
NUMERICAL ALGORITHMS FOR FRACTIONAL PARTIAL

DIFFERENTIAL EQUATIONS WITH TIME-DEPENDENT

BOUNDARY CONDITIONS

by

Toheeb Ayinde Biala

A Dissertation

Presented to the Faculty of the Computational Science Program

Middle Tennessee State University

March 2021

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in Computational Science

Dissertation Committee:

Dr. Abdul Khaliq, Chair

Department of Mathematical Sciences

Dr. Zachariah Sinkala

Department of Mathematical Sciences

Dr. Tibor Koritsanszky

Department of Chemistry



Dedicated to

my beloved parents (Iya ni wura, Baba ni jigi), who strived so hard to

ensure I have the best education;

my loving wife (Ìf
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ABSTRACT

This dissertation focuses on developing and analyzing numerical schemes for frac-
tional partial differential equations (PDEs). The development is important because
several models involving fractional derivatives exhibit non-locality and memory de-
pendencies, making them difficult to solve. Moreover, many of such models do not
have analytical solutions due to the non-linearity involved in their formulation.

In the first part of the study, we develop numerical schemes for space-fractional
reaction-diffusion equations with time-dependent boundary conditions. The methods
are based on using the matrix transfer technique (MTT) for spatial discretization,
and rational approximations to the matrix exponential function are used in time. In
particular, predictor-corrector schemes based on (1, 1)- and (0, 2)-Padé, and a real
distinct pole approximation to the exponential function are developed. We observe
that the solutions produced by the (1, 1)-Padé scheme incur oscillatory behavior for
some time steps. These oscillations are due to high-frequency components present
in the solution and diminish as the order of the space-fractional derivative decreases
(slow diffusion). A priori reliability constraint is proposed to avoid these unwanted
oscillations. Furthermore, the constraints are generalized for all (m,m)-Padé approx-
imants, m ∈ Z+, to the matrix exponential functions.

In the second part of the study, a novel numerical scheme for time-space fractional
PDEs is developed. The developed scheme is similar to the Crank-Nicholson scheme
for integer-order PDEs and is shown to be of order 1+α in time, where α is the order
of the time derivative described in the Caputo sense. We implement the algorithms
in parallel using the shared memory systems (OpenMP) and the distributed memory
systems (MPI). We discuss the merits and demerits of each of the parallel versions of
the algorithms. Error and stability analysis of the scheme is also discussed. Unlike
the Crank-Nicholson scheme for integer-order PDEs, the derived scheme has a lower
order (1+α). This lower order is due to the singular kernel (as a result of the Caputo
derivative) involved in the scheme’s formulation. We used the time-graded mesh to
improve the scheme’s accuracy from 1 + α to two.

The last part of the study focuses on applying fractional derivatives and, in par-
ticular, the derived schemes to a scientific domain. We propose a time-fractional
compartmental model comprising the susceptible, exposed, infected, hospitalized, re-
covered, and dead population for the COVID-19 epidemic. The properties and dy-
namics of the proposed model are discussed. We run several model simulations and
estimate parameters using the Center for Systems and Science Engineering data at
John Hopkins University for some selected states in the US. Furthermore, the efficacy
of contact tracing (CT) is investigated by linking the disease model dynamics with
actions of contact tracers such as monitoring and tracking. CT’s impact on the re-
production number R0 of COVID-19 is described. In particular, the importance and
relevance of the model parameters such as the number of reported cases, effectiveness
of tracking and monitoring policy, and the transmission rates to CT are discussed.
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CHAPTER 1

Introduction and Preliminaries

1.1 Background of the Study
Fractional partial differential equations (PDEs) are equations involving non-integer
partial derivatives. The fractional calculus concept is as old as the traditional or
classical calculus, which Leibniz independently proposed and Newton [121], [130]. It
began with the inquisitiveness of L’Hópital when he and Leibniz had correspondence
where they discussed the meaning and interpretation of fractional derivatives of order
one-half (non-integer order). The first definition of a fractional derivative may be
attributed to Fourier [109], [121], who suggested an integral representation for the
derivative. The first application of the fractional calculus was carried out by Abel in
1826 [1], [109], [121], who solved the integral equation associated with the tautochrone
problem. This integral is later generalized as Abel’s integral. The tautochrone prob-
lem deals with determining the curve for which the time taken by an object sliding
without friction in uniform gravity to its lowest point is independent of its starting
point on the curve. A few years later, the various formula for defining the fractional
derivatives and integrals were formulated. Liouville [109], [121] in 1832 suggested
a first formula based on differentiating the exponential function. A second defini-
tion that he formulated involves the gamma function. He applied both definitions to
problems in potential theory. One of the main downsides of these definitions is that
they are restricted to certain classes of functions. Years later, the Riemann-Liouville
integral operator, which Liouville [102] and Riemann [139] proposed independently
came to the limelight. Grünwald [63] and Letnikov [95] independently defined the
fractional derivatives as a limit to a convergent series. Other notable works in this
field appeared in the 18th century. Weyl [169] introduced a derivative similar to
the Riemann-Liouville integral except that the limits and kernel are different. Riesz
[140] proved the mean value theorem for fractional integrals. Caputo [29] proposed
a new definition of the fractional derivative. This definition is more appropriate for
problems involving fractional differential equations because of incorporating the ini-
tial conditions in the definition. Other notable researchers in this field’s development
include Bernoulli, Euler, Lagrange, Laplace, and Heaviside. Most of the widely used
definitions of fractional derivatives and theorems in fractional calculus today are due
to the researchers above’ early works. Oldham published the first monograph on the
subject and Spanner [130] in 1974. The first conference on the subject, which Ross
[142] organized, took place at the University of New Haven in 1974. Several books on
the analysis of fractional calculus have since then appeared in the literature, among
which are the classical books of Podlubny [133], Kilbas et al. [87], Diethelm [80],
Samko et al. [147], Pozrikidis [135], among others.
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Several models of physical and biological processes are better described using
fractional PDEs than the corresponding integer-order PDEs. They serve as a gener-
alization of the integer-order PDEs and give some degree of freedom in varying the
rate of change of these physical and biological processes. Such models include the
modeling of memory-dependent phenomena (Caputo and Mainardi [27], Di Giuseppe
et al. [41], Baleanu et al. [12], Podlubny [133]), mechanical properties of materials (Ca-
puto and Mainardi [28]), anomalous diffusion in porous media (Fomin et al. [55], Met-
zler and Klafter [120]), groundwater flow problems (Cloot and Bootha [36], Iaffaldano
et al. [71], Atangana et al. [9]), control theory (Podlubny [132], Baleanu et al. [11]),
waves in viscoelasticity (Mainardi [113]), dynamics of particles (Tarasov [163]), nu-
clear reactor physics (Ray [137]), wave propagation in mechanics (Atanackovic [8]),
finance and economics ( Machado and Mata [111], Fallagoul et al. [53], Mainardi
et al. [114]), biological and biochemical evolution (Bruce [168], Magin [112]). Due to
the complexities (such as nonlocality, nonlinearity, memory dependencies) involved
in the formulation of many of the models described above, their analytical solutions
do not exist. Thus, the need for numerical approximations for the solution of such
models. This need has led to a vast increase in the development of fast, robust, and re-
liable numerical schemes over the last few decades. Such numerical methods are based
on finite difference approximations, finite volume, or finite element discretizations of
the fractional operators. The space-fractional derivatives in a fractional PDE are dis-
cretized using the matrix transfer technique, the Grünwald-Letnikov approximations,
fractional-centered approximations, Krylov methods, Fourier spectral methods, L1-
L2 approximations, among others. For the discretization of time-fractional derivative,
methods such as fractional linear multistep methods, the Grünwald-Letnikov approx-
imations, L1-L2 approximations, among others, are used.

In this dissertation, we consider two classes of fractional PDEs, namely the space-
fractional PDEs (fractional space-derivative and integer-order time derivative) and
the time-space fractional PDEs (fractional time and space derivatives). We adopt
the matrix transfer technique for spatial discretization, which easily generalizes the
centered-difference approximation for integer-order PDEs. For space-fractional PDEs,
we develop rational approximations to the exponential function for time stepping. For
the time-space fractional PDEs, we develop novel numerical schemes based on the in-
tegral representation of the systems of ordinary differential equations obtained from
the spatial discretization.

1.2 Aim and Objectives
This dissertation’s main goal is the development and theoretical analysis of novel
numerical methods for fractional PDEs and their applications. The objectives include:

(i) the development of numerical schemes for space-fractional PDEs with general
boundary conditions;
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(ii) the development of numerical methods for time-space fractional PDEs with
general boundary conditions;

(iii) the theoretical analysis of the derived numerical schemes;

(iv) the fast implementation of the schemes using shared and distributed memory
systems;

(v) the application of the schemes on a fractional-order compartmental model for
predicting the dynamics of COVID-19;

(vi) studying and quantifying the efficacy of contact tracing in mitigating the spread
of the COVID-19 epidemic.

1.3 Significance of the Study
The significance of the study lies in:

(i) the importance and applicability of fractional PDEs to a compartmental model
for COVID-19;

(ii) fast implementation of numerical schemes; and

(iii) improving mathematical and computational research, and contributing to the
body of knowledge.

1.4 Research Methodology
In this dissertation, we study the numerical integration of the nonlinear fractional
PDE

cD
α
0,tu = −κ(−∆)

β
2 u(x, t) + f(u), in Ω× (0, T ] (1.1)

coupled with a suitable initial and boundary conditions, where κ is the diffusivity, Ω
is bounded in R, cDα

0,t is the Caputo derivative (with respect to t) of order 0 < α ≤ 1,
(−∆)

β
2 is the fractional Laplacian of order 1 < β ≤ 2 and f(u) is a nonlinear function

of u. The definitions of the Caputo derivative and the fractional Laplacian are given
in the next chapter. The fractional PDE (1.1) is discretized using the matrix transfer
technique to obtain the systems of ordinary differential equations

cD
α
0,tu = −A

β
2u + f(u) + g(t) (1.2)

where g(t) constitutes the effects at the boundaries of the problem, u and f(u) are
the node values of u and f(u), respectively. We develop schemes based on whether α
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is an integer or not. For α = 1, the exact solution of (1.2) is equivalent to the integral
equation

u(tk+1) = e−τA
β
2 u(tk) + τ

∫ 1

0

e−τA
β
2 (1−s) f(u(tk + sτ)) ds+ τ

∫ 1

0

e−τA
β
2 (1−s) g(tk + sτ) ds,

(1.3)

where tk are the node points in the t-stencil. We approximate each of the terms in
(1.3) using different rational approximations to the exponential function and, linear
and constant approximations to the nonlinear function. If α 6= 1, then eqn. (1.2) is
equivalent to the Volterra integral equation

u(t)− u0 =
1

Γ(α)

∫ t

0

(t− s)α−1
(
−A

β
2u(s) + f(u(s)) + g(s)

)
ds. (1.4)

Numerical schemes are developed using approximations to the integral equation. In
particular, constant and linear approximations to the nonlinear function are used.

The compartmental model described in this dissertation is a modification of the
SEIR (Suscpetible-Exposed-Infected-Recovered) model. We modify the model by
incorporating

(i) two compartments for the infected individuals: symptomatic and asymptomatic
compartments;

(ii) hospitalized and dead compartments that denote the number of individuals that
are hospitalized and dead, respectively;

(iii) the effect of time-fractional derivative on the model.

(iv) the effect of contact tracing in mitigating the spread of COVID-19.
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CHAPTER 2

Fractional Calculus

2.1 Fractional Integral and Derivatives
We give some definitions of the fractional integrals and derivatives used in this dis-
sertation. The gamma function is one of the most widely used functions in fractional
calculus. It generalizes the factorial function and allows the independent variable to
take values in R or even in C.

Definition 2.1.1. The gamma function Γ(x) is defined by the integral [133]

Γ(x) =

∫ ∞
0

e−ttx−1 dt

which converges in the right half of the complex plane.

We define L1[a, b], where −∞ ≤ a < x < b ≤ ∞, to be the space consisting of all
real-valued integrable functions on [a, b]. Furthermore, we define the space

W n,1[a, b] =

{
f ∈ L1[a, b] :

dnf

dxn
∈ L1[a, b]

}
which is the space of differentiable functions in L1[a, b]. The Riemann-Liouville frac-
tional integral and derivative forms the basis for most of the widely defined fractional
derivatives.

Definition 2.1.2. Let f ∈ L1[a, b], then the left- and right-sided Riemann-Liouville
integrals of the function f(x) are defined, respectively, as

IαU+f(x) =
1

Γ(α)

∫ x

a

(x− ξ)α−1f(ξ) dξ

and

Iαb−f(x) =
1

Γ(α)

∫ b

x

(ξ − x)α−1f(ξ) dξ.

Definition 2.1.3. Let f ∈ L1[a, b], and In−αU+ , In−αb− ∈ W n,1[a, b], n = dαe, then the
left- and right-sided Riemann-Liouville derivatives of the function f(x) are defined,
respectively, as

RLD
α
a+f(x) = In−αU+ f(x) =

1

Γ(n− α)

dn

dxn

∫ x

a

(x− ξ)n−α−1f(ξ) dξ
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and

RLD
α
b−f(x) = In−αb− f(x) =

(−1)n

Γ(n− α)

dn

dxn

∫ b

x

(ξ − x)n−α−1f(ξ) dξ,

where d·e is the ceiling function.

Another widely used fractional derivative is the Caputo derivative which was pro-
posed by Michelle Caputo in 1967 and it is equivalent to the Riemann-Liouville deriva-
tive if the integer-order derivatives of the function at the given point are zeros. Let

Cn[a, b] =

{
f : [a, b]→ R :

dn−1f

dxn−1
∈ C[a, b]

}
be the space of real-valued continuous functions f(x) which have continuous deriva-
tives up to order n− 1 on [a, b] such that fn−1(x) is absolutely continuous.

Definition 2.1.4. Let f ∈ Cn[a, b], then the left- and right-sided Caputo fractional
derivative of order α is defined, respectively, as

cD
α
a,xf(x) = In−αU+ Dnf =

1

Γ(n− α)

∫ x

a

(x− ξ)n−α−1fn(ξ) dξ

and

cD
α
x,bf(x) = In−αb− Dnf =

(−1)n

Γ(n− α)

∫ b

x

(ξ − x)n−α−1fn(ξ) dξ,

where Dnf =
dnf

dxn
.

Another definition of the fractional derivative was introduced by Grünwald and
Letnikov which is taken as a limit of the sum of a convergent series.

Definition 2.1.5. The Grünwald Letnikov left- and right-sided derivative of order α
is defined as

GLD
α
a,x = lim

h→0

1

hα

bnc∑
k=0

(−1)k
Γ(α + 1)f(x− kh)

Γ(k + 1)Γ(α− k + 1)
, nh = x− a

and

GLD
α
x,b = lim

h→0

1

hα

bnc∑
k=0

(−1)k
Γ(α + 1)f(x+ kh)

Γ(k + 1)Γ(α− k + 1)
, nh = b− x.

Definition 2.1.6. The Riesz fractional derivative of the function f(x) of order n−1 <
α ≤ n, n ≥ 1 is defined as

∂α

∂|x|α
f(x) = − 1

2 cos
(
απ
2

) 1

Γ(n− α)

dn

dxn

{∫ x

−∞
(x− ξ)n−α−1f(ξ)dξ +

∫ ∞
x

(ξ − x)n−α−1f(ξ)dξ

}
.
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This definition shows that the Riesz derivative is a multiplicative sum of the left-
sided and right-sided Riemann Liouville derivative.

There are several definitions of the fractional Laplacian in the literature, we give
the definition of a few of them here.

1. Singular Integral Representation

Definition 2.1.7. [103], [135] The fractional Laplacian of a function f(x) of
order β

2
, defined over the entire x-axis, is defined as

(−∆)
β
2 f(x) = C(d, β) p.v.

∫
Rd

f(x)− f(y)

|x− y|d+β
, (2.5)

where C(d, β) =
2βΓ

(
β
2

+ d
2

)
π
d
2

∣∣Γ(−β
2
)
∣∣ and p.v. denotes the principal value integral.

The term f(x) − f(y) in (2.5) varnishes at the singularity of the integral and
provides a regularization which together with averaging of positive and negative
parts allows the principal value to exist, e.g., for smooth f with sufficient decay
[103]. This definition shows the representation via the singular integral in real
space Rd.

2. Fourier Definition

Definition 2.1.8. [103], [147] The fractional Laplacian of a function f(x) of
order β

2
, defined over the entire x-axis, is defined as

(−∆)
β
2 f(x) =

1

(2π)d

∫
Rd
|ξ|β (f, e−iξ·x)eiξ·x dξ = F−1

{
|ξ|β F{u}(ξ)

}
(x),

where F and F−1 are the Fourier and inverse Fourier transforms, respectively.

This definition shows that Fractional Laplacian is a Fourier multiplier operator
with symbol |ξ|β. There is a relation between the Riesz derivative and the
fractional Laplacian defined via the Fourier transform representation which is
given in the following lemma.

Lemma 2.1.1. [177] For a function f(x) defined on the entire real axis, the
following inequality holds

−(−∆)
β
2 = − 1

2cos(βπ
2

)

[
RLD

β
−∞+ + RLD

β
∞−

]
= − ∂β

∂|x|β
f(x),

where RLD
β
−∞+ and RLD

β
∞− are the left- and right-sided Riemann-Liouville

derivatives, respectively.
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Yang et al. [177] also showed that this lemma also holds in a finite interval
provided we assume that f(x) = 0 at the boundary points and beyond. This
gives a major drawback for this definition as it is suitable only, in numerical
discretizations, for problems with zero boundary conditions.

3. Spectral Representation

Definition 2.1.9. [73] Suppose the Laplacian (−∆) has a complete set of or-
thonormal eigenfunctions ϕn corresponding to the eigenvalues λn on a bounded
region D, i.e., (−∆)ϕn = λnϕn on D; B(ϕ) = 0 on ∂D, where B(ϕ) is one of
the standard three homogeneous boundary conditions. Let

Fη =

{
f =

∞∑
n=1

dnϕn, dn = 〈f, ϕn〉

∣∣∣∣∣
∞∑
n=1

|dn||λ|
η
2

n <∞, η = max(β, 0)

}
.

Then for any f ∈ Fη, the fractional Laplacian is defined as

(−∆)
β
2 f =

∞∑
n=1

dnλ
η
2

n ϕn.

In this dissertation, we shall make use of the last definition of the fractional
Laplacian because of its use for general boundary conditions.

2.2 Literature Review
This subsection shall review some numerical methods proposed for the numerical in-
tegration of space-fractional PDEs and time-space fractional PDEs.

For the space-fractional PDEs, several numerical methods based on the different
definitions of the space derivatives have been proposed. Meerschaert and Tadjeran
et al. [118], [119], [161], Sousa and Li [157], [158], and Shen et al. [151] developed nu-
merical methods based on the Grünwald-Letnikov and the shifted Grünwald-Letnikov
formula to the space-fractional derivatives. Liu et al. [104] obtained solutions of the
fractional-in-space Fokker-Planck equations and the space-time fractional diffusion
equations. Ortigueira [131], on the other hand, presented fractional centered approx-
imations to the space-fractional derivative. His approach was followed by Çelik and
Duman [30], and Khaliq et al. [83] to solve the space-fractional diffusion equations
and the space-fractional Schrödinger equations, respectively. Ilic et al. [73] presented
the Matrix Transfer Technique (MTT) for the numerical solution of fractional dif-
ferential equations. Ding and Zhang [49] developed fourth-order methods based on
the MTT. Yang et al. [178] also followed the MTT approach, who proposed a novel
numerical technique for solving the time-space fractional diffusion equations based
on approximating the matrix function vector product by the preconditioned Lanczos
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method or the M-Lanczos method. Recently, Aceto and Novati [2] proposed a ra-
tional approximation to the dense matrix formed by the MTT by approximating its
integral representation with the Gauss Jacobi quadrature rule. Chen et al. [33] solved
the space-fractional telegraph equation using diagonal Padé approximants up to order
6. Li and Chen [99] gave a comprehensive survey of numerical methods for fractional
partial differential equations. The class of exponential time differencing schemes was
originally proposed by Cox and Mathews [39] for integer-order PDEs. This class of
schemes was later modified and applied to space-fractional PDEs. In particular, we
review the works of Khaliq, Bruce, Voss, and their collaborators. Khaliq [85] pro-
posed a real distinct approximation to the exponential function and show that the
scheme has close to maximal order for integer-order PDEs. This scheme was later
modified to space-fractional PDEs [7], [76], [77]. Different Padé approximations to
the exponential function were also proposed and later modified for space-fractional
PDEs with efficient implementation techniques[15], [16], [83], [88].

Several numerical methods have also been proposed for solving time-space frac-
tional equations based on different definitions of the space and time derivative. Mustapha
[125] proposed an implicit finite-difference time-stepping method with finite-element
space-discretization for sub-diffusion equations. Mustapha et al. [124] developed a dis-
continuous Galerkin method for time-fractional equations. Shen et al. [151] proposed
finite difference approximation scheme for space-time fractional advection-diffusion
equations. Xu and Hesthaven [174], [175] developed numerical schemes based on
discontinuous Galerkin methods and spectral penalty methods, respectively, for frac-
tional PDEs. Biala and Jator [17] developed a class of block implicit Adams methods
for fractional differential equations. Deng [40] proposed finite element methods for
space and time fractional Fokker-Planck equation. Diethelm [45], [80] and Diethelm
et al. [46]–[48] discussed extensively numerical schemes for fractional differential equa-
tions and their error analysis. Diethelm [79] developed parallel algorithms for frac-
tional differential equations. Li et al. [96] used Galerkin finite element in space and
finite difference scheme in time for the numerical approximation of nonlinear frac-
tional differential equations with sub- and super-diffusion. Zeng et al. [185], [186]
proposed finite difference/element scheme to solve time-fractional equations. Zheng
et al. [190] proposed a novel spectral method for the time-fractional Fokker-Planck
equation. Zayernouri and Karniadakis [182], [183] developed a scheme that uses a
Petrov-Galerkin in time and discontinuous Galerkin in space (PG-DG) method for
fractional PDEs. They extended the PG-DG scheme to the DG-DG scheme in which
spatial discretization is carried out using the discontinuous domain spectral/hp ele-
ment method. They also introduced new fractional polynomials called polyfractono-
mials (used as basis functions) for spatial and temporal discretizations in an earlier
paper[181]. Zayernouri and Matzavinos [184] developed fractional Adams type meth-
ods with applications to the fractional Keller-Segel chemotaxis system. Hu et al. [69]
presented a finite difference scheme for multidimensional Caputo-type parabolic equa-
tion with fractional Laplacian. Li et al. [99] presented a space-time fractional phase-
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field model and developed a lossless fast numerical method for the model’s numerical
simulation. Garrappa [141] discussed some theoretical and computational aspects of
a trapezoidal method for fractional differential equations. Garrappa and Popolizio
[61], and Garrappa [60] proposed a generalized exponential time differencing scheme
that generalizes the aforementioned exponential scheme for time-stepping. Arshad
et al. [5] developed a trapezoidal scheme for time-space fractional diffusion equations
with Riesz derivatives. Iyiola et al. [76] developed a real distinct pole approxima-
tion to the generalized Mittag Lefler function and applied the approximation to an
ultra-slow diffusion model. Xu et al. [176] proposed a parareal-in-time integration of
time-fractional differential equations. Wu and Zhou [172], [173] developed parareal
algorithms for fractional diffusion equations and time-fractional differential equations,
respectively.
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CHAPTER 3

Numerical Methods for Space-Fractional PDEs

3.1 Introduction
In this chapter, we discuss a class of schemes for space-fractional PDEs (α = 1 in (1.1))
with time-dependent boundary conditions. This implies that we develop schemes for
the class of PDEs

∂u

∂t
= −κ (−∆)

β
2 u+ f(u), in Ω× (0, T ], 1 < β ≤ 2, (3.6)

with time-dependent boundary conditions and prescribed initial conditions where κ
is the diffusion coefficient, Ω is bounded in Rd and d is the dimension of the problem.
This is achieved via a combination of the MTT for spatial discretization and ratio-
nal approximations to the exponential function for time-stepping. In particular, we
develop the [0, 1]-, [1, 1]- and [0, 2]-Padé approximations and a real distinct pole ap-
proximation to the exponential function. All simulations in this chapter were written
in Matlab on an Intel(R) Core(TM) i7-4870HQ CPU running at 2.50GHz.

3.2 Spatial Discretization
The MTT was introduced by Ilić et al. in [72], [73] and is used for spatial discretization
of the space-fractional derivative in (3.6). The choice of the MTT is based on the ease
of extension to different types boundary problems and to higher dimensional problems.
The basic idea of the MTT is to approximate the fractional Laplacian (−∆)

β
2 by the

discrete matrix representation A
β
2 , where A is a symmetric positive (semi) definite

matrix obtained from the discrete representation of the standard Laplace operator
subject to the boundary conditions imposed on (3.6).

Definition 3.2.1. Suppose the Laplacian (−∆) has a complete set of orthonormal
eigenfunctions φn, φn,m, or φn,m,l corresponding to the eigenvalues λn, λn,m, or λn,m,l,
respectively, on a bounded region Ω, i.e., for n,m, l = 0, 1, 2, · · ·

(−∆)φn = λnφn, d = 1,

(−∆)φn,m = λn,mφn,m, d = 2,

(−∆)φn,m,l = λn,m,lφn,m,l, d = 3,
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in Ω; B(φ) = 0 on ∂Ω, where B(φ) is the homogeneous Dirichlet boundary conditions.
Let

f1 =
∞∑
n=0

cnφn such that
∞∑
n=0

|cn|2|λn|β <∞, d = 1,

f2 =
∞∑
n=0

∞∑
m=0

cn,mφn,m such that
∞∑
n=0

∞∑
m=0

|cn,m|2|λn,m|β <∞, d = 2,

f3 =
∞∑
n=0

∞∑
m=0

∞∑
l=0

cn,m,lφn,m,l such that
∞∑
n=0

∞∑
m=0

∞∑
l=0

|cn,m,l|2|λn,m,l|β <∞, d = 3,

then (−∆)
β
2 is defined by

(−∆)
β
2 f1 =

∞∑
n=0

cnλ
β
2
n φn, d = 1,

(−∆)
β
2 f2 =

∞∑
n=0

∞∑
m=0

cn,mλ
β
2
n,mφn,m, d = 2,

(−∆)
β
2 f3 =

∞∑
n=0

∞∑
m=0

∞∑
l=0

cn,m,lλ
β
2
n,m,lφn,m,l, d = 3.

Remark 3.2.1. For homogeneous Dirichlet boundary conditions with Ω = (a, b)d, d =
1, 2, 3, and x ∈ Ω, then

λη1,··· ,ηd =

ηd∑
n=η1

(
(n+ 1)π

b− a

)2

,

and

φη1,··· ,ηd =

(√
2

b− a

)d ηd∏
n=η1

sin

(
(n+ 1)π(xn − a)

b− a

)
, ηi = 0, 1, 2, · · · .

Now, discretizing the fractional Laplacian (−∆)
β
2 with a uniform mesh of stepsize

h in each spatial direction and using the MTT, we obtain

(−∆)
β
2 u ≈ A

β
2

hβ
u,

where h−2A is the approximate matrix representation of the standard Laplace oper-
ator obtained using a finite difference approximation and h−βA

β
2 is the approximate

matrix representation of the fractional Laplacian. The matrix h−βA
β
2 need not be

formed explicitly but is constructed from the eigenvalues and eigenvectors of the ma-
trix representation of the standard Laplacian. In particular, h−βA

β
2 = HΛ

β
2H−1

where Λ and H are the eigenvalues and eigenvectors of the matrix h−2A.
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3.2.1 Spatial Discretization for One Dimensional Problems

In this subsection, we consider the spatial discretization of (3.6) in one dimension, that
is d = 1. With homogeneous Dirichlet boundary conditions, the eigenvalues and eigen-
vectors of A are given as Λ = diag(λ1, λ2, · · · , λN−1) and H = (P1, P2, · · · , PN−1),
respectively, where

λi = 4 sin

(
iπ

2N

)
, i = 1, 2, · · · , N − 1

and

Pi =

(
sin

(
1iπ

N

)
, sin

(
2iπ

N

)
, · · · , sin

(
(N − 1)iπ

N

))
, i = 1, 2, · · · , N − 1.

Consequently, the MTT transforms (3.6) into a system of nonlinear differential equa-
tions,

du

dt
= − κ

hβ
A

β
2u + f(u) + g(t),

u(0) = u0,

(3.7)

where g(t) constitutes the effects at the boundaries of the problem, u0 is the initial
data and, u and f(u) denote the vectors of the node values of u and f, respectively. For
simplicity and clarity, we demonstrate the idea by considering (3.6) in one dimension
with the non-homogeneous mixed time-dependent boundary conditions and initial
condition given by

η1u(0, t) + ux(0, t) = h1(t), t ∈ (0, T ],

η2u(L, t) + ux(L, t) = h2(t), t ∈ (0, T ],

u(x, 0) = u0(x), x ∈ (0, L),

(3.8)

where η1 and η2 are constants. At first, we consider the integer-order (β = 2) equiv-
alent of (3.6) subject to (3.8). Given a positive integer N , with h = L/N the spatial
step size, we define the spatial grid points xn = nh, n = 0(1)N and let un = u(xn, t)
and fn = f(un). Using second-order central difference approximations, we obtain

du0

dt
= − κ

h2
(−u−1 + 2u0 − u1) + f0,

dun
dt

= − κ

h2
(−un−1 + 2un − un+1) + fn, 1 ≤ n ≤ N − 1,

duN
dt

= − κ

h2
(−uN−1 + 2uN − uN+1) + fN .

(3.9)
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The fictitious values are fixed using (3.8) as follows:

u−1 = u1 + 2hη1u0 − 2hh1(t),

uN+1 = uN−1 − 2hη2uN + 2hh2(t)

so that (3.9) is rewritten as

du0

dt
= − κ

h2
((2− 2hη1)u0 − 2u1) + f0 −

2κ

h
h1(t),

dun
dt

= − κ

h2
(−un−1 + 2ui − un+1) + fn, 1 ≤ n ≤ N − 1,

duN
dt

= − κ

h2
(−2uN−1 + (2 + 2hη2)u0) + fN +

2κ

h
h2(t),

(3.10)

which gives a semi-discrete approximation of the integer-order equivalent of (3.6)
subject to (3.8). In matrix form, we can rewrite (3.10) as

du

dt
= −κ

(
1

h2
Au +

2

h
e0h1(t)− 2

h
eNh2(t)

)
+ f(u), (3.11)

where e0 and eN are standard basis vectors in RN+1, and A is the tridiagonal (N +
1)× (N + 1) given by

A =


2− 2hη1 −2
−1 2 −1

. . . . . . . . .
−1 2 −1

−2 2 + 2hη2

 .

Now, we observe that (3.6) could be written as

∂u

∂t
= −κ (−∆)

β
2
−1 (−∆)u+ f(u).

Let m(−∆) = h−2A be the matrix representation of the standard Laplace operator
where homogeneous boundary conditions is imposed. If the function u does not satisfy
homogeneous boundary conditions, the modified matrix representation m((−∆)u) =
1

h2
Au− 2

h
e0h1(t)+

2

h
eNh2(t) is used. Assuming that the fractional Laplacian satisfies

m((−∆)
β
2
−1) =

(
1

h2
A

)β
2
−1

, then eqn. (3.6) with (3.8) have the spatial discretization

du

dt
= −κ

(
1

h2
A

)β
2
−1(

1

h2
Au +

2

h
e0h1(t)− 2

h
eNh2(t)

)
+ f(u), (3.12)
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which may be written as

du

dt
= − κ

hβ
A

β
2u + f(u) + g(t), (3.13)

where,

g(t) = − 2κ

hβ−1
A

β
2
−1 (e0h1(t)− eNh2(t)) ,

is a contribution of the boundaries to the solution.

3.2.2 Spatial Discretization for Higher Dimensional Problems

Semi-discrete approximations for higher dimensional problems can be done in a similar
manner to the one-dimensional problem. For instance, consider a 2D problem with
(x, y) = [0, L]2 subject to the non-homogeneous mixed time-dependent boundary
conditions

η1u(0, y, t) + ux(0, y, t) = h1(y, t), t ∈ (0, T ], y ∈ [0, L],

η2u(L, y, t) + ux(L, y, t) = h2(y, t), t ∈ (0, T ], y ∈ [0, L],

η3u(x, 0, t) + uy(x, 0, t) = h3(x, t), t ∈ (0, T ], x ∈ [0, L],

η3u(x, L, t) + uy(x, L, t) = h4(x, t), t ∈ (0, T ], x ∈ [0, L].

(3.14)

Let N be the number of grid points in the x and y directions with h = L/N ,
the spatial stepsize and xn = yn = nh, n(1)N . We also define ui,j = u(xi, yj, t),
fi,j = f(ui,j) and Ui,j, i, j = −1, (N + 1) to be fictitious values, then by using second
order finite difference approximations, we obtain
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du0,0

dt
= − κ

h2
(−u0,1 − U0,−1 + 4u0,0 − U−1,0 − u1,0) + f0,0,

du0,j

dt
= − κ

h2
(−u0,j+1 − u0,j−1 + 4u0,j − U−1,j − u1,j) + f0,j, j = 1(1)(N − 1),

dui,0
dt

= − κ

h2
(−ui,1 − U0,−1 + 4ui,0 − ui−1,0 − ui+1,0) + fi,0, i = 1(1)(N − 1),

du0,N

dt
= − κ

h2
(−U0,N+1 − u0,N−1 + 4u0,N − U−1,N − u1,N) + f0,N ,

duN,0
dt

= − κ

h2
(−uN,1 − UN,−1 + 4uN,0 − uN−1,0 − UN+1,0) + fN,0,

dui,j
dt

= − κ

h2
(−ui,j+1 − ui,j−1 + 4ui,j − ui−1,j − ui+1,j) + fi,j, i, j = 1(1)(N − 1),

duN,j
dt

= − κ

h2
(−uN,j+1 − uN,j−1 + 4uN,j − uN−1,j − UN+1,j) + fN,0, j = 1(1)(N − 1),

dui,N
dt

= − κ

h2
(−Ui,N+1 − ui,N−1 + 4ui,N − ui−1,N − ui+1,N) + fi,N , i = 1(1)(N − 1),

duN,N
dt

= − κ

h2
(−UN,N+1 − uN,N−1 + 4uN,N − uN−1,N − UN+1,N) + fN,N .

(3.15)

The fictitious values are fixed using (3.14) as follows:

U−1,j = u1,j + 2hη1u0,j − 2hh1(jh, t),

UN+1,j = uN−1,j − 2hη2uN,j + 2hh2(jh, t),

Ui,−1 = ui,1 + 2hη3ui,0 − 2hh3(ih, t),

Ui,N+1 = ui,N−1 − 2hη4ui,N + 2hh4(ih, t),

i, j = 0(1)N.

so that (3.15) is written in matrix form as

du

dt
= − κ

h2
Au + f(u) + G(t),
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where

A =


B0 C0 0 · · · 0
C1 B1 C1 · · · 0
... . . . . . . . . . 0
0 · · · CN−1 BN−1 CN−1

0 0 · · · CN BN

 ,

B0 =


4− 2hη1 − 2hη3 −2

−1 4− 2hη1 −1
. . . . . . . . .

−1 4− 2hη1 −1
−2 4− 2hη1 + 2η4

 ,

Bi =


4− 2hη3 −2
−1 4 −1

. . . . . . . . .
−1 4 −1

−2 4 + 2hη4

 , i = 1(1)(N − 1),

BN =


4 + 2hη2 − 2hη3 −2

−1 4 + 2hη2 −1
. . . . . . . . .

−1 4 + 2hη2 −1
−2 4 + 2hη2 + 2hη4

 ,

C0 = CN = −2I and Ci = −I, i = 1(1)(N − 1) where I is the identity matrix. The
vector G(t) is given as

G(t) =
2κ

h


g0(t)
g1(t)
...

gN(t)

 ,
where

g0(t) = [−h1(0, t)− h3(0, t), −h1(h, t), −h1(2h, t), · · · , −h1((N − 1)h, t), −h1(Nh, t) + h4(0, t)]T ,

gi(t) = [−h3(ih, t), 0, · · · , 0, h4(ih, t)] , i = 1(1)(N − 1),

gN(t) = [h2(0, t)− h3(Nh, t), h2(h, t), h2(2h, t), · · · , h2((N − 1)h, t), h2(Nh, t) + h4(Nh, t)]T .



18

Thus, by the MTT, eqn. (3.6) with (3.14) results into the system of integer-order
differential equations

du

dt
= − κ

hβ
A

β
2u + f(u) + G(t), (3.16)

where G(t) is now given as

G(t) = − 2κ

hβ−1
A

β
2
−1


g0(t)
g1(t)
...

gN(t)

 .
A similar idea can be used for the non-homogeneous Dirichlet time–dependent bound-
ary conditions

u(0, y, t) = h1(y, t), u(L, y, t) = h2(x, t),

u(x, 0, t) = h3(x, t), u(x, L, t) = h4(x, t),

which has the semi-discrete approximation (3.16) with A = tridiag(−I, B, I), where
B = tridiag(−1, 4,−1), and

G(t) =
κ

hβ
A

β
2
−1

 g1(t)
...

gN−1(t)

 ,
where

g1(t) = [h1(h, t) + h3(h, t), h1(2h, t), · · · , h1((N − 2)h, t), h1((N − 1)h, t) + h4(h, t)]T ,

gi(t) = [h3(ih, t), 0, · · · , 0, h4(ih, t)] , i = 2(1)(N − 2),

gN−1(t) = [h2(h, t) + h3((N − 1)h, t), h2(2h, t), · · · , h2((N − 2)h, t),

h2((N − 1)h, t) + h4((N − 1)h, t)]T .

Remark 3.2.2. Under certain assumptions on a projection and an interpolating op-
erator defined in a Banach space, Simpson [153, pp. 26–27] showed that the matrix
representation of the fractional Laplacian A

β
2 has the same order of convergence as

the matrix representation of the standard Laplacian.
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3.3 Time Discretization
In this subsection, we discuss the time-stepping schemes for the numerical solution
of the semi-discretized problem (3.13) or (3.16). For simplicity of notation, we will
replace the matrix

κ

hβ
A

β
2 by A

β
2 with the intention that the

κ

hβ
is already included in

A
β
2 . Let tk = kτ, k = 0, · · · ,M , where τ = T/M is the time step size and u(tk) := uk,

then by the Duhamel principle, the exact solution of (3.13) can be written as

u(tk+1) = e−τA
β
2 u(tk) + τ

∫ 1

0

e−τA
β
2 (1−s) f(u(tk + sτ)) ds+ τ

∫ 1

0

e−τA
β
2 (1−s) g(tk + sτ) ds.

(3.17)

The regularity of the initial and boundary data has to be carefully considered in
order to develop stable numerical schemes with robust convergence properties. Having
said this, we pursue the class of schemes which has the following form:

uk+1 = R(τA
β
2 )uk + τ

r∑
i=1

Pi(τA
β
2 ) f(uk+i−1) + τ

m∑
j=1

Qj(τA
β
2 )g(tk + ξjτ), (3.18)

where R(z), {Pi(z)}ri=1, {Qj(z)}sj=1 are rational functions bounded on the spectrum
of τA

β
2 uniformly in τ , {ξj}

s

j=1 are Gaussian quadrature points in the interval [0, 1].
The following proposition, which is a slight modification of the one proposed in [164,
p. L8.1], describes the accuracy and equivalency of some relations which we shall use
in the sequel.

Proposition 3.3.1. The time discretization scheme (3.18) is accurate of order q if
and only if

R(z) = e−z +O(zq+1), z → 0, (3.19)

and, for 0 ≤ l ≤ q,

m∑
i=1

ξliQi(z) =
l!

(−z)l+1

(
e−z +

l∑
j=0

(−z)j

j!

)
+O(zq−l), as z → 0, (3.20)

or equivalently
m∑
i=1

ξliQi(z) =

∫ 1

0

sle−z(1−s) ds+O(zq−l), as z → 0, (3.21)

and, for 1 ≤ k ≤ q,

Pk(z) =
(k − 1)!

(−z)k

(
e−z +

k−1∑
j=0

(−z)j

j!

)
+O(zq−k+1), as z → 0, (3.22)
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or equivalently

Pk(z) =

∫ 1

0

s(k−1)e−z(1−s) ds+O(zq−k+1), as z → 0. (3.23)

Proof. The exact solution of (3.13) is given as (3.17) using the variation of constant
formula. If f = g = 0, then

u(tk+1) = e−τA
β
2 u(tk) = R(τA

β
2 )u(tk) +O(τ q+1), as τ → 0

which implies that

R(τA
β
2 ) = e−τA

β
2 +O(τ q+1), as τ → 0.

This shows eqn. (3.19) of the proposition. We also observe from eqns. (3.17) and
(3.18) that∫ 1

0

e−τA
β
2 (1−s)g(tk + sτ) ds =

m∑
j=1

Qj(τA
β
2 )g(tk + ξjτ) +O(τ q+1), as τ → 0.

Expanding the terms g(tk + sτ) and g(tk + ξjτ) about tk, we obtain∫ 1

0

sl e−τA
β
2 (1−s) ds =

m∑
j=1

ξlj Qj(τA
β
2 ) +O(τ q−l), as τ → 0

which gives the result in eqn. (3.20). It is easy to infer, using integration by parts and
mathematical induction, that

1

l!

∫ 1

0

sle−z(1−s) ds =
1

(−z)l+1

∞∑
j=l+1

(−z)j

j!

=
1

(−z)l+1

(
e−z −

l∑
j=0

(−z)j

j!

)

which proves the result in eqn. (3.21). For eqn. (3.22) and (3.23), we note that f(u)
in (1.3) is approximated by a linear combination of the powers of sτ , for example the
constant function φ(s) = f(uk) and the linear function

φ(s) = f(uk) + (t− tk)
f(uk+1)− f(uk)

τ
, t = sτ

are different approximations to f(u). Thus

Pk(z) f(u(tk + jτ)) =

∫ 1

0

φ(s) e−z(1−s) ds, j = 0, 1,
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from which we obtain

Pk(z) =

∫ 1

0

s(k−1)e−z(1−s) ds+O(zq−k+1), as z → 0

and the results follows.

It is computationally efficient to have R(z), {Pi(z)}ri=1, {Qj(z)}mj=1 share the same
poles [86]. Thus, by considering a form similar to [86], [164], that is,

R(z) =
N (z)

D(z)
, Pi(z) =

Ni(z)

D(z)
, Qj(z) =

Mj(z)

D(z)
,

where N (z), Ni(z),Mj(z), D(z), (i = 1, · · · , r, j = 1, · · · ,m) are polynomials, we
obtain the class of schemes

D(τA
β
2 )uk+1 = N (τA

β
2 )uk + τ

r∑
i=1

Ni(τA
β
2 )f(uk+i−1) + τ

m∑
j=1

Mj(τA
β
2 )g(tk + ξjτ).

(3.24)
In what follows, we shall use different rational approximations to the exponential
function to approximate the first quantity on the right hand side of (3.18), constant
or linear approximations to the nonlinear function f(u) to approximate the second
quantity and eqn. (3.20) in proposition (3.3.1) to approximate the last quantity.

3.3.1 First Order Accurate Method

3.3.1.1 (0, 1)-Padé approximation with Gaussian Quadrature (R01-G
Scheme)
The simplest approximation to (3.17) is to approximate f(u) by the constant vector
f(uk) and use the one-point Gaussian quadrature rule. This corresponds to r = m = 1
in (3.18) and we obtain the scheme

uk+1 ≈ vk+1 = R(τA
β
2 )vk + τP1(τA

β
2 )f(vk) + τ Q1(τA

β
2 )g(tk + ξ1τ), (3.25)

where P1(z) = −1

z
(e−z − 1), Q1(z) = (1 + z)−1 and ξ1 =

1

2
.

Approximating the exponential functions in (3.25) by the (0,1)-Padé approxima-
tion yields the scheme (3.24) with D(z) = (1 + z), N (z) = N1(z) = M1(z) = 1 as(

I + τA
β
2

)
vk+1 = vk + τ (f(vk) + g(tk + ξ1τ)) (3.26)

which we shall call the R01-G scheme.
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3.3.2 Second Order Accurate Methods

Suppose f(u) in eqn. (3.17) is approximated by the linear function

f(u) ≈ f(uk) + (t− tk)
f(u∗k+1)− f(uk)

τ
, t ∈ [tk, tk+1],

with the two-point Gaussian quadrature rule (these corresponds to r = m = 2 in
eqn. (3.18), we obtain the scheme

uk+1 ≈ vk+1 = R(τA
β
2 )vk + τ(P1(τA

β
2 )f(vk) + P2(τA

β
2 )f(v∗k+1)) + τ

2∑
i=1

Qi(τA
β
2 )g(tk + ξiτ)

= R(τA
β
2 )vk + τϕ(τA

β
2 )f(vk) + τP2(τA

β
2 )(f(v∗k+1)− f(vk)) + τ

2∑
i=1

Qi(τA
β
2 )g(tk + ξiτ),

where ϕ(z) = −1

z
(e−z−1), P2(z) =

1

z2
(e−z−1+z), P1(z) = ϕ(z)−P2(z). Therefore,

we have the predictor-corrector scheme

v∗k+1 = R(τA
β
2 )vk + τ ϕ(τA

β
2 )f(vk) + τ

2∑
j=1

Qj(τA
β
2 )g(tk + ξjτ))

vk+1 = v∗k+1 + τP2(τA
β
2 )(f(v∗k+1)− f(vk)),

(3.27)

where

ξ1 =
3−
√

3

6
and ξ2 =

3 +
√

3

6

are the Gaussian quadrature points of order 2. We shall report three schemes based
on different rational approximations to the exponential function in (3.27).

3.3.2.1 (1, 1)-Padé approximation with Gaussian Quadrature (R11-G)
At first, we obtain Qj(z), j = 1, 2 by using proposition (3.3.1) and letting R(z) =
R1,1(z) be the (1,1)-Padé approximation to the exponential function, then

Q1(z) +Q2(z) = −1

z

(
2− z
2 + z

− 1

)
,

ξ1Q1(z) + ξ2Q2(z) =
1

z2

(
2− z
2 + z

− 1 + z

)
,

from which we obtain Q1(z) = Q2(z) = (2 + z)−1. Thus, using the (1,1)-Padé
approximation for approximating the exponential functions in (3.27) we obtain (3.24)
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with D(z) = (2 + z), N (z) = (2− z), N1(z) = N2(z) =M1(z) =M2(z) = 1 which
gives(

2I + τA
β
2

)
vk+1 =

(
2I − τA

β
2

)
vk + τ (f(vk) + f(vk+1) + g(tk + ξ1τ) + g(tk + ξ2τ))

vk+1 =
(

2I + τA
β
2

)−1 [(
2I − τA

β
2

)
vk + τ (2f(vk) + g(tk + ξ1τ) + g(tk + ξ2τ))

]
+ τ

(
2I + τA

β
2

)−1

(f(vk+1)− f(vk)).

Thus, we obtain the predictor-corrector (R11-G) scheme given as

v∗k+1 =

(
4
(

2I + τA
β
2

)−1

− I
)
vk + τ

(
2I + τA

β
2

)−1

(2f(vk) + g(tk + ξ1τ) + g(tk + ξ2τ))

vk+1 = v∗k+1 + τ
(

2I + τA
β
2

)−1

(f(v∗k+1)− f(vk)).

(3.28)

3.3.2.2 (0, 2)-Padé approximation with Gaussian Quadrature (R02-G)
Let R(z) and all exponential functions in (3.27) be replaced by the R0,2(z) rational
approximation, then Q1(z) and Q2(z) are obtained by solving the system

Q1(z) +Q2(z) = −1

z

(
2

2 + 2z + z2
− 1

)
,

ξ1Q1(z) + ξ2Q2(z) =
1

z2

(
2

2 + 2z + z2
− 1 + z

)
,

to obtain

Q1(z) = −1

2

(
−2 + (

√
3− 1)z

2 + 2z + z2

)
, Q2(z) =

1

2

(
2 + (

√
3 + 1)z

2 + 2z + z2

)
.

Thus, after some algebraic simplification, the scheme (3.24) is obtained with D(z) =

(2 + 2z + 2z2), N (z) = 2, N1(z) = 1, N2(z) = 1 + z, M1(z) = −1

2
(−2 + (

√
3 −
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1)z), M2(z) =
1

2
(2 + (

√
3 + 1)z) which gives

(
2I + 2τA

β
2 + τ 2Aβ

)
vk+1 = 2vk + τ

[
f(vk) + (I + τA

β
2 )f(vk+1)

−1

2

(
(−2I + (

√
3− 1)τA

β
2 )g(tk + ξ1τ)

−(2I + (
√

3 + 1)τA
β
2 )g(tk + ξ2τ)

)]
,

vk+1 =
(

2I + 2τA
β
2 + τ 2Aβ

)−1 [
2vk + τ(2I + τA

β
2 )f(vk)

− τ

2

(
(−2I + (

√
3− 1)τA

β
2 )g(tk + ξ1τ)

−(2I + (
√

3 + 1)τA
β
2 )g(tk + ξ2τ)

)]
+ τ

(
2I + 2τA

β
2 + τ 2Aβ

)−1 (
I + τA

β
2

)
(f(vk+1)− f(vk)).

Thus, we obtain the predictor-corrector (R02-G) scheme given as

(
2I + 2τA

β
2 + τ 2Aβ

)
v∗k+1 =

[
2vk + τ(2I + τA

β
2 )f(vk)−

τ

2

(
(−2I + (

√
3− 1)τA

β
2 )g(tk + ξ1τ)

−(2I + (
√

3 + 1)τA
β
2 )g(tk + ξ2τ)

)]
,

vk+1 = v∗k+1 + τ
(

2I + 2τA
β
2 + τ 2Aβ

)−1 (
2I + τA

β
2

) (
f(v∗k+1)− f(vk)

)
.

(3.29)

The terms τ 2Aβ =
(
τA

β
2

)2

in the R02-G scheme corresponds to the power of
a matrix which poses a computational challenge. Numerical instability may arise
from schemes involving higher order polynomials and such schemes may be subject
to cancellation errors. To avoid this, we use the partial fraction technique, see ([59],
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[85]) to obtain

R0,2(z) = 2Re

(
ω

z − c

)
,

ϕ(z) = 2Re

(
ω1

z − c

)
,

Q1(z) = 2Re

(
ω2

z − c

)
,

Q2(z) = 2Re

(
ω3

z − c

)
,

P2(z) = 2Re

(
ω4

z − c

)
,

where Re(z) denotes the real part of z, c = −1 + i, ω = −i, ω1 =
1

2
− 1

2
i, ω2 =

−(
√

3− 1)

4
− (
√

3 + 1)

4
i, ω3 =

(
√

3 + 1)

4
+

(
√

3− 1)

4
i, ω4 =

1

2
.

Thus, we may rewrite the R02-G scheme in a more efficient way as(
τA

β
2 − cI

)
w∗k+1 = ωvk + τ (ω1f(vk) + ω2g(tk + ξ1τ) + ω3g(tk + ξ2τ) ,

v∗k+1 = 2Re(w∗k+1),

vk+1 = v∗k+1 + τω4

(
τA

β
2 − cI

)−1 (
f(v∗k+1)− f(vk)

)
.

(3.30)

3.3.2.3 Real Distinct Pole approximation with Gaussian Quadrature (RDP-
G Scheme)
In this subsection, we consider a real distinct pole rational approximation (RDP) to
the exponential function first discussed in [167] and later followed by [7], [75]. It has
been shown that the approximation

RRDP (z) =
12− 5z

(3 + z)(4 + z)

is nearly optimal in error constant with second-order convergence. Replacing the
exponential functions in (3.27) by the RDP, we solve the system

Q1(z) +Q2(z) = −1

z

(
12− 5z

12 + 7z + z2
− 1

)
,

ξ1Q1(z) + ξ2Q2(z) =
1

z2

(
12− 5z

12 + 7z + z2
− 1 + z

)
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to obtain

Q1(z) =
6 + 1

2
(1−

√
3)z

12 + 7z + z2
, Q2(z) =

6 + 1
2
(1 +

√
3)z

12 + 7z + z2
.

With some simplification, the scheme (3.24) is obtained with D(z) = (12 + 7z +
2z2), N (z) = 12−5z, N1(z) = 6, N2(z) = 6+z, M1(z) = 6+ 1

2
(1−
√

3)z, M2(z) =

6 + 1
2
(1 +

√
3)z which gives

(
12I + 7τA

β
2 + 2τ 2Aβ

)
vk+1 = (12I − 5τA

β
2 )vk + τ

[
6f(vk) +

(
6I + τA

β
2

)
f(vk+1)

+

(
6I +

1

2
(1−

√
3)τA

β
2

)
g(tk + ξ1τ)

+

(
6I +

1

2
(1 +

√
3)τA

β
2

)
g(tk + ξ2τ)

]
,

vk+1 =
(

12I + 7τA
β
2 + 2τ 2Aβ

)−1 [
(12I − 5τA

β
2 )vk + τ

(
12I + τA

β
2

)
f(vk)

+ τ

(
6I +

1

2
(1−

√
3)τA

β
2

)
g(tk + ξ1τ)

+ τ

(
6I +

1

2
(1 +

√
3)τA

β
2

)
g(tk + ξ2τ)

]
+ τ

(
12I + 7τA

β
2 + 2τ 2Aβ

)−1 (
6I + τA

β
2

)
(f(vk+1)− f(vk))

Thus, we obtain the predictor-corrector (RDP-G) scheme given as

(
12I + 7τA

β
2 + 2τ 2Aβ

)
v∗k+1 =

[
(12I − 5τA

β
2 )vk + τ

(
12I + τA

β
2

)
f(vk)

+ τ

(
6I +

1

2
(1−

√
3)τA

β
2

)
g(tk + ξ1τ)

+ τ

(
6I +

1

2
(1 +

√
3)τA

β
2

)
g(tk + ξ2τ)

]
vk+1 = v∗k+1 + τ

(
12I + 7τA

β
2 + 2τ 2Aβ

)−1 (
6I + τA

β
2

) (
f(v∗k+1)− f(vk)

)
(3.31)
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Similarly, a partial fraction decomposition technique results in

RRDP (z) =
2∑
i=1

(
ωi

z − ci

)
,

ϕ(z) =
2∑
i=1

(
ω1i

z − ci

)
,

Q1(z) =
2∑
i=1

(
ω2i

z − ci

)
,

Q2(z) =
2∑
i=1

(
ω3i

z − ci

)
,

P2(z) =
2∑
i=1

(
ω4i

z − ci

)
,

where
c1 = −3, c2 = −4, ω1 = 27, ω2 = −32

ω11 = 9, ω12 = −8, ω21 =
9 + 3

√
3

2
, ω22 = −4− 2

√
3,

ω31 =
9− 3

√
3

2
, ω32 = −4 + 2

√
3, ω41 = 3, ω42 = −2.

Thus, we may rewrite the RDP-G scheme in more efficient way as(
τA

β
2 − c1I

)
a∗k+1 = ω1vk + τ (ω11f(vk) + ω21g(tk + ξ1τ) + ω31g(tk + ξ2τ)) ,(

τA
β
2 − c2I

)
b∗k+1 = ω2vk + τ (ω12f(vk) + ω22g(tk + ξ1τ) + ω32g(tk + ξ2τ)) ,

v∗k+1 = a∗k+1 + b∗k+1,

ak+1 =
(
τA

β
2 − c1I

)−1

ω41

(
f(v∗k+1)− f(vk)

)
,

bk+1 =
(
τA

β
2 − c2I

)−1

ω42

(
f(v∗k+1)− f(vk)

)
,

vk+1 = v∗k+1 + τ(ak+1 + bk+1).

(3.32)

3.4 Efficient Implementation of the Schemes
The scheme developed in the previous section can be efficiently implemented by per-
forming an LU decomposition (or efficiently precomputing the inverse) of the right
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hand matrices, followed by a matrix-vector multiplications. We give the algorithms
for the schemes below.

Algorithm 1 R11-G Scheme

1: Efficiently precompute the inverse of the matrix
(

2I + τA
β
2

)
, i.e., B =(

2I + τA
β
2

)−1

.

2: for k = 1, · · · ,m. do

3: Obtain the solution vector y by the matrix-vector multiplication:

4: y = B (4vk + τ (2f(vk) + g(tk + ξ1τ) + g(tk + ξ2τ))) .

5: Compute the predictor as v∗k+1 from v∗k+1 = y − vk.

6: Perform another matrix-vector multiplication to obtain w :

7: w = B
(
τ
[
f(v∗k+1)− f(vk)

])
.

8: Compute the corrected solution as vk+1 = v∗k+1 + w

9: end for
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Algorithm 2 R02-G Scheme

1: Efficiently precompute the inverse or the LU decomposition of the matrix (τA
β
2 −

cI), i.e, B = (τA
β
2 − cI)−1

2: for k = 1, · · · , (M − 1), do

3: Obtain the solution vector y by the matrix-vector multiplication:

4: y = B (ωvk + τ(ω1f(vk) + ω2g(tk + ξ1τ) + ω3g(tk + ξ2τ))) .

5: Compute the predictor as v∗k+1 = 2Re(y)

6: Perform another matrix-vector multiplication to obtain w :

7: w = B
(
ω4τ

[
f(v∗k+1)− f(vk)

])
.

8: Compute the corrected solution as vk+1 = v∗k+1 + 2Re(w).

9: end for
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Algorithm 3 RDP-G Scheme

1: Efficiently precompute the inverse or the LU decomposition of the matrices (τA
β
2−

c1I) and (τA
β
2 − c2I), i.e, B1 = (τA

β
2 − c1I)−1 and B2 = (τA

β
2 − c2I)−1

2: for k = 1, · · · , (M − 1), do

3: Obtain the solution vectors:

4: w1 = B1 (ω1vk + τ(ω11f(vk) + ω21g(tk + ξ1τ) + ω31g(tk + ξ2τ))) .

5: w2 = B2 (ω2vk + τ(ω12f(vk) + ω22g(tk + ξ1τ) + ω32g(tk + ξ2τ))) .

6: Compute the predictor as v∗k+1 = w1 + w2

7: Perform another matrix-vector multiplication to obtain:

8: w1 = B1
(
τω41(f(v∗k+1)− f(vk))

)
.

9: w2 = B2
(
τω42(f(v∗k+1)− f(vk))

)
.

10: Compute the corrected solution as vk+1 = v∗k+1 + w1 + w2.

11: end for

3.4.1 Computational complexity of the algorithms

The matrix A
β
2 is fully dense which implies that the computation of the exponential

term in (3.17) is costly [39]. Algorithm 1 and 2 reduce the computational efforts
by precomputing the the inverse of the matrices

(
2I + τA

β
2

)
and

(
τA

β
2 − cI

)
, re-

spectively (once and outside of the loop), and then performing two matrix-vector
multiplications at each step. For algorithm 3, the precomputation of the inverses(
τA

β
2 − c1I

)−1

and
(
τA

β
2 − c2I

)−1

is performed, followed by four matrix-vector mul-
tiplications at each step. The matrix-vector multiplications require only O(n2) oper-
ations. The algorithms are performed quite efficiently by precomputing the inverses
once and storing them. This makes the methods highly efficient and suitable for solv-
ing large systems of fractional-in-space multidimensional PDEs as is demonstrated
in Numerical Examples Section. Another approach for algorithms 1, 2 and 3 is to



31

compute the LU decomposition of
(

2I + τA
β
2

)
,
(
τA

β
2 − cI

)
and,

(
τA

β
2 − c1I

)
and(

τA
β
2 − c2I

)
respectively (once and outside of the loop), and then perform a for-

ward and backward substitution at each step. However, this approach is much more
costly since it requires four O(n2) operations (algorithms 1 and 2) and eight O(n2)
(algorithm 3) at each step for the forward and backward substitution. Lastly, the ex-
plicit treatment of the reaction term ensures that we do not need to solve a nonlinear
system at each step.

3.5 Convergence and Stability Analysis
In this subsection, we provide error estimates and discuss the stability of the schemes
derived in the previous section.

3.5.1 Convergence Analysis

For simplicity, we shall simply write A for A
β
2 and consider the abstract initial value

problem

u′ + Au = f(u) + g(t), t > 0

u(0) = 0

(3.33)

in a Hilbert space H, where A is linear, self-adjoint, positive (semi-) definite on
Ḣs = D(As/2) a subspace in L2 with the corresponding norm

|v|s = (Asv, v)1/2 = ||As/2v||,

where || · || = || · ||L2 . We assume that the nonlinear function f(u) is Lipschitz
continuous i.e. there exists a constant L such that for u, v ∈ D(Aq), ||f(u)− f(v)|| ≤
L||u− v||. This implies that ||f(u)|| ≤ L||u|| + ||f(0)||. We shall use the notation
g(k) to denote (d/dt)kg(t) in the sequel.

At first, we give an error estimate in the L2 space norm for the time-stepping
scheme (3.26) in the case that the initial data v is smooth, that is, v ∈ D(Aq) for
some q ≥ 1.

Theorem 3.5.1. Assume that the time discretization (3.26) is accurate of order one
and that |R(z)| < 1 for z > 0. Then, if g(t) ∈ Ḣ2, when t ≥ 0 and f(u) is Lipschitz
continuous with respect to u, then for the solution of (3.26) and (3.33), the error
estimate

||ek|| ≤ Cτ

(∫ tk

0

φ1 ds+ tkφ2

)
,
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holds uniformly for 0 ≤ tk ≤ T , where φ1 = |u|2 + |g|2 + |f(0)|2 + ||g(1)|| +
||f ′|| ||u′|| and φ2 = ||f ||+ sups≤tk |g(s)|2 + 1.

Proof. A recursive application of the time-stepping scheme (3.26) to (3.33) gives

vk = τ
k−1∑
j=0

Rk−j−1(τA) (P1(τA)f(vj) +Q1(τA)g(tj + ξ1τ)) .

The solution of (3.33) may be written, by setting E(t) = e−τA, as

u(tk) =

∫ tk

0

E(t− s) (f(u(s)) + g(s)) ds

= τ
k−1∑
j=0

E(tk−j−1) Iτ (f(u(tj)) + g(tj)),

where

Iτg(t) =

∫ 1

0

E(τ(1− s))g(t+ sτ) ds.

Using the error notation ej = vj − u(tj), Pτ f(vj) = P1(τA)f(vj) and Qτg(tj) =
Q1(τA)g(tk + ξ1τ), we have

ek = τ
k−1∑
j=0

{
Rk−j−1(τA)Pτ f(vj)− E(tk−j−1)Iτ f(u(tj)) + Rk−j−1(τA)Qτg(tj)− E(tk−j−1)Iτg(tj)

}
= τ

k−1∑
j=0

[
Rk−j−1(τA)Pτ (f(vj)− f(u(tj))) +

(
Rk−j−1(τA)Pτ − E(tk−j−1)Iτ

)
f(u(tj))

]
+ τ

k−1∑
j=0

[(
Rk−j−1(τA)− E(tk−j−1)

)
Iτg(tj) +Rk−j−1(τA)(Qτ − Iτ )g(tj)

]
= τ

k−1∑
j=0

(
Rk−j−1(τA)− E(tk−j−1)

)
Iτ (f(u(tj)) + g(tj))

+ τ
k−1∑
j=0

Rk−j−1(τA)(Pτ − Iτ ) f(u(tj)) + τ
k−1∑
j=0

Rk−j−1(τA)Pτ (f(vj)− f(u(tj)))

+ τ
k−1∑
j=0

Rk−j−1(τA)(Qτ − Iτ )g(tj)

= e1
k + e2

k + e3
k + e4

k.
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Using eqn. (3.19) (q = 1) of proposition (3.3.1), the Lipschitz continuity of f(u) and
observing that E(τ(1− s)) commutes with Rk(τA)− E(tk), we obtain

||e1
k|| ≤ τ

k−1∑
j=0

∫ 1

0

∣∣∣∣(Rk−j−1(τA)− E(tk−j−1))(f(u(tj)) + g(tj))
∣∣∣∣ ds

≤ Cτ 2

k+1∑
j=0

∫ 1

0

|f(u(tj + sτ)) + g(tj + sτ)|2 ds

≤ Cτ

∫ tk

0

(|u|2 + |g|2 + |f(0)|2) ds.

To estimate e2
k, we write

Iτ f(u(tj)) =

∫ 1

0

E(τ(1− s))f(u(tj + sτ)) ds

=

∫ 1

0

E(τ(1− s))f(u(tj)) ds+H1,1 f(u(tj)),

where

H1,1 f(u(tj)) =

∫ 1

0

E(τ(1− s))

(∫ tj+sτ

tj

f ′(u(w))u′(w) dw

)
ds.

Therefore,
(Pτ − Iτ )f(u(tj)) = h1(τA)f(u(tj)) +H1,1 f(u(tj)),

where h1(z) = P1(z) −
∫ 1

0
e−z(1−s) ds. From eqn. (3.23) of proposition (3.3.1), we

obtain

||(Pτ − Iτ )f(u(tj))|| ≤ Cτ ||f(u)||+ C

∫ tj+1

tj

||f ′(u)|| ||u′|| ds,

so that

||e2
k|| ≤ Cτ

(
tk||f ||+

∫ tk

0

||f ′|| ||u′|| ds
)
.

For e3
k, we have

||Pτ (f(vj))− f(u(tj))|| =
∣∣∣∣∣∣∣∣∫ 1

0

e−z(1−s)(f(vj))− f(u(tj)) ds+ Cτ

∣∣∣∣∣∣∣∣
≤ C (||ej||+ τ) .

Thus,

||e3
k|| ≤ Cτ

k−1∑
j=0

(||ej||+ τ) .
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It is easy to show using mathematical induction that ||e3
k|| ≤ Ctkτ since e0 = 0.

Lastly, we estimate e4
k using

Iτg(tj) =

∫ 1

0

E(τ(1− s))g(tj + sτ) ds

=

∫ 1

0

E(τ(1− s))g(tj) ds+H1,2g(tj)

and
Qτg(tj) = Q1(τA)g(tj) +H1,3g(tj),

where

H1,2g(tj) =

∫ 1

0

E(τ(1− s))

(∫ tj+sτ

tj

g′(w) dw

)
ds,

H1,3g(tj) = Q1(τA)

∫ tj+sτ

tj

g′(w) dw.

Therefore,
(Qτ − Iτ)g(tj) = h2(τA)g(tj) +H1g(tj),

where h2(z) = Q1(z)−
∫ 1

0
e−z(1−s) ds and H1 = H1,2 +H1,3 satisfies

||H1g(tj)|| ≤ C

∫ tj+1

tj

||g′|| ds.

Taking m = 1 in eqn. (3.20) of proposition (3.3.1), we have

h2(z) = O(z) as z → 0⇒ |h2(z)| ≤ Cz on σ(τA)

so that
||h2(τA)v|| ≤ τ sup

z∈σ(τA)

∣∣z−1h2(z)
∣∣ ||Av|| ≤ Cτ |v|2.

Thus,

(Qτ − Iτ )g(tj) ≤ C

(
τ |g(tj)|2 +

∫ tj+1

tj

||g′|| ds

)
which implies

||e4
k|| ≤ Cτ

(
tk sup

s≤tk
|g(s)|2 +

∫ tk

0

||g′|| ds
)
.

This completes the proof.
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Theorem 3.5.2. Assume that the time discretization (3.27) is accurate of order two
and that |R(z)| < 1 for z > 0. Then, if g(l)(t) ∈ Ḣ4−2l for l < 2, when t ≥ 0 and
f(u) is Lipschitz continuous with respect to u, then for the solution of eqns. (3.27)
and (3.33), the error estimate

||ek|| ≤ Cτ 2

(∫ tk

0

φ1 ds+ tkφ2 + max(tk, 1)

)
holds uniformly for 0 ≤ tk ≤ T , where φ1 = |u|4 + |g|4 + |f(0)|4 + ||ψ||+ ||g(2)||, φ2 =

||f ||+ sups≤tk ||
d2

ds2
f(u(s))||+

∑1
l=0 sups≤tk |g

(l)(s)|4−2l and f(u(s)) =
∫
ψ(u(s)) ds.

Proof. At first, we write

v∗k = τ
k−1∑
j=0

Rk−j−1(τA)

[
ϕ(τA)f(vj) +

2∑
i=1

Qi(τA)g(tj + ξiτ)

]

+ τ
k−1∑
j=1

Rk−j(τA)P2(τA)(f(v∗j )− f(vj−1)),

vk = v∗k + τP2(τA)(f(v∗k)− f(vk−1))

= τ
k−1∑
j=0

Rk−j−1(τA)

[
P1(τA)f(vj) + P2(τA)f(v∗j+1) +

2∑
i=1

Qi(τA)g(tj + ξiτ)

]
.

Using the notations

P τ f(vj) = P1(τA)f(vj) + P2(τA)f(v∗j+1) and Qτg(tj) =
2∑
l=1

Qi(τA)g(tj + ξiτ),

we have

ek = τ
k−1∑
j=0

[
Rk−j−1(τA)P τ f(vj)− E(tk−j−1)Iτ f(u(tj))

]
+ τ

k−1∑
j=0

[
Rk−j−1(τA)Qτg(tj)− E(tk−j−1)Iτg(tj)

]
= τ

k−1∑
j=0

(
Rk−j−1(τA)− E(tk−j−1)

)
Iτ (f(u(tj)) + g(tj)) + τ

k−1∑
j=0

Rk−j−1(τA)(P τ − Iτ )f(u(tj))

+ τ
k−1∑
j=0

Rk−j−1(τA)P τ (f(vj)− f(u(tj))) + τ
k−1∑
j=0

Rk−j−1(τA)(Qτ − Iτ )g(tj)

= e1
k + e2

k + e3
k + e4

k
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Using eqn. (3.19) (q = 2) of proposition (3.3.1), the Lipschitz continuity of f(u) and
observing that E(τ(1− s)) commutes with Rk(τA)− E(tk), we obtain

||e1
k|| ≤ τ

k−1∑
j=0

∫ 1

0

∣∣∣∣(Rk−j−1(τA)− E(tk−j−1))(f(u(tj)) + g(tj))
∣∣∣∣ ds

≤ Cτ 3

k+1∑
j=0

∫ 1

0

|f(u(tj + sτ)) + g(tj + sτ)|4 ds

≤ Cτ 2

∫ tk

0

(|u|4 + |g|4 + |f(0)|4) ds.

For the estimate of e2
k, we rewrite P τ f(u(tj)) as

P τ f(u(tj)) = P1(τA)f(u(tj)) + P2(τA)f(u(tj+1))

= ϕ(τA)f(u(tj)) + P2(τA)(f(u(tj+1))− f(u(tj))),

Iτ f(u(tj)) =

∫ 1

0

E(τ(1− s))f(u(tj + sτ)) ds

=

∫ 1

0

E(τ(1− s))
(
f(u(tj)) + sτ

(f(u(tj+1))− f(u(tj)))

τ

)
ds+H2,1f(u(tj)),

where

H2,1f(u(tj)) =

∫ 1

0

E(τ(1− s))sτ(sτ − τ)

2

d2

dζ2
f(u(ζ)), ζ ∈ [tj, tj+1],

satisfies
||H2,1f(u(tj))|| ≤ Cτ 2 sup

ζ∈[tj ,tj+1]

∣∣∣∣∣∣∣∣ d2

dζ2
f(u(ζ))

∣∣∣∣∣∣∣∣ .
Therefore,

(P τ − Iτ )f(u(tj)) = h1(τA)f(u(tj)) + h2(τA) [f(u(tj+1))− f(u(tj))]−H2,1f(u(tj)),

where h1(z) = ϕ(z)−
∫ 1

0
e−z(1−s) ds and h2(z) = P2(z)−

∫ 1

0
se−z(1−s) ds. Taking k = 1

and k = 2 in eqns. (3.23) of proposition (3.3.1) with f(u(s)) =
∫
ψ(u(s)) ds, we have

||(P τ −Iτ )f(u(tj))|| ≤ Cτ 2||f(u)||+Cτ

∫ tj+1

tj

||ψ(u)|| ds+Cτ 2 sup
ζ∈[tj ,tj+1]

∣∣∣∣∣∣∣∣ d2

dζ2
f(u(ζ))

∣∣∣∣∣∣∣∣
so that

||e2
k|| ≤ Cτ 2

(
tk||f ||+

∫ tk

0

||ψ(u)|| ds+ tk sup
s≤tk

∣∣∣∣∣∣∣∣ d2

ds2
f(u(s))

∣∣∣∣∣∣∣∣) .



37

We estimate e3
k using the Lipschitz continuity of f(u) which gives

||P τ (f(vj)− f(u(tj)))|| ≤
∣∣∣∣∣∣∣∣∫ 1

0

e−z(1−s)(f(vj)− f(u(tj))) ds+ Cτ 2

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∫ 1

0

se−z(1−s)(f(v∗j+1)− f(u(tj+1))) ds+ Cτ

∣∣∣∣∣∣∣∣
≤ C(||ej||+ τ 2) + C(||e∗j+1||+ τ).

By construction ||e∗j+1|| ≤ ||ej|| so that

||e3
k|| ≤ Cτ

k−1∑
j=0

(||ej||+ τ + τ 2).

It is easy to show, using mathematical induction, that

||e3
k|| ≤ Cτ 2(tk + 1)

≤ Cτ 2 max(tk, 1), (since C is arbitrary).

Lastly, we estimate e4
k as

Qτg(tj) =
2∑
i=1

Qi(τA)g(tj + ξiτ)

=
1∑
l=0

τ l

l!

(
2∑
1

ξliQi(τA)

)
g(l)(tj) +H2,2g(tj)

Iτg(tj) =

∫ 1

0

E(τ(1− s))g(tj + sτ) ds

=
1∑
l=0

τ l

l!

(∫ 1

0

slE(τ(1− s)) ds
)
g(l)(tj) +H2,3g(tj),

where

H2,2g(tj) =
2∑
i=1

Qi(τA)

(∫ tj+ξiτ

tj

(tj + ξiτ − w)g(2)(w) dw

)
,

H2,3g(tj) =

∫ 1

0

E(τ(1− s))

(∫ tj+sτ

tj

(tj + sτ − w)g(2)(w) dw

)
ds.
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We conclude that

(Qτ − Iτ )g(tj) =
1∑
0

τ l

l!
hl(τA)g(l)(tj) +H2g(tj),

where

hl(z) =
2∑
i=1

ξliQi(z)−
∫ 1

0

sle−z(1−s) ds

and H2 = H2,2 +H2,3 satisfies

||H2g(tj)|| ≤ Cτ

∫ tj+1

tj

||g′|| ds.

Therefore,

||(Qτ − Iτ )g(tj)|| ≤ Cτ 2

1∑
l=0

|g(l)(tj)|4−2l + Cτ

∫ tj+1

tj

||g(2)|| ds

so that

||e4
k|| ≤ Cτ 2

(
tk

1∑
l=0

sup
s≤tk
|g(l)(s)|4−2l +

∫ tk

0

||g(2)|| ds

)
.

This completes the proof.

Corollary 3.5.1. The R11-G, R02-G and RDP-G schemes are second-order accurate.

3.5.2 Stability Analysis

Definition 3.5.1. [129] A rational approximation R(z) of e−z is said to be A-acceptable
if |R(z)| < 1 whenever Re(z) < 0, and L-acceptable if, in addition, |R(z)| → 0 as
Re(z)→∞.

Lemma 3.5.1. If Re(z) > 0, then the rational approximations R11(z), R02(z), RRDP (z)
to e−z satisfies

|R11(z)| =
∣∣∣∣2− z2 + z

∣∣∣∣ < 1,

|R02(z)| =
∣∣∣∣ 2

2 + 2z + z2

∣∣∣∣ < 1,

|RRDP (z)| =
∣∣∣∣ 12− 5z

12 + 7z + z2

∣∣∣∣ < 1.

In addition, R02(z)→ 0 and RRDP (z)→ 0 as z →∞.
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Proof. For R11(z), we only need show that

|2 + z|2 − |2− z|2 ≥ 0.

Therefore

|2 + z|2 − |2− z|2 = (2 + z)(2 + z)− (2− z)(2− z)

= 4 + 2z + 2z + zz − 4 + 2z + 2z − zz

= 4(z + z)

= 8Re(z) ≥ 0, (since Re(z) > 0).

In a similar manner, it is easy to show that |2 + 2z + z2|2 − 4 ≥ 0 and |12 + 7z +
z2|2 − |12− 5z|2 ≥ 0. This completes the proof.
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(a) R11-G scheme (b) R02-G scheme

(c) RRDP-G scheme (d) Amplification symbols

Figure 1: Behavior of the rational functions for z ∈ [0, 25] × [−10, 10] and their

amplification symbols.

Fig. 1(a) - (c) demonstrates the behavior of the (1, 1)- and (0, 2)-Padé approxima-
tions, and the real distinct pole approximation to the exponential function e−z. In
particular, we observe that the (1, 1)-Padé does not converge to zero for increasing
values of z and does not satisfy the maximum modulus theorem for L-acceptability as
defined in definition (3.5.1). Fig. 1(d) shows the amplification symbols of the rational
functions compared to e−z. As can be seen from the figure, the (1, 1)-Padé approxima-
tion does not approach zero. This also corroborates the fact that the R11-G scheme
is not L-acceptable.
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3.5.3 A Reliability Constraint on R11-G Scheme

Although the R11-G scheme is A-acceptable, unwanted finite oscillations may be
introduced because the symbol R1,1(z) = (4(2+z)−1−1), z = τλ

β
2 approaches −1 as z

becomes large. Lawson and Morris [94] explained that these oscillations will diminish
provided the highest frequency component of the solution decays to zero faster than
the lowest frequency component. The following proposition gives an estimate on
the choice of τ for the R11-G scheme (3.28) on problems with homogeneous Dirichlet
boundary conditions. This can be easily extended to problems with general boundary
conditions if the eigenvalues of their matrix representation are known. However, the
estimate given below could be used for the problems discussed in this dissertation
since their matrix representations are obtained using homogeneous Dirichlet boundary
conditions with some effects of the boundaries at the first and last rows of the matrix
(it gives an upper bound on the choice of τ for these problems).

Proposition 3.5.1. (A priori reliability constraint) Oscillations are guaranteed
to dampen in the solution of the R11-G scheme for (3.6) with d = 1 provided

τ <
2

κ

(
hX

2π

)β
2
, (3.34)

where X = (b− a) if Ω = (a, b).

Proof. The highest component solution of the method decays to zero faster than the
lowest components if |(4(2 + τλN−1)−1)− 1| < |(4(2 + τλ1)−1)− 1| which implies∣∣∣∣2− τλN−1

2 + τλN−1

∣∣∣∣ < ∣∣∣∣2− τλ1

2 + τλ1

∣∣∣∣ ,
that is,

−2 + τλ1

2 + τλ1

<
2− τλN−1

2 + τλN−1

<
2− τλ1

2 + τλ1

.

The right hand inequality is satisfied automatically since λi > 0. The left hand
inequality implies

τ 2λ1λN−1 < 4⇒ τ 2 <
4

λ1λN−1

.

For large N , λ1 ≈ κ
( π
X

)β
and λN−1 ≈ κ

(
2

h

)β
which implies that

τ 2 <
4

κ2

(
2π

hX

)β
and the result follows.
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Corollary 3.5.2. For d-dimensional problems, where

smallest eigenvalue, say λs ≈ κ

(
dπ2

X2

)β
2

, and

largest eigenvalue, say λl ≈ κ

(
4d

h2

)β
2

,

we generalize the constraint (3.34) to

τ <
2

κ

(
hX

2π
√
d

)β
2
, (3.35)

where Ω = (a, b)d, d = 1, 2, 3.

Remark 3.5.1. We remark here that for d = 1 and β = 2.0, the estimate results
to that given in Lawson and Morris [94]. For other combination of the parameters,
these results are new for both integer and fractional order PDEs.

Corollary 3.5.3. Following Khaliq et al. [85], it is easy to show that the time con-
straint (3.35) can be extended to (m,m)-Padé approximants to the exponential func-
tion and is given as

τ < min
1≤k≤m

|ck|

1

κ

(
hX

2π
√
d

)β
2

 , (3.36)

where ck are the roots of the Padé approximants.

Remark 3.5.2. A large diffusive coefficient κ will make the system highly stiff and
ill-conditioned, therefore a smaller time step will be required to avoid any oscilla-
tions. We also remark here that the estimates (3.34), (3.35) and (3.36) depend on
the eigenvalues of the matrix representation of the fractional Laplacian based on cen-
tral difference approximations and will differ if other difference approximations are
used.

3.6 Numerical Examples
In this section, we consider several numerical examples to illustrate the simplicity,
efficiency, reliability and robustness of the schemes discussed in the previous sections.
In particular, we discuss the problems with sharp variations in solution profile or
non-smooth initial data or mismatched initial and boundary conditions, linear prob-
lems (f(u) = 0), homogeneous Dirichlet boundary conditions (g(t) = 0), nonlinear
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problems with mixed Dirichlet boundary conditions and multidimensional problems.
For the linear problems, the accuracy of the scheme is computed using the L2 error
norms and the rate of convergence is calculated as

ROC = log2

||U
h,τ
− u

h,τ
||

||U
h
2 ,
τ
2

− u
h
2 ,
τ
2

||
,

where U is the exact solution of the problem. For nonlinear problems, the L2 error
norm is also used and the ROC is given as

ROC = log2

||u
h,τ
− u

h
2 ,
τ
2

||

||u
h
2 ,
τ
2

− u
h
4 ,
τ
4

||
.

3.6.1 Problem with Non-smooth Initial Data (PNID)

We consider the problem

∂u

∂t
= − (−∆)

β
2 u+ f(u), (x, t) ∈ [0, 1]× (0, 1]

subject to the step function initial condition and homogeneous Dirichlet boundary
conditions

u(x, 0) =



0, 0 < x < 1
4
,

1, 1
4
≤ x < 3

4
,

0, 3
4
≤ x < 1.

u(0, t) = u(1, t) = 0.

The exact solution1 of this problem with f(u) = 0 is given by

u(x, t) =
∞∑
n=1

4

nπ
sin
(nπ

2

)
sin
(nπ

4

)
sin (nπx) exp

(
−κ(nπ)βt

)
.

1The analytical solution u(x, t) was obtained using the approach discussed in Yang et al. [177]
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h = τ R01-G ROC R11-G ROC R02-G ROC RDP-G ROC
0.2500 1.121e-02 1.520e-02 1.603e-03 5.307e-04
0.1250 3.703e-03 1.5984 1.313e-02 0.2114 4.107e-04 1.9645 9.837e-05 2.4316
0.0625 1.353e-03 1.4523 5.272e-03 1.3165 1.123e-04 1.8705 2.144e-05 2.0268
0.0313 5.567e-04 1.2813 1.850e-03 1.5108 3.057e-05 1.8774 5.927e-06 2.0260
0.0156 2.496e-04 1.1570 5.563e-04 1.7338 8.091e-06 1.9175 1.466e-06 2.0158
0.0078 1.179e-04 1.0829 1.387e-04 2.0040 2.091e-06 1.9522 3.642e-07 2.0086

Table 1: Rate of convergence for PNID with β = 1.7 and f(u) = 0.

h = τ R01-G ROC R11-G ROC R02-G ROC RDP-G ROC
0.2500 2.538e-02 2.567e-03 4.766e-03 1.104e-03
0.1250 1.137e-02 1.1589 6.664e-04 1.9455 1.480e-03 1.7389 2.638e-04 2.0648
0.0625 5.219e-03 1.1232 1.682e-04 1.9857 4.041e-04 1.8213 6.390e-05 2.0455
0.0313 2.475e-03 1.0766 4.219e-05 1.9956 1.089e-04 1.8913 1.570e-05 2.0246
0.0156 1.201e-03 1.0427 1.056e-05 1.9982 2.840e-05 1.9394 3.905e-06 2.0079
0.0078 5.913e-04 1.0225 2.647e-06 1.9966 7.261e-06 1.9676 9.872e-07 1.9838

Table 2: Rate of convergence for PNID β = 1.3 and f(u) = 0.

h = τ R01-G ROC R11-G ROC R02-G ROC RDP-G ROC
0.2500 1.127e-03 3.0151e-03 1.249e-04 6.461e-05
0.1250 2.759e-04 2.0303 1.293e-03 1.2210 2.703e-05 2.2074 5.098e-06 3.6637
0.0625 7.873e-05 1.8095 6.120e-04 1.0796 7.024e-06 1.9444 1.193e-06 2.0958
0.0313 2.718e-05 1.5343 4.824e-04 0.3435 1.919e-06 1.8717 2.726e-07 2.1295
0.0156 1.094e-05 1.3130 3.607e-04 0.4195 5.183e-07 1.8887 6.114e-08 2.1565
0.0078 4.860e-06 1.1705 2.547e-04 0.5021 1.371e-07 1.9182 1.321e-08 2.2102

Table 3: Rate of convergence for PNID β = 1.8 and f(u) = u2.
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Figure 2: Solution profiles at T = 1 for PNID.

Tables 1 to 3 show the L2 error norms for the problem at the final time T = 1.
Fig. 2 shows the comparison of the solution profiles at time T = 1 (with τ = h = 0.01)
between the exact solution, R01-G, R02-G, R11-G and RDP-G schemes. Observe
the oscillations in the solution produced by the R11-G scheme near the points of
discontinuity which decreases as the space-fractional order decreases. With β = 1.4,
the reliability constraint (3.34) is satisfied, and no oscillation is present in the solution
as seen in Fig. 2. These observations are also corroborated by the results given in
tables 1 to 3 where the first few entries in the ROC column (table 1) corresponding
to the R11-G scheme does not give the accurate order of convergence (2.0) whereas
the same columns in table 2 gives the correct order of convergence. In table 3, we
observe the same phenomenon due to the use of a higher fractional order, that is,
β = 1.8. These observations show that the oscillations are due to high frequency
components present in the solution of the R11-G scheme and decreases as the space-
fractional order is decreased. We also observe that the solution profile of R01-G
scheme in Fig. 2 is quite different from the other schemes, this is simply because it
is a first-order accurate scheme and thus less accurate than the other second-order
accurate schemes.
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3.6.2 Linear Problem with Dirichlet Time-dependent Boundary Condi-

tion (LPDTBC)

We consider

∂u(x, t)

∂t
= −κ(−∆)

β
2 u(x, t), (x, t) ∈ [0, 1]× (0, 1]

with κ = 1 and u(x, 0) = −(x2 − x − 1) subject to the non-homogeneous time-
dependent boundary conditions

u(0, t) = u(1, t) = e−t.

The exact solution1 is given as:

u(x, t) = e−t − 2
∞∑
n=1

[(−1)n − 1]

nπ

sin(nπx)

(nπ)β − 1
e−t

− 2
∞∑
n=1

[
2

(nπ)3
+

1

nπ

]
[(−1)n − 1]e−(nπ)βt sin(nπx)

+ 2
∞∑
n=1

[(−1)n − 1](nπ)β−1

(nπ)β − 1
e−(nπ)βt sin(nπx).

Tables 4–6 show the result for the schemes for different values of β. We observe that
the RDP-G scheme is more accurate than the other second-order schemes. This is
because it has the smallest error constant of 1

24
. Fig. 3 shows a log-log plot of the

L2-error norms against the time and space stepsize showing the order of convergence
of the different schemes. We note that this is a linear problem with smooth initial
data, so the solution for any time step do not depend on the constraint (3.34).

h = τ R01-G ROC R11-G ROC R02-G ROC RDP-G ROC
0.2500 5.737e-02 2.252e-03 1.673e-03 1.284e-03
0.1250 2.971e-02 0.9493 6.158e-04 1.8705 6.739e-04 1.3116 3.405e-04 1.9153
0.0625 1.497e-02 0.9889 1.600e-04 1.9442 2.207e-04 1.6107 8.740e-05 1.9621
0.0313 7.498e-03 0.9975 4.083e-05 1.9704 6.410e-05 1.7834 2.223e-05 1.9750
0.0156 3.751e-03 0.9994 1.035e-05 1.9796 1.742e-05 1.8796 5.649e-06 1.9765

Table 4: Rate of convergence for LPDTBC with β = 1.7.

1The exact solution was gotten from Ilić et al. [73]
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h = τ R01-G ROC R11-G ROC R02-G ROC RDP-G ROC
0.2500 5.950e-02 2.636e-03 1.824e-03 1.550e-03
0.1250 3.1331e-02 0.9255 7.219e-04 1.8682 7.057e-04 1.3699 4.289e-04 1.8541
0.0625 1.590e-02 0.9781 1.901e-04 1.9248 2.244e-04 1.6528 1.144e-04 1.9062
0.0313 7.991e-03 0.9928 4.950e-05 1.9417 6.411e-05 1.8077 3.042e-05 1.9112
0.0156 4.003e-03 0.9972 1.287e-05 1.9435 1.728e-05 1.8914 8.150e-06 1.9002

Table 5: Rate of convergence for LPDTBC with β = 1.5.

h = τ R01-G ROC R11-G ROC R02-G ROC RDP-G ROC
0.2500 6.037e-02 2.952e-03 1.547e-03 1.891e-03
0.1250 3.246e-02 0.8950 8.411e-04 1.8114 6.039e-04 1.3569 5.600e-04 1.7558
0.0625 1.666e-02 0.9623 2.307e-04 1.8661 1.914e-04 1.6579 1.592e-04 1.8143
0.0313 8.419e-03 0.9848 2.307e-04 1.8553 5.591e-05 1.7753 4.646e-05 1.7773
0.0156 4.229e-03 0.9932 1.803e-05 1.8223 1.597e-05 1.8079 1.402e-05 1.7286

Table 6: Rate of convergence for LPDTBC with β = 1.3.
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Figure 3: Log-log plots for LPDTBC with h = τ showing the convergence schemes

for β = 1.5 at T = 1.0..

3.6.3 Nonlinear Problem with Robin Boundary Condition (NPRBC)

In this subsection, we consider

∂u(x, t)

∂t
= −κ(−∆)

β
2 u(x, t) + u(1− u), (x, t) ∈ [0, 1]× (0, 1] (3.37)

with κ = 1 and u(x, 0) = x2(1−x)2 subject to the non-homogeneous Robin boundary
conditions

ux(0, t)− u(0, t) = e−t and ux(1, t) + u(1, t) = t.

This problem demonstrates the efficiency of the schemes on time-dependent Robin-
type boundary conditions. Tables 7–9 show the result for different values of β. Fig. 4
shows the surface plots of the solutions obtained for each of the schemes. We observe
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that the solution produced by each of the schemes are similar showing the accuracy
and efficiency of the developed schemes.

h = τ R01-G ROC R11-G ROC R02-G ROC RDP-G ROC
0.2500 1.125e-03 7.444e-04 1.697e-03 1.420e-04
0.1250 5.346e-04 1.0728 1.263e-04 2,5589 4.940e-04 1.7805 3.725-05 1.9303
0.0625 2.721e-04 0.9743 3.558e-05 1.8280 1.334e-04 1.8893 9.782e-06 1.9292
0.0313 1.396e-04 0.9633 8.571e-06 2.0535 3.472e-05 1.9416 2.550e-06 1.9398
0.0156 7.102e-05 0.9746 2.042e-06 2.0695 8.870e-06 1.9686 6.560e-07 1.9584
0.0078 3.587e-05 0.9853 5.041e-07 2.0182 2.244e-06 1.9828 1.670e-07 1.9736

Table 7: Rate of convergence for NPRBC with β = 1.7.

h = τ R01-G ROC R11-G ROC R02-G ROC RDP-G ROC
0.2500 1.357e-03 5.517e-04 1.636e-03 1.819e-04
0.1250 6.632e-04 1.0326 1.273e-04 2.1152 4.714e-04 1.7954 4.827e-05 1.9141
0.0625 3.417e-04 0.9566 3.533e-05 1.8495 1.262e-04 1.9010 1.307e-05 1.8851
0.0313 1.761e-04 0.9560 9.253e-06 1.9330 3.265e-05 1.9508 3.498e-06 1.9015
0.0156 8.984e-05 0.9712 2.361e-06 1.9704 8.303e-06 1.9754 9.199e-07 1.9269
0.0078 4.543e-05 0.9837 5.973e-07 1.9831 2.093e-06 1.9878 2.384e-07 1.9483

Table 8: Rate of convergence for NPRBC with β = 1.5.

h = τ R01-G ROC R11-G ROC R02-G ROC RDP-G ROC
0.2500 1.655e-03 5.519e-04 1.572e-03 2.528e-04
0.1250 8.373e-04 0.9833 1.442e-04 1.9362 4.466e-04 1.8153 6.906e-05 1.8718
0.0625 4.367e-04 0.9390 3.822e-05 1.9157 1.183e-04 1.9164 1.956e-05 1.8200
0.0313 2.258e-04 0.9518 1.008e-05 1.9228 3.034e-05 1.9633 5.470e-06 1.8383
0.0156 1.152e-04 0.9705 2.639e-06 1.9336 7.662e-06 1.9853 1.497e-06 1.8692
0.0078 5.827e-05 0.9837 6.853e-07 1.9453 1.921e-06 1.9957 4.019e-07 1.8974

Table 9: Rate of convergence for NPRBC with β = 1.3.
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Figure 4: Surface plot of solutions for NPRBC with β = 1.5.

3.6.4 Two Dimensional Nonlinear Problem with Mismatched Initial and

Time-dependent Boundary Condition (2D-NPBC)

We consider the two dimensional problem

∂u(x, y, t)

∂t
= −κ(−∆)

β
2 u(x, y, t) + u(1− u), (x, y, t) ∈ Ω× (0, 1] (3.38)

with κ = 1
6
, Ω = [0, 2]2 and the mismatched initial and time-dependent boundary

conditions

u(x, y, 0) = sin(
πy

2
),

u(x, y, t) = e−t, (x, y) ∈ δΩ
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This example shows the simplicity with which the schemes handle higher dimensional
problems. Tables 10–12 show the numerical results. We observe that the R11-G
scheme do not actually attain the second-order accuracy in this example. This is due
to the use of the mismatched initial and boundary conditions which produces initial
oscillations in the first few steps of the solutions. To avoid these oscillations, we
either have to constrain the time step size such that the constraint (3.35) is satisfied
or use an initial damping scheme, such as R01-G, as discussed in Khaliq et al. [84],
[86]. Fig. 5(a) - (d) shows the plots of the numerical results produced by the schemes.
Fig. 5(a) shows the plot of the R11-G without any initial damping scheme. The choice
of the time and space step size (τ and h) are chosen so that (3.35) is not satisfied. We
observe oscillations in the first few steps of the simulation which are then propagated
to the final time. Fig. 5(b) is a plot of the R11-G with R01-G scheme used as a
smoothing (initial damping) scheme. Fig. 5(c) - (d) show the plots of the R02-G and
RDP-G schemes respectively.

h = τ R01-G ROC R11-G ROC R02-G ROC RDP-G ROC
0.5000 4.397e-03 6.474e-03 8.477e-03 6.216e-03
0.2500 3.782e-03 0.2173 3.502e-03 0.8865 3.488e-03 1.2811 2.406e-03 1.3694
0.1250 1.977e-03 0.9359 1.209e-04 1.5340 1.067e-03 1.7084 6.686e-04 1.8473
0.0625 9.161e-04 1.1098 3.604e-04 1.7466 2.842e-04 1.9090 1.714e-04 1.9641

Table 10: Rate of convergence for 2D-NPBC with β = 1.7.

h = τ R01-G ROC R11-G ROC R02-G ROC RDP-G ROC
0.5000 3.523e-03 5.105e-03 6.407e-03 4.383e-03
0.2500 2.758e-03 0.3535 2.635e-03 0.9281 2.471e-03 1.3747 1.7500e-03 1.3246
0.1250 1.560e-03 0.8218 1.003e-03 1.3937 7.597e-04 1.7013 5.247e-04 1.7378
0.0625 7.883e-04 0.9847 3.049e-04 1.7180 2.004e-04 1.9229 1.364e-04 1.9433

Table 11: Rate of convergence for 2D-NPBC with β = 1.5.

h = τ R01-G ROC R11-G ROC R02-G ROC RDP-G ROC
0.5000 2.900e-03 3.654e-03 3.982e-03 2.697e-03
0.2500 1.464e-03 0.9858 1.208e-03 1.5964 1.108e-03 1.8455 8.474e-04 1.6704
0.1250 7.469e-04 0.9713 4.369e-04 1.4676 2.670e-04 2.0533 2.254e-04 1.9106
0.0625 3.777e-04 0.9838 1.349e-04 1.6951 6.190e-05 2.1086 5.641e-05 1.9985

Table 12: Rate of convergence for 2D-NPBC with β = 1.3.
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(a) R11-G without initial damping (b) R11-G with R01-G as initial damping scheme

(c) R02-G Scheme (d) RDP-G Scheme

Figure 5: Surface plots of solution for 2D-NPBC with β = 1.5.
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CHAPTER 4

Numerical Methods for Time-Space Fractional PDEs

4.1 Introduction
In this chapter, we discuss a novel numerical scheme for the time-space fractional
PDEs (1.1) with time-dependent boundary conditions. This has been achieved via
a spatial discretization using matrix transfer technique (MTT) and a numerical ap-
proximation of the integral representation of the resulting (after spatial discretization)
system of time-fractional differential equations. The scheme developed is similar to
the Crank-Nicholson scheme for integer-order PDEs and is shown to be of order 1+α,
where α is the order of the time-derivative. After spatial discretization of eqn. (1.1)
with any suitable boundary condition by the MTT, we obtain the system of time-
fractional differential equations

cD
α
0,tu + A

β
2u = f(t,u),

u(0) = u0,

(4.39)

where u and f(t,u) denote the vectors of the node values of u and f, respectively.
Some of the simulations in this chapter were written in Matlab on an Intel(R)

Core(TM) i7-4870HQ CPU running at 2.50GHz. The parallel algorithms were written
in C on an Intel(R) Xeon(R) CPU E5-2650 v3 with 20 physical cores running at
2.30GHz clock speed (MTSU Computational Science COMS Babbage).

4.2 Time Discretization
In this subsection, we discuss the development of a time-stepping scheme for the
numerical solution of the semi-discretized problem (4.39). Let tn = nτ, n = 0, . . . ,M,
where τ = T/M is the time step size, u(tn) := un and f(tn,u(tn)) := fn, eqn. (4.39)
is equivalent to the Volterra integral equation

u(t)− u0 =
1

Γ(α)

∫ t

0

(t− s)α−1
(
−A

β
2u(s) + f(s,u(s))

)
ds

= −A
β
2 0It u(t) + 0It f(t,u(t)),

(4.40)
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where 0It is an integral operator given as

0It y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s) ds.

4.2.1 Derivation of Numerical Scheme

At t = tn and tn+1, eqn. (4.40) becomes

u(tn+1)− u0 = −A
β
2 0Itn+1 u(tn+1) + 0Itn+1 f(tn+1,un+1),

u(tn)− u0 = −A
β
2 0Itn u(tn) + 0Itn f(tn, un),

(4.41)

from which we obtain

u(tn+1)− u(tn) = −A
β
2

(
0Itn+1 u(tn+1)− 0Itn u(tn)

)
+
(

0Itn+1 f(tn+1,un+1)− 0Itn f(tn,un)
)

= −A
β
2 tnItn+1 u(tn+1) + tnItn+1 f(tn+1,un+1) + He

n,

where

He
n = −A

β
2 0Itn (u(tn+1)− u(tn)) + 0Itn (f(tn+1,un+1)− f(tn,un)) .

Therefore,

u(tn+1)−u(tn) = − 1

Γ(α)
A

β
2

∫ tn+1

tn

(tn+1−s)α−1u(s) ds+
1

Γ(α)

∫ tn+1

tn

(tn+1−s)α−1f(s,u(s)) ds+He
n.

(4.42)
Suppose u(s) and f(s,u(s)) are approximated by a linear interpolation in the interval
[tn, tn+1], that is

u(s) = un + (s− tn)
un+1 − un

τ
, s ∈ [tn, tn+1],

and
f(s,u) = f(tn,un) + (s− tn)

f(tn+1,un+1)− f(tn,un)

τ
, s ∈ [tn, tn+1],

we obtain

un+1 − un =
−α τα

Γ(α + 2)
A

β
2un −

τα

Γ(α + 2)
A

β
2un+1 +

α τα

Γ(α + 2)
fn +

τα

Γ(α + 2)
fn+1 + He

n.

(4.43)
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To be able to use (4.43), we either need to solve a nonlinear equation at each
time step since it involves the term fn+1 := f(tn+1,un+1) on the right hand side or we
provide an initial approximation for un+1. We shall prefer the latter option since the
cost of solving a nonlinear equation can be very expensive. To achieve this, we use
the constant approximation f(s, u(s)) = f(tn,u(tn)) and the linear approximation for
u(s) given above to obtain the predictor scheme

upn+1 − un =
−α τα

Γ(α + 2)
A

β
2un −

τα

Γ(α + 2)
A

β
2un+1 +

τα

Γ(α + 1)
fn + He

n.

After some simplification, the predictor-corrector scheme is obtained as

upn+1 =
(

Γ(α + 2)I + ταA
β
2

)−1 [(
Γ(α + 2)I− α ταAβ

2

)
un + τα(α + 1)f(tn,un) + Γ(α + 2)He

n

]
,

un+1 =
(

Γ(α + 2)I + ταA
β
2

)−1 [(
Γ(α + 2)I− α ταAβ

2

)
un + τα

(
α f(tn,un) + f(tn+1,u

p
n+1)

)
+ Γ(α + 2)He

n

]
,

(4.44)
where He

n is the history term and I is the identity matrix.

4.2.2 Approximation of the history term He
n

Suppose g(s) = −Aβ
2u(s) + f(s, u(s)), the history term He

n of the predictor-corrector
scheme may be written as

He
n =

1

Γ(α)

∫ tn

0

[
(tn+1 − s)α−1 − (tn − s)α−1]g(s) ds,

≈ 1

Γ(α)

n−1∑
j=0

∫ tj+1

tj

[
(tn+1 − s)α−1 − (tn − s)α−1](gj + (s− tj)

gj+1 − gj
τ

)
ds, s ∈ [tj, tj+1],

=
1

Γ(α)

{
n−1∑
j=0

∫ tj+1

tj

[
(tn+1 − s)α−1 − (tn − s)α−1]gj ds

+
n−1∑
j=0

∫ tj+1

tj

[
(tn+1 − s)α−1 − (tn − s)α−1] (s− tj)

gj+1 − gj
τ

ds

}
.

After some simplification, we obtain the approximation

He
n ≈ Ha

n =
n∑
j=0

aj,n

(
− A

β
2uj + f(tj,uj)

)
, (4.45)
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where

aj,n =
τα

Γ(α + 2)



−(n− α)(n+ 1)α + nα(2n− α− 1)− (n− 1)α+1, j = 0,

(n− j + 2)α+1 − 3(n− j + 1)α+1 + 3(n− j)α+1

−(n− j − 1)α+1, 1 ≤ j ≤ n− 1,

2α+1 − α− 3, j = n.

We note that Ha
0 = 0 as no history term is required to advance from the initial solution

to the next solution value.

4.3 Convergence Analysis
In this subsection, we shall discuss the stability and error analysis of the derived
scheme. For simplicity, we shall let A

β
2 be the matrix representation resulting from

the spatial discretization of a homogeneous Dirichlet boundary problem. The analysis
in this section holds for other matrix representations with some slight modification.
For a scheme to be useful in practice, it need be stable and consistent with the PDE.
Thus, we discuss the stability and convergence properties of the scheme. Moreover,
we provide an error estimate on the order of convergence of the scheme.

4.3.1 Stability Analysis

The stability analysis carried out in this section refers to perturbations in the initial
data, that is, the numerical solutions are not sensitive to small perturbations in the
initial data. We assume that the nonlinear function f(t,u) is Lipschitz continuous in
a region Ω× (0, T ] with respect to u. In the various upper bounds below, K is used
to denote some generic positive constant and || · || is the `2-norm.

Definition 4.3.1. Let un and un be two solutions of the predictor-corrector scheme
(4.44) with initial values u0 and u0, respectively. The predictor-corrector scheme is
stable if there exists a positive constant C independent of τ and n, such that

||un − un|| ≤ C||u0 − u0||, n = 1, 2, · · · ,M.
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Lemma 4.3.1. If 0 < α ≤ 1, then

a0,n ≤
τα

Γ(α + 2)

[
(n+ 1)α − nα + nα+1 − (n− 1)α+1

]
.

Proof. From the coefficients of Ha
n, we have

a0,n =
τα

Γ(α + 2)

[
−n(n+ 1)α + α(n+ 1)α + 2nα+1 − (α + 1)nα − (n− 1)α+1

]
=

τα

Γ(α + 2)

[
n(2nα − (n+ 1)α) + α (n+ 1)α − (α + 1)nα − (n− 1)α+1

]
=

τα

Γ(α + 2)

[
n(nα + (nα − (n+ 1)α)) + α (n+ 1)α − (α + 1)nα − (n− 1)α+1

]
≤ τα

Γ(α + 2)

[
nα+1 + (n+ 1)α − nα − (n− 1)α+1

]
since 0 < α ≤ 1.

Lemma 4.3.2. If 0 < α ≤ 1, and tj = jτ, j = 0, 1, · · · , n, then the following estimate
holds

aj,n ≤ Cα



τtα−1
n+1 + tαn, j = 0,

tαn−j+2 − tαn−j, 1 ≤ j ≤ n− 1,

τα, j = n,

where Cα is a generic positive constant which does not depend on τ but depends on α
and T.

Proof. For j = 0 and from Lemma 4.3.1, we have

a0,n ≤
1

Γ(α + 2)

[
tαn+1 − tαn + τ−1(tα+1

n − tα+1
n−1)

]
.

By the mean value theorem with ηi ∈ (tn−i+1, tn−i+2), i = 1, 2,

a0,n ≤
1

Γ(α + 2)

[
ατηα−1

1 + (α + 1)ηα2

]
≤ 1

Γ(α + 1)

[
τtα−1
n+1 + tαn

]
.
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For 1 ≤ j ≤ n− 1,

aj,n =
τ−1

Γ(α + 2)

[
tα+1
n−j+2 − 3tα+1

n−j+1 + 3tα+1
n−j − tα+1

n−j−1

]
=

τ−1

Γ(α + 2)

[
tα+1
n−j+2 − tα+1

n−j+1 − 2
(
tα+1
n−j+1 − tα+1

n−j

)
+ tα+1

n−j − tα+1
n−j−1

]
.

Applying the mean value theorem with ηi ∈ (tn−j+i−4, tn−j+i−3), i = 3, 4, 5,

aj,n ≤
τ−1

Γ(α + 2)

[
(α + 1)τ

(
ηα3 − 2ηα4 + ηα5

)]
≤ 1

Γ(α + 1)

(
tαn−j+2 − 2tαn−j + tαn−j

)
.

For j = n, an,n = Cατ
α where Cα =

2α+1 − α− 3

Γ(α + 2)
.

Next, we propose a modified Gronwall inequality which is useful to prove the
stability and error estimates in the sequel.

Lemma 4.3.3. Assume that 0 < α ≤ 1, and aj,n is as defined in eqn. (4.45) for
0 = t0 < t1 < · · · < tM = T, n = 1, 2, · · · ,M, where M is a positive integer. Let g0

be positive and the sequence {ψn} satisfies
ψ0 ≤ g0,

ψn ≤
n−1∑
j=0

aj,nψj + C0g0,

(4.46)

then
ψn ≤ C0g0, n = 1, 2, · · · ,M,

where C0 is a positive constant.
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Proof. Applying the inequality (4.46) recursively and noting the ψ0 ≤ g0, we have

ψn ≤ g0 +
n−1∑
j1=0

aj1,n ψj1

≤ g0 +
n−1∑
j1=0

aj1,n

(
g0 +

j1−1∑
j2=0

aj2,j1ψj2

)

= g0 + g0

n−1∑
j1=0

aj1,n +
n−1∑
j1=0

aj1,n

j1−1∑
j2=0

aj2,j1ψj2

≤ g0 + g0

n−1∑
j1=0

aj1,n +
n−1∑
j1=0

aj1,n

j1−1∑
j2=0

aj2,j1

(
g0 +

j2−1∑
j3=0

aj3,j2ψj3

)

= g0 + g0

n−1∑
j1=0

aj1,n + g0

n−1∑
j1=0

aj1,n

j1−1∑
j2=0

aj2,j1 +
n−1∑
j1=0

aj1,n

j1−1∑
j2=0

aj2,j1

j2−1∑
j3=0

aj3,j2ψj3

...

≤ g0 + g0

n−1∑
j1=0

aj1,n + g0

n−1∑
j1=0

aj1,n

j1−1∑
j2=0

aj2,j1 + g0

n−1∑
j1=0

aj1,n

j1−1∑
j2=0

aj2,j1

j2−1∑
j3=0

aj3,j2

+ g0

n−1∑
j1=0

aj1,n

j1−1∑
j2=0

aj2,j1 · · ·
jn−1−1∑
jn=0

ajn,jn−1

= g0 + g0

n−1∑
j1=0

aj1,n + g0

n−1∑
j2=0

aj2,n

j2−1∑
j1=0

aj1,j2 + g0

n−1∑
j3=0

aj3,n

j3−1∑
j2=0

aj2,j3

j2−1∑
j1=0

aj1,j2

+ g0

n−1∑
jn=0

ajn,n

jn−1∑
jn−1=0

ajn−1,jn · · ·
j2−1∑
j1=0

aj1,j2 .

(4.47)
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Now, for µ ≥ 0 and 0 < α ≤ 1, we have
js−1∑
jr=0

ajr,jst
µ
jr
≤ C0

[
js−1∑
jr=1

(
tαjs−jr+2 − tαjs−jr

)
tµjr +

(
τ tα−1

js+1 + tαjs
)
tµ0

]

≤ C0

[
js−1∑
jr=1

(tjs−jr+2 − tjs−jr)
α tµjr + 2tαjst

µ
0

]

= C0

[
js−1∑
jr=1

(2τ)α tµjr + 2tαjst
µ
0

]

≤ C0t
α
js

js−1∑
jr=0

tµjr

≤ C0τ
−1tαjs

∫ tjs

0

tµ dt

=
C0τ

−1tα+µ+1
js

(µ+ 1)
.

Hence, we have

Er,n = g0

n−1∑
jr=0

ajr,n

jr−1∑
jr−1=0

ajr−1,jr · · ·
j2−1∑
j1=0

aj1,j2

≤ C0τ
−1g0

n−1∑
jr=0

ajr,n

jr−1∑
jr−1=0

ajr−1,jr · · ·
j3−1∑
j2=0

aj2,j3t
α+1
j2

≤ g0

C2
0τ
−2

(α + 2)

n−1∑
jr=0

ajr,n

jr−1∑
jr−1=0

ajr−1,jr · · ·
j4−1∑
j3=0

aj3,j4t
2α+2
j3

≤ g0

C3
0τ
−3

(α + 2)(2α + 3)

n−1∑
jr=0

ajr,n

jr−1∑
jr−1=0

ajr−1,jr · · ·
j5−1∑
j4=0

aj4,j5t
3α+3
j4

≤ g0C
r
0 τ
−rtr(α+1)

n

r−1∏
j=0

1

(jα + j + 1)

≤ g0C
r
0 τ
−rT r(α+1)

r−1∏
j=0

1

(jα + j + 1)
, r = 1, 2, · · · , n.

Let br = g0C
r
0 τ
−rT r(α+1)

r−1∏
j=0

1

(jα + j + 1)
, then

br+1

br
= C0 τ

−1Tα+1(rα + r + 1)−1.

Thus, lim
r→∞

br+1

br
= 0 which implies that

∞∑
r=1

br is convergent, thus the right hand side
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of (4.47) is bounded, that is,

ψn ≤ g0 + g0

k∑
r=1

br ≤ C0g0

which completes the proof.

Theorem 4.3.1. Suppose that uj (j = 1, 2, · · · , n) are the solutions of (4.39) pro-
duced by the predictor-corrector scheme (4.44) and f(t,u) satisfies the Lipschitz con-
dition with respect to u in a region Ω×(0, T ] of its unique solution, then the predictor-
corrector scheme (4.44) is stable.

Proof. Let
∼
uj, (j = 0, 1, · · · , n− 1) and

∼
u
p

n, (n = 0, 1, · · · ,M − 1) be perturbations
of uj and upn, respectively. We first consider the following perturbation equation for
the history term

∼
H
a

n = a0,n

(
− A

β
2
∼
u0 + f(t0,u0 +

∼
u0)− f(t0,u0)

)
+

n−1∑
j=1

aj,n

(
− A

β
2
∼
uj + f(tj,uj +

∼
uj)− f(tj,uj)

)
+ an,n

(
− A

β
2
∼
un + f(tn,un +

∼
un)− f(tn,un)

)
.

Using the Lipschitz continuity of f(u) and Lemma 4.3.2, we obtain

||
∼
H
a

n|| ≤ K

(
n−1∑
j=0

aj,n||
∼
uj||+ τα||∼un||

)
.

where K is a generic positive constant. The perturbation equation for eqn. (4.44) is

∼
u
p

n+1 =
(

Γ(α + 2)I + ταA
β
2

)−1 [(
Γ(α + 2)I− αταAβ

2

)
∼
un + τα(α + 1)(f(tn,un +

∼
un)− f(tn,un))

]
+
(

Γ(α + 2)I + ταA
β
2

)−1
[
Γ(α + 2)

∼
H
a

n

]
,

∼
un+1 =

(
Γ(α + 2)I + ταA

β
2

)−1 [(
Γ(α + 2)I− αταAβ

2

)
∼
un + ταα(f(tn,un +

∼
un)− f(tn,un))

]
,

+
(

Γ(α + 2)I + ταA
β
2

)−1
[
(f(tn+1,u

p
n+1 +

∼
u
p

n+1)− f(tn+1,u
p
n+1)) + Γ(α + 2)

∼
H
a

n

]
.

Due to the positive definiteness of A
β
2 , it holds that 0 < c < 1, where

c =

∥∥∥∥(Γ(α + 2)I + ταA
β
2

)−1 (
Γ(α + 2)I− αταA

β
2

)∥∥∥∥ .



62

Thus, we have
||∼u

p

n+1|| ≤ c ||∼un||+ Cτα||∼un||+Kτα||∼un||+K
n−1∑
j=0

aj,n||
∼
uj||,

||∼un+1|| ≤ c ||∼un||+ Cτα(||∼un||+ ||
∼
u
p

n+1||) +Kτα||∼un||+K
n−1∑
j=0

aj,n||
∼
uj||,

where C is a positive constant. We show the rest of the proof using mathematical
induction. For n = 0 and for sufficiently small τ , it can be easily deduced that

||∼u
p

n+1|| ≤ ||
∼
u0|| and ||∼un+1|| ≤ ||

∼
u0||.

Suppose that
||∼uj|| ≤ ||

∼
u0||, j = 1, 2, · · · , n.

We consider j = n+ 1, for
∼
u
p

n+1, that is,

||∼u
p

n+1|| ≤ c ||∼un||+ Cτα||∼un||+Kτα||∼un||+K
n−1∑
j=0

aj,n||
∼
uj||

≤ c1 ||
∼
un||+K

n−1∑
j=0

aj,n||
∼
uj||

≤ ||∼u0||,

where 0 < c1 = c+Cτα +Kτα < 1 for sufficiently small τ and Lemma 4.3.3 has been
used. Then, for sufficiently small τ , we have

||∼un+1|| ≤ c ||∼un||+ Cτα(||∼un||+ ||
∼
u
p

n+1||) +Kτα||∼un||+K
n−1∑
j=0

aj,n||
∼
uj||

≤ c2 ||
∼
un||+K

n−1∑
j=0

aj,n||
∼
uj||

≤ ||∼u0||,

where 0 < c2 = c+ 2Cτα +Kτα < 1. This completes the proof.

4.3.2 Error Analysis

In this section, we give the error analysis of the predictor-corrector scheme (4.44).
We use the notation g(s) = −Aβ

2u(s) + f(s, u(s)) and present some lemmas which
are useful in the sequel.
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Lemma 4.3.4. Let g(t) ∈ C2[0, T ], then

||He
n −Ha

n|| ≤
||g′′||

2Γ(α + 1)
τ 2Tα.

Proof. From the expression of He
n and Ha

n, we have∣∣∣∣∣
∣∣∣∣∣ 1

Γ(α)

∫ tn

0

[
(tn+1 − s)α−1 − (tn − s)α−1]g(s) ds− τα

Γ(α + 2)

n∑
j=0

aj,ng(tj)

∣∣∣∣∣
∣∣∣∣∣

=
1

Γ(α)

∣∣∣∣∣
∣∣∣∣∣
n−1∑
j=0

∫ tj+1

tj

[
(tn+1 − s)α−1 − (tn − s)α−1](g(s)− s− tj+1

τ
g(tj)−

s− tj
τ

g(tj+1)

)
ds

∣∣∣∣∣
∣∣∣∣∣

≤ 1

Γ(α)

n−1∑
j=0

∫ tj+1

tj

∣∣(tn+1 − s)α−1 − (tn − s)α−1
∣∣ ∣∣∣∣∣∣∣∣12(s− tj)(s− tj+1)g′′(ξj)

∣∣∣∣∣∣∣∣ ds, ξj ∈ (tj, tj+1)

≤ ‖g
′′‖τ 2

2Γ(α)

∫ tn

0

∣∣(tn+1 − s)α−1 − (tn − s)α−1
∣∣ ds

≤ ‖g′′‖τ 2

2Γ(α + 1)
Tα.

Lemma 4.3.5. Let g(t) ∈ C2[0, T ], then∣∣∣∣∣
∣∣∣∣∣ 1

Γ(α)

∫ tn+1

tn

(tn+1 − s)α−1 g(s) ds−
1∑
j=0

bjg(tn+j)

∣∣∣∣∣
∣∣∣∣∣ ≤ ||g′′||τ 2

2Γ(α + 1)
Tα,

where b0 =
ατα

Γ(α + 2)
and b1 =

τα

Γ(α + 2)
.

Proof.∣∣∣∣∣∣∣∣ 1

Γ(α)

∫ tn+1

tn

(tn+1 − s)α−1 g(s) ds −
1∑
j=0

bjg(tn+j)

∣∣∣∣∣
∣∣∣∣∣

≤ 1

Γ(α)

∫ tn+1

tn

(tn+1 − s)α−1

∣∣∣∣∣∣∣∣g(s) +
s− tn+1

τ
g(tn)

−s− tn
τ

g(tn+1)

∣∣∣∣∣∣∣∣ ds
≤ ‖g

′′(ξ)‖τ 2

2Γ(α)

∫ tn+1

tn

(tn+1 − s)α−1 ds, ξ ∈ (tn, tn+1)

≤ ‖g′′‖τ 2

2Γ(α + 1)
Tα.
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Lemma 4.3.6. Let g(t) ∈ C1[0, T ], then∣∣∣∣∣∣∣∣ 1

Γ(α)

∫ tn+1

tn

(tn+1 − s)α−1 g(s) ds− τα

Γ(α + 1)
g(tn)

∣∣∣∣∣∣∣∣ ≤ ||g′||τ
Γ(α + 1)

Tα.

Proof. The proof is similar to those given in Lemmas 4.3.4 and 4.3.5.

Lemma 4.3.7. Suppose f(u) is Lipschitz continuous and f ′(t,u) is continuous with
respect to t, then there exists a positive constant c0 such that the error estimate∣∣∣∣epn+1

∣∣∣∣ ≤ c0τ

holds uniformly on 0 ≤ tk ≤ T , where epn+1 = u(tn+1)− upn+1 and c0 =
||f ′||

Γ(α + 1)
Tα.

Proof. Let en = u(tn)−un, and epn = u(tn)−upn, n = 0, 1 · · · ,M be the error of the
predictor and corrector schemes, respectively, at tn. Then from equations (4.42) and
the first of (4.44), we have

u(tn+1) = u(tn)− 1

Γ(α)
A

β
2

∫ tn+1

tn

(tn+1 − s)α−1u(s) ds +
1

Γ(α)

∫ tn+1

tn

(tn+1 − s)α−1f(s,u(s)) ds+ He
n,

upn+1 = un − A
β
2

1∑
j=0

bjun+j +
τα

Γ(α + 1)
f(tn,un) + Ha

n.

Therefore,

∣∣∣∣upn+1 − u(tn+1)
∣∣∣∣ ≤ ||en||+K

∣∣∣∣∣
∣∣∣∣∣ 1

Γ(α)

∫ tn+1

tn

(tn+1 − s)α−1u(s) ds−
1∑
j=0

bju(tn+j)

∣∣∣∣∣
∣∣∣∣∣

+K

∣∣∣∣∣
∣∣∣∣∣

1∑
j=0

bj (u(tn+j)− un+j)

∣∣∣∣∣
∣∣∣∣∣

+

∣∣∣∣∣∣∣∣ 1

Γ(α)

∫ tn+1

tn

(tn+1 − s)α−1f(s,u(s)) ds− τα

Γ(α + 1)
f(tn,u(tn))

∣∣∣∣∣∣∣∣
+

τα

Γ(α + 1)
||f(tn,u(tn))− f(tn,un)||+ ||He

n −Ha
n|| .

where K =
∣∣∣∣∣∣Aβ

2

∣∣∣∣∣∣. Using Lemmas 4.3.4, 4.3.5, 4.3.6 and the Lipschitz continuity of
f(t,u), we obtain∣∣∣∣epn+1

∣∣∣∣ ≤ (1 +Kb0 +
Lτα

Γ(α + 1)

)
||en||+Kb1 ||en+1||+ c0τ + c1τ

2,
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where L is a Lipschitz constant, c0 =
||f ′||

Γ(α + 1)
Tα and c1 =

K||u′′||+ ||f ′′||
2Γ(α + 1)

Tα. By

construction ||en+1|| ≤
∣∣∣∣epn+1

∣∣∣∣ so that∣∣∣∣epn+1

∣∣∣∣ ≤ 1

1−Kb1

[(
1 +Kb0 +

Lτα

Γ(α + 1)

)
||en||+ c0τ + c1τ

2

]
.

It is easy to show using mathematical induction that∣∣∣∣epn+1

∣∣∣∣ ≤ c0τ.

Theorem 4.3.2. Suppose f(u) is Lipschitz continuous and f ′′(t,u) is continuous with
respect to t, then the error estimate

||en+1|| ≤ k1τ
α+1

holds uniformly on 0 ≤ tk ≤ T , where k1 =
αc1L

(1−Kb1)Γ(α + 2)
.

Proof. From equations (4.42) and the second of (4.44), we have

en+1 = en +
1

Γ(α)
A

β
2

[∫ tn+1

tn

(tn+1 − s)α−1u(s) ds−
1∑
j=0

bjun+j

]

+
1

Γ(α)

∫ tn+1

tn

(tn+1 − s)α−1f(s,u(s)) ds−
(
b0f(tn,un) + b1f(tn+1,u

p
n+1)

)
+ He

n −Ha
n.

||en+1|| ≤ ||en||+K

∣∣∣∣∣
∣∣∣∣∣ 1

Γ(α)

∫ tn+1

tn

(tn+1 − s)α−1u(s) ds−
1∑
j=0

bju(tn+j)

∣∣∣∣∣
∣∣∣∣∣

+K

∣∣∣∣∣
∣∣∣∣∣

1∑
j=0

bj (u(tn+j)− un+j)

∣∣∣∣∣
∣∣∣∣∣+

∣∣∣∣∣
∣∣∣∣∣ 1

Γ(α)

∫ tn+1

tn

(tn+1 − s)α−1f(s,u(s)) ds−
1∑
j=0

bjf(tn+j,u(tn+j))

∣∣∣∣∣
∣∣∣∣∣

+ b0 ||f(tn,u(tn))− f(tn,un)||+ b1

∣∣∣∣f(tn+1,u(tn+1))− f(tn+1,u
p
n+1)

∣∣∣∣+ ||He
n −Ha

n||

≤
(

1 +Kb0 +
Lτα

Γ(α + 2)

)
||en||+

αc1Lτ
α+1

Γ(α + 2)

∣∣∣∣epn+1

∣∣∣∣+Kb1 ||en+1||+ c1τ
2

+
K||u′′||+ ||f ′′||

Γ(α + 1)
Tα τ 2.

||en+1|| ≤ k0 ||en||+ k1τ
α+1 + k2τ

2,

where k0 =
1 +Kb0 + Lτα

Γ(α+2)

1−Kb1

, k1 =
αc1L

(1−Kb1)Γ(α + 2)
, k2 =

K||u′′||+ ||f ′′||
(1−Kb1)Γ(α + 1)

Tα.

The result is easily obtained using mathematical induction.
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4.4 An Improved Scheme Based on Time-Graded Meshes
In section (4.2), we derive a Crank-Nicholson-type scheme for time-space fractional-
order PDEs and show that the order (in time) is 1 + α which differs from the order
two (in time) of the Crank-Nicholson scheme for integer-order PDEs. This is due
to the singularity of the kernel (t − s)α−1 which produces continuous solutions with
singularity near t = 0. Thus, the use of uniform meshes reduces the accuracy of the
derived scheme. To alleviate this drawback, we introduce the idea of non-uniform
meshes (time-graded meshes) which were originally proposed and used in the context
of Volterra integral equations with singular kernels [22], [23], [32]. The idea was later
succesfully implemented to improve the convergence order and accuracy of fractional
differential equations [81], [107], [108], [116], [117], [123]. The basic idea of time-
graded meshes is the construction of non-uniform meshes in such a way that the time
step-size is smaller near the potential singularity of the equation so as to compensate
for the inccuracies near this singularity point. Now, we consider the time-fractional
differential equation (4.39) and divide the (0, T ] into M subintrevals [tk−1, tk] for
k = 0, 1, · · · , N with 0 = t0 < t1 < · · · , < tM−1 < tM = T such that tk = T (k/M)2−α.
We denote τk = tk − tk−1. As in the previous section, the solution to (4.39) at time
tk+1 may be written as

u(tk+1)− u(tk) = −A
β
2

(
0Itk+1

u(tk+1)− 0Itk u(tk)
)

+
(

0Itk+1
f(tk+1,uk+1)− 0Itk f(tk,uk)

)
= −A

β
2 tkItk+1

u(tk+1) + tkItk+1
f(tk+1,uk+1) + He

k,

from which we obtain the Time-Graded scheme (TGS)

(
Γ(α + 2)I + ταk+1A

β
2

)
upk+1 =

(
Γ(α + 2)I− α ταk+1A

β
2

)
uk + (α + 1) ταk+1f(uk) + Γ(α + 2)He

k(
Γ(α + 2)I + ταk+1A

β
2

)
uk+1 =

(
Γ(α + 2)I− α ταk+1A

β
2

)
uk + α ταk+1f(uk) + ταk+1f(u

p
k+1)

+ Γ(α + 2)He
k,

(4.48)

where

He
k ≈ Ha

k =
k∑
j=0

aj,k

(
− A

β
2uj + f(tj,uj)

)
,
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and by letting τk,j = (tk − tj), we have

aj,k =



−ταk+1(τk+1,1 − α τ1) + (τ 1+α
k+1,1 + τk,1τ

α
k,0 − ατ1τ

α
k )− τ 1+α

k,1 , j = 0,

τ 1+α
k+1,j−1 − τ

1+α
k,j−1 + τ 1+α

k+1,j+1 − τ
1+α
k,j+1 + α (tj+1 − 2tj + tj−1)

(
ταk+1,j − ταk,j

)
+ταk,j (τk,j+1 + τk,j−1)− ταk+1,j (τk+1,j+1 + τk+1,j−1) , 1 ≤ j ≤ k − 1,

τα+1
k+1,k−1 − τk+1,k−1τ

α
k+1 − τ 1+α

k − α τkταk+1, j = k.

4.5 Parallel Algorithms for Time-Space Fractional PDEs
In this subsection, we focus on the implementation of the predictor-corrector scheme
(4.44). In particular, we discuss sequential and parallel algorithms for (4.44). Effi-
cient parallelism of the sequential algorithm is possible by exploiting the structure
of the history term Ha

n as discussed in the sequel. As discussed in the previous
sections, we efficiently precompute and store the LU decomposition of the matrix(

Γ(α + 2)I + ταA
β
2

)
or its inverse. For simplicity of notation, we refer to the solu-

tion Ly = b, Ux = y as Pb where L and U are lower and upper triangular matrices.
Also, we compute and store the matrix Q =

(
Γ(α + 2)I− αταAβ

2

)
.

4.5.1 Sequential Algorithm

Given a stencil 0 = t0 < t1 < · · · < tM = T in the t-direction with (M+1) grid points,
we seek solutions at time ti which are dependent on all solutions at the previous
time steps (history term). For the first iteration, only the initial values are needed to
advance to the next step as there are no known history of the solutions. Each other
iteration performs the following step:

1. Compute the history term

Ha
n =

n∑
j=0

aj,n

(
− A

β
2uj + f(tj,uj)

)
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2. Compute and store

w1 = Qun + Ha
n and w2 = f(tn,un)

It is more efficient to store these values since they would be used twice in each
step.

3. Compute the right hand side vector for the predictor: z = w1 + τα(α + 1)w2

4. Compute the predicted value: v = Pz

5. Compute the right hand side vector for the corrector: v = w1+τα (αw2 + f(tn+1,v))

6. Compute the final solution: un+1 = Pv

Next, we present the algorithm.

Algorithm 4 Sequential algorithm
1: procedure Sequential version

2: w1 ← Qu0

3: w2 ← f(u0)

4: v← P
(
w1 + τα(α + 1)w2

)
5: u1 ← P

(
w1 + τα

(
αw2 + f(t1,v)

))
6: for n = 1 to M − 1 do

7: Compute Ha
n ←

n∑
j=0

aj,n

(
− Aβ

2uj + f(tj,uj)
)

8: w1 ← Qun + Ha
n

9: w2 ← f(tn,un)

10: v← P (w1 + τα(α + 1)w2)

11: un+1 ← P
(
w1 + τα

(
αw2 + f(tn+1,v)

))
12: end for

13: end procedure
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The major workhorse of the algorithm is the matrix-vector multiplication. There
are 3 matrix-vector multiplications at the first step (outside the loop) and (n + 4)
matrix-vector multiplications at each step within the for-loop. Thus, the total number
of matrix-vector multiplications is

T (M) = 3 +
M−1∑
i=1

(i+ 4) =
(M + 8)(M − 1)

2
+ 3 ∈ O(M2).

Each matrix-vector multiplication is O(N2) operations, so that the algorithm requires
O(M2N2) number of scalar multiplications. In a similar manner, the algorithm re-
quires O(M2N2) number of scalar additions.

4.5.2 Parallel Algorithms

In this subsection, we discuss parallel versions of the algorithm using the shared mem-
ory systems (OpenMP) and the distributed memory systems (MPI). We also briefly
discuss a hybrid version where both the shared and memory distributed systems are
used in implementing the algorithm.

4.5.2.1 MPI Version
At first, we rewrite eqn. (4.44) as

upn+1 = P
(
I1 + Ip2 + I3 + I4

)
,

un+1 = P
(
I1 + Ic2 + I3 + I4

)
,

where

P =
(

Γ(α + 2)I + ταA
β
2

)−1

,

I1 = Qun,

Ip2 = (α + 1)ταf(un),

Ic2 = τα
(
α f(tn,un) + f(tn+1,u

p
n+1

)
,

I3 = τα
(k−1)p∑
j=0

aj,n

(
− A

β
2uj + f(tj,uj)

)
,

I4 = τα
n∑

j=(k−1)p+1

aj,n

(
− A

β
2uj + f(tj,uj)

)
.



70

Suppose we have p cores or processes available and given M the number of time
steps, we divide the work (computation of each time step tj, j = 1(1)M) among the
p processors in a certain number of blocks. For instance, if M = 500 and p = 3,
then the work is done in 167 blocks (or iterates) with two processors working on the
last block while others remain idle. In essence, each processor is given the task of
computing upn+1 and un+1 for one and only one value of n in each iteration of the
block. The following steps show the implementation procedure.

1. For the computation of I3, the only required values are the initial value and the
precomputed values un already obtained from previous blocks so that at the
start of the kth block all required data (solution values) are available. In this
step, each process performs the computation of I3 since it is totally independent
of the data/computations of the other processes. Therefore, no communication
is required between the processes and thus, this step scales linearly with k.

2. After the computation of I3 which is independent of the data available to each
process, we are left with the task of computing I1, Ip2, Ic2 and I4. This section
is sequential as each process requires some data from at least one of the other
processes. For n = kp, k ∈ N, I4 = 0 and process p1 immediately computes
Ip2, I1 and upn+1 followed by the evaluation of Ic2 so that un+1 is readily obtained.
p1 sends the result of the vector un+1 to the next process p2 and then becomes
idle until the next block. On receiving the required data for the computation
of un+2, p2 computes I4 = an+1,n+1

(
−Aβ

2un+1 + f(tn+1,un+1)
)
followed by the

evaluation of I1 = Qun+1, Ip2 = (α+ 1)ταf(tn+1,un+1) and upn+2. With all these
available data, p2 finally computes un+2. p2 sends un+1 and un+2 to process
p3 and then becomes idle until the next block. This process is continued until
the last process computes un+p. At the end of each block, the last process
pp broadcasts all solutions (computed in each block) to all the other processes
for update to the array of solutions.The work load in this step increases from
process p1 to pp as the first process p1 has no summand in I4 while the last
process pp has (p−1) summands to compute. There are p ((p−1) sends/receive
and 1 broadcast) communications between the processes so that the amount of
time spent in this step depends more on the number of available processes than
on k. As k increases, there is a nice trade-off between the computation and
communication time and the workload imbalance becomes less severe.

3. An iterative continuation of Step 2 is carried out for k = 1, 2, · · · ,
⌊
M
p

⌋
.

4. If M is exactly divisible by p, then the algorithm is terminated. Otherwise,
the remaining solutions ubM

p
c+1, · · · ,uM are computed the same manner as in

Step 3. The only difference here is that we have less work than the number of
processes. So we need choose (M − pbM

p
c) processes to perform the remaining

work while the remaining (p− (M − bM
p
c)) processes remain idle.
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Algorithm 5 MPI Version
1: procedure MPI version

2: Compute num blocks = bM
p
c . p is the number of processes.

3: Each process creates new data types as follows:

4: MPI Datatype send type, broadcast type

5: MPI Type Contiguous((my rank+1)*N, MPI DOUBLE, &send type)

6: MPI Type Contiguous(p*N, MPI DOUBLE, &broadcast type)

7: MPI Type commit(&send type) . my rank is the process ID (0 to (p− 1)).

8: MPI Type commit(&broadcast type)

9: for k = 0 to num blocks-1 do
10: n = kp

11: Each process computes its own I3 given as

12: I3 ← τα
n∑
j=0

aj,n+my rank

(
−A

β
2 uj + f(tj ,uj)

)
13: Set I3 = O if n is 0. . O is the zero vector

14: if my rank is 0 then
15: I1 ← Qun and w1 ← f(tn,un)

16: w2 ← I1 + I3 and Ip2 ← (α+ 1)ταw1

17: v← P
(
Ip2 + w2

)
. predicted value

18: Ic2 ← τα
(
αw1 + f(tn+1,v)

)
19: un+1 ← P

(
Ic2 + w2

)
. corrected value

20: if p > 1 then . Send data only when p > 1.

21: Send un+1 to process my rank + 1 using send type.

22: end if
23: else
24: Receive un+1, · · · ,un+my rank from process my rank − 1 using send type.

25: I4 ← τα
n+my rank∑

j=n+1
aj,n+my rank

(
−A

β
2 uj + f(tj , uj)

)
26: I1 ← Qun+my rank and w1 ← f(tn+my rank,un+my rank)

27: w2 ← I1 + I3 + I4 and Ip2 ← (α+ 1)ταw1

28: v← P
(
Ip2 + w2

)
. predicted value

29: Ic2 ← τα
(
αw1 + f(tn+my rank+1,v)

)
30: un+my rank+1 ← P

(
Ic2 + w2

)
. corrected value

31: if my rank is not (p− 1) then
32: Send un+1, · · · ,un+my rank+1 to process my rank + 1 using send type

33: else . Last process sends the most updated data to all processes

34: Broadcast computed solutions in this block using broadcast type.

35: end if
36: end if
37: end for
38: if M is not divisible by p then
39: Select (M mod p) processes to participate in one iteration of the for-loop.

40: end if

41: end procedure
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4.5.2.2 OpenMP Version
The OpenMP version of the algorithm is straightforward. The history term Ha

n is
easily parallelizable by adding the #pragma omp parallel construct. In the paral-
lel region, each thread or rank locally creates a vector to hold its partial sum of the
history which is later updated using the #pragma omp critical construct. Also
each matrix addition/subtraction, vector addition/subtraction, matrix-vector multi-
plication, matrix/vector-scalar multiplication, constructing the zero vector/matrix or
constructing the identity matrix are all straightforwardly implemented in parallel by
adding #pragma omp parallel (with appropriate declaration of private or shared
variables) construct. In our implementation, the OpenMP version seems more efficient
than the MPI version. This may be attributed to the communication time between
each processes in the MPI version as there are p− 1 MPI Send and MPI Recv, and
one MPI Bcast in each iteration of the for-loop. Next, we present the algorithm as
follows.

Algorithm 6 OpenMP Version
1: procedure OpenMP version

2: w1 ← Qu0

3: w2 ← f(t0,u0)

4: v← P
(
w1 + τα(α+ 1)w2

)
5: u1 ← P

(
w1 + τα

(
αw2 + f(t1,v)

))
6: for n = 1 to M − 1 do
7: Set Han to O.

8: #pragma omp parallel num threads(num thrds)
9: { . num thrds is the number of threads used.

10: Locally create a vector temp.

11: Set temp to O.

12: #pragma omp for schedule(dynamic)
13: for j = 0 to n do
14: temp← temp+ aj,n

(
−A

β
2 uj + f(tj ,uj)

)
15: end for
16: #pragma omp critical
17: Han ← Han + temp

18: }
19: w1 ← Qun + Han
20: w2 ← f(tn,un)

21: v← P (w1 + τα(α+ 1)w2)

22: un+1 ← P
(
w1 + τα

(
αw2 + f(tn+1,v)

))
23: end for

24: end procedure

4.5.2.3 Hybrid version
The hybrid version makes use of the OpenMP and MPI. The algorithm descrip-
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tion is similar to the MPI version. The only difference is that the matrix addi-
tion/subtraction, vector addition/subtraction, matrix-vector multiplication, matrix/vector-
scalar multiplication, constructing zero vector/matrix or constructing the identity
matrix are performed using OpenMP constructs with some number of threads. We
show the advantages of the hybrid version over the other two parallel versions in the
implementation section.

4.6 Numerical Examples
In this subsection, we implement the sequential and the parallel algorithms. The
programs were written in C language and compiled using the gcc -fopenmp and
mpicc commands in Linux for the OpenMP and MPI programs, respectively, with-
out any level of optimization. For practical purposes, optimization flags will greatly
increase the efficiency of the algorithms. The codes were implemented on an Intel(R)
Xeon(R) CPU E5-2640 v3 with 32 physical cores running at 2.60GHz clock speed. At
first, we corroborate our theoretical analysis by obtaining the order of convergence of
the scheme using some test examples. Furthermore, we test the problem using the
sequential and parallel algorithms, and discuss the merits and demerits of each of the
parallel version of the algorithms over one another. For all the programs, we use a
time function for timing results. Although we could have used omp get wtime()
and MPI wtime(), we deem it fit, for comparison purposes, to use same timing
function for both the sequential and all versions of the parallel algorithms.
We remark that there are (n+3) function evaluations in each step of the for-loop (Al-
gorithm 4) so that the computation for f(u) 6= 0 is more computationally demanding
than for f(u) = 0. In fact, for f(u) = 0, only the computation

un+1 = PQun + Ha
n,

Ha
n = −

n∑
j=0

aj,n

(
A

β
2uj

)
is required with Ha

n = O for n = 0. For nonlinear problems, the rate of convergence

(ROC), is obtained as ROC =
log
(
Errorτ/Error τ

2

)
log 2

, where Errorτ =
∣∣∣∣u τ

2
− uτ

∣∣∣∣
2
and

uτ is the solution vector with time step-size τ .

4.6.1 One-Dimensional Time-Space Fractional Problem (1D-TSFP)

We consider

cD
α
0,tu = −κ(−∆)

β
2 u(x, t) + f(t, u), in [0, 1]× (0, 1]
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subject to homogeneous Dirichlet boundary conditions and the initial condition u(x, 0) =
x2(1− x)2 with κ = 1. At first, we solve the problem with f(t, u) = 0 whose solution
is given by

u(x, t) =
∞∑
n=1

4 (−12 + n2π2) (−1 + (−1)n)

n5π5
Eα(−(nπ)βtα) sin(nπx),

where Eα(x) is the Mittag-Leffler function of x. Tables 13–14 and 15–16 show the L2

error norm using f(t, u) = 0 and f(t, u) = u2 , respectively with the convergence rates.
We observe that the experimental rate of convergence corroborate our theoretical
order of the schemes. We used h = 0.001 in the tables 13–20. This choice of h is to
ensure that the errors are solely due to time so that we can obtain a computational
order of convergence in time.

α = 0.2 α = 0.4 α = 0.6 α = 0.8
τ Error ROC Error ROC Error ROC Error ROC
1
4

4.029e-04 3.979e-04 2.852e-04 3.421e-04
1
8

1.684e-04 1.2586 1.481e-04 1.4255 9.319e-05 1.6135 5.311e-05 2.6872
1
16

7.164e-05 1.2330 5.468e-05 1.4379 2.975e-05 1.6474 1.457e-05 1.8663
1
32

3.080e-05 1.2177 2.038e-05 1.4235 9.565e-06 1.6370 4.025e-06 1.8557
1
64

1.332e-05 1.2095 7.647e-06 1.4144 3.096e-06 1.6275 1.115e-06 1.8519
1

128
5.776e-06 1.2054 2.879e-06 1.4094 1.006e-06 1.6216 3.092e-07 1.8503

Table 13: Results for 1D-TSFP with f(t, u) = 0, β = 1.4.

α = 0.2 α = 0.4 α = 0.6 α = 0.8
τ Error ROC Error ROC Error ROC Error ROC
1
4

4.256e-04 4.037e-04 2.729e-04 5.407e-04
1
8

1.781e-04 1.2566 1.528e-04 1.4015 9.109e-05 1.5831 4.866e-04 3.4741
1
16

7.582e-05 1.2322 5.650e-05 1.4354 2.923e-05 1.6398 1.247e-05 1.9638
1
32

3.261e-05 1.2172 2.109e-05 1.4219 9.427e-06 1.6326 3.467e-06 1.8471
1
64

1.410e-05 1.2092 7.917e-06 1.4133 3.058e-06 1.6240 9.655e-07 1.8443
1

128
6.118e-06 1.2051 2.982e-06 1.4085 9.959e-07 1.6187 2.691e-07 1.8431

Table 14: Results for 1D-TSFP with f(t, u) = 0, β = 1.6.
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α = 0.2 α = 0.4 α = 0.6 α = 0.8
τ Error ROC Error ROC Error ROC Error ROC
1
4

3.716e-04 3.820e-04 2.135e-04 5.891e-04
1
8

1.533e-04 1.2760 1.462e-04 1.3861 9.703e-05 1.1375 5.728e-05 3.3623
1
16

6.470e-05 1.2443 5.363e-05 1.4466 3.086e-05 1.6525 1.556e-05 1.8803
1
32

2.769e-05 1.2242 1.988e-05 1.4314 9.876e-06 1.6439 4.295e-06 1.8570
1
64

1.194e-05 1.2143 7.412e-06 1.4236 3.181e-06 1.6345 1.190e-06 1.8523
1

128
5.154e-06 1.2115 2.763e-06 1.4236 1.029e-06 1.6282 3.308e-07 1.8464

Table 15: Results for 1D-TSFP with f(t, u) = u2, β = 1.4.

α = 0.2 α = 0.4 α = 0.6 α = 0.8
τ Error ROC Error ROC Error ROC Error ROC
1
4

3.914e-04 3.811e-04 2.729e-04 9.204e-04
1
8

1.628e-04 1.2729 1.507e-04 1.3382 9.444e-05 1.5014 5.712e-05 4.0100
1
16

6.842e-05 1.2431 5.440e-05 1.4429 3.039e-05 1.6359 1.338e-05 2.0946
1
32

2.931e-05 1.2231 2.060e-05 1.4280 9.764e-06 1.6380 3.718e-06 1.8471
1
64

1.265e-05 1.2124 7.704e-06 1.4193 3.156e-06 1.6293 1.035e-06 1.8444
1

128
5.477e-06 1.2076 2.885e-06 1.4171 1.024e-06 1.6235 2.893e-07 1.8392

Table 16: Results for 1D-TSFP with f(t, u) = u2, β = 1.6.

4.6.2 Two-Dimensional Time-Space Fractional Problem (2D-TSFP)

We consider the two-dimensional time-space fractional reaction-diffusion equation

cD
α
0,tu = −(−∆)

β
2 u+ f(t, u), t > 0, (x, y) ∈ [0, 1]2

u(x, y, 0) = xy(1− x)(1− y)

with homogeneous Dirichlet boundary conditions. At first, we solve the problem with
f(t, u) = 0 whose solution, given in Yang et al. [178], is

u(x, y, t) =
∞∑
n=1

∞∑
m=1

Eα
(
−λ

β
2
n,mt

α

)
cn,mφn,m(x, y).

λ = (n2 +m2)π2,

φn,m(x, y) = 2 sin(nπx) sin(nπy),

cn,m =

∫ 1

0

∫ 1

0

xy(1− x)(1− y)φn,m(x, y) dx dy.
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This simulation shows the effectiveness of the scheme for high-dimensional problem.
We have used h = 0.01 in all the simulations of this problem. Tables 17–20 shows
the numerical results and rate of convergence of the scheme.

α = 0.2 α = 0.4 α = 0.6 α = 0.8
τ Error ROC Error ROC Error ROC Error ROC
1
4

3.724e-02 3.392e-02 1.732e-02 1.158e-02
1
8

1.559e-02 1.2556 1.308e-02 1.3749 7.436e-03 1.2195 3.180-03 1.8650
1
16

6.631e-03 1.2337 4.834e-03 1.4358 2.384e-03 1.6412 8.876e-04 1.8411
1
32

2.843e-03 1.2217 1.797e-03 1.4276 7.634e-04 1.6428 2.432e-04 1.8679
1
64

1.220e-03 1.2202 6.663e-04 1.4316 2.406e-04 1.6659 6.298e-05 1.9491
1

128
5.199e-04 1.2311 2.421e-04 1.4603 7.084e-05 1.7639 1.252e-05 2.3307

Table 17: Results for 2D-TSFP with f(t, u) = 0, β = 1.4.

α = 0.2 α = 0.4 α = 0.6 α = 0.8
τ Error ROC Error ROC Error ROC Error ROC
1
4

3.893e-02 3.340e-02 9.626e-03 1.821e-02
1
8

1.633e-02 1.2531 1.336e-02 1.3223 7.215e-03 0.4160 2.774e-03 2.7151
1
16

6.949e-03 1.2326 4.948e-03 1.4329 2.325e-03 1.6338 7.651e-04 1.8580
1
32

2.982e-03 1.2205 1.843e-03 1.4249 7.479e-04 1.6362 2.114e-04 1.8555
1
64

1.282e-03 1.2181 6.851e-04 1.4274 2.374e-04 1.6555 5.561e-05 1.9268
1

128
5.477e-04 1.2268 2.506e-04 1.4511 7.121e-05 1.7372 1.170e-05 2.2489

Table 18: Results for 2D-TSFP with f(t, u) = 0, β = 1.6.

α = 0.2 α = 0.4 α = 0.6 α = 0.8
τ Error ROC Error ROC Error ROC Error ROC
1
4

2.163e-02 2.081e-02 9.999e-03 9.984e-03
1
8

8.957e-03 1.2719 8.226e-03 1.3893 5.035e-03 0.9899 2.288e-03 2.1258
1
16

3.789e-03 1.2414 3.027e-03 1.4421 1.613e-03 1.6419 6.425e-04 1.8321
1
32

1.634e-03 1.2131 1.130e-03 1.4213 5.234e-04 1.6239 1.809e-04 1.8282
1
64

7.290e-04 1.1647 4.344e-04 1.3798 1.762e-04 1.5707 5.233e-05 1.7897

Table 19: Results for 2D-TSFP with f(t, u) = u3, β = 1.4.
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α = 0.2 α = 0.4 α = 0.6 α = 0.8
τ Error ROC Error ROC Error ROC Error ROC
1
4

2.259e-02 2.002e-02 9.943e-03 1.923e-02
1
8

9.375e-03 1.2686 8.395e-03 1.2542 4.876e-03 1.0280 2.027e-03 3.2459
1
16

3.963e-03 1.2421 3.095e-03 1.4397 1.569e-03 1.6355 5.513e-04 1.8787
1
32

1.700e-03 1.2207 1.152e-03 1.4253 5.079e-04 1.6274 1.556e-04 1.8249
1
64

7.407e-04 1.1991 4.344e-04 1.4073 1.675e-04 1.6003 4.462e-05 1.8020

Table 20: Results for 2D-TSFP with f(t, u) = u3, β = 1.6.

4.6.3 Examples with Time-Graded Scheme (TGS)

Here, we solve the examples in subsections (4.6.1) and (4.6.2) using the time-graded

scheme. The rate of convergence is given as ROC =
log (ErrorM/Error2M)

log 2
, where

ErrorM = ||uM − U ||2 for linear problems (U is exact solution and uM is the TGS
solution with M grid points) and ErrorM = ||u2M − uM ||2 for nonlinear problems. As
seen in Tables 21–24, the scheme is second-order accurate for different time-fractional
order derivatives. This shows a great improvement in accuracy and performance over
the other results given in Table 13–20.

α = 0.2 α = 0.4 α = 0.6 α = 0.8
M Error ROC Error ROC Error ROC Error ROC
10 4.587e-04 5.974e-04 6.575e-04 6.423e-04
20 1.106e-04 2.0519 1.492e-04 2.0014 1.691e-04 1.9589 1.604e-04 2.0013
40 2.673e-05 2.0490 3.737e-05 1.9973 4.332e-05 1.9651 4.121e-05 1.9608
80 6.444e-06 2.0528 9.356e-06 1.9980 1.104e-05 1.9718 1.053e-05 1.9692
160 3.034e-06 2.0938 2.304e-06 2.0217 2.774e-06 1.9929 2.657e-06 1.9859

Table 21: Results for 1D-TSFP using TGS with f(t, u) = 0, h = 0.001, β = 1.6.

α = 0.2 α = 0.4 α = 0.6 α = 0.8
M Error ROC Error ROC Error ROC Error ROC
10 3.468e-04 4.188e-04 4.288e-04 5.357e-04
20 8.288e-05 2.0649 1.033e-04 2.0194 1.102e-04 1.9599 9.407e-05 2.5095
40 1.967e-05 2.0754 2.543e-05 2.0223 2.819e-05 1.9670 2.427e-05 1.9543
80 4.428e-06 2.1509 6.188e-06 2.0389 7.193e-06 1.9782 6.239e-06 1.9641
160 7.291e-07 2.6026 1.445e-06 2.0983 1.826e-06 1.9914 1.599e-06 1.9678

Table 22: Results for 1D-TSFP using TGS with f(t, u) = u2, h = 0.001, β = 1.8.
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α = 0.2 α = 0.4 α = 0.6 α = 0.8
M Error ROC Error ROC Error ROC Error ROC
10 2.417e-03 2.954e-03 3.054e-03 2.548e-03
20 5.722e-04 2.0790 7.268e-04 2.0229 7.804e-04 1.9685 6.607e-04 1.9475
40 1.311e-04 2.1262 1.758e-04 2.0474 1.959e-04 1.9940 1.678e-04 1.9774
80 2.546e-05 2.3636 3.877e-05 2.1811 4.599e-05 2.0908 4.046e-05 2.0523
160 3.617e-06 2.8158 5.148e-06 2.9128 7.729e-06 2.5731 7.733e-06 2.3872

Table 23: Results for 2D-TSFP using TGS with f(t, u) = 0, h = 0.005, β = 1.4.

α = 0.2 α = 0.4 α = 0.6 α = 0.8
M Error ROC Error ROC Error ROC Error ROC
10 1.825e-03 2.385e-03 2.636e-03 2.531e-03
20 4.370e-04 2.0620 5.907e-04 2.0132 6.771e-04 1.9611 6.582e-04 1.9433
40 1.005e-04 2.1201 1.444e-04 2.0322 1.727e-04 1.9709 1.691e-04 1.9604
80 1.865e-05 2.4303 3.404e-05 2.0849 4.379e-05 1.9799 4.328e-05 1.9663
160 1.001e-06 4.2204 7.178e-06 2.2457 1.099e-05 1.9943 1.105e-05 1.9701

Table 24: Results for 2D-TSFP using TGS with f(t, u) = u2, h = 0.005, β = 1.2.

4.7 Discussion of Parallel algorithms
In this subsection, we implement the scheme on 1D-TSFP with β = 1.6, α =
0.4, dx = 0.05, τ = 0.1 and f(u) = u2 using all versions of the parallel algorithm dis-
cussed in previous sections. p in the hybrid version denotes the number of distributed
processes used in the simulation. Each process uses only two threads in the simulation
for the hybrid version of the parallel algorithms. The simulation is done for large T
and the timing results are reported here. It is evident from tables 25 – 27 and figures
6 and 7 that the hybrid version takes less running time than the MPI and OpenMP
versions. The hybrid version reported here only uses p distributed memories that
spawns two threads each (for the OpenMP constructs). For practical purposes, more
threads may be spawned, however, as the number of threads and processes increases,
so does the communication time, synchronization procedures, and waiting time to
receive data increases. As there are no message passing in the OpenMP versions, it
is expected to be more efficient than the MPI version due to synchronization proce-
dures and communication time in Step 2 of the MPI pseudocode. This assertion is
corroborated by the experimental results in tables 25 – 27. It can be seen from fig. 7
that the OpenMP version gives almost linear speedups as T becomes large. The MPI
version uses the most execution time and it is seen from the tables that the number
of processes used is related to the time T. For example, while we expect around 1.524
and 3.162 seconds for T = 400 and 800 (with p = 16, MPI version), the results are
slightly different due to the use of more processes on an input T of relatively small
size. In fact, if too many processes are used on an input of relatively small size, then
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the communication time between processes, waiting time for data from other pro-
cesses and time for synchronizing the processes will exceed the actual computation
time of the simulation and thus dominate the overall execution time of the program.
The speedup given in the tables is calculated as the ratio of the run-time for the
sequential version to the run-time for p processes and the efficiency = speedup/p.

T = 400 T = 800
p Run time (secs) Speedup Efficiency (%) Run time (secs) Speedup Efficiency (%)
1 19.294 74.686
2 7.826 2.465 123.3 30.401 2.456 122.8
4 4.028 4.789 119.7 15.789 4.730 118.3
8 2.384 8.093 101.1 8.899 8.393 104.9
16 1.628 11.851 74.1 5.540 13.481 84.3

Table 25: OpenMP version with T = 400 and 800

T = 400 T = 800
p Run time (secs) Speedup Efficiency (%) Run time (secs) Speedup Efficiency (%)
1 19.294 74.686
2 9.281 2.079 103.9 37.295 2.003 100.1
4 5.169 3.733 93.3 19.328 3.864 96.6
8 3.054 6.318 78.9 11.116 6.719 83.9
16 2.561 7.534 47.1 9.650 7.739 48.4

Table 26: MPI version with T = 400 and 800

T = 400 T = 800
p Run time (secs) Speedup Efficiency (%) Run time (secs) Speedup Efficiency (%)
1 19.294 74.686
2 4.587 4.206 210.3 17.855 4.183 209.1
4 2.699 7.149 178.7 10.075 7.413 185.3
8 1.832 10.532 131.6 6.842 10.916 136.5
16 1.526 12.643 79.0 7.112 10.501 65.6

Table 27: Hybrid version with T = 400 and 800
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Figure 6: Bar chart showing the performance of the three parallel algorithms

Figure 7: Speedup vs p showing the linear scalability of the parallel algorithms
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CHAPTER 5

A Fractional-Order Compartmental Model for COVID-19

5.1 Introduction
Fractional differential equations (FDEs) are used to model complex phenomena such
as the modeling of memory-dependent phenomena (DiGuiseppe et al. [41], Baleanu
et al. [12], Podlubny [133]), mechanical properties of materials (Caputo and Mainardi
[26]), anomalous diffusion in porous media (Fomin et al. [55], Metzler and Klafter[120]),
groundwater flow problems (Cloot and Botha [36], Iaffaldano et al. [71]), and con-
trol theory (Podlubny [132]), among others. They serve as a generalization of the
integer-order differential equations and give more degree of freedom for modeling of
biological and physical processes. FDEs have been applied in biological tissues [112],
DNA sequencing [110], Pine Wilt disease [148], lung tissue mechanics and models [74]
, harmonic oscillators [14], Dengue fever [44], measles Islam2014, human liver [13],
diffusion processes [152], SEIR models [3]. Infectious disease outbreaks are one of the
main causes of deaths in human. Their dynamics and spread are modeled and studied
before the introduction of vaccines. The novel coronavirus began in December 2019
in China and has spread rapidly leading to over 2 million deaths worldwide. The
first occurrence in the United States was seen around mid January in Washington
[126] and has spread across America with over 390,000 deaths and 24 million infected
cases. The epidemic has disrupted the day-to-day activities of the human life with
over six million jobs lost in the United States. Several actions and measures have
been taken by the federal, state and local governments to mitigate the spread of the
epidemic. The most prominent measures taken include social distancing, testing, use
of face-masks and contact tracing. It is important to model this epidemic in order
to better understand the spread and dynamics as well as address the challenges of
the epidemic. In short, mathematical models are important to guide the decisions of
health and government officials.
This study aims to examine and analyze the epidemic’s spread using a modification
of the Susceptible-Exposed-Infected-Recovered (SEIR) model with a time-fractional
derivative. The use of fractional derivatives in the model stems from the fact that
the spread of infectious diseases depends not only on the current state but also on
its past states (history or memory dependency). In particular, it is used to capture
any possible nonlocal impact or any apparent delay in the outbreak. Additionally,
time-fractional order models reduce errors resulting from neglect of parameters in
models. We shall focus on some selected states in the US. We note that models
that consider the US as a whole may be misleading and have limited applicability
as different states have different economical and political perspectives which deter-
mines the different control strategies used for each state. For example, while some
states such as Maryland, New Jersey, New York, Connecticut, among others, en-
forced the use of masks in public places and longer stay-at-home order [37], other
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states do not enforce these measures thereby allowing for a possibility of increase of
infected individuals in such states. There have been several models for the study
of the epidemic. Lu et al. [106] considered a fractional-order SEIHDR model which
incorporates intercity movements. Liu et al. [105] studied the dynamics of the pan-
demic by considering asymptomatic and symptomatic infected populations separately.
Giordano et al. [62] studied the COVID-19 epidemic with intervention strategies in
Italy. They proposed a model consisting of different stages: susceptible, infected,
diagnosed, ailing, recognized, threatened, healed and extinct. They further discuss
the long time behavior of the populations in which the susceptible, healed and ex-
tinct population remains. Stella et al. [160] studied the role of asymptomatic indi-
viduals via complex networks. In particular, they formulated a model that aims
to study the interactions in the population through complex networks. They fur-
ther extended the model to a structured nonhomogenous version using the Watts-
Strogatz complex network. Wu et al. [171] studied domestic and international spread
of the epidemic by using different data sets. Zhao and Chen [189] discussed the
dynamics of the pandemic by considering the Susceptible, unquarantined infected,
quarantined infected and Confirmed infected (SUQC) model and parametrize the
intervention effect of control measures. Zhang et al. [188] considered a fractional-
order SEIR model with different order of the time-fractional derivative for each of
the different population being studied. Tuan et al. [165] proposed a fractional-order
model using the Caputo derivative for studying the transmission of COVID-19. They
discussed the existence and uniqueness of solutions to the proposed model. They
further used the generalized Adams-Bashforth-Moulton method for simulating the
model. Bahloul et al. [10] proposed a fractional-order Susceptible-Exposed-Infected-
Quarantined- Recovered-Death-Insusceptible (SEIQRDP) model for predicting the
spread of COVID-19. Furati et al. [56] proposed a time-fractional order compartmen-
tal model with government intervention and public perception incorporated into their
model. Gumel et al. [64] presented a primer for formulating, analysing and simulating
mathematical models for understanding the dynamics of COVID-19.
The simulations in this chapter were written in Python with Anaconda on an Intel(R)
Core(TM) i7-4870HQ CPU running at 2.50GHz. Next, We give some preliminary def-
initions which will be used in the sequel.

Definition 5.1.1. [133] The Mittag-Leffler function which generalizes the exponential

function for fractional calculus is defined as

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, α ∈ R+, z ∈ C.

Remark 5.1.1.
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More generally, the two parameter Mittag-Leffler function is defined as

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α, β ∈ R+, z ∈ C.

It has the following properties:

1. Eα,β(z) = zEα,α+β(z) +
1

Γ(β)
.

2. 0Dαt eλt = t−αE1,1−α(λt).

3. 0Dαt Eα,1(λtα) = λEα,1(λtα).

Definition 5.1.2. [98] A point x∗ is said to be an equilibrium point of the system

t0Dαt = f(t, x(t)), x(t0) > 0 if and only if f(t, x∗(t)) = 0.

Definition 5.1.3. [106] An equilibrium point x∗ of the system t0Dαt x(t) = f(t, x(t)), x(t0) >

0 is said to be asymptotically stable if all the eigenvalues of the Jacobian matrix

J = ∂f/∂x, evaluated at the equilibrium point, satisfies |arg(λi)| >
απ

2
, where λi are

the eigenvalues of J .

5.2 Model Formulation

5.2.1 Initial Model

We begin with a basic time-fractional SEIR model consisting of four compartments
that represents the susceptible (S), exposed (E), infected (I), recovered (R). We as-
sumed that all the infected individuals are unreported and thus not hospitalized.
The following system of differential equations models the transmission dynamics of
the population:

0Dαt S(t) = −β0
SI

N

0Dαt E(t) = β0
SI

N
− σE

0Dαt I(t) = σE − γI

0Dαt R(t) = γI
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where β0 is the disease transmission rate, σ ( 1/σ) is the transition rate (disease incu-
bation period) from the exposed class to the infectious class, γ (1/γ) is the recovery
rate (time from infectiousness until recovery) of an infected individual. We note that
the parameters of the model are non-negative and have dimensions given by 1/timeα.
This observation was originally noted in Diethelm [44]. To alleviate this difference in
dimensions, we replace the parameters with a power α of new parameters to obtain
the new system of equations:

0Dαt S(t) = −βα0
SI

N

0Dαt E(t) = βα0
SI

N
− σαE

0Dαt I(t) = σαE − γαI

0Dαt R(t) = γαI.

(5.49)

5.2.2 Final Model

The next step in the development of our model is the incorporation of hospitalized
compartments (H) and splitting of the infected cases into reported (R) and unreported
cases (U). This step is necessary as published studies [34], [52], [105] have shown that
a considerable number of infected cases go unreported either due to unawareness or
early recovery or just perceptions of the infected individuals. We note that only the
reported cases are being hospitalized during the infectious period and neglect the
possibility of transmission of an hospitalized individual since they are not exposed
to the general population. Furthermore, we introduce a time-dependent transmission
rate which is a function of the number of deaths (the severity of the epidemic). The
schema given in fig. 8 below shows the transmission flow of the model.
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Figure 8: Schematic diagram of the proposed SEIRIUHRD model

Thus, we obtain the following system of time-fractional differential equations:

0Dαt S(t) = −β(t)
S

N
(IR + IU)

0Dαt E(t) = β(t)
S

N
(IR + IU)− σαE

0Dαt IR(t) = ησαE − (γα
R

+ ϕα
R

)IR

0Dαt IU(t) = (1− η)σαE − γα
U
IU

0Dαt H(t) = ϕα
R
IR − (γα

H
+ µα

H
)H

0Dαt R(t) = γα
R
IR + γα

U
IU + γα

H
H

0Dαt C(t) = σαE

0Dαt D(t) = µα
H
H,

(5.50)

where C(t) and D(t) represents the number of cumulative infected (both reported
and unreported) and the disease-induced deaths, respectively. These numbers can be
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explicitly calculated as

C(t) = C(0) +
σα

Γ(α)

∫ t

0

(t− s)α−1E(s) ds,

D(t) =
µα
H

Γ(α)

∫ t

0

(t− s)α−1H(s) ds.

β(t) = βα0 (1 − κ1)
(

1− D(t)
N

)κ2
is the disease transmission rate which takes into ac-

count effects of governmental actions with κ1 ∈ [0, 1) being the strength of the gov-
ernmental intervention and κ2 the intensity of individual reaction which quantifies
how the population adheres to the public health measures. This is modelled as a step
function that links the contacts among individuals as a proportion of death, that is,
the severity of the epidemic. γ

R
, γ

U
, and γ

H
are the recovery rates of a symptomatic,

asymptomatic and hospitalized individuals, respectively. ϕ
R

is the hospitalization
rate of symptomatic infected person, µ

H
is the disease-induced death rate and η is

the fraction of exposed individuals that becomes symptomatic.

5.3 Model Analysis
In this section, we discuss the properties of the model beginning with the existence,
uniqueness, non-negativity and boundedness of solutions of the model (5.50). For
simplicity in analysis, we reduce the system (5.50) to

0Dαt S(t) = −β(t)
S

N
(IR + IU)

0Dαt E(t) = β(t)
S

N
(IR + IU)− σαE

0Dαt IR(t) = ησαE − (γα
R

+ ϕα
R

)IR

0Dαt IU(t) = (1− η)σαE − γα
U
IU

0Dαt H(t) = ϕα
R
IR − (γα

H
+ µα

H
)H

(5.51)

since R, D and C are linear combinations of populations in some other compartments.
Clearly, β(t) is a bounded function with |β(t)| ≤ β0.

Theorem 5.3.1. There exist a unique solution to the system (5.51) and the solution

is non-negative and bounded for any given initial data (S0, E0, IR0, IU0, H0) ≥ 0 ∈ R5
+.



87

Proof. By applying [101, Theorem 3.1], we obtain the existence of the solutions. To

show the uniqueness and boundedness of solutions, it suffices to show by [101, Remark

3.2] that F = (f1, f2, f3, f4, f5) is locally Lipschitz continuous where

f1 = −β(t)
S

N
(IR + IU) ,

f2 = β(t)
S

N
(IR + IU)− σαE,

f3 = ησαE − (γα
R

+ ϕα
R

)IR,

f4 = (1− η)σαE − γα
U
IU ,

f5 = ϕα
R
IR − (γα

H
+ µα

H
)H.

Let X = (S,E, IR, IU , H), X̃ = (S̃, Ẽ, ĨR, ĨU , H̃) and || · || denote the L2 norm, then

||F (X)− F (X̃)|| ≤ ||f1(X)− f1(X̃)||+ ||f2(X)− f2(X̃)||

+ ||f3(X)− f3(X̃)||+ ||f4(X)− f4(X̃)||

+ ||f5(X)− f5(X̃)||

≤ L||X − X̃||,

where L = max
1≤i≤5

Li and L1 = β0, L2 = β0+σα, L3 = ησα+γα
R

+ϕα
R
, L4 = (1−η)σα+γα

U

and L5 = ϕα
R

+ γα
H

+ µα
H
. Thus, F satisfies the local Lipschitz conditions with respect

to X which proves the uniqueness and boundedness of solution to (5.51). Next we

show the non-negativity of solutions. At first, we consider moving along the S-axis,

that is E(0) = IR(0) = IU(0) = H(0) = 0 and 0 < S(0) = S0 ≤ N , then 0Dαt S(t) = 0

whose solution is given as S(t) = S0 > 0. In a similar manner, moving along each

of the other respective axis (that is all initial conditions are zeros except for the axis

being considered), it is easy to show that

E(t) = Eα,1 (−σαtα)E0 ≥ 0,

IR(t) = Eα,1
(
−(γα

R
+ ϕα

R
)tα
)
IR0 ≥ 0,

IU(t) = Eα,1
(
−γα

U
tα
)
IU0 ≥ 0,

H(t) = Eα,1
(
−(γα

H
+ µα

H
)tα
)
H0 ≥ 0.

Therefore, all axis are non-negative invariant. Now, if the solution of the system is

non-negative in the S −E − IU − IR plane, then let S(t∗) ≥ 0, E(t∗) ≥ 0, IR(t∗) ≥ 0,
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IU(t∗) ≥ 0 and H(t∗) = 0 for some t∗ such that H(t) < H(t∗). But

0Dαt H |t=t∗ = ϕα
R
IR ≥ 0

in this plane. Using the mean value theorem for Caputo-fractional derivative

H(t)−H(t∗) =
1

Γ(α)
Dαt (τ)(t− t∗)α

for some τ ∈ [t∗, t), we see thatH(t) ≥ H(t∗). This contradicts our previous statement

that H(t) < H(t∗). Thus, H(t) ≥ 0. Similar argument can be used for each of the

remaining population variables.

5.3.1 Computation of the basic reproduction number R0

We shall use the next generation matrix originally proposed by Diekmann et al. [43]
and further elaborated on by van den Driesche and Watmough [51] and Diekmann
et al. [42] to determine R0. Consider the three compartments Y = (Y1, Y2, Y3) =
(E, IR, IU) containing the infected individuals and let Y ∗ be the disease free equilib-
rium (DFE) point. The linearized equation at the DFE is

0Dαt Yi = Fi(Y )− Vi(Y ), i = 1(1)3,

where Fi(Y ) is the rate of appearance of new infections in compartment i and Vi(Y )
is the rate of transfer of infections to and from compartment i. We further define

F =
∂Fi(Y )

∂Yj

∣∣
Y=Y ∗ and V =

∂Vi(Y )

∂Yj

∣∣
Y=Y ∗ , i, j = 1(1)3.

Then ρ(FV −1) is the basic reproduction numberR0, where ρ(x) is the spectral radius
of x and FV −1 is the next generation matrix. Thus, we obtain

F =

 0 β(t) β(t)
0 0 0
0 0 0

 , V =

 σα 0 0
−ησα γα

R
+ ϕα

R
0

−(1− η)σα 0 γα
U

 .
The basic reproduction number of the model, denoted by R0, is given by

R0 = β(t)

(
η

γα
R

+ ϕα
R

+
1− η
γα
U

)
.
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5.3.1.1 R0-Sensitivity Here, we check the sensitivity of R0 by obtaining its
derivative with respect to each parameter. We replace β(t) by its maximum value βα0
and obtain the following:

∂R0

∂β0

= αβα−1
0

(
η

γα
R

+ ϕα
R

+
1− η
γα
U

)
,

∂R0

∂η
= βα0

(
1

γα
R

+ ϕα
R

− 1

γα
U

)
,

∂R0

∂γ
R

= −
ηαβα0 γ

α−1
R

(γα
R

+ ϕα
R

)2
,

∂R0

∂ϕ
R

= −
ηαβα0 ϕ

α−1
R

(γα
R

+ ϕα
R

)2
,

∂R0

∂γ
U

= −ηαβ
α
0

γα+1
U

.

Since all parameters are positive and 0 < η < 1, then
∂R0

∂β0

> 0,
∂R0

∂γ
R

< 0,
∂R0

∂γ
U

<

0 and
∂R0

∂ϕ
R

< 0. This shows that R0 is increasing with β0 and decreasing with

γ
U
, γ

R
, ϕ

R
, but we cannot conclude on the monotonicity of R0 with respect to the

other parameters of the model.

5.3.2 Linear Analysis of the Fractional-Order Dynamical Equations

A linearization of the fracional-order system (5.51) informs us about the early time
growth of the epidemic and the trajectory of its solution vector. At the beginning
of the epidemic, S ≈ N and E, IR, IU , H << N . We define new variables x1 =
N − S, x2 = E, x3 = IR, x4 = IU , x5 = H and noting that xi << N , we obtain the
linear equations:

0Dαt X = AX, with X = (x1, x2, x3, x4, x5)T ,

where

A =


0 0 −β(t) −β(t) 0
0 −σα β(t) β(t) 0
0 ησα −(γα

R
+ ϕα

R
) 0 0

0 (1− η)σα 0 −γα
U

0
0 0 −ϕα

R
0 −(γα

H
+ µα

H
)

 .
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The matrix has two obvious eigenvalues λ1 = 0 and λ2 = −(γα
H

+µα
H

). The remaining
eigenvalues are the roots of the cubic equation: λ3 + a2λ

2 + a1λ+ a0, where

a2 = (σα + γα
R

+ γα
U

+ ϕα
R

),

a1 = σα(−β(t) + γα
U

) + (σα + γα
U

)(ϕα
R

+ γα
R

),

a0 = σαγα
U

(γα
R

+ ϕα
R

)(1−R0).

Next, we need find the conditions under which the roots of the equation are negative.
We use the Routh-Hurwitz criterion which gives a0 > 0, a2 > 0 and a2a1 > a0.
Clearly a2 > 0 and a0 > 0 if R0 < 1. Let λL be the largest eigenvalue for A, then
the total number of infected (both reported and unreported) cases would grow as
∼ Eα,1(λLt

α). If R0 ≈ 1, then we would expect λL to be close to zero and thus

λL ≈ max

(
γα
U
σα(R0 − 1)

(σα + γα
U

) + σα(γα
R

+ ϕα
R

)−1(−β(t) + γα
U

)
,−(γα

H
+ µα

H
)

)
.

Considering that β(t) is time dependent, we use its maximum value β0 to estimate
R0 and λL so that β0 represents the worst case scenario for the fastest eradication of
the virus.

5.3.3 Choice of Initial Conditions

Here, we discuss the choice of the initial conditions for the fractional-order system
(5.51). At first, we note that the initial conditionsX0 = (x1(0), x2(0), x3(0), x4(0), x5(0))
(with S0 ≈ N which implies x1(0) ≈ 0) quickly moves along the dominant eigenvalue
and should provide an indication of the correct choice of the initial conditions. Let
LL and RL be the left and right eigenvectors corresponding to the largest eigenvalue
λL, then the time evolution of X is given as

X(t) =
∑
k

(Lk ·X0)RkEα,1(λkt
α)

≈
∑
k

(Lk ·X0)RLEα,1(λLt
α), for sufficiently large times,

≈ cRLEα,1(λLt
α),

where c =
∑

k (Lk ·X0), Lk = (L
(1)
k , L

(2)
k , L

(3)
k , L

(4)
k , L

(5)
k ) and Rk = (R

(1)
k , R

(2)
k , R

(3)
k , R

(4)
k , R

(5)
k ).

The explicit form of the dominant eigenvalue gives the relation:

x3(t)

x4(t)
=
R

(3)
L

R
(4)
L

=
η(λL + γα

U
)

(1− η)(λL + γα
R

+ ϕα
R

)
.
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This shows that the direction of the solution vector X is determined by the dominant
eigenvector and is independent of the initial conditions.

Now, let us consider the initial condition X0 = (ε, 0, ε, 0, 0, 0) and noting that
R

(1)
L = 0, we obtain the solution

xi(t) ≈ εR
(i)
L L

(3)
L Eα,1(λLt

α). (5.52)

Let C(tl) be the number of infected (both reported and unreported) at a sufficiently
large time tl, then x3(tl) + x4(tl) = C(tl) which implies that

εEα,1(λLt
α
l ) =

C(tl)

R
(3)
L L

(3)
L +R

(4)
L L

(3)
L

from which we obtain

xi(0) =
R

(i)
L

R
(3)
L +R

(4)
L

C0.

This shows that the direction of the solution vector for different initial conditions is
a mere time translation of one another and does not have any effect on the trajectory
of the growth of the vector. Thus, the leading eigenvector is responsible for these
trajectories.

5.3.4 Peak Infections and Time of Peak

Of particular importance in the study of epidemic outbreaks is detecting the peak of
infections and the time at which this peak occurs. The peak of the infected population
is given by setting 0Dαt IT = 0 at the time t = t(m), where IT = IR + IU is the total
number of infected population. However, before the onset of this peak point, there
exists a point, see [4], where the incidence rate starts to decrease. This point is
attained when 0Dαt E(t) = 0 which implies that

S =
σαE

β(t)IT
N := Φ(E, IR, IU). (5.53)

We note that Φ is not defined at the equilibrium point E0 in the phase space and in
particular is not defined at the point (E0, 0, 0). Equation (5.53) gives a description
of the epidemic just before the equilirbium point E0 is reached. If S > Φ(E, IR, IU),
then the epidemic is not close to reaching this point and naturally propagates over
time. If on the other hand, S < Φ(E, IR, IU), sufficient susceptible population have
been infected such that the epidemic cannot sustain itself anymore. As such, the
point E0 is eventually reached. From data, only the terms IR and IU are observable
quantities and as such it may be impossible to show that (5.53) holds in the phase
field.

Due to the restriction on (5.53), we turn our focus to the observable quantities IR
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and IU . The peak point is thus the point where IT is maximum, that is, the point
where 0Dαt (IR + IU) = 0 which implies that

σαE = (γα
R

+ ϕα
R

)IR + γα
U
IU . (5.54)

The occurrence of the conditions necessary for the peak to occur can be inferred from
data using (5.54) since σαE is the rate at which new infections occur, (γα

R
+ ϕα

R
)IR

and γα
U
IU are the rates at which the reported and unreported infected are resolved.

Based on the discussion in subsection 5.3.3, an estimate of the time to reach this
peak value can be obtained using the linearized dynamics till the time IR(t) and
IU(t) reaches their peak values I(m)

R and I
(m)
U , respectively. Hence, we write I(m)

R ∼
IR(0)E(λLt

α) and I(m)
U ∼ IU(0)E(λLt

α) so that

t(m) ∼

E−1
α

[(
I

(m)
R + I

(m)
U

)
/ (IR(0) + IU(0))

]
λL

1/α

,

where E−1
α (x) is the inverse Mittag Leffler function.

5.3.5 Asymptotic Population in Each Compartment

Let S̃, Ẽ, ĨR, ĨU , H̃, R̃ and D̃ denote the asymptotic population (that is at very long
times) in the different compartments. Given the initial conditions with S(0)+E(0)+
IR(0) + IU(0) +H(0) +R(0) +D(0) = N , the variables converge to the equilibrium

E0 =
(
S̃ > 0, Ẽ = 0, ĨR = 0, ĨU = 0, H̃ = 0, R̃ > 0, D̃ > 0

)
.

This implies that the epidemic is over and only the susceptible, recovered and dead
population are eventually present. To understand the asymptotic behavior of the
variables, we consider, following Giordano et al. [62], the EIRIUH subsystem

0Dαt Y (t) = FY (t) + bU(t), (5.55)

where

F =


−σα 0 0 0
ησα −(γα

R
+ ϕα

R
) 0 0

(1− η)σα 0 −γα
U

0
0 −ϕα

R
0 −(γα

H
+ µα

H
)

 , b =


1
0
0
0

 ,
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Y (t) = [E IR IU H]T ,

XS(t) = cTY (t) = [0 β(t) β(t) 0]Y (t),

XR(t) = dTY (t) = [0 γα
R
γα
U
γα
H

]Y (t),

XD(t) = eTY (t) = [0 0 0 µα
H

]Y (t),

U(t) =
S(t)

N
XS(t).

The remaining variables satisfy the time-fractional differential equations

0Dαt S(t) = −S(t)

N
XS(t),

0Dαt R(t) = XR(t),

0Dαt D(t) = XD(t).

(5.56)

Proposition 5.3.1. The EIRIUH subsystem is asymptotically stable if and only if

S̃ < S̃∗ =
N

R0

.

Proof. The Jacobian matrix of the dynamical system (5.50) around the equilibrium

(S̃, 0, 0, 0, 0, R̃, D̃) is

A =



0 0 −β(t) S̃
N

−β(t) S̃
N

0 0 0

0 −σα β(t) S̃
N

β(t) S̃
N

0 0 0

0 ησα −(γα
R

+ ϕα
R

) 0 0 0

0 (1− η)σα 0 −γα
U

0 0 0

0 0 −ϕα
R

0 −(γα
H

+ µα
H

) 0 0

0 0 γα
R

γα
U

γα
H

0 0

0 0 0 0 µα
H

0 0


.
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The matrix has three zero eigenvalues and −(γα
H

+µα
H

) as a negative eigenvalue. The

other three eigenvalues are given as the roots of the equation λ3 +a2λ
2 +a1λ+a0 = 0,

where

a2 = N(σα + γα
R

+ γα
U

+ ϕα
R

),

a1 = N2[σα(−β(t) + γα
U

) + (σα + γα
U

)(ϕα + γα
R

)],

a0 = N3σαγα
U

(γα
R

+ ϕα
R

)(1−R0).

The polynomial is Hurwitz if and only if a2 > 0, a0 > 0 and a2a1 > a0. Clearly,

a2 > 0 and a0 > 0⇒ S̃ <
N

R0

. This concludes the proof.

Corollary 5.3.1. For positive initial conditions, the limiting value of S,

S̃ = lim
t→∞

S(t) < S̃∗.

Lemma 5.3.1. Suppose x(t) ∈ C∞(R+
0 ) with |x(r)(t)| ≤ M |x(r−1)(t)|, r ∈ N, where

x(r)(t) is the r-th derivative of x(t), then lim
t→∞ 0I

α
t x(t) exists and is finite, where

0I
α
t y(t) =

1

Γ(α)

∫ t
0
(t− s)α−1y(s) ds.

Proof. We proceed with the proof as follows:

0I
α
t x(t) =

1

Γ(α)

∫ t

0

(t− s)α−1x(s) ds

=
1

Γ(α)

∫ t

0

(t− s)α−1

[
x(t) + (s− t)x′(t) +

(s− t)2

2!
x′′(t) + · · ·

]
ds

=
1

Γ(α)

∫ t

0

(t− s)α−1

∞∑
r=0

(−1)r(t− s)r

r!
x(r)(t) ds

=
1

Γ(α)

∞∑
r=0

(−1)r

r!
x(r)(t)

∫ t

0

(t− s)r+α−1 ds

=
1

Γ(α)

∞∑
r=0

(−1)rtr+α

r!(r + α)
x(r)(t).

Next, we show that the series is convergent. Given ar =
(−1)rtr+α

r!(r + α)
x(r)(t), then

lim
r→∞

∣∣∣∣ar+1

ar

∣∣∣∣ = lim
r→∞

t(r + α)

(r + 1)(r + α + 1)

∣∣∣∣x(r+1)(t)

x(r)(t)

∣∣∣∣ = 0.

The series converges and thus the integral 0I
α
t x(t) exists and is finite.
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Proposition 5.3.2. For positive initial conditions, the limit values S̃ = lim
t→∞

S(t), R̃ =

lim
t→∞

R(t) and D̃ = lim
t→∞

D(t) are given as

fS +R0(S0 − S̃) = K,

R̃ = fR +R0 +RR(S0 − S̃),

D̃ = fD +D0 +RD(S0 − S̃),

where fS = −cTF−1Y (0), fR = −dTF−1Y (0), fD = −eTF−1Y (0), RR = −dTF−1b,

RD = −eTF−1b and K = lim
t→∞ 0I

α
t XS(t).

Proof. Taking the limits of the solution of the equations in (5.56), we have

S̃ − S0 = − lim
t→∞ 0I

α
t

(
S(t)

N
XS(t)

)
,

R̃−R0 = lim
t→∞ 0I

α
t

(
dTY (t)

)
,

D̃ −D0 = lim
t→∞ 0I

α
t

(
eTY (t)

)
.

Now, consider taking the limits of the Riemann-Liouville integral of (5.55),we obtain

lim
t→∞

Y (t)− Y (0) = lim
t→∞ 0I

α
t [FY (t) + bU(t)]

−Y (0) = lim
t→∞

[F 0I
α
t Y (t) + b 0I

α
t U(t)]

= lim
t→∞

[
F 0I

α
t Y (t) + b 0I

α
t

(
S(t)

N
XS(t)

)]
,

−Y (0) = −b(S̃ − S0) + lim
t→∞

[F 0I
α
t Y (t)] . (5.57)

Premultiplying (5.57) by cTF−1 and taking into account that XS(t) = cTY (t), we

obtain

−cTF−1Y (0) = −cTF−1b[S̃ − S0] + lim
t→∞ 0I

α
tXS(t).

Noting that −cTF−1b = R0, we obtain the desired result. The equations for R̃ and D̃

can be easily obtained by premultiplying (5.57) by dTF−1 and eTF−1, respectively.

Corollary 5.3.2. The total population that would eventually be affected by the disease

and either recovered or dead is given by

TI = R̃ + D̃ = fR + fD +R0 +D0 + (RR +RD)(S0 − S̃). (5.58)
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5.4 Parameter Sensitivity and Identifiability Analysis
We shall discuss, in this section, the sensitivity and identifiability of the parameters
with respect to the proposed model. This analyis informs us about the significance
of the parameters of the model and their interactions with the other parameters.

5.4.1 Sensitivity analysis

The sensitivity analysis (SA) deals with the significance or importance of the pa-
rameters in the model. In particular, it finds the most influential parameters that
drives the dynamics of the model. It also describes the extent to which parameter
changes affects the result of the methods or models with the goal of identifying the
best set of parameters that describes the process or phenomena in question. There
are several SA methods which are broadly classified as local and global methods. In
this dissertation, we shall focus on the Morris screening method (local method) and
Sobol analysis method (global method).

5.4.1.1 Morris Screening Method
The Morris screening method is a local sensitivity measure that makes use of the first
order derivative of an output function y = f(θ) = f(θ1, · · · , θp) with respect to the
input parameter θ. It measures the effect of the output when the input variable is
perturbed one at a time around a nominal value. It serves as a first check, in most
analysis, in screening parameters for identifiability. The method evaluates elementary
effects [145], [146], [179] with the ith parameter through the forward perturbation

gi(θ) =
f(θ1, θ2, · · · , θi + ∆θi, · · · , θp)− f(θi, · · · , θp)

∆θi
, i = 1(1)p.

Morris [122] proposed two sensitivity measures, the mean (µ) and the standard de-
viation (σ̃) of the elementary effects. For non-monotonic models, µ may lead to a
very small value due to cancellation effects. For this reason, Campolongo et al. [25]
proposed the use of absolute values for evaluating the mean. In order to obtain a
dimension-free sensitivity, we prefer the use of the sensitivity measure δ given in Brun
et al. [21] as

δi =

√√√√ 1

N

N∑
j=1

g̃2
ij
, i = 1(1)p, and j = 1(1)N,

where N is the number of sample points and

g̃i(θ) =
f(θ1, θ2, · · · , θi + ∆θi, · · · , θp)− f(θ1, · · · , θp)

∆θi

θi
f(θ1, · · · , θp)

.

A common practice in the literature [134], [179], [180] is to plot the indices δ against
σ̃, the standard deviation. We observe that the fractional order α has the highest
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influence on the model output over time. Fig. 9(a) shows that the strength of the
governmental action κ1, transmission rate β0, and the recovery rate γ

U
are the next

most influential parameters in the model. This is further corroborated by fig. 9(b).
The parameter α was excluded from this figure because of its high δ and σ̃ index.
The parameters (γ

H
, ϕ

R
, µ

H
and κ2) represented by the blue squares have the least

influence on the model output and can be considered unimportant. The other pa-
rameters represented by the green squares have more influence than the parameters
represented by the blue squares.
One major setback of the Morris screening test for sensitivity analysis is the consid-
eration of each parameter individually and independently of the other parameters. In
real applications, this is not true as parameters have collinearity and dependencies
on one another.
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(a) Sensitivity of the parameters over time

(b) Parameter Importance

Figure 9: Morris screening test

5.4.1.2 Sobol Analysis
The Sobol method is a variance-based sensitivity analysis method which unlike the
Morris screening method takes into account the effect of the relationship between each
parameters of the model. It uses the decomposition of variance to calculate Sobol’s
sensitivity indices: first and total order sensitivity measures. The basic idea of the
Sobol’s method is the decomposition of the model output function y = f(θ1, · · · , θp)
into summands of increasing dimensionality, that is

V (y) = V1,··· ,p +

p∑
i=1

Vi +

p∑
i=1

p∑
j>1

Vi,j + · · · ,
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where Vi is the partial variance of the contribution of the parameter θi and Vi,··· ,s
is the partial variances caused by the interaction of the parameters (θ1, · · · , θs) for
s ≤ p.
The first order sensitivity index measures the main effect of parameter θi on the model
output; that is the partial contribution of θi to the variance V (y).The index [154],
[155] is defined as

Si =
Vi
V (y)

.

The larger this index, the more sensitive the parameter is to the model output [154],
[155]. Using the law of total variances [155], [179], the index can also be expressed as

V (y) = Vθi(Eθ∼i(y|θi)) + Eθi(Vθ∼i(y|θi))

and
Si =

Vθi(Eθ∼i(y|θi))
V (y)

where Vθi(Eθ∼i(y|θi)) is the partial variance caused by θi and Eθ∼i(y|θi) is the mean
of the model output calculated by using all the values of the other parameters θ∼i
(except θi) and V (y) is the total variance.
The total sensitivity indices [68] measures the effects of parameter θi and the inter-
action with the other parameters. It is defined as

STi =
Vi + Vi,j + · · ·+ Vi,j,··· ,p

V (y)
.

The total variance, V (y), for this index is given as

V (y) = Vθ∼i(Eθi(y|θ∼i)) + Eθ∼i(Vθi(y|θ∼i))

and

STi =
Eθ∼i(Vθi(y|θ∼i))

V (y)

=
V (y)− Vθ∼i(Eθi(y|θ∼i))

V (y)
.

The mean and the variance can be evaluated using quasirandom sampling method
[144], [179] and are given as

Vθi(Eθ∼i(y|θi)) =
1

N

N∑
j=1

f(Bj)
(
f(Ai

B,j)− f(Aj)
)
,

and

Eθ∼i(Vθi(y|θ∼i)) =
1

2N

N∑
j=1

(
f(Aj)− f(Ai

B,j)
)2
,
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where A and B are two independent parameter sample matrices of dimensions N×p.
We used the python SALib package [67] to compute the first and total order variance
indices. Fig. 10 shows that the fractional order α, the governmental action strength
κ1, the transmission coefficient β0 and the disease-induced death-rate µ

H
have the

highest interaction with the other parameters. The parameters (κ2, γR , γH ) have the
least interaction with the other parameters of the model. These results are consistent
with the results in the Morris screening test as important parameters of the test show
high interaction with the other parameters.

(a) First order sensitivity over time (b) Total sensitivity over time

(c) Sobol Sensitivity Indices

Figure 10: Sobol Indices
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5.4.2 Parameter Identifiability

The concept of identifiability is dependent on sensitivity. It entails the selection of the
subset of parameters of a model having little or no collinearity and uncertainty, and
which can be identified uniquely from a given set of observed data or measurements. In
other words, it answers the question “Can the available data be described by the model
and the selected subset of parameters?”. There are several techniques or tests for
parameter identifiability. Most of the tests are based on the Fisher information matrix
(FIM) F = χTχ where χ = ∂y/∂θ for a model output function y. Cobelli and Di
Stefano [38] showed that a sufficient condition for identifiability is the non-singularity
of FIM. Burth et al. [24] proposed an iterative estimation process which implements a
reduced-order estimation by finding parameters whose axis lie closest to the direction
of FIM. The associated parameter values are then fixed at prior estimates during the
iterated process. Brun et al. [21] studied parameter identifiability using two indices;
a parameter importance ranking index δ and a collinearity index γ

K
which depends

on the smallest eigenvalues of submatrices of χTχ corresponding to the parameter
subset K. Cintrón-Arias et al. [35] explained the need for a good parameter subset
for identifiability to satisfy the full rank test. They further introduced two indices;
the selection score and the condition number of χTχ. The smaller these indices the
lesser the collinearity and uncertainty in the parameter values of the subset. Finally,
they used the coefficient of variation index to examine the effect of parameters in the
parameter subset. In this dissertation, we shall use the test proposed by Cintrón-
Arias et al. [35] in identifying the parameters. The algorithm can be summarized in
the following steps.



102

Algorithm 7 Algorithm for Parameter subset Selection [35]
1: Perform a combinatorial search for all possible parameter subsets. Let

Sp = {θ = (λ1, λ2, · · · , λp) ∈ Rp
∣∣λk ∈ I and λk 6= λm ∀ k,m = 1, · · · , p},

where I = {β0, σ, γR , γU , γH , ϕR , µH , η, α}.
2: Select parameter subsets that pass the full rank test; that is

Θp = {θ
∣∣θ ∈ Sp ⊂ Rp, Rank(χ(θ)) = p}.

3: For each θ ∈ Θp, calculate the parameter selection score ζ(θ) = |ϑ(θ)| where

ϑ =

√
Σ(θ)ii
θi

, i = 1, · · · , p,

and Σ(θ) = σ2
0

[
χT (θ)χ(θ)

]−1 ∈ Rp.

4: Calculate the condition number κ(χ(θ)) for each parameter subset θ ∈ Θp. The

smaller the values of κ(χ(θ)) and ϑ(θ), the lower the uncertainty possibilities in

the estimate.

To discuss the results in this section, we shall use the state of Tennessee as a case
study to understand parameter identifiability. Furthermore, we used the following
values as the nominal parameter set θ0 for the model:

β0 = 0.5000, σ = 1/5.1, γ
R

= γ
U

= 1/7, γ
H

= 1/14, ϕ
R

= 0.0500,

µ
H

= 0.0010, κ1 = 0.6000, κ2 = 1117.3, η = 0.3500, α = 0.9900

and the nominal error variance σ0 = 50. We further divide the parameters into three
groups according to their importance rankings discussed in the section 5.4.1.1:

S1 = (β0, κ1, α),

S2 = (σ, γ
R
, γ

U
, η),

S3 = (γ
H
, ϕ

R
, µ

H
, κ2),

where S1 and S3 are the most and least influential parameter sets, respectively, while
S2 contains more influential parameters than S3. We display some selections of the
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Figure 11: The condition number κ(χ(θ)) against the parameter selection scores ϑ(θ)

of the N × p sensitivity matrices for all parameter subsets θ = Θp with p = 2.

Logarithmic scales are used on both axis.

parameter subsets of size p in Table 28 where we have chosen the subsets with the
smallest score values. The entries in Table 28 are ordered with respect to the se-
lection score ϑ(θ) for each subset of same cardinality. A high selection score and
condition number for a parameter subset indicates substantial collinearity and linear
dependence, and thus is poorly identifiable even if the parameter subsets contains
S1, that is contains the set of most influential parameters. We observe that most of
the selections in Table 28 contains at least one element in each of the groups listed
above. This shows that while parameter importance ranking is crucial in recognizing
parameters that drives the dynamics of a model, it does not have substantial effect
in identifiability. Identifiability depends on proper selection of subsets including pa-
rameters in each of the three groups above that describes the measurement or data.
To have an idea of the variations of the condition number and the selection score,
we give a plot of these values for p = 2 in fig. 11 (with logarithmic scales). Good
parameter combination in fig. 11 corresponds to values in the lower left corner of the
figure where the values, ϑ(θ) and κ(χ(θ)), are relatively small. To further analyze
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p Parameter Subsets κ(χ(θ)) ϑ(θ)
11 (β0, σ, γR , γU , γH , ϕR , µH , κ1, κ2, η, α) 5.394e+08 4.616e+02
10 (β0, σ, γR , γU , γH , ϕR , µH , κ1, η, α) 1.383e+04 4.709e-04

9 (β0, σ, γR , γU , γH , ϕR , µH , η, α) 2.779e+03 1.387e-04
(σ, γ

R
, γ

U
, γ

H
, ϕ

R
, µ

H
, κ1, η, α) 3.001e+03 1.396-04

7 (β0, σ, γR , ϕR , µH , η, α) 2.669e+02 2.483e-06
(β0, σ, γR , γU , ϕR , µH , α) 2.946e+02 2.514e-06
(σ, γ

R
, γ

U
, ϕ

R
, µ

H
, κ1, α) 2.661e+02 2.559e-06

5 (σ, γ
U
, κ1, η, α) 2.306e+02 3.209e-07

(σ, γ
R
, γ

U
, κ1, α) 2.260e+02 3.384e-07

(β0, σ, γU , η, α) 2.422e+02 3.556e-07

4 (σ, γ
U
, κ1, α) 1.927e+02 1.044e-07

(β0, σ, γU , α) 2.151e+02 1.698e-07
(σ, γ

R
, η, α) 8.341e+01 2.067e-07

3 (σ, γ
U
, κ1) 8.597e+01 4.311e-08

(σ, γ
U
, α) 8.292e+01 4.703e-08

(β0, σ, γU ) 9.536e+01 5.565e-08
(σ, κ1, α) 1.037e+02 6.312e-08

Table 28: Selection scores and condition numbers for some selected parameter subsets

the parameter identifiability of the model, we consider the parameter subsets:

θ1 = (β0, σ, γR , γU , γH , ϕR , µH , κ1, κ2, η, α),

θ2 = (σ, γ
R
, γ

U
, γ

H
, ϕ

R
, µ

H
, κ1, η, α),

θ3 = (σ, γ
R
, γ

U
, ϕ

R
, µ

H
, κ1, α),

θ4 = (σ, γ
R
, γ

U
, κ1, α),

θ5 = (σ, γ
U
, α),

such that θi+1 ⊂ θi, i = 1, · · · , 4. The choice of these parameter subsets are due
to their relative small condition numbers and selection scores. In other to create
synthetic data, we assume the nominal parameter subsets and error variance (given
at the beginning of this section) to be the true parameter vectors and true variance.
Furthermore, we add random noise to the model output as follows:

Yj = z(tj, θ0) + σ0N (0, 1), j = 1, · · · , N.

We solve five inverse problems for each of the parameter subsets θi, i = 1, · · · , 5. We
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θ̃ AIC BIC
θ1 414.79 443.45
θ2 408.59 432.04
θ3 403.52 421.76
θ4 400.34 413.36
θ5 394.69 402.50

Table 29: AIC and BIC metrics to estimate the quality of the model with different

parameter sets.

analyze the result using the coefficient of variation and standard error [35] given as

SEj(θ̃) =

√
Σ̃j,j, j = 1. · · · , p

and

vj(θ̃) =
SEj(θ̃)

θj
, j = 1. · · · , p,

where Σ̃j,j = σ̃0
2
[
χ(θ̃)Tχ(θ̃)

]−1

and σ̃0
2 =

1

n− p
|Y − z(θ̃)|.

It is seen from table A.1 that the standard errors of β0, κ1, γU , η, α in θ2 show
improvements and implies lower linear dependence and collinearity than in θ1. Thus,
a substantial improvement in uncertainty quantification is seen from θ1 to θ2. Further
improvements are observed for each of the other parameter subsets as more parameters
are removed. For instance, with the removal of γ

H
and η in θ2, it seen that the

standard error for γ
U
dropped from 4.76% to approximately 0.56% of their estimates.

Other improvements in θ3 include σ and ϕ
R
. We note that there is no substantial

gain in the removal of ϕ
R
and µ

H
from θ3 as seen in Table A.1.

Parameter identifiability might be misleading without the investigation of the
residual of the model [35]. The Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) indices make use of residuals to determine the quality
of models in the presence of a given set of data. Table 29 shows the AIC and BIC
estimates for each parameter set θi, i = 1, · · · , 5. It is seen that the best improve-
ments occur from θi to θi+1 for i = 1, 2. Thus, the best case scenario of uncertainty
quantification obtained, for the analysis discussed in this section, is that of θ3.

5.4.3 Epidemiological parameters of the model

For simplicity, we shall use prior studies to fix several parameters and fit the other
parameters of the model. In particular, we shall fit some parameters based on the
discussions in section 5.4.2 and the default values in table 30 using the COVID-19
data obtained from John Hopkins University [50]. Prior modeling studies suggest
that the effective transmission rate β0 ranges between 0.5-1.5 day−1 [52], [97], [138],
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[150] and the incubation period lies in the range between 2–9 days [19], [57], [100],
[171]. The average of 5.1 days was estimated by Lauer et al. [93]. The infectious
duration seems to have agreeing values of around 7 days for several modeling studies
[52], [54], [97], [105], [127], [162]. The fraction of cases that are symptomatic varies
with Fergusson et al. [54] using the value η = 2/3 in their work. Lachmann et al. [92]
and Li et al. [143] estimated that around 88% and 86%, respectively, of all infections
are undocumented with a 95% credible interval. Maugeri et al. [115] estimated that
the proportion of unreported new infections by day ranged from 52.1% to 100% with
a total of 91.8% of infections going unreported. Table 30 gives a summary of these
values and the default values used in our model simulation. The other parameters of
the model are fixed using the values in table 30.

Parameters Not. Ranges References Default
Effective transmission rate β0 0.2–1.5 day−1 [52], [54], [97], [150] Fitted
Governmental action strength κ1 0.4239–0.8478 [66] Fitted
Intensity of responds κ2 1117.3 [66] 1117.3
Incubation Period σ−1 2–14 days [52], [93], [100], [143] 5.1
Proportion of reported new infections η 0.10–0.48 [92], [115], [143] 0.35
Recovery rate (Reported) γ

R
1/14–1/3 day−1 [54], [97], [171] 1/7

Recovery rate (Unreported) γ
U

1/14–1/3 day−1 [54], [97], [171] 1/7
Recovery rate (Hospitalized) γ

H
1/30–1/3 day−1 [162], [191] 1/14

Hospitalization rate ϕ
R

0.002–0.1 day−1 [54], [191] 0.05
Disease-induced death rate µ

H
0.0001–0.1 day−1 [54] Fitted

Time-fractional order α 0.5–1.0 [19] Fitted

Table 30: Summary of parameter ranges and default values used in our simulation.

“Not” denotes Notations.

5.5 Methods and Model Fitting
We use the infected and cumulative mortality data compiled by the Center for Systems
and Science Engineering at John Hopkins University (2020) [50] starting from the day
of the first record of infection with two intermediate days for the first 200 days (the
parameters are adjusted accordingly) in a given state to calibrate the parameter set
(β0, κ1, µ, α) and the initial condition E0. The other initial conditions are fixed, for
example, IR0 is matched with the first recorded case, IU0 = (0.65/0.35)IR0 since 65%
of the cases are taken to be unreported and the rest are set to zero. The remaining
parameters in the model are fixed at default values given in Table 30. Parameter
fittings were performed using a nonlinear least squares algorithm in python with the
limited memory Broyden-Fletcher-Goldfarb-Shannon (L-BFGS) method. One main
benefit of the routine is the use of bounds for fit parameters. This allows faster
convergence of the algorithm and ensures obtaining meaningful fit parameters. The
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fitted parameters and their standard errors are given in Table 31. A comparison
of the fractional-order model with its corresponding integer-order model is given in
table 32 for California and Washington. We have excluded the states of Tennessee
and Texas because their models are simply integer-order models as shown in table 31
where α ≈ 1. All numerical simulations were done with our numerical scheme [18]
from which we obtain the solution of the proposed model at each time step as

1. Predictor:

Sp = Sj +
τα

Γ(1 + α)
F1(tj, Sj, Ej, IR,j, IU,j, Hj, Rj, Dj) + H̃1,j

Ep = Ej +
τα

Γ(1 + α)
F2(tj, Sj, Ej, IR,j, IU,j, Hj, Rj, Dj) + H̃2,j

IR,p = IR,j +
τα

Γ(1 + α)
F3(tj, Sj, Ej, IR,j, IU,j, Hj, Rj, Dj) + H̃3,j

IU,p = IU,j +
τα

Γ(1 + α)
F4(tj, Sj, Ej, IR,j, IU,j, Hj, Rj, Dj) + H̃4,j

Hp = Hj +
τα

Γ(1 + α)
F5(tj, Sj, Ej, IR,j, IU,j, Hj, Rj, Dj) + H̃5,j

Rp = Rj +
τα

Γ(1 + α)
F6(tj, Sj, Ej, IR,j, IR,j, Hj, Rj, Dj) + H̃6,j

Dp = Dj +
τα

Γ(1 + α)
F7(tj, Sj, Ej, IR,j, IR,j, Hj, Rj, Dj) + H̃7,j

2. Corrector:
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Sj+1 = Sj +
τα

Γ(2 + α)

(
αF1(tj, Sj, Ej, IR,j, IU,j, Hj, Rj, Dj)

+ F1(tj+1, Sp, Ep, IR,p, IU,p, Hp, Rp, Dp)
)

+ H̃1,j,

Ej+1 = Ej +
τα

Γ(2 + α)

(
αF2(tj, Sj, Ej, IR,j, IU,j, Hj, Rj, Dj)

+ F2(tj+1, Sp, Ep, IR,p, IU,p, Hp, Rp, Dp)
)

+ H̃2,j,

IR,j+1 = IR,j +
τα

Γ(2 + α)

(
αF3(tj, Sj, Ej, IR,j, IU,j, Hj, Rj, Dj)

+ F3(tj+1, Sp, Ep, IR,p, IU,p, Hp, Rp, Dp)
)

+ H̃3,j,

IU,j+1 = IU,j +
τα

Γ(2 + α)

(
αF4(tj, Sj, Ej, IR,j, IU,j, Hj, Rj, Dj)

+ F4(tj+1, Sp, Ep, IR,p, IU,p, Hp, Rp, Dp)
)

+ H̃4,j,

Hj+1 = Hj +
τα

Γ(2 + α)

(
αF5(tj, Sj, Ej, IR,j, IU,j, Hj, Rj, Dj)

+ F5(tj+1, Sp, Ep, IR,p, IU,p, Hp, Rp, Dp)
)

+ H̃5,j,

Rj+1 = Rj +
τα

Γ(2 + α)

(
αF6(tj, Sj, Ej, IR,j, IU,j, Hj, Rj, Dj)

+ F6(tj+1, Sp, Ep, IR,p, IU,p, Hp, Rp, Dp)
)

+ H̃6,j,

Dj+1 = Dj +
τα

Γ(2 + α)

(
αF7(tj, Sj, Ej, IR,j, IU,j, Hj, Rj, Dj)

+ F7(tj+1, Sp, Ep, IR,p, IU,p, Hp, Rp, Dp)
)

+ H̃7,j,
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where

F1(tj, Sj, Ej, IR,j, IU,j, Hj, Rj, Dj) = −β(t)
Sj
N

(IR,j + IU,j) ,

F2(tj, Sj, Ej, IR,j, IU,j, Hj, Rj, Dj) = β(t)
Sj
N

(IR,j + IU,j)− σαEj,

F3(tj, Sj, Ej, IR,j, IU,j, Hj, Rj, Dj) = ησαEj − (γα
R

+ ϕα
R

)IR,j,

F4(tj, Sj, Ej, IR,j, IU,j, Hj, Rj, Dj) = (1− η)σαEj − γαU IU,j,

F5(tj, Sj, Ej, IR,j, IU,j, Hj, Rj, Dj) = ϕα
R
IR,j − (γα

H
+ µα

H
)Hj,

F6(tj, Sj, Ej, IR,j, IU,j, Hj, Rj, Dj) = γα
R
IR,j + γα

U
IU,j + γα

H
Hj,

F7(tj, Sj, Ej, IR,j, IU,j, Hj, Rj, Dj) = µα
H
Hj,

and

H̃1,j =
τα

Γ(2 + α)

j∑
l=0

a
l,j
F1(tl, Sl, El, IR,l, IU,l, Hl, Rl, Dl),

H̃2,j =
τα

Γ(2 + α)

j∑
l=0

a
l,j
F2(tl, Sl, El, IR,l, IU,l, Hl, Rl, Dl),

H̃3,j =
τα

Γ(2 + α)

j∑
l=0

a
l,j
F3(tl, Sl, El, IR,l, IU,l, Hl, Rl, Dl),

H̃4,j =
τα

Γ(2 + α)

j∑
l=0

a
l,j
F4(tl, Sl, El, IR,l, IU,l, Hl, Rl, Dl),

H̃5,j =
τα

Γ(2 + α)

j∑
l=0

a
l,j
F5(tl, Sl, El, IR,l, IU,l, Hl, Rl, Dl),

H̃6,j =
τα

Γ(2 + α)

j∑
l=0

a
l,j
F6(tl, Sl, El, IR,l, IU,l, Hl, Rl, Dl),

H̃7,j =
τα

Γ(2 + α)

j∑
l=0

a
l,j
F7(tl, Sl, El, IR,l, IU,l, Hl, Rl, Dl)
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are the memory terms of the respective population variables and

a
l,j

=
τα

Γ(α + 2)



−(j − α)(j + 1)α + jα(2j − α− 1)− (j − 1)α+1, l = 0,

(j − l + 2)α+1 − 3(j − l + 1)α+1 + 3(j − l)α+1

−(j − l − 1)α+1, 1 ≤ l ≤ j − 1,

2α+1 − α− 3, l = j.

E0 κ1 β0 µ
H

α
States Value SE Value SE Value SE Value SE Value SE R0
CA 2356 159 0.343 0.359 0.874 0.607 0.0002 1.1e-9 0.787 0.020 2.16
TN 1867 59 0.400 1.6e-6 0.799 2.0e-7 0.003 8.7e-5 0.999 1.8e-5 2.54
TX 1000 46 0.404 0.054 0.869 0.267 0.006 7.2e-5 0.999 1.7e-5 2.76
WA 4999 34 0.514 0.216 0.980 0.127 5.4e-5 2.8e-5 0.790 0.016 2.70

Table 31: Fitted Parameters to some selected States in the US, where SE denotes

the standard error and CA, TN, TX and WA are acronyms for California, Tennessee,

Texas and Washington, respectively.

Integer-order model Fractional-order model
States MSE AIC BIC MSE AIC BIC
CA 1.112e+09 1573.08 1583.50 7.006e+08 1130.84 1143.86
WA 4.588e+10 1545.99 1556.42 3.203e+10 1513.11 1526.14

Table 32: Computational Comparison of the Fractional-order model with its cor-

responding integer-order model. MSE denotes mean squared error, AIC and BIC

denotes Akaike and Bayesian Information criterion.
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Figure 12: Data and model fits for some selected states in the US.

5.6 Conclusions
Four inverse problems for California, Tennessee, Texas and Washington were solved to
estimate some parameters of the model. As seen in fig. 12, the fits are reasonably good
even for a state like Tennessee and Texas whose current infected population begins
to flatten. Tables 31 show the fit parameter sets for each of the states and table
32 shows the comparison between the fractional-order model and its corresponding
integer-order model. We see that the transmission rate βα0 for the infected population
lies within 0.15–1.5 day−1, a range suggested by Li et al. [97], Read et al. [138], Shen
et al. [150], Eikenberry et al. [52]. The last column of table 31 shows the reproduction
number computed for the model. The epidemic is expected to continue indefinitely
if R0 > 1 as predicted for all states considered. This suggests that stricter measures
such as the use of masks in public places, social distancing, contact tracing and
vaccination need to be enforced in order to eradicate the epidemic.
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CHAPTER 6

The Compartmental Model with Contact Tracing Observables

6.1 Introduction
Infectious diseases are often spread via direct and indirect contacts such as person-
to-person contact, droplets spread, airborne transmissions, and so on. Several studies
[6], [58], [78], [128], [136], [156], [159], [187] have shown that the novel coronavirus
infection spread through these means. Some measures that include social distanc-
ing, lockdowns, self-isolation/quarantine, use of face-masks, contact tracing, amongst
others, have been enforced by authorities to reduce the spread of the virus. There-
fore, in any disease outbreak, contact tracing is an important tool for combating the
outbreak’s spread. Contact tracing (CT) is when persons who have come in contact
with a reported/isolated infected case are traced, tracked, and monitored. If they
become symptomatic, they are efficiently isolated to reduce transmissions. Previous
outbreaks of infectious diseases have been rapidly controlled with CT and isolation,
for example, the Ebola outbreak in West Africa in 2014, see [170]. Furthermore,
it is important to evaluate the efficacy of intervention strategies such as CT in any
disease control. Thus, the need to explicitly measure how CT can help mitigate the
transmission of coronavirus cannot be over-emphasized. A lot of studies have been
conducted on the efficacy of contact tracing in relation to some diseases in the past,
see [20], [65], [70], [89], [91], [149], [166].

Several mathematical models have been proposed for the dynamics of the novel
coronavirus, see for example [19], [52], [105], [127], [171], [188], [189], and several
models have incorporated CT using stochastic modeling approach [90] and networks
[82]. However, these studies did not include the CT’s effect on the reproduction
number of COVID-19 and the expression of this reproduction number in terms of ob-
servable quantities, a quick and efficient way of estimating the reproduction number.
In 2015, Browne et al. [20] developed a deterministic CT model for Ebola epidemics
which links tracing back to transmissions and incorporates disease traits and control
together with monitoring protocols. Eikenberry et al. [52] examined the potential of
face masks use by the general public to curtail the COVID-19 epidemic. Their findings
suggest that face mask should be adopted nation-wide and be implemented without
delay, even if most masks are homemade and of relatively low quality. Motivated
essentially by the works of [20] and [52], we develop a deterministic model to measure
CT’s efficacy in mitigating the spread of COVID-19. As noted in [20], explicitly in-
corporating CT with disease dynamics presents challenges, and CT’s population-level
effects are difficult to determine. Here, we propose a compartmental model which
incorporates the disease traits and monitoring protocols. We describe the impact on
the reproduction number R0 of COVID-19 and discuss the importance and relevance
of model’s parameters. We use the model given in the previous chapter, where we
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have divided the total infected population into reported and unreported infected.
This logic is necessary as reporting of cases is crucial in determining the efficacy of
CT.

6.2 Model Incorporating Contact Tracing
We incorporate CT into the model discussed in the previous chapter by linking the
disease model’s dynamics with actions of contact tracers such as monitoring and
tracking. This general modeling framework is similar to a variety of CT models
employed in [20], [65], [70]. At first, we describe CT’s four step for COVID-19 as
described by the Center for Disease Control (CDC) [31]. The Public health officer
tries to identify contacts (contact investigation) by working with infected patients to
help recall people they’ve been in contact with while being infectious. The second step
(contact tracing) involves notifying and tracing of recorded contacts of the patient.
Next (contact support), the officer informs and educates the contacts on the risk
and dangers of being exposed. They also provide support on the next line of action
for the contacts. If a contact is already showing symptoms, the tracers will call an
ambulance to remove/isolate the contact. Lastly (contact self-quarantine), contacts
are encouraged to quarantine for a minimum of 14 days in case they also become ill.
To model the described process, we further make the following assumptions:

(a) Contact tracing can only be triggered by a reported or hospitalized case;

(b) If a traced contact is tracked being infectious, they are immediately isolated;
otherwise they are monitored for symptoms and possible isolation if symptoms
develop;

(c) We introduce parameters ρ1 and ρ2 that determine the probability or fraction
of first or higher-order traced contacts who will be incubating and infectious,
respectively, when tracked. We simplify the model by assuming that ρ1 = ρ2 =
ρ.

Furthermore, we introduce a parameter βM such that 0 ≤ βM ≤ β0 to control the
efficacy of the monitoring policy of contact tracers and health officers and ε to denote
the fraction of reported cases that will be traced. With these new parameters and
assumptions, we have the following system of differential equations and whose schema
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is given in fig. 13:

0Dαt S(t) = −β(t)
S

N
(IR + IU)− β(t)

SIT
N
− βαM

SIM
N

0Dαt E(t) = β(t)
S

N
IU + (1− ε)β(t)

S

N
IR + (1− ε)β(t)

SIT
N

+ (1− ε)βαM
SIM
N
− σαE

0Dαt EIC(t) = ρ ε

(
β(t)

S

N
IR + β(t)

SIT
N

+ βαM
SIM
N

)
− σαEIC

0Dαt EIF (t) = (1− ρ)ε

(
β(t)

S

N
IR + β(t)

SIT
N

+ βαM
SIM
N

)
− σαEIF

0Dαt IR(t) = ησαE − (γα
R

+ ϕα
R

)IR

0Dαt IU(t) = (1− η)σαE − γα
U
IU

0Dαt IM(t) = σαEIC − γαM IM

0Dαt IT (t) = σαEIF − (γα
T

+ ϕα
T
)IT

0Dαt H(t) = ϕα
R
IR + ϕα

T
IT − (γα

H
+ µα

H
)H

0Dαt R(t) = γα
R
IR + γα

U
IU + γα

M
IM + γα

T
IT + γα

H
H

0Dαt C1(t) = σαE

0Dαt C2(t) = σαEIC

0Dαt C3(t) = σαEIF

0Dαt D(t) = µα
H
H,

(6.59)

where IR and IU are the number of reported and unreported individuals, respectively.
EIC and EIF are exposed individuals who will be traced and tracked during the
incubation and infectious stage, respectively. IM are infectious individuals who have
been tracked while incubating and are being monitored. IT are infectious individuals
who are symptomatic when tracked and will be removed or isolated. The last four
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Figure 13: Mechanistic Model of Contact Tracing: Compartments dividing transmis-

sions into untraced (who will either be reported or unreported) and traced who will

either be incubating or infectious when tracked.

equations in (6.59) are used to estimate the cumulative total cases (both unreported
and reported cases whose contacts are not being traced), cumulative cases of traced
persons who will be tracked while incubating, cumulative cases of traced persons who
are infectious when tracked and the resulting cumulative deaths from the impact of
CT.

6.2.1 Effective Reproduction Number of Model with CT

In a similar manner to the discussions in Section 5.3.1, the matrix F of new infections
and V of transfer terms are given by

F =



0 0 0 (1− ε)β(t) β(t) (1− ε)βα
M

ε β(t)
0 0 0 ρ ε β(t) 0 ρ ε βα

M
ρ ε β(t)

0 0 0 (1− ρ)ε β(t) 0 (1− ρ)ε βα
M

(1− ρ)ε β(t)
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,
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V =



σα 0 0 0 0 0 0
0 σα 0 0 0 0 0
0 0 σα 0 0 0 0
−ησα 0 0 γα

R
+ ϕα

R
0 0 0

−(1− η)σα 0 0 0 γα
U

0 0
0 −σα 0 0 0 γα

M
0

0 0 −σα 0 0 0 (γα
T

+ ϕα
T
)


.

The effective reproduction number cannot be written explicitly here. However, the
given matrices are used to obtain the reproduction numbers for each of the special
cases considered in the following sections.

6.2.2 Perfect Monitoring and Tracking (Imperfect Reporting)

In this case, we assume that the tracked and monitored contacts do not cause sec-
ondary infections, in which case βM = 0 and that all traced contacts will be tracked
while incubating, that is, ρ = 1. Thus, we obtain the system of time-fractional differ-
ential equations

0Dαt S(t) = −β(t)
S

N
(IR + IU)

0Dαt E(t) = β(t)
S

N
IU + (1− ε)β(t)

S

N
IR − σαE

0Dαt EIC(t) = εβ(t)
S

N
IR − σαEIC

0Dαt IR(t) = ησαE − (γα
R

+ ϕα
R

)IR

0Dαt IU(t) = (1− η)σαE − γα
U
IU

0Dαt IM(t) = σαEIC − γαM IM

0Dαt H(t) = ϕα
R
IR − (γα

H
+ µα

H
)H

0Dαt R(t) = γα
R
IR + γα

U
IU + γα

M
IM + γα

H
H

0Dαt D(t) = µα
H
H.

(6.60)

The effective reproduction number (where we have used the maximum value for
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β(t)) Rc is given as

Rc = R̃0

[
η

γα
U

γα
R

+ ϕα
R

(1− ε) + (1− η)

]
,

where R̃0 = βα0 /γ
α
U
is the basic reproduction number of the initial model (5.49) (no

contact tracing or hospitalization of cases). Thus, the contact tracing effort required
to ensure that the effective reproduction number is below one is:

Rc < 1⇔ η

[
1−

γα
U

γα
R

+ ϕα
R

(1− ε)
]
> 1− 1

R̃0

.

In the special case where we have high hospitalization rate and low recovery rates
(see Table 30) such that γα

U
= γα

R
= ϕα

R
, then

0.5η (1 + ε) >

(
1− 1

R̃0

)
,

where 0.5η (1 + ε) is the critical proportion of the total cases which must be traced in
order for Rc < 1. Another special case is when we have low hospitalization rate and
high recovery rates such that γα

U
= γα

R
+ ϕα

R
, then

η ε >

(
1− 1

R̃0

)
.

This indicates that a larger proportion of reported cases will be traced in the former
(special) case with high hospitalization and low recovery rates than the latter one
with low hospitalization and high recovery rates. Now, let’s rewrite ε as

ε =
Number of traced contacts per reported cases

Total number of contacts reported
=
`

n
,

and let β(t) = p c(t), where p is the probability of transmission per contact and c(t)
is the contact rate. For an untraced reported case,

n = c(t)

(
1

γα
R

+
1

ϕα
R

)
= β(t)

(γα
R

+ ϕα
R

)

p γα
R
ϕα
R

.

Let κ be the average number of secondary infected traced contacts identified per
untraced reported case, then

κ := p` = ε β(t)
γα
R

+ ϕα
R

γα
R
ϕα
R

. (6.61)
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Also, we define the parameter s as the fraction of reported cases which are traced,
that is

s =
ε
(

1
γα
R

+ 1
ϕα
R

)
ε
(

1
γα
R

+ 1
ϕα
R

)
+ η(1− ε)

(
1
γα
R

+ 1
ϕα
R

)
+ (1− η)/γα

U

=
ε

ε+ η(1− ε) + (1− η)
γα
R
ϕα
R

γα
U

(γα
R

+ϕα
R

)

.

(6.62)

Noting the formulas (6.61) and (6.62) for κ and s, respectively, we have

Rc = R̃0

[
η

γα
U

γα
R

+ ϕα
R

(1− ε) + (1− η)

]
< R̃0

[
η(1− ε)γα

U

(
1

γα
R

+
1

ϕα
R

)
+ (1− η)

]
= R̃0

γα
U

(
γα
R

+ ϕα
R

)
γα
R
ϕα
R

[
η(1− ε) + (1− η)

γα
R
ϕα
R

γα
U

(
γα
R

+ ϕα
R

)] .
Rc < κ

(
1− s
s

)
= R∗c ,

where R∗c is the product of the average number of secondary infected traced contacts
per untraced reported case and the odds that a reported case is not a traced contact.
For 100% reporting, s = κ/(κ+m) which implies that a reported case causes κ+m
secondary infections where κ (or m) of these cases are traced (or untraced). Thus,
R∗c = m which is the fraction of secondary infected contacts to be traced that are not
yet tracked.

6.2.3 Perfect Reporting and Tracking (Imperfect Monitoring)

Here, we consider the case where each traced contact is tracked during the incubation
stage and all infected individuals are reported. This implies that η = ρ = 1. Thus,
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we have the system of time-fractional differential equations

0Dαt S(t) = −β(t)
SIR
N
− βαM

SIM
N

0Dαt E(t) = (1− ε)β(t)
SIR
N

+ (1− ε)βαM
SIM
N
− σαE

0Dαt EIC(t) = ε

(
β(t)

SIR
N

+ βαM
SIM
N

)
− σαEIC

0Dαt IR(t) = σαE − (γα
R

+ ϕα
R

)IR

0Dαt IM(t) = σαEIC − γαM IM

0Dαt H(t) = ϕα
R
IR − (γα

H
+ µα

H
)H

0Dαt R(t) = γα
R
IR + γα

M
IM + γα

H
H

0Dαt D(t) = µα
H
H.

(6.63)

The reproduction number in the absence of CT is given as R̃0 = βα0 /(γ
α
R

+ ϕα
R

). In
a similar manner, the reproduction number of contact traced (monitored) person is
RM = βα

M
/γα

M
. Then θ1 = RM/R̃0 is the reduction in secondary cases of a traced

(monitored) person compared to an untraced person. Thus Rc = (1 − ε)R̃0 + εRM

and the proportion of cases to be traced so that Rc is below one is

ε > (1− θ1)−1

(
1− 1

R̃0

)
.

Using CT observables, we describe Rc by defining κ = ε R̃0 and κ
M

= εRM as the
average number of traced infected secondary cases per primary reported untraced and
traced infected, respectively, with s given as s = ε, then

Rc = κ

(
1− s
s

)
+ κ

M
.

6.2.4 Perfect Reporting and Monitoring (Imperfect Tracking)

Lastly, we consider perfect reporting and monitoring with secondary traced individual
during the incubation stage (or infectious stage) with probability ρ (or (1− ρ)). This
implies that βM = 0 and η = 1. Thus, we obtain the system of time-fractional
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differential equations

0Dαt S(t) = −β(t)
SIR
N
− β(t)

SIT
N

0Dαt E(t) = (1− ε)β(t)
SIR
N

+ (1− ε)β(t)
SIT
N
− σαE

0Dαt EIC(t) = ρ ε

(
β(t)

S

N
IR + β(t)

SIT
N

)
− σαEIC

0Dαt EIF (t) = (1− ρ)ε

(
β(t)

S

N
IR + β(t)

SIT
N

)
− σαEIF

0Dαt IR(t) = σαE − (γα
R

+ ϕα
R

)IR

0Dαt IM(t) = σαEIC − γαM IM

0Dαt IT (t) = σαEIF − (γα
T

+ ϕα
T
)IT

0Dαt H(t) = ϕα
R
IR + ϕα

T
IT − (γα

H
+ µα

H
)H

0Dαt R(t) = γα
R
IR + γα

M
IM + γα

T
IT + γα

H
H

0Dαt D(t) = µα
H
H.

(6.64)

The reproduction number in the absence of CT is R̃0 = β(t)/(γα
R

+ ϕαR) and the
reproduction number of contact traced individual who are incubating or infectious
when tracked is RT = β(t)(1 − ρ)/(γα

T
+ ϕα

T
). Thus, θ2 = RT/R̃0 is the reduction

in secondary cases of a traced individual (who will be infectious or incubating when
tracked) compared to an untraced reported case. Thus, the reproduction number Rc

reduces to Rc = (1 − ε)R̃0 + εRT . As in the previous cases, the critical proportion
of total cases which is to be traced for Rc < 1 is

ε > (1− θ2)−1

(
1− 1

R̃0

)
.

To describe the reproduction number in terms of CT observables, we let κ
T

= εRT

be the average number of traced infected secondary cases per primary reported traced
infected with s = ε, then

Rc = κ

(
1− s
s

)
+ κ

T
.
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6.3 Simulation Experiments and Results
Here, we perform some simulation experiments to show the efficacy of CT. In partic-
ular, we compare the effects of the different scenarios such as reporting, tracking and
monitoring.

6.3.1 CT in Simulated Model with Perfect Tracking and Monitoring

We note that CT will have approximately same effect on the dynamics of the model
for the different states. Thus, we consider results for Texas as a case study in the
following sections.

6.3.1.1 Immediate CT Adoption with Perfect Tracking and Monitoring
We run the simulated model with βM = 0 and ρ = 1 for around 20 months under
stable conditions while studying the effect of the number of traced reported cases on
the number of infected, hospitalized and dead. Fig. 14 shows that the total mortality
(and infected and hospitalized) increases with no contact traced individual (ε = 0)
and decreases with increased number of traced reported cases. Furthermore, we
simulate the model with several values in ε × η, η, ε ∈ [0, 1] to observe the effect
of reporting and tracing on the model. The outcome of interest is total mortality,
peak hospitalization and peak infected which are normalized against their respective
maximum and the results are presented in Fig. 15. The results in this figure show
that while high reporting rate is crucial for mitigating the spread of the epidemic, the
percentage of traced reported cases have a more substantial effect on the spread. Using
the formula given in eqn. 6.62, we estimate the number of reported cases which will be
traced. The results are presented in fig. 16. A contour plot of the reproduction number
Rc as a function of fraction of the infected population reported, and proportion of
exposed individuals that is traced is shown in fig. 17. The figure shows that if at least
60% contacts of reported cases (with perfect reporting) are traced or at least 70% of
total cases are reported where all their contacts are traced; then disease elimination
is feasible.
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Figure 14: Current infected, hospitalized and total mortality with varying fraction of

traced reported cases in a perfect tracking and monitoring case.

Figure 15: Relative peak infected, hospitalizations and total mortality simulated

epidemics under different reporting and tracing levels.

Figure 16: Estimated number of reported cases traced.
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Figure 17: Effect of CT. The first column shows profiles of the control reproduction

number as a function of proportion of reported cases (η). The second column shows

contour plots of the control of reproduction number as a function of proportion of

reported cases (η) and traced individuals (ε).

6.3.1.2 CT Intervention after delay We run the simulated CT epidemics by
assuming that CT was only introduced after some discrete time delay (50, 100, 150
days). The fraction of reported cases traced was fixed at 50%. We observe, in fig.
18, that the intervention of CT reduces the number of infected, hospitalization and
mortality even with a late intervention time (150 days).

Figure 18: CT Intervention after some discrete time delay.

6.3.1.3 Perfect Reporting and Tracking We run the simulated CT model with
ρ = η = 1 where CT was immediately introduced. The fraction of reported cases
traced was fixed at 50%. We examine the effect of monitoring policy on the number
of infected, hospitalizations, and mortality. Fig. 19 shows that a 50% effective moni-
toring policy reduces hospitalizations and total mortality to less than a quarter of its
value. Furthermore, we run several simulations with values in ε× βM , ε, βM ∈ [0, 1],
and the results are shown in fig. 20. Similar to previous contour plots, the outcome



124

of interests are relative peak hospitalization and total mortality. We observe that the
results are quite surprising. The peak hospitalizations and cumulative mortality oc-
cur when βM ≈ β0 and the fraction of traced reported cases is around 20-80%, where
we would have expected this to be around 0-20%. This shows that the monitoring
policy has a more significant effect in reducing the peak values than the fraction of
traced reported cases. A contour plot of the reproduction number Rc as a function of
the monitoring efficacy and proportion of exposed individuals that is traced is shown
in fig. 21. The figure shows that the disease will die out if traced individuals are
being monitored so that they are at least one-third as infectious as an unmonitored
or untraced infected case with all contacts of reported cases being traced or with at
least 60% of reported cases being traced with a perfect monitoring policy.

Figure 19: Efficiency of monitoring policy in CT. The βM are selected to indicate

0%, 50% and 100% (corresponding to βM = β0, β0/2 and 0, respectively) effective

monitoring policy.

Figure 20: Relative peak infected, hospitalizations and total mortality of simulated

epidemics under different monitoring conditions and fraction of traced reported cases.
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Figure 21: Effect of CT. The first column shows profiles of the reproduction number

as a function of monitoring efficacy (βM). The second column shows contour plots

of reproduction number as a function of monitoring efficacy (βM) and proportion of

traced individuals (ε).

6.3.1.4 Perfect Reporting and Monitoring In this case, we consider the nu-
merical experiment where we assume that every infected case is reported (η = 1) and
tracked contacts of reported cases are effectively monitored (βM = 0) so that they
do not cause secondary infections. We run the simulated CT model under constant
conditions to explore the effect of ρ (the fraction or probability that a traced reported
case is incubating when tracked) on peak hospitalization and mortality. Unsurpris-
ingly, we see that the higher the fraction of tracked contacts who are incubating the
lower the number of hospitalizations and deaths. These results are evident in figures
22–24.

Figure 22: Effects of tracking contacts of reported cases when incubating or being

infectious. The ρ values are selected to show 0%, 40%, 80% and 100% of traced

reported cases are incubating when tracked. Perfect tracking implies ρ = 1.
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Figure 23: Relative peak infected, hospitalizations and total mortality of simulated

epidemics under different monitoring conditions and fraction of traced reported cases.

Figure 24: Effect of CT. The first column shows profiles of the control reproduction

number as a function of tracking efficacy (ρ). The second column shows contour

plots of the control of reproduction number as a function of tracking efficacy (ρ) and

proportion of traced individuals (ε).

6.4 Discussions and Conclusions
We study the efficacy of contact tracing on the spread of COVID-19. We partic-
ularly consider exceptional cases where we have perfect tracking and monitoring,
perfect reporting and tracking, and perfect reporting and monitoring. We developed
a time-fractional order differential equation model of the contact tracing process in
the COVID-19 outbreak. Our deterministic model links contact tracers’ actions such
as monitoring and tracking to the number of reported cases traced. Our framework
separates the infected population into unreported and reported, and further splitting
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the reported cases into fractions whose contacts will be traced. Additionally, we in-
corporate the effect of tracking by considering the probability that a traced contact
will be incubating (or infectious) when tracked. This inherent structure in the model
captures the dynamics of contact tracing and enables us to express the reproduction
number in terms of observable quantities. In particular, under the assumption that
there are perfect tracking and monitoring, we gave an upper bound for the effective re-
production number as Rc < κ(1−s)/s. κ is the average number of secondary infected
individuals traced per reported untraced case, and (1−s)/s is the odds that a reported
case is not a traced contact. In the case of perfect tracking with either perfect moni-
toring or perfect reporting, we obtain the result Rc = κ(1− s)/s + κ

M
, where κ

M
is

the average number of secondary infected individuals per reported traced case. With
these observable quantities, these formulas can provide a quick and straightforward
estimate of the reproduction number in the population. Furthermore, we estimated
the proportion of contacts that need be traced to ensure that the reproduction num-
ber is below one. We would have loved to provide daily or weekly estimates of Rc

from the formulas (above) involving observable quantities, but we were unable to find
CT data for the COVID-19 epidemic. However, we relied on model simulations to
gain insights on CT’s impact with different special cases during different stages of
the epidemic. The decline of peak hospitalizations and total deaths in CT model
simulations compared to the preliminary model shows its efficacy.

With the simulated CT model, the efficiency of CT in mitigating the spread of
the virus and altering the epidemiological outcomes of peak hospitalizations and total
deaths is a nonlinear function of η, β

M
, ρ and ε (see fig. 15, 20 and 23). In the first

case (“perfect tracking and monitoring”) and considering that 35% of infected cases
are reported with 40%, 80%, and 100% of reported cases being traced, the peak hospi-
talizations are reduced by 47.9%, 81.2%, and 91.8%, respectively. The total mortality
is also seen to decline by 30.6%, 59.8%, and 75.7%. Furthermore, we investigated the
intervention of CT after some discrete-time delay. We observe that early intervention
of CT may significantly reduce peak hospitalizations and total mortality. Even with
a late intervention (after 150 days), we see that the total mortality is reduced by at
least 20.5%.

In the second case, we assumed a perfect reporting of infected cases and per-
fect tracking of contacts of reported cases. With 50% of these cases traced and the
monitoring policies being implemented at 50% and 100% efficiency, we observe the
reduction in total mortality (peak hospitalizations) by 64.2% and 99%. Furthermore,
the contour plots (see fig. 20) show that while both fraction of traced reported cases
and the monitoring strategy are crucial in mitigating the spread, the monitoring strat-
egy or policy is of substantial importance so that tracked reported individuals do not
cause secondary infections while being monitored. Similar results are observed in
the case of perfect reporting and monitoring. Finally, we showed the effects of the
proportion of traced cases (ε), monitoring efficacy (βM), and tracking efficacy (ρ) in
lowering the reproduction number so that the disease eventually dies out after some
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time.
In conclusion, our findings suggest that almost all US states should adopt (if not yet)
CT programs. In particular, our findings show that tracking a larger proportion of
traced contacts while incubating and perfect monitoring of tracked contacts so that
they do not cause secondary infections are very crucial for the impact of CT to be
seen.
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CHAPTER 7

Conclusions

This dissertation entails the numerical solution of fractional partial differential equa-
tions with time-dependent boundary conditions. We employ the Matrix Transfer
Technique (MTT) to discretize the space derivative. With the MTT, the fractional
PDEs with time-dependent boundary conditions results in a system of nonlinear
equations with a source term that constitutes the effects at the boundaries of the
problem. For the resulting nonlinear equations system, the discretization schemes
developed depend on whether the time-derivative order is an integer or non-integer
and are implemented in a predictor-corrector manner. We develop schemes based on
rational approximations to the exponential function with Gaussian quadrature points
for integer-order time-derivative. In particular, we develop schemes based on (1, 1)-,
(0, 2)- Padé and real distinct pole approximation to the exponential function. The
theoretical analysis of the derived schemes shows that the schemes are stable and
second-order convergent.

For non-integer or fractional-order time-derivative, we develop a scheme similar
to the Crank-Nicholson scheme for integer-order PDEs. The scheme developed con-
sists of a history term or memory term due to the nonlocality of fractional operators.
Error analysis of the scheme showed that the scheme’s order is 1 + α ≤ 2, where α is
the order of the time-derivative. This is in contrast with the Crank-Nicholson scheme
which is of order two. This contrast is due to the singular kernel in the definition of
the time-derivative. To increase the accuracy and order of convergence, we used a
time-graded mesh with more mesh points around the kernel’s singularity point. For
long time intervals, the implementation of the derived scheme can be time-consuming
due to the computation and re-computation of the history term at each time step.
We lessen this computational time by implementing three parallel versions of the al-
gorithms. We used the shared (OpenMP) and distributed (MPI) memory systems
are used to implement the schemes. A third version that uses both the shared and
distributed parallel versions is also discussed. We discuss the advantages of the par-
allel algorithms over the sequential ones. In particular, our experimentation shows
a lot more gain in execution time when the hybrid version of the algorithm is used.
While this version may be the best in terms of execution time, its speedup is not
close to linear, unlike the MPI and OpenMP versions. For practical purposes, we will
recommend the hybrid version with some level of optimization.

Lastly, we applied the numerical scheme on a compartmental model of COVID-
19. The model comprises a susceptible-exposed, infected, hospitalized, recovered, and
dead population. The model’s analysis is discussed, and numerical simulations show
that the model fits the dynamics of the epidemic quite well. Furthermore, we in-
corporate the contact tracing observables in the model. We discuss actions of contact
tracers such as reporting, tracking, and monitoring policies.
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