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Abstract

Biological prediction of transcription factor binding sites and their corresponding transcription factor target genes (TFTGs)
makes great contribution to understanding the gene regulatory networks. However, these approaches are based on
laborious and time-consuming biological experiments. Numerous computational approaches have shown great potential to
circumvent laborious biological methods. However, the majority of these algorithms provide limited performances and fail
to consider the structural property of the datasets. We proposed a refined systematic computational approach for
predicting TFTGs. Based on previous work done on identifying auxin response factor target genes from Arabidopsis thaliana
co-expression data, we adopted a novel reverse-complementary distance-sensitive n-gram profile algorithm. This algorithm
converts each upstream sub-sequence into a high-dimensional vector data point and transforms the prediction task into a
classification problem using support vector machine-based classifier. Our approach showed significant improvement
compared to other computational methods based on the area under curve value of the receiver operating characteristic
curve using 10-fold cross validation. In addition, in the light of the highly skewed structure of the dataset, we also evaluated
other metrics and their associated curves, such as precision-recall curves and cost curves, which provided highly satisfactory
results.
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Introduction

Unraveling the gene regulatory networks is regarded as one of

the fundamental problems challenging biologists [1]. Gene

expression is systematically controlled by regulatory proteins

known as transcription factors (TFs) that bind to specific cognate

DNA sites known as transcription factor binding sites (TFBSs).

Through interacting with other cis-elements, these TFs can

function as repressors preventing transcription by inhibiting the

activity of RNA polymerization complex either by directly binding

to TFBSs or indirectly modifying transcription factor target genes

(TFTGs). Transcription factors can also function as activators,

which promote the expression of TFTGs. In addition to post-

transcriptional gene regulations, there are also post-translational

gene modification regulations, including biochemical alteration

and RNA interference [2,3]. However, the interplay among the

corresponding TFs, TFBSs, and TFTGs remains the predominant

mechanism governing the gene regulatory processes.

In order to circumvent the laborious biological experiments for

screening TFBSs and their corresponding TFTGs, a number of

computational algorithms have been proposed in the last decade

on the basis of pre-established biological results [4–16]. Instead of

directly searching for TFTGs, the majority of these algorithms

focused on the nucleotide sequence information to screen potential

TFBSs and ignored the structural property of DNA molecules.

Local search-based algorithms, such as Gibbs sampling, have been

applied on certain microorganisms with some success but lacked

global optimality [4–7]. Position weight matrix-based approaches

were popular but suffered greatly from high false-positive

prediction rate and the independence assumption among different

TFBSs [8–10]. Most recently, He et al. [11] refined the traditional

n-gram profile algorithm based on the fact that a specific TF may

bind on either a DNA strand or its reverse complement and

produced satisfactory results. Following their work, Dai et al. [12]

incorporated a positional signal into each potential TFBS and

greatly improved prediction performances. Additionally, Meys-

man et al. [13] discussed a prediction algorithm using DNA

structural information alone to predict TFBSs. De novo method-

ology-based predictions did not require any model training based

on the prior knowledge of TFTGs thus showing its advantages in

terms of computational cost and classification accuracy [14–16].

Unfortunately, all these approaches provided limited classification

performances and failed to consider the dataset structure when

interpreting the final results. Particularly, the method proposed by

Dai et al. [12], which requires arbitrarily choosing thresholds for

feature selection, could provide limited performances because the

optimal threshold was not identified. Taking all these weaknesses

into account, an improved new systematic computational

approach for TFTG prediction was proposed in our study and

produced great results.
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Materials and Methods

Using the well-documented information domain of the corre-

sponding TFs, TFBSs, and TFTGs, we constructed a binary

classifier based on support vector machines (SVM). A standard

feature extraction, feature selection, model construction, and

dataset testing paradigm was followed. The feature extraction

region was limited to within 1000-bp upstream from the

transcription start point. This frame was verified to contain the

most amounts of TFBSs from previous biological studies [11,12].

Once these 1000-bp sequences with identified class labels (TFTGs

or non-TFTGs) were generated, they were then profiled by a new

reverse-complementary distance-sensitive n-gram profiling

(RCDSNGP) algorithm designed to better capture the patterns

of potential conserved motifs and their corresponding positions

relative to recognized TFBSs. For feature selection, we adopted

Monte Carlo simulation based on information gain (IG) measure-

ments to select features that have a p-value smaller than 0.01.

Finally, each upstream sequence of either TFTGs or non-TFTGs

was represented by a single data point in a multi-dimensional

feature space and was later fed to SVM to build prediction models.

Feature extraction, selection, model training, and testing were

performed on the basis of a 10-fold cross validation (10-fold CV).

That is, the entire dataset is randomly and evenly split into 10

disjoint subsets. Each subset contains a proportion of TFTG

sequences similar to that of the pre-split dataset, e.g. 19 TFTGs

+260 non-TFTGs = 279. The final result is calculated from a

composite of 10 trials. Within each trial, a different subset of

samples is selected for testing and the other nine subsets of samples

are used for training. Feature extraction and selection are

performed within the nine training subsets during each trial, thus,

selected features are different in each trial.

Datasets
The procedures for generating sequence datasets were described

previously by Dai et al. [12]. In general, auxin response factors

(ARFs) regulate their target genes by recognizing the primary

conserved motif ’TGTCTC’ or its reverse complement ’GA-

GACA’ in the upstream region [17]. However, the presence of this

conserved motif by itself may not guarantee that the corresponding

sequence belongs to TFTGs. Goda et al. [18] used Affymetrix

Genechip to investigate the gene expressions of A. thaliana treated

with auxin and brassinosteroid and reported that only 186 out of

2787 genes containing the conserved motif (’TGTCTC’ or

’GAGACA’) in their 1000-bp upstream region were TFTGs.

By referring to the accession IDs verified by Goda et al. [18] and

location information (transcription start point and chromosome

ID) obtained from TAIR6 Arabidopsis Information Resource

(ftp://ftp.arabidopsis.org/home/tair/Genes/

TAIR6_genome_release), the 1000-bp gene upstream sequences

of A. thaliana with the conserved motif (186 TFTGs +2601 non-

TFTGs = 2787) were extracted from the genome sequences

(ftp://ftp.arabidopsis.org/home/tair/home/tair/Sequences/

whole_chromosomes). The entire dataset can be downloaded from

the Samuel Roberts Noble Foundation online supplementary data

source (available via http://bioinfo.noble.org/manuscript-

support/TF_Supp/dataset/).

Feature extraction
Each upstream sequence has to be converted into a series of

numerical values corresponding to its coordinates in a high-order

feature space for SVM training and prediction purposes. An n-

gram profiling algorithm was used previously to represent a

sequence stream by a set of n continuous characters and their

corresponding frequencies [19]. This approach is analogous to the

k-mer approach used in other gene sequence studies [20].

Because of the double helix structure and base-pairing property

of DNA, TFs may bind on either strand of a DNA molecule. Thus,

a conserved motif and its reverse complement should be treated

equally for each TF. In the light of this, He et al. [11] proposed the

reverse-complementary n-gram profile (RCNP) algorithm, formal-

ized as follows.

Definition 1 (RCNP): Given an m-length sequence s = s1, s2…sm,

the RCNP of s is a set of K 2-tuples, denoted as RCNP(s) = {({f1,

r1}, c1),({f2, r2}, c2)…({fK, rK}, cK)}, fk being a distinct n-gram, rk
being the reverse complement of fk, and ck being the sum of

frequency counts of fk and rk in s. Additionally, {fk, rk} (k = 1, 2…K)

includes all possible combinations of an n-gram and its reverse

complement in s.

The essence of RCNP was that an occurrence of either an n-

gram or its reverse complement will be counted equally as one

increment of that feature ({fi, ri}). In addition, by limiting the

feature extraction region within a finite window evenly neighbor-

ing the center motif (such as 100-bp window size with 50 bp on

each flank), He et al. [11] considered the presence of other possible

synergic TFBSs within the window beside the center motif. This

approach was based on the assumption that the closer an n-gram is

to the primary TFBSs, the stronger its influence on regulating TF

binding processes. An optimal area under curve (AUC) value of

0.8949 was obtained on a similar dataset using this RCNP

algorithm [11].

Immediately after He et al.’s work, Dai et al. [12] expanded the

RCNP algorithm into a reverse-complementary position-sensitive

n-gram profile (RCPSNP) algorithm by incorporating a positional

information parameter and a position-sensitive parameter into the

RCNP. The position sensitive parameter was introduced to mainly

account for the possibility that two identical n-grams extracted

from a certain window flanking the center motif on the same DNA

strand may have similar impacts on regulating TF binding

processes regardless of their positional differences. This feature

generation scheme yielded an AUC value of 0.73 for the receiver

operating characteristic (ROC) curve [12].

In this study, we propose an improved feature generation

algorithm. Studies have shown the existence of a composite

structure containing constitutive elements adjacent to the

’TGTCTC’ binding site for ARFs [17,21]. As a result, the auxin

inducibility was likely affected incrementally by multiple elements.

In addition, their contribution differences should be related with

the distance from each element to the primary TFBS. None of the

previous studies investigated the impact differences between the

upstream-region elements and the downstream-region elements

around the primary binding sites. Therefore, it was not logical to

incorporate each n-gram with a signed integer representing its

direction and distance relative to the primary TFBS as proposed

by Dai et al. [12]. Considering all factors described above, we

introduced the reverse-complementary distance-sensitive n-gram

profile (RCDSNGP), formalized as follows.

Definition 2 (RCDSNGP): Given an m-length sequence s = s1,

s2… si…si+j…sm, the RCDSNGP of s with respect to a j-length

reference subsequence x = si…si+j21 is a set of K 2-tuples, denoted

as RCDSNGP(s) = {({f1, r1, d1}, c1),({f2, r2, d2}, c2)…({fK, rK, dK},

cK)}, fk being a distinct n-gram, rk being the reverse complement of

fk, dk being the relative distance parameter, and ck being the sum of

frequency counts of fk and rk with the same dk relative to x in s.

Additionally, {fk, rk, dk} (k = 1, 2…K) include all possible

combinations of an n-gram, its reverse complement, and its

distance to x in s.
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If we denote either fk or rk as an n-gram, g = st, st+1…st+n21

(n21,t+n21,i or m2n+2.t.i+j21), then its relative distance to

x is calculated as follows.

dk~t{(izj{1),if (m{nz2)wtw(izj{1)

dk~i{(tzn{1),if (n{1)v(tzn{1)vj
ð1Þ

Each set ({fk, rk, dk}) within a 2-tuple of an RCDSNGP is a

reverse-complementary distance-sensitive n-gram (RCDSNG),

synonymously a feature in our study.

By adopting RCDSNGP, an occurrence of either an n-gram or

its reverse complement with the same distance to the central TFBS

will be counted equally as one increment of that feature ({fk, rk,

dk}).

Table 1 demonstrates an example of an RCDSNGP of a given

sequence with respect to a designated reference subsequence.

Feature selection
We used n-grams of n = 4–9 for profiling each upstream

sequence using RCDSNGP algorithm because n = 4–9 were

verified (data not shown) to give optimal performances and can

be handled efficiently in a moderate computing environment.

Given the maximum distance dmax, a total number of dmax64n

features at most can be generated for each n, which is less than half

of the number produced by Dai et al. [12].

Given a dmax, 10 trials were conducted to generate the final

result (10-fold CV). Within each trial, a separate IG-based feature

ranking was used on the nine training subsets [22]. The IG

measure is based on information theory [23], which calculates the

entropy differences before and after observing a specific feature.

The entropy of the set S, which contained e.g. N = 2509 (168

TFTGs +2341 non-TFTGs = 2509) upstream sequences and two

distinct class labels T~fTG,TGg for the TFTGs and non-TFTGs

(number of classes y = 2), can be calculated as

Entropy(S)~{
Xy

x~1
P(Tx,S)| log (P(Tx,S))

~{
NTG

N
| log (

NTG

N
){

N
TG

N
| log (

N
TG

N
)

ð2Þ

where NTG and NTG are the numbers of sequences in S

belonging to TFTGs and non-TFTGs, respectively.

After observing a specific feature f, we can partition the original

set S into two distinct subsets: Sf , a set of upstream sequences

containing f; Sf , a set of upstream sequences without f. Thus,

S = {Sf , Sf } and the number of classes is y = 2. The entropy of S

with respect to f is evaluated as

Entropy(Sjf )~
Xy

x~1
P(Sx,S)|Entropy(Sx)

~{
Nf

N
|(

NTGf

Nf

| log (
NTGf

Nf

)z
N

TGf

Nf

| log (
N

TGf

Nf

)){
N

f

N
|(

N
TGf

N
f

| log (
N

TGf

N
f

)z
N

TGf

N
f

| log (
N

TGf

N
f

))

ð3Þ

where numbers of upstream sequences with at least one

occurrence of feature f and no occurrence of f are denoted by

Nf and N
f
, respectively; numbers of upstream sequences

belonging to TFTGs with at least one occurrence of feature f

and no occurrence of f are denoted by NTGf and N
TGf

,

respectively; and, N
TGf

and N
TGf

represent the corresponding

numbers of non-TFTGs. Finally, the IG obtained by dividing S

according to f is calculated using:

IG(f )~Entropy(S){Entropy(Sjf ) ð4Þ

and a higher IG value implies greater importance of a given

feature for representing a specific sequence.

Instead of ranking features based on IGs and subjectively

choosing the cutoff value, we further evaluated each feature using

Monte Carlo simulations [24,25]. This approach provides

information on whether we can statistically differentiate samples

from two classes on a basis of a given feature. For each feature, we

shuffled class labels (TFTGs or non-TFTGs) 10 000 times without

changing either the feature count in each sequence or the total

number of sequences in each class. A new IG was calculated for

each shuffling, thus, 10 000 IGs were obtained for each feature.

Table 1. An example of a reverse-complementary distance-sensitive n-gram profile (RCDSNGP) representation with n = 4, 5, and 6
for a given sequence (AAGCTTGAGACACAGCT) with the reference subsequence marked in bold*.

Length of n-gram (n) Reverse-complementary distance-sensitive n-gram (RCDSNG), or feature Frequency count

n = 4 {AAGC, GCTT, 1} 1

{AGCT, AGCT, 2} 2

{AAGC, GCTT, 3} 1

{CAGC, GCTG, 1} 1

n = 5 {AAGCT, AGCTT, 1} 1

{AAGCT, AGCTT, 2} 1

{AGCTG, CAGCT, 1} 1

n = 6 {AAGCTT, AAGCTT, 1} 1

*Given an m-length sequence s = s1, s2… si…si+j…sm, the RCDSNGP of s with respect to an j-length reference subsequence x = si…si+j21 is a set of K 2-tuples, denoted as
RCDSNGP(s) RCDSNGP(s) = {({f1, r1, d1}, c1),({f2, r2, d2}, c2)…({fK, rK, dK}, cK)}, fk being a distinct n-gram, rk being the reverse complement of fk, dk being the relative distance
parameter, and ck being the sum of frequency counts of fk and rk with the same dk relative to x in s. Each set in a 2-tuple ({fk, rk, dk}) is a reverse-complementary distance-
sensitive n-gram (RCDSNG), or a feature in our study. This RCDSNGP representation was adopted for all training sequences. For testing processes, each sequence was
converted to RCDSNGP first, and then represented according to the selected RCDSNGs generated from the training datasets, including those with zero count.
doi:10.1371/journal.pone.0094519.t001
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The p-value for a specific feature was calculated according to

Pvalue~
Nge

N
ð5Þ

where Nge represents the number of shuffling that gave new IG

values greater than or equal to the original one and N is the total

number of shuffling (N = 10 000). The smaller the p-value is, the

stronger the contribution the feature would provide to differentiate

a sample between two classes. In our study, features were

considered important at p,0.01 level.

Data representation
Within each trial, we selected F features whose p-values were

smaller than 0.01 from the total of 493 781 all possible features

(number of RCDSNGs obtained from all sequences). Each 1000-

bp upstream sequence was represented by an RCDSNGP

consisting of these F features and their corresponding occurrences.

The whole set of N sequences (e.g. N = 168 TFTGs +2341 non-

TFTGs = 2509) were then represented by an N6(F+1) matrix (1

extra column for class labels).

Training and testing
Support vector machine-based approaches have been widely

used in various problem domains, such as bioinformatics [26–28].

They often outperformed many other classification algorithms

[29]. We adopted SVM in our study using the LIBSVM [30],

which is based on sequential minimal optimization. The general

concept of SVM is given below.

For model training, given a set of vector-label pairs

(Xi,yi),i~1,2:::N, where N is equal to the number of upstream

sequences (e.g. N = 2509); Xi[Rn, where n is the dimension of Xi,
equal to the number of selected features; yi[f1,{1g where 1

corresponds to TFTGs and -1 corresponds to non-TFTGs, the

support vector machine computes the solution to the optimization

problem formalized below:

min W ,b,e
1

2
W T WzC

XN

i~1
ei

subject to yi(W
T H(Xi)zb§1{ei and ei§0:

ð6Þ

This is equivalent to finding the maximum-margin hyperplane

that separates TFTG samples (labeled as 1) and non-TFTG

samples (labeled as -1) with minimized measures of errors.

Predictions are made based on the geometric location of an

unknown sample when fed into the model. A label is assigned to a

sample according to which side of the hyperplane it resides. In

order to obtain better classification accuracies, data are often

projected into a high-dimension feature space with a kernel

function. We evaluated other possible kernels in addition to the

linear kernel suggested by Dai et al. [12]. Particularly, we

performed a grid (factorial) search [28] for an optimal combina-

tion of a penalty factor C of SVM and a kernel width s for the

Gaussian radial basis function (RBF) kernel.

Performance measure
First, we measured the traditional accuracy defined as

ACCURACY~
TPzTN

TPzTNzFPzFN
ð7Þ

where all parameters are defined in Table 2. Accuracy provides a

direct and simple way of evaluating performances, however, it is

highly sensitive to data distribution [29]. In our study, if a classifier

predicts every TFTG sequence as a non-TFTG sequence, we can

still obtain an accuracy of 0.9333 due to the fact that more than 93

percent of the sequences belong to non-TFTGs. Thus, other

evaluation metrics are warranted, including precision, recall, and

F1 [29] defined as follows.

PRECISION~
TP

TPzFP
ð8Þ

RECALL~
TP

TPzFN
ð9Þ

F1~
2|TP

TPzFNzTPzFP
ð10Þ

Furthermore, we adopted the ROC curve technique, which

demonstrated satisfactory performances across different classifiers

and datasets from previous studies [12]. Some recent studies

argued that the ROC approach tends to provide an over-

optimistic evaluation on highly imbalanced datasets [30]. Thus, we

also examined precision-recall (PR) curves, which appeared more

informative and valid than ROC curves on skewed datasets [31].

The AUC value was calculated on both the ROC curve (ROC-

AUC) and the PR curve (PR-AUC) to summarize the classification

results. To better visualize the misclassification costs and statistical

significances, cost curves [32] were also evaluated.

Dai et al. [12] reported that a window size of 200 bp (100 bp on

each flank around the central TFBS, ‘TGTCTC’ or ‘GAGACA’)

provided the best ROC-AUC value. In our study, a new feature

generation scheme was adopted. Therefore, we evaluated different

maximum distances (dmax = half of the window size) on each flank

of the central TFBSs, including dmax = 25, 50, 75, 100, 125, 150,

175, and 200 bps.

To summarize, we evaluated eight different dmax settings within

each trial on the basis of 10-fold CV. Within each dmax setting

during each trial, an IG-based p-value selection procedure was

adopted to select the important (p,0.01) features based on the

training dataset (nine folds out of 10). Immediately following that,

we located the optimal combination of C for SVM and s for the

RBF kernel using the grid (factorial) search. Thus, the optimal

combination of features, C, and s depended on the training

dataset within each trial. The final results, including accuracy,

precision, recall, and F1 as well as the corresponding AUC values

Table 2. Confusion matrix for performance evaluation with
positive class label (+1) denoting transcription factor target
gene (TFTG) and negative class label (-1) denoting non-TFTG.

True class label

+1 21

Predicted class label +1 TP++ FP2+

21 FN22 TN+2

++, 2+, 22, +2 denote true positive, false positive, false negative, and true
negative, respectively.
doi:10.1371/journal.pone.0094519.t002
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were generated from the combined classification results containing

all 2787 sequences according to different dmax settings.

Results

Extraction of features from sequences
Using a maximum distance dmax = 150 and n = 4–9 for building

RCDSNGP, 2 455 252 unique features were generated from

1000-bp upstream of 2787 sequences (186 TFTGs +2601 non-

TFTGs). We eliminated singleton features that contain only 1

occurrence across all sequences to reduce the feature size down to

735 624. The same technique was applied to all other settings of

dmax as well.

Selection of representative features
Information gain calculated for each feature was used in Monte

Carlo simulation to generate a p-value for that feature. We selected

those features that had p-values smaller than 0.01. For different

maximum distances, dmax = 25, 50, 75, 100, 125, 150, 175, and

200, we selected 893, 1870, 2732, 3502, 4255, 4949, 5622, and

6136 unique features, respectively on the basis of 10-fold CV

(Table 3). Table 4 lists the top 20 features ranked by their p-values

with corresponding IGs, when dmax = 150.

Classifier performances
We implemented our own 10-fold CV SVM with Python

programming language on the basis of LIBSVM. Using the

p,0.01 threshold, models were constructed based on different

combinations of maximum distances and kernels (polynomial,

RBF, sigmoid, and linear kernels), with n-grams of n = 4–9. The

RBF kernel provided the best performances regardless of

measurement metrics used. In our study, the best accuracy

(0.9602), precision (0.8319), and F1 (0.6288) values were obtained

with dmax = 150. The best recall (0.5215), ROC-AUC (0.7739), and

PR-AUC (0.5879) values were obtained with dmax = 100, 75, and

200, respectively (Table 3).

Figure 1a shows the response of accuracy, precision, recall, and

F1 values versus dmax. Accuracy fails to provide adequate

information on evaluating the minority samples (TFTGs).

Combining different evaluation metrics tends to provide compre-

hensive assessment of classification on imbalanced datasets. When

dmax = 25, our model suffered from low recall rate because of its

poor accuracy when classifying the positive samples (TFTGs).

Starting from dmax = 50, a boost in performances was observed in

recall and F1 values as a result of increased accuracy in predicting

positive samples. At dmax = 150, the model reaches the highest

accuracy value of 0.9602. The best precision value is 0.8319 when

dmax = 150 and declines a little as dmax increases. Starting from

dmax = 100, recall values are above 0.5 and peak at dmax = 100 with

a value of 0.5215. Likewise, the F1 scores are above 0.6 when dmax

is bigger or equal to 100 and reach the greatest value of 0.6288

when dmax = 150. Figure 1b shows an AUC-versus-dmax curve based

on both the ROC curve and the PR curve. The ROC-AUC value

arrives at 0.7739 when dmax = 75. A slight decrease is detected

when dmax.100. Furthermore, by varying dmax the PR-AUC value

responds more obviously than the ROC curve. Beginning at

dmax = 100, our model produces above-0.56 PR-AUC values,

which gradually decrease from dmax = 100 to dmax = 125 and peaks

at 0.5879 when dmax = 200. Overall, a 150-dmax setting is likely to

give a superior performance with limited complexity of compu-

tation compared to other maximum distance settings. Although it

fails to produce the optimal AUC values for either ROC or PR

curve, it provides the best accuracy, precision, and F1 values.

Considering the fact that most dmax value settings perform well in

detecting the correct negative samples (non-TFTGs), the model

that is most capable of identifying the correct positive samples

(TFTGs; high precision value) yields the best results. A maximum

distance dmax = 200 provides great PR-AUC values. However, it

adds great computational cost for feature generation and selection

processes (possibly 506
P9

i~4 4i~ 17 472 000 more features) and

some of its performance metrics are even worse than dmax = 150.

Therefore, we conclude that features within a maximum distance

dmax = 150 around central TFBSs contain sufficient information for

making accurate prediction on TFTGs.

In order to show the advantages of our proposed RCDSNGP

algorithm compared to other algorithms [12], we also examined

the ROC, PR, and cost curve as well as precision, recall, and F1

value generated by different algorithms [12] based on the same 10-

fold CV split. Additionally, comparisons were made among

classifiers with different kernels. Figure 2a indicates that

RCDSNGP-based model with RBF kernel outperformed all other

models because it generates a curve that is closer to the perfect

classification point (0,1) in the ROC curve compared with all

others. Interestingly, the polynomial kernel produced bad result

Table 3. Number of unique features (union of selected features with p-value ,0.01 based on 10-fold cross validation) and
classification performances [evaluated as accuracy, precision, recall, F1, area under the curve (AUC) value of receiver operating
characteristic (ROC) curve, and AUC value of precision-recall (PR) curve] affected by the maximum distance on each flank from the
central binding site (dmax) based on 10-fold cross-validation on transcription factor target gene prediction using reverse-
complementary distance-sensitive n-gram profile algorithm with n = 4–9 and support vector machine with Gaussian radial basis
function kernel.

dmax Unique Feature Accuracy Precision Recall F1 ROC-AUC PR-AUC

25 893 0.9476 0.6923 0.3871 0.4966 0.7202 0.4180

50 1870 0.9541 0.7544 0.4624 0.5733 0.7562 0.5286

75 2732 0.9559 0.7739 0.4785 0.5914 0.7739 0.5554

100 3502 0.9566 0.7519 0.5215 0.6159 0.7720 0.5808

125 4255 0.9580 0.7899 0.5054 0.6164 0.7640 0.5646

150 4949 0.9602 0.8319 0.5054 0.6288 0.7626 0.5690

175 5622 0.9587 0.8034 0.5054 0.6205 0.7673 0.5639

200 6136 0.9580 0.7805 0.5161 0.6214 0.7664 0.5879

doi:10.1371/journal.pone.0094519.t003
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because it predicted each sample with a fixed score of -1.

Classifiers that dominate in ROC space should dominate in PR

space as well [33]. This is vividly presented by Figure 2b.

Furthermore, our study highlighted the drawbacks of over-

dependency on the ROC-AUC value when evaluating the

classification performances. Although the difference in ROC-

AUC values was relatively small (0.7626 versus 0.5055) between

RCDSNGP and RCPSNP algorithms, the difference in PR-AUC

values was remarkable (0.569 versus 0.0773).

Finally, we evaluated the cost curve of each model. The cost

curve, which emphasizes the expected misclassification cost for

performance measure, is proposed to better visualize the

misclassification cost and compare performances on the basis of

statistical significance [32]. Each data point in the ROC curve gets

mapped to a distinct straight line (cost line) in the cost curve by

connecting point (0, FP) and point (1, FN). Multiple points in the

ROC space would generate several cost lines and form a lower

envelope, which is shown in Figure 2c. The x-axis, denoted as

probability cost, includes all possible percentage values of positive

samples (0 to 1). It represents the proportion of positive samples

when the classifier is deployed. Thus, at x = 0 (no positive samples),

the only possible misclassification errors are FPs. Likewise, at x = 1

(no negative samples), the only possible misclassification errors are

FNs. The straight line connecting these two points represents the

trend of misclassification cost as percentage of positive samples

varies. The lower envelope generated by a non-discrete classifier

such as SVM or Artificial Neural Network is the counterpart for

the upper convex hull of the ROC curve. At each probability cost

value, the closer the curve is to the x-axis, the better the classifier

performs (a lower expected cost). As presented in Figure 2c, the

RCDSNGP-based model with RBF kernel has the lowest cost

from 0 to 68 percent of positive samples. Additionally, it is also

verified to be different (p,0.05) from RCPSNP-based model

within the 4.8 to 65 percent range of positive samples using the

method proposed by Drummond and Holte [32]. In our study, the

dataset contains 6.7 percent of positive samples, which is within

the 4.8 to 59 percent range, thus our model outperformed

RCPSNP-based model in terms of expected cost.

To summarize, using new feature generation and selection

strategies to predict TFTGs of ARFs in A. thaliana based on

published datasets [12], we drastically increased classification

performances. Our best result was obtained when dmax = 150 using

the RBF kernel based on an average of 2395 features. We adopted

the ROC measure for efficacy evaluation and obtained an ROC-

AUC value of 0.7626 (SE = 0.0021), accuracy value of 0.9602

(SE = 0.0023), precision value of 0.8319 (SE = 0.0331), recall value

of 0.5054 (SE = 0.0231), and F1 score of 0.6288 (SE = 0.0211;

Table 3), which were higher than the best result reported by Dai et

al. (12; ROC-AUC = 0.73, accuracy = 0.69, precision = 0.3684,

recall = 0.1129, and F1 = 0.1728) based on the same dataset but

with a different 10-fold CV split.

Table 4. The top 20 smallest p-value reverse-complementary
distance-sensitive n-grams (RCDSNGs; n = 4–9) selected as
representative features with their information gain (IG) values
and p-values in the 1000-bp upstream of 186 transcription
factor target genes (TFTGs) and 2601 non-TFTGs, when the
maximum distance (half of the window size) on each flank of
the central transcription factor binding site dmax = 150.

Ranking RCDSNG (feature) IG value p-value

1 {ACACGT, ACGTGT, 4} 0.001885 0

2 {CGAGAA, TTCTCG, 82} 0.001884 0

3 {AATATAA, TTATATT, 52} 0.001884 0

4 {ACTTCC, GGAAGT, 30} 0.001880 0

5 {ACACC, GGTGT, 44} 0.001880 0

6 {GTAC, GTAC, 39} 0.001701 0

7 {CAAACA, TGTTTG, 149} 0.001707 0

8 {AAAAATA, TATTTTT, 44} 0.001707 0

9 {AGTAT,ATACT, 51} 0.001713 0

10 {ATGATTA, TAATCAT, 130} 0.001656 0

11 {ACTTC, GAAGT, 30} 0.001516 0

12 {CTAAC, GTTAG, 91} 0.001476 0

13 {ACAAATA, TATTTGT, 71} 0.001463 0

14 {ATACG, CGTAT, 49} 0.001463 0

15 {AAAACC, GGTTTT, 75} 0.001463 0

16 {AAAGACA, TGTCTTT, 117} 0.001463 0

17 {TAAAACA, TGTTTTA, 85} 0.001463 0

18 {AGTATA, TATACT, 124} 0.001458 0

19 {AATGTG, CACATT, 43} 0.001412 0

20 {ATACCC, GGGTAT, 16} 0.001412 0

doi:10.1371/journal.pone.0094519.t004

Figure 1. Performances of transcription factor target gene
prediction affected by the maximum distance on each flank
from the binding site (dmax) based on 10-fold cross-validation
using reverse-complementary distance-sensitive n-gram pro-
file algorithm with n = 4–9 and support vector machine with
Gaussian radial basis function kernel. (A) Performance evaluation
metric (accuracy, precision, recall, and F1) values versus dmax on each
flank from the central binding site. (B) Area under the curve (AUC) value
of receiver operating characteristic (ROC) curve and precision-recall (PR)
curve versus dmax on each flank from the central binding site.
doi:10.1371/journal.pone.0094519.g001
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Additionally, Dai et al. [12] reported the performance of a

Position-Specific Scoring Matrices (PSSM)-based approach using

the cluster-buster algorithm [34], which only yielded an ROC-

AUC value of 0.51. We implemented a traditional approach based

on the position frequency matrix method using a similar feature

encoding algorithm explained in Youn et al. [26]. Each sequence

was parsed according to a dmax = 150 setting and the sequence

conservation was evaluated using a four (four nucleotides) by 300

(26dmax) position frequency matrix (150-bp flanking each side of

the primary conserved motif). At each residue (1 out of 300), we

considered 20-bp window size (left:10, right: 10) to construct the

frequency count for each nucleotide. The standard SVM-based

training and testing was performed based on generated PSSMs.

Likewise, the algorithm only provided an ROC-AUC value of

0.5569 and a PR-AUC value of 0.0801 using the same 10-fold CV

split as our RCDSNGP algorithm (Table 5). The performance

curves based on PSSM are also presented in Fig. 2.

Furthermore, we also implemented the RCPSNP algorithm

proposed by Dai et al [12] using the optimal settings (e.g. n = 4–9,

linear-kernel SVM) and applied it to the same 10-fold CV split as

our RCDSNGP algorithm, which yielded an ROC-AUC value of

0.5055, PR-AUC value of 0.0773, accuracy value of 0.9300,

precision value of 0.2000, recall value of 0.0161, and F1 score of

0.0299 (Table 5). Our classifier generated points much closer to

the perfect classification point (0,1) in the ROC curve than those

generated by RCPSNP algorithm (Fig. 2a; 12). Most importantly,

considering that traditional metrics for measuring classification

performances tended to provide deceiving or inadequate infor-

mation of imbalanced datasets, we also evaluated other metrics

and their corresponding curves such as PR and cost curves, which

showed greatly improved results as well.

The detailed model files, 10-fold CV datasets represented as

matrices, and classification results are available at the supplemen-

tary online data source.

Discussion

Understanding the mechanism of gene regulatory network is a

challenging task. As of today, there is still much uncertainty in

identifying the corresponding TFBSs and TFTGs. More TF and

TF-dependent target gene regulation studies are required to

evaluate the biological function and mechanism of more gene

regulation players. The activity and affinity of TF would be the

ultimate balanced result of the various check points of biological

regulation. The binding efficiency of TF to its corresponding

TFBS is regulated by various factors, including TF synthesis,

ligand binding to the TFs, and DNA binding mechanism through

post-translational modifications such as phosphorylation and

glycosylation of the TFs. In addition, the DNA binding process,

dimerization, and interactions with cofactors for the functional

complex formation are important parameters controlling the TF

activity [35,36]. As more information of the interplay among TF,

its corresponding TFBS, and TFTG accumulates, it could be

possible to understand the precise TFTG expression affected by

different TFs. A number of computational approaches that rely on

well-known TFBSs have been proposed, but a majority of these

algorithms suffered from high FP rate [12,37]. Therefore, much

effort was put on reducing FP rates and increasing prediction

accuracies [12], whereas the importance of the dataset structure

was ignored. In our study, only 186 out of 2787 genes that all

contain the binding site (’TGTCTC’ or ’GAGACA’) in their 1000-

bp upstream region were TFTGs. If our model correctly predicted

all negative samples (non-TFTGs) and miss-predicted all positive

samples (TFTGs), it still yielded an accuracy value of 0.9333

Figure 2. Classification performances using the optimal
maximum distance on each flank from the binding site
(dmax = 150). (A) Receiver operating characteristic (ROC) curve, (B)
precision-recall (PR) curve, and (C) cost curve of the 10-fold cross-
validation on transcription factor target gene prediction using reverse-
complementary distance-sensitive n-gram profile (RCDSNGP) algorithm
with dmax = 150 and n = 4–9 based on different support vector machine
(SVM) kernels, reverse-complementary position-sensitive n-gram profile
(RCPSNP) algorithm using linear-kernel SVM, and Position-Specific
Scoring Matrices (PSSM)-based approach.
doi:10.1371/journal.pone.0094519.g002
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(2601/2787) but with precision value undefined and zero values

for both recall and F1 score. Therefore, minimizing the FP rate or

maximizing the accuracy contributes little to improving overall

performances when analyzing a highly skewed dataset. It is

important to analyze different evaluation metrics to better assess

the classification performances.

We deployed a novel feature extraction method (RCDSNGP)

that incorporated a relative distance parameter into each feature

to count for the positional information of each motif relative to the

central TFBS. For feature selection, we adopted a Monte Carlo

simulation-based statistical approach rather than arbitrarily

choosing thresholds. We compared our results with the

RCPSNP-based approach [12] on the same dataset. Our best

model achieved an accuracy of 0.9602 and an ROC-AUC value of

0.7627 when dmax = 150 compared with 0.69 and 0.73 reported by

Dai et al. [12], respectively. Dai et al. introduced three parameters

for constructing RCPSNP, including a number of n-grams C

(analogous to our maximum distance dmax), a top F representative

features based on IG, and a position sensitive factor P (the identical

n-grams located within a P-bp region neighboring the central

binding site are counted equally). The best result was obtained

when n = 4–9, C = 100, P = 100, and F = 1000. Their detailed

results containing prediction scores can be found in their

supplementary web data [12]. Moreover, little positional infor-

mation is considered when C equals P. In other words, RCPSNP

behaves almost the same as RCNP [11] when C and P hold the

same value. The significant performance increase based on our

RCDSNGP algorithm indicated that ARFs function by recogniz-

ing multiple consensus motifs that might be co-occurring TFBSs or

subsequences functioning coordinately. More importantly, the

relative distance from each motif to the binding site should always

play an important role in the gene regulation process. The

structural complexities of protein and DNA may result in a type of

mutual recognition that relies more on the distance from the

conserved motif to the TFBS, regardless of where the motif lies

(downstream or upstream of the central TFBS). The PSSM-based

approaches may be useful for TFTG identification when more

associated TFBSs are known.

Identifying patterns of other potential TFBSs and the binding

property of ARFs by enumerating all possible n-grams is a

computationally expensive work. The complexity becomes even

greater when a distance parameter is included. Therefore, better

feature selection methods become necessary. We employed a

statistical systematic approach. Based on a given feature, two class

samples are different from each other if, and only if, the

probability of obtaining a bigger IG value than original is below

a certain level (p-value). This probability value is obtained using

Monte Carlo simulations [38]. We verified that our feature

selection algorithm is robust for a range of p-values (between 0.005

and 0.01). However, when the p-value becomes bigger, feature

number increases drastically, which greatly increases computa-

tional cost. Moreover, we also evaluated a number of important

features that have a p-value smaller than the 0.01 threshold versus

different dmax values (data not shown). The slope of the curve

reached the maximum value between dmax = 25 and dmax = 50 and

began to dwindle when dmax.50, suggesting that flank regions

closer to the core motif contain more important features for

predicting TFTGs.

Precision-recall curve is used in information retrieval as an

alternative to ROC curve when analyzing imbalanced datasets

[33]. Optimal prediction models tend to generate curves close to

the upper-left corner in the ROC curve and upper-right corner in

the PR curve. Likewise, the cost curve is introduced to measure the

performances by varying class probabilities to generate confidence

intervals [32]. Regardless of which curve was used, RCDSNGP-

based approaches using RBF kernel demonstrated significant

advantages over the RCPSNP-based approach [12]. The polyno-

mial kernel somehow yielded much poorer performances than

others. Cost curves verified the similar effects by showing that

superior models always generate a lower envelope curve than

inferior ones. In other words, superior models always have

significantly lower misclassification cost within a certain percent-

age range of positive samples.

Taken altogether, the RCDSNGP algorithm combined with

statistical feature selection methods provides an efficient and

highly accurate way to predict TFTGs on the basis of well-studied

TFBSs. We believe that this improved methodology can be

employed when analyzing other species besides A. thaliana. It might

also provide new insights into the understanding of gene

regulatory networks.
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Table 5. Classification performances [evaluated as accuracy, precision, recall, F1, area under the curve (AUC) value of receiver
operating characteristic (ROC) curve, and AUC value of precision-recall (PR) curve] using different feature encoding algorithms with
optimal parameter settings for SVM and dmax = 150, including reverse-complementary distance-sensitive n-gram profile
(RCDSNGP), reverse-complementary position-sensitive n-gram profile (RCPSNP), and a Position-Specific Scoring Matrices (PSSM)-
based algorithms.

Feature Encoding Algorithm Accuracy Precision Recall F1 ROC-AUC PR-AUC

RCDSNGP 0.9602 0.8319 0.5054 0.6288 0.7626 0.5690

RCPSNP 0.9300 0.2000 0.0161 0.0299 0.5055 0.0773

PSSM 0.9332 NAN 0 0 0.5569 0.0801

doi:10.1371/journal.pone.0094519.t005
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