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ABSTRACT

In the dissertation A Study on the Category of Graphs, Buvaneswari constructs

the category of finite, simple graphs and determines the existence of particular, cat-

egorical objects within the same. We use Buvaneswari’s dissertation as the basis

for an investigation into the category of finite incidence posets, which we construct

herein. We prove that the category of finite, simple graphs is equivalent to the cat-

egory of finite incidence posets, and we prove the existence of equalizers, products,

and coproducts in the category of finite incidence posets.
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CHAPTER 1

INTRODUCTION

In this thesis, most work will be original, and all original work was completed under

the supervision of Dr. James Hart. While all proofs provided in the thesis are my own,

many definitions in Chapter 2 come from source material. Where source material is

used, a citation and comment will note the use of same. Most importantly, all of the

mathematics in this thesis was made possible by A Study on the Category of Graphs

by S. Buvaneswari [1]. Every categorical proof was inspired by that dissertation, and

the current work would not have existed without it. Citing Buvaneswari at every line

would be unhelpful, so we honor A Study on the Category of Graphs and Buvaneswari

here for their importance to this thesis. Any mathematics not preceded or followed

by a citation is original, and, as already mentioned, all categorical proofs are original

but inspired and informed by [1].

We use concatenation to represent function composition. For example, the com-

position of the functions f : A→ B and g : B → C is gf : A→ C. All other notation

will be introduced as needed.

In Chapter 2, we present the preliminary knowledge necessary to understand the

mathematics used in this thesis. We assume a basic comprehension of functions and

sets.

In Chapter 3, we prove the category of finite, simple graphs is equivalent to the

category of finite incidence posets.

In Chapter 4, we prove the existence of equalizers in the category of finite incidence

posets, and we show coequalizers do not exist in the category of finite incidence posets.

In Chapter 5, we prove that both products and coproducts exist in the category

of finite incidence posets.
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CHAPTER 2

PRELIMINARIES

2.1 Graph Theory

While graph theory is a vast and broad topic within mathematics, we will need only

the definition of finite, simple graphs, the classification of some special graphs, and

one important theorem.

Definition 2.1.1. A graph G is a pair of sets (V (G), E(G)) such that E(G) consists

of two-element subsets of V (G). Such a graph is called a simple graph, though we

shall simply call them graphs. We say a graph is finite when the cardinality of V (G)

is finite.

To make discussions about the structure of graphs easier, we say two vertices are

adjacent whenever they are connected via an edge, and an edge is incident with a

vertex whenever the vertex is an element of the edge. Note that no vertex can be

adjacent to itself. If u is adjacent to v, we say u ∼ v. The degree of a vertex v,

denoted d(v), is the number of edges with which v is incident.

Consider the graphs G and H in Figure 1. You may notice that, if we were to

remove the edges {v, w}, {w, x}, and {u, x} from G, the two graphs would appear to

be identical except for labeling. Whenever this is the case, we call H a subgraph of

G. More formally, H is a subgraph of G whenever V (H) ⊆ V (G), and e ∈ E(H) =⇒

e ∈ E(G).

There are many examples of common subgraphs that are important to the study

of graphs in general. While we will not mention it explicitly, much of what we prove

in later chapters will fall apart if we do not consider ∅G a graph called the null graph.

In fact, ∅G is a graph such that V (∅G) = ∅ and E(∅G) = ∅. Below are listed several

important classes of graphs.
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u v

w

xy

z

a b

c

de

f

Figure 1: The Graphs G and H, respectively

Definition 2.1.2. An empty graph E is any graph having no edges. (See Figure 2.)

u v

w

xy

z

Figure 2: An Empty Graph

Definition 2.1.3. A path P is a graph with two vertices of degree 1 and every other

vertex having degree 2. (See Figure 3.)

u v w x y z

Figure 3: A Path

Definition 2.1.4. We say a graph is connected when there exists at least one path

between any two vertices. Note that every graph shown thus far has been connected.

Definition 2.1.5. Similarly, a graph is disconnected exactly when there are at least

two vertices with no path between them. (See Figure 4.) The maximal subgraphs

such that every pair of vertices in the subgraphs have a path between them are called

components.
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u v

w

xy

z

Figure 4: A Disconnected Graph

Definition 2.1.6. A cycle is a graph such that every vertex has degree 2. (See Figure

5.) If a graph contains no cycles as subgraphs, we say it is acyclic.

u v

w

xy

z

Figure 5: A Cycle

Definition 2.1.7. A tree is any acyclic, connected graph. (See Figure 6.) Alterna-

tively, a tree is any graph having a unique path between every pair of vertices.

u

v

w

x

y

z

Figure 6: A Tree

Definition 2.1.8. A forest is any acyclic graph. In other words, a graph is a forest

if each of its connected components is a tree. (See Figure 7.)
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Figure 7: A Forest

Definition 2.1.9. A complete graph on n vertices, denoted Kn, is such that every

pair of vertices is adjacent. (See Figure 8.)

u v

w

xy

z

Figure 8: K6

Definition 2.1.10. A planar graph is any graph that can be drawn on an arbitrarily

large, two-dimensional surface without any edges crossing. (See Figure 9.)

One of the most important theorems regarding planar graphs, Kuratowski’s The-

orem, will be stated below. However, two more types of graphs and a relationship

between graphs are needed before Kuratowski’s Theorem can be broached.

Definition 2.1.11. A graph B is said to be bipartite when you can partition V (B)

into two sets, V and W , such that no vertex in V is adjacent to any vertex in W ,

and neither V nor W are ∅. (See Figure 10.)
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Figure 9: A Planar Graph

u v w

x y z

Figure 10: A Bipartite Graph

Definition 2.1.12. A bipartite graph is called complete bipartite when every vertex

in the partition V is connected to every vertex in the partition W . Such a graph is

denoted Kn,m, where n = |V | and m = |W |. (See Figure 11.)

u v w

x y z

Figure 11: K3,3

Definition 2.1.13. A graph G has an H subdivision when a subgraph S of G is

such that the edges of H can be put in one-to-one correspondence to paths in S. The

subgraph H is said to be an H subdivision. (See Figure 12.)

Returning to planar graphs, a natural question is whether we can call a graph pla-

nar without actually drawing it out. The answer comes in the form of Kuratowski’s
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Figure 12: K3,3 and a K3,3 Subdivision

Theorem. Kuratowski’s Theorem offers a classification of all planar graphs. Though

we will not be proving Kuratowski’s Theorem here, Graph Theory by Reinhard Di-

estel provides a complete proof.

Theorem 2.1.14 (Kuratowski). A graph G is planar if and only if G has neither a

K5 or K3,3 subdivision.

Kuratowski’s Theorem will play an important roll in the classification of incidence

posets corresponding to planar graphs. Why we are using Kuratowski’s Theorem as

opposed to the more intuitive notion of edge crossings or a function injecting the

poset into the plane will be explained in the following section.

We conclude this section with a quick discussion of graph homomorphisms.

Definition 2.1.15. A graph homomorphism ϕ : G → H (hereafter simply called a

homomorphism) is a function such that

(a) V (G) 7→ V (H),

(b) E(G) 7→ E(H), and

(c) For all u1, u2 ∈ V (G), u1 ∼ u2 =⇒ ϕ(u1) ∼ ϕ(u2).

If ϕ is a bijection, ϕ is an isomorphism.

A feature of homomorphisms that we will highlight in later chapters is the inability

to “delete edges.” In Figure 13, ϕ is a valid homomorphism; however, Figure 14
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u v

w
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y

z

1
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3

ϕ(1)

ϕ(2)

ϕ(3)

Figure 13: A Homomorphism ϕ

u v

w

x
y

z

1

2

3

ψ(1)

ψ(2)

ψ(3)

Figure 14: An Invalid Homomorphism ψ

demonstrates a function ψ that is not a valid homomorphism. The function ψ cannot

be a homomorphism since 2 ∼ 3 but ψ(2) � ψ(3).

It follows that there is exactly one graph homomorphism from ∅G to any other

graph: the function that sends nothing to nothing. While it is uncomfortable to talk

about such a function, it is certainly the case that no element of ∅G maps to two

elements of the function’s domain.

2.2 Order Theory

As with Graph Theory, we will be using an incredibly slim amount of Order The-

ory. We will define a partial order, a partially ordered set, incidence posets, special

elements in incidence posets, special collections of elements in incidence posets, and

special classes of incidence posets.

Definition 2.2.1. A partial order ≤ is a relation (much like an equivalence relation)

on some set P such that for all x, y, z ∈ P
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(1) If x ≤ y and y ≤ z, x ≤ z (transitivity),

(2) If x ≤ y and y ≤ x, x = y (antisymmetry), and

(3) x ≤ x (reflexivity).

When an element x is such that x ≤ y, but x 6= y, we say x < y, or, x is

strictly less than y.

Definition 2.2.2. A pair P = (P,≤) such that P is a set and ≤ is a partial order is

called a partially ordered set. In this thesis, we shall shorten “partially ordered set”

to poset.

Posets are often represented similarly to graphs. Elements are drawn as nodes,

and an “edge” is drawn between two elements x and y if x ≤ y. However, not every

order relation is represented by an edge. The following definitions provide terminology

for the relationships between elements in a particular poset P = (P,≤).

Definition 2.2.3. An element y is said to cover another element x when x < y, and

there exists no element z such that x < z < y.

So, when drawing a poset, lines are drawn between two elements when one covers

the other. Such a drawing is called a Hasse Diagram. For an example of a Hasse

Diagram, see Figure 15 below. Unlike graphs, however, the way we draw a Hasse

Diagram can change what poset the Hasse Diagram represents. If we were to switch

any of the horizontal levels, a different poset would result.

Figure 15 provides several examples of important kinds of elements in posets in

general, including covers (see Figure 16).

Definition 2.2.4. Two elements are said to be incomparable if x � y and y � x.

(See Figure 17.)
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a b c

d

e f

Figure 15: A Hasse Diagram for the poset P

a b c

d

e f

a b c

d

e f

Figure 16: The Covers of f and the Covers of e, respectively

a b c

d

e f

a b c

d

e f

a b c

d

e f

Figure 17: Incomparable Elements in P

Definition 2.2.5. An element x is said to be maximal if there exist no elements y

such that y > x. (See Figure 18.)

Definition 2.2.6. An element y is said to be minimal if there exist no elements z

such that y > z, and there exists some element x such that x > y. (See Figure 19.)

To more easily refer to special elements within a poset, we define the following

sets.
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a b c

d

e f

Figure 18: The Maximal Elements of P

a b c

d

e f

Figure 19: The Minimal Elements of P

Definition 2.2.7. The set CP (y) = {x | x covers y in P}. In Figure 15, CP (f) =

{a, b, c}, and CP (e) = {b}.

Definition 2.2.8. The set cP (x) = {y | y covers x in P}. In Figure 15, cP (d) =

{a, b, c}, and cP (a) = {f}.

Definition 2.2.9. The set Max(P ) = {x | x is maximal in P}. In Figure 15, Max(P ) =

{d}.

Definition 2.2.10. The set Min(P ) = {y | y is minimal in P}. In Figure 15, Min(P ) =

{e, f}.

The particular posets that will be the focus of this study are incidence posets.

Definition 2.2.11. An incidence poset IPA is a poset with the extra conditions that

(1) All x ∈ IPA are such that either x ∈ Max(IPA) or x ∈ Min(IPA),
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(2) |CIPA
(y)| = 2,∀y ∈ Min(IPA),

(3) If y1 6= y2 for some y1, y2 ∈ Min(IPA), CIPA
(y1) 6= CIPA

(y2), and

(4) Max(IPA) is finite.

See Figure 20 for an example of an incidence poset. Incidence posets have the

following properties.

· Incidence posets consist of only maximal and minimal elements.

· Every minimal element in an incidence poset is covered by exactly two maximal

elements.

· The covers of minimal elements are pairwise distinct.

· Incidence posets have finitely many maximal elements.

a b c d

e f g

Figure 20: The Incidence Poset IPA

Definition 2.2.12. An IP-morphism α : IPA → IPB is a function such that

(1) For all x ∈ Max(IPA), α(x) ∈ Max(IPB),
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(2) For all y ∈ Min(IPA), α(x) ∈ Min(IPB),

(3) If a ≤ b in IPA, then α(a) ≤′ α(b) in IPB, and

(4) c, d ∈ Max(IPA) 3 c 6= d and |cIPA
(c) ∩ cIPA

(d)| 6= 0 =⇒ α(c) 6= α(d).

An isomorphism is a bijective IP-morphism.

One versed in order theory will notice that isomorphisms between incidence posets

are standard order isomorphisms between posets. As with graphs, IP∅ is an incidence

poset, and there is exactly one function from IP∅ to any other incidence poset. With

IP-morphisms defined, we can now develop the concept of one incidence poset being

contained within another.

Definition 2.2.13. We say the incidence poset IPB is a subposet of IPA when there

exists an injective IP-morphism β : IPB → IPA. (See Figure 21.)

a b c

e f

Figure 21: The Subposet IPB of IPA Above

With the concept of subposet defined, we can now classify special classes of inci-

dence posets that often show up as subposets.

Definition 2.2.14. An empty incidence poset is any incidence poset having no min-

imal elements. (See Figure 22.)

Definition 2.2.15. A valley incidence poset (valley) IPV is any incidence poset

satisfying the following conditions:
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a b c d

Figure 22: An Empty Incidence Poset

(1) There are exactly two elements x1, x2 ∈ Max(IPV ) 3 |cIPV
(x1)| = 1 and

|cIPV
(x2)| = 1, and

(2) |cIPV
(x)| = 2 for all other x ∈ Max(IPV ).

a b c d

e f g

Figure 23: A Valley Incidence Poset

For an example of a valley, see Figure 23. We say a valley connects the maximal

elements x1 and x2 when x1 and x2 are the maximal elements covering only one

minimal element each. In Figure 23, a and d are connected by the valley incidence

poset. In fact, Figure 23 contains many valleys as subposets.

Definition 2.2.16. An incidence poset is said to be connected when there exists some

valley connecting each pair of vertices. Inversely, an incidence poset is disconnected

when there exists some pair of vertices not connected by a valley. (See Figure 24.)

a b c d

e f g

1 2 3 4

5 6 7

Figure 24: A Disconnected Incidence Poset
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Definition 2.2.17. A cat’s cradle is an incidence poset with every maximal element

covering exactly two minimal elements. (See Figure 25.) An incidence poset is untied

whenever it has no cat’s cradle subposet.

a b c d

e f g h

Figure 25: A Cat’s Cradle Incidence Poset

Definition 2.2.18. We call any untied incidence poset a heap. If an incidence poset

is untied and connected, we say it is also a string.

Note that Figures 20, 21, and 23 are all examples of strings, and Figures 22 and

24 are heaps.

Definition 2.2.19. A saturated incidence poset IPS is any poset satisfying the con-

dition |Min(IPS)| =
(|Max(IPS)|

2

)
. Alternatively, IPS is saturated whenever |cIPS

(x)| =

|Max(IPS)| − 1 for all x ∈ Max(IPS). Since each saturated incidence poset having n

maximal elements is unique up to isomorphism, we will call the saturated incidence

poset with n maximal elements IPn. (See Figure 26.)

a b c d

f g h ie j

Figure 26: IP4

To construct all of the incidence posets we need, the following definition will

establish one, crucial incidence poset.
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Definition 2.2.20. We define IP3,3 as the incidence poset shown in Figure 27 (up

to isomorphism).

a b c d e f

1 2 3 4 5 6 7 8 9

Figure 27: IP3,3

Definition 2.2.21. An incidence poset IPA is said to extend IPB (or be an IPB-

extension) when each minimal element of IPB can be put in one-to-one correspondence

with a valley between two maximal elements in IPA. In other words, we can transform

IPA into IPB by collapsing the minimal elements of each valley into a single minimal

element covered by the maximal elements it connects.

Definition 2.2.22. An incidence poset IPP is called problem-free if no subposet of

IPP extends IP5 or IP3,3.

You may have noticed many of the constructions and some of the language con-

cerning incidence posets resembles the same for graphs. This similarity forms the

basis for the current thesis, and the intuition linking graphs and incidence posets will

be discussed and formalized at greater length in the next chapter.

2.3 Category Theory

We here define the rudimentary elements of Category Theory necessary for the fol-

lowing study; however, the special, categorical objects constituting the bulk of this

thesis will be explained in the introductory sections of their respective chapters so the

math that follows will be easier to read. We use [5] as the reference for our definition

of a category.
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Definition 2.3.1. A category C is a class Ob(C) of objects along with a family of mu-

tually disjoint sets {Hom(A,B)}A,B∈C (the elements of which are called morphisms)

such that

(1) For every morphism u ∈ Hom(A,B) and v ∈ Hom(B,C), there exists a unique

uv ∈ Hom(A,C), where uv is called the composition of u and v.

(2) For all f ∈ Hom(A,B), g ∈ Hom(B,C), and h ∈ Hom(C,D), f(gh) = (fg)h,

and

(3) For each object A ∈ C, there exists an identity morphism 1A : A→ A such that

f1A = f and 1Ag = g for all f ∈ Hom(A,B) and g ∈ Hom(C,A).

The most intuitive category is S, the category of sets. The objects of S are sets,

and Hom(A,B) is simply the set of all functions from A to B. Not all categories are

so straightforward. A group can be thought of as a category having one object, G,

the group, such that the elements of Hom(G,G) are the elements of G. So, if a ∈ G,

a : G→ G would be defined such that a(x) = ax for all x ∈ G. While unintuitive at

first, we can see rather easily how associativity, composition of morphisms, and the

identity morphism properties of categories would hold in such a category.

When discussing objects and morphisms within a category, it can be helpful to

represent them using commutative diagrams.

Definition 2.3.2. The diagram in Figure 28 commutes when gf = h.

A

B C

f h

g

Figure 28: A Commutative Diagram
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We will generally use diagrams only as physical representations of the objects and

morphisms being discussed. This being the case, all diagrams in this thesis will be

commutative, unless otherwise stated.

The following definition comes from [2].

Definition 2.3.3. A category B is a subcategory of C when

(1) Ob(B) ⊆ Ob(C),

(2) {Hom(A,B)}A,B∈B ⊆ {Hom(A,B)}A,B∈C,

(3) Every morphism in B is the restriction of the corresponding morphism in C, and

(4) Every identity morphism in B is also an identity morphism in A.

For example, the category of finite sets is a subcategory of the category of sets.

The category of Abelian groups is a subcategory of the category of groups, and the

category of finite, Abelian groups is a subcategory of the category of groups. As with

graphs and posets, there are special subcategories within the categories that are the

subject of this thesis. To formalize the special subcategories we will be discussing,

functors must be defined. The following discussion about functors comes from [4].

Definition 2.3.4. A functor is a map F : C → D consisting of

(1) An object map assigning A ∈ Ob(C) to the object F[A] ∈ Ob(D), and

(2) A morphism map assigning every morphism f : A→ B to the morphism F[f ] :

F[A]→ F[B].

The morphism map must satisfy the following conditions:
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(a) F[1A] = 1F[A], and

(b) F[gf ] = F[g]F[f ] whenever gf is defined in C.

Note that the object map and the function map of a functor F bears the same

name. If F is used without any braces, the functor itself is being invoked. If F[A]

bears a capital letter, we are discussing the object map of F. If F[f ] bears a lowercase

or Greek letter, the morphism map of F is being mentioned.

Definition 2.3.5. A functor F is faithful when, for every pair of objects A,B ∈ Ob(C)

and every pair of morphisms f, g ∈ Hom(A,B), F[f ] = F[g] =⇒ f = g.

Definition 2.3.6. A functor is full when, for every pair of objects A,B ∈ Ob(C) and

morphism g ∈ Hom(F[A],F[B]) in D, there exists a morphism f ∈ Hom(A,B) such

that g = F[f ].

Though not a perfect analogy, one could think of faithful functors as being ap-

proximately injective and full functors as being approximately surjective.

Definition 2.3.7. A subcategory B of C is full whenever the inclusion functor from

B to C is full.

Definition 2.3.8. Two categories C and D are equivalent when there exists a full and

faithful functor F : C → D such that each object D ∈ Ob(D) is isomorphic to F[C]

for some C ∈ Ob(C).
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CHAPTER 3

THE CATEGORIES FSG AND IPFSG

By the end of this chapter, we wish to formalize the previously mentioned con-

nection between finite, simple graphs and finite incidence posets. To do this, we will

use the tools of category theory. This will require constructing categories of finite,

simple graphs and finite incidence posets, then proving the categories are equivalent.

3.1 FSG

We begin by constructing the category of finite, simple graphs, and then we will

discuss special subcategories of the same.

Definition 3.1.1. Let Ob(FSG) be the class of all finite, simple graphs, and let

Hom(G,H) be the set of all graph homomorphisms from G to H, where G,H ∈

Ob(FSG).

Theorem 3.1.2. FSG is a category.

Proof. Let ϕ ∈ Hom(G,H) and ψ ∈ Hom(H, J), where G,H, J ∈ Ob(FSG). We

want to show ψϕ ∈ Hom(G, J). For all u ∈ V (G), we know ϕ(u) ∈ V (H) since ϕ is

a graph homomorphism. As ψ is also a graph homomorphism, ψ[ϕ(u)] ∈ V (J) for

all u ∈ V (G). By similar reasoning, ψ[ϕ(uv)] ∈ E(J) whenever uv ∈ E(G). Suppose

u ∼ v in the graph G. Then, ϕ(u) ∼ ϕ(v), and ψ[ϕ(u)] ∼ ψ[ϕ(v)]. Having satisfied

all of the conditions for a graph homomorphism, ψϕ ∈ Hom(G, J).

Since graph homomorphisms are functions, associativity of graph homomorphism

composition follows directly from associativity of function composition.

The homomorphism 1G : G → G that maps each vertex and edge of G to itself

will serve as the identity for any graph in Ob(FSG).

Having shown composition of graph homomorphisms yields a graph homomor-

phism, associativity of graph homomorphisms, and the existence of identity graph

homomorphisms, FSG is a category.
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�

Now, we can construct several subcategories of FSG.

Definition 3.1.3. Let Ob(EG) be the class of all finite, empty graphs, and let Hom(E1, E2)

be the set of all graph homomorphisms between the empty graphs E1 and E2.

Theorem 3.1.4. EG is a full subcategory of FSG.

Proof. All qualities of a category are inherited from FSG, so EG is clearly a category.

Since all finite, empty graphs are finite, simple graphs Ob(EG) ⊆ Ob(FSG). By

similar reasoning, {Hom(E1, E2)}E1,E2∈EG ⊆ {Hom(G,H)}G,H∈FSG. Every morphism

is itself a morphism in FSG, so every morphism is a restriction of the corresponding

morphism in FSG, and 1E ∈ Hom(E,E) in both EG and FSG. The above being

true, EG is a subcategory of FSG.

Define the functor E : EG → FSG such that E[E1] = E1 and E[ϕ] = ϕ, where E1

is an empty graph and ϕ is any graph homomorphism between two empty graphs.

Consider any two empty graphs E1, E2 ∈ Ob(EG), and consider some morphism ψ :

E[E1] → E[E2]. Since ψ ∈ Hom(E1, E2) such that ψ = E[ψ], E is a full functor, and

EG is a full subcategory of FSG.

�

Definition 3.1.5. Let Ob(P) be the class of all finite paths, and let Hom(P1, P2) be

the set of all graph homomorphisms between the paths P1 and P2.

Theorem 3.1.6. P is a full subcategory of FSG.

Proof. All qualities of a category are inherited from FSG, so P is clearly a category.

Since all finite paths are finite, simple graphs Ob(P) ⊆ Ob(FSG). By similar

reasoning, {Hom(P1, P2)}P1,P2∈P ⊆ {Hom(G,H)}G,H∈FSG. Every morphism is itself a

morphism in FSG, so every morphism is a restriction of the corresponding morphism

in FSG. And, 1P ∈ Hom(P, P ) in both P and FSG. The above being true, P is a

subcategory of FSG.
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Define the functor P : P → FSG such that P[P1] = P1 and P[ϕ] = ϕ, where

P1 is a path and ϕ is any graph homomorphism between two paths. Consider any

two paths P1, P2 ∈ Ob(P), and consider some morphism ψ : P[P1] → P[P2]. Since

ψ ∈ Hom(P1, P2) such that ψ = P[ψ], P is a full functor, and P is a full subcategory

of FSG.

�

As you might have noticed, the two proofs are identical except for names. One

can easily confirm that the same proof will work for the class of all connected graphs,

the class of all disconnected graphs, the class of all cycles, the class of all trees, the

class of all forests, the class of all complete graphs, and the class of all planar graphs.

Each special class of subgraphs has a corresponding full subcategory of FSG. The full

category of connected graphs will be denoted CG. The full category of disconnected

graphs will be denoted DG. The full category of cycles will be denoted O. The full

category of trees will be denoted T . The full category of forests will be denoted F .

The full category of complete graphs will be denoted K. The full category of planar

graphs will be denoted R.

3.2 IPFSG

As with FSG, we will construct the category of finite incidence posets, and then we

will construct special subcategories of the same.

Definition 3.2.1. Let Ob(IPFSG) be the class of all incidence posets, and let Hom(IPA, IPB)

be the set of all IP-morphisms from IPA to IPB, where IPA, IPB ∈ Ob(IPFSG).

Theorem 3.2.2. IPFSG is a category.

Proof. Let α ∈ Hom(IPA, IPB) and β ∈ Hom(IPB, IPC), where IPA, IPB, IPC ∈

Ob(IPFSG). We want to show βα ∈ Hom(IPA, IPC). As maximal elements are

mapped to maximal elements, (βα)(x) will be maximal in IPC for all x maximal in
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IPA. Similarly, (βα)(y) will be minimal in IPC for all y minimal in IPA. Suppose

a ≤ b for some a, b ∈ IPA. Since α and β are IP-morphisms, α(a) ≤ α(b) in

IPB, and (βα)(a) ≤ (βα)(b) in IPC . Suppose c 6= d and cIPA
(c) ∩ cIP )A(d) 6= ∅

for some maximal c, d ∈ IPA. It follows from the definition of IP-morphisms that

α(c) 6= α(d). As α preserves order, ∃e ∈ IPA 3 α(e) ≤ α(c) and α(e) ≤ α(d),

meaning cIPC
(α(c)) ∩ cIPC

(α(d)) 6= ∅. Therefore, (βα)(c) 6= (βα)(d), and βα ∈

Hom(IPA, IPC).

Since IP-morphisms are functions, associativity of IP-morphism composition fol-

lows directly from associativity of function composition.

The IP-morphism 1IPA
: IPA → IPA that maps each element of IPA to itself will

serve as the identity for any incidence poset IPA ∈ IPFSG.

Having shown IP-morphism composition yields an IP-morphism, IP-morphism

composition is associative, and the existence of identity IP-morphisms, IPFSG is a

category.

�

Having proved IPFSG is a category, we can now consider subcategories.

Definition 3.2.3. Let Ob(L) be the class of all cats’ cradles, and let Hom(L1, L2) be

the set of all IP-morphisms between the cat’s cradles L1 and L2.

Theorem 3.2.4. L is a full subcategory of IPFSG.

Proof. The category L inherits all of the qualities necessary to be a category directly

from IPFSG.

Since all cats’ cradles are incidence posets, Ob(L) ⊆ Ob(IPFSG). Similarly,

{Hom(L1, L2)}L1,L2∈L ⊆ {Hom(IPA, IPB)}IPA,IPB∈IPFSG
. Since every morphism in L

is also a morphism in IPFSG, every morphism in L is automatically the restriction

of the same morphism in IPFSG. It follows that 1L ∈ Hom(L,L) is in both L and

IPFSG, so identity functions in L are the same as those in IPFSG.
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Define the funtor L : L → IPFSG such that L[L1] = L1 and L[α] = α for all L ∈

Ob(L) and any morphism α. Consider any two cats’ cradles L1, L2 ∈ Ob(IP)FSG),

and consider some morphism β : L[L1] → L[L2]. Since β ∈ Hom(L1, L2) is an IP-

morphism such that β = L[β], L is a full functor, and L is a full subcategory of

IPFSG.

�

As with graphs, the proof of every full subcategory of IPFSG will be nigh exactly

the same as the previous proof. We now list the names of each subcategory important

to the present study: the full subcategory of empty incidence posets will be denoted

EIP , the full subcategory of valleys will be denoted V , the full subcategory of connected

incidence posets will be denoted CIP , the full subcategory of cat’s cradles will be

denoted L, the full subcategory of strings will be denoted G, the full subcategory of

saturated incidence posets will be denoted S, the full subcategory of problem-free

incidence posets will be denoted PF , the full subcategory of disconnected incidence

posets will be denoted DIP , and the full subcategory of heaps will be denoted H.

3.3 Categorical Equivalence

Having introduced FSG and IPFSG, the question of their equivalence can now be

broached. Intuitively, an incidence poset can be created from a graph. If considering

the graph G, its vertex set V (G) constitutes Max(IPG) for some incidence poset IPG,

and its edge set E(G) composes Min(IPG). An edge is less than a vertex if the vertex

is incident with the edge. In Figure 29, a graph H and its corresponding incidence

poset are shown.

We formalize this intuitive connection between graphs and their corresponding

incidence posets in the following definition.

Definition 3.3.1. Let G ∈ Ob(FSG). Define F[G] = (V (G) ∪ E(G),≤G) such that,

x, y ∈ F[G], x ≤ y if and only if x = y or y ∈ x with x ∈ E(G) and y ∈ V (G).
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u v

w

xy

z

u v w x y z

{u, v} {u, y} {v, y} {v, z} {x, z} {y, z}

Figure 29: H and the Incidence Poset Corresponding to H

Before we can show F[G] is an incidence poset, we must prove ≤G is a partial

order.

Theorem 3.3.2. If G ∈ Ob(FSG), ≤G as defined above is a partial order.

Proof. Reflexivity is immediate since x ≤G x by construction.

If x ≤G y and y ≤G x, two possibilities exist: x = y, or x ∈ y and y ∈ x.

Recall, x ∈ y means x is a vertex incident with the edge y, and y ∈ x means y is a

vertex incident with the edge x. However, this means x ∈ y and y ∈ x would imply

x, y ∈ V (G) and x, y ∈ E(G), which is impossible. Thus, ≤G is antisymmetric.

Suppose x ≤G y and y ≤G z. There are three options: y ∈ x, z ∈ y, or x = y = z.

If one of those three options were not the case, an edge in E(G) would contain another

edge in E(G), which is impossible. If y ∈ x, y is a vertex incident with the edge x,

and z must be a vertex as well. This means y = z, which implies z ∈ x, and x ≤G z.

If z ∈ y, z is a vertex incident with the edge y, and x must also be an edge. It follows

that x = y, which also implies z ∈ x, meaning x ≤G z. If x = y = z, x ≤G z by

definition of ≤G.

Having shown ≤G is reflexive, antisymmetric, and transitive, we may conclude ≤G

is a partial order.

�

Theorem 3.3.3. F[G] is an incidence poset.

Proof. For purposes of clarity, this proof will be organized with respect to the condi-

tions for incidence posets laid out in Definition 2.2.11.
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(1) Suppose x ∈ V (G). Since x is not a set, there does not exists any element

greater than x, so x ∈ Max(F[G]),∀x ∈ V (G). Suppose y = {a, b} ∈ E(G).

Then, y ≤G a and y ≤G b. Since the edges of E(G) comprise only vertices

from V (G), there cannot exist another z ∈ E(G) such that z ∈ y. Therefore,

y ∈ Min(F[G]), ∀y ∈ E(G). Having exhausted every element of V (G) ∪ E(G),

we have shown that either c ∈ Max(F[G]) or c ∈ Min(F[G]) for all c ∈ F[G].

(2) Being incident with exactly two vertices in V (G),
∣∣CF[G](y)

∣∣ = 2,∀y ∈ Min(F[G]).

In other words, every minimal element of F[G] is covered by exactly two maxi-

mal elements.

(3) Every edge in E(G) is necessarily distinct. Since every edge in E(G) is a two-

element subset of V (G), the set of covers of every minimal element in F[G] will

also be distinct.

(4) The finite union of finite sets is finite, so Max(F[G]) = V (G) ∪ E(G) is finite.

Having satisfied the four conditions for incidence posets, F[G] ∈ Ob(IPFSG).

�

Naturally, we would also like to construct morphisms in {Hom(IPA, IPB)}IPA,IPB∈IPFSG

from morphisms in {Hom(G,H)}G,H∈FSG.

Definition 3.3.4. Let F[ϕ] : F[G]→ F[H] such that F[ϕ](x) = ϕ(x), where ϕ : G→

H is some graph homomorphism.

Theorem 3.3.5. F[ϕ] : F[G]→ F[H] is an IP-morphism.

Proof. Recall ϕ(x) : G → H is a graph homomorphism. Since any x ∈ G is also

in F[G], and any φ(x) ∈ H is also in F[H], we know F[ϕ](x) is well-defined. We
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prove F[ϕ] is an IP-morphism as we proved F[G] is an incidence poset: by referencing

Definition 2.2.12, the definition of IP-morphisms.

(1) We know ϕ(x) ∈ V (H),∀x ∈ V (G), so F[ϕ](x) ∈ Max(F[H]),∀x ∈ Max(F[G]).

(2) Similarly, ϕ(y) ∈ E(H),∀y ∈ E(G) implies F[ϕ](y) ∈ Min(F[H]),∀y ∈ Min(F[G]).

(3) Regardless of the nature of any z ∈ G, F[ϕ](z) ≤H F[ϕ](z). Let a ∈ Min(F[G]),

b ∈ Max(F[G]), and a <G b. It follows that a is an edge incident with

the vertex b in the graph G. Therefore, a = {b, c} for some c ∈ V (G).

Graph homomorphisms preserve adjacency, so ϕ(b) ∼ ϕ(c), and ϕ(a) is in-

cident with ϕ(b) and ϕ(c). So, F[ϕ](a) ∈ cF[H](ϕ(b)) ∩ cF[H](ϕ(c)), proving

a ≤G b =⇒ F[ϕ](a) ≤H F[ϕ](b) for all a, b ∈ F[G].

(4) Let f, g ∈ Max(F[G]) 3 f 6= g and
∣∣cF[G](f) ∩ cF[G](g)

∣∣ 6= 0. Then, f, g ∈ V (G),

and f ∼ g. Since ϕ preserves adjacency, and vertices in a graph are not adjacent

with themselves,ϕ(f) 6= ϕ(g), which implies F[ϕ](f) 6= F[ϕ](g).

Having satisfied the conditions necessary to be an IP-morphism, F[ϕ] is also an

IP-morphism.

�

Now that we have formalized the connection between graphs and incidence posets

and graph homomorphisms and IP-morphisms, we can think of F as a functor from

FSG to IPFSG. The two above theorems define the object map and morphism map,

respectively, of F. To prove F is a functor, we still need to show F[1G] = 1F[G] and

F[ϕψ] = F[ϕ]F[ψ].

Theorem 3.3.6. F : FSG → IPFSG is a functor.
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Proof. Consider F[1G], where G ∈ Ob(FSG). We can see that

F[1G](x) = 1G(x) = x

as desired.

Let ϕ : G → H, ψ : H → K, and G,H,K ∈ Ob(FSG). Consider F[ϕψ]. Using

the properties of ϕ, ψ, and F,

F[ϕψ](x) = (ϕψ)(x)

= ϕ(ψ(x))

= ϕ(F[ψ](x))

= F[ϕ](F[ψ](x))

= (F[ϕ]F[ψ])(x)

Having shown F preserves identities and composition of functions, F is a functor.

�

Categorical equivalence between FSG and IPFSG being the current goal, we must

show F is full and faithful, at which point, we will have shown FSG is equivalent to

IPFSG.

Theorem 3.3.7. The functor F : FSG → IPFSG is full and faithful.

Proof. Let G,H ∈ Ob(FSG), and let α ∈ Hom(F[G],F[H]). Consider the function

φ : G → H such that ϕ(x) = α(x). We can see that F[ϕ](x) = ϕ(x) = α(x), and F

is, therefore, full.
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Let J,K ∈ Ob(FSG), and let µ, σ ∈ Hom(J,K). Suppose F[µ] = F[σ]. Then,

F[µ](x) = F[σ](x)

µ(x) = F[σ](x)

µ(x) = σ(x)

as desired. Thus, F is faithful.

�

From these theorems, the categorical equivalence of FSG and IPFSG follows

immediately.

Theorem 3.3.8. FSG is equivalent to IPFSG.

3.4 Equivalent Subcategories

It would stand to reason that the subcategories of FSG are equivalent to subcategories

of IPFSG. We have already presented the subcategories of FSG and IPFSG that will

be equivalent to one another, and the proofs will follow. However, we will not go

through the steps of proving the restriction of F to each subcategory is full and

faithful. Rather, we will prove F[G] ∈ Ob(Y) for all G ∈ Ob(X ), and we will prove

∃H 3 F[H] ∼= IPH ∀IPH ∈ Ob(Y), where X and Y are subcategories of FSG

and IPFSG, respectively. That F restricted to the appropriate categories is full and

faithful should, at that point, be clear, so we shall consider the proof of the above

conditions sufficient to prove X is equivalent to Y .

Theorem 3.4.1. The category of empty graphs EG is equivalent to the category of

empty incidence posets EIP .

Proof. In this proof and those to follow, we will enumerate the two conditions men-

tioned above as (1) and (2), with (1) representing F[G] ∈ Ob(Y) for all G ∈ Ob(X ),
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and (2) representing ∃H 3 F[H] ∼= IPH ∀IPH ∈ Ob(Y), where X and Y are the

categories under investigation.

(1) Since all E ∈ Ob(EG) have no edges, F|EG [E] will have no minimal elements,

and F|EG [E] ∈ Ob(EIP ) ∀E ∈ Ob(EG).

(2) Consider some IPE ∈ Ob(EIP ). If IPE has n elements, then any empty graph

En having n vertices will be such that
∣∣Max(F|EG [En])

∣∣ = n, and, therefore,

F|EG [En] ∼= IPE.

�

Theorem 3.4.2. The category of path graphs P is equivalent to the category of valley

incidence posets V.

Proof. x

(1) Consider some P ∈ Ob(P). P contains exactly two vertices of degree 1 that we

shall call x1 and x2. It follows that x1, x2 ∈ Max(F|P [P ]), and
∣∣∣cF|P [P ](x1)

∣∣∣ =∣∣∣cF|P [P ](x2)
∣∣∣ = 1. Every other y ∈ V (P ) has degree 2, so

∣∣∣cF|P [P ](y)
∣∣∣ = 2,∀y ∈

V (P ). As no other vertices exist in P , condition (1) is satisfied.

(2) Let IPV ∈ Ob(V). If |Max(IPV )| = n, any path Pn ∈ Ob(P) having n vertices

will be such that F|P [Pn] ∼= IPV .

�

Theorem 3.4.3. The category of connected graphs CG is equivalent to the category

of connected incidence posets CIP .

Proof. x
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(1) Consider some C ∈ Ob(CG). There exist m paths P k
i,j between any two vertices

xi, xj ∈ V (C) with i 6= j and 1 ≤ k ≤ m such that P k
i,j is a subgraph of C. It

follows that F|CG [P k
i,j] is a subposet of F|CG [C] for all xi, xj ∈ V (C). From the pre-

vious theorem, we know F|CG [P k
i,j] is a valley between xi and xj in F|CG [C]. Since

every element of Max(F|CG [C]) is some xi ∈ V (C), there exists a valley between

every pair of vertices in F|CG [C]. Therefore, F|CG [C] ∈ Ob(CIP ), ∀C ∈ Ob(CG).

(2) Let IPC ∈ Ob(CIP ), and let |Max(IPC)| = n. Consider the poset IPC̃ isomor-

phic to IPC such that every maximal element of IPC̃ bears the same name as in

IPC , and every minimal element y has the name {a, b}, where {a, b} = CIPC
(y).

Consider the k valley subposets IP `
Vi,j

of IPC̃ connecting the maximal elements

xi and xj of IPC̃ for i 6= j. We know there exists a P̃ `
i,j such that F[P̃ `

i,j] = IP `
Vi,j

for every i, j, and `. Let

G̃ =
⋃

1≤i<j≤n

⋃
1≤`≤k

P̃ `
i,j

In other words, G̃ is the graph whose edge and vertex sets are the union of

the edge and vertex sets of every P̃ `
i,j. G̃ is connected automatically, as the

vertices come from paths. We can also see that we have constructed the graph

whose vertices and edges are exactly the maximal and minimal elements of IPC̃ ,

meaning F[G̃] = IPC̃
∼= IPC , as desired.

�

Theorem 3.4.4. The category of disconnected graphs DG is equivalent to the category

of disconnected incidence posets DIP .

Proof. x

(1) Every disconnected graph (and disconnected incidence poset) is the union of

connected graphs, i.e., its connected components. So, F|DG
[D] for any dis-

connected graph D is really F|CG [C1] ∪ F|CG [C2] ∪ · · · ∪ F|CG [Cn], where D =
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C1∪· · ·∪Cn. From the previous proof, we know F|DG
[D] = F|CG [C1]∪F|CG [C2]∪

· · · ∪ F|CG [Cn], and since every Ci and Cj are mutually exclusive, we know ev-

ery corresponding F|CG [Ci] and F|CG [Cj] are mutually exclusive as well. Since

F|DG
[D] is disconnected, we have shown F|DG

[D] ∈ Ob(DIP ).

(2) Let IPD = IPC1 ∪ · · · ∪ IPCn be a disconnected incidence poset having the n

connected components IPC1 through IPCn . From the previous proof, we know

there exist connected graphs G̃i such that F|CG [G̃i] ∼= IPCi
for every 1 ≤ i ≤ n.

It follows that ⋃
1≤i≤n

F|CG [G̃i] ∼=
⋃

1≤i≤n

IPCi

which implies
⋃

1≤i≤n G̃ ∈ Ob(DG) such that F|DG
[
⋃

1≤i≤n G̃] ∼= IPD.

�

Theorem 3.4.5. The category of cycles O is equivalent to the category of cats’ cradles

L.

Proof. x

(1) Let O ∈ Ob(O). Since every o ∈ V (O) has degree two,
∣∣∣cF|O[O](x)

∣∣∣ = 2 for all

x ∈ Max(F|O[O]), and F|O[O] ∈ Ob(L) for all O ∈ Ob(O).

(2) Let IPL ∈ Ob(L). Consider the incidence poset IPL̃ isomorphic to IPL such

that every maximal element bears the same name, and every minimal element

y = CIP
L̃
(y). Let L = (Max(IPL̃),Min(IPL̃)). Clearly, F|O[L] = IPL̃, which

implies F|O[L] ∼= IPL.

�

Theorem 3.4.6. The category of forests F is equivalent to the category of heaps H.
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Proof. x

(1) Let F ∈ Ob(F). Suppose F|F [F ] contains a cat’s cradle IPL as a subposet.

Then, Max(IPL) ⊆ V (F ), and Min(IPL) ⊆ E(F ). It follows that O =

(Max(IPL),Min(IPL)) is a subgraph of F that is a cycle, contradicting F being

a forest. Therefore, F|F [F ] contains no cat’s cradles.

(2) Let IPH ∈ Ob(H). Consider the incidence poset IPH̃ defined such that Max(IPH̃) =

Max(IPH) and y ∈ Min(IPH̃) =⇒ y = CIP
H̃

(y) = CIPH
(y). It is clear that

IPH̃
∼= IPH . As in the previous proofs, the existence of a forest F ′ such that

F|F [F ′] = IPH̃ is immediate. Therefore, F|F [F ′] ∼= IPH , as desired.

�

Theorem 3.4.7. The category of trees T is equivalent to the category of strings G.

Proof. x

(1) Let T ∈ Ob(T ). Since T is also a forest, F|T [T ] will have no cat’s cradle sub-

poset. Since T is connected, F|T [T ] will be connected. Being connected and

having no cat’s cradle, F|T [T ] ∈ Ob(L).

(2) Again, since ∃F ∈ Ob(F) 3 F|F [F ] ∼= IPH for any IPH ∈ Ob(H), and ∃C ∈

Ob(CG) 3 F|CG [C] ∼= IPC for any IPC ∈ Ob(CIP ), it follows that ∃T ∈ Ob(T ) 3

F|T [T ] ∼= IPG for any IPG ∈ Ob(G), all trees being connected forests, and all

strings being connected heaps.

�

Theorem 3.4.8. The category of complete graphs K is equivalent to the category of

saturated incidence posets S.
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Proof. x

(1) Let Kn ∈ Ob(K). Kn has
(
n
2

)
edges, meaning F|K[Kn] has

(
n
2

)
=
(|Max(F|K[Kn])|

2

)
minimal elements, and is, therefore, saturated.

(2) Let IPS ∈ Ob(S). Consider IPS̃ ∈ Ob(S) such that IPS̃
∼= IPS, Max(IPS̃) =

Max(IPS), and y = CIPS
(y) for all y ∈ Min(IPS̃). Since

∣∣Min(IPS̃)
∣∣ =(|Max(IP

S̃
)|

2

)
, G 3 F[G] = IPS̃ must be complete. The theorem follows.

�

Theorem 3.4.9. The category of planar graphs R is equivalent to the category of

problem-free incidence posets PF .

Proof. x

(1) From the previous theorem, it follows that F[K5] ∼= IP5. It is also easy to verify

that F[K3,3] ∼= IP3,3. This being so, R ∈ Ob(R) will be such that F|R[R] has

neither an IP5 nor an IP3,3 subdivision, which implies F|R[R] ∈ Ob(PF).

(2) Using the same method of construction and same logic as in all of the previous

theorems showing one subcategory to be equivalent to another, it is easy to

construct a R′ such that F|R[R′] ∼= IPR for any IPR ∈ Ob(PF).

�
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CHAPTER 4

EQUALIZERS AND COEQUALIZERS

4.1 Equalizers

Having shown the categories FSG and IPFSG are equivalent, we can now leave

FSG behind and construct in IPFSG some of the categorical objects Buvaneswari

constructed in FSG. The first objects we will deal with, equalizers, have an intuitive

role within categories: they restrict the domain of two functions so that, under a

specific composition, the functions are equal.

Definition 4.1.1. Consider two morphisms f : A → B and g : A → B in the

category C. An equalizer of f and g in C is an object E along with a function e such

that

(1) e : E → A ∈ Hom(E,A),

(2) fe = ge, and

(3) For any morphism e′ : E ′ → A satisfying conditions (1) and (2), there exists a

unique morphism e : E ′ → E such that ee = e′.

We say equalizers exist in the category C when every pair of objects A and B in Ob(C)

and every two morphisms in Hom(A,B) have a corresponding equalizer (E, e). We

call E the equalizer object and e the equalizer function.

See Figure 30 for the diagrammatic definition of an equalizer. Though not men-

tioned in the proof, the existence of equalizers in IPFSG depends on IP∅, the incidence

poset having no elements. We will define the equalizer object of two IP-morphisms
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E

E ′ A B

∃!e′ e

e
f

g

Figure 30: An Equalizer Diagram

α and β as the incidence poset containing all elements for which α and β are equal.

You may ask, however, what happens when α and β are equal for no elements in the

domain? Then, IP∅ will be the equalizer object of α and β, and the function taking

IP∅ to the domain of α and β will be the equalizer function. This edge case will make

more sense after we have proven the following theorem.

Theorem 4.1.2. Equalizers exist in the category IPFSG.

Proof. If IPA = (A,≤) and IPB = (B,≤′) are finite incidence posets, let π :

IPA → IPB and τ : IPA → IPB be IP-morphisms. Consider the object IPE =

{x | π(x) = τ(x)} endowed with the partial order ≤ from IPA restricted to the ele-

ments of IPE. Finitely many maximal and minimal elements comprise IPE, so, to

show IPE ∈ OB(IPFSG), we need only show each minimal element is covered by

exactly two maximal elements. (Note that no two minimal elements of IPE can have

the same upperset since the same is true for IPA.) If IPE consists of only maxi-

mal elements, we are done, so consider some y ∈ IPE such that ∃x > y ∈ IPE.

Since x, y ∈ IPA, there exists x′ 3 x′ 6= x and x′ > y. Since π is an IP-morphism,

π(x) 6= π(x′), π(x) > π(y), and π(x′) > π(y). The same is true for τ , meaning

π(x′) = τ(x′), and x′ ∈ IPE. As no other element in IPA is greater than y, there

cannot exist another element in IPE greater than y. We have shown an arbitrary

minimal element y is covered by exactly two elements in IPE, so IPE ∈ Ob(IPFSG).

Define ϕ : IPE → IPA such that ϕ(x) = x. As ϕ is simply an inclusion map, and

the partial order on IPE is inherited from IPA, ϕ is an IP-morphism. It follows that

πϕ = τϕ.

Suppose IPE′ and ψ : IPE′ → IPA satisfy the same properties as IPE and ϕ,
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respectively. Let θ : IPE′ → IPE such that θ(z) = ψ(z). It follows that

(ϕθ)(k) = ϕ(θ(k))

= ϕ(ψ(k))

= ψ(k)

as desired. Let θ′ : IPE′ → IPE be some other morphism such that ϕθ′ = ψ. Then,

ψ(k) = ψ(k)

(ϕθ)(k) = (ϕθ′)(k)

ϕ(θ(k)) = ϕ(θ′(k))

θ(k) = θ′(k)

The final step holds since θ and θ′ are injective. Having shown the existence and

uniqueness of θ, the theorem is proven.

�

It is easy to verify (and rather intuitive) that, if (IPE, η) is an equalizer for some

two morphisms between IPA and IPB, then IPE is a subposet of IPA. This fact will

be important in the remaining theorems of this section. See Figure 31 for an example

of an equalizer. Note that IPE ⊆ IPA, but IPE is not a cat’s cradle. Even though

equalizers exist in IPFSG, equalizers do not necessarily exist in every subcategory of

IPFSG. As a matter of fact, very few subcategories have equalizers.

Theorem 4.1.3. Equalizers do not exist in L, the category of cats’ cradles.

Proof. See Figure 31 for a counterexample to the existence of equalizers in L.

�

Theorem 4.1.4. Equalizers do not exist in CIP , the category of connected incidence

posets.
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a b c d

e f g h

1 2 3 4 5 6

7 8 9 10 11 12

ϕ(1), ϕ(5) ϕ(2) ϕ(3), ϕ(6) ϕ(4)

ϕ(7) ϕ(8), ϕ(10), ϕ(12) ϕ(9) ϕ(11)

ψ(1), ψ(4) ψ(6), ψ(2) ψ(3) ψ(5)

ψ(7), ψ(9), ψ(11) ψ(8) ψ(12) ψ(10)

1 2 3

7 8

η(1) η(2) η(3)

η(7) η(8)

Figure 31: Top Row: IPA and IPB; Middle Row: ϕ, ψ ∈ Hom(IPA, IPB); Bottom

Row: The Equalizer (IPE, η) of ϕ and ψ

Proof. Since cat’s cradles are connected, Figure 31 will be a sufficient counterexample

to the existence of equalizers in CIP as well.

�

Theorem 4.1.5. Equalizers do not exist in V, the category of valleys.

Proof. Figure 32 demonstrates a counterexample to equalizers existing in V . Since

IPE is not a valley, α and β do not have an equalizer.

�

Theorem 4.1.6. Equalizers do not exist in G, the category of strings.

Proof. Since all valleys are strings, and equalizers do not exist in V , G cannot have

equalizers.

�
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a b c

d e

1 2 3 4 5

6 7 8 9

α(1), α(3), α(5) α(2), α(4)

α(6), α(7), α(8), α(9)

α(1), α(5) α(2), α(4) α(3)

α(6), α(9) α(7), α(8)

1 2 4 5

6 9

η(1), η(5) η(2), η(4)

η(6), η(9)

Figure 32: Top Row: IPV1 and IPV2 ; Middle Row: α, β ∈ Hom(IPV1 , IPV2); Bottom

Row: The Equalizer (IPE, η) of α and β

Theorem 4.1.7. Equalizers exist in H, the category of heaps.

Proof. Figure 32 demonstrates the main problem with equalizers in categories con-

taining only connected incidence posets: the equalizer can easily be disconnected.

However, the equalizer cannot create new structure, i.e., since equalizers are subsets

of those incidence posets they map into, they cannot have elements their codomain do

not have. More formally, if IPH1 and IPH2 are heaps, and α, β ∈ Hom(IPH1 , IPH2),

then any equalizer (IPE, η) will be such that IPE ⊆ IPH1 . Theorem 4.1.2 shows

(IPE, η) exists, and IPE cannot have any cat’s cradles since IPH1 does not have any

cat’s cradles; therefore, the equalizer of any two morphisms between any two objects

in H will also be in H.

�

Theorem 4.1.8. Equalizers exist in EIP , the category of empty incidence posets.

Proof. Using the same logic as in the previous theorem, the equalizer of any two

morphisms between any two empty incidence posets will be empty.
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�

Theorem 4.1.9. Equalizers do not exist in DIP , the category of disconnected inci-

dence posets.

Proof. Figure 33 shows two morphisms between disconnected incidence posets whose

equalizer is connected, and, therefore, not in Ob(DIP ).

�

a b c d

e f

1 2 3 4

5 6

σ(1), σ(3) σ(2), σ(4)

σ(5), σ(6)

τ(1) τ(2) τ(3) τ(4)

τ(5) τ(6)

1 2

5

η(1) η(2)

η(5)

Figure 33: Top Row: IPD1 and IPD2 ; Middle Row: σ, τ ∈ Hom(IPD1 , IPD2); Bottom

Row: The Equalizer (IPE, η) of σ and τ

Theorem 4.1.10. Equalizers exist in PF , the category of problem-free incidence

posets.

Proof. As stated in Theorem 4.1.7, if we couple two incidence posets without cat’s

cradles with any two IP-morphisms between them, then the corresponding equalizer

will also lack a cat’s cradle. Likewise, we can couple two incidence posets IPPF1 and
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IPPF2 without any IP5 or IP3,3 subdivisions with any two IP-morphisms between

IPPF1 and IPPF2 , and the resulting equalizer must also be without any IP5 or IP3,3

subdivisions.

�

Theorem 4.1.11. Equalizers exist in S, the category of saturated incidence posets.

Proof. By definition, IP-morphisms cannot map two, distinct, maximal elements cov-

ering the same minimal element in the domain to the same maximal element in the

codomain. This condition ensures that any equalizer of two morphisms between sat-

urated incidence posets will also be saturated.

�

4.2 Coequalizers

Coequalizers are the duals of equalizers in a category. In other words, coequalizers

share a structure similar to equalizers, except the domains and codomains of every

function are swapped. One can observe this relationship by comparing Figures 30

and 34.

Definition 4.2.1. Consider two morphisms h : D → C and k : D → C in the

category C. A coequalizer of h and k in C is an object Q along with a function q such

that

(1) q : C → Q ∈ Hom(Q,C),

(2) qh = qk, and

(3) For any morphism q′ : C → Q′ satisfying conditions (1) and (2), there exists a

unique morphism q : Q→ Q′ such that qq = q′.
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We say coequalizers exist in the category C when every pair of objects D and C in

Ob(C) and every two morphisms in Hom(D,C) have a corresponding coequalizer

(Q, q).

Q′

Q C D

∃!q
q′

q

h

k

Figure 34: A Coequalizer Diagram

Theorem 4.2.2. Coequalizers do not exist in IPFSG.

Proof. Consider IPC = (C,≤), where C = {c}, and ≤= {(c, c)}. Consider also

IPD = (D,≤′), where D = {d, d′, e}, and ≤′= {(d, d), (d′, d′), (e, e), (e, d), (e, d′)}.

Define f : IPC → IPD such that f(c) = d, and define g : IPC → IPD such that

g(c) = d′.

For some object IPF and morphism h to be a coequalizer of f and g, it must be

the case that hf = hg. However, this would imply h(d) = h(d′), which is forbidden

under the definition of IP-morphisms.

The theorem is proven.

�

Figure 35 below shows the incidence posets and IP-morphisms discussed in the

previous proof. We can find almost exactly the same problem in almost all of the

subcategories we have studied. At least, IPC is a subset of or equal to some valley,

cat’s cradle, connected incidence poset, string, heap, problem-free incidence poset, or

saturated incidence poset, and IPD is an object of the category corresponding to each

of those classes of incidence posets as well. It follows that none of those categories

can have coequalizers (as stated in the theorem below).

Theorem 4.2.3. Coequalizers do not exist in V, L, CIP , G, H, PF , or S.



43

d d′ c

e

f(c)

g(c)

Figure 35: IPC , IPD, f , and g

By making a simple change, we can find an incredibly similar problem in the

category of disconnected incidence posets (see Figure 36). As before, there does

not exist a function h from IPD to any incidence poset that will be able to satisfy

(hf)(c) = (hg)(c). It follows that coequalizers do not exist in DIP .

d d′
d′′

c
c′

e

f(c)

g(c)

f(c′)

g(c′)

Figure 36: IPC , IPD, f , and g

Theorem 4.2.4. Coequalizers do not exist in DIP .

Having demonstrated when equalizers and coequalizers exist or do not exist within

IPFSG, we can move on to the more complicated problem of products and coproducts.

Though more complicated, products are fundamental within many, disparate areas of

mathematics. One of the first topologies a student learns is the Product Topology, and

even middle or high school students are exposed to products when they start studying

the Cartesian coordinate system. This being the case, we are often interested in the

structure of products within categories, as the structure is often rich enough to be
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interesting, yet accessible enough to be one of the first categorical objects studied

when investigating a new category.

4.3 Products

The most natural notion of product is the Cartesian product. Usually, the product of

two or more partially ordered sets, Πn
i=1Pi = P1×· · ·×Pn, is the set Cartesian product

of the vertices along with the partial order (p1, . . . , pn) ≤× (q1, . . . , qn) ⇐⇒ pi ≤i qi

for all i, where ≤i is the partial order of Pi. We can think of the Cartesian product

inheriting its order from the posets composing it. Consider Figure 37 below. On the

left are two incidence posets, IPA and IPB, and their Cartesian product is on the

right.

Figure 37: IPA, IPB, and IPA × IPB

We are concerned with the categorical notion of products, and we consult [3] for

the following definition. We define the categorical product for finitely many objects

of the category C since all of the objects in FSG and IPFSG are finite.

Definition 4.3.1. A product in C for the family of objects {Ai | Ai ∈ Ob(C), 1 ≤ i ≤ n}

is an object D ∈ Ob(C) together with a family of morphisms {πi | πi ∈ Hom(D,Ai)}

such that for every object C and family of morphisms {ϕi | ϕi ∈ Hom(C,Ai)}, there

exists a unique morphism ϕ ∈ Hom(C,D) such that πiϕ = ϕi for all 1 ≤ i ≤ n.

That the Cartesian product will not be the categorical object in IPFSG is plain.

Most clearly, there are elements of IPA× IPB that are neither maximal nor minimal,

and the minimal element is covered by more than two elements. To fix these issues, we
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construct an incidence poset whose minimal elements are generated by a rule applied

to the Cartesian product of the maximal elements, rather than pulling the minimal

elements from the Cartesian product of the minimal elements.

Define IPA1X IPA2X · · ·X IPAn = X n
i=1IPAi

such that

(i) Max(X n
i=1IPAi

) = Max(IPA1)×Max(IPA2)× · · · ×Max(IPAn), and

(ii) Whenever two maximal elements, (a1, a2, . . . , an) and (b1, b2, . . . , bn) with ai, bi ∈

Max(IPAi
), are such that each

∣∣∣cIPAi
(ai) ∩ cIPAi

(bi)
∣∣∣ = 1 and no cIPAi

(ai) or

cIPAi
(bi) is ∅, create a minimal element called {a1a2 · · · an, b1b2 · · · bn} that is

strictly less than (a1, a2, . . . , an) and (b1, b2, . . . , bn).

In other words, Max(X n
i=1IPAi

) comprises the elements of the set Cartesian product

of maximal elements of IPA1 through IPAn , and there exists a minimal element of

X n
i=1IPAi

covered by two maximal elements from X n
i=1IPAi

only when every coordi-

nate of the two maximal elements cover one element in common in their respective

incidence posets, IPAi
. For an example of X n

i=1IPAi
, see Figure 38.

a b

c

w x y

z

(a, w) (a, x) (a, y) (b, w) (b, x) (b, y)

{aw, by} {ay, bw}

Figure 38: IPA, IPB, and IPAX IPB

Theorem 4.3.2. The construction X n
i=1IPAi

is an object of IPFSG.

Proof. Every element of X n
i=1IPAi

is maximal or minimal. Each minimal element

{a1 . . . an, b1 . . . b2} is in the lowerset of exactly two maximal elements, (a1, . . . , an)

and (b1, . . . , bn), and is therefore covered by exactly two maximal elements. The

uniqueness of the minimal elements guarantees distinct minimal elements will have
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distinct uppersets. The set Cartesian product of finitely many finite sets is finite, so

there are finite maximal elements in X n
i=1IPAi

, which implies there are finite minimal

elements as well.

Therefore, X n
i=1IPAi

∈ Ob(IPFSG).

�

The above theorem leads us to the main theorem of this section.

Theorem 4.3.3. The category IPFSG has finite products.

Proof. Consider the incidence poset IPD = X n
i=1IPAi

. Define the family of maps

{αi : IPD → IPAi
}ni=1 as follows:

(1) αi(x1, . . . , xn) = xi

(2) If z = {x1x2 . . . xn, y1y2 . . . yn}, αi(z) = z′, where z′ ∈↓ xi∩ ↓ yi.

We want to show {αi}ni=1 is a family of IP-morphisms. Every input of each αi yields

exactly one output, meaning every αi is a function. The first condition guarantees

maximal elements will be mapped to maximal elements while the second does the same

for minimal elements. Consider some a, b ∈ IPD 3 a ≤ b. If a = b, αi(a) ≤ αi(b)

automatically, so suppose a < b. This means a =↓ b∩ ↓ c for some c 6= b in Max(IPD).

So, αi(a) = a′, where a′ ∈↓ bi∩ ↓ ci, confirming αi(a) < αi(b). Now, consider some

(e1, . . . , en) and (f1, . . . , fn) such that |↓ (e1, . . . , en)∩ ↓ (f1, . . . , fn)| = 1. It follows

that |↓ ei∩ ↓ fi| = 1. Therefore, each αi is an IP-morphism. Note, also, that each αi

is surjective.

Let IPC be some incidence poset in Ob(IPFSG) with a family of IP-morphisms

{βi : IPC → IPAi
}ni=1 satisfying the same properties as {αi}ni=1. For each

c = (c1, . . . , cn) ∈ IPC

we know βi(c) ∈ IPAi
, so

(β1(c), β2(c), . . . , βn(c)) ∈ Max(IPD).
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Let ϕ : IPC → IPD such that ϕ(c) = (β1(c), β2(c), . . . , βn(c)). For any maximal

element of IPC , we see that αiϕ = βi. Suppose w = {u1 · · ·un, v1 · · · vn} ∈ Min(IPD).

We know

|cIPC
((u1, . . . , un)) ∩ cIPC

((v1, . . . , vn))| = 1

for all i, so the same will be true for (β1(u1), . . . , βn(un)) and (β1(v1), . . . , βn(vn)). If

we let

ϕ(w) = {β1(u1) · · · βn(un), β1(v1) · · · βn(vn)}

we see that αiϕ = βi for all elements in IPC .

We wish to show ϕ is unique. Suppose there exists some ψ : IPC → IPD such

that αiψ = βi for all 1 ≤ i ≤ n. Note αiϕ = αiψ = βi. Let d ∈ Max(IPC) with

ϕ(d) = (g1, . . . , gn) and ψ(d) = (h1, . . . , hn). It follows that gi = βi(d) = hi for all i.

Since ϕ(d) = ψ(d) for all maximal d in IPC , it follows immediately that ϕ(k) = ψ(k)

for all minimal k in IPC .

Having shown any ψ satisfying the same conditions as ϕ must equal ϕ, ϕ is unique,

and IPD is a categorical product for the incidence posets IPA1 through IPAn . The

theorem is proven.

�

As with Equalizers and Coequalizers, we are interested in which subcategories

of IPFSG contain their products. We can knock three of the categories out with

one example (see Figure 39). Since IPV1 and IPV2 are both valleys, connected, and

strings, but IPV1X IPV2 is neither a valley, connected, nor a string, so products do

not exist in those categories.

Theorem 4.3.4. Finite products do not exist in V, CIP , or G.

Similarly, finite products do not exist in the category of cats’ cradles, but a proof

will do better than a figure.

Theorem 4.3.5. Finite products do not exist in L.
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a b

c

1 2

3

(a, 1) (a, 2) (b, 1) (b, 2)

{a1, b2} {a2, b1}

Figure 39: IPV1 , IPV2 , and IPV1X IPV2

Proof. Consider the cat’s cradle in Figure 40 having 3 maximal elements, IP3. In

IP3X IP3, |cIP3X IP3((a, a)) ∩ cIP3X IP3((b, b))| = 1, |cIP3X IP3((a, a)) ∩ cIP3X IP3((b, c))| =

1, and |cIP3X IP3((a, a)) ∩ cIP3X IP3((c, c))| = 1. However, this means |cIP3X IP3((a, a))| ≥

3, which means IP3X IP3 is not a cat’s cradle, and the theorem is proven.

�

a b c

d e f

Figure 40: IP3

Notice that, in IPAX IPB, (x, y) cannot cover a common minimal element with

(x, z), where x ∈ IPA and y, z ∈ IPB. From this, it follows that the finite product of

nontrivial saturated incidence posets will not be saturated.

Theorem 4.3.6. Finite products do not exist in S, the category of saturated incidence

posets.

Theorem 4.3.7. Finite products exist in DIP , the category of disconnected incidence

posets.

Proof. Let X n
i=1IPDi

be the categorical product of n disconnected incidence posets.

Consider (x1, . . . , xn), (y1, . . . , yn) ∈ Max(X n
i=1IPDi

) such that no valley connects xi

and yi in any IPDi
.
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Suppose there exists a valley between (x1, . . . , xn) and (y1, . . . , yn). Then, there

would exist a sequence of elements
{
zij
}k
j=1

such that
∣∣∣cIPDi

(xi) ∩ cIPDi
(zi1)

∣∣∣ = 1,∣∣∣cIPDi
(zij) ∩ cIPDi

(zij+1)
∣∣∣ = 1, and

∣∣∣cIPDi
(zik) ∩ cIPDi

(yi)
∣∣∣ = 1 for all i. However, this

sequence would also constitute a valley between xi and yi in IPDi
, which is a contra-

diction.

Therefore, there is no valley between (x1, . . . , xn) and (y1, . . . , yn), and X n
i=1IPDi

is disconnected, as desired.

�

4.4 Coproducts

As with equalizers and coequalizers, there exists a dual notion of products called

‘coproducts.’

Definition 4.4.1. A coproduct for the family of objects {Ai | i ∈ I} in the category C

is an object
∐

i∈I Ai = E of C and a family of morphisms {ιi : Ai → E | i ∈ I} such

that, for any object B and family of morphisms {κi : Ai → B | i ∈ I}, there exists a

unique morphism λ : E → B 3 λιi = κi, ∀i ∈ I.

Define IPA1

∐
· · ·
∐
IPAn =

∐n
i=1 IPAi

such that

(i) Max (
∐n

i=1 IPAi
) = [Max(IPA1)× {1}] ∪ · · · ∪ [Max(IPAn)× {n}], and

(ii) Whenever two maximal elements,
(
x
(i)
u , i

)
and

(
x
(j)
v , j

)
, with x

(i)
u ∈ Max(IPAi

),

x
(j)
v ∈ Max(IPAj

), and i, j ∈ N, are such that i = j, x
(i)
u 6= x

(j)
v , and

∣∣∣↓ x(i)u ∩ ↓ x(j)v

∣∣∣,
create a minimal element

{
x
(i)
u , x

(j)
v , i

}
that is strictly less than

(
x
(i)
u , i

)
and(

x
(j)
v , j

)
.

Basically,
∐n

i=1 IPAi
represents the disjoint union of IPA1 through IPAn . The coprod-

uct of IPA1 through IPAn could be thought of as drawing each IPAi
on a different
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sheet of paper, then taping the n pieces of paper together and declaring it a new

poset.

Theorem 4.4.2. The construction
∐n

i=1 IPAi
is an object in the category IPFSG.

Proof. Every element of
∐n

i=1 IPAi
is maximal or minimal. Each minimal element,{

x
(i)
u , x

(j)
v , i

}
, is in the lowerset of exactly two maximal elements,

(
x
(i)
u , i

)
and

(
x
(j)
v , j

)
,

and must be covered by exactly two maximal elements. The uniqueness of the minimal

elements guarantees distinct, minimal elements will have distinct uppersets. Since the

union of finite sets is finite, there are finite maximal elements in
∐n

i=1 IPAi
, which

implies there are finite minimal elements as well.

Therefore,
∐n

i=1 IPAi
∈ Ob(IPFSG).

�

This construction leads to the main theorem of this section.

Theorem 4.4.3. Finite coproducts exist and are unique (up to isomorphism) in the

category IPFSG.

Proof. Consider the incidence poset IPE =
∐n

i=1 IPAi
. Define the family of IP-

morphisms {ιi : IPAi
→ IPE |} {1 ≤ i ≤ n} such that

(a) For x ∈ Max(IPAi
), ιi(x) = (x, i), and

(b) ιi(y) = {a, b, i}, where y ∈ Min(IPAi
), a 6= b, and a, b ∈↑ y.

We want to show {ιi}ni=1 is a family of IP-morphisms. Every input of each ιi yields

exactly one output, meaning every ιi is a function. The first condition guarantees

maximal elements will be mapped to maximal elements while the second does the

same for minimal elements. Consider some c, d ∈ IPAi
3 c ≤ d. If c = d, ιi(c) ≤ ιi(d)

automatically, so suppose c < d. This means c ∈↓ d ∩ ↓ b for some b 6= d in IPAi
.

So, ιi(c) = {b, d, i}, where {b, d, i} ∈↓ (b, i)∩ ↓ (d, i), confirming ιi(c) < ιi(d). Now,
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consider some arbitrary (u, i) and (v, j) such that |↓ (u, i) ∩ ↓ (v, j)| = 1. It follows

that i = j, and |↓ u ∩ ↓ v| = 1. Therefore, each ιi is an IP-morphism. Note, also,

that each ιi is injective, as (g, h, i) = (l, k, j) =⇒ ↓ g ∩ ↓ h =↓ l ∩ ↓ k.

Let IPF satisfy the same conditions as IPE, and let the family of IP-morphisms

{κi : IPAi
→ IPF | 1 ≤ i ≤ n} satisfy the same conditions as {ιi}ni=1. Define a func-

tion λ : IPE → IPF such that λ(z, i) = (z, i), and λ(x, y, i) = (x, y, i). It follows

immediately that λιi = κi,∀i 3 1 ≤ i ≤ n. Suppose another function, ρ, also satisfies

the condition ριi = κi. Since each ιi is injective,

ριi = κi

ριi = λιi

ρ = λ

which proves λ is unique up to isomorphism.

�

While not complex, the result that the coproduct of n incidence posets is their

disjoint union immediately yields which subcategories of IPFSG will also have finite

coproducts. Obviously, no category of connected incidence posets will remain con-

nected when gathered in a coproduct. The disjoint union of problem-free incidence

posets will be problem-free, the disjoint union of disconnected incidence posets will

be disconnected, and the disjoint union of heaps will still be a heap. Therefore, the

corresponding categories will have finite coproducts.

Theorem 4.4.4. Finite coproducts do not exist in V, CIP , L, G, and S, the categories

of valleys, connected incidence posets, cats’ cradles, strings, and saturated incidence

posets, respectively.

Theorem 4.4.5. PF , DIP , and H have finite coproducts.
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CHAPTER 5

CONCLUSION

We have established the equivalence of the category of finite, simple graphs, FSG,

and the category of finite incidence posets, IPFSG, and we constructed common,

categorical objects in IPFSG. In later research, it would be interesting to examine

some categorical objects we decided not to pursue, such as intersections. The existence

of other universal and couniversal objects within IPFSG would also be a fruitful area

of study.

One could also expand FSG to include graphs with loops and multiple edges

(Pseudo-graphs), which would loosen the conditions necessary on graph homomor-

phisms, leading to a loosening of the conditions for IP-morphisms in the corresponding

equivalent, order-theoretic category. While most of the proofs for the special objects

of the new category of incidence posets would be almost identical, the concept of mi-

nors from Graph Theory could be extended to incidence posets. The study of minors

within Graph Theory is rich and has yielded many interesting, fruitful results, so the

corresponding theory within incidence posets could also be of note.
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