisons.  Springer used the definition of derivative and 

evaluated each function separately at her pre-selected points (1:14; 4:48; 7:15).  This 

quickly enabled her students to reflect on the outputs to consider differentiability.   

 Link representations (T5).  CAS was employed on the TI-NspireTM for symbolic 

manipulation and on Desmos for graphical representation.  When the infinity symbol 

appeared as an output on the TI-NspireTM, Springer displayed the graph and toggled back 

to the symbolic output to facilitate connections (5:26).  Furthermore, on the graph she 

was able to drag a point close to x equal to zero, illustrating the behavior of the infinite 

limit.  Multiple representations of graph and symbolic forms heeded support in the 

development of the concepts. 

Springer Vignette 3: Power Rule and Higher Derivatives 

 The goals for this lesson were to: (a) demonstrate procedures for finding higher 

derivatives from the definition of derivative (e.g., the second, third, fourth, tenth, and 
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hundredth); (b) investigate the pattern in the resultant function of those derivatives; (c) 

generate a rule for determining each higher derivative algebraically based on those 

outputs (i.e., the power rule); and (d) check that rule using the definition of derivative  

with CAS.  Springer stated her intentions for the lesson. 

The goal of the Calculus lesson was for students to explore calculating derivatives 

for polynomials and basic rational functions and then identify a pattern and 

determine the shortcut that arises when taking derivatives for these types of 

functions.  Students were essentially deriving the differentiation technique known 

as the power rule.  (Springer, Written Reflection, November 4, 2017) 

This teacher-guided lesson was exploratory because the power rule was not provided 

first.  Rather, the teacher posed questions to the students to facilitate algebraic and 

numeric connections to each function’s higher derivatives.  

 On occasion, during the transcript, a student voice was noted, but the recording 

was primarily capturing the teachers’ voice leaving student verbal responses off the 

record.  However, it was apparent in the recording that the teacher often repeated student 

responses to her questions and those were documented in the transcription.  An additional 

note is that both the teacher and students used an application on their laptop computers to 

take notes with a stylus and recorded their results from either the CAS outputs or from 

cognitive mathematical calculations.  Several examples of those teacher annotations 

clarify Springer’s discourse and are provided within this vignette. 

 Springer introduced the idea of taking higher derivatives: that is, after taking a 

first derivative, she demonstrated the procedure for finding a derivative from the answer 

to the first derivative and repeated for additional higher derivatives on the same function.  
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Springer began with an example of a rational function and later worked through an 

example of a fifth-degree polynomial.  She ensured that students understood the power 

rule for a polynomial by practicing on two more polynomial functions and checking their 

by-hand calculations against the CAS.  The fifth-degree polynomial was a less 

complicated rule because it only involved two algebraic manipulations per term and it 

dealt with positive exponents.  She intentionally chose it to be the second example and 

then returned to the first example for a discussion on conversion of the rational function 

to negative exponents and the application of the power rule for the rational function. At 

the end of the lesson, she provided several more similar functions for students to work 

independently, verifying the algebraic rule against the definition of the derivative using 

CAS. 

 Rational function.  In the exploration of the rational function, Springer intended 

for learners to develop three patterns: (a) the change in the numerator as some numerical 

value; (b) the recognition of alternating signs of positive and negative; and (c) the degree 

of the denominator as an increasing value.  Springer began this exploration with defining 

the function 𝑓(𝑥) = 1/𝑥 on the CAS, and led students to find the higher derivatives 

𝑓′(𝑥), 𝑓′′(𝑥), 𝑓′′′ (𝑥) ,𝑓4(𝑥),  𝑓10(𝑥),𝑎𝑛𝑑 𝑓100(𝑥).  She guided students in the syntax 

of inputs and manipulations on the CAS.  In addition, she modeled the documentation of 

outputs into notes that are taken on her digital notebook page as shown in Figure 14.  

This screenshot was captured towards the end the example but is a thorough 

representation of the development of the concept of higher derivatives of a rational 

function. 
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Figure 14.  Springer’s digital notes projected from computer to the classroom wall. 

 

 Springer led the class to find the first two higher derivatives and analyze results 

before computing the third derivative, 𝑓′′′ (𝑥).  The prompts and questions for students to 

determine a pattern are noted in the following transcription of Springer. 

1:51 Okay, so maybe what's happening is that it's alternating (pause) going positive, 

negative, positive. 

1:55 So, maybe with the next one it will be negative, and then this coefficient was one 

for the first derivative.  This coefficient was two for the second derivative.  So 

what might it be for the third derivative?  (Students are providing the answer.) 

2:12 So, negative three over x to the fourth.  I'm going to put a question mark, and now 

let's see if that's right.  (Teacher typing into the CAS define 2/x3 and then taking 

the difference quotient and limit as h goes to zero.)   

2:23 Sometimes we also might think we know the pattern and it's not quite what we 

think it is, so we gotta see.  Alright, comDenom . . . So we actually get negative 

six over x to the fourth. 
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2:42 Okay so we were close.  We knew that it was going to be negative.  We knew the 

x to the fourth.  (Springer, Lesson, October 20, 2017) 

 The first pattern recognition was the identification of alternating signs of positive 

and negative for each higher degree (1:51).  The second point was the change in the 

numerator as some numerical value occurring (1:55).  The students chose an incorrect 

value of three after determining the pattern was an increase in one for each increase in a 

higher derivative.  Springer permitted the incorrect value to demonstrate the need for 

verification on the CAS.  The third point of pattern recognition was determining the 

degree of x in the denominator to be four (2:12).  Springer checked the cognitive guess of  

-3/x4 by following these steps as shown in Figure 15.  She keyed the commands to define 

the second derivative f(x) = 2/x3 and allowed the CAS to compute the difference quotient 

(f(x+h) – f(x))/h.  She used comDenom to combine the expression into one rational term.  

Finally, she found the limit as h goes to zero.  The output did not match the guess.  That 

led to student discussion and eventually the revelation that the constant in the numerator 

was the exponent multiplied by the coefficient. 
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Figure 15.  Springer’s TI-NspireTM textual commands projected from computer to the 
classroom wall. 
 

 Rational function: Fourth derivative.  Springer worked with the class on the 

second round of cognitive guess and CAS check for the fourth derivative.  Both the 

mistakes and the accurate rule recognition were helpful in the students creating a 

cognitive guess for the fourth derivative.  In the background noise, there was an 

abundance of murmuring of accurate guesses.  Springer repeated those recommendations 

from students, although not seen in the transcription. 

3:07 So then what do we think that would give us for the fourth derivative? 

3:12  Maybe positive, cause it alternates, right?  So, maybe positive 24 over x to the 

what?  Over x to the fifth?  So let's see if that's what happens.  (Teacher keying 

into the CAS while talking.) 

3:29 We're going to define and then we are going to do our difference quotient. 
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3:42 Comdenom, such that h equals zero, and there you go, 24 over x to the fifth.  

(Springer, Lesson, October 20, 2017) 

 Rational function: Tenth and hundredth derivatives.  The next part of this 

example required learners to extend the rule onto much higher derivatives.  Springer 

began an inquiry about building values from previous terms to develop subsequent terms 

as a method of recursion.  She told students it was not necessary to write out all the 

derivatives, but then at the same time, she wrote out all the numerical calculations for the 

numerator up to the tenth term. 

3:48 Can we extend that to get the tenth and hundredth derivative? So let's think about 

it for a minute. So to get the fourth derivative . . . (inaudible and paused, moving 

around the classroom, students working on the problem and teacher is talking 

with them) 

4:20 I mean do we really have to keep going to 10?  

4:25 What do we know about the denominator for sure? (Listening to student responses 

and repeating) x to the eleventh? And here's what we know about the even and odd.  If it's 

an odd derivative, like one and three . . . (Springer is pointing to the handwritten pattern 

as seen in Figure 15 and a student says something to teacher that is inaudible.)  

4:42 Actually no, that doesn't quite work out.  Wait, so in . . . Oh yeah, okay wait, one 

and three, an odd derivative is going to be negative, right?  And an even 

derivative is going to be positive.  So, is this going to be positive or negative?  

(Student answers.)  Okay, so you know it's going to be positive. 

5:03 What would it be (the numerical value) in the numerator?  (Students are sharing 

their thoughts with one another.) 
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5:35 Alright, so think about it.  So part of the problem with this is . . . Have you guys 

heard the term recursive sequence?  (Students are responding, yes.)  What is a 

recursive sequence?  It relies on the previous one, right? 

5:50 So we have to kind of think about, what would it have been? 

5:57 We don't have to write out all the derivatives.  Cause we know most of the 

information.  We just have to figure out the numerator.  So [fifth derivative] 

would have been like a 24 times five?  

6:18 So you don’t have to do every derivative because that would be a little time-

consuming on the Nspire, right?  All you have to do is go ahead and start 

multiplying a few numbers here.  (Students are working on multiplying the 

numbers to get the numerator values up to ten.) 

7:43 Okay so we should be getting 3,628,800 [for the tenth term].  Okay so now, let me 

ask you a question.  We know that there's a pattern for the hundredth derivative, 

but do we really want to go through this pattern?  (Students said no.)  Okay, so 

there must be a shortcut.  (Springer, Lesson, October 20, 2017) 

 Springer closed the example after finding the tenth derivative and left the 

hundredth derivative as an exercise to revisit after the second example function.  By 

working through the numerator calculations, Springer demonstrated the monotony of 

finding the actual tenth derivative through patterns and recursion methods.  She intended 

to pique their curiosity but needed an additional example to build the concept of the 

power rule. 

 Polynomial.  The second function explored was the fifth degree polynomial     

f(x) = 5x5 - 2x4 + 3x3 + 9x2 - 2x + 1.  Springer used her prepared presentation and asked 



 

 

131 

students to find the first, second, third, fourth, tenth, and hundredth derivatives for this 

polynomial, just as she did in the previous example.  She guided them through the first 

derivative, but then let students work independently through the remaining higher 

derivatives.  After a period of time, she displayed those procedures on her computer 

projected on the classroom wall.  Springer used a scaffold of questions and students 

answered correctly, in most cases.  In the transcription, Springer repeated those student 

responses and brought clarity to several points of pattern seeking.  One point was that the 

degree decreases for polynomials.  The second point was that the constant term was 

eventually eliminated from the polynomial. 

11:55 So the only commands I did was define it, difference quotient, and then once I got 

that answer, I did that h equals to 0.  Alright, I got 25x4 - 8x3 + 9x2 + 18x - 20. 

12:15 Alright so let's take a look for a minute, first of all, we had a fifth degree.  Now, 

what do we have?  One less, notice that's different from what we had above 

though, right?  Here [referring to the work product of the rational function] we 

had like an x and it became x squared, and it became x cubed, it became x to the 

fourth.  So a rational function the exponents seem to be increasing.   

12:40 For a polynomial, what seems to be happening with the degree?  It seems to be 

decreasing by one.  What about, what are other things you notice?  The 5x5 

became a 25x4.  Where might that 25 come from? So the five and the five, that 

coefficient and that exponent gave us the 25. 

13:08 Does that work or is that a one-time thing?  Because also five squared is 25. Two 

and a four, that's eight.  What's three times three?  Nine.  What's nine times two? 

Eighteen. 
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13:26 What exponent is here? It's like a one and there's a two. 

13:39 What happened? We kind of lost that one.  If a 2x is 2x to the first, what is a one? 

A one would be like 1x to the 0.  So if you multiplied a one by zero you get . . .  

What's 1*0? (Students answer zero.) 

14:06 Zero and so it zeroed out. (Springer, Lesson, October 20, 2017) 

 Springer led students to consider the constant value that results in an elimination 

of the term from the function.  Figure 16 reflects the written work product that Springer 

shared with the class of x to the first power and then x to the zero power.  The explanation 

along with the product of the exponent and the coefficient facilitated student connection 

to the elimination of the term. 

 

 
 
Figure 16.  Springer’s digital notes projected from computer to the classroom wall. 

 

 Polynomial function: Second and third derivatives.  The lesson continued with 

finding the second and third derivatives of the polynomial function on the CAS and 

documenting the results.  Students worked independently and also talked with their 

nearby peers to assist with finding the results.  Springer monitored their progress.  An 

unexpected situation arose with syntax when finding the third derivative.  The resultant 

function had a factored form, rather than the standard form (as seen in Figure 17).  

Springer proceeded to demonstrate on her computer the new command that was needed— 
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the expand feature.  She explained why the command was necessary and how to facilitate 

its use in the transcription that follows.   

16:45 Did you get this here (polynomial with a common numerical term factored out)?  

So all the Nspire does because it doesn't know what we're looking at, it's hard to 

see the pattern in that form . . . 

16:53 If I type the word "expand," okay.  Put a little double parenthesis and then bring 

this (the factored expression) into that parenthesis. It will give us, you know, all it 

did was distribute it. The advantage of that if you can't see the pattern if you 

factor out a GCF.  Did everyone see how I did that expand? (Springer, Lesson, 

October 20, 2017) 

 

 

 
 
Figure 17.  Springer’s TI-NspireTM textual commands projected from computer to the 
classroom wall. 

 
 
 Polynomial function: Generalized higher derivatives.  After students got the 

fourth, fifth, and sixth derivatives, Springer directed the students to consider the pattern, 

“Notice that the degree keeps decreasing, right?  We were a degree five, then four, and 

then eventually a degree one. What would be the next after a degree one?”  The goal at 
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this point was to notice that the tenth and hundredth derivative would be zero (see Figure 

18).  She explained this to the class. 

19:24 So basically, if you have a polynomial of degree five, you can get some unique 

answer up to the fifth derivative.  Okay, when I say unique answer, meaning like 

you're going to get some polynomial of some answer.  After it's exponent, 

meaning more than five, it just will zero out. That's unique to polynomials.  Did 

that happen up here (referring to the rational function)? (Springer, Lesson, 

October 20, 2017) 

 

 
 
Figure 18.  Springer’s digital notes projected from computer to the classroom wall. 

 

 The next five minutes, Springer helped the students to write a definitive rule for 

finding the derivative based on patterns.  Students and teacher typed a description of the 

pattern into their notes, “The degree of the polynomial decreases by one.  The exponent 

multiplies by the coefficient.  Eventually, the derivatives zero out” (Springer, Lesson, 

October 20, 2017).  Springer then created an additional polynomial example, f(x) = 7x10 + 

6x2, for students to first use the new rule and then check their answer against the CAS 
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result.  However, she ended up completing the example with the students, projected her 

work product on the wall, and talked through the solution. 

 Revisited the rational function.  Springer returned to the first example of the 

rational function and showed how the derivatives could be found using the same method 

or rules discovered in the polynomial function.  Although the class had explicitly stated 

the rule, Springer had not yet revealed the name for the power rule.  Springer led students 

through the use of the power rule by rewriting the rational function using the definition of 

negative exponents.  The transcription and digital notes by the teacher follow. 

26:35 Is there a way to write one over x with a negative exponent? (Students respond.)  

26:41 x to the negative 1 (Teacher repeated student answers.) 

26:47 Okay, so let's see if this property that we just saw with polynomials can be 

extended now to a rational function. We said to get the first derivative you're 

going to decrease the exponent by one. You're going to subtract it. So negative 

one minus one would give us (pause) negative two.  And then you'd multiply the 

exponent by the coefficient, which is negative one.  Isn't that the same thing?  

27:27 Right, so now let's go ahead and let's see what happens.  If I, let's do it again. So x 

to the negative two . . . If I subtract one, what's negative two minus one? 

(Students responded.)  Negative three.  And what is negative one times negative 

two?  (Students responded.)  It’s two. 

27:48 Isn't that the exact same thing?  Isn’t that cool?  (Students talking to teacher.)  

27:57 Which way?  You like that?  Because it kind of looks like a polynomial?  Let's 

keep going.  Again.  If I subtract one in this exponent, x to the negative three 
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would become an x to the negative four.  Two times negative three is negative six. 

(See notes projected on the wall in Figure 19.) 

28:23 Okay, so let me ask you a question.  Do you see now why, this is kind of cool? 

(pause) Do you see why it was an alternating; you know how it was like positive, 

negative, positive, . . .  (Springer, Lesson, October 20, 2017) 

 

 

Figure 19.  Springer’s digital notes projected from computer to the classroom wall. 

 
 Springer brought the lesson to completion.  After the development of the power 

rule in the polynomial example, she used the class-generated procedure on the rational 

function with negative exponents.  However, she verified with not only the first 

derivative.  She reinforced the idea of the power rule by computing the second and third 

derivatives to compare against the CAS. 

Springer Vignette 3: Pedagogical Opportunities 

 This lesson reviewed students’ understandings of derivatives and constructed 

knowledge of the power rule for derivatives through the utilization of the CAS.  The 

evidence is paired using the P-Map taxonomy and shown in Table 16.  Additionally, 
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Springer posed questions about higher order derivatives.  The function and its first three 

derivatives represented concepts of distance traveled, velocity, acceleration, and jerk.  

Springer had students explore derivatives beyond the first three.  The patterns explored 

were merely a way to understand that derivatives of functions can zero out, meaning that 

at some point the higher derivatives do not exist.  As seen in the case of the rational 

function, there was no end to finding a higher derivative.  Springer’s pedagogical 

decisions are explained. 

Table 16 

Springer Lesson Vignette 3 

P-Map Evidence 

S1 Exploited the contrast of the unexpected outputs by teaching new 
commands to incur the intended outcome. 

S2  Re-balanced the lesson by exploring higher derivatives and the 

patterns in those subsequent derivatives (new purpose) 
S3 Delaying the CAS command of derivative until the definition of 

derivative has saturated the thought processes 
C2 CAS became an external mathematical authority 
T1 A cognitive guess was checked against the CAS output 
T3 Multiple examples to explore patterns for both higher derivatives 

and a variety of types of functions. 
 

 Exploiting contrast of ideal and machine mathematics (S1).  The CAS outputs 

compelled Springer to make pedagogical decisions during the lesson to elaborate on her 

mathematical goal of investigating patterns of the derivatives.  Springer executed syntax 

for the definition of derivative as she had in lesson vignettes 1 and 2; however, in this 

example the output was an insufficient form to insert a value of h = 0.  Springer 

introduced the comDenom command to combine two rational forms into one, thereby 

producing an output that h = 0 could be inserted to produce an expression of the 
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derivative (2:23; 3:42).  She remained flexible in her presentation, explaining the 

necessary commands. 

I come up with these things on the spot, that I remember.  So when I am creating 

these lessons I'm thinking it through but sometimes I have to be in the moment to 

come up with these extra commands.  Because there are so many, the Nspire has 

so many commands, so many little things. (Springer, Interview, November 8, 

2018) 

The syntax input of the CAS had to be manipulated to get a feasible output that would 

allow students to explore the pattern. 

 Re-balance emphasis on skills, concepts, and applications (S2).  This lesson 

emphasized Springer’s objectives in lesson design, the offloading of procedures to CAS 

to discover the power rule, and the initiation of a muse about higher derivatives.  An 

explanation of how this was evident follows.  Springer adjusted her teaching objectives 

for this calculus class.  The goal of this lesson was originally to formulate the power rule 

through an exploration and pattern recognition.  Springer talked about the decision to add 

this notion about higher derivatives. 

They were coming up with the power rule but also seeing that [they] would be 

getting multiple derivatives.  And what would happen in, with the polynomials 

how it would zero out eventually, but with the rational function because it's a 

negative exponent it keeps increasing.  There was some more to explore, I thought 

by sticking to one function.  So like this was like a brand new idea that came to 

me.  (Springer, Interview, November 8, 2018) 
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It was through the efficiency of CAS computations and reduction of tedious by-hand 

computations that made it possible to construct the power rule concept through pattern 

recognition. 

It's too tedious to do it by hand and you might get it wrong and then how could 

you explore something with a wrong answer.  You need to know that the CAS 

gives you, like the accuracy and efficiency that allows you to just focus on the 

exploration and not like the work of it.  We were able to have a discussion about it 

and not get bogged down with doing the algebra of it.  (Springer, Interview, 

November 8, 2018).   

The concession promoted an emphasis on the power rule for polynomial functions.  But 

the lesson also allowed an extension to develop the conception of a function zeroing out.   

Well, I think with the polynomial, I wanted them to see that eventually it zeros 

out cause your exponents keep decreasing, decreasing, and decreasing.  And so, 

basically, I am not going to use this term properly, but there is like a limit to how 

many derivatives you can take, right, but not limit in the calculus term, [rather] 

the normal term limit. . . . The pattern is different based on the family of 

functions.  (Springer, Interview, November 8, 2018). 

Springer developed this kind of hybrid lesson of CAS and pen-and-paper skills to 

conceptualize the term limits of higher derivatives.  The lesson lent the opportunity for 

students to develop the power rule and access an idea regarding higher derivatives 

existence. 

 Build metacognition and overview (S3).  Springer chose to prolong the use of 

the definition of derivative to build cognition.  Springer retained the procedure for 
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difference quotient for finding derivatives, although the CAS has its own direct 

command.  She reflected on this decision. 

I decided to take a different approach this year, where we are still using the 

definition of derivative.  I'm really trying to hone in on that and have them 

[students] really understand the difference quotient and the limit, so instead of 

using the command I was making them use the definition of derivative. (Springer, 

Interview, November 8, 2017) 

Students had the ability to continue with the definition of derivative because the 

functional operations of CAS made it an effortless computation.   

 Change classroom didactic contract (C2).  The reliance on the CAS gave 

credence to the pedagogical opportunity of a shift in the classroom didactic contract 

(Pierce & Stacey, 2010).  It was through the authoritative knowledge of the CAS that 

students conceived the pattern in the higher derivatives.  That allowed a shift from the 

teacher as sole source of knowledge.  This shift was subtle as it was intertwined with the 

task. 

 Springer used the authority of the CAS to set the stage for students to construct 

mathematical understandings regarding the power rule.  First, multiple derivatives were 

generated using CAS and analyzed for the pattern in each term of the function (1:51; 

11:55).  Then a cognitive guess of the pattern was discussed and agreed upon in written 

work (2:12; 2:23; 3:12; 12:40).  Finally, by checking the guess against the CAS output, 

the hypothetical rule could be revised or accepted.  CAS equipped the student to receive 

instant feedback, rather than relying on the teacher to substantiate their cognitive guess.  

This method of exploration demonstrated how CAS was used as an external authority.  
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 Learn pen-and-paper skills (T1).  Springer used CAS as a cognitive tool to 

generate multiple derivatives of a function.  Student reflection on those derivatives 

prompted a targeted guess.  Ultimately, a pen-and-paper skill with the use of the power 

rule for derivatives was imminent. 

 Explore regularity and variation (T3).  The lesson was exploratory, using 

multiple derivatives for each of the functions (e.g., first-order, second-order) and also 

considered two different types of functions with the symbolic derivatives of each.  

Springer wrote about her decision for numerous calculations on the CAS. 

It was critical for me and the students to calculate multiple examples so they 

could identify a pattern with higher order derivatives.  I hoped to accomplish that 

students were able to see the “shortcut/pattern” to taking derivatives. i.e.) The 

power rule for both positive and negative exponents. (Springer, Written 

Reflection, November 4, 2017) 

Multiple derivatives taken quickly along with teacher prompts about those resultant 

derivatives provided the structure to allow students to make connections.  

Springer Vignette 4: Derivatives of Trigonometric Functions via Graphic 

Exploration  

 The goal of this lesson was to introduce derivatives for trigonometric functions by 

exploring a function’s derivative through a graphical representation.  Given a 

trigonometric function, students were asked to create a graph and use the command f’(x) 

in Desmos to produce a graph of the functions’ derivative.  Students then predicted the 

equation for the derivative based on the graph of f’(x).  Three functions were displayed in 

one Desmos graph: the original function, the derivative of that function, and the predicted 
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function.  The predicted function was compared with the graphical representation of f’(x) 

for alignment.  Springer thoughtfully chose this method to introduce the derivatives for 

sine, cosine, and tangent and described her rationale during an interview that followed the 

lesson. 

I thought that using Desmos would be a way for them to throw out a guess, and 

then actually be able to see if it was correct.  It was kind of a quick, easy way and 

this is also visual.  And I like how Desmos doesn't specifically give the derivative. 

It just shows the graph of the derivative, which is cool. (Springer, Interview, 

December 6, 2017) 

In addition, she justified the visualization method to the class as the first look with the 

expectation that the formal proof of the derivative would follow. 

Here's the thing, to derive sine and cosine, okay, we would have to go back to the 

definition of the derivative and limits.  Which I think I'm actually going to save 

for next class.  For all the other ones— tan, cosecant, secant, cotangent— we 

actually just use the quotient rule.  So we'll do that next class.  Today I wanted to 

do it a little bit different on Desmos.  (Springer, Lesson, November 9, 2017) 

CAS was discernable in this vignette through Desmos.  The computer application 

performed a derivation of the input function through the command f’(x), although it did 

not display the symbolic representation of the function. 

 Quadratic function as introduction to Desmos command.  Springer introduced 

the Desmos command of f’(x) with her students by providing a basic example of a 

quadratic function and its derivative.  She displayed her graph on the projector and 
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explained to the class the procedures she was typing into Desmos as described in the 

transcription and as visible in Figure 20. 

2:15 So, I don't know if I showed you this before, this really cool feature.  If you graph 

f(x) = x2, so go ahead and do that.  What is the derivative of x squared?  (Students 

answered 2x.)  Let me type in y equals 2x right there, okay? 

2:38 And I'm going to change that just to be a dotted line, so we see it.  That's what the 

derivative of that is (shown in the first graph of Figure 20.)  

2:44 If I say to Desmos, graph f prime of x and prime is next to your enter key. Notice 

that it gives you that [the graph of y = 2x, the derivative]  (the second graph in 

Figure 20).  (Springer, Lesson, November 9, 2017) 

 

 

 
 

Figure 20.  Springer’s Desmos textual commands projected from computer to the 
classroom wall. 
 
 
 Several students asked why Ms. Springer had not shown that Desmos command 

to them previously.  She replied, “I'm sorry.  I have so many things to show you, I forget.  

I like thought of this yesterday” (2:58, Lesson, November 9, 2017).  Furthermore, she 
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described to the class the moment when she decided to use this approach, “So I was 

driving in my car.  I was thinking about our lesson today, and I was remembering that we 

can do this on Desmos” (Springer, Lesson, November 9, 2017).  The revelation of 

combining trigonometric functions with a graphing method resulted in this lesson 

methodology. 

 Sine.  Springer introduced trigonometric derivatives by graphing the sine function 

with a solid line and its derivative with a dotted line.  Unlike her introductory example, 

she used the dotted line for the Desmos f’(x) command, and the solid line is used for the 

student-predicted guess for the function.  The lesson employed the cognitive guess and 

CAS check similar to Springer Vignette 3.  Her facilitation of the lesson follows and 

screenshots of Desmos graphs in Figure 21. 

3:22 Okay, so we're going to see if we can figure out the derivative of sine and cosine 

by doing this.  It gives you the picture but it doesn't tell you the answer.  So here's 

sine of x.  

3:34 And I'm going to type f prime of x. And I'm going to make it like a dotted line for 

right now, okay. So the question is, what is this dotted line? What is the derivative 

of sine?  (Students are making some suggestions.) 

3:54 So let's see, if I type in y = cosine x, that's a very perfect match. So yeah, so I'll 

put this on the board, the derivative of sine x is cosine x.  (Springer, Lesson, 

November 9, 2017) 
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Figure 21.  Springer’s Desmos textual commands projected from computer to the 
classroom wall. 
 

 Cosine.  The second trigonometric function explored was cosine x.  Springer 

anticipated students suggesting sine of x and complied by inputting the function as the 

third line item.  It clearly did not match the derivative of cosine as can be seen in Figure 

22.  To keep students advancing in their guesses, Springer suggested the other 

trigonometric functions of tangent and cosecant.  The screen shots of those trial and error 

guesses are recorded in Figure 22.  Meanwhile, several students were heard in the 

background suggesting a variation of cosine. 

4:05  Okay, so now let's do the same thing, let's say I give you cosine x.  Here's f prime 

of x. 

4:14 What might be that derivative then? What do we think? 

4:19 So here's sine of x.  Not sine.  Here's tangent.  Cosecant?  

4:36 Cosine, that's just the original.  (A student said negative sine.) 

4:43 That's it.  So cosine is negative sine.  (Springer, Lesson, November 9, 2017) 
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Figure 22.  Springer’s Desmos textual commands projected from computer to the 
classroom wall. 
 

 Springer reflected on the lesson in a post-interview.  She engaged the class in this 

trial and error exploration of the derivative of sine.  She conjectured that the sine function 

would be understandable, but that the derivative for a cosine function would be a 

confounding result because it involved a negative sign. 

So we did that for sine and then when it was time for cosine, then [the students] 

were all like, "Sine."  It was interesting for them to see that it was not sine.  They 

actually get that it was negative sine . . .  I was impressed with that, that they were 
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able to gauge that.  Then when we went on to tangent, you know they kind of 

went through the different trig derivatives.  And it was kind of hard to come up 

with secant squared. (Springer, Interview, December 6, 2017) 

 Tangent.  The lesson continued as Springer explored the derivative of tangent, a 

function much more difficult to guess-and-check.  The derivative involved a squared 

function— either sec2 x or 1/cos2 x.  Springer realized the challenge and quickly 

conducted a scaffold of guesses with a discussion about how secant x did not work but 

was closely related.  Springer said to the class, “This one's not quite as intuitive” 

(Springer, Lesson, November 9, 2017).  Figure 23 shows some of the cognitive guesses 

that students suggested and that Springer checked.  Instead of waiting for students to 

guess accurately, she revealed the correct derivative sec2 x.  The transcription from the 

lesson follows.  The reader should keep in mind that Springer was typing these 

mathematical functions into Desmos. 

5:10 Here's my derivative of tangent. It doesn't look like a sine or cosine graph, right?  

Cause sine kind of looks like that wave?  

5:18 Cotangent looks actually very similar to tan but goes in a different direction. 

5:25 Secant is really, really close but notice that the shape of it is slightly off.  Right, 

like it's a little bit skinnier than secant x.  

5:46 How about what? (student – Almost negative cotangent?)   

5:55 You're saying the original graph, but we're trying to get the purple graph. Trying 

to get the purple graph because that's the derivative.  

6:05 So this one's, this one's not quite as intuitive but it's secant x times secant x.  Or 

also known as secant squared x.  (Springer, Lesson, November 9, 2017). 
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Her reflection of the lesson conveyed the desire for additional planning.  She realized that 

additional clues were needed for the tangent function to fully complete this lesson design. 

I think I would have to think through a little bit more about what kind of hints I 

could have given them— to maybe have them guess that.  But at least they did get 

to see . . . it does look like a trig derivative.  And I think they could tell it was like 

a cosecant or secant type graph.  But the fact that it was secant squared . . . That 

was fun.  So we did that on Desmos and then we jumped to some practice 

problems.  (Springer, Interview, December 6, 2017) 

This was a first-time presentation of this development of trigonometric derivatives and 

Springer was still conjuring her methodology of this approach.  She summarized the three 

derivatives of sine, cosine, and tangent before shifting to student independent practice. 
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Figure 23.  Springer’s Desmos textual commands projected from computer to the 
classroom wall.  The dashed line is the target for a cognitive guess. 
 
Springer Vignette 4: Pedagogical Opportunities 

 Unlike Springer’s other lesson vignettes, this one utilized Desmos and graphical 

representations singly aligning multiple elements in Pierce and Stacey’s (2010) 

pedagogical taxonomy.  Springer re-balanced emphasis to concept building, manifested 

an efficient perspective to develop an overview, continued to shift authority to the CAS, 

and appropriated a teaching task of representation linking graphical models to algebraic 

models as annotated in Table 17.  
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Table 17  

Springer Lesson Vignette 4 

P-Map Evidence 

S2  Re-sequencing - visual representation first; algebraic proof second 
S3 

 
Introduce derivation of trigonometric function from a visual 
perspective to develop deeper understanding 

C2 Graph of f’(x) created an authority shift 
T5 Representation links graphical to algebraic models 

 

 Re-balance emphasis on skills, concepts, and applications (S2).  A re-

sequencing strategy altered the balance between conceptualization and skills 

development.  Springer deliberately chose a visual representation of a derivative with a 

cognitive guess-and-check strategy to prove the derivations of trigonometric functions.  

“Here's the thing, to derive sine and cosine, okay, we would have to go back to the 

definition of the derivative and limits.  Which I think I'm actually going to save for next 

class” (Springer, Lesson, November 9, 2017).  This reorganization to graphical 

representation first is sometimes used; however, the approach with making a targeted 

guess and verifying against Desmos’ f’(x) command was a new approach for Springer 

(2:58). 

 Build metacognition and overview (S3).  Springer chose a teaching approach 

based on the functional availability of Desmos graphical applications as a way for 

students to intuit the concept of trigonometric derivatives.  “I decided to take the 

‘graphical’ approach first to introduce trig derivatives because the derivatives of 

sine/cosine are somewhat intuitive – especially that d/dx of sine is cosine – and we could 

easily confirm that with the f’(x) graph on Desmos” (Springer, Written Reflection, 
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November 30, 2017).  She exercised that approach with sine, cosine, and tangent 

functions.  However, the tangent was more complex and less intuitive than the others 

because of the squared function (5:15). 

 Change classroom didactic contract (C2).  Through the graphical approach, she 

covertly detached herself as the authority on the derivative.  It was through the ease of 

technology and insightful prompts from Springer that students shifted their acceptance of 

knowledge to the CAS outputs.  The teacher was not the final word on the precision of 

cognitive guesses.  She allowed the tool with graphical representations to confirm or deny 

that precise answer (3:54; 4:43; 6:05). 

 Link representations (T5).  Springer used the task of student trial and error to 

link representations from the graphical model of derivative to the algebraic equation.  

Springer described this in a written artifact, “[This] provides a multiple representation 

approach; i.e., the idea that we can represent a function numerically, graphically, 

algebraically, verbally” (Springer, Written Reflection, November 30, 2017).  However, it 

was observed in this lesson that she merely linked the two representations, graphic and 

algebraic (3:54; 4:19; 5:15).  The cosine and tangent examples captured incorrect 

algebraic guesses for graphical verification purposes (4:19; 5:15; 5:18; 5:25).  This 

modeled for students how to revise those cognitive guesses.  Additionally, she assembled 

a reverse approach; the graph was provided and recognition led to the algebraic model. 

Springer Vignette 5: Applications that Involve Trigonometric Functions  

 This vignette followed the introduction to trigonometric functions derivatives in 

Vignette 4, but shifted to an application emphasis.  Springer wanted students to practice 

using the derivative of trigonometric functions with calculus applications of finding 
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horizontal tangent lines and finding equations of tangent lines on curves.  The teaching 

approach was traditional in that the teacher was leading the students through examples 

and manipulating the technological tools and displaying those through a projector onto 

the wall.  However, the manipulations on the TI-NspireTM were quite complicated.  At 

several points in the lesson Springer paused, re-explained, and answered specific 

questions about syntax issues particular to the device. 

 The next few paragraphs showcase Springer’s utilization of some of CAS’ most 

powerful characteristics, the solve command and the such that command, which restricted 

domains for functions.  These commands were embedded within the calculus lesson.  

Springer described how CAS was executed in the lesson. 

We were using the Npsire CAS to solve various equations, looking for horizontal  

tangents, and we used the solve command, such that, x is between 0 and 2, to 

just make our answers more friendlier. We were also using it to evaluate for 

certain values.  (Springer, Interview, December 6, 2017) 

The following transcriptions from critical moments in the lesson and screenshots from 

Springer’s TI-NspireTM and digital notebook assist the understanding of vignette 

components. 

 The first example Springer worked through in class portrayed minimal complexity 

of use, so the transcription begins at example two with the warning, “It's going to get a 

teeny bit harder.  So we want to differentiate this function secant x over one plus tangent 

x.  And for what values of x does the graph have a horizontal tangent?” (Springer, 

Lesson, November 9, 2017).  Springer talked through the procedures that answer the 

question.  First, the derivative was needed and required using the quotient rule that was 
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learned in a previous’ lesson.  Second, the derivative was set equal to zero and solved, 

using a CAS command.  She explained that those solutions were the places where the 

graph had horizontal tangents. 

 Springer directed students to follow her lead to perform by-hand calculations for 

the derivative and then to outsource solving the equation to the CAS utilizing the solve 

command.  Springer expected students to use their knowledge of trigonometric 

derivatives from the previous lesson.  The work product in Figure 24 shows the quotient 

rule being applied to the function.  Springer wrote the actual TI-NspireTM commands into 

her digital notebook prior to keying into the device. 

 

 
 
Figure 24.  Springer’s digital notes projected from computer to the classroom wall. 
 

13:05 Now, so what we want to do is we want to solve this giant thing in our Nspire. We 

want to solve equal to zero comma x. 

13:18 So now it's going to get a little hard to type this in because the Nspire doesn't like 

the this little two up here [the square on the sec x], so I'll show you how we're 

going to do that.  You need a whole bunch of parentheses. (Springer set up the 

computer to key the TI-NspireTM commands.) 

13:59 Alright, so parentheses one plus tan x, secant x, times tangent x. 
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14:09 You have to put in that little dot when you're multiplying two functions on the 

Nspire.  We have one plus tangent x, and wait the one plus tangent x has to be in 

its own parentheses, right, cause that's a quantity.   

14:24 Minus and then the easiest way to do secant x times secant squared x, is going to 

be secant x times secant x times secant x.  Just write it as a series of a product. 

14:37 Isn't that secant squared x right there? (Student asks why she doesn't use a third 

power.) 

14:43 You can. You’re just going to have to do a giant parenthesis and a three [for the 

exponent].  

14:48 Like it doesn't do the little one [sec2 x]. 

14:50 And then you have one plus tangent of x squared equals zero comma x. (Springer, 

Lesson, November 9, 2017) 

 The resultant output initiated new syntax issues, organized here in order of 

complexity.  First, the output introduced the caution symbol in the front of the command 

as seen in the first line of Figure 25.  Second, a new variable n appeared in the output 

expression due to the nature of a periodic function.  This required Springer to stop and 

explain in further detail.  She also showed students a work-around approach for the 

original command using the such that symbol (a vertical bar) in the CAS. 
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Figure 25.  Springer’s TI-NspireTM textual commands projected from computer to the 
classroom wall. 
 

 
 Regarding the first syntax issue, the TI-NspireTM always puts a triangle caution 

symbol next to the input expression with a message to remind the user of potential 

mathematical problems.  In this case, since the input had a denominator of (1 + tan x)2 

there was the potential that tan x could equal negative one.  That would make the entire 

denominator zero, which in turn, caused the function to be undefined.  A student in the 

class did not quite understand the reason for its presence, so Springer provided the 

explanation.  

17:34 (Student asked, "Why is the caution symbol showing?") 

17:37 It [triangle symbol] just has to do with the denominator and the domain.  Just 

letting us know in terms of we can't divide by zero and there's going to be certain 

trig values that would make that denominator zero. (Springer, Lesson, November 

9, 2017) 

 The other syntax error with the output given as a mathematical expression in 

terms of n involved an explanation of the output display: what it meant and how to 

resolve the issue on the CAS.  Figure 25 showed the initial problem on the first line and 

the modified input on the second line.  That change provided a simplified output with the 

values of the periodic function limited from zero to 2 pi. 
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15:21 We need to interpret that a little bit and we're going to fix our command.  So do 

you remember from last year in precal when you were studying the unit circle?  If 

you were taking, for example, the sin (/4) you could go all the way around, and 

I'll be the same thing as let's say at sin (9/4)? (Students talking to Springer.) 

15:38 Right, so maybe sometimes your teacher just had you do like 2n. 

15:44 Do you remember that? So the calculator is giving it with n's.  So in order for us to 

see, let's say, just the answers from 0 to 2, here's what you’re going to do.  

15:57 Go ahead grab this back (copying the original command typed into the CAS) and 

we're going to do the vertical line [such that command] and what we're telling the 

calculator now is, ‘solve this such that we're only between 0 and 2.’ 

16:42 I want x to be wedged in between 0 and 2. (Springer, Lesson, November 9, 2017) 

 Springer wrote the two solutions of /4 and 5/4 for the horizontal tangents of the 

function in her digital notebook.  She also took a screenshot of the CAS commands and 

pasted that into her notebook.  In the background, students were still asking her the same 

questions about limiting the domain on the input for another three minutes.  She added 

this explanation “The calculator is only as good as what we ask it, right?  It has no idea if 

you want this general answer . . . We probably just think zero to two pi, but the calculator 

says there’s infinite answers” (Springer, Lesson, November 9, 2017). 

 A little later in the lesson on a different problem, an interesting conversation 

between Springer and a student ensued.  The student was confused between the solve and 

such that commands.  Springer responded, “Solve, is solving for an x value.  Like, think 

about factoring.  You’re solving for an x value.  Evaluate means you are plugging in a 
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value for the x” (Springer, Lesson, November 9, 2017).  It was unclear if this answer 

satisfied the student, but it ended that exchange. 

 Pondering the exchange, it is noted that the procedure was different on the two 

examples and so the student may have memorized a procedure, void of cognition in 

problem solving.  The mathematics problem asked for the equation of the tangent line to 

the curve at a particular x-coordinate.  It was different from previous examples, in which 

the question inquired about x-coordinates at places on the curve that would have a 

horizontal tangent line.  Students used the solve command to find those points, setting the 

slope equal to zero.  The work-around of using the such that command restricted the 

domain and this eliminated the n1 from the output.  On this problem, however, students 

were finding the slope at a designated point.  The derivative was computed first by-hand, 

followed by the such that command to evaluate the derivative at the point.  Again, it was 

unclear if the answer Springer provided satisfied the student’s inquiry. 

Springer Vignette 5: Pedagogical Opportunities 

 The complex utilization of the CAS and demonstration of how CAS affected the 

content taught is outlined in Table 15.  The syntax provided both a benefit and a 

constraint to learning applications of trigonometric functions in calculus.  Springer took 

advantage of classroom level opportunities to enhance the interpersonal exchange with 

students as they used devices more fluently, even with the more complicated CAS 

procedures of this lesson.  It was those symbolic algebra tasks that allowed Springer and 

her students to access the full power of CAS. 
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Table 18 

Springer Lesson Vignette 5 

P-Map Evidence 

S1 Caution symbol about the domain values for the function and 
output contained confusing syntax by introducing another variable 
for the periodic function 

S2  Outsourced equation solving to the CAS 
S3 Links concept of derivative, slope, and tangent line through 

symbolic manipulation of solve and such that commands 
C1 Social contract teacher as part of the team in learning acquisition 
C2 Allows the authority of the CAS to solve equations to provide 

accurate answers 

 

 Exploiting contrast of ideal and machine mathematics (S1).  Springer 

exploited the contrast of the machine to human cognition in two distinct ways: a caution 

symbol alerted the user to a potential mathematical error, and the output of a periodic 

function introduced the variable n1 for infinite solutions (see Figure 25).  Students 

promptly recognized the alert with the caution symbol on the TI-NspireTM.  Springer used 

the opportunity to explain potential mathematical domain errors (17:37). 

 The second issue appeared more problematic when the machine created the new 

function x = ((4n1 – 3) )/4.  Again, this output accommodated discussion about 

periodic functions and also initiated the opportunity to adjust syntax on the input to attain 

a favorable output (15:21).  Springer described how to resolve this output in the post 

interview. 

For trig functions, we need to “restrict” the domain [0, 2) to come up with more 

“friendly” solutions that we can easily recognize and interpret.  I actually like how 

it gives the + 2n or + n solutions to remind students that trig functions are 
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periodic and infinite solution(s).  But then I like that we can restrict the domain 

and see the “friendlier” answer too. (Springer, Written Reflection, November 30, 

2017) 

Students struggled more deeply with this issue, and it created confusion for a substantial 

length of time as observed in the lesson transcription.    

 Re-balance emphasis on skills, concepts, and applications (S2).  The 

mathematics concepts were manageable by outsourcing the solving of complicated 

trigonometric functions to the CAS (13:05).  “I didn't want to spend 20 minutes doing 

this algebraic computation because sometimes I think that I lose them” (Springer, 

Interview, December 6, 2017).  However, the input of these equations had their own 

difficulties and Springer had to teach the tool in the midst of the example. 

 Build metacognition and overview (S3).  Negotiating the CAS command solve 

allowed cognitive work to shift to the concept of the first derivative as the slope of the 

tangent line to the curve (13:05).  “I'm just trying to get them to learn about these 

calculus concepts . . . I'm not having them master it” (Springer, Interview, December 6, 

2017).  Springer facilitated the connections to the application problems in an efficient 

manner by utilizing CAS. 

 Change classroom social dynamics (C1).  Students advanced their connections 

to learning through the CAS as evidenced in their questions to Springer during the lesson 

and in student peer-to-peer interactions.  Attempting to seek understanding, they 

questioned Springer’s inputs and outputs.  Springer fostered that classroom climate, “I try 

to create a dynamic where we are all working together; we are all a team.  We're all 
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studying this together” (Springer, Interview, December 6, 2017).  She valued modeling 

the technical procedures of the device and how that transferred to student ability. 

I think it's important that I show them . . . I'm specifically showing them the 

commands on the screen.  Like I'm typing it.  So I think that is important, having 

that projected onto the screen and having me type it out and then also having them 

practice it on their own. (Springer, Interview, December 6, 2017) 

Student observation of the teacher demonstration, student action on a personal device, 

and inquiry contributed to that climate of working together. 

 As well, peer interaction benefitted student learning according to Springer when 

she reflected on her lesson.  “They're getting . . . a syntax error or it's not quite working 

out, their neighbor will look over and say, ‘You're missing a comma or a parenthesis or 

you missed an exponent’ or . . . whatever may be" (Springer, Interview, December 6, 

2017).  Springer described how students supported each other in the technical dimension 

of CAS. 

 Change classroom didactic contract (C2).  The actuality of deploying equation 

solving to the CAS essentially gave confidence to the student in the capability of CAS.  

Springer talked about how students accessed other forms of CAS, yet, she also 

recognized that her students developed familiarty with the TI-NspireTM.  As a result, they 

relied more on the TI-NspireTM as a tool than other resources. 

I think there is a lot of kids using the Nspire in my class more than like Wolfram 

Alpha because . . . they get comfortable with it.  Like it becomes [a resource] . . . 

They are just so used to the SOLVE command or so used to the vertical bar.  Like 
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it becomes so comfortable and natural and normal that they then don't go to these 

other sites.  (Springer, Interview, December 6, 2017) 

Springer still required students to solve equations for the application problems but 

relieved students of the expectation to perform a pen-and-paper skill.  She assured that 

through appropriate commands, the solve feature portrayed precise answers. This 

authority shift Pierce and Stacey (2010) described as a change in the didactic contract. 

Springer Case Analysis 

 The lessons, interviews, and written artifacts collected contained a wealth of 

information regarding Springer’s pedagogical decisions and related instructional practice.  

The data that was specifically targeted was her usage and orientation of lessons that 

involved CAS.  Many other elements were noticeable in her teaching practice; however, 

this study depicted just those elements of CAS utilization.  The case analysis reported a 

generalization for her motivations to use CAS, an aggregated detail of elements that were 

identified using the P-Map framework (Pierce & Stacey, 2010), and several emergent 

themes about her instructional practices involving CAS. 

 Evidence showed that Springer implemented CAS in her pedagogy for several 

reasons: students enjoyed CAS utilization, CAS was a catalyst to get students engaged, 

and knowledge of such a tool was more realistic for life after formal education.  Springer 

thoroughly enjoyed teaching with CAS and deriving new approaches to content 

knowledge through technology, in part because she felt her students enjoyed it.  “I love 

that class.  We can just have fun with the material, have fun with the technology, use it 

when it's appropriate” (Springer, Interview, December 6, 2017).  Springer talked about a 

relaxed atmosphere because the students were non-AP and that reduced the time pressure 



 

 

162 

in covering breadth of content.  She reflected on her first experiences in teaching with 

CAS.  She described her accelerated precalculus class from four years prior as a group of 

very energetic students.  “They had never even seen it or heard about [CAS].  And I was 

able to show them how cool it was.  They fell in love with it” (Springer, Interview, 

November 8, 2017).  Her introspection may have been the beginning of a shift in belief 

that has continued to affect her teaching craft.  Springer also sensed that mathematics 

could be too laborious for learners.  “How do I get other kids to think that math is fun?  

Take out this tedious aspect” (Springer, Interview, October 15, 2017).  CAS was 

acknowledged as a motivational tool for Springer. 

 Springer communicated that using technology had more real-life application.  “In 

the real world [students know they are] going to have calculators and technology and so 

they enjoy using it to help them solve the problems” (Springer, Interview, October 15, 

2017).  One of her rationales for advocating CAS in teaching practice materialized in the 

last interview. 

[Students] can figure out other technology.  So then you kind of have to embrace 

it and say, ‘Look, if they're going to use it, let me show them, you know how I 

would like them to use it,’ if that makes sense. . . . Why don't you kind of guide 

them, you know, to use it, how you'd want them to use it? . . . The more content 

you know, sometimes the more stuff you can do on CAS.  (Springer, Interview, 

December 6, 2017) 

Teaching to use the device to assist in learning was not due to real-world problems 

exactly.  Springer was referring to the use of technology in the livelihood of business and 

careers. 
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 Her strong mathematical background combined with an advanced degree in 

instructional technology contributed to her motivation of varied uses of CAS.   

I got a very strong math foundation and higher, upper level math courses at 

college.  But also the background of education, philosophy, pedagogy, best 

practices . . . I wanted to do more that would help my classroom.  I felt . . . that 

technology is the future.  You know how can I learn different technologies? . . . 

Because it interests me, that was what I pursued [as a master’s degree] and then 

I'm able to bring it to the classroom. . . . I'm kind of thinking strategically, how 

can the technology help just a little piece.  (Springer, Interview, November 6, 

2018) 

This idea of strategically using technology to advance student learning was evident in her 

calculus class.  Springer often conducted direct instruction with her computer projected 

on the screen and expected students to follow her lead in the lessons.  “I can project my 

Nspire, you saw.  The kids see exactly what I'm typing and we weren't able to do that 

before” (Springer, Interview, October 15, 2017).  She paused at times during her lessons 

to give students the opportunity to ask questions, key commands into the CAS, or to ask a 

fellow student a clarifying question. 

P-Map 

 The lesson vignettes spanned over eight weeks of time and captured selected 

instruction Springer qualified as lessons utilizing CAS.  Writing artifacts and interviews 

support the decisions that Springer made in her pedagogy.  Two different calculus classes 

provided the data of teacher instructional activity.  The classes were not distinguished 

from one another in lesson descriptions.  The five lesson vignettes were pattern matched 
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(Yin, 2009) in a deductive manner to the P-Map (Pierce & Stacey, 2010).  Identification 

of pedagogical opportunities assisted in understanding the instruction that occurred in the 

participant’s classroom as summarized in Table 19.  Total number of occurrences for 

each segment of the P-map is provided to help understand frequencies of pedagogies 

observed.  It is not the case that a higher number indicates a greater value of instruction.  

It merely helped to identify the more pronounced areas that Springer leveraged.  The 

discussion that follows clusters the opportunities in the three levels of the subject, the 

classroom organization, and the student tasks. 

 
Table 19 

Springer Lesson Vignettes Summarized: The Occurrences of P-Map Opportunities that 

were Exploited During the Lesson Grouped by Subject, Classroom, and Tasks 

P-Map Vign 1 Vign 2 Vign 3 Vign 4 Vign 5 Total 

S1      3 

S2      4 
S3      5 
C1      1 
C2      3 

T1      2 
T2      0 
T3      3 
T4      0 

T5      4 
 

 
 Subject.  Springer embraced CAS as a cognitive tool in her classroom as an 

essential resource to consider subject level opportunities in noteworthy ways.  First, she 

exploited the contrast of ideal and machine mathematics to provoke student 

understandings of mathematical content and to elicit the need for understanding CAS 

commands that can provide feasible outputs.  Second, she re-balanced and re-sequenced 



 

 

165 

the presentation of mathematical content to reduce cognitive workload devoted to 

procedures and eased the capability for students to construct conceptual knowledge.  

Third, she used entry points on the CAS to augment students’ metacognition and 

reflection on the content.  These points are discussed in the next sections. 

 Exploiting contrast of ideal and machine mathematics (S1).  The CAS machine 

produced unexpected outputs that needed consideration of connectedness to mathematical 

content.  Several places in the lesson vignettes (Vignettes 2, 3, and 5) Springer exhibited 

flexibility in directing discussion regarding the output.  She connected CAS error codes 

or caution symbols to bring understanding to the limitations of the output (e.g., potential 

domain errors, syntax errors, or unrecognizable answers).  Also, CAS commands were 

recalled from a previous lesson or newly introduced to provide a suitable output as 

needed. 

 Vignette 5 had a moment in which the CAS gave an additional variable in the 

output (i.e., (4n1 – 3)π/4).  This was due to the nature of periodic functions and multiple 

solutions.  Springer used the prospect to discuss numerous solutions for trigonometric 

functions by recalling the unit circle from students’ precalculus class.  The redirect 

connected prior mathematics knowledge to its relation with the new knowledge of 

derivatives that retain the periodic function.  Typically, with trigonometric functions, 

students learn one answer and have to extrapolate the multiple solutions.  In this situation 

the learners were reducing the multiple answers from the periodic form by restricting the 

domain.  She accomplished this by using CAS commands that restricted the domain to [0, 

2π).  Springer focused these unplanned moments as opportunities to build mathematical 

and technological connections. 
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 Re-balance emphasis on skills, concepts, and applications (S2).  Springer 

created lessons that involved a reversed sequence of events and relied on CAS to reduce 

by-hand procedures, thereby promoting concept development and mathematical 

application.  Springer generated several lessons (Vignette 2, 3, and 4) with an approach 

that began with CAS to perform mathematical procedures, thereby allowing students to 

reflect on the results in the formation of mathematical definitions and conceptions 

(Vignettes 2, 3, and 4).  In other situations (Vignettes 2, 3, 4, and 5), she outsourced 

mathematical procedures and forged through to teaching concepts or solving 

mathematical problems.  Springer accessed the potential of CAS to compose inventive 

questions (Vignette 3) for students to hypothesize about mathematical patterns.  

 Build metacognition and overview (S3).  Springer’s pedagogy intermittently 

included CAS as a tool that provided structure for students to intuit and construct 

knowledge towards the calculus course goals (Vignettes 1, 2, 3, and 5).  For example, the 

definition of derivative was a concept that was revisited in multiple lessons.  In Vignette 

1 Springer introduced the CAS command define to evaluate points close to another point, 

beginning the process for students to infer an idea about limits.  CAS allowed her to use 

function notation with the definition of slope to illuminate the definition of derivative.  In 

Vignette 2 the difference quotient was again used with the define command to explore 

concepts of continuity and differentiability.  Even in Vignette 3, Springer was still using 

the define command with a difference quotient and limit for derivative.  In a post-

interview Springer explicitly stated that she was delaying the CAS derivative command 

until she saturated the thought processes of the difference quotient.  Springer exploited 

the opportunity to continue with the definition because of the ease of the define command 
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and simple computation on the CAS.  In this way, she provided her students the 

opportunity to develop a stronger connection to the definition of derivative. 

 Classroom Organization (C1 and C2).  The largest distinction in the classroom 

level of the P-Map when CAS was utilized was the authority shift from Springer as the 

chief source of mathematical knowledge to CAS as an external mathematical consultant , 

observed in later Vignettes 3, 4, and 5.  Springer relied on the CAS as the authority of 

symbolic manipulation to build student conceptions of the power rule for derivatives 

(Vignette 3).  She directed students to use the outputs to develop a prototype and then 

verify a targeted guess using the CAS.  This precedence created a gateway for students to 

use CAS for verification in other situations.  It was observed in a similar way with 

Desmos in Vignette 4, as students predicted and checked their cognitive guess of 

trigonometric derivatives.  Additionally, CAS power was accessed with the solve 

command in Vignette 5.  Gradually, students accepted the shift in authority to the CAS as 

a tool in the learning processes and as a mathematical consultant that possesses great 

accuracy. 

 Less evidence was available about a change in classroom social dynamics (P-Map 

C1) due to CAS’ presence.  Springer discussed the social interactions in her interview, 

but it remained uncertain if student collaboration was improved due to CAS.  During the 

first phase of the project Springer stated, “I would say at least in my Calculus class the 

kids are a lot more engaged when they're using CAS” (Springer, October 6, 2017).  

Springer responded to a question regarding differences in the presence of CAS in either 

student-to-student or student-to-teacher interaction.  
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The kids are definitely working together, collaborating, you know somebody's 

like, "Why isn't this working?  You missed a parenthesis.  You spelled define 

wrong. . . . You missed a comma” . . .  They kind of work together and are like 

saying, "Why isn't this working?  Why am I not getting this?"  We do a lot of stuff 

where on every problem I'll say, "Start working on this problem and look on your 

neighbor's computer (TI-NspireTM was on the computer), make sure you guys are 

getting the same type of stuff" . . . They are definitely working together, but I 

would say that, whether it's paper and pencil or it's CAS.  So that's just the 

environment of the class.  (Springer, Interview, October 6, 2017) 

This prompted the following question: “Would you say their questions then towards one 

another are really about, like, the syntax, which are just your input into the CAS that their 

questions are?  Or are there questions that they have about content?” (Interview, October 

6, 2017). 

I think it depends on what we're doing.  If we're doing notes, where I could have 

presented something to them and I'm kind of walking through it, then it's a little 

bit more about syntax . . . When we start doing like related rates and optimization, 

we start doing more of these harder word problems. . . . Then they start trying to 

get creative and start talking a little bit more content.  (Springer, Interview, 

October 6, 2017) 

No lesson was ever observed regarding these types of word problems.  Classroom social 

dynamics were not revealing of any uncommon opportunities in the presence of CAS.  

Yet, it was obvious that students relied on one another for learning the syntax of the tool. 
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 Tasks.  Springer accessed the functional opportunities of the CAS to help 

students learn pen-and-paper skills, to allow the exploration of regularity in algebraic 

functions and to link multiple representations for a deeper connection to the mathematics.  

She designed her lessons intentionally to incorporate technology.  “I am always trying to 

find new, innovative ways to use technology in my math classroom– and I think CAS is 

the most helpful and efficient and powerful tool that the [students in our school] have 

easy access to” (Springer, Written Reflection, November, 30, 2017).  It was routine for 

Springer to use the TI-NspireTM for symbolic manipulations and to use the Desmos 

graphing calculator to connect either the initial prompt or some other resultant to a 

graphical representation.  

 Pen-and-paper skills (T1).  Evidence of by-hand procedures reflected the value 

that Springer placed on students maintaining procedural fluency in mathematics.  “I do 

feel that I'm doing [students in our school] a disservice if they don't know how to do 

certain problems by hand” (Springer, Interview, October 2, 2016).  A problem in 

Vignette 1 required a simplification of a rational expression.  Springer modeled the by-

hand procedure prior to entering into the CAS.  The CAS became a verification tool. 

I try to find this balance of us still doing procedural stuff. . . . And so I try to do a 

ton of that, like the first semester.  And then by second semester we start picking 

up CAS a lot more because I feel like they have this good foundation of whatever 

it is I wanted them to have.  (Springer, Interview, October 2, 2017) 

On one occasion in Vignette 3 she used the CAS to first view the solution and then to 

work towards the answer through reasoning out a numeric pattern. 
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Students were essentially deriving . . . the differentiation technique known as The 

Power Rule.  I used a verbal exchange with me and the students [sic] as my 

formative assessment by asking the students to identify/explain the 

pattern/shortcut and then successfully calculate derivatives (without using the 

definition of the derivative and CAS).  (Springer, Written Reflection, November 

4, 2017) 

After students had established the power rule they used pen-and-paper methods to work 

through an exercise set using procedural mental skills and then verified those answers 

with the CAS. 

 Explore regularity and variation (T3).  Three different ways Springer was 

observed using CAS with regularity and variation are listed.  First, she used multiple 

points and repetitive computation with the CAS to instill the conceptual idea of limit in 

Vignette 1.  Second, she used three examples with various function characteristics to note 

places of continuity and differentiability in Vignette 2.  Third, she evaluated each 

function at numerous input values to guide the learner to consider the functions behavior 

also in Vignette 2.  The three situations drawn from vignettes, written reflections, and 

interviews provide the detail.   

 Overview of rationale.  The lesson Power Rule and Higher Derivatives (Vignette 

3) included an exploratory activity in which the output from the CAS was generated for 

the purpose of identifying patterns in numerical values.  “Because of CAS, I am able to 

ask students to use the definition of the derivative to find MANY, MANY, MANY 

derivatives and it is not a tedious boring request anymore since they are not calculating 
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them by hand” (Springer, Written Reflection, November 4, 2017).  Springer valued the 

functional capabilities of the CAS for its efficiency.  

 Multiple points and repetition.  Springer generated multiple points very close to a 

selected point to instill the idea of a delta value as was used in the definition of limit 

(Vignette 1).  The CAS permitted her to calculate efficiently the slope of multiple secant 

lines as delta values approached small differences from the point.  Springer reflected on a 

positive change in her teaching pedagogy as result of CAS utilization. 

I would be lazy and only do a couple points because like it was so tedious before. 

. . . You wanted to do it, but you couldn't really do it. . . . For a limit you want to 

see five, six, or ten points.  You can do it so quickly on the Nspire.  (Springer, 

Interview, October 15, 2017) 

She used the points computed to calculate the slope of secant lines to help students notice 

the limiting value of the slope (i.e., the derivative).  It was the repetition of evaluation of 

the derivative at particular points that guided students to think about creating a shortcut 

rule.  Springer talked about students’ recognition for the ability to bypass the multiple 

calculations. 

When we were doing tangent lines by defining the function and then doing like 

f(0.9), f(0.99), f(0.999), you know we were having those conversations with, why 

are we doing that?  Talking about the limit.  Talk about approaching it.  And then 

the kids were like, "What?  Can't we just jump to this 0.999, cause that's going to 

give us the closer value?"  (Springer, Interview, October 6, 2017) 

Through repetition students had the opportunity to develop their mathematical 

conceptualization of limiting values. 
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 Multiple examples.  Springer was quickly able to calculate derivatives for three 

separate functions and also able to evaluate at multiple points on those functions’ 

derivatives through the functional capability of the CAS.  This enabled her students to 

view the similarities and differences between the functions and their derivatives.  As 

Springer compared the three functions side-by-side, students were equipped to make 

connections to the type of function and the places at which the function was continuous, 

and likewise, where it was differentiable. 

 Generated multiple outputs.  In Vignette 3 the goal required focused attention on 

the outputs from the CAS.  Those expressions formed the basis for the exploratory task.  

“It was critical for me and the students to calculate multiple examples so they could 

identify a pattern with higher order derivatives” (Springer, Written Reflection, November 

4, 2017).  Those multiple examples were simply the first, second, third, etc. derivatives of 

the one function, a simple CAS computation.  She explained that, in the past, she used 

multiple different functions and computed just the first derivative using the CAS 

derivative command; but she imagined the lesson unfolding in a new way for the current 

year. 

I stuck to one polynomial and one rational function for them to see the pattern. . . . 

I decided to take a different approach this year, where we are still using the 

definition of derivative.  I'm really trying to hone in on that.  And have them 

really understand with the difference quotient and the limit, so instead of using the 

command [CAS derivative] I was making them use the definition of derivative.  

(Springer, Interview, November 8, 2017) 
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She maintained the use of the difference quotient and the limit.  The higher derivatives 

allowed variation to explore the patterns that would soon be constructed into the power 

rule for derivatives. 

 Representations (T5).  Springer often linked various representations of functions 

together.  She talked about how much she loved using Desmos, so much that she would 

always have a tab open for it.  “I definitely think that in general [multiple representations] 

can help you have a deeper understanding.  So like [the students are] seeing the algebraic 

approach and then they're seeing graphically” (Springer, Interview, October 15, 2017).  

She demonstrated this use of multiple representations in Vignettes 1, 2, and 4.  The first 

two vignettes illustrated how Springer performed the symbolic computation first and then 

compared the output to the graph.  The fourth vignette was interesting because she 

showed the graphical representation of the function and its derivative first, and then 

students produced a cognitive guess strategy to arrive at the symbolic representation to 

verify against the graphical representation.  “The Desmos graph of 𝑓′ (𝑥) (hopefully) 

facilitated student understanding that the derivative of a certain trig function will be 

another trig function (without me explicitly telling them that information)”  (Springer, 

Written Reflection, November 30, 2017).   

 Summary of P-Map.  CAS was leveraged in Springer’s pedagogy by allowing 

her to adjust areas at the subject level of the P-Map, giving opportunity to students to 

access an external mathematical authority, and enriching her instruction with tasks that 

utilize technology.  Springer found satisfaction in her CAS-infused methodology, in part, 

because of her belief that students enjoyed learning mathematics with CAS. 
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Emergent Themes from Springer’s Data 

 The P-Map illuminated components of teacher practice for instruction that was 

oriented when CAS was exploited in the development of mathematical knowledge.  

Specific themes emerged through the analysis of Springer’s case that explained how 

Springer oriented her pedagogy.  The insight prescribed support to instruction that 

utilized CAS.  Springer’s emergent themes can be catalogued as outsourcing procedures, 

providing guidance, verifying answers, regulating access, and viewing CAS as a 

mathematical consultant.  Each theme that was palpable from the lesson was listed with 

the P-Map description following the vignette in Table 20.  The detail for each theme and 

its evidence validates the selection.  In some lesson vignettes, the evidence was identified 

within open coding of the lesson and referenced as lesson in the table rather than a P-Map 

code.  The order in which they are presented has no relevance to a ranking of importance 

or strength of case.  In principal, themes were points that overlapped and formed 

interlocking pieces of pedagogy and are conveyed in Figure 26. 

Table 20 

Emergent Themes Evidence: Springer 

 Outsource 
Procedures 

Provide 
Guidance 

Verify 
Answers 

Mathematical 
Consultant 

Regulate 
Access 

Vign 1 S3  T1, T5  Lesson 

Vign 2 S2, S3 S1    

Vign 3 Lesson S1  C2  

Vign 4  Lesson Lesson C2  

Vign 5 S2, S3   C2 Lesson 

 

 



 

 

175 

 

Figure 26.  Emergent Themes Schema: Springer. 
 

 Outsource procedures.  Oftentimes Springer allowed the CAS to do the work of 

complex computations (e.g., difference quotients for the derivative, adding rational 

expressions, restricting domains), referred to as outsourcing procedures since students’ 

cognitive function only required knowledge of what and how to input the command.  At 

times, Springer directed students to focus on particular mathematical concepts by 

outsourcing a procedure, hoping to reduce cognitive demand on working memory.  “I see 

different uses that I try to use CAS and like I said, sometimes it's to help us with the 

algebra, so we can understand the concepts of calculus.  And this next lesson we will use 

it to discover derivative rules with polynomials” (Springer, Interview, October 15, 2017).  

She was referring to Vignette 3 and the exploration of number patterns in higher 

derivatives.  Springer used the power of CAS to compute many derivatives quickly and 

accurately for the purpose of critical analysis. 
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 Multiple times Springer allowed CAS to perform symbolic calculations in lieu of 

traditional pen-and-paper computations (Vignettes 1, 2, 3 and 5), to reinforce procedural 

skills of by-hand computations (Vignettes 1 and 3), or to target other aspects of the 

mathematics (Vignette 5).  The following examples provided additional detail.  The final 

section discussed potential benefits of outsourcing procedures. 

 In lieu of traditional pen-and-paper computations.  One of her favorite 

commands was define because she let the device retain a function in its memory to be 

called upon to evaluate the function at both numeric and symbolic points.  When she 

performed these algebraic manipulations for a difference quotient (Vignettes 1, 2, 3 , and 

5), CAS did all the procedures whether or not they were complicated.  This act permitted 

students to attend to the content rather than the mathematical procedure, departing from 

traditional pen-and-paper procedures.   

 Reinforce procedural skills.  Other times she reinforced correct procedures 

through the use of CAS.  Springer wrote out the procedure for derivative on the 

whiteboard (Vignette 1) and then confirmed accuracy on the CAS.  After that example, 

she outsourced all future derivatives to the CAS in that lesson.  Similarly, in Vignette 3 

when students were learning the by-hand procedures of the power rule, she checked by-

hand procedures against the CAS thus outsourcing procedures.  The actions fortified 

student procedural knowledge of the by-hand skill of students either taking a limit of a 

difference quotient or finding a derivative by means of the power rule. 

Target other aspects of mathematics.  Springer targeted mathematical problem 

solving by outsourcing mathematical procedures to the CAS using the solve command in 

Vignette 5.  The application problems involved trigonometric function derivatives that 
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required the product, quotient, and chain rules.  Springer instructed her students to let the 

device do all the work internally. 

It's so much algebra computation. . . . As much as I love doing the definition of 

the derivative and doing it on the Nspire, it was going to be like 20 minutes and 

then I felt like they were going to be exhausted and we wouldn’t have even started 

practicing problems.  I wanted to just entice them, interest them, and do 

something quick and easy.  (Springer, Interview, December 6, 2017) 

The lesson was directed towards applications and not the learning of the procedures.  

 Benefits to outsourcing procedures.  This idea of using the calculator for 

symbolic manipulation and computation referred to as outsourcing procedures to the 

CAS may have its advantages.  Springer talked about the benefits of functional 

opportunities that are possible because of CAS. 

The advantages are you can do [complicated], messy problems and it can be 

accurate.  It's sometimes more efficient depending on what type of problems [we] 

are working on.  So it helps you.  Shasta refers to it as like, it does the muscle 

work for you.  So you can more focus on the big ideas and let the CAS do that 

muscle work.  (Springer, Interview, October 6, 2017) 

CAS functional opportunities provided students with accuracy and efficiency for any type 

of problem, even very challenging procedures. 

Provide guidance.  With proper guidance students had the potential for success 

with CAS.  Springer gave consideration to teaching the tool, creating an awareness of 

CAS capabilities, offering flexibility during instruction, and thoughtful preparation.  The 

components are explained in the next sections. 
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Teaching the tool.  Springer often adjusted her instruction to teach the CAS tool 

or to propose new CAS commands.  She was careful to introduce new commands at the 

stage that it was necessary.  “Sometimes I have to be in the moment to come up with 

these extra commands” (Springer, Interview, November 8, 2018).  Her classroom climate 

supported students assisting one another with the device, particularly in terms of syntax.  

When confounding results displayed on the screen, Springer paused her instruction to talk 

about how to interpret those outputs.  Flexibility during the lesson was imperative to 

Springer to support student challenges with CAS.  She always assessed the situation to 

improve student knowledge of the tool in addition to honing in on content-specific 

questions. 

Just using CAS in your classroom isn't great.  You have to, kids need some 

guidance, they need some help and they can't be stressed out about it.  And like 

they need to want to use CAS and to learn from the CAS.  The teacher has to be 

more on-board and more showing them how to use the CAS.  (Springer, 

Interview, November 8, 2017) 

Her outlook was to teach the tool by easing in new commands and also to accept the class 

time involved in creating a smooth transition for students. 

 CAS capabilities.  In interviews and informal conversations, it was evident that 

Springer was concerned about raising awareness of the CAS capabilities to her students.  

It was also observed that her personal experience with technological tools had depth of 

knowledge, manipulating the device with ease and speed.  She clearly wanted her 

students to reach a more advanced level on the use of CAS without becoming too 

frustrated. 
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I say to them, you are speaking the computer language.  You have to know when 

to do a parenthesis and when to do a comma and I taught them the vertical bar, 

such that, like they had never even see that.  I think they find that part of it cool. . 

. . They have all these different commands that they can ask the calculator to walk 

us through the steps.  (Springer, Interview, October 15, 2017) 

Even when students got error messages on their output, she used those opportunities to 

help students persist by looking at the details of their input.  “They know they're getting 

this error and they know that they need to correct the error.  They know that there's 

something that is needed to fix their input” (Springer, Interview, October 15, 2017).  Her 

patience and guidance back to the CAS input progressed students’ technical abilities. 

 Flexibility.  Springer demonstrated flexibility to teach the tool at various times in 

her lessons (Vignettes 2, 3, and 4).  Twice in Vignette 2 she adopted positive reactions 

when the output was unexpected: first, with an output of infinity for an indeterminate 

form; and second, when the command comDenom was required to get the derivative.  

“That’s kind of cool.  Do you see how it came up with infinity?  Yeah.  What it’s actually 

doing is, it’s giving you the fact that there’s an asymptote, right?” (5:12).  She provided 

guidance with the infinity symbol by comparing the output to the graph.  When 

comDenom was needed to get a feasible output, she simply stated, “We’ve got to do our 

comDenom, right?” (4:36).  She modeled how students can use the output to interpret 

meaning and build mathematical connections. 

 Springer also showed flexibility during instruction in Vignette 4, promoting 

students to think about the derivative of the tangent function.  In this instance, Springer 

provided scaffolding of cognitive guesses due to student struggles with content.  The 
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trigonometric derivative was not obvious.  She provided suggestions to students that were 

variations of other trigonometric functions with the hope that student guesses would be 

on target. 

 Preparation.  When questioned about designing lessons that involve CAS, 

Springer responded, “I think about the commands that we have available and [then] how 

could that help us to do whatever we're doing” (Springer, Interview, October 2, 2017).  

The commands were shared just at that moment when they were needed.  She coined this 

phrase, “I definitely let [teaching commands] happen organically as things come up” 

(Springer, Interview, December 6, 2017).  She followed up with her rationale, “If it's not 

natural like then it's not going to stick with them.”  It was evident that she coordinated 

providing guidance on CAS with teaching mathematical content. 

 Verify answers.  CAS was used as a tool repeatedly to corroborate answers:  by-

hand work products versus the CAS (Vignettes 1 and 3) or setting one representation 

against another (Vignettes 1 and 4).  Springer modeled usage of CAS to her students in 

an effort to cultivate knowledge acquisition.  I observed her purposively inputting 

incorrect answers to develop an idea of self-correcting (Vignette 4).  She guided students 

to consider incorrect outputs and reflect on necessary changes to deliver accuracy.  “It’s 

important for students to enjoy the learning process and have success with learning the 

material to gain confidence with their math abilities and be confident in their abilities to 

learn future concepts” (Springer, Written Reflection, October 14, 2017).  Springer 

believed that verification led to confidence. 

Mathematical consultant.  The authority shift from the teacher to the device was 

subtle.  Springer demonstrated how CAS could provide instant feedback to the accuracy 
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of pen-and-paper skills as students were learning the power rule in Vignette 3.  Similarly, 

in Vignette 4 students were making cognitive guesses of the derivative of trigonometric 

functions and matching those to the graph.  The teacher was not needed as the authority 

when the CAS was used as a resource.  A slightly different sense of reliability was found 

in Vignette 5 when students used the solve command within an application problem.  To 

utilize that feature, the individual had to recognize the accuracy and precision of the CAS 

tool.  Springer was conveniently relying on its functional opportunity, and, hence, the 

students had to trust its capability as well. 

Regulate access.  Students accessed the CAS commands when Springer 

displayed them on her computer-projected screen.  She realized that students might have 

accessed other TI-NspireTM commands or other CAS platforms.  However, her obligation 

was to teach how to use specific tools to advance mathematical understanding.  She 

accomplished this through (a) direction of the command to utilize; (b) sequence of the 

order in which commands were accessed; (c) degree of difficulty of commands; and (d) 

permissions for using CAS in assignments and assessments.  These are described in the 

sections that follow. 

Direction.  Repeatedly Springer directed students to use particular commands and 

to key them in while simultaneously observing her projections on the classroom wall.  

The class seemed surprised when a new command became available.  This occurred in 

Vignette 1 when she first performed a difference quotient with the symbolic expression 

rather than numerical values and again in Vignette 4 when she showed the Desmos 

feature of graphing f’(x). 
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Sequence.  Springer set the order and placement of commands.  When producing 

an equation for the tangent line to a curve in Vignette 1 she withheld a more efficient 

command. 

They don't know about the command for tangent line.  Like there is a tangent 

button that will do it.  So I make them do like all these steps, you know, so that 

they understand and see all the steps that go into it.  Eventually they may figure 

that out. . . . I try not to show them that because I want to use the CAS but it’s like 

I want them to use it as . . . like you're telling the CAS what to do and then it does 

it type [of] thing.  (Springer, Interview, October 15, 2017) 

Springer also delayed the derivative command (d/dx) opting to stay with the use of a 

difference quotient throughout all the vignettes.  Although the use of d/dx was never 

observed, Springer talked about staying with the difference quotient after instructing in 

Vignette 3.  “I'm really trying to hone in . . . and have [students] really understand the 

difference quotient and the limit, so instead of using the [derivative] command I was 

making them use the definition of derivative” (Springer, Interview, November 8, 2017).  

Springer postponed the derivative command until conceptualization was formed.  

 Degree of difficulty.  There was varying degree of difficulty with CAS commands 

and she continued to motivate students to adapt to more challenging use of those 

commands.  This was particularly apparent in Vignette 5 with the trigonometric 

application problems.  The CAS line items were lengthier and resulted in complex 

outputs, those that had additional variables for a periodic function. 

 Permissions on assessments.  Assessing student learning required consideration 

or alteration by the teacher, although this was not observed in the lesson vignettes.  
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Springer had different ways that she managed CAS work in assessments and 

assignments: She restricted access to CAS and changed question format.  “There's 

definitely a combination of sometimes no CAS and CAS assessments” (Springer, 

Interview, October 2, 2017).  Her expectations of work products had slight adjustments.  

She explained how she might word a question on a quiz. 

Set up the problem, you know, show what it is, and then go ahead and type it into 

the CAS.  And then make me a little note that just says, used CAS, so I know 

where that came from.  But there's typically . . . I don't want them just to give me 

an answer. (Springer, Interview, October 2, 2017) 

However, it was evident that the type of questions in the presence of CAS was a 

challenge to develop. 

I do have to get a little bit more creative with the types of questions that we’re 

studying. . . . If you're going to be able to use the CAS on homework and 

assessments, how do I come up with other questions that are not, like plug and 

chug? (Springer, Interview, October 2, 2017) 

Springer’s pedagogical content knowledge made it possible for her inventive questioning 

strategies.  She thought deeply about what and how to instruct and assess using CAS 

through regulation of the features. 

Summary of Springer 

CAS was an essential tool for learning calculus in Springer’s classroom.  Springer 

was inventive in her lesson design, altering the presentation sequence to bring about 

conceptualization of calculus concepts.  She regulated access to CAS commands, 

revealing only those that she wanted students to access.  Yet, she valued student 
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exploration of TI-NspireTM tools.  She was aware that students might choose other web-

based CAS tools, so she endorsed utilization in productive ways.   

Springer remained flexible during instruction to call upon CAS commands that 

were needed to complete a computation, as those commands varied depending on the 

output.  As well, she intermittently had to retrace procedures, as students may have gotten 

lost.  Multiple examples presented explored patterns of regularity and differences.  

Oftentimes she outsourced procedures to the CAS.  When those computations on the 

CAS got complicated students leaned on one another to manage the syntax of inputs.  

“We're doing notes, where I could have presented something to them and I'm kind of 

walking through it.  Then [student collaboration is] a little bit more about syntax” 

(Springer, October 6, 2017). 

Springer purposefully incorporated technology in her lessons.  Her decisions were 

rooted in the functional opportunities of the CAS and belief that it made learning more 

enjoyable.  “How can we study really hard concepts like calculus and topics in calculus 

that is a college level course and use the technology to help us understand it and create it?  

You know, make it enjoyable” (Springer, Interview, December 6, 2017).  She began with 

content and thought of ways to use technology to more easily advance learning. 

Themes that emerged from the analysis of data were outsourcing procedures, 

providing guidance, verifying answers, regulating access, and CAS as a mathematical 

consultant.  They were presented in no particular order as they are interlocking pieces in 

their presence of Springer’s pedagogy. 
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The Case of Shasta  

 Shasta served as the Grandview mathematics department chair for Preschool-12 

and secondary mathematics teacher.  He had been at the school for five years, teaching 

secondary mathematics for 28 years.  Shasta’s educational background included the 

following degrees: Bachelor degrees in mathematics and philosophy; Master’s degrees in 

education and mathematics; and Doctorate of Education.  Personally, he had been using 

CAS and other technologies from his first days of teaching and continued usage during 

his nearly 30-year teaching career.  Generally, he had taught high school precalculus, 

statistics, and calculus courses, but during the year of this study, he shifted to middle 

school to fill a vacant mathematics teacher role.  Classes described in Shasta’s lesson 

vignettes were eighth grade algebra one.  He had previous experience teaching eighth-

grade mathematics. 

 The second participant’s case follows a similar layout as Springer’s analysis.  

First is a description of each lesson vignette using transcriptions, images from notes, and 

screenshots of the details on CAS.  The narrative was created from lesson observations 

and was supported with the participant’s reflection post-observation.  After each vignette 

is a calibration to the P-Map framework (Pierce & Stacey, 2010) to isolate particular 

aspects of Shasta’s pedagogical practices.  When all lesson vignettes are thoroughly 

explained, the individual case is aggregated through the use of the P-Map.  Finally, 

Shasta’s instructional methods revealed emerging themes, and in closing, they will be 

explained. 
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Shasta Vignette 1:  Distributive Property and Combining Like Terms 

 Prior to the lesson, students had been making mistakes in the algebraic procedures 

of the distributive property and combining like terms.  Shasta recognized the problem of 

different skill levels: some students had success and others continued to err.  He saw the 

opportunity to use CAS to promote students independent checking of their work amidst 

the practice of similar math problems.  Shasta provided a rationale to the class about why 

he chose to introduce the CAS on this particular lesson.   

2:56 Everybody needs kind of a different level of understanding.  So what I'm going to 

introduce you to, is the side of the TI-Nspire that lets you do the amount of 

practice that you need to do.  The side of the TI-Nspire that I'm going to introduce 

to you is actually the next class of software that is called computer algebra 

systems, so CAS.  (Shasta, Lesson, October 4, 2017) 

Later in the lesson, he supported students learning through CAS as a tool to help each 

person progress at their own pace.  “Think about this machine as your best mathematical 

non-judgmental friend that you will ever have.  It doesn't care how much practice you 

need.  It will keep practicing . . . with you until you just run out of time” (Shasta, Lesson, 

October 4, 2017). 

 The lesson was structured first to consider the distributive property and disclose 

how to check work and second, to combine like terms and confirm answers.  Students 

verified the accuracy of their procedures by entering the original mathematical expression 

given, inputting an equal sign, and then entering their pen-and-paper answer.  When the 

output was correct, the CAS output true.  In the case of an incorrect answer, the CAS 

output the same input, possibly with a rearrangement of the terms.  The students revised 
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their answers and made another attempt as needed.  Shasta selectively instructed the 

commands of CAS to his students.  Parts of those instructions were shared along with 

screenshots that represent the account. 

10:44 We're all going to type the top line of this.  So negative three. (Pause as students 

keyed in the commands.)   

10:55  Now as soon as I type in negative, I get two options (see Figure 27). 

11:00 Am I going to minus something or am I negating something? I'm negating— I'm 

getting the negative of three.  So choose negate and then type a three. 

 

Figure 27.  Shasta’s TI-NspireTM textual commands projected from computer to the 
classroom wall. 
 

11:10 Do you know what to type next?  Open parentheses, the left parenthesis.  

Something really cool happens.  What did it automatically put in? (Shown in the 

first line of Figure 28.  Student answered.  Shasta repeated.)  The other end. 

11:22 Now type x – 10.  When you press x, something really exciting happens. 

11:29 It put a dot in-between the negative three and the parentheses because what's 

always assumed when you put anything side-by-side?  Multiplication. (Shown in 

the second line of Figure 28.)  
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Figure 28.  Shasta’s TI-NspireTM textual commands projected from computer to the 
classroom wall. 

 

12:07 Have you ever typed something into a calculator and made a mistake, and you had 

to go back and retype the whole formula?  That happens pretty frequently. 

(Inaudible)   

12:18 If you hit up arrow, what happens?  (Student: It selects it.  It highlights it.)  While 

it is highlighted, you could control C, copy it, and then move down and paste.  

There is actually an easier way to do it on the Nspire, press enter.  (Student: Oh, 

cool.)  Once it's highlighted you just hit enter and it will copy the whole line. 

(Shown in Figure 29.)  

 

 

 
 
Figure 29.  Shasta’s TI-NspireTM textual commands projected from computer to the 
classroom wall. 
 

12:50 Imagine this was like a long computation, and you made one mistake.  You just 

go grab the whole computation and drop it down and see what it turns into.   

13:00 Now type equals. What was the first bad mistake that we made on this?  (Shasta 

referring to the examples and work product the class has created earlier on the 
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white board. Student answered -3x – 30.) Alright, I want you to type -3x – 30.  

Press enter.  Anything exciting?  No? (Shown in Figure 30, line 2.) 

13:22 Alright, let's do the really wacky one [mistake].  Oh, how do I get that whole line 

copied?  Up arrow, highlight, so now I'm just going to delete off that line [the end 

parts] and put x – 13.  

13:37 Same thing happen?  What did your CAS do?  It just reprinted what you just 

typed?  (Shown in Figure 30 line 3.) 

13:50 I now want you to copy down one more time, delete off the x – 13.  And now type 

the correct answer, -3x + 30 and press enter.  (Students said true.) 

14:04 So, what just happened?  (Student: It discerned that it was correct.  Shown in 

Figure 30, line 4.) 

 

 
 

Figure 30.  Shasta’s TI-NspireTM textual commands projected from computer to the 
classroom wall. 
 

14:14 How do you know when you've actually distributed correctly?  (Students 

answered.)  It says true. 

14:23 Is there ever a reason for anybody to walk back in here again and not know that 

their distribution problem is correct? 
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14:35 Could this be a really quick, easy check for you every time?  (Shasta, Lesson, 

October 4, 2017) 

 Shasta presented Boolean logic CAS commands for the first time to this class.  He 

talked systematically through each command, ensuring that students had the opportunity 

to type the commands, to view the output, and to interpret the results with analysis.  He 

informed the students of his expectations to create and check individual work before 

returning to class with questions and also for learning by-hand procedures. 

 The second part of the lesson revolved around combining like terms with similar 

commands.  However, this time the CAS performed the operations in spite of incorrect 

solutions.  Shasta knew the potential problem and warned the students, “I'm about to do 

something dangerous on the Nspire – dangerous for your own warning”  (Shasta, Lesson, 

October 4, 2017).  Shasta was speaking in reference to the CAS combining like terms 

automatically, even when there was not a command keyed with the input. 

14:44 Here is another problem that was a little funky for you guys.  x + 10 – 2x + 5.  We 

had surprisingly large number of people having issues combining like terms.  

(Shasta performed by-hand procedures; having written the problem, solution, and 

mistakes on the whiteboard.) 

15:50 So how can we check to see whether this was actually correct? What do I type?  

(Students were giving Shasta suggestions to input in the CAS.)  x + 10 – 2x + 5  

16:08 Type out the problem, equals, what do we think it was? - x +15 (Shasta pressed 

the enter key and reflected on the output as shown in Figure 31.) 

16:15 We can combine like terms. 
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Figure 31.  Shasta’s TI-NspireTM textual commands projected from computer to the 
classroom wall. 

 
 
17:22 What would happen if, up here, instead of + 15, what if it was + 14?  What is the 

machine going to tell me?  (Student said false.)  Did it tell me false up above 

when I made the mistake?  What did it give me back?  The equation?  [Is it] 

alright if I try that?  It just did something funky.  (Student said it combined the 

one side as is shown in Figure 32.)  It combined the left side. 

 

 
 
Figure 32.  Shasta’s TI-NspireTM textual commands projected from computer to the 

classroom wall. 
 

17:56 Is 15 – x what I have? What was my answer?  - x + 15?  What's it saying on the 

left side?  15 – x? 

18:18 When you have addition, can you add the thing out of order?  What's that called?  

What's it called when you can swap the order?  (Students responded the 

commutative property.)  (Shasta, Lesson, October 4, 2017) 

 Shasta reinforced the input and output on the CAS, solidifying the CAS procedure 

of re-ordering the terms.  He honed in on the fact that CAS combined the like terms, even 

when computed with an incorrect by-hand computation.  Finally, he was able to draw out 

students’ vocabulary of commutative property and he showed an example of how that 

knowledge was applied.   
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 Shasta was clear that he wanted to teach his students how to use CAS as a tool for 

checking answers primarily to improve accuracy through cognitive processing.  He was 

aware of students’ mistakes but also keen on the idea that learners do not recognize when 

they make a mistake.  In addition to teaching students to learn pen-and-paper skills, he 

used student written work as a heuristic to engage students in the process of mathematical 

understanding. 

I make them commit in writing.  And that is like a major piece of what I do before 

I'll talk about solutions to a class— before I'll do anything else.  I make them 

commit to an answer.  Now they can go back and erase it.  I have no control over 

that piece, but what I'm trying to do is to get them to recognize in those moments, 

“Is there something going on that my written work doesn't align with what is 

coming out of the technology?” And it is just forcing them to slow down a minute 

so that they can actually give the cognitive side of their brain a chance to 

recognize it.  (Shasta, Interview, October 4, 2017) 

 Shasta used CAS as a tool to heighten awareness of each step and he evoked 

learners to think, reflect, and understand.  As part of the assignment, when a student 

made a mistake in their cognitive guess, he or she was directed to take a screenshot of the 

CAS display and paste into their notes for discussion at a later time. 

Shasta Vignette 1:  Pedagogical Opportunities 

 Shasta’s lesson on the distributive property and combining like terms 

demonstrated utilization of CAS in the following areas: exploiting the contrast of ideal 

and machine mathematics; re-balancing skills and concepts; building metacognition; 
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adjusting the classroom didactic contract; exploring regularity and variation; learning 

pen-and-paper skills; and linking representations.  The evidence summarized in Table 21 

used pattern matching logic (Yin, 2009) with the data and the P-Map Framework (Pierce 

& Stacey, 2010).  Descriptions from the vignette facilitated how these characteristics 

were demonstrated.  Evidence of connections to P-Map will be cited with time stamps 

from the lesson vignette as appropriate. 

 
Table 21 

Shasta Lesson Vignette 1 

P-Map Evidence 

S1 Contrasted expected with unexpected outputs with critical 
analysis of mistakes  

S2 Structured re-teaching skills based on availability of CAS 
S3 1. Foregoing the CAS command of combining like terms 

2. Sequenced lesson to avoid revealing automaticity of combining 
like terms on the CAS until students learn the logic arguments 

C2 CAS became an external mathematical consultant 
T1 A cognitive guess was checked against the CAS output 

T3 Student generated multiple examples to explore for accuracy 
 

 Exploiting contrast of ideal and machine mathematics (S1).  The lesson was 

centered on the contrast of by-hand versus CAS computations.  “All of the students 

walked out with an awareness that they have an ability to check their work” (Shasta, 

Interview, October 4, 2017).  Shasta expressed the value of students’ knowledge of 

verification, but Shasta also valued the critical analysis of mistakes.  “What this does, is it 

highlights a particular piece– makes you slow down and copy something and pay 

attention to where the mistake happened” (Shasta, Interview, October 4, 2017).  The 

Boolean logic of the CAS was helpful in developing a connection of the individual 
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mistake that a learner made by reflecting on the machine outputs (Time stamps 11:10, 

11:29, 13:37, 13:50, 16:15, 17:22).  In one instance, knowledge of the commutative 

property was required to interpret the output. 

 Re-balance emphasis on skills, concepts, and applications (S2).  This lesson 

was re-teaching skills that students had not yet mastered.  Shasta carefully presented the 

skill with a new action that was possible because of the availability of the CAS.  Students 

worked to develop strong pen-and-paper procedures and were presented the opportunity 

to refine their conceptual understanding of algebraic structure.  Students had different 

skill levels as they entered the classroom.  The creativity of unrestricted examples in the 

lesson provided differentiated instruction. 

 Build metacognition and overview (S3).  Shasta used Boolean logic of true or 

not true to aid students in finding their errors (14:14).  The CAS distribution property 

command (i.e., expand) was withheld from the scope of student knowledge intentionally.  

Shasta shared, “One kid who just asked, ‘Is there a way that I could just get it to do it for 

me?’ . . . There is an expand command.  I didn't give it to them” (Shasta, Interview, 

October 4, 2017).  Shasta purposely delayed access to the command.  Instead, Shasta set 

students to the task of making a decisive answer from their own cognition.  Students then 

reflected on the verification of their answer choice, the output, to complete their 

understanding.  “I am hoping the kid is metacognitively aware enough or becomes aware 

enough, that they can parse it apart and see the number part was good, maybe and my 

variable coefficient was off or whatever else it was” (Shasta, Interview, October 4, 2017).  

Shasta bridged student thought processes with CAS outputs through questioning tactics.  
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 Shasta carefully sequenced the lesson to present the distributive property first 

(14:23) and then combining like terms (16:15).  On the CAS, inputs were automatically 

simplified and rearranged to include combining like terms.   

The reason I started with the distribution and not the combine like terms is this 

particular CAS doesn't automatically distribute.  So it slowed the problem down, 

and they could hit enter and they wouldn't and, hopefully I was getting them into 

the mindset of, “I have to write before and after.”  So I was deliberately trying to 

keep them away from an Nspire CAS feature. (Shasta, Interview, October 4, 

2017) 

Shasta knew that to reveal the CAS functionality too soon, students might have missed 

the point of the lesson, that is, to check answers against the CAS.  Since the distributive 

property would not reveal that side of CAS, he sequenced that part of the lesson first. 

 Change classroom didactic contract (C2).  CAS evolved into an authoritative 

tool when Shasta instructed students to check assigned problems on the CAS prior to 

coming to class. “The big change is like this shift in authority.  Some kids are starting to 

for the first time, to not just be told that their answer is wrong and it should have been 

this” (Shasta, Interview, October 4, 2017).  Shasta modeled and promoted that shift 

through classroom practice.   

Every single individual student solved those six problems, and they did extras in 

his or her own way and was able to individually confirm without me looking at 

anybody's screen whether they got it and whether they needed to do more work.  

And they could do so at their own pace.  They didn't need me controlling the pace 

of the classroom.  (Shasta, Interview, October 4, 2017) 
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He monitored student activity and offered guidance, prompts, and inquiry to keep 

students engaged in the task.  He began the process of allowing CAS to be an external 

mathematical consultant to students for learning.   

 Learn pen-and-paper skills (T1).  Shasta generated the lesson as a result of 

student failure to perform algebraic procedures correctly on a non-CAS assessment.  

Shasta’s purpose was to re-teach and re-direct students to learn pen-and-paper skills.  

When asked about learning by-hand calculations Shasta stated, “The initial expectations 

were, I need to get their brains to engage” (Shasta, Interview, October 4, 2017).  He 

believed that students had absolute confidence that their answer was correct, even when it 

was not, so CAS leveraged the immediate feedback.   

Recognition for the students that when they write down their algebraic equivalent 

from the distribution and combining like terms, every one of them is 100% 

convinced that they've got the right answer.  So the check step with an infallible 

machine, just to have that added safety check. (Shasta, Interview, October 4, 

2017) 

The ultimate goal was to learn pen-and-paper skills (2:56).  CAS was the efficient tool for 

the learner to ensure that the mathematical skills were processed accurately. 

 Explore regularity and variation (T3).  Shasta first provided discoveries and 

examples, and later left the student to create their own inquiries.  “I could not have done 

this level of individualized problem solving without technology” (Shasta, Interview, 

October 4, 2017).  CAS allowed students variation of problems specific to each persons 

need. 
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Shasta Vignette 2:  Solving Equations 

 The goal of the lesson was to learn how to solve basic linear equations error-free.  

The student entered the entire equation as provided.  Whatever operation the student 

chose to isolate the variable was typed into the machine.  The CAS operated accurately to 

both sides of the equation.  This method assisted the student by providing a visual 

representation of when that operation helped to isolate the variable in the equation.  It 

also reduced any potential computational errors (e.g., incorrect addition or subtraction).  

 Shasta chose this instructional method as a follow-up to the previous lesson on the 

distributive property and combining like terms.  It was given on the same day but is 

explained here as a stand-alone lesson.  Shasta shared only one example with variations 

in his step-by-step instruction of this CAS procedure. 

31:28 If I look at this [equation on the whiteboard], what would be the first thing I 

should do?  So, 20x – 17 = 5.  (Students were answering.  Shasta was repeating.) 

Add 17.   

31:43 Now what do you think a classmate might do?  What's a common mistake?  

Subtract 17. (Shasta justified why he was trying an incorrect operation to solve on 

the CAS.) 

31:57 What if I errantly thought I was supposed to subtract 17.  I'm going to type 

minus17, and this time I'm going to do Ans – 17 (see Figure 33). 
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Figure 33.  Shasta’s TI-NspireTM textual commands projected from computer to the 
classroom wall.  Sequential steps that demonstrated solving an equation. 

 

32:37 What happens to my equation?  Is it prettier or uglier?  But you're supposed to be 

in a way, like simplifying this thing down.  (Result shown in Figure 33, line 2.)   

32:51 At this point would you recognize that subtracting 17 wasn't the best way to go?   

32:59 So how can I correct it?  What's the easiest way to fix it on the Nspire?  How can 

I copy down my previous line?  Up arrow until it's highlighted?   

33:11 And I really wasn't supposed to be minus 17, what was I supposed to do?  So let's 

change the minus to a plus, and now did I simplify the problem?  (Result shown 

in Figure 33, line 3.) 

33:27 Can you tell really quickly that you've done a silly mistake?   

33:31 So, I was supposed to be + 17 + 17.  I get 20x = 22.  What would be my next 

algebraic step?  (Student: Divide 20.)  So how is this going to attach to the x?  So 

how are you going to do it?  Divide by, whatever it was?  x is 22 over 20?  And is 



 

 

199 

that a perfectly fine number?  (Students: Simplify that.)  So, what would I do to 

both sides up here? 

34:36 What buttons do I press?  Slash, divide by 20 and watch what it does.  Not only, it 

wasn't like 22 over 20, but it went ahead and simplified the fraction for you.  

(Result shown in Figure 33, line 4; Shasta, Lesson, October 4, 2017)   

 Shasta modeled solving an equation by providing step-by-step instructions to key 

in the commands for the laptop version of the TI-Nspire.  Line items on the CAS do not 

display in a similar manner to pen-and-paper work products.  Shasta’s inquiries intended 

to connect pen-and-paper work products to CAS syntax.  Shasta summarized the goal, “I 

don't expect anyone to walk back in here again without having checked your work.  

You'll still have some of these that you don't understand, but you should know absolutely 

whether you got it right” (Shasta, Lesson, October 4, 2017).  His mission was to teach the 

tool well enough that students could independently utilize CAS. 

Shasta Vignette 2:  Pedagogical Opportunities 

 Solving equations by scaffolding steps on the CAS was a technique Shasta used to 

advance student cognition to procedural fluency in solving mathematical equations.  The 

lesson facets were summarized in Table 22 as exploiting the contrast in machine 

mathematics, building metacognition and overview, adjusting the classroom didactic 

contract, and learning pen-and-paper skills. 
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Table 22 

Shasta Lesson Vignette 2 

P-Map Evidence 

S1 Equation solving appears different on CAS from typical by-hand 
work products 

S3 1.  CAS alerted student to a mistake when solving equations 

2.  Foregoing the solve command 
C2 CAS became an external mathematical consultant 
T1 CAS kept student work error-free through step-by-step checks 

facilitating the learning of pen-and-paper skills 

 

 Exploiting contrast of ideal and machine mathematics (S1).  The TI-NspireTM 

displayed the solving of equations in an uncommon manner (32:37).  The CAS embraced 

the entire equation in parentheses and displayed just one operation performed to the 

whole equation as in Figure 34.  Shasta exploited those differences.  Mathematical 

operations typically are depicted as performed on both sides of an equation.  

Commonplace by-hand procedures do not show just one-sided operations such as the 

CAS did when solving an equation. 

 

   

Figure 34.  Typical by-hand procedures contrasted with CAS.  
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 Build metacognition and overview (S3).  Shasta purposively typed a mistake 

into the CAS to provide a visual representation of how the CAS would display the 

aberration (31:57).  He described the output as pretty or ugly and added that it did not 

help to isolate the variable (32:37).  This modeled critical analysis of CAS outputs when 

you made a mistake and also provided value to students’ reasoning when each 

independently made a similar mistake. 

 CAS had a command that avoided the step-by-step procedures.  Shasta talked 

about why he did not reveal that aspect of the tool.  “Note that there is absolutely a solve 

command; I am not giving it to them yet.  They will get it.  They aren't getting it yet.  

They need to learn the fundamental vocabulary first” (Shasta, Interview, October 4, 

2017).  Shasta was careful to use CAS to build procedural skills and he anticipated the 

timing of introducing CAS commands. 

   Change classroom didactic contract (C2).  A primary goal was to help students 

become more independent learners by checking each algebraic step of an equation solve 

with the CAS.  “You should know absolutely whether you got it right” (Shasta, Lesson, 

October 4, 2017).  Shasta shifted the responsibility to the student with a CAS outside the 

classroom boundaries. 

 Learn pen-and-paper skills (T1).  The task was designed to help students 

become proficient in solving equations with complete accuracy.  Through mistakes that 

were displayed on the CAS (32:51), students recognized the error in the midst of solving 

the equation.  The CAS provided the opportunity to self-correct. 
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Shasta Vignette 3:  Introducing Linear Functions 

 This lesson vignette spotlighted an introductory approach to linear functions 

through numeric patterns and arithmetic sequences.  There had not been any discussion 

about slope, graphs, or y-intercepts previously.  Shasta provided a list of numbers that 

formed an arithmetic sequence that generated a linear pattern.  He instructed students to 

explore the values as data points by finding several additional points and identifying 

patterns.  He then asked students to enter the data into a spreadsheet on the TI-NspireTM, 

create a scatterplot, drop in a moveable line, and adjust it to fit the data points.  The TI-

NspireTM attached an equation to that moveable line.  Shasta questioned students about 

the equation to correlate to the original number pattern.  In a post-interview, Shasta 

explained the lesson design and why he chose this approach. 

I connected back to find the next number in the sequence stuff that the kids were 

heavily used to from their lower school, their elementary school.  And basically, 

we knew if the first term was this, the second term was this, and the third term 

was this, they see what you are adding or subtracting every time.  So they are 

easily able to make predictions.  We turn those into ordered pairs.  Those can then 

go onto a graphics screen.  There were lots of choices, but the TI-NspireTM is the 

only one that I knew of where the kids could actually take their mouse or because 

they have touch screens, literally lay their fingers on the line and maneuver the 

line so that it fits the graph. . . . I wanted the tactile laying the hands on the line. 

They then had their equation that sort of pops out. . . . So basically they develop   

y = mx + b, but they do it as the nth term of an arithmetic sequence rather than as 

slope plus y-intercept.  So basically, I tried to make it connect to something they 
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had experience with, rather than forcing them into the abstract as their first 

exposure to lines.  (Shasta, Interview, November 6, 2017) 

 Shasta set the lesson up in the class digital notebook for students to explore with 

table partners before giving the explicit directions on the CAS.  He walked around the 

room assisting students with computer skills and directions.  After 30 minutes he began 

the class discussion.  Images from the computer screen shown in Figure 35 represent the 

sequence of steps in data entry. 

1:50 If I was to give you those first three, could you recreate this entire list?  What's 

the next number?  (Students:  37, 39, 41) Okay, as soon as you got enough there– 

the first term and the second term.  I happen to have three, watch what happens.  

If you don't know this trick already I need eyes on screen.   

2:13 Hover your mouse over the lower right hand corner.  What happens just as I get to 

the right hand corner?  Turns into a plus.  (The image projected on the wall in  

Figure 35 showed the columns highlighted but not the plus sign that would be at 

the corner of the blue highlight.)   

2:21 Click and hold, drag it to the bottom of the list, it already, you've already defined 

the pattern, when I release it just fills them in for you.  (Students were amazed and 

trying it their device.)  (Shasta, Lesson, October 5, 2017) 
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Figure 35.  Shasta’s TI-NspireTM textual commands projected from computer to the 
classroom wall. 
 

 Shasta had given small groups of students a drag-down tip to automatically fill the 

columns when he was monitoring students at the beginning of class.  He provided a 

rationale for revealing this command on the spreadsheet.  

What I figured out was the kids really just don't have spreadsheet experience, so I 

am slowly building that in over the year. . . . It enabled me to get the kids to really 

quickly get all of their information in.  (Shasta, Interview, November 6, 2017) 

He wanted to teach the tool and expedite the procedures with accuracy.  After the data 

were entered, he questioned students to extract their knowledge of data and statistics 

applications on the TI-NspireTM. 

2:33 Now just like we did with the river, just like we've done with other things, when I 

have data and I want a picture?  (Students responded.)  Yeah that works, alright? 

2:50  So insert, Data and Statistics.  And my x value was?  Yes, very, very exciting 

terminology there.  The x value was x-value.  And y value was y-value and whoa 

that's way too pretty.  (Shasta, Lesson, October 5, 2017) 

 Some of Shasta’s students had already determined this method during the first 

part of the class.  Shasta accommodated all the students and ensured that the linear 
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equation was determined both with the CAS and by pen-and-paper.  The directions 

continued to affirm how the CAS revealed the formula for the sequence of numbers.  The 

images of the sequences of events are shown in Figure 36. 

3:09   So what did you do next? . . .  Moveable line?  I was really impressed with 

everybody.  You guys figured out how to do this without me even giving you a 

single piece of instruction. 

3:26 Did you grab the ends?  (Student talking to teacher about directions on CAS with 

regards to a grid command to move up/down and curly arrows to swivel the line.)  

3:42 Yeah, but you guys like we're in, is that pretty close?  Pretty close to right there in 

the center?  Let's see if I can get that top line a little bit better, okay. 

4:03 What is that number look like it's really close to?  Two and this one looks like it’s 

close to?  31?  So let me show you one more nice trick.  2x + 31?  Yes.   

4:17 Alright, click on the line, I'm going to make it go away.  2x + 31, watch this, 

analyze [CAS command], plot function.  What did we say this was equal to?      

2x + 31  (Shasta typed the precise function into the CAS and it lined up perfectly 

with the data points.) 

4:40 Do you think we might have the pattern?  (Shasta, Lesson, October 5, 2017) 
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Figure 36.  Shasta’s TI-NspireTM textual commands projected from computer to the 
classroom wall.  Sequential steps that demonstrated data manipulation from a spreadsheet 

application to a graph plot. 
 

 After the class discussion resulted in a definite formula, Shasta directed his 

student’s attention back to the whiteboard and the original list of values.  The discussion 

that followed illuminated student understanding of the connection to mathematics; the 

parts of the equation that related to those initial values. 
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5:25 What kind of formula did we come up with?  (Students all worked together to get 

y = 2x + 31) 

5:41 This formula has something to do with this list.  (Students screaming:  It's the 

number that you start with.)   

5:53 It's not the first number.  (Students: It's the zeroth number!)   

6:05 We are calling it the zeroth number so that we don't confuse it with the first. 

6:13 What's the two got to do [with it]?  (Student: It's how much it goes up by.  It's our 

sequence and pattern.)   

6:22 So, if that's true, if this really is the formula, could you tell me what the ninth term 

in this list is, without looking? 

 Students and teacher continued working several more examples both by-hand and 

with this same technique.  Shasta continued with inquiries from all different perspectives.  

He summarized the lesson, “So you have a [graphic], an algebraic, a numeric, and a 

verbal description of the line.  Are we good?  Given any one, can you re-create the other 

three?” (Lesson 18:54, October 5, 2017).  Students were given an assignment in which 

three geometric figures were drawn as a growing pattern and they had to determine the 

number of blocks in the nth figure.  This was Shasta’s closure to the lesson. 

 Shasta’s post-interview was obtained several weeks after the lesson.  He was 

asked, “What has changed in terms of student understanding about linear relations?”  

Since the approach was new to him, he was very reflective about student learning.  He 

described events that took place after the observed lesson. 

I started giving them sequences where the terms, they were no longer adjacent to 

the other.  So I gave them like the second term and the seventh term.  They had to 
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figure out the common difference, and they had to figure out the zeroth term.  

They pretty quickly, like it was just intuitive, from the second term to the seventh 

term it’s five steps, so whatever change my numbers had done, I just divide by 

five, it's the least common differences. . . . And then, I took the two ordered pairs, 

drew a vertical line down the board.  So I am writing directly beside what they 

just solved.  I do slope between the two ordered pairs.  And the screams coming 

from the room, “No, you didn't.  You tricked us.” (Shasta, Interview, November 

6, 2017) 

 Introducing linear equations by providing an arithmetic sequence first was 

genuinely avant-garde pedagogy for Shasta.   

I had never taught arithmetic sequences as anything other than a linear function.  I 

never taught it as separate formulas.  But this is actually a little bit of serendipity.  

This was the very first moment that I ever actually 100% developed for a kid in 

their first year algebra course . . . developed this [approach].  It was just sort of 

gut instinct from lots of experiences.  All my other stuff didn't work perfectly; let 

me try something else.  I'm thinking this is going to work out well.  (Shasta, 

Interview, November 6, 2017) 

He chose this methodology because he knew that students had familiarity with number 

patterns.  What he realized in retrospection was that he was able to circumvent the 

abstraction of linear relationships to build conceptual understanding with students.  “I 

tried to make it connect to something they had experience with, rather than forcing them 

into the abstract as their first exposure to lines” (Shasta, Interview, November 6, 2017).  

Finally, Shasta did not anticipate student development of the slope concept so concretely 
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that the knowledge became intuitive for his students.  They recognized slope as a 

difference between terms in a sequence of values. 

Shasta Vignette 3:  Pedagogical Opportunities 

 Shasta’s innovative approach revealed multiple aspects of pedagogy that were 

effectuated as a result of CAS.  Some codes numbered in the evidence column of  

Table 23 were due to features of the lesson that warranted in-depth discussion.  A 

thorough explanation follows. 

Table 23  

Shasta Lesson Vignette 3 

P-Map Evidence 

S1 
Moveable line gave an approximate linear equation.  Collectively, 
the class arrived at the exact equation. 

S2 Tangible lesson to increase student conceptualization based on 

prior mathematical knowledge 
S3 1. Use of various representations:  spreadsheet, graphs, algebraic, 

numeric 
2. Reinforce syntax procedures through repetitive motions 

C1 1. Exploration activity lent to social exchange 
2. Social interaction enhanced mathematical connections from 

graphic to algebraic perspective 
T1 The instant answers provided feedback to the student 
T3 Patterns were explored through the extension in the spreadsheet 

and in the placement of the moveable line 
T5 Multiple representations: sequence, ordered pairs, scatter plots, 

linear functions, and geometric patterns 

 

 Exploiting contrast of ideal and machine mathematics (S1).  CAS inserted two 

types of lines:  the moveable line (3:09) and the plot function feature (4:17).  Shasta used 

his approximation of the moveable line to determine the precise equation.  He verified 
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that it was the actual formula by plotting that function on the scatter plot using the CAS 

command plot function to display a visual representation that showed a perfect fit.  

 Re-balance emphasis on skills, concepts, and applications (S2).   Shasta chose 

to approach this lesson from a tangible activity of number patterns.  He knew that CAS 

would allow students to connect the concept of increasing values by addition for 

subsequent terms by graphing a moveable line and then looked at the numerical value as 

the coefficient of x. 

I tapped the moveable line feature in the data and statistics window as another 

essentially . . . I now consider it a CAS feature, this ability to like have a function, 

have a line, and actually manipulating on an object geometrically, rather than 

manipulating it algebraically. (Shasta, Interview, November 6, 2017) 

Shasta chose a conceptual delivery of linear functions that was grounded in students’ 

prior knowledge of numerical patterns.  This allowed him to delay the abstraction of 

linear functions and at the same time cultivate a connection to the increasing values at a 

constant rate of change.  Additionally, he constructed a gateway to a visual representation 

of the graphs for these number patterns.  He talked about the pedagogy to construct the 

mathematical knowledge.  

Algebraic representations are extremely non-intuitive to early algebra 

students.  By holding off the algebraic manipulations as long as possible, my 

students are able to discover the slope/common difference and y-intercept/0-term 

relationships that define the y = mx + b form.  They discover the fundamentals for 

themselves; they don’t memorize what I lecture.  It’s a much deeper, organic, and 

long-lasting effect. (Shasta, Written Reflection, October 14, 2017) 
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This lesson demonstrated access to linear functions through a re-balancing of procedural 

skill and conceptual development. 

 Build metacognition and overview (S3).  This lesson included multiple 

representations with the purpose of developing a richer understanding of linear functions.  

Shasta purposely started with numeric data and had students translate into graphical 

representations.  He shared how those various representations build mathematical 

understanding. 

I’ve ‘preached’ multiple representations and how an answer or aspect of a 

problem that isn’t obvious in one form can ‘appear’ when you translate between 

forms.  The human brain is quick to see numeric patterns in arithmetic sequences, 

which is why recursive formulas for sequences are simpler for students. (Shasta, 

Written Reflection, October 14, 2017) 

He approached multiple representations as a foundational aspect of teaching any 

mathematics concept.  Shasta regarded the cognitive functioning from reflection on those 

different forms a complex brain activity and he would do everything possible in his 

instructional practice to ease students into understanding more deeply the connections. 

 Shasta managed the availability of technical features.  In this lesson he let 

students tire over tedious data entry.  When students had entered a substantial number of 

points in the spreadsheet, he instructed the use of dragging to populate the table based on 

number values already entered as the first part of a sequence.  Shasta shared his rationale. 

The dragging technique is an immensely powerful tool.  If given at the beginning, 

students are less likely to remember it.  By feeling mundane data entry before 

experiencing the wonder of having it automatically generated, the students can (1) 
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verify the automatic results, and (2) clearly understand how much time the 

approach saves.  Both “dramatic” experiences increase the likelihood of long-term 

memory encoding.  (Shasta, Written Reflection, October 14, 2017) 

He divulged these shortcuts or features of the device during classroom cooperative 

learning times.  When he was monitoring student progress he would show the drop-down 

feature to small groups of students.  It was only later that he demonstrated this drag-down 

action to the whole class on the computer-projected screen (2:13). 

 Change classroom social dynamics (C1).  Students were encouraged to work in 

partners or small groups to discuss both the process of completing the task and the  results 

obtained.  Shasta viewed student discussion as a critical component to externalize the 

theories that a student is conjecturing. 

Student conversations and discovery are central to all of this.  I’m asking my 

student not to memorize, but to define patterns they see, explain how these appear 

in the equation that appears as the output of the moveable line, and ultimately to 

hypothesize results for sequences they create on their own. (Shasta, Written 

Reflection, October 14, 2017) 

In this particular lesson, the moveable line approximations necessitated sharing to build 

strong connections to a precise formula.  Students got a variety of equations based on 

their own manipulation of the line.   

Student interaction is also critical here because the moveable line fits don’t all 

create exactly the same equations— very small pixel variations create differences 

in coefficients.  By looking at all of the equations a group creates, they can more 

confidently hypothesize something of an average equation that will tend to be 
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closer to the true equation— something like the central limit theorem of 

discovering linear equations!  (Shasta, Written Reflection, October 14, 2017)  

Shasta hoped students were not relying on their own approximation but looked at 

classmate’s equation for the same data.  In this way, collaboration provided each student 

greater assurance in his or her conjecture.  

 In addition, students were communicating mathematics, causing students to adjust 

their perspective to more clearly direct information to their peers.   

I've got a point person and a sequence person sitting at the same table working on 

a problem together.  I'm watching the kids like change their language and change 

their interpretation so the other person can understand what they are saying. 

(Shasta, Interview, November 6, 2017) 

This tapped into multiple approaches to solutions and extracting connections. 

 Learn pen-and-paper skills (T1).  Student graphical representation on the CAS 

instantly revealed whether the numeric calculations the student performed to find 

subsequent terms were correct or not.  Students noticed that sometimes a point would not 

line up with the other seven points.  The output helped the student reflect on their pen-

and-paper skills and self-correct. 

 Explore regularity and variation (T3).  Students moved fluidly from a 

spreadsheet of data to a graphical form.  The CAS allowed students to insert a moveable 

line that could be manipulated (3:09).  This variation permitted learner flexibility in 

exploring the function; thereby, making connections to the values of slope as related to 

the common differences between terms. 
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 Link representations (T5).  The activity associated a sequence to ordered pairs, 

scatter plots, and linear functions.  “By shifting to the graphical representation, the linear 

relationship in the data jumps in your face” (Shasta, Written Reflection, October 14, 

2017).  As an extension to the lesson, Shasta linked a geometrical pattern to the sequence.  

This lesson blended the representations fluidly so that students potentially could have 

multiple entry points. 

Shasta Vignette 4:  Quadratic Factorization 

 The goal of this lesson was to understand the relationship between binomial linear 

factors and the product as a quadratic expression.  Shasta taught students the by-hand 

distributive calculations using a box method and a rainbow arc method.  He shifted to the 

CAS to generate multiple examples expeditiously in order to analyze number patterns 

from the results.  The pedagogical move by Shasta intended to promote students to think 

deeply about numeric relationships.  “My goal was to use the CAS to avoid memorized 

patterns in boxes in most textbooks, expand what they had learned without technology, 

and return to the CAS to expedite and reinforce what they had learned” (Shasta, Written 

Reflection, December 20, 2017).   

 Shasta was slow to move to CAS in this lesson.  He taught the by-hand procedure 

first before cautiously revealing the CAS commands to students.  He introduced the 

factor and expand CAS commands to the class.  “I'm going to show you a couple new 

commands for your computer algebra system.  They are really nice commands.  We're 

going to do a little exploration and try to speed up this whole process” (Shasta, Lesson, 

December 4, 2017).  At the same time, he warned his students, “While these commands 

can dramatically speed up your homework and your practice time, if you don't know how 
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to do this, you're going to be completely hopeless when you're facing a quiz” (Shasta, 

Lesson, December 4, 2017).  Shasta expressed this conflicted feeling about using CAS to 

help develop conceptual understanding, knowing that it could adversely affect student 

learning.  He projected the warning on the wall (see Figure 37) to be sure the concern was 

acknowledged. 

 

 
 
Figure 37.  Shasta’s presentation notes projected from computer to the classroom wall. 

 

 Shasta began with the command factor on the CAS and used the exact factoring 

problems that were just solved with by-hand calculations.  Shasta instructed students to 

type in the CAS.  He waited to key the commands until after students had completed 

typing.  He explained the TI-NspireTM recognition of an internal command.  When a 

command was typed rather than accessed through the CAS’ menu, the display font was 

showing differently for text and internal commands as shown in Figure 38. 

25:32 These are two problems that we just did.  [x2 + 12x + 36 and x2 + 6x + 9]  The 

CAS command is factor.  How can you tell . . . (Students typed into their device, 

but Shasta is not yet keying this.) 

25:55 So as soon as you type the r [in the word factor] and it straightens up and says 

what?  

26:09 That’s the signal that [CAS] knows what you’re talking about (Shasta, Lesson, 

December 4, 2017). 
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Figure 38.  Shasta’s TI-NspireTM projected from computer to the classroom wall.  Note 
the font prior to typing the r in factor. 
 

 Next, Shasta allowed students to interpret the result of the factorization of           

x2 + 12x + 36 since the result displayed (x + 6)2 rather than the two binomials as a 

product.  It was assumed from Shasta’s questions that the by-hand calculations were not 

combined into a single binomial squared. 

26:22 Alright, so I'm going to type factor [on the computer display] and it was              

x2 + 12x + 36. 

27:19 What did we get when we factored this on the wall? (Students answer x plus six 

times x plus six). 

27:31 Is it the same [on the CAS]? Why? (A lot of discussion among students.) 

27:51 It's not exactly what we expected, but isn't it (pause) exactly what we got on the 

wall? (Shasta, Lesson, December 4, 2017) 

Shasta relayed the connection between the symbolic algebra and the work product from a 

visual box method solution on the wall. 

 After a few more examples that use factor, Shasta introduced the expand 

command.  Shasta projected instructions on his wall as shown in Figure 39 and said, “The 

computer command for distribution is expand” (Shasta, Lesson, December 4, 2017).  He 

provided time for students to enter commands in CAS according to the presentation 

directions. 
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Figure 39.  Shasta’s presentation notes projected from computer to the classroom wall. 
 

 Shasta anticipated student error in keying the commands.  He modeled the correct 

key sequence and explained the potential mistakes to students.  The reader should note 

the warning in the transcript and the actual key commands that Shasta performed in 

Figure 40. 

30:03 Remember, I gave a warning.  The reason was up there on the slide. 

30:11 The parentheses are really, really important. 

30:17 Expand, there is automatically a big set of parentheses and inside that you have to 

put everything you want to expand. 

30:27 Now, that expression on the inside, if it has parentheses, you have to get them all 

in there.  Notice here, when in looking . . . 

30:35 If you want a set of parentheses on the outside then I have all of these parentheses 

going on the inside of these [the big parentheses]. 

30:58 (Shasta showed the correct syntax for input while talking.)  Expand.  Now I have 

x minus 4 in parentheses. 

31:05 So I have to open up another set of parentheses, so there's x minus four. 

31:10 Open up another parentheses for x + 5. 
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31:14 And when I have all the parentheses of the original problem contained within one 

extra set of parentheses, then I can expand. 

31:34 Do you have ways that you can confirm for distribute and undistribute [factor]?  

(Shasta, Lesson, December 4, 2017) 

 

 
 
Figure 40.  Shasta’s TI-NspireTM projected from computer to the classroom wall. 
 

 Shasta was prepared for some students to make the mistake with parentheses 

before further explaining the correct syntax to the class.  After working through the 

correct procedure, he questioned students’ ability to verify their own work through the 

CAS.   

 Class time shifted to student-centered work for a few minutes.  Students 

performed multiple factoring computations on the CAS and explored the relationships 

between the numbers in the original quadratic expressions and the factored expression as 

displayed in Figure 41.  Shasta then brought the class to a group discussion to talk about 

the numerical patterns. 

37:22 Is there a relationship between the expanded and the distributed form? 

37:36 There is a relationship between the numbers in the factored form and the 

expanded form. 

37:51 Look here, the numbers 13 and 36 are somehow connected to 4 and 9 (Shasta, 

Lesson, December 4, 2017). 
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Figure 41.  Shasta’s presentation notes projected from computer to the classroom wall. 

 

 Students discussed these relationships amongst one another and also with Shasta.  

Once it was established that the last number was the product of the two linear factors and 

the middle coefficient of x was the sum of the two linear factors, Shasta changed the 

quadratic trinomial to an example that would not follow that pattern.  He projected the 

example 2x2 + 27x + 36 on his wall as shown in Figure 42.  He asked students to factor 

and to consider the reason why the newly discovered procedure did not work.  

 

 
 
Figure 42.  Shasta’s presentation notes projected from computer to the classroom wall. 
 

43:41 Factor this 2x2 + 27x + 36.  What should happen here?  (Students answering the 

pattern discovered and Shasta repeated.)  It seems like it should add to 27, 
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multiply to 36? Right?  Let's find out. (Shasta typing factor into the CAS followed 

by the trinomial.  The output was (x + 12)(2x + 3).) 

44:51 So those two numbers multiply to 36 but do they add to 27? (Students saying no.)  

44:58 Why?  What is different?  (Student says that it is two x squared.) 

45:01 It's 2x2.  This is really important everybody.  What is common in all the first 

examples?   

45:09 All these rules (pause) the fast rules only work for what form?  (Shasta, Lesson, 

December 4, 2017) 

 Shasta briefly explained how to factor when the trinomial starts with something 

other than one by referring students back to the box method.  He mentioned that this type 

requires a little more thought to develop the mathematical patterns to factor and that a 

different day will be devoted to that.  Shasta closed the lesson by asking students to 

complete an exit ticket prompting students to factor a few problems with the sum and 

product procedure was developed by analysis of CAS outputs.   

Shasta Vignette 4:  Pedagogical Opportunities 

 The lesson widely involved pen-and-paper skills with reasoning of numeric 

patterns.  CAS provided instructional opportunities similar to those in Shasta’s Vignettes 

1 and 2.  However, in this instance CAS performed all computation instantly.  Shasta was 

compelled to ask questions to draw out the connections for students to ensure that the 

CAS was truly a consultant to student learning as opposed to an outsourcing of 

procedures.  The evidence of the cultivation of trinomial factorization is summarized in 

Table 24. 
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Table 24  

Shasta Lesson Vignette 4 

P-Map Evidence 

S1  Explored the contrast of perfect square trinomials with CAS and 
by-hand calculations 

S3 

 

Used CAS commands to provide an overview of factoring 

quadratic functions, delaying the menu options 
C2 Factor and expand commands allowed an authority shift 
T1 Learn how to factor without CAS; with mental math 
T3 Regularity in the problems that do factor; variation in problems 

that factor with a different pattern 
T5 Visual models banded with symbolic representation 

 

 Exploiting contrast of ideal and machine mathematics (S1).  The by-hand 

calculations of the trinomial x2 + 12x + 36 resulted in (x + 6) (x + 6), but the CAS syntax 

was (x + 6)2 (Time stamp 26:22).  “Even though your answer looks different doesn't 

mean it is” (Shasta, Interview, December 22, 2017).  Shasta questioned students about the 

accuracy of the answers allowing connections to be discovered by the students 

individually.   

 Build metacognition and overview (S3).  Shasta prescribed access to the CAS 

commands to prevent gratuitous use of CAS.  He did not teach the factor command via 

menus on the CAS.  Instead, he directed students to type the word out and to observe the 

letters changing from an italicized font to a regular bold font, indicating an internal CAS 

command (25:55).  He shared his rationale in the reflection. 

The CAS is an extremely powerful tool.  I haven’t pulled any commands from the 

menus yet.  Partly, that is to keep students unaware of some additional commands.  

Also, I’m trying to get students to be “intuitive” about commands.  I ask them to 
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think about what they are trying to do and to ask the CAS to do that.  They focus 

on “words” becoming un-italicized to recognize when they have hit upon a 

command the CAS knows. (Shasta, Written Reflection, December 20, 2017) 

Shasta hoped this purposeful tactic would enable students to be eager in their future 

encounters with the CAS.  He also wanted to restrain the specific features to preserve 

learning of some foundational mathematical skills. 

 Change classroom didactic contract (C2).  He used the CAS to reveal other 

ways to write factorizations, instead of telling them.  The example of one binomial 

squared was discussed above.  Another case was the sequence of factors. 

 Learn pen-and-paper skills (T1).  Shasta made clear the goal was to develop a 

method to complete factorization of trinomials with the mental ability of number pattern 

recognition.  He used CAS as a path for students to explore the number patterns of these 

relationships.   

 Explore regularity and variation (T3).  This lesson was set up as an exploratory 

activity.  “I wanted them to have some practice with the ‘mechanics’ of factoring and had 

set the stage for them to ‘discover’ the sum & product features of the coefficients” 

(Shasta, Written Reflection, December 20, 2017).  Shasta carefully selected mathematical 

expressions that would present both affirming and problematic situations to students.   

 Students saw supporting evidence in factorization when the output of the CAS 

matched their expected result from by-hand computation.  Later, students saw variation 

when an unexpected output produced of one expression that combined the factors.  The 

output (x + 6)2 supported learning to reveal equivalent expressions (27:19). 
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 Shasta intentionally presented an example that was problematic to students.  

When students tried to factor a quadratic function that had a leading coefficient of two, 

the output did not align with their newly developed rule.  When asked about the 

placement of this example Shasta responded, “I was drawing attention to this feature 

*after* they had some practice so they could understand *why* the coefficients 

combined this way and to shine a spotlight on features some had already started to 

recognize intuitively” (Shasta, Written Reflection, December 20, 2017).  Shasta used the 

variation to advance student learning through consideration of how that two affected the  

terms in the factorization. 

 Link representations (T5).  The by-hand methods at the beginning of the lesson 

were reinforced by the CAS results.  Shasta facilitated the connections of visual and 

algebraic representations.   

With the mechanics already in hand (to various degrees across the class), some 

were frustrated with having only the box (visual approach) to factor.  By 

explicitly naming the algebraic/numeric relationship, students again had multiple 

ways (visual—and now algebraic) to solve their problems.  (Shasta, Written 

Reflection, December 20, 2017) 

He continued to compel students to explicitly state the patterns and relationships between 

the numbers, solidifying the concept. 

Shasta Case Analysis 

 Shasta taught secondary school while exploiting CAS in mathematics pedagogy 

since the beginning of his teaching career, 30 years prior.  He served as the lead 

supervisor of mathematics in the school system and carried the burden of fulfilled all 
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duties related to mathematics at his school.  At the time of the study, he was reassigned 

from teaching high school precalculus courses to eighth grade algebra one and geometry 

classes, filling an unexpected vacancy.  Shasta’s stories revealed instructions from a basic 

foundational algebra perspective that emanated from three eighth-grade classes. 

P-Map 

 The first three lesson vignettes spanned one week; the fourth vignette occurred 

two months later.  Shasta’s pedagogical opportunities, summarized in  

Table 25, indicated that subject-level prospects occurred most frequently in these algebra 

classes.  The total pieces of evidence comprised nearly half of the pedagogical 

opportunities observed in Shasta’s lessons.  The classroom didactic contract was clearly 

affected by the promise of CAS as a cognitive tool (i.e., students feel empowered to take 

over their own learning).  Only three of the five task opportunities from the P-Map were 

observed.  Of these, CAS’ support of pen-and-paper skills understandings stood out as a 

primary task.  The total number of occurrences aid in understanding pedagogies observed 

more frequently.  It is not the case that a higher number indicated superior instruction.  

The discussion that follows clustered the opportunities in the three levels of the subject, 

the classroom organization, and tasks. 
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Table 25  

Shasta Lesson Vignettes Summarized:  The Occurrences of P-Map Opportunities that 

were Exploited During the Lesson Grouped by Subject, Classroom, and Tasks 

P-Map Vign 1 Vign 2 Vign 3 Vign 4 Total 

S1     4 
S2     2 
S3     4 
C1     1 

C2     3 
T1     4 
T2     0 
T3     3 

T4     0 
T5     2 

 
 
 Subject (S1, S2, and S3).  Shasta exploited the differences in the machine and 

by-hand procedures in all of the lesson vignettes to advance student learning and also to 

recognize equivalency when the syntax produced an unexpected result.  The contrast of 

the ideal was used as a verification tool for procedural accuracy.  Shasta’s lessons 

(Vignettes 1, 2, and 4), presented as the distributive property, combining like terms, 

multiplying and factoring quadratic equations, necessitated exactly one solution.  CAS 

returned true, the identity of input, or the result of a procedure.  In some cases when the 

machine provided an unexpected result, the output was actually correct and equivalent 

but with a different form.  When that occurred learning shifted to knowledge of 

mathematical properties, arrangement of terms, and computer syntax.  The output of the 

device created a situation in which the teacher facilitated student interpretation of results.  

Otherwise, students may have misread the output, disrupting the purpose of verification. 
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 Shasta used dynamic features as a catalyst to construct mathematical knowledge. 

The changeable properties of a moveable line were accessed in Vignette 3 to compile 

characteristics of linear functions.  The ability for students to have a tactile interaction 

with the device to generate a line that best fit the data provided insight about the steady 

rate of increase.  The discussion that followed brought out two concepts: (a) slope as the 

difference between terms; and (b) y-intercept as the term that preceded the first term in 

the sequence.  The activity augmented student conjecturing and justifying conditions 

about the characteristics of linear functions. 

 Classroom organization (C1 and C2).  The four lesson vignettes portrayed 

Shasta instructing students in the use of CAS tools as an external mathematical authority.  

First, he had the expectation that students would not only collaborate to interpret results 

but also view CAS as an independent unbiased tool.  The functional capabilities of the 

CAS in terms of ease, efficiency, and accuracy entitled students to monitor their own 

learning.  It was left to the student to integrate the tool into their personal practice.  

Shasta modeled in Vignettes 1 and 2 how to use CAS as an external mathematical 

authority during class.  Second, he provided several problems that he wanted the students 

to work on independently in class.  Finally, students were directed to develop their own 

problems to conduct extra practice.  Shasta described this shift to students managing their 

own work, Shasta described as giving agency to the students for their learning. 

 Tasks.  Shasta was observed teaching activities that included learning pen-and-

paper skills, exploring regularity and variation in algebraic structure, and making 

connections amongst multiple representations.  He directed instruction for part of the 

class; other times, students worked in small groups or completed independent 
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assessments.  A large portion of class time was devoted to teaching the tool.  Yet, the 

tasks were part of a mathematics curriculum and ideology that encouraged students to 

extend beyond the norms of traditional instruction.  Shasta deliberately promoted the 

development of habits with the CAS that would allow students to be creative in their 

approach to mathematical knowledge.  The next sections will describe evidence of 

Shasta’s task-level opportunities in the P-Map. 

 Learning pen-and-paper skills while exploring regularity and variation in 

algebraic structure (T1 and T3).  A strong emphasis was on the development of 

algebraic procedures and structure through the utilization of CAS as a tool that assisted in 

the acquisition of pen-and-paper skills (Vignettes 1, 3, and 4).  Shasta expected that 

students would learn the algebraic manipulations to be performed without the assistance 

of technological tools.  However, CAS provided the exact tool to develop those skills 

through its ability to verify with accuracy and precision.  Classroom tasks supported 

teaching students how to use the tool to draw out understanding. 

 Shasta selected examples that purposively would pique students’ curiosity with 

the irregular and unanticipated outputs from CAS.  He used non-equivalent forms in 

Vignettes 1, 2, and 4 to expose the CAS outputs of varying outputs of differences.  In the 

lesson on combining like terms (Vignette 1) students compared their cognitive guesses 

with the CAS output.  In that analysis the order of the terms was reversed.  Shasta drew 

attention to these outputs and offered inquiry regarding algebraic properties.  He 

facilitated students making connections to the structure of algebra.  Similarly, in Vignette 

4 this occurred when CAS output a factorization of a squared binomial rather than the 
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product of two linear expressions.  CAS was proficient to make adjustments in algebraic 

structure; thus, Shasta helped raise students’ awareness of those modifications.   

 Representations (T5).  Shasta talked about a strong belief in the value of multiple 

representations, yet I only found evidence in Vignettes 3 and 4.  Shasta used a variety of 

representation to develop student conceptions. 

 Shasta’s Vignette 3 began with numerical data, shifted to tabular arrangements, 

and ultimately accessed graphical representations to form the basis for a linear function.  

All representations with the exception of the numerical data were performed with 

different CAS functions.  Shasta provided his rationale for the task as it connected to 

student learning. 

I’ve “preached” multiple representations and how an answer or aspect of a 

problem that isn’t obvious in one form can “appear” when you translate between 

forms.  The human brain is quick to see numeric patterns in arithmetic sequences. 

. . . By shifting to the graphical representation, the linear relationship in the data 

jumps in your face.  (Shasta, Written Reflection, October 14, 2017) 

He asked students to find 10 points in the sequence because he wanted the linear 

representation to be obvious.  Later in the lesson, he directed students to consider all the 

representations as potential access points to equivalent forms of a linear relationship.  “So 

you have a [graphic], an algebraic, a numeric, and a verbal description of the line. . . . 

Given any one, can you re-create the other three?” (Shasta, Lesson, October 5, 2017).  

Shasta valued students’ developing cognitive abilities that allowed for flexibility in 

mathematical representation.  Shasta closed the lesson with a connection to geometric 
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patterns after making reference to a past problem.  He connected the past problem 

solution to an arithmetic sequence. 

 Vignette 4 presented another example of representation.  Shasta used visual by-

hand representations and connected those to CAS computations in the mathematical 

procedures of multiplying and factoring quadratic functions.  This differed from the 

Vignette 3 example: a drawn-out area model for multiplication connection was made to 

CAS symbolic manipulations.  In addition, Shasta connected a second hand drawing to 

associate the other two models.  In this instance, Shasta used an arc method of 

multiplication of binomials.  He focused student attention to the numerical coefficients of 

the terms in the trinomial, drawing out understanding about the number patterns from the 

CAS symbolic representation. 

 Summary of P-Map.  Shasta exploited the CAS in his instruction to facilitate 

student reasoning and sense making of mathematical knowledge.  He approached 

teaching the CAS tool with warning and caution to his students first prior to having them 

perform action on the device.  The affordances of CAS in Shasta’s vignettes primarily 

included subject-level opportunities.  Through interviews and written artifacts Shasta’s 

creativity of lesson design was thoughtful and often revealed a re-balancing of skills, 

concepts, and applications.  Shasta conveyed a message that CAS can operate as an 

external mathematical guide for students inside and outside of the classroom 

environment.  The expectation from Shasta was that students must access CAS.  Tasks 

were designed to build procedural understandings and to develop connections from 

multiple representations. 
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Emergent Themes from Shasta’s Data 

 Shasta demonstrated and shared perspectives of his philosophy of CAS utilization 

in secondary education.  Through lengthy discussions, several ideas materialized.  A 

section of an interview following the first lesson encapsulated some of these ideas:  

precision in language and syntax, verification in mathematics, and agency to the student 

though CAS as an external consultant.  Following this excerpt will be a more 

comprehensive list of the emergent themes. 

 The post-lesson interview described the value of utilizing CAS to support student 

understanding.  Shasta explained his actions while students practiced problems during 

class.  The description demonstrated CAS capability to differentiate instruction for 

varying student abilities.  Shasta was asked, “Can you talk to me about when you say a 

non-judgmental mathematical friend?" 

When I get into the algebraic solving, and so I would say mathematics as a 

language, the hardest thing that students face is the very tight and mercilessly 

precise language of mathematical writing.  And they have to get it right.  So if 

they combine variables in the wrong way, distributed the wrong way, solved for 

something in the wrong way, they are not going to get the solution that they need. 

. . . What they need really is varying levels of practice. . . . I was sort of circling 

around. . . . Some kids I was giving additional challenges to.  Some kids I was 

helping them to decode their responses to figure out where the mistakes were.  So 

teaching them to, how to decode– Some, teaching them how to create their own 

problem.  But what's beautiful about the CAS and about like writing down their 

answers before checking against what the machine is going to say, is the machine 
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truly has no emotions.  And so having . . . someone or some place that [students] 

can go to and they can never ever feel stupid because they can always throw away 

the paper, or erase the file, they can get all the practice done that they want, as 

much as they are willing to do.  This machine will keep giving them feedback and 

keep giving them practice until they have just had enough for the day or until they 

learned their topic.  So for me, that is like, the pitch.  [CAS] is a great 

mathematical friend [emphasis added].  It will work as hard, it will do the nastiest 

math problems you ever give it to solve, and it just doesn't care.  It is non-

judgmental, and it is your friend.  It will help you if you are willing to engage.  

(Shasta, Interview, October 4, 2017) 

Shasta pointed out that syntax in mathematics problems had to be accurate.  CAS was a 

tool that allowed for verification in accuracy.  Finally, CAS was non-judgmental in its 

ability to check precision.  In the activity, CAS was the agency for the student to increase 

their mathematical conceptualization. 

 Themes that rose out of the entirety of Shasta’s data were the verification of 

answers, the need for providing guidance, the idea of multiple representation, the teacher 

regulating access to CAS, and CAS as a mathematical consultant.  These themes 

presented in no particular order are outlined in Table 26 with notable identification in the 

lesson vignettes.  In some lesson vignettes, the evidence was identified within open 

coding of the lesson and referenced as lesson in the table rather than a P-Map code.  

Figure 43 is offered to conceptualize the five themes.  They do not overlap; however, 

they interlock showing that a relationship exists between adjacent components.  For 

example, Mathematical Consultant impacts Verifying Answers in that the pair of 
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components link but do not overlap.  The pedagogy of verification of answers requires 

exploitation of CAS as a mathematical consultant.  Each of the components of the 

emergent themes will be explained in the following sections. 

 
Table 26  

Emergent Themes Evidence: Shasta 

 Verify 
Answers 

Provide 
Guidance 

Multiple 
Representation 

Mathematical 
Consultant 

Regulate 
Access 

Vign 1  Lesson  C2 S3 
Vign 2 C2   T3 S3 
Vign 3 T1, T5 Lesson T5  S3 
Vign 4  Lesson T5  S3 

 
 

 

Figure 43.  Emergent Themes Schema: Shasta. 
 

 Verify answers.  The introductory excerpt from Shasta embodied the value of 

verifying answers through CAS.  Shasta illustrated how helpful the tool was given the 
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correct guidance.  First, it released the need for a solution manual or teacher to affirm 

correct answers.  Second, CAS was available for other questions that students might need 

answered.  Third, it delivered results without judgment and it did not retain a memory of 

incorrect answers.  Finally, CAS was expeditious.   

 Multiple times in this algebra class students employed CAS to check and verify 

answers.  The value of performing this routinely was to develop an awareness of the type 

of symbolic and algebraic patterns that occurred.  Shasta instructed students on CAS’ 

symbolic manipulation features; meanwhile, students made mistakes that he did not 

anticipate.  Shasta called this “an innocent round of symbolic manipulation . . . The kids 

never would have raised this issue if they hadn’t seen the CAS not giving back the 

response that they were expecting” (Shasta, Interview, October 4, 2017).  The presence of 

the CAS empowered students to take another look at their work product.  Shasta said in 

his pre-interview, “You can’t keep that instant feedback” (October 2, 2017), meaning that 

when a student received CAS’ feedback, he felt compelled to revise and retry.   

 Shasta was asked the question, “What changed in terms of content knowledge 

about solving equations or distributive property or combining like terms in the presence 

of CAS, if at all?”  He quickly responded. 

The biggest piece is all of the students walked out with an awareness that they 

have an ability to check their work.  And they don't require an authority figure to 

do it for them.  There was a very deliberate offsetting of power and authority 

within the classroom. (Shasta, Interview, October 4, 2017) 

Shasta set a standard for students to routinely check their assignments against CAS.  He 

felt it was imperative in student learning that students were consistent with verifications. 
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 Provide guidance.  Shasta provided direction to his students with very specific 

instructions on the use of the CAS.  Shasta’s awareness of students first encounter with 

CAS compelled him to groom detailed syntax guidelines.  He was observed walking the 

room and individually assisting students on the interpretation of outputs.  He provided 

guidance with syntax, interpretation of outputs, and orchestrated opportunities for 

students to intuit concepts.  These are explained in the sections that follow. 

 Syntax.  Shasta carefully and thoroughly provided instructions on keying in 

commands to the CAS.  The computer screen projected CAS manipulations on the wall 

as he provided directions.  Students mirrored his procedures on personal devices.  This 

excerpt from Vignette 1 exhibited how specific Shasta was with his instruction, as well 

as, revealing mental cues with precise mathematical language.  “Now as soon as I type in 

negative [emphasis added], I get two options.  Am I going to minus something or am I 

negating something?  I'm negating– I'm getting the negative of three.  So choose negate 

[emphasis added], and then type a three” (Shasta, Lesson, October 4, 2017).  These were 

very specific decisions that the student would need to proceed.  Furthermore, Shasta 

demonstrated multiple options for manipulating the device.  “While it is highlighted, you 

could control C, copy it, and then move down and paste.  There is actually an easier way 

to do it on the Nspire, press enter” (12:18, Lesson, October 4, 2017).  Students learned 

how to be fluent with CAS. 

 Interpreting output.  Just as Shasta helped students to understand the syntax on 

input to CAS, he facilitated discussions about how to decipher the outputs. “I was helping 

them to decode their responses to figure out where the mistakes were.  So teaching them 
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to, how to decode, some teaching them how to create their own problems” (Shasta, 

Interview, October 4, 2017). 

 Intuit through repetition.  Shasta had this notion about the benefit of repetition.  

There were two sides to this: repetitions in pen-and-paper procedures indicated that CAS 

power could be helpful, and generating repetitive arguments in the CAS builds 

connections to mathematical concepts.  Shasta shared this in the first interview.  “Being 

repetitive means my machine is waiting for me to ask the right question, but I don't know 

what that question is yet” (Shasta, Interview, October 2, 2017).  This matched evidence in 

Vignette 3 when students found multiple points for a sequence and entered data into the 

CAS.   

Let me tell you the big thing is . . . so I was having them enter in 10 data points.  

In retrospect I think I could have probably done with four or five.  I wanted more 

than just two.  I wanted it to be really, really clear that this was a line.  (Shasta, 

Interview, November 1, 2017) 

After entering all the data points, the learner questioned whether the points would always 

fall on a line.  I then asked Shasta how many different sequence problems that he had 

prepared for students to explore in this lesson. 

I had them do three.  Not too many as to become mind-numbing and repetitive, 

but enough to give them a data set because I didn't tell them . . . remember that I 

told them nothing at all about what the equation was.  Just drop a moveable line 

and then compare the results of the equation after you get a decent fit.  (Shasta, 

Interview, November 1, 2017). 
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In this second situation he was using multiple examples to hone the conception about 

linear functions.  However, he limited repetition to just three to retain engagement. 

 Multiple representations.  Shasta’s lessons revealed occasional use of 

representation.  However, in both cases (Vignettes 3 and 4) Shasta delved into several 

distinct models.  The third vignette representations went from numerical data to tabular 

data, followed by graphical representation and then to symbolic equations.  Vignette 4 

examples began with two pen-and-paper representations and then went to CAS.  “I want 

them playing and shifting between multiple representations of math ideas” (Shasta, 

October 4, 2017).  The purpose was to establish mathematical connections.  He recounted 

this allegory. 

I tell them the algebra is always trying to whisper something to them– if they are 

willing to listen to the story.  Can they look at that equation and look at the picture 

and figure out what the equation was trying to whisper back to them?  (Shasta, 

Interview, October 2, 2017) 

 All of Shasta’s interviews heeded his value on various models.  Three significant 

points Shasta explained: the need to change form, the value in naming a relationship, and 

the potential for a CAS representative form.  These are explicated here. 

 Change form.  These two quotes from separate interviews reflect Shasta’s 

philosophy: “If I could translate this into a different way of thinking I can probably find 

my answer . . . No math problem was ever solved without . . . manipulating an algebraic 

expression/equation . . . Doing nothing more than changing between forms” (Shasta, 

Interview, October 2, 2017).  The second quote was, “I’ve ‘preached’ multiple 

representations and how an answer or aspect of a problem that isn’t obvious in one form 
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can ‘appear’ when you translate between forms” (Shasta, Written Reflection, October 14, 

2017).  Vignette 3 was the perfect demonstration of how the linear relationship was 

exposed when the data points were placed on a graph. 

  Naming the relationship.  “By explicitly naming the algebraic/numeric 

relationship, students again had multiple ways (visual—and now algebraic) to solve their 

problems” (Shasta, Written Reflection, December 20, 2017).  This referenced Vignette 4 

when Shasta coined the phrases rainbow arcs and box method.  Both were by-hand 

sketched models. 

 A new representation.  Shasta hoped that CAS formed a new approach to students 

thinking about mathematics.  He believed that CAS was its own type of representation. 

For me there's basically numbers, algebra, pictures, and words, however you want 

to work those.  I am now convinced that CAS and it's . . . a fifth representation.  

That by being able to translate your idea into a form that the computer can work 

on [the idea], changes your understanding of what the problem is.  (Shasta, 

Interview, October 4, 2017) 

Likewise, Shasta shared during a later interview the idea of the use of a tool as additional 

representation.  He explained that representation goes beyond the CAS. 

I've said that rule of four in math: algebra, numerical, graphical, and verbal.  I'm 

starting to think that there's a fifth rule now.  It is interacting with technology or 

interacting with other tools.  And when you have a tool that is there, knowing how 

to use it can get you an answer.  I would argue compass and straightedge, 

knowing how to construct a perpendicular allows you to do something that you 

can't conveniently do algebraically, numerically or anything else.  It's learning 
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how to ask or use a tool in a way that's helpful in solving the problem in front of 

you. It is not intuitive how you construct a perpendicular with a compass and a 

straightedge when you first get it, though. Is not intuitive to know what kinds of 

commands to ask a CAS when you're first exploring and experimenting.  (Shasta, 

Interview, December 22, 2017) 

This elaboration on the idea of a fifth representation required a technological device for 

students to generate those models.  The capability of CAS must be fluid for a student to 

have the ability to create multiple models.  Shasta reflected on a more personal 

experience of his capabilities as a CAS consumer and as a practitioner with a wealth of 

CAS utilization background. 

 Mathematical consultant.  The lesson observances revealed an emphasis on 

CAS as a mathematical consultant for students.  Shasta advocated for students to use 

CAS to verify and check work, even outside the classroom.  He subtly shifted a portion a 

mathematical expertise of knowledge to the CAS. 

I try to keep giving students agency.  How does it make sense to you?  Make sure 

you learn, even if it's not your way of thinking.  Learn how to listen to somebody 

else.  Learn how to listen to how somebody else is solving it.  You can do it your 

own way, when it's on your time.  You need to be able to read and give feedback 

to a colleague.  (Shasta, Interview, December 22, 2017) 

He knew that at this juncture of student learning it was more about students developing a 

strategy to gain access to understanding.  “There's like this whole sort of self-driven side 

of learning, if they're sharing and motivated enough to figure it out” (Shasta, Interview, 

October 2, 2017).  Shasta prompted learners to critically consider the information set 
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before them.  “The kids started asking questions because of, sort of the information that 

they saw in front of them” (Shasta, Interview, October 4, 2017).  When students asked 

him advanced questions, he would give those individuals feedback that would encourage 

them to explore.  Furthermore, Shasta acknowledged that students were less likely to ask 

him to verify answers.  Rather, students would use the CAS as an external resource. 

 “The big change is like this shift in authority” (Shasta, October 4, 2017). 

 Regulate access.  CAS had the potential for many procedures and as a result 

Shasta purposively refrained from using some of the power in his instruction.  “I was 

deliberately trying to keep them away from an Nspire CAS feature” (Shasta, Interview, 

October 4, 2017).  Shasta directed each CAS command.  He chose how and when to 

reveal CAS commands in every lesson.  He gave warnings to students about outsourcing 

procedures and potentially missing the opportunity to learn through the use of CAS.  He 

often limited CAS permissions on assessments.  However, Shasta had flexibility for 

students with greater desire to explore more thoroughly on the CAS.  The next sections 

will discuss how Shasta gave direct commands, withheld access to the CAS menu, 

sequenced commands, and managed permissions on assessments. 

 Direct commands to access CAS.  When distributing terms, the CAS command 

expand completed computations fully.  Shasta preferred for students to type the input of 

the problem with the command equals and their answer to let CAS verify internally as 

observed in Vignette 1.  A second example of withholding a CAS command was in the 

solving of equations.  Shasta never revealed the CAS command solve, but rather had 

students scaffold the steps on the CAS to arrive at the answer. 
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 CAS menu. Shasta directed students to type CAS commands rather than proceed 

to the CAS menu options (Vignette 4).  His rationale was to train a student to think about 

the procedure they would like to adopt and search for it on the device. 

The CAS is an extremely powerful tool.  I haven’t pulled any commands from the 

menus yet.  Partly, that is to keep students unaware of some additional commands.  

Also, I’m trying to get students to be “intuitive” about commands.  I ask them to 

think about what they are trying to do and to ask the CAS to do that.  They focus 

on “words” becoming un-italicized to recognize when they have hit upon a 

command the CAS knows.  (Shasta, Written Reflection, December 20, 2017) 

Shasta felt the menu interfered with students’ cognition of mathematical operations.  His 

desire was for students to learn mathematical operations and ask the machine to perform 

it, as opposed to look on the device for an operation and observe what it did. 

 Sequence.  Shasta carefully chose to go with the distributive property first and 

then combining like terms, as described in Vignette 1.  On the CAS, inputs are 

automatically simplified and rearranged to include combining like terms.  By choosing 

the distributive property first, this feature was concealed. 

 Permissions on assessments.  Shasta relied on CAS’ functionality for students to 

develop procedural fluency.  He gave warnings in class (e.g., the factor and expand 

commands in Vignette 4).  “If you don't know how to do this, you're going to be 

completely hopeless when you're facing a quiz” (Shasta, Lesson, December 4, 2017).  He 

discussed how he assessed learning without the CAS until a point in the year when he 

believed all students had command of the objective.   
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Right now I'm trying to maintain a few reigns on a really, really powerful tool.  

By the end of the year they're going to be "no holds barred" in trying to explore 

and use.  For right now, I almost think of it like a learner's permit.  They can get 

behind the wheel; they just can't go everywhere they want to on their own yet.  

(Shasta, Interview, December 22, 2017) 

He realized his personal responsibility to teach the tool and also to regulate access to the 

many features of CAS. 

 Flexibility.  There was also a hint of various student capabilities with the CAS.  

“Anytime a student asks about a command or asks to do something and they don't know 

how, I will always introduce the command for them” (Shasta, Interview, December 22, 

2017).  He was the gatekeeper to procedures on the CAS and would gladly provide access 

to individual students when they inquired. 

Summary of Shasta 

 The lesson vignettes illustrated a teacher-centered instructional approach with a 

focus on showing students how to access features of CAS to learn mathematics.  Shasta 

regulated access, empowered student learning, and shifted authority to the CAS as a 

mathematics consultant for students.  The tasks that Shasta engaged in spotlighted 

discussions on algebraic structure and multiple representations.  It was clear that algebra 

one classes were exploring regularity and variation as a way to build procedural fluency.   

Because you need . . . if you have this intuitive sense that the machine can do 

something but you don't know what the command is, I think it's [the teacher’s] 

responsibility to teach [students] how to independently discover what that thing is 

for themselves.  (Shasta, Interview, December 22, 2017) 
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 There was an investment of time to learn the tool: commands, syntax, output 

interpretations, and strategies for using CAS.  Shasta stated his purpose for using CAS, 

“You can learn on a CAS without knowing the rules and the kids are deeply aware that 

they can use CAS and technology in their learning” (Shasta, Interview, October 4, 2017).  

His role was to manage pedagogy to develop meaningful mathematical content. 

 Shasta stressed how CAS enabled a discovery approach to learning concepts and 

why that was important.  “They discover the fundamentals for themselves; they don’t 

memorize what I lecture.  It’s a much deeper, organic, and long-lasting effect” (Shasta, 

Interview, October 13, 2017).  He crafted his lessons to lead students to the edge of 

discovering mathematical ideas. 

Cross-Case Synthesis 

 The Cases of Springer and Shasta were thoroughly examined and explained prior 

to considering the cross-case synthesis.  First, pedagogical opportunities were analyzed 

and compared using the P-Map codes with a concept coding methodology (Saldana, 

2016).  Second, themes emerged through a comparison of the individual cases’ P-Map 

findings and the application of concept coding.  These themes and new codes were cross-

referenced within each case.  The following sections will discuss those findings from the 

P-Map and emergent themes.   

P-Map 

 Initially, themes drawn from the individual cases appeared to have oriented their 

pedagogy quite different from one another.  However, further analysis involving the 

creation of Table 27 and a comparison of hypothesis codes to the number of occurrences 

from the pattern matching analysis, revealed both participants with similar results.  The 
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taxonomies are arranged vertically.  Three categories of occurrences (i.e., none, 

moderate, and strong) clarify the evidence of each code by participant.  The data aligned 

very similarly; approximately the same category matched the P-Map code for both 

participants.  Three categories did not match but came within one strength level (e.g., S2 

had strong for Springer and moderate for Shasta).  Observations made from the 

comparison of the two tables do not acknowledge the different stories of the two 

participants.  Each level (e.g., subject, classroom, and task) from the P-Map was 

compared thus revealing similarities and differences about the two participants. 

 
Table 27  

Participants’ Pedagogical Opportunities Compared 

P-Map Springer Shasta 

S1 Strong Strong 
S2 Strong Mod 
S3 Strong Strong 

C1 Mod Mod 
C2 Strong Strong 
T1 Mod Strong 
T2 No No 
T3 Strong Strong 
T4 No No 

T5 Strong Mod 
Note. Totals from evidence within five lessons vignettes of Springer and four vignettes of 

Shasta 
No: No evidence  
Mod: Moderate evidence (1 or 2 pieces of evidence)  
Strong: Strong evidence ( > 2 pieces of evidence)  
 

 Subject.  Both participants exploited differences in the contrast between the ideal 

and machine mathematics (S1).  They each crafted questions from the output on the CAS 

to provide opportunities to advance student understanding of mathematics content.  As 
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well, they discussed feasible outputs (e.g., differences in algebraic or numeric forms) and 

used the results for verification of the mathematics problem.  However, Shasta took an 

additional step by urging students to critically analyze the outputs to seek recognition of 

equivalency of the expected answer to the output.  “Even though your answer looks 

different doesn't mean it is” (Shasta, Interview, December 22, 2017). 

 Both participants rebalanced skills and concepts (S2) in the coursework to 

develop focused mathematical connections.  Springer often reduced cognitive workload 

with the CAS by outsourcing procedures (Springer, Vignettes 2, 3, 4, and 5).  This was 

not observed in Shasta’s classes.  Shasta re-sequenced the order of presentation in 

Vignette 3.  His lesson began with a given sequence.  Students converted those values as 

data points, plotted them on a graph, created a line graph, and developed the equation 

(three actions using CAS).  The activity promoted students to make connections.  Shasta 

shared these thoughts regarding that lesson. 

I needed the sequence and I needed those points accurately and I needed them to 

line up.  And the sooner I can get kids on to that, then they're shifting their focus 

from, "I have an arithmetic sequence," to "Oh my goodness, they always make a 

line on a graph.”  (Shasta, Interview, November 1, 2017) 

Shasta led students to an analysis of the values within the equation as each related to the 

sequence’s numerical patterns.  He utilized dynamic features as a catalyst in constructing 

knowledge.  

 Finally, participants chose different entry points to lessons exploiting CAS to 

build metacognition and overview (S3).  Springer consistently used the definition of 

derivative with the define command to take the limit of a difference quotient for a 
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function, rather than using short-cut methods for derivative or CAS command d/dx 

(Vignettes 1, 2, 3, and 5).  This delay to introduction of other methods was intentional to 

build conceptual knowledge of the definition of derivative by shifting student focus to 

structure and intuition of calculus derivations.  In contrast, Shasta instilled students with 

analysis of CAS outputs to verify procedures.  He provided step-by-step guidance for 

students to notice syntax on both inputs and outputs.  Shasta’s instruction was directed at 

building students’ metacognitive habits. 

 Classroom (C1 and C2).  The participants used CAS as an external authority to 

change the classroom didactic contract.  Evidence suggested that teachers taught students 

how to use CAS as a mathematical authority and, in turn, developed those expectations 

for their students.  In both participants’ cases, the classroom social dynamics may or may 

not have changed due to CAS’ presence.  There were no pre- or post-observations to 

record those changes. 

 Tasks.  Table 27 revealed that the exact three task opportunities (T1, T3, and T5) 

afforded as opportunities to adjust pedagogy, but also two task opportunities (T2 and T4) 

were absent from both participants’ lesson observations.  In the sections that follow each 

of the five opportunities will be compared between the two cases. 

 Pen-and-paper skills (T1).  Springer oriented instruction around CAS to develop 

rules for pen-and-paper skills that she referred to as shortcuts.  Her pedagogy reflected 

value of students maintaining procedural fluency (Springer Vignettes 1 and 3).  In 

contrast, Shasta oriented instruction with pen-and-paper and exploration tasks to 

emphasize algebraic structure (Shasta Vignettes 1 – 4).  He claimed that the efficiency, 

accuracy, and precision of CAS was the perfect tool to assist learners with mathematical 
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skill development.  Shasta also used CAS as a verification tool to insure that students 

understood algebraic properties with complete precision. 

 Explore regularity and variation (T3).  Springer’s case provided more robust 

examples of the explore regularity and variation tasks from the P-Map.  As an example, 

points selected from a function to find the slope of a secant line were generated rapidly 

with the CAS (Vignette 1).  Springer led the class in finding points with input values (i.e., 

0.9, 0.99, 0.999) that were approaching the value of one.  This variation of input points 

provided the opportunity for students to understand the concept of limit.  Similarly, 

Springer’s pedagogy in Vignette 3 reflected repeated derivatives with the intent for 

student to recognize the patterns through variation. 

 Exploration was observed in a different manner in Shasta’s lesson (Vignette 3).  

Students plotted points with the CAS and inserted a moveable line that provided the 

opportunity for students to manipulate the line to approximate the pattern in the data.  

The dynamic feature of the CAS permitted the student to explore the position of the line 

as it related to the algebraic equations that CAS was providing.  Students then compared 

answers with one another to seek a consensus on the pattern for the data.  This process 

was repeated for three sets of data. 

 As a third situation, both participants selected multiple examples for input to the 

CAS to explore the variation of outputs (Shasta Vignettes 1, 3, and 4; Springer Vignette 

2).   The selection of multiple examples was not novel for teachers; however, the 

participants planning with CAS outputs into consideration was important.  Shasta focused 

on the outputs and the variation in algebraic form based on the algebraic expression. 
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 Link representations (T5).  Both participants took advantage of linking 

representations to mathematical concepts.  Shasta took the opportunity to access multiple 

representations (Vignettes 3 and 4) with visual by-hand models and graphic, numeric, 

tabular, and symbolic forms.  He shared how the unique forms could connect cognition to 

mathematical ideas in mysterious ways.  The identification and naming of the different 

representations likely supported learners in seeing relationships.  Furthermore, his 

extensive experience utilizing CAS brought him to a position to theorize CAS as its own 

representation.   

 Springer primarily used the different forms for checking and verifying work 

(Vignettes 1, 2, and 4).  Repeatedly Springer used a symbolic form and compared the 

result to a graphical form, or vice versa.  She also specifically chose to introduce a lesson 

from a graphical representation or a symbolic expression to achieve her content goals.  In 

another instance, she talked about numeric tables (Vignette 1).  The way she used the 

table was described to students but not observed.  However, she recalled a time during a 

lesson that she used tabular points to find slope of secant lines.  Springer was then 

observed finding numeric values of slope from ordinal points that were evaluated using 

the define feature.  She connected the numeric representation of slope to an algebraic 

difference quotient representation exploiting CAS’ symbolic feature of the define 

command. 

 Use real data and simulate real situations (T2 & T4).  Absent from both cases 

were the pedagogical opportunities of real data and real situations.  The objectives for 

these two tasks imply application of mathematics to real-world contexts.  Neither case 

produced evidence of pedagogy in these task opportunities.  
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Emergent Themes 

 Springer and Shasta had similar themes in orienting their mathematics instruction:  

providing guidance, verifying answers, regulating access, and viewing CAS as a 

mathematical consultant (see Figure 44).  Each participant was recognized as having an 

additional theme. Springer’s lessons revealed outsourcing procedures as a fifth major 

theme within her pedagogy.  Furthermore, Shasta’s lessons portrayed the feature of 

multiple representations in the utilization of CAS.  Within each theme there were some 

variations on specifics of pedagogy.  The detail of the emergent themes will be described 

in the sections that follow. 

 

Figure 44.  Emergent Themes: Springer and Shasta. 
 

 Verify answers.  The element of CAS’ ability to check accuracy and precision of 

algebraic solutions was helpful for students to gain agency in their learning.  Both 

Springer and Shasta afforded those opportunities.  Shasta clarified the benefits.  
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I did the example of the distribution on top and then underneath in red, I wrote all 

of the different wrong things kids can do.  Sometimes, rather than burying it, 

saying this is what you should do, pulling it out and naming where the mistakes 

are . . . Naming the things that kids are doing, makes them aware of it.  (Shasta, 

Interview, October 4, 2017) 

 Learners needed awareness to understand their mistakes so that they could self-correct.  

The efficiency of CAS provided students feedback at the moment it was needed (Shasta 

Vignettes 1, 2, and 4).  

“Even though your answer looks different doesn't mean it is. . . . Do you now 

know how to go back and look at the command and make sure you asked the right 

question?  Or can you take that and tease apart— here's the part of the question 

that I got right, and here's the part that I got wrong. Can you go back and figure 

out your own error and where it occurred?” (Shasta, Interview, December 22, 

2017) 

Shasta communicated about the need to consider both inputs and outputs to build 

understanding.  In addition to learning from mistakes by looking at CAS outputs, Shasta 

would say CAS verified without judgment, another element that benefits the student.  

Shasta also recognized that CAS permitted students varying levels of practice.  The CAS 

did not distinguish challenging, complicated procedures from simple ones.  CAS could 

handle both types of problems with the same ease.  

 Springer viewed CAS as a tool for verification and to build students’ confidence. 

Joy came from student successes of performing operations accurately.  “It’s important for 

students to enjoy the learning process and have success with learning the material to gain 
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confidence with their math abilities and be confident in their abilities to learn future 

concepts” (Springer, Written Reflection, October 13, 2017).  Observation revealed that 

like Shasta, she purposively keyed mistakes into the CAS to give confidence to learners 

that aberrations could be helpful.  It was through analysis of mistakes that learners not 

only developed methods to avoid the miscue but also gained depth of understanding. 

 Provide guidance.  A substantial amount of guidance assisted the students in 

adapting to the technology and utilizing it for framing access to mathematical knowledge.  

The two participants varied on management style of students’ syntax issues.  Springer 

offered flexibility in her instruction to provide help in the moment.  Shasta managed 

syntax issues more on the frontend by providing warnings and very specific directions.  

He was systematic and provided step-by-step instructions.  “I don't want to frighten 

students off because they see me just whipping through something really quickly,” 

(Shasta, Interview, December 22, 2017).  Shasta methodically worked through examples 

with his students.   

 However, Springer was inclined to rely on students to assist classmates with small 

syntax issues.  When parenthesis or multiplication dots were missing the CAS would 

output an error.  At times she purposely let those errors be revealed, which were then 

used as discussion points to connect either to syntax issues or mathematical ideals.  In 

contrast, Shasta would be more inclined to circle the room and give more individualized 

feedback to students regarding those syntax problems. 

 An important aspect in both participants’ instruction was that they modeled the 

exact commands and procedures on the computer as it was projected on the wall.  
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Springer had talked about the time when that was not possible.  Current technology 

supported students watching the teacher and mimicking identical keystrokes. 

 Mathematical consultant.  There was evidence of a slight shift in mathematical 

authority from the teacher to the device for both participants.  CAS provided specific, 

instant, and accurate feedback.  Students were empowered to check all problems, as well 

as invent their own inquires.  Students then potentially achieved competency in their 

skills.  Shasta encouraged CAS as a tool that granted students a strategy to gain access to 

individualized learning.  He transferred agency to each student to develop knowledge at 

his or her preferred pace.   

 By comparison, Springer entrusted CAS as a reliable source for mathematical 

procedures to help with solving problems.  Springer granted permissions to outsource 

procedural problems to CAS only after skills had been mastered.  Her concern was rooted 

in two potential areas:  tedious by-hand skills that could frustrate students and the 

possibility of lost focus due to significant procedures in the midst of learning 

mathematical conceptions.  Exploiting the CAS as an external authority brought 

organization to learning. 

 Regulate access.  The participants permitted students regular access to CAS.  

Student laptop computers were pre-loaded with the TI-NspireTM.  However, Springer and 

Shasta regulated student’s use of CAS.  Springer’s case revealed the following 

management practices: direction of the command to utilize; sequence of the order in 

which commands were accessed; regulation to the degree of difficulty of commands and 

permission for using CAS in assignments and assessments.  Shasta also managed students 

with these three practices:  giving directions, sequencing the commands accessed, and 
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restricting permissions on assessments.  The four different management practices will be 

explained in the following paragraphs. 

 Springer and Shasta withheld particular commands at times, only to later release 

them for student use.  As an example, Springer chose to delay the derivative d/dx 

command throughout all the lesson vignettes.  In doing so, she hoped that students would 

develop a richer understanding of a limit of a difference quotient.  “I'm really trying to 

hone in . . . and have [students] really understand the difference quotient and the limit, so 

instead of using the [derivative] command I was making them use the definition of 

derivative” (Springer, Interview, November 8, 2017).  Shasta also delayed commands 

frequently.  He cautiously proposed each new command with words of warning.  This 

was rooted in his fear that a student would inadvertently outsource procedures to the CAS 

in lieu of advancing their learning potential.  Shasta’s shared his perception. 

I don't want [students] looking in the menus yet.  Some of them will.  One or two 

of them already have, but for the most part I want them using the tool rather . . . 

using the tool for what we're doing, rather than sort of like investigating the 

fastest way out.  Nobody has figured out solve yet.  So again evidence that . . . 

like I have gone half a year in this class and nobody knows solve yet and I'm 

making huge use of the CAS in class.  (Shasta, Interview, December 22, 2017) 

Shasta directed students to aspects of the CAS that he chose, rather than releasing control. 

 When Springer moved to application problems students struggled to keep up with 

CAS commands.  Although these were not new commands, they were used in a new 

manner creating a challenge.  In one situation (Vignette 5), Springer differentiated a 

rational function containing trigonometric functions (see Figure 25).  The derivative 
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output an additional variable (i.e., n1) due the fact that the derivative was also a 

trigonometric function producing a periodic function as the output.  The CAS output 

revealed multiple solutions to the problem, forcing the user to consider restricting 

answers to a particular domain.  The restriction of the domain required additional 

commands that Springer had to teach creating the extra challenge with syntax, despite 

students having performed similar procedures.  Springer allocated CAS commands to 

gradually incorporate their functionality. 

 Both participants regulated access particularly when assessing students.  Shasta 

was insistent on assessing student performance in the absence of CAS.  Shasta talked of a 

future day when he would be less concerned about the distinction of non-CAS 

assessments, but this was not observed. “There's a difference between assessing a 

student’s ability to do mathematical manipulations and assessing a student's ability to 

solve problems mathematically” (Shasta, Interview, December 22, 2018).  He was 

observed withholding access to CAS in a post-lesson quiz.   

 Springer, who was not observed assessing in the presence of CAS, managed 

assessment a little differently.  “If you're going to be able to use the CAS on homework 

and assessments, how do I come up with other questions that are not, like plug and chug” 

(Springer, Interview, October 2, 2017).  Rather than remove CAS completely, Springer 

chose to alter the types of questions on assessments. 

 Outsource procedures.  Springer repeatedly directed students to let CAS 

perform procedures in order to focus on other mathematical concepts.  She felt that 

redistributing computations gave students an advantage in their ability to attend to new 
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mathematical knowledge.  The following excerpt conveyed Springer’s impression of how 

outsourcing procedures benefitted students. 

There are so many algebra steps for [students] to make mistakes.  And it's like 

they could understand the calculus.  They could understand what to do, but then 

don't know how to expand something.  Or don't know how to go through the 

process.  I think they enjoy this idea of, from what they've told me, they enjoy, 

they understand what it is they have to do and the calculator is kind of . . . helping 

them along the way, accomplish what it is they have to do.  (Springer, Interview, 

October 15, 2017) 

Springer took opportunities to outsource procedures in these ways: produce results of 

algebraic procedures (e.g., solve, expand, simplify rational expressions), reinforce 

procedural skills by verifying by-hand skills with CAS, and target other areas of 

mathematics.   In contrast, this was never observed in Shasta’s algebra class, although he 

hinted at the potential of that occurring later in the year. 

 Multiple representations.  Both participants provided opportunities for students 

to learn multiple representations, but Shasta’s case stood out as a greater necessity for his 

pedagogical practice.  For example, in Vignette 3 he asked the students in his class if they 

would be able to rewrite the linear function in any of the forms: numeric, graphic, verbal, 

and symbolic representation.  “By shifting to the graphical representation, the linear 

relationship in the data jumps in your face” (Shasta, Written Reflection, October 14, 

2017).  Shasta aimed to develop students’ capabilities in working with multiple 

representations to access any given math problem from all representations and to change 

it to another form.  In contrast, Springer valued representations as a way to verify 
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answers and also to access different characteristics of functions.  Springer showed how 

the symbolic output of a derivative presented negative infinity (−∞) and compared to the 

functions’ graph (see Figure 8, Vignette 2).  The different representations provided an 

opportunity for students to connect symbolic output to the graphs asymptotic behavior.  

Summary of Cross-Cases 

 The pedagogical opportunities around which both participants oriented their 

instruction around were primarily in the subject area level of the P-Map.  They also had 

similar ties to a change in the classroom didactic contract and the tasks that they chose to 

employ.  Much of the participants’ utilization of technology was grounded in CAS’ 

functional capabilities.  Emerging from the data analysis were six themes: four that were 

common for both participants, two distinct themes that were uncommon.  Those in 

common were:  CAS as a verification tool, the need for teachers to provide guidance and 

regulate access to the CAS, and the benefit of CAS as an external mathematical 

consultant.  The participants oriented their pedagogy with these themes in mind.  One 

participant also esteemed multiple representations to the point of elevating CAS models 

as potentially its own form of representation.  The other participant commonly 

outsourced procedures to the CAS to alleviate some of the tedium of mathematical 

procedures and also to enhance lessons by easing the cognitive workload.  All six themes 

are combined and will be presented as the Schema for CAS-Oriented Instruction in the 

next chapter. 

Chapter Summary 

 Lesson vignettes depicted teacher CAS-infused lessons that were observed in this 

study to reveal teacher pedagogical opportunities.  Each lesson vignette used pattern-
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matching logic with hypothesis coding (Saldana, 2016) of the P-Map framework to 

illuminate, clarify, and define elements of the lesson in which the teacher afforded the 

opportunity to exploit CAS to develop mathematical understandings.  Ms. Springer’s 

lessons were analyzed first; followed by Shasta’s lessons.  The next step involved a 

cross-case synthesis to compare the participants P-Map cases.  The evidence revealed 

very similar affordances despite the lessons seeming to have different pedagogies.  

Through a retrospective analysis and concept-coding (Saldana, 2016) of the cases and 

cross-case six emergent themes materialized.  The themes were then applied to the 

individual cases.  Four themes were in common for both participants and one was added 

for each participant that were unique to the other four.  The next chapter will present the 

emergent theme and connect the scheme to related literature.   
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CHAPTER V: SUMMARY AND DISCUSSION 

Introduction 

 Teacher pedagogy in a CAS-rich milieu was the focus of this study.  NCTM 

(2014) acknowledged mathematical tools and technology as essential resources integrated 

into classrooms to benefit learners as communicators, mathematical problem solvers, and 

reasoning and sense making citizens.  Integration of technological devices presents 

challenges to teachers to imagine and develop methodology for integration of such tools 

(Blume & Heid, 2008).  Australian educators have been implementing CAS for nearly 20 

years and shared a perspective of pedagogical opportunities that teachers have afforded in 

CAS-rich classrooms (Garner, 2004; Garner & Pierce, 2016; Kendal et al., 2005; Pierce 

& Stacey, 2002, 2004, 2008, 2010, 2013).  The theoretical framework generated by 

Pierce and Stacey (2010) provided the lens to describe the essence of pedagogical 

practices of teachers.  In particular, it was specifically those lessons in which CAS was 

exploited to develop mathematical understandings. 

 This qualitative study examined the pedagogy exhibited by secondary 

mathematics classroom teachers as they utilized CAS technology.  Pierce and Stacey’s 

(2010) P-Map illuminated affordances that two teachers actualized in their classroom 

lessons and shared in both written reflections and interviews.  The opportunities that 

teachers achieved exploited CAS in the development of mathematical knowledge. 

 In this chapter, a restatement of the research problem, a review of methodology, 

and a summary of results are presented.  The discussion of results from the study includes 

an interpretation of research findings and connections to prior research.  The chapter 

closes with implications for practice and potential areas for future research developments. 
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The Research Problem 

 Research surrounding the development of rich pedagogies when it pertains to 

using CAS technologies is limited (Heid & Blume, 2008; Heid et al., 2013; Pierce & 

Stacey, 2010; Schultz, 2003; Usiskin, 2006; Zbiek & Hollebrands, 2008).  The 

mathematics education community is overdue for a new immersion into technological 

tools with the teacher as the change agent (NCTM, 2014; Zbiek & Hollebrands, 2008).  

NCTM supported technological development of mathematical concepts through 

Principles and Standards for School Mathematics (2000) stating “The computational 

capacity of technological tools extends the range of problems accessible to students and 

also enables them to execute routine procedures quickly and accurately, thus allowing 

more time for conceptualizing and modeling” (NCTM, 2000, p. 25).  Through the 

functional opportunities of CAS, teacher pedagogy can include CAS tools that motivate 

and promote students’ grasp of mathematical knowledge (Heid et. al., 2013; NCTM, 

2014; Pierce & Stacey, 2010).  Far reaching effects of CAS can encompass many areas in 

mathematics education such as curriculum, assessment, accessibility, teacher beliefs and 

attitudes, and more.  This study specifically focused on teacher pedagogy. 

 Obstacles to teaching with technology are numerous (Ertmer, 1999; Ertmer & 

Ottenbreit-Leftwich, 2010; Hicks, 2010; Kaput, 1992).  Ertmer (1999) referred to 

obstacles as first- and second-order barriers to change.  First-order barriers involve issues 

that are external to the teacher, such as lack of equipment.  Teacher beliefs about teaching 

and learning with technology fall in the latter, as a second-order barrier to change.  

Reasonably, one can conclude that by reducing barriers, the issue of limited research of 

teacher pedagogy that exploits CAS technology can be centralized and examined.  This 
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study investigated teacher pedagogies in a milieu of minimal barriers to change so as to 

answer the research question: How do secondary mathematics teachers orient their 

instructional practices to exploit computer algebra systems (CAS) in the development of 

mathematical knowledge? 

Review of Methodology 

 A qualitative holistic multiple-case design (Yin, 2009) was deliberately used to 

garner the views of two distinct examples on the real-life phenomenon of innovative 

teacher practices as contemporary technologies of CAS surface in education culture.  Gay 

et al. (2012) classified particularistic studies, those that focus on one phenomenon, as a 

case study.  Insufficient pedagogical opportunities that utilized CAS produced a chasm 

between current practices and potential instruction.  Since the teacher drives the 

pedagogical decisions, the examination of teachers’ administration of CAS acquaints 

educators with CAS-enriched pedagogies that aid in the development of mathematical 

knowledge.  

 This multiple case design employed a within-site scheme.  By keeping the study 

limited to one school, the cultural aspects remained fixed; two teachers with numerous 

lessons were varied.  Data from two participants provided more robust results due to 

intentional replication of conditions (e.g., similar students and school culture) (Yin, 

2009).  However, differences between teachers availed the opportunity for deeper 

analysis of the theoretical framework according to Yin (2009).  

 After data were collected, detailed descriptions of classroom lessons were written.  

The first round of coding involved a deductive analysis.  Teacher activities were mapped 

to the pedagogical opportunity taxonomy (Pierce & Stacey, 2010) revealing key features 
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of the participants’ decisions.  The individual cases went through a second cycle of open 

coding to reveal emergent themes.  The cross-case analysis revealed similarities and 

differences between the individual cases.  A naturalistic generalization (Creswell, 2007) 

from the comparative analysis of the two cases augmented the Schema for CAS-Oriented 

Instruction. 

Review of Results 

 Two secondary teachers supplied data for nine lesson vignettes that captured the 

essence of CAS-infused instruction.  Each narrative was aligned with Pierce and Stacey’s 

P-Map (2010) to highlight teacher pedagogical affordances.  The individual cases of the 

participants (i.e., Springer and Shasta) revealed notable aspects in decisions to exploit 

CAS to develop mathematical understandings.  The retrospective analysis of the data 

revealed several emergent themes.  Participants oriented their instruction in the 

development of mathematical knowledge through the practices of providing guidance, 

verifying answers, regulating access, viewing CAS as a mathematical consultant, 

outsourcing selected procedures, and accessing multiple representations.  Four of these 

themes were consistent with both participants; one additional theme for each participant 

completed the schema.  Nevertheless, themes interlocked to form the Schema for CAS-

Oriented Instruction with the six emerging themes illustrated in Figure 45.  The center 

four pieces represent the common themes for the two participants.  The themes 

interlocked forming a more complete illustration of teacher pedagogy that gives direction 

to other teachers in the presence of CAS.  Each component is explicated in the following 

sections. 
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Figure 45.  Schema for CAS-Oriented Instruction. 
 

Mathematical Consultant 

 The phrase mathematical consultant regards the student or teacher’s ability to 

access CAS as an external mathematical authority.  The word consultant was used to 

recognize that CAS might be called upon as an additional resource, thus honoring the 

absolute mathematical authority (e.g., teacher, etc.).  Shasta preferred to give students 

agency to their learning; CAS enabled students to practice the type and amount of 

mathematics problems as needed to achieve competence.  Shasta described CAS in the 

context of a non-judgmental mathematical friend with which students consult.  Teaching 

students how to perform the operations to achieve this type of usefulness overlapped into 

the themes provide guidance and verify answers.  Alternatively, Springer preferred 

students to achieve accuracy in their work for success in a larger contextual problem.  At 

times, Springer directed students’ focus on conceptual development of broader 
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mathematics and CAS assisted as an external authority for mathematical procedures 

branching into the theme outsource procedures. 

Verify Answers 

 The functionality of CAS accommodated learners checking answers.  The value 

of CAS as a verification tool was embedded in its accuracy and precision.  Springer’s 

students and Shasta’s students verified their pen-and-paper skills against the CAS.  

Syntax issues had to be resolved in order to input into the device and to understand the 

outputs.  The theme provide guidance overreached into the verify answers schema.  

Furthermore, Shasta regarded CAS as a tool that reserved no judgment.  He demonstrated 

the usefulness of CAS and how it allowed the student, after making a mistake, an 

opportunity to immediately determine the error and self-correct.  The expeditious 

capability of CAS proved useful.  

Multiple Representations 

 The term multiple representations referred to all forms or models that a 

mathematical idea can behold: numeric, tabular, graphic, symbolic, or written.  The first 

four models are readily represented on a CAS.  Shasta worked through all the forms in 

Vignette 3.  He generated multiple representations within CAS more earnestly than 

Springer.  Springer accessed graphic features of Desmos to use in comparison with 

symbolic outputs on the TI-NspireTM.  She utilized multiple representations primarily as a 

checking tool, similar in nature to the theme verify answers.  In contrast, Shasta utilized 

multiple representations as a way to conjure additional mathematical understandings. 
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Regulate Access 

 Both Springer and Shasta regulated student knowledge of CAS commands.  Each 

participant selected certain commands for students to access during specific lessons.  

Shasta worked with students in an introductory algebra class, and they had less 

familiarity with the tools.  He regulated access through sequencing commands, directing 

usage of commands, or withholding commands.  On one occasion in Vignette 1, Shasta 

directed students to key the command rather than access the command through menu 

features.  Part of his rationale was that he wanted students to make decisions regarding a 

mathematical command; he did not want students looking at the menu to select choices.  

Shasta deliberately assessed students without the CAS on occasions.  Similarly, Springer 

explained that she opted for a similar assessment at times, but she prompted students to 

set up problems and write out the words, “I used CAS to solve.” 

 Springer’s outlook on accessibility to CAS differed slightly from Shasta’s view.  

She felt that students would use CAS tools on assignments when she was not monitoring 

their usage.  Her perception was that by teaching students how to use the tools to deepen 

their mathematical knowledge, she would, in effect, benefit her students.  They would 

then have the knowledge of using CAS in a productive manner.  Regulating access 

interlocks with providing guidance. 

Provide Guidance 

 Substantial time was allocated to teaching how to use CAS; the teacher provided 

guidance to students throughout the utilization of CAS.  Each participant managed 

instruction with CAS with a distinctive manner.  Springer began with CAS projections 

and had students mirroring her commands.  She forged ahead with her lesson plan, 
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pausing at times not only to give students the opportunity to ask one another syntax 

questions and to key in commands but also to walk around the room and monitor student 

activity.  Shasta generally started a CAS lesson very methodically, providing instruction 

in advance of keying commands into the CAS.  The theme provide guidance intersected 

with all aspects in the CAS-Oriented Instruction schema.  Without guidance, students will 

not develop the technical knowledge to utilize CAS to effectuate learning. 

Outsource Procedures 

 Springer exploited CAS to outsource procedures with the potential for students to 

reduce cognitive struggle surrounding procedures, thereby targeting other mathematical 

conceptions.  CAS was integrated to do the procedural work (e.g., finding derivatives, 

solving equations, or other computations) in the midst of broader mathematical problems.  

Springer also used outsourcing procedures in conjunction with developing procedural 

fluency, balancing pen-and-paper skills acquisition with developing connections to the 

algorithms.  Although I never observed Shasta outsourcing procedures, he shared this 

philosophy as the mathematics department chair, Springer’s superior in command.  He 

offered the following insights: 

We never ever said that you shouldn't learn how to do that computation. What I 

am saying is that in the midst of an application, in the midst of extending your 

knowledge into a new realm– that is not the time to be making computation 

mistakes.  It is not the time to be making data entry mistakes.  (Shasta, Interview, 

November 6, 2017) 

Shasta’s intent to the phrase that computation was a very general purpose of algebraic or 

symbolic computation.  His philosophical statement reflected Springer’s actions on 
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outsourcing procedures.  As Springer’s supervisor and mentor, Shasta’s views may be the 

initial perspectives adopted by Springer. 

Summary of Results Overview 

 This investigation of teachers orienting their pedagogy in the utilization of CAS 

technology revealed six interlocking elements.  Four of these elements were action 

oriented:  verifying answers, regulating access, providing guidance, and outsourcing 

procedures.  These actions occurred as teachers performed instruction seamlessly.  The 

other two elements (i.e., mathematical consultant and multiple representations) were 

conceptions or products of CAS.  These two formed an overarching philosophy about 

what CAS contributes to pedagogical practice.  Springer and Shasta yielded sufficient 

evidence to support these elements as individual pieces.  The junction of the six elements 

formed a more complete illustration in answer to the research question: How do 

secondary mathematics teachers orient their instructional practices to exploit computer 

algebra systems (CAS) in the development of mathematical knowledge? 

Discussion of Results 

 CAS-oriented lessons were rich with stories that revealed the complexities of 

teacher pedagogy.  Multiple actions occurred simultaneously.  As teachers reflected on 

their decisions, they shared deep-held beliefs about their own teaching and learning 

practice.  The communications from those interviews and written reflections sustained the 

lesson vignettes and helped to formulate the Schema for CAS-Oriented Instruction.  In 

the following sections, the emergent themes are connected to the literature reviewed in 

this study.  
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Connections to the Prior Research 

 The pedagogy participants implemented with CAS connected to several pieces of 

literature regarding both CAS and broader educational ideas.  The two different 

approaches to the data analysis (i.e., deductive analysis using the P-Map and emergent 

themes from the data) are addressed separately in this section.  First, the effectiveness of 

P-Map as a researcher’s tool is disclosed.  Second, themes are described within the 

context of the literature review. 

 P-Map deductive analysis.  Pierce and Stacey’s (2010) P-Map addressed all six 

components from the schema and formed the basis of the analysis.  Of the 10 pedagogical 

affordances, eight were identified in the combined observations as clear evidence in the 

individual cases.  However, a significant result from this study was the absence of two 

tasks and a minimal connection to the pedagogical opportunity of a change in classroom 

social dynamics.  Addressing the change in dynamic first, the data collected did not 

consider a time prior to CAS as a comparative analysis.  In fact, it was unlikely that one 

can make a true parallel to the change in the classroom didactic contract.  Both of these 

opportunities attend to the classroom level on the P-Map, noted as change in the 

description of the taxonomy.  The research of instruction through CAS was not a 

transformative process of comparing a change in authority; however, the class culture 

emitted a presence of CAS as a mathematical authority.  CAS did become an 

authoritative resource for the students and for the teacher, and, thus, gave light to the 

pedagogical opportunity change classroom didactic contract.   

 Unfortunately, two types of tasks were not observed during this study: use of real 

data and simulation of real situations.  The noticeable absence of these tasks does not 
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lessen the value of the study.  Limitations of the number of lessons observed and the 

manner in which data were collected (i.e., as a screencast in a classroom) may have 

decreased the likelihood to observe such tasks. 

 Mathematical consultant.  Pierce and Stacey (2010) labeled one of the 

classroom level pedagogical opportunities a change in classroom didactic contract.  The 

discussion of the change comes about through an authority shift when CAS was accessed 

in classrooms because “students may gain a new sense of personal authority” (Pierce & 

Stacey, 2010, p. 9).  Given that the P-Map was a tool to pattern-match data in this study, 

a sense of an external authority came from the device that subsumed mathematical 

knowledge.  This definition is supported by Langer-Osuna (2017) who stated, “The most 

relevant type of authority is that of the expert who possesses mathematical knowledge 

that is taken as true” (p. 238).  This classification was evident in teacher pedagogy and 

classrooms.  The term consultant, instead of authority, was the chosen description for the 

Schema to recognize the teacher as a more significant authority of mathematical 

knowledge in the classroom.  Springer and Shasta encouraged students to verify 

procedures through the tool both in and outside of class.  Springer endorsed CAS as a 

tool to outsource procedures, thereby assigning mathematical authority to CAS. 

 Verify answers.  Shasta and Springer used CAS extensively to verify answers.  

They accomplished verifying answers by pitting by-hand procedures against the CAS or 

comparing multiple representations one against the other.  “[Students] are focused on 

making sense of mathematics, comparing varied approaches to solving problems, and 

defending, confirming, verifying, or rejecting possible solutions” (NCTM, 2014, p. 109).  

Shasta verified answers to refine and produce procedural fluency.  He found that students 
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developed a good ability to reason their procedures when they made mistakes.  Zbiek and 

Hollebrands (2008) claimed, “Feedback offered by different computer resources may 

allow students access to information that allows them to correct their own errors” (p. 

312).  This was precisely how Shasta promoted CAS.  

 Multiple representations.  NCTM (2014) recognized the functionality of CAS.  

“Graphing applications can allow students to examine multiple representations of 

functions and data by generating graphs, tables, and symbolic expressions that are 

dynamically linked” (p. 78).  Shasta showed that those representations provided for 

student’s opportunity to learn.  His accounts reflected instruction of creating the different 

forms with by-hand methods and through a CAS device.  However, Shasta created 

multiple representations to assist learners in the development of connections to the 

problem.  As such, he regarded three points as significant to representation: the need to 

change form, the value in naming a relationship, and the confirmation that each form 

provided.  Shasta’s view was reminiscent of Pea’s (1985) claim “that a primary role for 

computers is changing the tasks we do by reorganizing our mental functioning, not 

amplifying it” (p. 168).  The points Shasta made take Pea’s idea into a pedagogical realm 

by naming and claiming the different representations. 

 Shasta held strong beliefs regarding multiple representations of functions.  “I’ve 

‘preached’ multiple representations and how an answer or aspect of a problem that isn’t 

obvious in one form can ‘appear’ when you translate between forms” (Shasta, Written 

Reflection, October 14, 2017).  Likewise, Fonger (2012) made the case that the 

representations create more fluent learners.  They possess the potential for greater success 
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in problem solving regardless of the form presented.  A rationale for multiple 

representation benefitted students beyond their ability to create the representation.   

 Regulate access.  Students were permitted regular access to CAS devices; 

however, the teacher limited exposure to certain commands.  Participants regulated 

access three particular ways: (a) delayed or withheld commands, (b) determined access 

on assessments, and (c) managed the release of commands.  First, both participants 

delayed or withheld commands until the need arose.  Kastberg and Leatham (2005) 

presented the finding from a meta-analysis that the teacher mediated calculator access 

and decided how and when to utilize CAS.  This study confirmed the notion of teachers 

controlling student interactions with CAS.   

 Second, the determination of whether to permit CAS on assessments was an issue 

to which participants tended.  If CAS were permitted, then question adjustment 

necessitated planning.  Weigand (2014) had supposed that meaningful assessment 

questions were particularly challenging in a digital technology environment.  Both 

participants agreed that the goal of the assessment had to be considered first if CAS were 

permitted. 

 Third, consideration of regulating access as part of the schema was only logical.  

The participants controlled access; however, approach to the usage of CAS required the 

participants’ management to draw out student understandings.  Students often lacked 

knowledge of the device and its commands; hence, instruction facilitated student 

designation for use.  Access was considered a second-order barrier in previous studies 

(Wachira & Keengwe, 2011; Ertmer, 1999; Ertmer & Leftwich-Ottenbreit, 2010; Ivy & 
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Franz, 2016).  Springer and Shasta carefully sequenced the release of knowledge of the 

device as the mathematical content necessitated it. 

 Provide guidance.  The theory of instrumental genesis (Artigue & Diderot, 2002) 

emanating from the work of Verillon and Rabardel (1995) applies to learning the CAS as 

a cognitive tool in the development of mathematical knowledge.  Instrumental genesis 

“attributes a major role to artefacts [sic] that mediate the human’s activity for carrying 

out the task” (Drijvers et. al., 2013, p. 27).  Considering this theory in light of the CAS 

tool, one cannot assume an automatic assist.  The tool has interplay with human 

interaction or acts as an extension to brain activity.  The intermediary of the participant 

seized the opportunity to develop this relationship to the tool.  Springer and Shasta 

provided guidance for students in the syntax, representation, and interpretation of outputs 

on the device.  Springer described how she introduced new commands organically as the 

need for a command arose in the lesson.  This theme aligned with the theory of 

instrumental genesis in that the object (i.e., CAS) became a tool (i.e., cognitive aspects) 

for learning mathematics.   

 Academics issued concern due to the complexities of learning a technological 

device (Artigue & Diderot, 2002; Blume & Heid, 2008; Kieran & Saldanha, 2008).  

Technical and conceptual knowledge has the potential to confound learners as they attend 

to both simultaneously (Blume & Heid, 2008).  Kieran and Saldanha (2008) designed an 

exploratory lesson with the principle “aim at supporting the development of conceptual 

knowledge within technical activity” (p. 399).  This secondary classroom lesson reflected 

a similar approach in Springer and Shasta’s lesson vignettes.  The participants guided the 

technical and mathematical knowledge every step through the lesson. 
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 Shasta and Springer placed importance on providing specific individualized 

directions to students on the syntax of CAS.  Springer shared her view that she was 

intentional to avoid frustrating students with the CAS.  Jakucyn and Kerr (2002), 

secondary teachers that also utilized CAS, had similar feelings. “The syntax sensitivity of 

a CAS can frustrate and discourage students.  Providing clear instructions on using a 

CAS and keeping the introduction of new commands to a minimum, were therefore 

important” (p. 629).  In addition, Shasta and Springer both used computer projectors to 

support student progress.  Doerr and Zangor (2000) recognized that a projection device 

visibly displaying procedures on CAS assisted the teacher to develop classroom 

discussions.  Springer’s lessons revealed student interaction, with all primarily regarding 

syntax.  Ivy and Franz (2016) also claimed that students assisted one another with syntax 

issues. 

 Outsource procedures.  Concern regarding the use of technology to perform 

computations in lieu of by-hand procedures pervades education culture (Cedillo & 

Kieran, 2003; Drijvers, 2000; NCTM, 2014; Ozgun-Koca, 2009).  The concern stems 

from an apprehension that teachers will neglect building procedural fluency, and students 

will develop a reliance on technology relinquishing attainment of procedural fluency.  

NCTM (2014) defined procedural fluency as “the meaningful and flexible use of 

procedures to solve problems” (p. 7).  CAS’ functionality provides for production of 

procedures in absence of skill. 

 The term black box technology, which originated with Buchberger (1990), helps 

to understand the dilemma.  The black box concept refers to a technology that is 

disconnected to knowledge about the functional operation of the command.  The user 
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only seeks the output without knowledge of the inner workings.  For example, inputting 

3x + 4x provided an output of 7x.  If the user were unfamiliar with addition of variables, 

the symbol for addition (i.e., +) may be meaningless.  However, a CAS step-by-step 

approach that involved a factorization or expansion of terms would not be considered a 

black box technology.  Springer utilized CAS with the black box approach in some 

instances.  She used the solve command within application problems by outsourcing steps 

to retrieve answers to equations.  In a different lesson, she generated rounds of higher 

derivatives to analyze the outputs, again utilizing CAS as a block box tool.  These 

situations did not deter conceptualization of mathematics because the focus was not on 

the procedures. 

 In a similar manner to Springer’s application problems, Drijvers (2000) pointed 

out a concern that students lacked conceptual understanding of derivative while solving 

optimization problems.  Drijvers explained the black box approach here. 

The concept of the derivative as a ‘rate of change’ has been taught to the students, 

but they do not yet know how to apply the rules for differentiation.  They are 

forced to leave the derivation of the functions that model the optimization 

problems to the symbolic calculator.  Computer algebra thus serves as a ‘black 

box’ that may motivate the students to learn the rules after the experiment is 

finished.  (Drijvers, 2000, p. 197) 

In contrast to the black box technology, Springer used an additional model to insure that 

students developed understanding of the derivative of a function. 

 Springer’s model was comparable to the white box technology.  Particularly, she 

accessed a white box perspective with derivatives in calculus.  Instead of utilizing d/dx 
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commands, she performed calculations using the limit of a difference quotient.  She 

continued to instruct with this white box approach as she introduced application 

problems.  The argument for Springer’s approach was that she maintained a connection to 

derivative with her methodology. 

 Summary regarding connections to literature.  Functional opportunities of 

CAS are the basis for pedagogy as represented in the emergent Schema for CAS-Oriented 

Instruction (Figure 45).  The purpose of CAS-rich instruction was to present 

opportunities to advance student mathematical understandings.  NCTM (2014) 

technology recommendations acclaimed mathematical action technologies as essential 

elements for instruction. 

Given the accelerating ease with which technology can be used to carry out nearly 

any mathematical procedure that students might be asked to perform, mathematics 

educators may need to raise questions about the balance of procedural and 

conceptual knowledge required for mathematical proficiency.  (NCTM, 2014, p. 

88) 

Beyond the scope of this study are questions about the balance of knowledge; yet, the 

intent of the participants was to produce opportunities for understanding.  As well, 

procedural knowledge was valued.  The emergent themes from the schema intended to 

capture the essence of participants’ eliciting an advancement of student knowledge.  The 

connection of the schema was to widespread literature. 

 The P-Map framework (Pierce & Stacey, 2010) used in the deductive analysis 

proved a useful tool to organize, categorize, and illuminate pedagogical opportunities.  

Limited examples were produced in the classroom level and in realistic tasks. 
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 Conventions in pedagogical practice conveyed characteristics related to prior 

research and literature.  Mathematical authority is recognized in related and unrelated 

mathematical literature (Langer-Osuna, 2017).  In this context, mathematical consultant 

was presented as an additional resource that may provide agency to student learning, 

calling upon Langer-Osuna’s definition (2017) “of the expert who possesses 

mathematical knowledge that is taken as true” (p. 238).  As such, CAS had the capability 

to be a checking tool.   

 Verification of mathematics problems affords learners with sense-making 

opportunities through instant feedback (Zbiek & Hollebrands, 2008).  This verification 

can extend to multiple representations of mathematical expressions, by pitting access to 

one form against another.  Through representations learners adapt information to 

mathematical problems with flexibility and earnestness (Fonger, 2012).  A concern and 

obstacle to CAS-enriched instruction (Wachira & Keengwe, 2011; Kastberg & Leatham, 

2005) regarding access to technological devices was validated.  Yet, through appropriate 

fidelity to regulation, participants in this study facilitated designated uses of CAS to 

students for the purpose of drawing out mathematical understandings.   

 As a theme, regulating access is an appropriate criterion.  The teacher must be a 

guide to assist learners in developing both technical and conceptual knowledge (Blume & 

Heid, 2008).  An important aspect for teachers of technological devices is to understand 

the tool as a device to which students gradually adapt.  Theory of instrumental genesis 

(Artigue & Diderot, 2002; Verillon & Rabardel, 1995) recognizes the transition of the 

CAS tool to learners’ frame of reference.  As such, the utility of technology becomes an 

extension to the learner’s ability to reorganize cognitive functioning (Artigue & Diderot, 
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2002; Pea, 1995).  The result endows the learner with opportunity to engage reflectively 

on the mathematical knowledge.  Participants in this study provided necessary guidance. 

 The final theme, outsource procedures connects the black box/white box 

(Buchberger, 1990) model to this study.  Heid (1988) in her seminal study utilized a 

black box approach in teaching calculus to college students.  She outsourced procedures 

to the CAS for the purpose of devoting instruction towards conceptions.  Springer utilized 

a black box approach for students to efficiently and accurately produce answers in the 

midst of solving problems and focusing on other key concepts.  CAS utilization afforded 

the participants opportunities to develop sufficient practices that benefitted their teaching 

craft for the purpose of enriching student knowledge. 

Implications for Practice 

 CAS pedagogy has provided evidence that it can be exploited with the potential to 

develop mathematical understandings.  The nine lesson vignettes highlighted 

methodologies for accomplishing that instruction.  Implications can be extended to pre-

service teacher educators, professional development designers, and secondary 

mathematics teachers.   

 The Schema for CAS-Oriented Instruction provides education leaders with three 

discussion points in pedagogical areas for teachers to deliberate.  First, when practitioners 

are presented with the idea of CAS as a mathematical consultant to benefit student 

learning, teachers may begin to form an opinion about CAS as a tool that fills a void as 

an external mathematical authority.  That belief may generate interest in teachers 

pursuing methodologies that promote student independence.  Since instructional practice 

revealed several ways to utilize CAS, educators have the option to utilize it as a 
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mathematical consultant for the students as proven by Springer.  She shared knowledge 

about students who accessed other types of CAS devices through online and free sources. 

 Second, as teachers consider the theme regulating access, a host of managerial 

tasks may come to mind.  However, presentation of techniques that Springer and Shasta 

implemented could ease the concern.  That is, participants sequenced the release of 

commands, delayed the revealing of commands, and manipulated the device via keying 

the commands rather than accessing the menu.  In addition, they managed permissions on 

assessments based on the intended goal of the lesson.  However, all of these ideas were 

cradled by the significant guidance from the participants.  Students were taught how to 

use the tools to advance their learning not replace it.  Furthermore, students were given 

the opportunity to outsource procedures after the learning was assessed.  That notion 

lends an incentive to students, thereby, helping practitioners to understand some 

guidelines for teaching with a CAS.   

 Finally, the lesson vignettes illuminated lesson designs that may be applicable to 

teacher curriculum and lesson design.  Each vignette supplied a rationale from the 

participant, a step-by-step method of instruction, actual implementation, and images to 

understand the exact commands accessed.  Lesson vignettes produced were Algebra I and 

calculus classes; yet, the overlapping of topics in Algebra II and precalculus could be 

applied to extensions on these lessons.  At the very minimum, the lessons provided a 

model for instruction via the CAS. 

Contribution to Literature 

 The P-Map proved an impressive tool for identification of pedagogical 

opportunities.  As the data were coded, three levels within the P-Map seemed to parallel 
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with the purpose of this research, which considered these inquiries: (a) what pedagogical 

opportunities mathematics teachers exploited with the presence of CAS, (b) how teachers 

aligned lessons to develop mathematical understandings, and (c) why these teachers 

wanted to orient their focus to exploit CAS in the development of mathematical 

knowledge.  Figure 46 displays an image of how I viewed the purposes of the study as 

they aligned to Pierce and Stacey’s (2010) three levels. 

 

 

Figure 46.  Alignment to Pierce & Stacey’s (2010) three levels of pedagogical 
opportunities. 
 

 What.  Pierce and Stacey (2010) described the task level opportunities as those 

“representing five different ways in which MAS affords opportunities for improved 

teaching and learning tasks” (p. 6).  The tasks in which students engaged as described in 

this studies lesson vignettes, suggested the answer to the first point about what occurred.  

However, only three of Pierce and Stacey’s (2010) five tasks reconciled with this study.  

Limited data do not adequately support this assumption of the how, why, and what 

parallelism.  

Subject  
HOW

Tasks    
WHAT

Classroom 
WHY
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 Why.  The classroom level issues were more abstract in terms of classroom social 

dynamics.  The charge was that as students become more engaged in a CAS-enriched 

environment, social dynamics between teacher-student and student-student become 

enriched with questions, agency of exploration, and reliance on the CAS as another 

mathematical resource (Pierce & Stacey, 2010).  The characteristics of classroom level 

and social dynamics may be generative of ideals that strengthen teaching and learning in 

mathematics.  Pierce and Stacey (2010) conceived that “opportunities arise from the 

improved way in which mathematical working and results can be displayed and shared in 

the classroom” (p. 8).  Pierce and Stacey’s (2010) phrase mathematical authority arose 

out of changes that occur at the classroom level.  The inference is that classroom level 

pedagogy may imply reasons why the teacher may want to orient their focus to exploit 

CAS in the development of mathematical knowledge.   

 How.  Finally, the subject level reconciled the question of how teachers aligned 

lessons to develop mathematical knowledge.  Pierce and Stacey’s (2010) subject level 

categorized “opportunities for technology to support new or changed goals or teaching 

methods for a mathematics course as a whole and new understandings of mathematics as 

a field of human endeavor” (p. 9).  This study’s emergent theme components can be 

interpreted as instructional practices that teachers adopt as they exploit CAS while 

adjusting his or her subject level goals to develop students’ mathematical understandings.  

 This theory of the answers to questions (i.e., what, why, and how) as it parallels 

Pierce and Stacey’s (2010) pedagogical opportunities framework (i.e., tasks, classroom, 

and subject) alignment is purely inconclusive.  I mention it so that developers and users 

of the P-Map may ruminate on this information.  There may be practicality and 
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connectedness to this paralleled theory.  I used the P-Map as a researcher’s tool to 

understand teacher pedagogy.  In the process, I was able to imagine the P-Map levels 

through a different lens. 

Recommendations for Future Research 

 Four areas that are directly connected to this research are accessible for future 

research.  First, I presented a Schema for CAS-Oriented Instruction developed through an 

introspective analysis, and this schema can be scrutinized further.  Second, Pierce and 

Stacey’s (2010) P-Map was used as a researcher’s tool to investigate pedagogy.  There 

may be additional depth and breadth to the framework that one can tease out related to its 

categories.  Third, the participants in this study were chosen based on their experience 

using CAS.  Questions regarding the transition of teachers from a non-CAS user to one 

that becomes an active, effective teacher have potential in the realm of research.  Finally, 

a student perspective as a learner in the milieu of CAS may be examined.  These four 

areas are elaborated in the following sections. 

 Emergent schema.  The Schema for CAS-Oriented Instruction could benefit 

from implementation as a protocol and, hence, refinement or extension.  The scheme was 

developed based on the results of two teachers and six observed lessons with follow-up 

interviews and writing artifacts.  Additional data will support the components and 

possibly add to the richness of this discussion.   

 Components from the schema each provide a place for further investigation.  In 

particular, CAS as an external mathematical consultant provides the learner with a host of 

opportunities.  This study exhibited CAS as a supplement to the teacher.  New venues for 

teaching and learning secondary mathematics have taken the stage.  Perhaps in light of 
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the Information Age and rising online coursework, CAS can support more profound 

utilization in the absence of the teacher.   

 It was purposeful to leave the Schema for CAS-Oriented Instruction with open 

puzzle pieces.  The schema may display only part of a complete picture of pedagogical 

components for CAS-rich instruction.  Additional components may be revealed through 

similar studies. 

 P-Map.  The P-Map framework impacted this study to advance an understanding 

about teachers’ pedagogy.  The P-Map did not elaborate on assessment or curriculum; 

two areas affected by the functional opportunities of MAS according to Pierce and Stacey 

(2010).  Through this examination, I had proposed to uncover some factors from the 

participants’ pedagogy that may have interacted with curriculum and assessment.  Several 

writing prompts (Appendix E, Curriculum and Evaluation Issues) were directed to the 

participants on these ideals.  These question prompts did not produce constructive 

developments.  Future research may produce knowledge pertaining to curriculum and 

assessment. 

 Teacher exemplars.  Shasta and Springer were identified as exemplars of CAS 

utility prior to the study due to their educational background.  Shasta proclaimed his 

utilization of CAS for over 20 years, when he was first introduced to the TI-81 by his-

then mathematics department chairperson.  Shasta was active in many CAS-platforms:  

TI-92, TI-89, Wolfram-alpha (e.g., web-based tool), and the TI-NspireTM CAS.  Finally, 

he was an active member with the MEECAS-USACAS groups in the years from 2000 up 

to the date of this study.  In comparison, Springer’s interest in technology and education 
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led her to complete a master’s degree in instructional technology.  She explained her 

philosophy about technology integration in mathematics curriculum. 

How can I use technology in my math classroom to help [students] guide and 

explore and help them better understand the process or investigate the process and 

even if it's five or ten minutes.  Just to create that opportunity for growth and 

development, you know, using the technology and coming up with it on their 

own.  (Springer, Interview December 6, 2017). 

I wondered about the motivations of the two participants that exhibited CAS utility and 

what compelled them to transition their pedagogy.  Each retained technological capability 

characteristics and formulated CAS-observed lessons with what appeared natural and 

relative ease. 

 Zbiek and Hollebrands (2008) considered a perspective that elaborated on 

Beaudin and Bowers (1997) PURIA model (Play, Use, Recommend, Incorporate, 

Assess); a framework of modalities that identify teacher transitional phases in the 

utilization of technologies.   

We found a perspective that allowed for explicit consideration of teachers’ needs 

to learn the technology, to learn to do mathematics with technology, to use the 

technology with students, and to attend to student learning as a guide for 

innovation.  (Zbiek & Hollebrands, 2008, p. 294) 

Further research may consider the characteristics of teachers like Shasta and Springer, as 

exemplars in the utilization of CAS.  As well, longitudinal studies could reveal 

transitional phases from a novice user to a consumer at advanced stages of CAS 

integration.   
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 Student perspective.  A premise of this study was CAS as a tool for developing 

mathematical knowledge.  The investigation considered teacher activities that utilized 

CAS to provide opportunities for student learning to deepen and broaden his or her 

knowledge base.  The student as a learner on the receiving side of instruction is  a viable 

next step to bring light to learning in a CAS-rich milieu. 

Researcher’s Reflection  

 Springer and Shasta expressed joy both in their presentation of CAS-rich lessons 

and in their students’ acceptance of CAS-enriched pedagogy.  In my relations with CAS 

enthusiasts and researchers alike, I have found this emotion plentiful.  “We are sure that 

the use of technology will increase the joy and interest of the students and they will 

experience the learning of mathematics in a more meaningful way because we can offer 

them a more meaningful mathematics” (Heugl, 2005, p. 11).  Springer’s case reflected 

enjoyment for herself and her students by utilizing CAS technology.  “[Students] had 

never even seen it or heard about [CAS].  And I was able to show them how cool it was.  

They fell in love with it” (Springer, Interview, November 8, 2017).  The joy was an 

expected outcome that was in common with Austrian didactics expert Helmut Heugl.  

Likewise, Shasta shared such excitement multiple times and in this interview. 

 [Students] eyes lit up around the room as they were typing factor.  And when 

they typed the last r and it went un-italics.  The kids were like, "Oh my goodness, 

it can do this," like just the recognition that we've stumbled upon a hidden tool, 

was kind of fun for them.  (Shasta, Interview, December 22, 2017) 

It is my own joy to share this research and contribute to the ever-changing technology 

landscape that influences educational practice. 
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Chapter Summary 

 CAS-oriented pedagogy was regarded as underdeveloped and this holistic 

qualitative study, therefore, adds value to the literature base.  After analysis of two 

teachers in the reduction of potential barriers an emergent theme was discovered.  Data 

were collected over the course of three months obtaining six lessons, which equated to 

nine lesson vignettes.  Thick descriptions provided the framework for analysis.  A 

deductive analysis was the first step in coding.  Each vignette was explicated through the 

use Pierce and Stacey’s (2010) P-Map.  These lessons revealed the emergent themes in 

orienting the participants’ mathematics instruction: viewing CAS as a mathematical 

consultant, verifying answers, applying multiple representations, regulating access, 

providing guidance, and outsourcing procedures.  The components interlock with one 

another to form a cohesive depiction of pedagogical decisions in the presence of CAS-

rich classrooms. 

 NCTM’s (2014) guiding principle for tools and technology stated, “An excellent 

mathematics program integrates the use of mathematical tools and technology as essential 

resources to help students learn and make sense of mathematical ideas, reason 

mathematically, and communicate their mathematical thinking” (p.78).  CAS has been 

regarded as an essential tool in some circles (Roschelle & Leinwand, 2011; Usiskin, 

2006; Waits & Demana, 1998, 2000).  As well, CAS is a tool that learners can conceive 

new ways of developing an understanding of mathematics (Heid & Blume, 2008; Heid et 

al., 2013; Kutzler, 2003; Pierce & Stacey, 2010; Zbiek & Hollebrands, 2008).  

Participants Shasta and Springer supplied the stories of CAS integration in their program 

and represented CAS as an essential tool.  Their examples serve to exhibit methods that 
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educators can use to create opportunities for student reasoning and sense making in 

mathematical knowledge. 
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APPENDIX A: Information Gathering Survey 

Sent electronically, November 2015 – January 2016, via Google Forms 

 

Hello, my name is Candace Terry, a doctoral student at Middle Tennessee State 
University researching the topic of computer algebra systems (CAS).  You were selected 
as a participant in that you were a technology conference attendee and/or a known 
technology user.  I am asking for 10 minutes of your time to participate in this 

information gathering survey.  Your participation is completely voluntary and 
anonymous. 
 
Consent  

By proceeding with this questionnaire, I am agreeing to participate in an information 
gathering survey.  I have read the consent form approved by the IRB office and 

understand the purpose, benefits, and risks. 
 
What is CAS technology? 

Computer algebra systems (CAS) can be viewed as any accessible tool that has features 
of standard scientific calculators and may also feature one or more of the following:  
graphing 2D, graphing 3D, dynamic geometry, tables and spreadsheets, numerical 

calculations, symbolic calculations, and symbolic manipulations.  Multiple platforms 
contain these capabilities: handheld calculators, computer software programs, and tablet 
applications.    
 
Are you utilizing CAS technology in all or part of your instructional practice? Yes or No 
 

Are you familiar with Computer Algebra System (CAS) technology? Yes, Somewhat, or 
No 
 
What platform(s) of CAS do teachers use? (check all that apply) 
 Handheld  
 Tablet 

 Computer 
 
For those who use handheld technology, which device do you specifically use? 
 I don’t use handheld technology for math. 
 TI-Nspire CAS 
 TI-Nspire (non-CAS) 

 HP Prime 
 TI-84 or TI-83 
 Other (specify) 
 
For those who use tablets, which application program do you use? 
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 I don’t use a tablet for math. 
 Geogebra 
 TI-Nspire CAS 
 TI-Nspire (non-CAS) 

 Desmos 
 Other (specify) 
 
For those who use desktop or laptop computers, which program do you use? 
 I don’t use computers for math. 
 Geogebra 

 TI-Nspire CAS or (non-CAS) 
 TI-84 or TI-83 
 Desmos 
 Wolfram alpha 
 Mathematica 
 Other (specify) 

 
In what ways do you as the teacher utilize CAS technology? 
(rate: not at all, have tried once or twice, sometimes, frequently)   
 Graphing 
 Dynamic Geometry 
 Investigative with algebra  

 Regression and Modeling 
 Data & Statistics 
 Numerical Solve of Equations 
 Symbolic Algebra Manipulations 
 Systems of Equations 
 TI developed activities 

 
Lesson Scenarios 

 
We want to explore how a geometric sequence relationship can be viewed in its’ 
graphical representation, numerical table, algebraic model, and any other representation.  
Describe what features you would utilize with CAS technology.   

 
The lesson involves solving a system of equations with multiple variables.  Describe what 
features you would utilize with technology.   
 
The class is curious about the factorization for different polynomial functions.  Does the 
polynomial factor?  Under what circumstances?  What would the factors look like?  

Explain how you would investigate this using technology? 
 
Open-Ended 

What is another of your favorite tools and/or lessons that utilize CAS technology? 
Beliefs regarding teaching and learning with CAS technology 
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Concerns that you have regarding CAS technology... Rate from low (1) to high (3) or 0 
(does not apply) 
 
Students will not learn mathematical concepts without learning the procedures first. 

 
Time to teach utilizing CAS technology and paper/pencil technology can be 
overwhelming and not address the real needs of learning mathematics. 
 
A different type of mathematical question can be asked when utilizing CAS technology. 
 

Teaching Assignment 

 
What level do you teach?  
 Middle School Mathematics 
 High School Mathematics 
 Community College or Two-Year College 

 University (4 year) 
 Other 
  
What courses do you teach? 
 Basic Algebra 
 Geometry 

 Algebra 2 
 Pre-Calculus 
 Honor’s Courses 
 Calculus AB or Calc 1 
 Calculus BC or Calc 2 
 Statistics 

 Integrated Mathematics 
 Other 
 
Thank you 

 
I appreciate your time thoughtfully answering questions about CAS technology.   

If you are willing to discuss in a little more detail about how you are utilizing CAS 
technology, please provide an email contact. 
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APPENDIX B: Follow-up Interview Protocol  

Do you mind me tape-recording this call so that I can focus on the conversation rather 

than taking notes? 

1. Just so that I understand your frame of reference, can you give me a brief 

description of your teaching assignment? 

2. Explain your lesson scenario from the survey regarding [choice depending on 

survey answer- copy and paste here for reference]   

a. Geometric sequence 

b. System of equations 

c. Polynomial functions and factoring 

3. This is a two-part question.  Do you use any of the symbolic features of CAS?  As 

in the solve, factor, expand, and such with algebraic expressions…  In what ways 

do you use these tools? 

4. Talk to me a little bit about the difference in your instruction as you first began to 

use CAS and later as you personally became more adept at using it as a tool? 

5. What kinds of things do you think about when developing lessons involving CAS 

technology? 

6. How does teaching using CAS technology affect your curricular choices? 

7. What beliefs do you hold about teaching utilizing CAS technology?  On your 

survey, you responded that… [choice depending on survey answer-copy and paste 

here for reference]   

a. Students will not learn mathematical concepts without learning the 

procedures first. 

b. Time to teach utilizing both CAS technology and paper/pencil technology 

can be overwhelming and does not address the real needs of learning 

mathematics. 

c. A different type of mathematical question can be asked when utilizing 

CAS technology. 

8. What problem, if any, do you foresee with teaching using CAS technology
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APPENDIX C: Survey 

NOTE:  This survey has been created in Google forms.  A portable document format 

(pdf) of the form is attached.  In sending this link to participants, the IRB consent form 

will be attached to the email. 

 

Introduction CAS Survey - Demographic Data 

Hello, my name is Candace Terry, a high school mathematics teacher and a doctoral 

student at Middle Tennessee State University researching the topic of computer algebra 

systems (CAS).  In particular, I am interested in the ways that teachers teach using CAS.  

I want to thank you for your participation in this study.  At any time if you have questions 

or concerns about the study, please contact me at (931) 247-7220 or 

candace.terry@mtsu.edu. 

The purpose of this survey is to introduce myself and begin data collection.  First, I will 

ask for your consent to participate in the study this fall.  Second, I have a few background 

data questions.  Third, I need your school schedule to assist in planning a campus visit.  

And finally, I will request your contact information.   

This survey should take about 10 minutes to complete. 

Email Address:  This form is collecting email addresses. 

Protocol ID:  _________     Consent Form 

1. By proceeding with this questionnaire, I am agreeing to participate in an information 

gathering survey.  I have read the attached consent form approved by the IRB office and 

understand the purpose, benefits, and risks. 

☐ I agree. 

☐ I have a few questions before consenting.  Please contact me. 
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Question number 1 employs skip logic that depending on the answer choice skips to 

the next logical question.  The first choice continues to the next question; the second 

choice skips to contact information #9. 

 

Demographic Data 

2. Please provide your gender. 

☐ Male 

☐ Female 

3. Please provide your age. 

(short answer response) 

4. Please provide your ethnic background. 

☐ Caucasian 

☐ Hispanic or Latino 

☐ Black or African American 

☐ Native American or American Indian 

☐ Middle Eastern 

☐ Asian or Pacific Islander 

☐ Other: (fill in) 

5. What is your educational background?  (Select all that apply.) 

☐ Bachelors degree mathematics major 

☐ Bachelors degree mathematics minor 

☐ Bachelors degree with a mathematics related degree, but not mathematics 

☐ Bachelors degree in an area other than mathematics 

☐ Masters degree mathematics 
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☐ Masters degree in education 

☐ Masters degree in an area other than mathematics or education 

☐ Advanced degree beyond masters 

☐ Other: (fill in) 

6. How many years have you been at this school, including this year? 

☐ 0-1 

☐ 2-4 

☐ 5-6 

☐ 7-8 

☐ 9-10 

☐ beyond 10 

7.  How many years have you been teaching high school? 

☐ 0-1 

☐ 2-4 

☐ 5-6 

☐ 7-8 

☐ 9-10 

☐ 11-12 

☐ 13-15 

☐ 16-20 

☐ beyond 20 

8.  Please give a brief background of your education experience.  For example, any 

additional discussion about degrees earned, certificates, or previous experience.  
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(short answer response) 

Contact Information 

9.  Please provide the email address you will use for communication purposes with me.  

If you will be using the one previously supplied, please skip this question. 

(short answer response) 

10. Do you have a SKYPE account that I can use for interviews? 

☐ Yes 

☐ No, but I can create one.  Link:  https://www.skype.com/en/ 

☐ No, I prefer a different video teleconference tool. 

Question number 9 employs skip logic that depending on the answer choice skips to 

the next logical question.  The first two continue number 11; the third choice skips to 

#12. 

 

SKYPE 

11. What is your SKYPE user name? 

(short answer response) 

Question number 11 employs skip logic.  This answer will skip to the end. 

 

Other Teleconference Tool  

12. The video teleconference application program I like to use is... 

(short answer response) 

Thank you! 

I appreciate your time thoughtfully answering questions.   I look forward to talking with 

you. 

Candace Terry  
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APPENDIX D: Interviews 

Pre-Interview 

Hello, my name is Candace Terry, a doctoral student at Middle Tennessee State 

University researching the topic of computer algebra systems (CAS).   

Do you mind me tape-recording this interview so that I can focus on the conversation 

rather than taking notes? 

 

1. Please provide a brief description of your teaching assignment. 

2. Talk to me a little bit about the difference in your instruction as you first began to 

use CAS and later as you personally became more adept at using it as a tool. 

3. What kinds of things do you think about when developing lessons involving CAS 

technology? 

4. How does teaching using CAS technology affect your curricular choices, if at all? 

 

Post-Interviews 

Do you mind me tape-recording this interview so that I can focus on the conversation 

rather than taking notes? 

1. Please summarize the lesson for me. 

2. What prompted you to approach the topic in this way? 

3. Were there previous outcomes that helped you form an opinion about this 

method?  Can you explain? 

4. I wasn’t clear about ____.  Please help me understand by clarifying that for me.  
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APPENDIX E: Reflective Writing Prompts 

NOTE:  These questions may be modified, deleted, or added on, after viewing 

screencasts for each lesson.  Only a selection of questions will be asked on each cycle.  

These questions will be sent and received via participant electronically. 

Introduction on the email:  Thank you for your inspiring views in our interview the 

other day.  I have several questions here for you to preview.  Please read them and after a 

time of reflection, draft answers to the questions and reply to this email.  It should take 

about 15 minutes to type out responses.  If you are more comfortable writing in a separate 

document and attaching, that is fine too.  Please plan to complete this within five days of 

receiving this. 

Teacher Perceptions and Attitude 

1) What do you see as advantages of using CAS for teaching mathematics? 

a) Why do you consider these advantages? 

b) Why are these advantages important, if at all? 

2) What do you see as disadvantages of using CAS for teaching mathematics? 

a) Why do you consider these disadvantages? 

b) Why are these disadvantages important, if at all? 

3) Was there a time in your teaching career when you didn’t teach with CAS? 

a) What were the different expectations for your students, if any? 

b) Why do you think you decided to teach using CAS? 
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Classroom Dynamics 

4) Has the presence of CAS technology in your classroom changed your teaching in any 

way?  Specifically, what difference, if any, has it made in your presentation of the 

material?  In your students’ participation?  In your role as teacher? 

5) Discuss the impact that CAS has had on the interaction between students in the 

classroom, if any. 

6) Discuss the impact that CAS has had on the interaction between you and your 

students, if any. 

Curriculum and Evaluation Issues 

7) What effect has CAS had on the goals and content of the mathematics course you 

teach, if any? 

8) What effect has CAS had on your evaluation of the students you teach, if any? 

9) What had changed it terms of preparation, if any?  

Content Specific Questions 

10) How is CAS helpful in understanding (insert here the mathematical concept)? 

11) Are there extensions to the lesson on (insert here the mathematical concept) that were 

possible with the CAS, that were nearly impossible without? 

12) What had changed it terms of content knowledge about (insert here the mathematical 

concept), if any?  

 

*Adapted from Simonsen and Dick (1997) Interview Protocol 
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APPENDIX F: Classroom Observation Protocol  

Teacher/Participant: 

 

Date/Time: 

Mathematics Course: 

 

Mathematical Topic: 

 
In what ways does the teacher utilize technology?  Check all that apply

 ☐ Teacher Demonstration   
 ☐ Student Demonstration 

 ☐ Scientific calculator 
 ☐ Graphing calculator 

 ☐ Dynamic Geometry tools 

 ☐ Investigative with CAS 

 ☐ Investigative with geometry  

 ☐ Regression and Modeling 

 ☐ Spreadsheets 

 ☐ Function Tables 

 ☐ Statistical Calculation 

 ☐ Symbolic Algebraic 

 ☐ Numerical Solve of Equations 

 ☐ Systems of Equations 

 ☐ TI developed activities 

 ☐ Scientific probe ware 

 ☐ Other________________ 

Comments:  Description of how the technology was used. 

 

 

 

 

 

 

 

Detailed Description of Pedagogical Opportunities 
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Type Opportunity Description Example 

Subject 

Exploit Contrast 
of Ideal and 
Machine 
Mathematics 

Teachers deliberately use 
‘unexpected’ error messages, 
format of expressions, 
graphical displays as catalyst 
for rich mathematical 

discussion 

Syntax in the device 
provides an unexpected 
output, different from 
pen-and-paper solutions. 

Re-balance 

Emphasis on 
Skills, Concepts, 
and Applications 

Teacher adjusts goals: spend 

less time on routine skills; 
more time on concepts and 
applications.  Increase on 
mathematical thinking. 

Heid’s seminal research 

on re-sequencing of 
concepts and skills in a 
calculus course 
Dynamic geometry can 
shift from memorization 
of facts to conjecturing 

and proving through 
visual arguments 

Build 
Metacognition 
and Overview 

Teachers give overview as 
introduction or summation: 
link concepts through 
manipulation of symbolic 
expressions and use of 
multiple representations 

Promote curiosity or 
instill a question, 
questioning strategies for 
reflection on the 
mathematical concept(s)  

Class-
room 

Change 
Classroom Social 

Dynamics 

Teachers facilitate rather than 
dictate.  Encourage group 

work.  Encourage students to 
initiate discussion and share 
their learning with the class. 

Linking action with 
mathematical reflection 

Constructivist approach 
to instruction 

Change 
Classroom 
Didactic Contract 

Teachers allow technology to 
become a new authority.  
Change what is expected of 
students/teachers.  Permit or 
constrain explosion of 
available methods. 

Role changes for both 
teacher and student, 
possibly teacher as 
facilitator and student as 
consultant. 
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Tasks 

Learn Pen-and-
paper Skills 

Use instant ‘answers’ as 
feedback when learning 
processes. 
 

Solve equations one step 
at a time. 
Use of a symbolic math 
guide (tutorial program 
within the device) 

Use Real Data Work on real problems 
involving calculations that, 

done by hand, are error prone 
and time consuming. 
 

Collect real data through 
the device, such as the 

height of a ball or the 
temperature of a cup of 
water. 

Explore 
Regularity and 
Variation 

Strategically vary 
computations. 
Search for patterns. 
Observe effects of parameters. 
Use general forms. 

Use of sliders to 
dynamically change the 
graph of a function. 
Alter a geometric shape 
with drag features. 
Expand or factor 

algebraic expressions and 
make observations. 

Simulate Real 
Situations 

Use dynamic diagrams, drag, 
and collect data for analysis.  
Use technology generated 
statistical data sets. 

Random function 
generator repeated times 
to create a histogram for 
1000 tosses of two dice. 
 

Link 
Representations 

Move fluidly between 
geometric, numeric, graphic, 
and symbolic representations. 

Equation of a circle in 
symbolic sense, input 
numerical values, 

graphed, and drawn with 
geometry tools 

 

Note. Adapted from “Mapping pedagogical opportunities provided by MAS,” by 

R. Pierce, & K. Stacey, 2010, International Journal of Computers for Mathematical 

Learning, 15, p. 6.  Copyright 2010 by Springer International Publishing AG.
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Figure 47.  Pedagogical Map (P-Map).  Adapted from “Mapping Pedagogical 

Opportunities Provided by Mathematics Analysis Software,” by R. Pierce and K. 
Stacey, 2010, International Journal of Computers for Mathematical Learning, 15, 
 p. 6.  Copyright 2010 by Springer International Publishing AG. 
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APPENDIX G: IRB Approval 

 

 

IRB 
INSTITUTIONAL REVIEW BOARD 
Office of Research Compliance, 
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Murfreesboro, TN 37129 
 

 

IRBN001 - EXPEDITED PROTOCOL APPROVAL NOTICE 
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Principal Investigator Candace Terry (Student) 
Faculty Advisor Michaele Chappell 
Co-Investigators NONE 

Investigator Email(s) candace.terry@mtsu.edu; michaele.chappell@mtsu.edu 
Department Mathematics 

Protocol Title Secondary Mathematics Teachers’ Pedagogy Through the Tool of 

Computer Algebra Systems 
Protocol ID 18-2020 

 

Dear Investigator(s), 

 

The above identified research proposal has been reviewed by the MTSU Institutional Review 
Board (IRB) through the EXPEDITED mechanism under 45 CFR 46.110 and 21 CFR 56.110 

within the category (7) Research on individual or group characteristics or behavior A summary of 

the IRB action and other particulars in regard to this protocol application is tabulated as shown 
below: 

 
IRB Action APPROVED for one year from the date of this notification 

Date of expiration 9/30/2018 

Participant Size 5 [FIVE] 

Participant Pool Adult Private School Teachers 

Exceptions 1. Video and audio recording permitted for transcription purposes 
2. Name and email address collection allowed 

Restrictions 1. Informed consent must be obtained 

2. Participants must be adults age 18 or over 
3. Vidoe and audio recordings to be destroyed once analyzed 
4. Identifiable information to be destroyed on data are analyzed 

Comments NONE 

 

This protocol can be continued for up to THREE years (9/30/2020) by obtaining a continuation 
approval prior to 9/30/2018. Refer to the following schedule to plan your annual project reports 

and be aware that you may not receive a separate reminder to complete your continuing reviews. 
Failure in obtaining an approval for continuation will automatically result in cancellation of this 

protocol. Moreover, the completion of this study MUST be notified to the Office of Compliance by 

filing a final report in order to close-out the protocol. 
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