INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

UMI

A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

FUNDAMENTAL KINESIOLOGY MADE PLAIN AND SIMPLE:

A PROGRAMMED TEXT FOR STUDENTS

William Harold Holland

A dissertation submitted in

partial fulfillment of the requirements for the

degree of Doctor of Arts in the School of Education,

Department of Health, Physical Education, Recreation, and Safety

Middle Tennessee State University

May 1995

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9536078

Copyright 1995 by Holland, William Harold All rights reserved.

UMI Microform 9536078 Copyright 1995, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized copying under Title 17, United States Code.

UMI

300 North Zeeb Road Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

FUNDAMENTAL KINESIOLOGY MADE PLAIN AND SIMPLE:

A PROGRAMMED TEXT FOR STUDENTS

APPROVED:

Graduate Committee:

Major Professor ------

Martha N. Whaley Committee Member

Jamor

Committee Member

Martha N. Whalay Head of the Department of Health, Physical Education, Recreation and

Safety

Dean of the Graduate School

Abstract FUNDAMENTAL KINESIOLOGY MADE PLAIN AND SIMPLE: A PROGRAMMED TEXT FOR STUDENTS William Harold Holland

Kinesiology, the science of human movement, is taught to give anyone basic understanding and concepts concerning how and why the human body moves as it does. Kinesiology is a foundation class for the college undergraduate or graduate student in any of several areas of study including sports medicine, nursing, physical therapy, coaching, physical education, safety, fitness and wellness, aerobics, sports training, risk management, or any of the lifetime sports. However, students often have little or no background in science and even more frequently have difficulty in identifying essential concepts and understandings particularly when confronted with a verbose, technical textbook that is very intimidating. This programmed text is one solution. It is designed to enable the student to build a foundation of knowledge, one step at a time, while feeling confident that upon completion of the text, the more important concepts, essential facts, understanding, and vocabulary will have been mastered. Application of concepts and principles of anatomy, physiology, and the mechanics of human activity are incorporated. Topics covered include beginnings of kinesiology, joints, muscles, muscular action, machines of the body, stability and motion, force and work, factors of stability, and classification of

William Harold Holland

activities. Upon completion of the text, students should have an understanding of the anatomic background essential for understanding human movement, should understand the fundamentals of mechanics as they apply to movement analysis, and should understand kinesiologic analysis of human movements.

© 1995

William Harold Holland

ALL RIGHTS RESERVED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

Because of the high regard I place on friendship, I would first like to thank five friends for never doubting my abilities and for their continued support. Thanks go to Jackie, to Wayne, to Jerry and Etoile, and to my very best friend, "Mama" to me, my wife Judith to most. Thanks go to my graduate committee for their support, understanding and guidance: my major professor, Dr. Jon L. MacBeth; my second reader and Department Chair, Dr. Molly Whaley; and, from the Department of Higher Education, Dr. Bob Womack. I thank you so much for everything you have done. Thanks go to my illustrator, Royce DeGrie, for the excellent job he did in meeting my requirements for the drawings. Thanks go to my typist Judy for completing my work on time and assisting me in too many ways to mention. A special thanks goes to those who doubted my commitment and abilities for the tremendous inner strength their doubts gave me.

iii

TABLE OF CONTENTS

Chapter Pa	∋ge
LIST OF FIGURES	vii
LIST OF APPENDICES	viii
INTRODUCTION	ix
PREFACE	xiv xiv
CHAPTER 1	. 1
Introduction	1
Kinesiology	2
Reference Points	8
Planes	17
Glossary	28
CHAPTER 2	31
	31

	Joints	2
	Classification of Movable Joints 4	0
	Classification of Nonmovable Joints	7
	Glossary	1
СНАР	TER 3	2
	Introduction	2
	The Study of Muscles	3
	Striated or Skeletal Muscles	6
	Classification of Skeletal Muscles	4
	Movement of Muscles	9
	Superficial Striated Muscle Worksheets	В
	Glossary	1
CHAP.	TER 4	1
	Introduction	1
	Classes of Skeletal Muscles	5
	Newton's Laws of Motion	3
	Simple Machines of the Body	2
	Types of Movement)
	Glossary	5

CHAPTER 5
Introduction
Equilibrium, Balance, and Stability
Factors of Stability
Modes of Body Support
Categories of Activities
Glossary
APPENDICES
GLOSSARY
REFERENCES

•

LIST OF FIGURES

٠

Fig	Figure Page		
1.	Kinesiology and its Related Sciences4		
2.	Development of a Principle		
З.	Primary Planes in the Body 18		
4.	Primary Planes in Kinesiology 21		
5.	Primary Planes and Axes in Kinesiology		
6.	Primary Planes in Kinesiology		
7.	Primary Planes and Axes in Kinesiology 27		
8.	Primary Planes, Axes, and Actions in Kinesiology		
9.	Sub-classes of Diarthrodial Joints by Name and Example of Location 42		
10.	Joint Sub-Classifications with Number of Axes, Location, and Movement 45		
11.	Sub-classes of Synarthrodial Joints by Name and Example of Location 49		
12.	Student Worksheet on the Human Skeleton, Front and Back Views 50		
13.	Muscle Types, Locations, and Types of Action		
14.	Diagram of the Line of Pull in a Contracting Muscle		
15.	Diagram of the 3" to 9" Amplitude of a Six-Inch Muscle		
16.	Classifications of Skeletal Muscles		
17.	Anterior View of Superficial Striated Muscles		
18.	Posterior View of Superficial Striated Muscles		
19.	Diagram of Classes of Levers		

vii

LIST OF APPENDICES

AF	PPENDIX A	
	Kinesiology Projects	132
AF	PPENDIX B	
	Bones of the Adult Human Body	134
AF	PPENDIX C	
	Functions of the Skeleton	135

···

INTRODUCTION

Kinesiology, the science of human movement, is taught to give basic understanding and concepts concerning how and why the human body moves as it does. Kinesiology is a foundation class for the college undergraduate or graduate student in any of several areas of interest including sports medicine, nursing, physical therapy, coaching, physical education, safety, fitness, risk management, aerobics, sports training, or any of the lifetime sports. The need for knowledge of kinesiology is important to an increasing number of professions. Current trends also suggest the subject of kinesiology will be increasingly beneficial for many professions. Educators would do well to consider major trends for the future in preparing their kinesiology classes.

John Naisbitt (1982), author of the bestseller <u>Megatrends</u>, identified ten megatrends which included the population shift from North to South and to specific areas such as the sun belt, the importance of the computer in office and home, decentralization of institutions, and increased diversity among groups, institutions, and people. Cetron and O'Toole (1982) made specific forecasts of, among others, a 32-hour work week and then a 25-hour work week, an increase in number of older people, increased use of computers, increases in life-spans and increases in number of divorces, free universal

ix

day-care, and welfare subsidies only for the disabled and handicapped. Templin (1987), in compiling demographics from several sources, noted the percentage of traditional nuclear families will continue to decline, more people are working, more children live with just one parent because of the high divorce rates, 25 percent of children are 'latchkey' ones, and the average age of Americans is increasing. Even in the so-called popular press, similar trends are forecast. Writing for the April 1991 <u>Saturday Evening</u> <u>Post</u>, Judith Waldrop predicted increased diversity of population, nontraditional definitions of family, more people working in smaller businesses or from home or with flexible time, more older people, more workers with more leisure time, the increased importance of health and of leisure time, and the continuation of the population shift from rural or small town areas to urban metropolitan areas.

Several of these trends have special significance for educators. First, the total population will increase and average ages will increase as well as the percentage of elderly. Along with this, there will be increased diversity of population, in part because of immigration. Next, more people will be working but the time spent working may be shorter. Employers will also use more part-time workers. Third, use of computers and high technology equipment will become more and more common. Advances in technology, communication methods, and computer applications will continue. Next,

Х

leisure activities will be of increasing importance. Also, health and fitness will be actively sought by more of the population. Sixth, more dollars will buy less. One implication of this is the likelihood that office and work areas will become smaller. Another implication is that students will have to wait longer to go to college or will have to go to school part-time in order to work. Another is that students will have a more difficult time paying for the costs of college. Seventh, the shifting from North to South and rural to urban will continue. Eighth, jobs related to manufacturing will continue to decline while jobs in service oriented or health-care related professions increase.

These trends are important to educators in planning a course or curriculum in kinesiology because they help answer the questions of who and where and help determine what and how. Educators will have more older students, more part-time students, more women students, and more students from varied backgrounds. More students will find it necessary to have a better background in the health sciences. Lifetime fitness and health skills or interests and leisure activities will also become increasingly important. Because of more leisure time, higher levels of stress and shrinking personal space, students will need lifetime sports, stress reduction, leisure activities, and fitness to maintain good mental health. Higher education will not be limited to the locale of the local university campus.

xi

Colleges will work with local schools to provide instruction in topics for leisure, entertainment, and academic interests. Colleges will also work with employers to bring training programs directly to the workplaces, perhaps even using video teleconferencing. Class scheduling will be changed to allow more classes at non-traditional school hours. Developing technology may allow classes to be held with students in their homes receiving broadcasts but able to interact with the instructor or other students.

Preparing students for the future should mean some changes in teaching methods as well. Educators need to move away from lecture dominated classes and make use of class discussion, projects, problem solving, group dynamics, data gathering and analysis, and other techniques that have been proven more effective. The professor droning away at the front of the room while students drowse will not prepare them for their future. Students need to be participants, not just an audience.

Considering these trends important to education and the probability of more accountability to the "customers" of higher education including students, governing bodies, state and federal governments, businesses, and taxpayers, a shift away from the traditional text in kinesiology is needed. Instructors already face increasingly diverse student groups. Students are easily intimidated by the typical kinesiology textbook which many compare

xii

to a medical school manual. Most traditional text books are too scientific and certainly contain too much material for the average student to comprehend in one semester.

The purpose of this programmed text is to enable students to work at their own pace while taking a classroom course in kinesiology. It prepares students in fundamental kinesiology. This programmed text is designed to give an undergraduate the essentials for a base in kinesiology on which to build. Possible uses include as an outline, a reference, a guideline, a lab guide, and a text. It may readily be used to review for tests including comprehensive exams in kinesiology. The text includes material that is practical and applicable, adding breadth and depth to a student's base of knowledge. Because the instructor is freed from identifying for students the important sections, concepts, and vocabulary in a traditional text, more classroom time can be devoted to examples, demonstrations, experiments, lab activities, analysis, and discussion. This rewards both students and instructors by making classes more interesting and meaningful. Students will complete the course with the knowledge base needed to go to more complex texts and comprehend them. Instructors will be pleased to see students have gained knowledge from being in the class.

xiii

PREFACE

How to Use This Text

Essential to the use of this text is understanding that each chapter is a building block or foundation for the next. Students should start with the first chapter, reading explanatory statements and learning information presented for each segment. Information is presented in boxes which contain three sections. Each top section contains the information being presented. The right side of the lower section contains a question with the lower left section containing the answer. The size and position of the question and answer sections allow the student to cover the answers when ready to attempt answering the question. When the materials are learned well enough that questions can be answered without looking at the answers, a student is ready to continue.

Frequent review sections, charts, diagrams, and student assignments and worksheets allow anyone using this programmed text to know and feel confident about the information learned before proceeding. It is easy for students to review from the start of the text each time to reinforce their knowledge base of information. Each chapter includes a glossary of key words with working definitions that are also easily understandable. A

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

master glossary is in the appendices. Some key words may also have a one word reference answer supplied or a simple phrase for association. These one word references and phrases provide students with additional learning aids. Another important feature, inclusion of student worksheets, allows flexibility for the student and the instructor because of design and placement of the worksheets. Instructors can vary the task for a worksheet or even use one worksheet for multiple tasks by providing additional copies.

As students establish the knowledge base of this programmed text, they can begin to follow an instructor's lecture with ease, fill in any necessary gaps, and expand on areas of interest. If used as designed, this programmed text may make keeping a classroom notebook for kinesiology obsolete. Although an instructor may choose to assign a project to verify that the student has developed a working and usable knowledge of fundamental kinesiology, few other materials would be necessary to complete the course.

CHAPTER 1

Introduction

Chapter 1 introduces the student to the history of kinesiology and its foundations, the basic reference points, and the initial vocabulary needed in kinesiology. Each additional chapter is designed to be a building block to be added to the previous chapter. This first chapter is the foundation for the rest because of the concepts and vocabulary.

.

Kinesiology

1. The term "kinesiology" is derived from Greek words: "kinesis" meaning
"motion" (from the verb "kinein" meaning "to move") and "-logy" for
"the study of" (from "logos" meaning "word"). Combining these root
words and applying kinesiology to human movement, kinesiology
becomes the scientific study of human movement.

TO MOVE

The Greek word "kinein" means _____

2. As in other sciences, kinesiology has a beginning that can be traced to the times of Aristotle, the Greek philosopher, who is considered by most instructors to be the "Father of Kinesiology."

TOTLE
TOTLE

_____ is considered the "Father

of Kinesiology."

2

3. To study kir	nesiology, it is essential that one understands certain	
concepts an	nd uses the same vocabulary to verify certain points. As i	n
the use of h	uman movement, there needs to be a way to identify	
movement.	Kinesiology is the scientific study of human movement.	
SCIENTIFIC STUDY	Kinesiology is the	of
	human movement.	

4. Kinesiology is a science supported by other main sciences. A one word reference definition for kinesiology would be movement.
 MOVEMENT ________ is a one word definition for kinesiology.

Class Notes:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. The five main sciences that support kinesiology can also be defined		
with a one word reference a	answer. These five sciences and their	
references are: Anatomy	structure, Biology-life,	
Physics—mechanics, Physio	logy-function, and Psychology-mind.	
Write in the correct one word reference definition under each science		
listed in the diagram below.		
LIFE	FUNCTION	
STRUCTURE	MIND	
MECHANICS	MOVEMENT	

Figure 1.

Kinesiology and its Related Sciences.

4

 In the sciences, a principle is a basic and comprehensive concept. A concept usually develops from an idea or notion gained from scientific evidence and/or philosophical ideas.

IDEA	A concept usually develops from an
NOTION	or

7. Some principles on which kinesiology is based are derived from the five	
basic sciences anatomy, biology, physiology, psychology, and phys	
SCIENTIFIC	The principles on which kinesiology is
EVIDENCE	based are derived from
	established in anatomy,
	biology, physiology, psychology, and
	physics.

8. Principles of kinesiology are derived from scientific evidence and/or	
philosophical ideas. Philos	sophical ideas are gained from insight,
experience, and understan	iding.
INSIGHT	Contributing to the development of
EXPERIENCE	philosophical ideas are,
UNDERSTANDING	, and

Class Notes:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

· · · · ·

Below is a diagram illustrating the concept of a principle.

Figure 2.

Development of a Principle.

Review Questions		
was the "Father of Kinesiology."		
Kinesiology is the o	f human movement.	
A one word reference answer for physiology is		
A concept usually develops from an or	. <u></u> ,	
Contributing to the development of philosophical i	deas are,	
, and		

Reference Points

9. Points of reference or star	ting points are nee	ded to analyze human
movement. There are thre	e starting position	s (standing positions) that
should be considered in ar	nalyzing kinesiologi	c movements.
THREE	There are	starting or standing
	positions accept	ted for points of reference.

A

10. The first of the standing	/starting positions is the fundamental
standing position. This	is an erect position that is relaxed and
comfortable for an indivi	dual. The second standing position is the
military position which is	s more formal or tense, like standing at
attention. The third star	nding position, the medical position, is also
called the anatomical po	sition.
1. FUNDAMENTAL	Name in order the three standing/starting
2. MILITARY	positions.
3. ANATOMICAL	1
	2
	3
	MM211-12

11.	The anatomical position	n is the main starting position accepted a	is a
point of reference for a kinesiologic analysis.			
ANATO	DMICAL POSITION	The usually the one depicted in textbooks.	is

12. The anatomical position	is composed of the following descriptive
characteristics:	
1. standing erect	
2. head and shoulders square	facing forward
3. arms to the side palms forw	vard (fingers together)
4. feet slightly apart and paral	lel (shoulder width)
5. little or no movement	
1. STANDING ERECT	List in order the five identifying
2. HEAD AND SHOULDERS	characteristics of the anatomical position.
SQUARE FACING FORWARD	1
3. ARMS TO THE SIDE, PALMS	2
FORWARD AND FINGERS	
TOGETHER	3.
4. FEET SLIGHTLY APART AND	·····
PARALLEL	Δ
5. LITTLE OR NO MOVEMENT	4
	5

Class Notes:

13. There are three rel	evant reference points associated with the
anatomical position	n. These are the center of gravity, the line of
gravity, and the m	id-line of the body.
1. CENTER OF GRAVITY	List in order three reference points for the
2. LINE OF GRAVITY	anatomical position.
3. MID-LINE OF THE BODY	1
	2
	3

14. The center of gravity is	one of the three basic reference points	
associated with the ana	tomical position. The center of gravity has	
five identifying characteristics and three points of location.		
CHARACTERISTICS	There are five identifying	
LOCATION	and three points of for the	
	center of gravity.	

Review

The three starting positions are fundamental, military, and anatomical. Starting positions may be called standing positions. The anatomical position is the reference starting position. Five characteristics that make up the anatomical position are: standing erect, head and shoulders square facing forward, arms to the side with palms forward and fingers together, feet slightly apart and parallel (shoulder width), little or no movement.

Class Notes:

15. To identify the center o	f gravity there are five characteristics.
These should be learned	in order. First, recognize that the center of
gravity is an imaginary (point. Second, it is the center of mass or
weight center of an obje	ect. Third, it is the most concentration of
weight in the object. Fo	ourth, it is the geometric center of an object.
Fifth, it is the balance p	oint.
1. IMAGINARY POINT	List in order the five identifying
2. CENTER OF MASS OR WEIGHT	characteristics of the center of gravity.
CENTER	1
3. MOST CONCENTRATION OF	2
WEIGHT	3
4. GEOMETRIC CENTER	4.
5. BALANCE POINT	Б
	υ

Class notes:

16. There are three key poir	nts in locating the center of gravity in the
human body. The cente	er of gravity is anterior to the sacrum, lower
in women than men, an	d is where all three cardinal planes intersect.
1. ANTERIOR TO THE SACRUM	List in order the three key points of
2. LOWER IN WOMEN THAN MEN	location of the center of gravity.
3. WHERE THE THREE CARDINAL	1
PLANES INTERSECT	2
	3

17. The line of gravity and the	ne mid-line of the body are both imaginary
vertical lines, but the line	e of gravity is internal while the mid-line of
the body is external.	
EXTERNAL	Of the two imaginary vertical lines
INTERNAL	associated with the anatomical position,
	the mid-line of the body is
	and the line of gravity is

14

- 18. The line of gravity is an imaginary internal vertical line that passes through the center of gravity through the base of support to the center of the earth and where both cardinal vertical planes intersect. The line of gravity is usually associated with balance.
- 1. IMAGINARY
 List in order five identifying characteristics

 2. INTERNAL
 of the line of gravity.

 3. VERTICAL
 1.

 4. PASSES THROUGH THE CENTER
 2.

 OF GRAVITY, THROUGH THE
 3.

 BASE OF SUPPORT, TO THE
 4.

CENTER OF THE EARTH
5. WHERE BOTH CARDINAL
VERTICAL PLANES INTERSECT
5.
5.
19. The third reference poin	t is the mid-line of the body. This is an		
imaginary external vertic	al line that divides the body or body parts		
into right and left section	ns. The mid-line of the body is movable.		
The left and right section	The left and right sections may or may not be equal.		
1. IMAGINARY	List in order the four identifying		
2. EXTERNAL	characteristics of the mid-line of the body.		
3. VERTICAL	1		
4. DIVIDES THE BODY OR BODY	2		
PARTS INTO LEFT AND RIGHT	3		
SECTIONS	4		

Class Notes:

Planes

20.	Planes of the body are used to correspond with movement, motion,
	and actions. A plane is a flat, imaginary surface. Human movement
	occurs in a plane. Planes are used to divide the body and body
	parts into identifiable sections.
FLAT	A plane is a imaginary
	surface.

21. In the study of kinesiolog	In the study of kinesiology, the names of three types of planes are	
sagittal, frontal, and tran	sverse. These planes of the body	
correspond to the three	dimensions of space.	
1. SAGITTAL	In kinesiology the primary three types of	
2. FRONTAL	planes are:	
3. TRANSVERSE	1	
	2	
	3	

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

,

Primary Planes in the Body.

18

22. Sagittal, frontal, and transverse planes bisect the body and are each perpendicular to the other two planes. Each sagittal, frontal, or transverse plane that passes through the center of gravity is also referred to as a cardinal plane. Cardinal planes divide the body in half.

CARDINAL A sagittal plane that also passes through the center of gravity is called a

_____ sagittal plane.

Review

Plane: A flat, imaginary surface.

Three types of planes are: sagittal, frontal, and transverse. These three planes correspond to the three dimensions of space.

Each plane that passes through the center of gravity is referred to as a cardinal plane. Cardinal planes divide the body in half.

23. The sagittal plane is a vertical plane that passes through the body anterior to posterior dividing it into right and left sections.

VERTICAL

The sagittal plane is a _____

plane.

24. The frontal plane is a vertical plane that passes through the body from side to side, dividing it into anterior and posterior sections.

VERTICAL

The frontal plane is the second _____

plane.

25. The transverse plane is a horizontal plane that passes through the body, dividing it into superior and inferior sections.

HORIZONTAL

The transverse plane is a _____

plane.

The chart below in Figure 4 is a building block concerning planes of the body. In the heading, "KM" refers to kinesiology and movement. As additional information is learned, this chart will be expanded.

КМ	DIRECTION	PLANES
1	VERTICAL	SAGITTAL
2	VERTICAL	FRONTAL
3	HORIZONTAL	TRANSVERSE

Figure 4.

Primary Planes in Kinesiology.

26.	important concept in kinesiology that will be a foundation for		
	further exploration of the topic of movement is:		
	Movement occurs in a plane and is always parallel to that		
	plane.		
PLANE	Movement occurs in a and is		
PARALI	EL to it.		

Review

Earlier in this chapter planes were defined and the three primary planes of the body were described. A plane is an imaginary flat surface. The basic planes are the sagittal, frontal, and transverse planes. The sagittal and frontal planes are both vertical planes, while the transverse plane is a horizontal plane. Movement occurs in a plane and is always parallel to that plane.

27.	There is a fourth plane o	f the body.	This is an oblique plane that
	lies tilted between the ot	her planes so	that movement is always
	parallel to a plane.		
OBLIQ	JE	An	plane lies tilted between
		the other th	ree planes.
Σ.			

28.	The movements that occur in the three basic planes each have a	
	corresponding axis. An a	axis is a fixed point or line around or about
	which a body revolves.	
A FIXE	D POINT OR LINE AROUND	Define axis.
OR AB	OUT WHICH A BODY	
REVOL	VES	

29. Each plane has a corres	ponding axis that is perpendicular to that
plane. Each axis, like th	e planes, has a name. A sagittal plane has
a frontal axis. A frontal	plane has a sagittal axis. A transverse
plane has a vertical axis.	
FRONTAL	A sagittal plane has a axis.
VERTICAL	A transverse plane has a
	axis.

23

. ...

.

30. An oblique plane has an oblique axis which is perpendicular to the plane.

OBLIQUE A

An oblique plane has an _____ axis.

31.	Building on the concept stated in 26, movement occurs in a plane
	and around or about an axis.
PLANE	Movement occurs in a
AXIS	and around or about an

		IN	AROUND
км	DIRECTION	PLANES	AXIS
1	VERTICAL	SAGITTAL	FRONTAL
2	VERTICAL	FRONTAL	SAGITTAL
3	HORIZONTAL	TRANSVERSE	VERTICAL

Figure 5.

Primary Planes and Axes in Kinesiology.

24

Review

A vertical sagittal plane has a perpendicular frontal axis while a vertical frontal plane has a perpendicular sagittal axis. A horizontal transverse plane has a perpendicular vertical axis. The vertical axis of a horizontal transverse plane is also perpendicular to the horizon. An oblique plane has an oblique axis.

32.	Movement may be broken down with other key words that lead to a
	more precise point. Motion is a part of movement and action is a
	part of motion. Action, therefore, would be a more precise part of
	movement.
ACTIO	Motion is part of movement and is
ΜΟΤΙΟ	N a more precise part of

33.	Movement in a plane is referred to as action. Each plane is
	associated with a certain type of action. Flexion and extension are
	the actions in a sagittal plane with a frontal axis. Abduction and
	adduction are the actions in a frontal plane with a sagittal axis.
	Horizontal rotating and twisting are the actions in a transverse plane
	with a vertical axis.

FLEXION	Actions in a sagittal plane with a frontal
EXTENSION	axis are and
ABDUCTION ADDUCTION	Actions in a frontal plane with a sagittal
	axis are and
HORIZONTAL	································
ROTATING	Actions in a transverse plane with a
TWISTING	vertical axis are
	and

Class notes:

КМ	DIRECTION	PLANES
1	VERTICAL	SAGITTAL
2	VERTICAL	FRONTAL
3	HORIZONTAL	TRANSVERSE

Figure 6.

Primary Planes in Kinesiology.

км	DIRECTION	PLANES	AXIS
1	VERTICAL	SAGITTAL	FRONTAL
2	VERTICAL	FRONTAL	SAGITTAL
3	HORIZONTAL	TRANSVERSE	VERTICAL

Figure 7.

Primary Planes and Axes in Kinesiology.

км	DIRECTION	PLANES	AXIS	ACTIONS
1	VERTICAL	SAGITTAL	FRONTAL	FLEXION EXTENSION
2	VERTICAL	FRONTAL	SAGITTAL	ABDUCTION - ADDUCTION
3	HORIZONTAL	TRANSVERSE	VERTICAL	HORIZONTAL TWISTING

Figure 8.

Primary Planes, Axes, and Actions in Kinesiology.

Glossary

Abduction	Away from the mid-line of the body.	
Adduction	Toward the mid-line of the body.	
Anatomical position	An erect standing position related to anatomy and	
	medicine; a position used for identifying points of	
	reference or locations. See page 10 for a detailed	
	description of the anatomical position.	
Anatomy	Structure; the structure of the human body and	
	not limited to the skeletal or muscular systems of	
	the body.	
Anterior	Front.	
Aristotle	A Greek philosopher from 384-322 B.C. who is	
	considered by most kinesiology instructors to be	
	the "Father of Kinesiology."	
Axis	A fixed point or line about or around which a body	
	revolves or rotates.	
Biology	Life; the science of life; the branch of knowledge	
	which is concerned with living organisms.	
Cardinal Plane	Any plane that passes through the center of	
	gravity.	
Center of gravity	The balance point of an object; where the weight	
	center of an object is located.	
Extension	Increase of an angle at a joint.	
Flexion	Decrease of an angle at a joint.	

Horizontal	Parallel to the horizon; on a level; flat line or	
	surface.	
Inferior	Lower or below; bottom.	
Joint	In reference to the skeleton, where two or more	
	bones come together or meet. Joints can be	
	classified as movable or nonmovable.	
Kinesiology	Movement; the scientific study of human	
	movement.	
Lateral	Away from the middle; outside.	
Line of gravity	An imaginary internal vertical line that passes	
	through the center of gravity and the base of	
	support.	
Medial	Toward the middle; relating to the middle.	
Mid-line of the body	An imaginary external vertical line which is used	
	as a reference line to divide the body or body parts	
	into left and right sections.	
Oblique plane	A plane that lies tilted between the three primary	
	planes associated with kinesiology: sagittal,	
	frontal, and transverse.	
Parallel	Lying evenly everywhere in the same direction, but	
	never meeting, however far extended.	
Perpendicular	ndicular At right angles to a given surface.	

29

.

Physics	Mechanics; the science which deals with the most	
	general and fundamental of such phenomena,	
	namely motion; the science of matter and motion.	
Physiology	Function; the science branch of biology that deals	
	with the study of functions of the organs, tissues	
	and cells during life.	
Plane	A flat imaginary surface.	
Plumb line	A line weighted with a plumb bob. It is used to	
	indicate true vertical directed to the center of	
	gravity of the earth.	
Posterior	Back.	
Psychology	Mind; the science which deals with the mind of	
	man or other organisms in any of its aspects.	
Right angle	The angle bounded by two radii that intercept a	
	quarter of a circle; one quarter of a round angle;	
	one half of a straight angle.	
Superior	Upper or above; top.	
Vertical	A line perpendicular to the horizon. A plumb line	
	is a true vertical line.	

CHAPTER 2

Introduction

In the human skeleton a joint is where two or more bones come together or make contact. This chapter is focused on joints and how joints are classified. Before proceeding a student needs a complete understanding and working knowledge of all the concepts, information, and materials previously covered. Knowledge gained there is essential to following the new information in this chapter. The student should also supplement Chapter 2 with first-hand study or review of a human skeleton to identify and concentrate on the formation of the bones at each type of joint. Joints

34.	From birth through adulthood, all bone ends in the human skeleton
	are either fused or protected. This prevents damage to the bone
	ends during movement.
FUSED	All bone ends are either or
PROTE	CTED from birth through
	adulthood.

35.	Earlier, kinesiology was defined as the scientific study of human
	movement. The study of bones is osteology, while the study of
	muscles is myology. The study of joints or articulations is
	arthrology.
OSTEO	LOGY is the study of bones while
MYOLC	DGY is the study of muscles.

٠

36. Arthrology is the study of joints. Visualizing the action of the joints during movement gives a clearer understanding of human motion.

ARTHROLOGY

The study of joints is _____.

37.	In arthrology a joint may be classified according to its structure and		
	the way the bones are se	eparated or united.	
STRUC	TURE	The	_ of the joint
		determines one type	of joint classification.

38.	The point where bones unite to form a joint is referred to as an	
	articulation. The surface	es which come together are called the
	articulating surfaces.	
ARTIC	JLATION	is the point where
		bones unite to form a joint.

39. A second way of classifying joints is whether there is a space or separation between the articulating surfaces of joints. The separation or space between articulating surfaces is called a cavity (articular cavity).

	CAVITY	Joints are also classified according to the
		presence or absence of a
		between the articulating surfaces of the
		joint.
ł		

40.). Joints can be classified as movable or nonmovable. This would	
	depend on the actions th	ne joint can make. Movable joints are
capable of a free range of action. Nonmovable joints		of action. Nonmovable joints are those
	capable of slight or no m	novement.
		A third type of classification of joints is
	JYADLE	Or

Review

Bone ends are always protected or fused.

Joints are where two or more bones come together.

Three ways to classify joints:

- 1. structure
- 2. presence or absence of an articular cavity
- 3. movable or nonmovable

41.	Each type of joint may be further subdivided according to the shape	
	and location.	
SHAPE LOCATI	When classifying joints, each type of joint non may be further subdivided by and	

Class Notes:

42. Arthur Steindler said the shape of a joint is the chief factor in determining its function (Wells, 1971).

According to Arthur Steindler, the chief

determining factor in determining a joint's

.

function is its _____

43.	The articulating surfaces form a pathway for movement where	
	bones join together or articulate.	
ARTIC	JLATING SURFACE	For a joint to move, the bones must have
		an

Class Notes:

SHAPE

44.	Pathways for each joint are determined by the shape of articulating
	surfaces or the type of tissues connecting or joining the bones.
SHAPE	The of the joint or its
TISSUE	s articulating surfaces and the types of
	determine the pathways of
	. each joint.

45. The articulating surfaces	The articulating surfaces or pathways are influenced by the	
ligaments, tendons, and	ligaments, tendons, and cartilage that surround the joint and serve	
as its "restraining factors	as its "restraining factors."	
1. LIGAMENTS	List in order the three restraining factors of	
2. TENDONS	joints.	
3. CARTILAGE	1	
	2	
	3	

46	6. The j	The jobs of the three restraining factors are:	
	1.	ligaments link bon	e to bone
	2.	tendons tie muscle to bone	
	3. cartilage cushions b		bone ends
1.	LINK BONE	TO BONE	Identify the jobs for each of the three
2. TIE MUSCLE TO BONE		E TO BONE	restraining factors.
3.	CUSHIONS	BONE ENDS	1. Ligaments
			2. Tendons
			3. Cartilage
	·····		

Review

In joint classification, each type of joint may be further subdivided by shape and location. The chief determining factor of a joint's function is its shape. For a joint to move, the bones must have an articulating surface. The shape of the joint or its articulating surfaces and the types of tissues determine the pathways of each joint. The ligaments, tendons, and cartilage that surround the joint serve as its restraining factors.

47. There are four factors re	There are four factors responsible for joint cohesion. These four		
factors of joint cohesion	factors of joint cohesion that help hold a joint together to allow		
movement are: joint liga	movement are: joint ligaments, fascia, muscle tension, and		
atmospheric pressure.			
1. JOINT LIGAMENTS	List in order the four factors of joint		
2. FASCIA	cohesion.		
3. MUSCLE TENSION	1		
4. ATMOSPHERIC PRESSURE	2		
	3		
	4		

48.	Fascia is a connective tissue that surrounds, supports, separates,	
	and binds muscle, bone,	skin, and other tissues.
CONINE		Fancia in a
CONNE	CTIVE 11350C	
		that supports, surrounds, and binds other
		tissues such as bones and muscles.
:		

39

Classification of Movable Joints

49.	Movable joints are referred to in kinesiology as diarthrosis or		or
	diarthrodial joints.		
DIARTHROSIS		Another name for movable joints	is
DIARTHRODIAL		or	joints.
			-

50.	A main factor in defining a diarthrodial joint is the presence of an	
	articular cavity or separation.	
A JOIN	T THAT HAS AN ARTICULAR	Define a diarthrodial joint.
CAVITY	OR SEPARATION PRESENT	

Class notes:

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- 51. There are five characteristics associated with each diarthrodial joint. There is an articular cavity present that is surrounded by a capsule ligamentous. The capsule ligamentous is lined with a synovial membrane that secrets synovial fluid to lubricate the joint. Synovial fluid is stored in a bursa sac. The articular surfaces are smooth and lined with hyaline or fibrous cartilage.
- 1. ARTICULAR CAVITY PRESENT

2. SURROUNDED BY CAPSULE

List in order the five characteristics of a diarthrodial joint.

LIGAMENTOUS 1.____ **3. CAPSULE LINED WITH** 2._____ SYNOVIAL MEMBRANE WHICH SECRETS SYNOVIAL FLUID TO 3._____ LUBRICATE THE JOINT WITH SYNOVIAL FLUID STORED IN **BURSA SACS 4. ARTICULAR SURFACES** SMOOTH 5. ARTICULAR SURFACES LINED 4._____ WITH HYALINE OR FIBROUS 5._____ CARTILAGE

	NAME	EXAMPLE OF LOCATION
1.	IRREGULAR	CARPALS AND TARSALS
2.	HINGE	HUMERUS AND ULNA
3.	ΡΙνοτ	HUMERUS AND RADIUS
4.	CONDYLOID (TRUE WRIST)	RADIOCARPAL
5.	SADDLE	FIRST CARPOMETACARPAL
6.	BALL & SOCKET	SHOULDER OR HIP

<u>Figure 9</u>.

Sub-classes of Diarthrodial Joints by Name and Example of Location.

52.	2. Movable joints have an articular cavity or separation present to	
	allow movement.	
ARTICULAR CAVITY SEPARATION		The first determinant of whether a joint is movable or nonmovable is the presence of
		an or
		·

Review

A movable joint is also called a diarthrodial joint or diarthrosis. There are five characteristics or descriptive functions of movable joints or diarthrosis. These characteristics are:

- 1. Articular cavity present.
- 2. Surrounded by capsule ligamentous.
- Capsule lined with synovial membrane which secrets its fluid to lubricate the joint; synovial fluid is stored in bursa sacs.
- 4. Articular surfaces are smooth.
- 5. Articular surfaces are lined with hyaline or fibrous cartilage.

53.	Each joint or articulation ha	is degrees of freedom. These degrees of
	freedom are associated wit	h the number of axes the sub-classes of
	joints have. Irregular joints	have no axis and are called nonaxial.
	Both hinge and pivot have	one axis and are called uniaxial. Both
	condyloid and saddle have	two axes and are referred to as biaxial.
	A ball and socket joint has	three axes and is referred to as triaxial.
AXES	D	egrees of freedom relate to the number
UNIAX	KIAL of	a joint or articulation has.
BIAXIA	AL A	hinge joint is while a
	sa	ddle joint is

Class notes:

٠

	0	1		2	3
	NONAXIAL	UNIAXIAL		BIAXIAL	TRIAXIAL
	IRREGULAR	HINGE		CONDYLOID	BALL &
JOINT SUB-CLASS		PIVOT		SADDLE	SOCKET
	CARPAL	ELBOW		WRIST	HIP
		TROCHLEAR	CAPITULUM	RADIUS/ULNA	SHOULDER
LUCATION		& ULNA	& RADIUS	CARPALS	
	GLIDE	FLEX &	INWARD OR	FLEX & EXTEND	All
MOVEMENT		EXTEND	OUTWARD	AB & ADD	ROTATION
			ROTATION	CIRCUMDUCTION	
L					

Figure 10.

Joint Sub-Classifications with Number of Axes, Location, and Movement.

54.	Circumduction is defined as a movement with the stationary point
	on a line and the distal end moving in a circle forming a cone. This
	creates a combination of movements in all planes. Circumduction
	may be as obvious as rotating a rigid upper limb (arm) in a circle or
	as subtle as rotating the eye in a circle.

A STATIONARY POINT ON A LINE	Define circumduction.
WITH THE DISTAL END MOVING IN	
A CIRCLE FORMING A CONE. THIS	
CREATES A MOVEMENT IN ALL	
PLANES.	······································
· · · · · · · · · · · · · · · · · · ·	

Diagram an example of circumduction:

•

Classification of Nonmovable Joints

55.	Nonmovable joints are	referred to in kinesiology as synarthrosis or
	synarthrodial joints.	
SYNARTHROSIS		Another name for nonmovable joints is
SYNARTHRODIAL		or joints.

56.	A main factor in defining a synarthrodial joint is the absence of an		
	articular cavity or separation.		
A JOINT THAT HAS NO ARTICULAR CAVITY OR SEPARATION PRESENT.		Define a synarthrodial joint.	

Class notes:

- 57. There are three characteristics associated with synarthrodial joints. The surface of synarthrodial joints continues with cartilage or fibrous cartilage. Some synarthrodial joints are not a true joint, just a ligamentous connection. There is no capsule ligamentous, no synovial membrane or fluid, no bursa sac, and no articular surface.
- 1. JOINT SURFACE CONTINUES
 List in order the three characteristics of a

 WITH CARTILAGE OR FIBROUS
 synarthrodial joint.

 CARTILAGE
 1.
 - 2. JOINT MAY NOT BE A TRUE
 JOINT, JUST A LIGAMENTOUS
 CONNECTION

 3. NO CAPSULE LIGAMENTOUS,

NO SYNOVIAL MEMBRANE OR FLUID, NO BURSA SAC, AND NO ARTICULAR SURFACE

	NAME	EXAMPLE OF LOCATION
1.	CARTILAGINOUS	THE CARTILAGE CUSHION BETWEEN THE
		VERTEBRAE OF THE SPINE
2.	FIBROUS	THE SUTURES OF THE SKULL OR THE CONNECTING
		POINTS OF THE SIX BONES IN THE PELVIC GIRDLE
3.	LIGAMENTOUS	MID-UNION OF THE FOREARM BETWEEN THE ULNA
		AND RADIUS

Figure 11.

Sub-classes of Synarthrodial Joints by Name and Example of Location.

Review

Nonmovable joints are referred to as synarthrosis or synarthrodial joints. There is no articular cavity or separation in synarthrodial joints. Three characteristics of synarthrodial joints are:

- 1. Joint surface continues with cartilage or fibrous cartilage.
- 2. Joint may not be a true joint, just a ligamentous connection.
- No capsule ligamentous, no synovial membrane or fluid, no bursa sac, and no articular surface.

Figure 12.

Student Worksheet on the Human Skeleton, Front and Back Views.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Glossary

Arthrology	Joints; the study of joints.
Cavity	A hollow space or hole.
Circumduction	A stationary point on a line with the distal end
	moving in a circle forming a cone. This is a
	combination of movements in all planes.
Condyle	A rounded protuberance at the end of a bone
	forming an articulation.
Diarthrosis	Movable joints.
Fascia	A connective tissue that surrounds, separates,
	supports, and binds muscle, skin, and other
	tissues.
Foramen	A hole in a bone for passage of vessels or nerves.
Fossa	A furrow or shallow depression.
Joint	Where two or more bones come together.
Myology	Muscles; the study of muscles.
Orifice	Entrance or outlet of any opening such as the
	mouth or the eye.
Osteology	Bone; the study of bones.
Synarthrosis	Nonmovable or slightly movable joints.
Tubercle	A small, rounded elevation or eminence on a bone.
CHAPTER 3

Introduction

Chapter 3 concerns the muscles of the body especially the striated or skeletal muscles that apply the force for body movement. The unique features of the striated muscles will be covered. Knowledge about how muscles work is essential to learning how muscles move the body.

.

The Study of Muscles

59.	Osteology is the study of bo	ones. Bones are	essential for human
	movement.		
OSTEO	ILOGY		is the study of bones.

Review

Myology is the study of muscles. Osteology is the study of bones.

Kinesiology is the scientific study of human movement. Arthrology is the study of joints.

60.	In osteology, there are three primary purposes of the human	
	skeleton that are studied	for kinesiology: support, movement, and
	protection. Support is p	rovided by the framework which also
	furnishes soft tissue sup	port and points of attachment for muscles.
	Movement occurs due to	movable joints and some bones serving as
	levers. The skeleton also	o protects vital organs and vessels.
1. SU	PPORT	List in order the three functions of the
2. мо	VEMENT	skeleton studied for kinesiology.
3. PRC	DTECTION	1
		2
		3

Class Notes:

61. In the study of muscles,	, myology, there are three types of muscle
tissues in the body. Sm	nooth involuntary muscle is located around
orifices and organs of th	ne body. Cardiac muscle is also involuntary
and is usually referred to	o as the heart muscle because it is only
found in the heart. Stria	ated muscles are voluntary and are attached
directly to the skeleton.	Striated muscles are often called skeletal
muscles because of thei	r attachment to the skeleton.
1. SMOOTH - AROUND ORGANS	List in order the three types of muscle
AND ORIFICES	tissue and where each is located.
2. CARDIAC - THE HEART	1
3. STRIATED - ATTACHED TO THE	2

Review

3. _____

Myology is the study of muscles and osteology is the study of bones.

The skeleton provides support, movement, and protection.

1. 201 March 1990

SKELETON

Three types of muscle tissue in the body are smooth, cardiac, and striated.

Striated or Skeletal Muscles

62.	Kinesiology is more concerned with the striated muscles that apply	
	the force of human move	ment. Striated muscles are called skeletal
	muscles because they are	e attached directly to the skeleton. They
	are voluntary muscles.	
SKELET	TAL MUSCLES	The striated muscles are usually known as
		and provide
		the force needed to move the body.

MUSCLE TYPE	LOCATION	TYPE OF ACTION
ѕмоотн	ORGANS AND ORIFICES	INVOLUNTARY
CARDIAC	HEART	INVOLUNTARY
STRIATED/SKELETAL	ATTACHED TO SKELETON	VOLUNTARY

<u>Figure 13</u>.

Muscle Types, Locations, and Types of Action.

63.	Muscles apply force by contracting and pulling on bones. Force is		
the instigator of movement, a push or pull, or a tendency to disto		ent, a push or pull, or a tendency to distort.	
THE INSTIGATOR OF MOVEMENT, Define force.		Define force.	
DISTO	RT.		

64.	When muscle force is applied, work is not necessarily accomplished.		
	Work is the process of exerting a force which moves a resistance		
	through a distance. Heat is a by-product of work as it is in other		
	types of contractions.		
WORK	S THE PROCESS OF Define work.		
EXERTI	NG A FORCE WHICH MOVES		
A RESIS	STANCE THROUGH A		
DISTAN	CE. HEAT IS A BY-		
PRODU	CT OF WORK.		

Class notes:

Review

Force is the instigator of movement, a push/pull, or a tendency to distort. Work is the process of exerting force which moves a resistance through a distance. Heat is a by-product of work. Skeletal muscles are attached to the skeleton and apply force to accomplish work.

65.	Skeletal muscles have th	ree properties that are necessary for
	movement: extensibility	, elasticity, and contractility. Extensibility is
	the ability to be extended	d or stretched. Elasticity is the ability to be
	extended or twisted and	yet return to the original or resting length.
	Contractility, a feature u	nique to skeletal muscles, is the ability to
	contract or shorten to lea	ss than the original or resting length.
1. EX1	ENSIBILITY	List in order the three properties of
2 . ELA	STICITY	skeletal muscles.
3. cor	ITRACTILITY	1
		2
		3

66.	The three properties of s	skeletal muscles have three factors which	
	relate to applying force and generating movement. The unique		
	ability of muscles to con	tract and the placement of muscles'	
	attachments are importa	nt to the type and extent of movement. The	
	muscle's line of pull is di	rectly related to the direction of movement.	
1. UN	NIQUE ABILITY TO CONTRACT	List in order the three factors of how	
2 . PC	DINTS OF ATTACHMENT	skeletal muscles apply force and generate	
3. RE	LATIONSHIP OF THE LINE OF	movement.	
PU	ILL	1	
		2	
		3	

Review

Three properties of skeletal muscles are extensibility, elasticity, and contractility. Three factors of the three properties of skeletal muscles relate to applying force and generating movement: unique ability to contract, placement of attachments to skeleton, relationship of line of pull.

67.	A muscle contracts by the individual contraction of muscle fibers.
	This is often called the all or none law. This means that when a
	muscle fiber receives threshold or supra threshold stimuli, it will
	contract all the way or not at all.

GIVEN THRESHOLD OR SUPRA	Define the all or none law.
THRESHOLD STIMULI, A MUSCLE	
FIBER WILL CONTRACT ALL THE	
WAY OR NOT AT ALL	
	······································

68.	Muscle connections or attachments are where muscles join the	
	bones.	In kinesiology connections or attachments are known as
	origins ((the more stable end or more proximal end) and insertions
	(the mo	re movable end or more distal end).
ORIGIN	S	Muscle attachments in kinesiology are
INSERTIONS		referred to as and
		······································

69.	The line of pull is the direction of force a muscle produces. This is				
	caused by the shortening of a muscle along the pattern of the				
	muscle fibers toward the center of a muscle. This action is also				
	referred to as the action line.				
THE SH	IORTENING OF A MUSCLE	Define line of pull.			
ALONG	ALONG THE PATTERN OF MUSCLE				
FIBERS	FIBERS TOWARD THE CENTER OF				
THE M	USCLE, THE ACTION LINE				

.

			•	*				•	•		÷	1	•	1:
•		!:	:	1:	:	:		1	:	:	:		:	1:
:	•			1:	1:			•	1		ŀ			:
;		:						•	•	:		•		:
:		•	1:			: 🗸	T	1	:	:	×		•	:
•		÷	:	:	•	1:1		•	•	•	•			:
;	•	:		[;	:		1	•	•	•	:		•	:
•		:	:	ŀ		: 4	٨	:	ŀ	•	•	:		:
:		:			•	:1		:	:		•		:	:
:		•	•	:	•			•	×	•	•		•	1:
;		•	•	:				•	•		•	•	•	:
			•		5	3		•	:	•			:	:

MUSCLE FIBERS - |:|:|:| LINE OF PULL - A A VV

Figure 14.

Diagram of the Line of Pull in a Contracting Muscle.

70. Learning the origins and insertions of just the large muscles can take an extended period of time because it is not uncommon for origins and insertions to become reversed.

REVERSED It is not uncommon for origins and insertions of muscles to become

Review

Muscles contract by individual contraction of muscle fibers. The all or none law is used to describe how muscles contract: given threshold or supra threshold stimuli, a muscle fiber will contract all the way or not at all. Connections or attachments where muscles join the bones are known as origins and insertions. The line of pull (action line) is determined by the shortening of a muscle along the pattern of muscle fibers toward the center of the muscle and is the direction of force a muscle produces.

71. Muscles work within a r	ange. This range is the amplitude of a
muscle. Amplitude of a	muscle is determined by its ability to
extend or shorten up to	half the original or resting length. A muscle
with an original or restin	g length of six inches can extend to nine
inches or shorten to thre	e inches. The amplitude of this six-inch
muscle would therefore	be three to nine inches.
A MUSCLE CAN EXTEND OR	Give a statement that explains the
SHORTEN UP TO ONE-HALF THE	amplitude of a muscle.
ORIGINAL OR RESTING LENGTH.	

AMPLITUDE OF SIX-INCH MUSCLE

Figure 15.

Diagram of the 3" to 9" Amplitude of a Six-Inch Muscle.

Classification of Skeletal Muscles

72.	All skeletal muscles have a structural classification. There are six
	classifications, each with four parts. The four parts to a
	classification are scientific name, shape name, diagram, and
	example.
SIX	There are classifications of
FOUR	muscle structures and parts to
	each classification.

73.	73. The fusiform classification is for spindle shaped muscles		
2	example is the brachialis		
SPINDLE BRACHIALIS		The fusiform classification is a	
		shaped muscle. An example	
		is the	

Class notes:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The penniform classification is a half feather shaped muscle. An			
classification is a			
nuscle such as the			
······································			
1			

75.	The bipenniform classification is a whole feather shaped muscle.				
One example is the rectus femoris.					
BIPENI WHOL	NIFORM E FEATHER	The	classification is a shaped muscle.		
		An example is	the rectus femoris.		

Draw and name the shapes of the first three structural classifications of skeletal muscles.

76.	6. The triangular classification is a triangle shaped muscle. An		
	example is the deltoid.		
TRIANGLE		The triangular classification	of muscle
DELTO	iD	structure is a	shaped
		muscle. An example is the	

77.	7. The rhomboidal classification is a rhomboid (tilted rectangle or				
	square) shaped muscle.	Examples include the rh	nomboid major and		
	minor.				
RHOMBOIDAL		The	classification is a		
RHOME	BOID MAJOR	rhomboid shaped musc	le such as the		
			and minor.		

78.	The rectangular classification is a rectangle shaped muscle. An			
example is the pronator quadratus.		quadratus.		
RECTANGULAR RECTANGLE		The	_ classification is a	
		sha	iped muscle. An	
		example is the pro	nator quadratus.	

٠

Draw and name the shapes of the last three structural classifications of skeletal muscles.

FUSIFORM

PENNIFORM

BIPENNIFORM

TRIANGULAR

RHOMBOIDAL

RECTANGULAR

Figure 16.

Classifications of Skeletal Muscles.

Movement of Muscles

79.	In kinesiology contraction is the shortening of a muscle from the				
	maximum extended rang	e to the shortest length. Contraction can			
	range from partial to complete shortening of a muscle within the				
	range or amplitude of that muscle.				
THE S	HORTENING OF A MUSCLE	Define contraction as it is used in			
		kinesiology.			

80.	Cocontraction or coinnervation occurs when two opposing muscles			
	contract at the same time and will not allow movement.			
COCONTRACTION		Coinnervation is another name for		
		which is when opposing		
		muscles contract at the same time.		

•

81.	Contracture is the perma	nent contraction of a muscle due to spasm
	or paralysis. Depending	on the cause of contracture, it can range
	from a temporary to a life	e-long condition.
THE PE	RMANENT CONTRACTION	Define contracture.
OF A M	IUSCLE DUE TO SPASM OR	

PARALYSIS

Review

The amplitude or range of a muscle is that it can extend or shorten up to one-half the original or resting length. The six structural classifications of muscles are the fusiform (spindle shaped), the penniform (half feather shaped), the bipenniform (feather shaped), the triangular (triangle or fan shaped), the rhomboidal (rhomboid shaped), and the rectangular (rectangle shaped).

In kinesiology contraction is a shortening of a muscle. Cocontraction occurs when two opposing muscles contract at the same time.

82.	For movement in the human body to occur, muscles or muscle
	groups must work together. Reciprocal innervation is the term used
	when muscles work in groups or pairs. When one muscle or a
	group of muscles contracts, the opposing muscle or group of
	muscles must relax to allow movement.

MUSCLES WORK IN GROUPS OR	Explain reciprocal innervation.
PAIRS. WHILE ONE GROUP OR	
MUSCLE CONTRACTS, THE	
OPPOSING GROUP OR MUSCLE	
MUST RELAX.	

Class notes:

83.	Ballistic movement is one type of movement studied in kinesiology.
	Ballistic movement is initiated by the contraction force of a muscle.
	The muscle must then relax and allow the momentum generated to
	complete the movement. Follow through relates to the second half
	of ballistic movement.

IT IS INITIATED BY THE	Explain ballistic movement.
CONTRACTION FORCE OF A	
MUSCLE, THEN THE MUSCLE MUST	
RELAX AND ALLOW MOMENTUM	
TO COMPLETE THE MOVEMENT	·
(FOLLOW THROUGH).	

Review

Reciprocal innervation is the term to use when muscles work in groups or pairs. While one group or muscle contracts, the opposing group or muscle must relax. Ballistic movement is initiated by the contraction force of a muscle which must then relax and allow the momentum generated to complete the movement.

84.	Ballistic movement may be terminated in three ways. It may be
	terminated by the opposition by contraction of antagonistic muscle
	groups. Ballistic movement terminates when moving parts reach
	their limit or range of motion. Interference of an obstacle also
	terminates ballistic movement.

1.	CONTRACTION OF	List in order the three ways in which
	ANTAGONISTIC MUSCLE	ballistic movement may be terminated.
	GROUPS	1
2.	MOVING PARTS REACHING	
	THEIR LIMIT OF MOTION	•
З.	INTERFERENCE OF AN	2.
	OBSTACLE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		3

Class notes:

Review

Ballistic movement may be terminated by the opposition by contraction of antagonistic muscle groups, by moving parts reaching their limit of motion, or by the interference of an obstacle.

Three types of iso - contractions are isometric, isotonic, and isokinetic.

86.	An isometric contract	ion is one in which tension is developed, but
	no mechanical work is	s performed. All energy is liberated as heat.
ISOME	TRIC CONTRACTION	A contraction in which tension is
		developed but no mechanical work is
		performed is an
		All energy is
		liberated as heat.

87.	An isokinetic contraction	is one where a muscle shortens or
	lengthens, but maintains	a constant speed throughout the
	movement.	
ISOKIN	ETIC CONTRACTION	In an
		a muscle shortens or lengthens but
		maintains a constant speed throughout the
		movement.

.

88. An isotonic contraction is one in which the muscle maintains constant tension. Isotonic also refers to osmotic pressure.
ISOTONIC CONTRACTION The muscle maintains constant tension in an _______.

89.	One definition of concer	ntric is having a common center. The	
	contraction of a muscle	as it shortens from its original or resting	
	length is a concentric co	ontraction.	
CONCE	NTRIC CONTRACTION	A is	5
		the contraction of a muscle as it shorte	ens
		from its original or resting length.	

Class notes:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90.	Eccentric can be defined as not having a common center or having
	an axis which is not centered. An eccentric contraction describes
	the gradual lengthening against resistance of a concentrically
	contracted muscle.

ECCENTRIC CONTRACTION The gradual lengthening against resistance of a concentrically contracted muscle is an

91.	Dynamics refers to the mechanical study of objects in motion. A
-	division of dynamics is called kinetics. Kinetics involves the
	description of moving objects with regard to the forces causing their
	motion.
KINETI	cs is a division of dynamics.
DYNAN	nics is the mechanical study of
	objects in motion.

Superficial Striated Muscle Worksheets

The following two pages illustrate the front and back views of superficial striated muscles. These are to be used as worksheets for identification of muscles or muscle groups. This can be accomplished by the use of color pencils to identify and key to the instructor's request or drawing lines and labeling. Your instructor will identify the muscles or muscle groups to be located and the method to use. It may be necessary to go to an outside source such as <u>Gray's Anatomy</u> or <u>The Anatomy Coloring Book</u> to properly identify and locate muscles. These worksheets may also be used to identify muscle shape classifications.

<u>Figure 17</u>.

Anterior View of Superficial Striated Muscles.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 18.

Posterior View of Superficial Striated Muscles.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Glossary

Action line	The line of pull; the shortening of a muscle alon	
	the pattern of muscle fibers toward the center of	
	the muscle.	
All or none law	Given threshold or supra threshold stimuli, a	
	muscle fiber will contract all the way or not at all	
Amplitude of muscle	A muscle can extend or shorten up to one-half the	
	original or resting length.	
Ballistic movement	A type of movement initiated by the contraction	
	force of a muscle; then the muscle relaxes and	
	allows momentum to complete the movement	
	(follow through).	
Cardiac muscle	Heart muscle; involuntary muscle found only in the	
	heart.	
Cocontraction	Coinnervation; opposing muscles contracting at	
	the same time and not allowing movement.	
Coinnervation	Cocontraction; opposing muscles contracting at	
	the same time and not allowing movement	
Concentric	Having a common center.	
Contractility	The unique ability of a muscle to contract or	
	shorten to less than the original or resting length.	
Contracture	Permanent contraction of a muscle due to spasm	
	or paralysis.	
Dynamics	The mechanical study of objects in motion.	

Eccentric	Not having a common center or axis not centered.	
Elasticity	The ability of a muscle to be extended or twisted	
	and yet return to the original or resting length.	
Extensibility	The ability of a muscle to be extended or	
	stretched.	
Force	The instigator of movement; a push, a pull or a	
	tendency to distort.	
Insertions	More movable end of a skeletal muscle that is	
	more distal or inferior.	
Involuntary muscle	A muscle whose movement is independent of or	
	contrary to conscious desire; examples are the	
	smooth and cardiac muscles.	
Isokinetic contraction	A muscle shortens or lengthens but maintains a	
	constant speed throughout the movement.	
Isometric contraction	A muscle contracts but is not allowed to shorten	
	or lengthen even with increased tension.	
Isotonic contraction	A muscle contracts and maintains constant	
	tension; also refers to osmotic pressure.	
lso—	Combining form meaning equal.	
Kinetics	The description of moving objects with regard to	
	the forces causing their motion; a division of	
	dynamics.	

Line of pull	The action line; the shortening of a muscle along	
	the pattern of muscle fibers toward the center of	
	the muscle.	
Origins	More stable end of a skeletal muscle that is more	
	proximal or superior.	
Reciprocal innervation	Muscles work in groups or pairs; while one group	
	or muscle contracts, the other group or muscle	
	relaxes.	
Skeletal muscle	Muscles which are attached to the skeleton;	
	striated muscle; voluntary muscle.	
Smooth muscle	Involuntary muscles located around organs and	
	orifices of the body.	
Striated muscle	Muscles which are attached to the skeleton;	
	skeletal muscle; voluntary muscle.	
Voluntary muscle	Muscle controlled by will or thought; examples are	
	striped, striated, cross-striated, or skeletal	
	muscles.	
Work	The process of exerting a force which moves a	
	resistance through a distance. A by-product of	
	work is heat.	

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

.

Introduction

Using information presented in the previous chapter, the student will add knowledge of classes of skeletal muscles and how these muscles use the simple machines of the body to complete movement. The concept that through work the body develops motion will also be covered in this chapter. **Classes of Skeletal Muscles**

92. There are four classes of skeletal muscles that have a special		
function in human move	ment. The four classes are the prime	
movers, the antagonists, the synergists, and the fixators.		
1. PRIME MOVERS	List in order the four classes of skeletal	
2. ANTAGONIST	muscles.	
3. SYNERGIST	1	
4. FIXATOR	2	
	3	
	4	

Class notes:

93.	The prime mover is responsible for a definite motion. An example is		
	the latissimus dorsi.		
DEFINI MOTIO	TE	The prime mover is responsible for a	
LATISS	IMUS DORSI	example is the	
		································	

94.	The antagonist muscle is responsible for opposition to the prime		
	mover. An example is the pectoralis major working in opposition to		
	the latissimus dorsi.		
OPPOS	SITION	The antagonist muscle is responsible for	
PRIME MOVER		to the	
		•	
L			

•

Class notes:

95.	5. The synergist muscle aids the prime mover by keeping the joint		
	steady while the prime mover applies force to a neighboring joint.		
	S THE PRIME MOVER BY	Briefly explain the function of the	
KEEPIN THE PF	IG THE JOINT STEADY WHILE RIME MOVER APPLIES FORCE	synergist muscle class.	
TO A N	IEIGHBORING JOINT.		

96.	The fixator keeps the bone at the origin steady as the prime mover		
	applies force for movement.		
FIXATO	DR	The	keeps the bone at
FORCE		the origin steady as th	ne prime mover
		applies	for movement.

Class notes:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
A prime mover is responsible for a definite motion. The antagonist is responsible for opposition to the prime mover. The synergist aids the prime mover by keeping the joint steady while the prime mover applies force to a neighboring joint. The fixator keeps the bone at the origin steady as the prime mover applies force for movement.

Newton's Laws of Motion

97.	Sir Isaac Newton (1642-1727), the English mathematician and	
	physicist, developed and	refined what are usually called Newton's
	three laws of motion. T	hese are the laws of inertia, mass and
	acceleration and action/	reaction.
1. INE	RTIA	List in order Newton's three laws of
2. ACCELERATION		motion.
3. RE4	ACTION	1
		2
		3
		,

98.	The law of inertia is stat	ed in this way: An object at rest will remain
	at rest and an object in r	motion will remain in motion, unless acted
	upon by some external f	orce.
AN OBJECT AT REST WILL REMAIN		Explain or state Newton's law of inertia.
AT REST AND AN OBJECT IN		
MOTION WILL REMAIN IN MOTION		
UNLES	S ACTED UPON BY SOME	
EXTER	NAL FORCE.	

99.	Gravity is a constant force toward the center of the earth. In	
	considering the law of in	ertia, gravity would be a force to overcome
	in human movement.	
τοψΑι	D	Gravity is a constant force
CENTE	R	the of the earth.

100.	The law of acceleration is that a distance transversed per unit of
	time will remain constant unless a force acts upon the moving
	object. Acceleration is directly proportional to the force produced
	and is inversely proportional to the mass while moving in the same
	direction as force produced.

DIRECTLY	Based on Newton's law of acceleration,
INVERSELY	acceleration is proportional
FORCE	to the force produced and
	proportional to the mass while moving in
	the same direction as the
	produced.

101. The law of reaction or a	action/reaction relates to every action having
an equal and opposite r	eaction.
TO EVERY ACTION THERE IS AN EQUAL AND OPPOSITE REACTION.	Explain Newton's law of action/reaction.

Newton's three laws of motion are stated as follows:

- Inertia: An object at rest will remain at rest and an object in motion will remain in motion unless acted upon by some external force.
- Acceleration: A distance transversed per unit of time will remain constant unless a force acts upon the moving object. Acceleration is directly proportional to the force produced and inversely proportional to the mass while moving in the same direction as force produced.

Reaction: For every action there is an equal and opposite reaction.

Simple Machines of the Body

102.	The human skeleton contains simple machines. The lever is the		
	most common simple ma	chine. A lever is any rigid bar which turns	
	about a fulcrum or axis v	vhen force is applied to it. A lever	
	overcomes a resistance.		
ANY RI	GID BAR WHICH TURNS	Define lever.	
ABOUT	A FULCRUM OR AXIS WHEN		
FORCE	IS APPLIED TO IT. IT		
OVERC	OMES A RESISTANCE.		

Class notes:

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 19.

Diagram of Classes of Levers.

103.	There are three classes	of levers in the human body. The first class	
	lever accomplishes the r	nost work for the amount of force applied.	
	The second class lever a	ccomplishes a moderate amount of work	
	with the same amount of force. The third class lever accomplishes		
	the least amount of worl	with the same amount of force.	
1. FIR	ST CLASS	List in order the three types of levers	
2. SEC	COND CLASS	found in the human body.	
3. тні	RD CLASS	1	
		2	
		3	

104. The third class lever is the most common in the human body.		
THIRD CLASS	The most common lever found in the	
	human body is the	
	lever.	

105. Most kinesiology instructors agree that all three classes or types of levers may be found at the elbow of the human body.

ELBOW

All three types of levers may be found at

the human _____.

In the space below diagram and classify the three types of levers. Use the key indicated. The indicator for force should include one direction only.

KEY: III - RESISTANCE 🔺 - AXIS OR FULCRUM 🕴 - FORCE AND ITS DIRECTION ____ - LEVER

107. There are two forces that relate to rotating motion in a circle or an arc. Centripetal force is the force tending toward the center of a circle or arc. Centrifugal force is the force tending to move from the center of a circle or arc.

CENTRIPETAL	force is the force
CENTRIFUGAL	tending toward the center of a circle while
FROM	force is the force
	tending to move the center of
	a circle.

On each circle below indicate a radius and show the direction of rotating motion on the circumference. On the radius in one circle show the direction of centripetal force. On the radius of the other circle show the direction of centrifugal force. Label each circle as to the type of force depicted.

108. In circular rotating motion, the longer the radius the slower the rotation. The shorter the radius, the faster the rotation will be.
 SHORTER The ______ the radius, the faster the rotation.

109. If an object such as a key on the end of a string is released while in rotating motion, the object or key would leave the circle at a right angle. Another example other than the key on a string would be the rotating motion of a softball pitch and release.
 RIGHT ANGLE If a key on a string is released while in a circular rotating motion, it would leave the circle at a ______.

Class notes:

The lever is the most common simple machine in the human body. A lever is any rigid bar that turns about a fulcrum or axis when force is applied to it. A lever overcomes a resistance. The three types of levers are first, second, and third class. A first class lever accomplishes the most work for the amount of force applied. With the same amount of force, a second class lever accomplishes a moderate amount of work while a third class lever accomplishes the least. The third class lever is the most common in the body. All three types may be found at the human elbow.

Circumference - the bounding line or perimeter of a circle.

Diameter - a straight line through the center of a circle from circumference to circumference.

Radius - a straight line from the center of a circle to the circumference. Arc - any portion of the circumference of a circle.

In rotating motion, centripetal force tends to move toward the center of a circle or arc, while centrifugal force tends to move away from the center. In rotating motion, the longer the radius, the slower the rotation or the shorter the radius, the faster the rotation will be. An object released while in rotating motion leaves the circle at a right angle.

Types of Movement

.

110. Translatory mov	Translatory movement occurs when all parts of an object move in		
the same direction	on at the same speed and for the same distance.		
ALL PARTS MOVE IN THE S	AME Describe translatory movement.		
DIRECTION AT THE SAME S	PEED		
AND FOR THE SAME DISTA	NCE		

111.	Two types of translatory	movement are rectilinear movement and
	curvilinear movement. R	lectilinear movement occurs when
	translatory movement fol	llows a straight line. Curvilinear movement
	occurs when translatory	movement follows a curved path or an orbit
	around an external axis.	
RECTIL	INEAR MOVEMENT	is
		occurring when an object follows a
		straight line.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+...

.

112.	Curvilinear movement can be in either a complete circle or an arc
	(part of a circle). Rotary motion is curvilinear movement in a
	complete circle, while angular motion is curvilinear movement in an
	arc.

ROTARY - MOVEMENT IN A Name and identify two types of motion
 COMPLETE CIRCLE associated with curvilinear movement.
 ANGULAR - MOVEMENT IN AN ARC OR PART OF A CIRCLE.
 2. ______

Translatory movement occurs when all parts of an object move in the same direction at the same speed for the same distance. Two types are rectilinear, translatory movement following a straight line, and curvilinear, translatory movement following a curved path or orbit around an external axis. Curvilinear movement may be further described as rotary motion, movement in a complete circle, or angular motion, movement in an arc.

113.	Two other types of motion associated with rectilinear and curvilinear
	translatory movement are reciprocating and oscillating motions.
	Reciprocating motion is a repetitive rectilinear translatory movement.
	Oscillating motion is a repetitive rotary curvilinear translatory
	movement.

RECIPROCATING

_____ is a repetitive rectilinear

translatory movement.

Reciprocating motion is a repetitive rectilinear translatory movement.

Oscillating motion is a repetitive rotary curvilinear translatory movement.

Four factors that modify motion are friction, air, and water, the external forces, and the anatomical factor, the internal force.

Glossary

Angular motion	Curvilinear movement occurring in an arc or part
Antagonist muscle	of a circle. Works opposite the prime mover's application of
	force for movement by resisting.
Arc	Any portion of the circumference of a circle.
Centrifugal force	A force tending to move from the center of a circle
	in curvilinear movement.
Centripetal force	A force tending to move toward the center of a
	circle in curvilinear movement.
Circumference	The bounding line of a circle.
Curvilinear movement	Translatory movement that follows a curved path
	or orbit around an external axis.
Diameter	A straight line passing through the center of a
	circle from circumference to circumference.
Fixator	Muscle that keeps the bone at the origin steady
	while the prime mover applies force for movement.
Fulcrum	The axis point on a lever.
Law of reaction	For every action, there is an equal and opposite
	reaction.
Law of inertia	An object at rest will remain at rest and an object
	in motion will remain in motion, unless acted upon
	by some external force.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Law of acceleration	Distance transversed per unit of time will remain
	constant unless a force acts upon the moving
	object. Acceleration is directly proportional to the
	force produced and inversely proportional to the
	mass while moving in the same direction as force
	produced.
Lever	Any rigid bar which turns about a fulcrum or axis
	when force is applied. It overcomes a resistance.
Newton, Sir Isaac	Newton (1642–1727) was an English physicist
	and mathematician who developed important
	concepts about motion, mass and movement,
	including the existence of gravity.
Oscillating motion	Angular curvilinear translatory movement.
Prime mover	Muscle responsible for a definite movement.
Radius	A straight line from the center of a circle to the
	circumference.
Reciprocating motion	Repetitive rectilinear translatory movement.
Rectilinear movement	Translatory movement following a straight line.
Rotary motion	Curvilinear movement occurring in a complete
	circle.
Synergist muscle	Muscle keeps the joint steady while the prime
	mover applies force to a neighboring joint.
Translatory	All parts of an object moving in the same direction
	at the same speed and for the same distance.

CHAPTER 5

.

Introduction

Chapter 5 is the top of the kinesiology pyramid that began with the foundation laid in Chapter 1. The information provided here puts into perspective knowledge gained in Chapters 1 through 4. If kinesiology could be described as having a heart, its heart would be in the factors of stability. Additional supportive information is also included in this final chapter.

Equilibrium, Balance, and Stability

116.	In body positioning, whether moving or stationary, three terms that		
	are often used interchan	geably are equilibrium	n, balance, and
	stability.		
EQUILIBRIUM,		·/	
BALAN	CE	and	are terms that may
STABIL	ΙΤΥ	be used interchange	ably for body
		positioning.	
		,	
		·	

117. For the purposes of kines	For the purposes of kinesiology, there are degrees of difference		
between equilibrium, bala	ance, and stability.		
DEGREES	In relation to kinesiology there are		
	equilibrium, balance and stability.		

118. Equilibrium can be compared to a balance scale as used in a candy store. With the scale, a weight is placed on one side and candy is added gradually to the other side until the sides become equal or the scale reads zero.

BALANCE

Equilibrium can be compared to a

_____ scale in a candy store.

119. Using the same analogy, balance would be when the balance scale reaches zero. Equilibrium is used to reach the point of balance.

BALANCE

Equilibrium is used to reach the point of

120. Balance is sub-divided in	to two types, static and dynamic.	
STATIC	and	_ are two
DYNAMIC	types of balance.	

121.	Static balance is the type of balance if there is little or no movement			
	and balance is maintained under unfavorable conditions.			
ii.				
LITTLE	LITTLE OR NO MOVEMENT AND Describe or define static balance.			
BALAN	BALANCE IS MAINTAINED UNDER			
UNFAV	UNFAVORABLE CONDITIONS			
L				

122.	Dynamic balance is the type of balance in movement in which there		
2	is a loss and regaining of	balance. An example is walking.	
MOVEN REGAIN	MENT BY LOSING AND	Define dynamic balance	

123.	Stability is the anchor of	equilibrium and balance.	Whether the body
	is in motion or stationary	y, stability is maintaining t	he position or
	direction even with adde	d forces acting against it.	
MAINT OR DIR	AINING A BODY POSITION ECTION EVEN WITH ADDED	Define stability.	

FORCES ACTING AGAINST IT

124. In kinesiology, equilibrium may be described as "getting there,"		
balance as "got there," a	nd stability as "staying there."	
1. GETTING THERE	List in order the three simple phrase	
2. GOT THERE	explanations of equilibrium, balance, and	
3. STAYING THERE	stability as related to kinesiology.	
	1	
	2	
	3	

125. ln (In considering balance and stability, a higher degree of skill is		
nee	led to maintain little or no movement.		
STABILITY	Balance and require that		
HIGHER	the the movement, the		

Three terms used in moving or stationary body positioning are equilibrium, balance, and stability. Equilibrium, bringing the body to a state of balance in which there is no change in speed or direction, is used to reach the point of balance. Balance involves control of equilibrium. Balance has two types, static and dynamic. Static balance involves little or no movement and balance is maintained under unfavorable conditions. Dynamic balance is movement by loss and regaining of balance, as in walking. Stability is maintaining the body's position or direction even with additional forces acting against it. In considering balance and stability, it takes a higher degree of skill to maintain little or no movement.

[main]		
126.	Kinesthetic sense is an awareness of one's body position in space	
	or water without the aid	of sight or touch.
ONE'S	BODY POSITION IN SPACE	Define kinesthetic sense.
OR WATER WITHOUT THE AID OF		
SIGHT OR TOUCH		

127.	There are degrees of kinesthetic sense. For example there may be a
	blur of an object in vision or a slight feel in touch. In playing
	basketball, players use their arms and hands to judge the position of
	an opponent.
DEGRE	ES With kinesthetic sense, there are
	if there is a blur or slight
	feel.

Class notes:

.

Center of gravity is an imaginary point that is the center of mass (weight center). It represents the most concentration of weight, the geometric center, and the balance point. It is located anterior to the sacrum, is lower in women than men, and is where all three cardinal planes intersect.

Line of gravity is an imaginary, internal vertical line that passes through the center of gravity through the base of support to the center of the earth. It is where both cardinal vertical planes intersect.

Factors of Stability

128. When dealing with the factors of stability, keep in mind the phrase,"All other things being equal," which can also be referred to with the acronym AOTBE.

AOTBE

"All other things being equal" can be

referred to as _____

129. There are nine factors o	29. There are nine factors of stability which will be considered in a		
specific order. The nine	e factors are the height of the center of		
gravity, the size of the t	gravity, the size of the base of support, the relation of the line of		
gravity to the base of su	upport, the mass of the body, the		
momentum and impact o	momentum and impact of an external force, friction, segmentation,		
visual and psychological	factors, and physiological factors.		
1. HEIGHT OF THE CENTER OF	List in order the nine factors of stability.		
GRAVITY	1		
2. SIZE OF THE BASE OF SUPPORT	2		
3. RELATION OF THE LINE OF	3		
GRAVITY TO THE BASE OF			
SUPPORT			
4. MASS OF THE BODY	4		
5. MOMENTUM AND IMPACT OF	Hanna		
AN EXTERNAL FORCE	5		
6. FRICTION	6		

7. _____

9. _____

8. _____

7. SEGMENTATION

8. VISUAL AND PSYCHOLOGICAL

.

9. PHYSIOLOGICAL FACTORS

FACTORS

130. The height of the center of gravity can be too high or too low. If it is too high, stability becomes too difficult. If it is too low, it takes more muscle force to raise the center of gravity to the most stable and movable point.

HIGH LOW The center of gravity can be too _____

or too _____.

131. The size of the base of support can reach a point where it is a disadvantage to balance and stability. If the base of support is too small, it reduces the ability to maintain stability. If the base of support is too large, a greater amount of muscle force is required to move.

 SMALL
 The base of support can be too ______

 LARGE
 or too ______ for effectiveness.

132. The relation of the line of gravity to the base of support directly relates to equilibrium, balance, and stability. If the line of gravity moves outside the base of support, equilibrium is lost. When the line of gravity is on the near edge of the base of support, balance and stability become more difficult to maintain.

BASE OF SUPPORT

If the line of gravity moves outside the

equilibrium is lost.

133. When considering the factor of mass of the body, it is important to keep in mind "all other things being equal." If all else is equal, a larger mass of body will overcome a smaller body mass.

LARGER

SMALLER

If all other things are equal, a ______ body mass will overcome a ______ body mass.

134.	Momentum and impact of	can be applied to any contact activity. A
	smaller body mass with	greater momentum and selected point of
	impact can overcome a	large body mass.
MOMENTUM		and will
ІМРАС	т	make a difference in body mass upon
		contact.

135.	Friction or lack of friction	n may be controlled in many	ways. Types
	of clothing to reduce fric	tion or gloves and shoes to	increase friction
	can be found in use in m	any activities.	
FRICTI	ON	or	of friction
LACK		may be controlled in many	ways.

136.	Segmentation is the use of a weight to offset another weight. For
	example, when bending at the waist, a person may extend an arm
	or leg (or both) in the opposite direction to offset the upper body
	weight. A simple way to look at segmentation is "For every zig,
	there is a zag."

ARMS	Segmentation of body weight may be
LEGS	accomplished by extending or
	of the body in the opposite
	direction to the mass of the body.

137.	Visual and psychological factors often work together. Through		
	vision, size and speed can be realized. Then the psychological		
	factor or mind can use this as an advantage or disadvantage.		
VISUAI	-	and	
PSYCH	OLOGICAL		
		factors work in conjunction with each	
		factors work in conjunction with each other.	

138.	Physiological factors can range from muscle strength and speed to
	the intricacies of the inner ear.
PHYSIC	DLOGICAL factors cover the
	complete range of body functions.

In dealing with the factors of stability, keep in mind the phrase "all other things being equal" or AOTBE.

The nine factors of stability are the height of the center of gravity, the size of the base of support, the relation of the line of gravity to the base of support, the mass of the body, the momentum and impact of an external force, friction, segmentation, visual and psychological factors, and physiological factors.

139.	Using the first three fact	ors of stability, a body can assume a
	starting position good for	r most athletic activities. Bent knees to
	lower the center of gravi	ty, feet approximately shoulder width apart
	for the base of support,	and the line of gravity near the center of the
	base of support may be o	described as the universal athletic starting
	position.	
UNIVERSAL ATHLETIC STARTING		The starting position that can be applied
POSITIC	ON	to most activities is referred to as the
		······································

Class notes:

.

141. There are four basic modes of body support in activities. These are		
the ground, water, suspended, and the body unsupported.		
1. GROUND	List in order the four basic modes of body	
2. WATER	support in activities.	
3. SUSPENDED	1	
4. UNSUPPORTED	2	
	3	
	4	

142. The ground can be class	The ground can be classified into firm, as in a hardwood floor; soft,	
as in a rubber track or sa	awdust pit or mats; or elastic, as in the use	
of a trampoline.		
1. FIRM	List in order the classes of ground as a	
2. SOFT	means of support.	
3. ELASTIC	1	
	2	
	3	

143. Water as a mode of support can be changed by the addition of salt.	
There is less body buoyancy in fresh water than in salt water.	
1. FRESH WATER	List the two types of water as a mode of
2. SALT WATER	body support.
	1
	2

Review

The universal athletic starting position uses the first three factors of stability. An athlete's professional calm is a combination of timing, relaxation, desire, and concentration.

The four basic modes of body support in athletic activities are the ground, water, suspended, and the body unsupported.

145.	The body unsupported mode occurs when the body is traveling	
	through the atmosphere, as in jumping or diving. The important	
	thing to remember when a body leaves its base of support is the	
	center of gravity of that body has a predetermined destination.	

CENTER OF GRAVITY

When a body leaves its base of support,

the			

has a predetermined destination.

Categories of Activities

146. In kinesiology, there	are three major categ	ories of activities.
THREE ACTIVITIES	There are	major categories

147. The first catego	The first category is a continued application of a force as in	
pushing, pulling	, or lifting.	
PUSHING	A continued application of a force applies	
PULLING	to, and	
LIFTING	· · · · · · · · · · · · · · · · · · ·	

148. The second category is the development of kinetic energy followed by the release of an object at the moment of maximum desired velocity. This would consist of all throwing motions, including those using an implement.
 THROWING MOTIONS The development of kinetic energy

The development of kinetic energy followed by the release of an object at the moment of maximum velocity applies to all 149. The last category is the momentary contact made with an object by a moving part or segment of the body or an implement attached to the body. This category covers kicking and striking of objects.

KICKING	The momentary contact made with an
STRIKING	object by a moving part of the body or an
	implement attached to the body covers
	and

150. There are two exceptions to the three major categories of activities. These are the slingshot and archery. In both, the force applied is stored in either the rubber bands of the sling shot or the limbs of a bow.

SLINGSHOTThe two exceptions to the three majorARCHERYcategories of activities are the

_____ and _____.

Review

Of the modes of body support, the ground can be classified as firm, soft, or elastic. The body is more buoyant in salt water than it is in fresh. In suspended mode, the body is hanging by the hands which are attached to a support. In unsupported mode, such as jumping or diving, the body is traveling through the atmosphere; however, when the body leaves its base of support, it has a predetermined destination.

There are three major categories of activities in kinesiology. These are: continued application of a force (pushing, pulling, lifting), the development of kinetic energy followed by the release of an object at the moment of maximum desired velocity (throwing), and momentary contact made with an object by a moving part or segment of the body or an implement attached to the body (kicking and striking of objects). The two exceptions to the three major categories are the slingshot and archery. In both of these the force applied is stored in either the rubber bands of the slingshot or the limbs of the bow.

Glossary

AOTBE	"All other things being equal." This phrase is
	important to remember when dealing with the
	factors of stability.
Balance	"Got there;" control of equilibrium.
Body unsupported	A mode of body support in which the body is
	traveling through the atmosphere as in jumping or
	diving; also called unsupported mode.
Center of gravity	The balance point of an object; where the weight
	center of an object is located.
Dynamic balance	The type of balance in movement in which there is
	a loss and regaining of balance, as in walking.
Equilibrium	"Getting there;" bringing the body to a state of
	balance where there is no change in speed or
	direction.
Factors of stability	The nine factors are: the height of the center of
	gravity, the size of the base of support, the
	relation of the line of gravity to the base of
	support, the mass of the body, the momentum
	and impact of an external force, friction,
	segmentation, visual and psychological factors,
	and physiological factors.

129

Friction	The resistance to relative motion between the
	contact of two or more bodies or body parts.
Impact	Contact, collision, striking or coming together of
	bodies or body parts.
Kinesthetic sense	Awareness of one's body position in space or
	water without the aid of sight or touch.
Kinetic energy	The energy associated with motion.
Line of gravity	An imaginary internal vertical line that passes
	through the center of gravity and the base of
	support.
Momentum	Impetus; amount of motion developed.
Professional calm	Combination of concentration, timing, relaxation,
	and desire; used to describe an athlete's ability to
	concentrate.
Segmentation	Use of a weight to offset another weight; "For
	every zig, there is a zag."
Stability	"Staying there;" anchor; maintaining a position or
	direction even with forces acting against it;
	resistance to a disturbance of equilibrium.
Static balance	The type of balance during which there is little or
	no movement, and balance is maintained under
	unfavorable conditions.

-

Suspended mode	A mode of body support usually referred to as
	hanging by the hands which are attached to a
	support. Often seen during exercises on the
	uneven bars, high bar, or rings.
Unsupported mode	A mode of body support in which the body is
	traveling through the atmosphere as in jumping or
	diving; also called body unsupported.
Velocity	Speed.
Zig-zag	"For every zig, there is a zag." A reference word
	for segmentation of body weight in which one
	weight is used to offset another weight.

APPENDIX A

Kinesiology Projects

There are several types of projects to choose from if an instructor requires students to show they can apply what they have learned from this programmed text. Some instructors are very lenient in what is considered acceptable for a project, but others have stricter guidelines. One possibility acceptable to most instructors is to focus on a specific activity or type of movement in the human body and to complete a notebook project on this activity.

Kinesiology Notebooks

Students would first select an activity for study. The next step would be to search for pictures of that activity with a goal of obtaining six to fifteen usable pictures. Then students should make a primary statement about what each picture depicts in terms of kinesiology. Any other information on the picture should be added to the explanation. Using the statements and explanations, a glossary should also be prepared for the key words and terms used. When satisfied with the statements and information, students should type the primary statements, explanations, and glossary. When ready for assembly into a notebook, each picture should be placed on a separate page with its accompanying statement pasted on the same page. Each page needs to be placed in a sheet protector or laminated. Eye appeal in the choice of background colors, placement on the pages, and neatness of assembly are important as well as the accuracy of the statements accompanying each picture.

The finished notebook should be given a title. On the cover page the title, the student's name, the instructor's name, the course number and course title, and the date should all be included. A table of contents should be next. The pictures and statements about each picture follow the table of contents. Last is the glossary of the key words and terms used in the explanations. All materials are then ready to be transferred to a three-ring notebook and presented to the instructor.

APPENDIX B

BONES OF THE ADULT HUMAN SKE	ELETON
1. SKULL A. BONES OF THE CRANIUM B. BONES OF THE INNER EAR C. HYOID BONE D. FACIAL BONES	29 TOTAL 8 6 1 14
2. SPINAL COLUMN A. CERVICAL B. THORACIC C. LUMBAR D. SACRUM E. COCCYX	26 TOTAL 7 12 5 1 1
3. STERNUM	1 total
4. RIBS	12/24 TOTAL
5. UPPER EXTREMITY A. SCAPULA B. CLAVICLE C. HUMERUS D. ILNA E. RADIUS F. CARPAL BONES G. METACARPALS H. PHALANGES	64 TOTAL 2 2 2 2 2 8/16 5/10 14/28
 6. LOWER EXTREMITY A. PELVIC GIRDLE—ILIUM, ISCHIUM, PUBIS B. FEMUR C. PATELLA D. TIBIA E. FIBULA F. TARSALS G. METATARSALS H. PHALANGES 	63 TOTAL 3 2 2 2 2 7/14 5/10 14/28

APPENDIX C

FUNCTIONS OF THE HUMAN SKELETON AS STUDIED FOR KINESIOLOGY

SUPPORT

- FRAMEWORK OF THE BODY
- SUPPORT TO THE SOFT TISSUES
- PROVIDE POINTS OF ATTACHMENT FOR MUSCLES

MOVEMENT

- BONE TO BONE, MOVABLE JOINTS (ACT AS FULCRUMS)
- BONES SERVE AS LEVERS

PROTECTION

- VITAL INTERNAL ORGANS
- EXAMPLES (PROVIDED BY INSTRUCTOR)

GLOSSARY

٠

Abduction	Away from the mid-line of the body.
Action line	The line of pull; the shortening of a muscle along
	the pattern of muscle fibers toward the center of
	the muscle.
Adduction	Toward the mid-line of the body.
All or none law	Given threshold or supra threshold stimuli, a
	muscle fiber will contract all the way or not at all.
Amplitude of muscle	A muscle can extend or shorten up to one-half the
	original or resting length.
Anatomical position	An erect standing position related to anatomy and
	medicine; a position used for identifying points of
	reference or locations. See page 10 for a detailed
	description of the anatomical position.
Anatomy	Structure; the structure of the human body and
	not limited to the skeletal or muscular systems of
	the body.
Angular motion	Curvilinear movement occurring in an arc or part
	of a circle.
Antagonist muscle	Works opposite the prime mover's application of
	force for movement by resisting.
Anterior	Front.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ΑΟΤΒΕ	"All other things being equal." This phrase is
	important to remember when dealing with the
	factors of stability.
Arc	Any portion of the circumference of a circle.
Aristotle	A Greek philosopher (384–322 B.C.) who is
	considered by most kinesiology instructors to be
	the "Father of Kinesiology."
Arthrology	Joints; the study of joints.
Axis	A fixed point or line about or around which a body
	revolves or rotates.
Balance	"Got there;" control of equilibrium.
Ballistic movement	A type of movement initiated by the contraction
	force of a muscle; then the muscle relaxes and
	allows momentum to complete the movement
	(follow through).
Biology	Life; the science of life; the branch of knowledge
	which is concerned with living organisms.
Body unsupported	A mode of body support in which the body is
	traveling through the atmosphere as in jumping or
	diving; also called unsupported mode.
Cardiac muscle	Heart muscle; involuntary muscle found only in the
	heart.
Cardinal Plane	Any plane that passes through the center of
	gravity.

Cavity	A hollow space or hole.
Center of gravity	The balance point of an object; where the weight
	center of an object is located.
Centrifugal force	A force tending to move from the center of a circle
	in curvilinear movement.
Centripetal force	A force tending to move toward the center of a
	circle in curvilinear movement.
Circumduction	A stationary point on a line with the distal end
	moving in a circle forming a cone. This is a
	combination of movements in all planes.
Circumference	The bounding line of a circle.
Cocontraction	Coinnervation; opposing muscles contracting at
	the same time and not allowing movement.
Coinnervation	Cocontraction; opposing muscles contracting at
	the same time and not allowing movement
Concentric	Having a common center.
Condyle	A rounded protuberance at the end of a bone
	forming an articulation.
Contractility	The unique ability of a muscle to contract or
	shorten to less than the original or resting length.
Contracture	Permanent contraction of a muscle due to spasm
	or paralysis.
Curvilinear movement	Translatory movement that follows a curved path
	or orbit around an external axis.

Diameter	A straight line passing through the center of a
	circle from circumference to circumference.
Diarthrosis	Movable joints.
Dynamic balance	The type of balance in movement where there is a
	loss and regaining of balance, as in walking.
Dynamics	The mechanical study of objects in motion.
Eccentric	Not having a common center or axis not centered.
Elasticity	The ability of a muscle to be extended or twisted
	and yet return to the original or resting length.
Equilibrium	"Getting there;" bringing the body to a state of
	balance where there is no change in speed or
	direction.
Extensibility	The ability of a muscle to be extended or
	stretched.
Extension	Increase of an angle at a joint.
Factors of stability	The nine factors are: the height of the center of
	gravity, the size of the base of support, the
	relation of the line of gravity to the base of
	support, the mass of the body, the momentum
	and impact of an external force, friction,
	segmentation, visual and psychological factors,
	and physiological factors.

139

Fascia	A connective tissue that surrounds, separates,
	supports, and binds muscle, skin, and other
	tissues.
Fixator	Muscle that keeps the bone at the origin steady
	while the prime mover applies force for movement.
Flexion	Decrease of an angle at a joint.
Foramen	A hole in a bone for passage of vessels or nerves.
Force	The instigator of movement; a push or a pull or a
	tendency to distort.
Fossa	A furrow or shallow depression.
Friction	The resistance to relative motion between the
	contact of two or more bodies or body parts.
Fulcrum	The axis point on a lever.
Horizontal	Parallel to the horizon; on a level; flat line or
	surface.
Impact	Contact, collision, striking or coming together of
	bodies or body parts.
Inferior	Lower or below; bottom.
Insertions	More movable end of a skeletal muscle that is
	more distal or inferior.
Involuntary muscle	A muscle whose movement is independent of or
	contrary to conscious desire; examples are the
	smooth and cardiac muscles.

Isokinetic contraction	A muscle shortens or lengthens but maintains a
	constant speed throughout the movement.
Isometric contraction	A muscle contracts but is not allowed to shorten
	or lengthen even with increased tension.
Isotonic contraction	A muscle contracts and maintains constant
	tension; also refers to osmotic pressure.
lso—	Combining form meaning equal.
Joint	In reference to the skeleton, where two or more
	bones come together or meet. Joints can be
	classified as movable or nonmovable.
Kinesiology	Movement; the scientific study of human
	movement.
Kinesthetic sense	One's body position in space or water without the
	aid of sight or touch.
Kinetic energy	The energy associated with motion.
Kinetics	The description of moving objects with regard to
	the forces causing their motion; a division of
	dynamics.
Lateral	Away from the middle; outside.

Law of acceleration	Distance transversed per unit of time will remain
	constant unless a force acts upon the moving
	object. Acceleration is directly proportional to the
	force produced and inversely proportional to the
	mass while moving in the same direction as force
	produced.
Law of inertia	An object at rest will remain at rest and an object
	in motion will remain in motion, unless acted upon
	by some external force.
Law of reaction	For every action, there is an equal and opposite
	reaction.
Lever	Any rigid bar which turns about a fulcrum or axis
	when force is applied. It overcomes a resistance.
Line of gravity	An imaginary internal vertical line that passes
	through the center of gravity and the base of
	support.
Line of gravity	An imaginary internal vertical line that passes
	through the center of gravity and the base of
	support.
Line of pull	The action line; the shortening of a muscle along
	the pattern of muscle fibers toward the center of
	the muscle.
Medial	Toward the middle; relating to the middle.

142

Mid-line of the body	An imaginary external vertical line which is used
	as a reference line to divide the body or body parts
	into left and right sections.
Momentum	Impetus; amount of motion developed.
Myology	Muscles; the study of muscles.
Newton, Sir Isaac	Newton (1642–1727) was an English physicist
	and mathematician who developed important
	concepts about motion, mass, and movement,
	including the existence of gravity.
Oblique plane	A plane that lies tilted between the three primary
	planes associated with kinesiology: sagittal,
	frontal, and transverse.
Orifice	Entrance or outlet of any opening such as the
	mouth or the eye.
Origins	More stable end of a skeletal muscle that is more
	proximal or superior.
Oscillating motion	Angular curvilinear translatory movement.
Osteology	Bone; the study of bones.
Parallel	Lying evenly everywhere in the same direction, but
	never meeting, however far extended.
Perpendicular	At right angles to a given surface.
Physics	Mechanics; the science that deals with the most
	general and fundamental of such phenomena,
	namely motion; the science of matter and motion.

Physiology	Function; the science branch of biology that deals
	with the study of functions of the organs, tissues
	and cells during life.
Plane	A flat imaginary surface.
Plumb line	A line weighted with a plumb bob. It is used to
	indicate true vertical directed to the center of
	gravity of the earth.
Posterior	Back.
Prime mover	Muscle responsible for a definite movement.
Professional calm	Combination of concentration, timing, relaxation,
	and desire; used to describe an athlete's ability to
	concentrate.
Psychology	Mind; the science which deals with the mind of
	man or other organisms in any of its aspects.
Radius	A straight line from the center of a circle to the
	circumference.
Reciprocal innervation	Muscles work in groups or pairs; while one group
	or muscle contracts, the other group or muscle
	relaxes.
Reciprocating motion	Repetitive rectilinear translatory movement.
Rectilinear movement	Translatory movement following a straight line.
Right angle	The angle bounded by two radii that intercept a
	quarter of a circle; one quarter of a round angle;
	one half of a straight angle.

.

Rotary motion	Curvilinear movement occurring in a complete
	circle.
Segmentation	Use of a weight to offset another weight; "For
	every zig, there is a zag."
Skeletal muscle	Muscles which are attached to the skeleton;
	striated muscle; voluntary muscle.
Smooth muscle	Involuntary muscles located around organs and
	orifices of the body.
Stability	"Staying there;" anchor; maintaining a position or
	direction even with forces acting against it;
	resistance to a disturbance of equilibrium.
Static balance	The type of balance in which there is little or no
	movement and balance is maintained under
	unfavorable conditions.
Striated muscle	Muscles which are attached to the skeleton;
	skeletal muscle; voluntary muscle.
Superior	Upper or above; top.
Suspended mode	A mode of body support usually referred to as
	hanging by the hands which are attached to a
	support. Often seen during exercises on the
	uneven bars, high bar, or rings.
Synarthrosis	Nonmovable or slightly movable joints.
Synergist muscle	Muscle keeps the joint steady while the prime
	mover applies force to a neighboring joint.

Translatory	All parts of an object moving in the same direction
	at the same speed and for the same distance.
Tubercle	A small, rounded elevation or eminence on a bone.
Unsupported mode	A mode of body support in which the body is
	traveling through the atmosphere as in jumping or
	diving; also called body unsupported.
Velocity	Speed.
Vertical	A line perpendicular to the horizon. A plumb line
	is a true vertical line.
Voluntary muscle	Muscle controlled by will or thought; examples are
	striped, striated, cross-striated, or skeletal
	muscles.
Work	The process of exerting a force which moves a
	resistance through a distance. A by-product of
	work is heat.
Zig-zag	"For every zig, there is a zag." A reference word
	for segmentation of body weight by which one
	weight is used to offset another weight.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

- Arters, J. Excerpt of <u>Encounters with the future: A forecast of life in the</u> <u>21st century</u>. Based on Cetron, M. & O'Toole, T. (1982). <u>Encounters</u> <u>with the future: A forecast of life in the 21st century</u>. New York: McGraw-Hill.
- Goss, C. (1973). <u>Gray's anatomy of the human body</u> (29th ed.). Philadelphia: Lea and Febiger.
- Kapit, W., & Elson, L. M. (1993). <u>The anatomy coloring book</u> (2nd ed.).New York: Harper Collins College Publishers.
- Luttgens, K., Deutsch, H., & Hamilton, N. (1992). <u>Kinesiology: scientific</u> <u>basis of human motion</u> (8th Ed.). Dubuque: WCB Brown & Benchmark.
- Massengale, J. D. (Ed.). (1987). <u>Trends toward the future in physical</u> <u>education</u>. Champaign: Human Kinetics.
- Naisbitt, J. (1982). <u>Megatrends: Ten new directions transforming our lives</u>. New York: Warner Books.
- Norkin, C. C., & Levangie, P. K. (1992). Joint structure & function: A
 <u>comprehensive analysis</u> (2nd ed.). Philadelphia: F. A. Davis Company.
 Slade, C., Campbell, W. G., & Ballou, S. V. (1994). Form and style:

Research papers, reports, theses (9th ed.). Boston: Houghton Mifflin Company.

- Templin, T. J. (1987). Some considerations for teaching physical education in the future. In John D. Massengale (Ed.), <u>Trends toward the future in</u> <u>physical education</u> (pp. 51–68). Champaign: Human Kinetics.
- Thomas, C. L. (Ed.). (1993). <u>Taber's cyclopedic medical dictionary</u> (17th ed.). Philadelphia: F. A. Davis Company.
- Thompson, C. W., & Floyd, R. T. (1994). <u>Manual of structural kinesiology</u> (12th ed.). St. Louis: Mosby—Year Book.
- Waldrop, J. (1991, April). You'll know it's the 21st century when... <u>The</u> <u>Saturday Evening Post</u>, pp. 70-71, 110.
- Wells, K. F. (1971). <u>Kinesiology: The scientific basis of human motion</u> (5th ed.). Philadelphia: W. B. Saunders Company.