
A Neurobiologically-inspired Deep Learning Framework for Autonomous Context

Learning

By

David Ludwig

A thesis submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE

in

Computer Science

Middle Tennessee State University

December 2020

Thesis Committee:

Dr. Joshua L. Phillips, Chair

Dr. Salvador E. Barbosa

Dr. Cen Li

ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to my advisor and mentor, Dr. Joshua L. Phillips,

for his guidance and assistance throughout my graduate school career. This work would not

have been realized without his knowledge and persistent support. I would also like to give

thanks to Dr. Sal Barbosa and Dr. Cen Li for serving on my committee and for taking the

time to review this work. Last but not least, I would like to acknowledge and thank all of the

faculty in the Computer Science department for their support and inspiration.

ii

ABSTRACT

Neurobiologically-inspired working memory models have managed to accurately demon-

strate and explain our ability to rapidly adapt and alter our responses to the environment.

However, the applications of these working memory models have been limited to rein-

forcement learning problems. Furthermore, the incorporation of contextual/switching

mechanisms outside of the realm of working memory modeling for general-use cases has

also been relatively unexplored. We present a new framework compatible with Tensorflow

Keras enabling the straightforward integration of working memory-inspired mechanisms

into typical neural network architectures. These mechanisms allow models to autonomously

learn multiple tasks, statically or dynamically allocated. We also examine the generalization

of the framework across a variety of multi-context supervised learning and reinforcement

learning tasks. The resulting experiments successfully integrate these mechanisms with

multilayer and convolutional neural network architectures. The diversity of problems solved

demonstrates the framework’s generalizability across a variety of architectures and tasks.

iii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER I. INTRODUCTION . 1

CHAPTER II. BACKGROUND . 3

Working Memory . 4

Holographic Reduced Representations . 5

n-task Learning . 7

CHAPTER III. MODEL FRAMEWORK . 8

Component Design & Implementation . 8

Context Layer and Abstract Task Representations 8

Context Switching Mechanisms 9

Model & Training Regime . 11

Hyperparameter Tuning & Debugging Utilities 14

Evaluation & Controls . 17

CHAPTER IV. SUPERVISED LEARNING TASKS 18

Logic Gate Task . 18

Methods . 18

Results . 20

MNIST Divisibility Task . 23

Methods . 23

Results . 24

iv

CHAPTER V. REINFORCEMENT LEARNING TASKS 26

Wisconsin Card Sorting Test (WCST) . 27

Methods . 27

Results . 30

1D-maze Task . 33

Methods . 33

Results . 37

CHAPTER VI. DISCUSSION & FUTURE WORK 39

BIBLIOGRAPHY . 42

v

LIST OF TABLES

Table 1 – Logic Gate Task Training Parameters 19

Table 2 – MNIST Divisibility Task Training Parameters 23

Table 3 – Wisconsin Card Sorting Test Training Parameters 30

Table 4 – 1D-maze Task Training Parameters 35

vi

LIST OF FIGURES

Figure 1 – Visualization of the circular convolution 5

Figure 2 – Holographic reduced representation vector generation 9

Figure 3 – The Modified training loop of the Context Model 11

Figure 4 – Example plot generated from the context logger utility 16

Figure 5 – Model architecture for the logic gate task. 19

Figure 6 – The resulting context loss and context delta traces for the logic gate task 20

Figure 7 – Benchmark of the logic gate task using statically-allocated contexts

and controls . 21

Figure 8 – Model architecture for the MNIST divisibility task 24

Figure 9 – The resulting context loss and context delta traces for the MNIST

divisibility task . 25

Figure 10 – Model architecture for the Wisconsin Card Sorting Test. 28

Figure 11 – Wisconsin Card Sorting Test Procedure 29

Figure 12 – The resulting context loss and context delta traces for the Wisconsin

Card Sorting Test . 31

Figure 13 – Wisconsin Card Sorting Test average decision accuracy over time . . 32

Figure 14 – Model architecture for the 1D-maze task. 35

Figure 15 – 1D-maze Task Procedure . 36

Figure 16 – The resulting context loss and context delta traces for the 1D-maze task 38

Figure 17 – 1D-maze average move decision accuracy over time 38

vii

1

CHAPTER I.

INTRODUCTION

Imagine you enter a dark room for the first time that has multiple light switches. You

flip one of the switches and notice that the lights don’t turn on. Because of your lack of

experience with the switches in this room, you would likely assume that the switch you

flipped was incorrect and you would try the next. Sure enough, the lights turn on. Now

imagine that you revisit this room some days later. You flip the switch and the lights do

not turn on. Were you wrong about the switch? The lights came on every other time you

interacted with the switch previously. Rather than ”unlearning” the fact that the switch

turns the lights on, your experience tells you that you were not wrong about the switch, but

something in the environment has changed.

The previous example is a simple demonstration of how working memory can be used

to influence our actions and behavior around certain tasks. Working memory is a form

of short-term memory that is used to influence our decision-making process. Instead of

requiring the complete unlearning/relearning of a task, working memory facilitates the

ability to rapidly and dynamically alter our responses to changes in the current situation.

While there are many models that can accurately demonstrate and explain the mechanisms

involved with working memory [4, 8, 9, 11, 12, 13, 14, 15, 16, 18], they are not currently

utilized much outside of the realm of working memory research. While mechanisms for

including contextual information in traditional neural networks has been explored before

[5], current solutions often require the inclusion of additional input and prohibit autonomy.

However, the incorporation of the mechanisms from working memory models could allow

a neural network to autonomously detect and respond to changes in the expected output

without any assistance.

In this paper, we present a general-use framework for implementing the mechanisms

inspired by working memory models into common neural network architectures. Since

2

the framework is built around Tensorflow Keras, the new framework components can be

added to existing model architectures with minimal adjustment. Along with the design

and development of the mechanisms and components, we also aim to demonstrate the

framework’s generalization ability by applying it across a variety of problems in both

supervised learning and reinforcement learning settings. These experiments include the

utilization of multilayer neural networks, convolutional neural networks and reinforcement

learning.

3

CHAPTER II.

BACKGROUND

Suppose one would like to model a logic gate using a neural network to predict the

resulting binary output given two binary inputs. By presenting the network with some input

and the corresponding expected output, the network can learn an accurate approximation

of the logic gate function. Now suppose one would like to model two or more logic gates

using a single neural network. Once presented the second logic gate function, the expected

output for the provided input differs from what was previously modeled, and the neural

network must adjust to meet this new target. Due to these conflicting functions, this results in

catastrophic interference as the network must now unlearn the previously approximated value

to learn the new function. Since the neural network on its own has no means of determining

the intended function to approximate, it will be attempting to learn to approximate a target

which is always moving; thus making convergence impossible.

There are various methods and approaches to work around this behavior. Analogous to

learning multiple functions, one common approach to resolving these issues is to provide

context to the network. This is typically achieved by providing additional input to the

network, commonly in the form of a one-hot encoded vector. This additional contextual

input allows the neural network to distinguish the normal input which may be common

among multiple functions, enabling the network to learn each function approximation

discretely. This of course requires explicit indication of the active function/logic gate to

predict or learn under.

In order to fully autonomize the selection and utilization of contexts, a neural network

model would require several internal mechanisms. First, the model would necessitate the

ability to maintain a form of context for each of the possible functions. The number of con-

texts maintained could be specified explicitly upon model creation or dynamically allocated

as needed. The model must then be capable of applying contextualization information to the

4

inputs using these maintained contexts. Finally, the model would require self-monitoring

mechanisms to determine and switch to the appropriate contexts by analyzing the provided

feedback used to adjust the target value to properly adapt to the task. Since working mem-

ory models have been used to explain the neural basis of such context-switching behavior

[4, 6, 8, 9, 11, 12, 13, 14, 15, 16, 18], we investigate these models and examine their context-

driven learning methods and context-switching mechanisms. With our findings, we can

design and develop new mechanisms and components that can be integrated directly with

typical neural network architectures.

Working Memory

The mechanisms involved in the definition and separation of contextual information

stems from the current understanding of working memory and the prefrontal cortex (PFC). A

study by O’Reilly et al. [14] provides much insight into these mechanisms and our ability to

rapidly update goals and focus on particular tasks. Working memory is an activation-based

memory, meaning that memory is retained through persistent neural firing rather than weight-

based updates. Learning through weight-based updates is significantly slower and results

in perseveration as previously learned information must be unlearned or relearned if task

demands have changed. Through activation-based memory and association of contextual

information with these neural states, the information contained in working memory can

be rapidly updated. It is believed that the PFC maintains a memory representation of the

targeted dimension or feature, providing a form of rule-like ”top-down” support, or ”biasing,”

to influence the perceptual processing and the selection of actions [14].

While the PFC retains the memory representations, the updates to working memory

are handled via the mesolimbic dopamine system. It has been shown that the contents of

working memory are updated when neurotransmitter dopamine levels are phasically elevated

[1, 4, 8, 11, 18]. Because they are responsible for broadcasting dopamine signals [19],

the basal ganglia function as a form of gating mechanism that can update or protect the

5

memory representations currently stored in the PFC [1, 2, 4, 8, 9, 18]. When an expected

reward is not delivered, updates to working memory are triggered via a negative error signal.

Learning in the presence of these large negative error signals is believed to be limited since

the contextual information was likely incorrect [1, 12].

Holographic Reduced Representations

Some more recent models have abstracted away some of the neural details in the

above models [15, 16]; in particular, activation-based recurrent layers for handling PFC

representations are instead encoded using holographic reduced representations (HRRs)

[3, 21, 22]. An HRR is a fixed-width vector that is created by generating real-values from

a Gaussian distribution [17]. Any abstract concept can be represented by a single HRR

vector; for example, the color blue, a ball, etc.. These HRRs can be combined through the

use of circular convolutions, resulting in a new HRR that represents the combination of

c 0 c 1 c 2

t 0

t 1

t 2

x 0

x 1

x 2

t0 = c0x0 + c2x1 + c1x2
t1 = c1x0 + c0x1 + c2x2
t2 = c2x0 + c1x1 + c0x2

Figure 1: A visualization of the circular convolution as a compressed outer product [17].

6

the overall concept. This new HRR is highly likely to be orthogonal to each of the source

HRRs without any increase in dimensionality. While the HRRs themselves are primarily

used to automate the distributed encodings of conceptual information, the orthogonality of

the resulting circular convolutions allow an artificial neural network to easily distinguish

and separate the values of actions based on context.

The computation of the circular convolution, typically denoted as ~, can be performed

on any two vectors of the same length, n. The circular convolution can be defined in terms

of the individual components of the resulting vector:

ti ≡
n−1

∑
j=0

c jxi− j

where ccc and xxx are the two input vectors and ti is the ith component of the resulting vector.

Figure 1 provides a simple example and visualization of the circular convolution as a

compressed outer product. However, computing circular convolutions in this manner yields

a time complexity of O(n2), making it an expensive operation. Using Fast-Fourier transforms

(FFTs), the time complexity of the algorithm can be significantly improved, reducing the

overall time complexity down to O(n logn). This is achieved by transforming each of the

input vectors into the frequency domain, multiplying their corresponding components, and

transforming the result back to the spacial domain. After incorporating FFTs, we obtain the

final equation for computing the circular convolution:

ccc~ xxx≡ f−1(f (ccc)� f (xxx))

where f is a discrete Fourier transform, f−1 is the inverse discrete Fourier transform, and �

is the component-wise multiplication of two vectors [17].

7

n-task Learning

Inspired by the models above, n-task learning (nTL) is an approach to autonomous

multi-task learning with reinforcement learning problems in mind [6]. The model utilizes

abstract task representations (ATRs), each of which internally is a unique HRR, for each

of the potential task contexts that are analogous to rule-like representations in the PFC. By

encoding the state and action as HRRs and convolving them the active ATR, the resulting

HRR is used to contextually separate model inputs in order to discretely learn and predict

the value of an action for the active context. The expected reward for each task context is

then modeled separately using standard temporal-difference (TD) learning. When negative

TD-errors cause the expected reward to drop below a certain threshold, a context-switch is

triggered, and the next context ATR is used. If the expected reward for all contexts drops

below a threshold, a new context is added and the model weights are re-initialized.

While the models described here are capable of autonomous context learning, there

are certain aspects of their implementation that can be quite limiting. For example, the

utilization of these mechanisms outside of the reinforcement learning domain has been

relatively unexplored. Though the working memory models described above have success-

fully demonstrated the mechanisms required for context learning/switching, they are rarely

utilized outside the realm of working memory research. nTL provides a robust framework

for solving a broad set of reinforcement learning problems through the integration of context

learning/switching mechanisms. While successful, it requires modeling the reward function

and weight re-initialization when dynamically allocating task contexts. We aim to address

these issues by creating a new general-use deep learning framework. This framework will

enable integration of context switching mechanisms inspired by the working memory models

mentioned previously into common/existing neural network architectures with minimal

modifications required. Additionally, with the new components the framework will be

compatible with more learning approaches outside the realm of reinforcement learning.

8

CHAPTER III.

MODEL FRAMEWORK

This framework introduces various new components that are compatible with Tensorflow

Keras and require only minor modifications to standard training loops to execute. These

modifications are described with each of the corresponding components below. In our

implementation, the handling of these mechanisms was integrated directly into an extended

Keras model. The source code for the framework along with the experiments is available at

https://github.com/DLii-Research/context-learning

Component Design & Implementation

Context Layer and Abstract Task Representations

One of the fundamental aspects of the framework is its ability to utilize ATRs to

differentiate data based on an active context. While there are different potential methods

for generating these ATRs [6], the framework continues to implement these ATRs as HRR

vectors inline with the working memory models mentioned previously. The generation of

these HRR vectors is described in Figure 2 Each ATR is a unique random unitary HRR,

and each ATR represents a single context. With a neural network, the input/activation

vector can be convolved with the active context’s ATR and fed forward through the network.

The circular convolution results in a new vector that is roughly orthogonal to each of the

source vectors, enabling the model to separate learning of the individual tasks and reducing

potential catastrophic interference effects.

To integrate ATRs into the network, we introduce the concept of a context layer. This

layer is analogous to PFC layers in the previously described working memory models

and the ATRs are analogous to PFC stripes within the PFC layers which encode specific

contextual activation patterns. The role of the context layer is to generate and store a unique

ATR for each of the contexts and compute the convolutions for an active context. The output

of the previous layer is convolved with the active context’s ATR to produce the new output.

https://github.com/DLii-Research/context-learning

9

Figure 2 HRR Generation
1: function R A N D O M H R R(hrr size)
2: length = floor((hrr size−1)/2)
3: x = RandomVector(−π , π , length)
4: if IsOdd(hrr size) then
5: Result = IFFT(Concat([1], Exp(1j * x), Exp(-1j * Reversed(x))))
6: else
7: Result = IFFT(Concat([1], Exp(1j * x), [1], Exp(-1j * Reversed(x))))
8: end if
9: return Result

10: end function

Inserting this layer into a neural network will grant the model the ability to learn and predict

under these different contexts. Because this layer contains no trainable weights, it depends

on additional layers. First, because convolutions require components to be the same size, a

1D layer should precede the context layer. This layer is mainly responsible for projecting

the data to match the dimensionality of the ATRs. Since this layer is expected to precede

the context layer, the size of the ATRs is determined automatically based on the number

of nodes in the preceding dense layer. Lastly, in order for the switching mechanisms to

properly calculate the losses generated by the context layer, it is important that the context

layer is followed by a 1D layer. This subsequent layer will allow for the application of the

delta rule to calculate the context loss as described in the next section.

Context Switching Mechanisms

In order for the context layer to switch contexts autonomously, we developed a loss-

based switching mechanism inspired by the working memory models and the mesolimbic

dopamine system mentioned previously. It is important to first determine the loss contributed

strictly by the given context layer. Using the computed backpropagation gradients, the deltas

at the context layer can be extracted via the delta rule and the mean-square of the deltas

can be computed and accumulated over a full training epoch to obtain a single value, ∆C,

10

representing the overall context loss. If the subsequent layer contains bias weights, the

gradients for these weights will be used to compute the context deltas to reduce the time

complexity of the calculation. Otherwise the mean-square of the gradients for the non-bias

weights is used. The expected loss for each context can then be modeled to measure how

well the network has learned the current function as described in the following equation:

A(atr)← A(atr)+αA[∆C−A(atr)]

where αA is a learning rate parameter. During early training, the values of ∆C are not so

important since large context loss is expected; but as the network learns the function, this

loss approaches zero and the values of ∆C become more meaningful. To determine when a

context switch should occur, the context delta needs to be computed by taking the difference

between the expected context loss and the actual context loss as shown in the equation

below:

δ = A(atr)−∆C

The computed value of δ can be directly compared against some negative threshold value

tswitch. If δ exceeds this threshold, the active context is swapped with the next-in-line and,

in compliance with the working memory models, the value of A(atr) is not updated. In

a similar fashion, contexts can also be added dynamically when maxatr A(atr) exceeds

a secondary threshold tadd . These tswitch and tadd thresholds are implemented as static

hyperparameters and must be adjusted based on task performance similarly to learning rate

and other common hyperparameters.

For some epochs, it is possible that no context is appropriate for use for the current task

(i.e. the context deltas generated under each context exceed the threshold). While training

11

under one context, the manipulation of the weights may interfere with the other contexts,

resulting in an unexpected increase in context loss. This loss may be significant enough to

trigger an unwanted context switch, or even an infinite context switch loop if δ exceeds the

threshold in all known contexts. To combat this, sequential context switches are counted. If

all contexts are attempted but all exceed the value of tswitch, the context with the lowest ∆C

value is chosen and the value of A(atr) is re-initialized to A(atr) = ∆C.

Model & Training Regime

To properly utilize these new components, a new training regiment needs to implemented

to integrate all of the required mechanisms. This is accomplished by creating an extended

version of the Keras model which we call the ContextModel that implements all of the re-

quired mechanisms and component interfaces within the fit training method. The resulting

training procedure aims to achieve compatibility with both supervised and reinforcement

learning problems. Figure 3 provides a general overview of the extended training procedure

defined within the ContextModel and is described in detail below.

Figure 3 Context Model Training Loop
1: absorb: – Indicate if this is an absorbing state
2: dataset: – The dataset to train on
3: retry f it: – Repeat epoch after context switch
4: for epoch in num epochs do
5: BackupWeights()
6: repeat
7: gradients = TrainOnDataset(dataset)
8: switched = False
9: for ctx layer in GetContextLayers() do

10: switched = switched or UpdateAndSwitch(ctx layer, gradients, absorb)
11: end for
12: if switched then
13: RestoreBackupWeights()
14: end if
15: until not (switched and retry f it)
16: end for

First, the switching mechanisms above necessitate some modifications to how weight

12

updates are handled in the model. During a single epoch when a dataset is broken into

batches, the weights are being updated on each batch. In this case, if a context switch

happens to occur, the weights in the network would have been updated incorrectly. There are

two approaches of handling this situation that were considered. The first method accumulates

all of the gradients throughout the batches and does not apply the updates until the very end

of the epoch after no switch has occurred. While the first approach increases the accuracy

of determining when to switch contexts since the model wouldn’t be incorrectly learning,

the learning rate is slowed significantly and the stability of learning is greatly reduced as

the model is now being updated with large gradients. The second approach retains the

traditional learning method, applying the weight updates for each batch individually, but

requires maintaining a backup of the weights at the beginning of each epoch in the chance

a context switch occurs. If a context switch happens to occur during a training epoch, the

weights are restored to prevent learning under the incorrect context in compliance with

the working memory models and the epoch may be repeated under the new context. This

approach results in significantly faster training times since the weights are updated after

each batch during an epoch rather than one update at the very end of the epoch. However,

since the model would now be learning on an incorrect context, the generated context deltas

aren’t as significant in magnitude. In the end, the second approach was chosen due to the

potential learning issues with the first approach.

Immediately after a context switch, the repetition of the epoch may be desired. In

supervised learning problems the model should locate and learn under the best fitting

context. Since the context switch is decided at the end of the epoch, all training from that

epoch could potentially be reverted; essentially skipping this epoch. For supervised learning

problems, it’s important to repeat the epoch if a context switch occurs so the model can learn

appropriately without wasting any information. However, in reinforcement learning settings,

the repetition of epochs may be unwanted as updates to the model are based on previous

13

states that were potentially evaluated under a different context. To handle these situations,

the training loop includes the Boolean parameter, retry f it, that indicates whether an epoch

should be repeated upon a context switch.

For temporally-extended reinforcement learning tasks where an agent is required to

pass through non-terminal states (typically along the way to reaching a terminal state, such

as a goal state for the task), it is important to distinguish these steps to ensure that the

model can correctly track sequential switches in a given episode. During these intermediate

steps, the sequential switch counter in the switching mechanisms must be retained to allow

handling dynamic context allocation and locating best-fit contexts after all contexts have

been attempted. In temporally-extended tasks, the terminal states function as special states

in which the reward is absorbed whereas the non-terminal states observe a discounted

reward. Since this behavior is programmed explicitly in the task, the absorb parameter has

been included in the framework’s training loop to indicate to the model which states are

terminal/non-terminal. During the intermediate steps, this parameter should be assigned

false to prevent the switching mechanisms from resetting the sequential switch counter.

This parameter is enough to fully maintain the proper mechanism behavior. While the non-

terminal states are usually the most frequent states in temporally-extended tasks, the default

value for the absorb parameter was chosen to be true to provide the highest compatibility

among the other learning approaches (supervised learning, 1-step reinforcement learning)

without having to explicitly set this parameter’s value.

Lastly, it’s important to provide a reliable means of initializing the expected context

losses, A(atr), for each context. During a new context with an uninitialized expected

context loss, the switching mechanisms are disabled to ensure the model can first gain some

experience under the active context. By default, the expected context loss is initialized to

the observed context loss of the first absorbing training epoch. However, for some tasks,

initializing to the first-observed context loss value may be inaccurate as there are other

14

potential input combinations/values that could produce a higher calculated loss. While there

are various approaches to solving this issue, the framework currently provides three methods.

The first method continues with the normal value initialization, however it disables context

switching for x epochs to allow the model to first gain experience on the uninitialized context

before attempting to recognize context switches. The second method allows the user to

supply explicit values with which to initialize A(atr). For problems where the initial context

loss can be unpredictable, this approach presents a reliable means of initialization. The final

approach adds a coefficient to the initial context loss value, allowing it to be scaled-up to

give additional room for error.

Hyperparameter Tuning & Debugging Utilities

Because the context deltas are generated directly using the gradients and weights of the

neural network architecture, the actual context loss and context deltas can be completely dif-

ferent between experiments. As such, the various hyperparameters added by the framework’s

components (switch/add thresholds, context-loss learning rate, etc.) must be carefully tuned

for each experiment. In order to assist in tuning these new hyperparameters, the framework

includes various visualization and analyzation utilities. This section will discuss each of

these utilities with examples on how a model can be debugged and tuned with high accuracy

and efficiency.

The first tool included with the framework is the context logger, a Tensorflow Keras

callback module that provides the capability of logging all context losses and context deltas

recorded during the training period, as well as built-in plot generation. During the training

regime, an instance of this logger is passed into the fit training call of the model. The

modeled context loss for each of the contexts along with all of the context deltas are logged

for each training epoch. After training is complete, the logger instance provides methods to

generate plots using matplotlib. These plots can be used to quickly analyze and debug the

switching behavior of any given model and to determine appropriate switch/add thresholds.

15

An example plot created from the MNIST divisibility task discussed later along with a brief

explanation on how to interpret the displayed traces is shown in Figure 4. In this plot, two

separate graphs are generated plotting the modeled expected context loss and the generated

context delta, δ , at each training epoch. The Context Delta plot also includes traces of

tswitch and tadd . Context switches can be identified by the points at which the value of δ fall

below tswitch. While there can be multiple context deltas generated in a single epoch due to

multiple sequential switches or finding the best-fitting context, the trace indicates the value

of δ that triggered the first context switch. Any subsequent context deltas generated in a

single given epoch are currently not displayed.

Another tool included in the framework is the context replay utility. This utility allows

for quick re-modeling of the expected context loss without having to retrain the model from

scratch. After training, it may be found that there are hyperparameters related to context-loss

modeling that may need tweaking, such as the initial context-loss values, learning rate,

etc.. Rather than retraining models from scratch, the context replay utility can track the

generated context losses and deltas over time and replay them back using the specified

switching mechanisms and hyperparameters. This allows for quick re-modeling of the

expected context loss and context deltas so that these hyperparameters can be tuned much

more quickly and easily. Since the utility is implemented as an additional Tensorflow Keras

callback module, it can be passed into any context model during during the fit training call.

Lastly, while the visualization from the context logging can aid in determining good

values for the context switch threshold, tswitch, and context add threshold, tadd , the values

of these thresholds can be greatly optimized through an approach we call emulated context

switching. Emulated context switching works by disabling autonomous context switching

while training a model on a dataset or a subset of that dataset and explicitly indicating to

the model when a switch should occur. During emulated switching, the expected context

loss and the generated context deltas are still logged as normal and can be analyzed through

16

0.000

0.002

0.004

0.006

0.008

0.010

C
on

te
xt

L
os

s
Context 0
Context 1
Context 2

0 5 10 15 20 25 30
Epoch

−0.010

−0.005

0.000

0.005

C
on

te
xt

D
el

ta

Switch Threshold
Add Threshold
Context Delta

Figure 4: An example plot generated from the context logger containing traces of the
context-loss and context-deltas over time. The Context Loss plot portrays the modeled
expected context loss at the given training epoch, while the Context Delta plot displays
the calculated Context Deltas at each epoch. The negative-valued spikes in the Context
Delta plot that lie below the switch threshold are the primary indication of a context switch
being triggered. In supervised learning tasks, an epoch may be repeated under different
contexts to search for one that fits. In that case, the spike visible is the original delta that
triggered the first switch. Subsequent deltas are not currently indicated on the graph. If the
context delta is found to be below the switch threshold in every case, the context yielding
the maximum context delta is used. If dynamically-allocated contexts are available, this
threshold is compared to the add threshold, potentially adding a new context to the model if
the delta is found to exceed it.

17

the context logger. Additionally, the deltas at the indicated switch positions are logged

separately with their corresponding training epoch. Since this emulated switching model is

switching optimally, these logged context deltas can be analyzed externally to determine

appropriate switching thresholds with much greater precision and accuracy.

Evaluation & Controls

We evaluate this framework over a variety of both supervised learning and reinforcement

learning tasks. These tasks serve not only to provide support for successful learning with

the framework, but also demonstrate the overall capability and generalizability across the

variety of different tasks. While the framework is primarily evaluated with static context

allocation, sample runs for each task using dynamic context allocation are included. These

tasks and experimental details are described in the following chapters.

It is also important to note that due to the novelty of this framework it is difficult to

make any fair comparisons with other models. While our controls focus on the reduction

in available ATRs, we cite the controls provided by [6] as they are solving the same

types of problems described here. LSTM’s were chosen as the state-of-the-art model for

one of their controls. They were able to demonstrate and conclude that LSTM’s were

fundamentally unable to learn these types of tasks. This result was not surprising as error-

monitoring mechanisms are not present in standard deep-learning approaches but are critical

components of task-switching models in the literature.

18

CHAPTER IV.

SUPERVISED LEARNING TASKS

To train the supervised learning models, the framework provides an extended training

regiment. First, a separate training dataset is created for each of the desired contexts. Each

dataset may share the same input values, but will differ in the expected output values/labels

for each context. The training regime then trains the model on each dataset indivdiually for

n epochs each. The model is said to have completed a training cycle once it has learned on

each of the context datasets. Typically, the regime trains a model over the full list of datasets

for k complete training cycles, shuffling the order of the datasets at the beginning of each

cycle. While the training regime is capable of maintaining a mapping of the contexts to

each of the datasets, the original context order can often be preserved by supplying the list

of datasets in the appropriate initial order and only shuffling during the subsequent cycles.

This training regiment is applied to each of the supervised learning tasks described below.

Logic Gate Task

As a simple proof-of-concept, this supervised-learning task requires a single model

to learn and predict multiple different logic gates autonomously without any provided

information regarding the active logic gate. The model will be presented a training batch

containing two binary inputs and the expected output for a particular logic gate. After some

time, the logic gate will be swapped for a different gate, modifying the model’s expected

output. The model should recognize this and switch contexts to avoid overwriting it’s prior

knowledge. In the end, the model should be able to accurately predict the output for each

logic gate under its own context.

Methods

This experiment constructs a multilayer neural network utilizing the framework as shown

in Figure 5 to model a total of eight different logic gates. These gates are comprised of six

common gates: AND, OR, NAND, NOR, XOR, XNOR; along with two additional custom

19

gates that simply forward one of the given input values. Each logic gate is separated into its

own dataset containing all possible pairs of bipolar inputs (−1 is used in-place of 0) along

with the expected output value. The order of the logic gate datasets is randomized during

each training cycle, and the active dataset is shuffled during each training epoch. The model

is trained with a batch size of 1 and updated via stochastic gradient descent (SGD) and

binary-crossentropy loss. The resulting hyperparameters for this experiment are described

in Table 1.

Input A Input B

Output

1x256 Relu

1x256 Context Layer

1x1 Sigmoid

Figure 5: The model architecture for the logic gate task. The model receives two input
integers, projects them into a higher dimension using a Relu layer and passes them through
the context layer. The resulting output is then projected down to a single sigmoid output
value.

Table 1: Logic Gate Task Training Parameters

Name Value Description
k 4 Number of training cycles
n 50 Number of training epochs/cycle
α 0.1 Learning rate for optimizer
αA 0.5 Learning rate for A(atr)
tswitch −0.02 Context-switch threshold
tadd −0.08 Context-add threshold

20

Results

First, we can examine the two experimental runs of the logic gate task shown in Figure 9.

These two runs demonstrate successful learning of the task as seen by the modeled context

losses of each context via statically-allocated and dynamically-allocated contexts. During

early training, large context loss is expected which is indicated by the large spikes in the

context loss graphs. As the model learns the gate under a context, the expected context loss

approaches zero. When the next gate is given, the spike in the context delta (indicated in

the context delta plots) triggers a context switch. Since the contexts haven’t seen or lack

experience with the task, they will have much higher expected context losses early on. While

the statically-allocated experiment quickly learned each of the gates under its own context,

the dynamically-allocated context model can be seen attempting to learn multiple gates

0.00

0.05

0.10

0.15

C
on

te
xt

L
os

s

Context 0
Context 1
Context 2
Context 3
Context 4
Context 5
Context 6
Context 7

0 200 400 600 800 1000 1200 1400 1600
Epoch

−0.6

−0.4

−0.2

0.0

C
on

te
xt

D
el

ta

Switch Threshold
Context Delta

(A) Statically-allocated Contexts

0.00

0.05

0.10

0.15

0.20

0.25

C
on

te
xt

L
os

s

Context 0
Context 1
Context 2
Context 3
Context 4
Context 5
Context 6
Context 7

0 200 400 600 800 1000 1200 1400 1600
Epoch

−0.6

−0.4

−0.2

0.0

0.2

C
on

te
xt

D
el

ta

Switch Threshold
Add Threshold
Context Delta

(B) Dynamically-allocated Contexts

Figure 6: The resulting context loss and context delta traces for each of the experimental
runs. The top row of graphs are plots of the value of A(atr) for each context at each epoch.
The bottom row of plots are traces of the computed value of δ from each epoch. Context
switches can be identified by the δ trace exceeding the switch threshold value.

21

under the same context as indicated by the repetition of context loss spikes. This is often due

to task outputs differing by only a single bit, for example AND and XNOR. As the network

continues to partition such conflicting task outputs to a single context ATR, the context

losses become more significant and trigger the mechanisms requiring the addition of another

context. During development it was found that while the dynamically-allocated context

model would frequently attempt to learn multiple gates under a single context, the model

consistently allocated the correct number of contexts and learned each gate successfully in

the end.

We then perform a benchmark over this task using statically-allocated contexts over

1 ATR 3 ATRs 6 ATRs 8 ATRs

50

60

70

80

90

100

A
cc
u
ra
cy

(%
)

Classification Accuracy of Logic Gate Task

Figure 7: Classification accuracy distributions for the logic gate task across a range of
statically-allocated ATRs. For each boxplot, 100 independent models were trained, each
with random initial weights and ATRs. Each model was set to use the corresponding number
of ATRs, run for a training regime of 8 cycles, 50 epochs each, and the average classification
accuracy across all gate functions was recorded at the end of training. The orange line
indicates the median accuracy value across the 100 models and the notches above and below
the median represent a 95% confidence interval. Additional hyperparameter values are
specified in Table 1. In general, using too few ATRs results in poorer performance since
conflicting logic functions cannot be represented in the models without independent context
representations for each function.

22

100 runs. This benchmark includes control experiments with a multi-layer neural network

(essentially a contextual network limited to using one ATR) along with two contextual neural

networks allocated with fewer ATRs than the number of actual gates for comparison. As

shown in Figure 7, after a 8 full training cycles the models where the number of allocated

ATRs are fewer than the actual number of contexts cannot fully learn the tasks. The standard

neural network converged on the expected theoretical 50% accuracy. As the number of

ATRs approaches the actual number of contexts, the accuracy increases and approaches

100%. It’s not until the number of ATRs is equal to the number of actual contexts before the

accuracy converges on 100%. After the full 8 training cycles, all 100 models were able to

obtain 100% classification accuracy.

23

MNIST Divisibility Task

With a simple proof-of-concept in place, this next task aims to provide a more practical

supervised learning demonstration by classifying images from the MNIST dataset as either

even, odd, or divisible by 3. The MNIST dataset provides handwritten digits in the form of

28x28 greyscale images and comes pre-split with 60,000 images for training and 10,000

images for testing [10]. The model must recognize the digit in the image and output a single

value indicating whether or not the image satisfies the rule.

Methods

While this problem could be approached with a multilayer neural network similar to

the model described in the previous problem, we instead construct a convolutional neural

network integrated with a context layer as described in Figure 8. The model takes a single

image as input and outputs a single binary value indicating if the given digit fits the current

rule. The images in the dataset are normalized such that each greyscale value is between

0 and 1, and the datasets/images are shuffled in the same manner as described in the logic

gate task. The model is trained on the first 5,000 images from the training dataset and

evaluated against the first 1,000 images from the testing dataset using a batch size of 32.

Weight updates are applied using the Adam optimizer and binary-crossentropy loss. The

hyperparameters are listed in Table 2.

Table 2: MNIST Divisibility Task Training Parameters

Name Value Description
k 2 Number of training cycles
n 5 Number of training epochs/cycle
α 0.001 Learning rate for optimizer
αA 0.5 Learning rate for A(atr)
tswitch −0.005 Context-switch threshold
tadd −0.004 Context-add threshold

24

Results

This task plays an important role since the model architecture in this experiment is a

convolutional neural network. Analyzing the plots of this task in Figure 8, it can be noted

that both static and dynamic context allocation models were very stable in learning. This

stabilization was achieved due mainly to the large training dataset of 5,000 images. Along

with the stabilization both models were also very consistent in their learning of the task,

regardless of their context allocation method. Even with the smaller training dataset, these

Input
Image

Output

1x128 Relu

1x128 Dropout (0.25)

1x128 Dropout (0.50)

1x128 Context Layer

1x1 Sigmoid

Conv2D
(64, 8x8)

Conv2D
(128, 8x8)

1x128 Max Pooling(2x2)

Figure 8: The model architecture for the MNIST divisibility task. The model takes in a
28x28 MNIST normalized image as input and feeds it through a sequence of 2D convolution
layers where the result is project and convolved with the active context. The final output is a
single sigmoid value indicating if the image satisfies the given rule.

25

models were able to achieve an accuracy of 98% on never-before-seen images.

0.000

0.002

0.004

0.006

0.008

0.010

0.012

C
on

te
xt

L
os

s

Context 0
Context 1
Context 2

0 5 10 15 20 25 30
Epoch

−0.010

−0.005

0.000

0.005

0.010

C
on

te
xt

D
el

ta

Switch Threshold
Context Delta

(A) Statically-allocated Contexts

0.000

0.002

0.004

0.006

0.008

0.010

C
on

te
xt

L
os

s

Context 0
Context 1
Context 2

0 5 10 15 20 25 30
Epoch

−0.010

−0.005

0.000

0.005

C
on

te
xt

D
el

ta

Switch Threshold
Add Threshold
Context Delta

(B) Dynamically-allocated Contexts

Figure 9: The resulting context loss and context delta traces for each of the experimental
runs. The top row of graphs are plots of the value of A(atr) for each context at each epoch.
The bottom row of plots are traces of the computed value of δ from each epoch. Context
switches can be identified by the δ trace exceeding the switch threshold value.

26

CHAPTER V.

REINFORCEMENT LEARNING TASKS

For each of the reinforcement learning experiments in this section, we utilize the Q-

learning algorithm, a variation of TD-learning, to model the expected value of future rewards

and learn the optimal policy [20]. Q-learning is an off-policy algorithm which prevents

exploratory actions from negatively impacting the learning of the policy. Using the Q-

function, Q(s,a), the value of each available action, a, for a given state s can be evaluated

individually. Typically, a form of greedy policy is employed which selects the action with

the highest Q-value. After transitioning to a new state, the Q-function for the previous

state/action pair can be updated with observed reward. For terminal states, the update

equation is equivalent to that of standard TD-learning:

Q(st ,at)← Q(st ,at)+α · [rt+1−Q(st ,at)]

where al pha is the learning rate. For n-step problems with non-terminal states, the update

to the Q-function factors in the highest-valued action at the new state with some discount

factor, gamma, preventing negative impact from exploratory actions. The update equation

for non-terminal states is defined below.

Q(st ,at)← Q(st ,at)+α · [rt+1 + γ ·maxaQ(st+1,a)−Q(st ,at)]

In the following sections, we construct various tasks that utilize the Q-learning algorithm.

These tasks consist of both 1-step and n-step Q-learning implementations to demonstrate

the complete potential of the framework under reinforcement learning settings.

27

Wisconsin Card Sorting Test (WCST)

The first task utilizes the framework to solve a 1-step reinforcement learning task based

on the Wisconsin Card Sorting Test (WCST). The WCST is a common working memory

task that requires a participant to learn and rapidly switch between various rules dictating

how to sort a presented card based purely on correct/incorrect feedback. This task consists

of a number of rounds and trials. During a trial, the participant is presented a stimulus

card containing three features drawn from three dimensions (number, color, shape), each

dimension having three possible feature values. For example, a card may consist of two red

circles, three green squares, one blue triangle, etc.. The participant is then required to match

the card based strictly on a particular dimension governed at the beginning of each round, of

which they are not informed. After several trials have been attempted, the round ends and a

new round begins with a brand new sorting rule.

Methods

As mentioned in the beginning of this chapter, we implement the 1-step Q-learning

algorithm using the framework to model the expected reward and learn the sorting policy

for each rule. Once presented a stimulus card, the Q-learning model allows the agent to

predict the values of each of the possible actions. Here, an ε-greedy policy is used to govern

action selection. This policy prefers the selection of actions that yield the highest expected

value, but with some probability, ε , will select an action completely at random to employ

a means of exploration. At the end of the trial, the agent can use the observed reward to

update its previous prediction. Since this task is a special case of Q-learning in that every

action results in transitioning to a terminal state, the full reward is absorbed without ever

applying any discount factor.

The next step is to create the neural network model to predict the Q-values based on

the given stimulus card. The stimulus card is represented by a 3x3 matrix where each row

is a dimension consisting of a one-hot encoded feature, giving three possible dimensions

28

to sort by. The model can accept this card as direct input and predict the expected value

each of the possible actions simultaneously. While simultaneous action prediction/fitting is

typical with Q-learning models built on top of neural networks, it can be problematic when

working with general context models. This is due to situations where the model attempts to

locate the best-fitting context using Q-values generated under a different context, leading to

inaccurate context switching. While the model could be extended to enable the recalculation

of Q-values under new contexts, this issue is instead resolved by providing both the state

and the chosen action as input. The model then outputs a single value representing the value

of that action choice for the given state. The architecture for the resulting model is described

in Figure 10.

Next, we construct the complete WCST experimentation procedure as described in

Figure 11. To keep the task simple, the chosen features contained in the stimulus card are

Number ShapeAction Color

1x512 Relu

1x1 Linear

1x512 Context Layer

Action Value

Figure 10: The model architecture for the Wisconsin Card Sorting Test. The model receives
four one-hot encoded vectors flattened into a single dimension: action, number, color, and
shape. The output is a single Q-value indicating the learned value of the action at the given
state.

29

guaranteed to be free of any ambiguity that could come from the feedback (two dimensions

happen to share the same sort). This is achieved by shuffling strictly the rows of a 3x3

identity matrix, resulting in a card consisting of distinct feature values across dimensions.

The procedure also ensures that the model experiences each possible rule once before any

rule is repeated. This is to reduce any difficulty in learning for models that utilize statically-

allocated contexts as they would have to remap rules to different contexts. While this kind

of model is very well capable of doing so, a model utilizing dynamically-allocated contexts

would be better suited. Once all rules have been in play, subsequent rounds select rules at

random so long as they differ from the previous round.

Figure 11 WCST Procedure
1: function W C S T(model, n rounds, trials per round)
2: rules = Shuffle(AllPossibleRules())
3: rule = null
4: for round = 0 to n rounds do
5: if UsesDynamicContexts(model) or IsEmpty(rules) then
6: rule = NewRandomRule(rule)
7: else
8: rule = Pop(rules)
9: end if

10: for trial = 0 to trials per round do
11: Trial(model, rule)
12: end for
13: end for
14: end function
15: function T R I A L(model, rule)
16: card = SelectRandomCard()
17: action, value = Policy(model, card, ε)
18: reward = Reward(action, rule)
19: target = value + α*(reward - value)
20: FitModel(model, card, action, target, retry f it=false)
21: end function

Finally, we constructed the reward schedule and fine-tuned the hyperparameters using

emulated context switching. The employed reward schedule provides the agent with +1

for correct sorting and −1 for incorrect sorting. It was found through experimentation that

30

differentiating correct/incorrect actions through positive and negative rewards consistently

produces much more distinct context deltas, allowing for more accurate switching. It was

also found that removing bias weights from the dense layers of the network resulted in deltas

that were more consistent among the contexts for this task. Since every step is independent

of the previous, the stochastic gradient descent optimizer was used to train the model. The

final list of hyperparameters values specified for the task are presented in Table 3. We

evaluate the results of the models in the next section.

Results

For a proof-of-concept, the results from two successful sample runs are shown in Figure

12 are first analyzed, each using different models: one where contexts are allocated statically,

the other dynamically. The statically-allocated context models were presented each possible

rule before a rule ever reoccurred. As mentioned previously, this prevents unnecessary

unlearning and remapping of the contexts in the early stages of training. However, true

random rule selection was utilized for the model using dynamically-allocated contexts as it

can adapt only when needed. The large initial context loss gives much needed room for error

during the context’s first experience with the rule, indicated by the large negative spikes in

the context delta traces when expected loss is high. This initial loss ensures these spikes

Table 3: WCST Task Training Parameters

Name Value Description
n 20 Total number of rounds
ntrials 100 Number of trials per round
ε 0.1 Probability of non-greedy action
αO 0.1 Learning rate for optimizer
αQ 1.0 Learning rate for Q-learning
αA 0.05 Learning rate for A(atr)
Ainitial 2e−4 Initial loss value of A(atr)
tswitch −8e−6 Context-switch threshold
tadd −1.6e−5 Context-add threshold

31

remain above the switch threshold to prevent early switching and allow the model time to

first gain experience with the context. As the expected loss approaches zero, the model can

be much more confident with context switching and the context deltas can be more distinctly

recognized.

Next, we examine the results of the benchmark employing 100 different models utilizing

statically-allocated contexts with the task. Figure 13 presents the mean of the overall

classification accuracy for each model model after each trial. Each model’s classification

accuracy was determined by applying each rule to the best-fitting context and evaluating the

action choices of all possible stimulus cards. The accuracy of each context in each of the

models was averaged to determine that model’s overall accuracy. In the end, 99/100 models

0.00000

0.00005

0.00010

0.00015

0.00020

C
on

te
xt

L
os

s

Context 0
Context 1
Context 2

0 100 200 300 400 500 600
Epoch

−0.00005

0.00000

0.00005

0.00010

0.00015

0.00020

C
on

te
xt

D
el

ta

Switch Threshold
Context Delta

(A) Statically-allocated Contexts

0.00000

0.00005

0.00010

0.00015

0.00020

C
on

te
xt

L
os

s

Context 0
Context 1
Context 2

0 100 200 300 400 500 600
Epoch

−0.00005

0.00000

0.00005

0.00010

0.00015

0.00020

C
on

te
xt

D
el

ta

Switch Threshold
Add Threshold
Context Delta

(B) Dynamically-allocated Contexts

Figure 12: The resulting context loss and context delta traces for sample runs of the
Wisconsin Card Sorting Test using two different models over 600 trials, one consisting
of statically-allocated contexts and the other consisting of dynamically-allocated contexts.
These plots demonstrate successful runs in both context allocation methods while also
providing visualization of the distinct context deltas generated at the beginning of each
round. The hyperparameters can be found in Table 3.

32

were able to achieve an overall decision accuracy of 100%, leaving only a single outlier in

the results.

0 250 500 750 1000 1250 1500 1750 2000
Trial

70

80

90

100

D
ec

is
io

n
A

cc
ur

ac
y

%

Decision Accuracy Over Time

Figure 13: The average decision accuracy of the Wisconsin Card Sorting Test over time
across 100 different models. For each model, rule is mapped to its best fitting-context where
all possible cards are evaluated. The average prediction accuracy of each model is then
averaged and plotted above.

33

1D-maze Task

In this final experiment, we construct a temporally-extended reinforcement learning task

requiring an agent to solve a 1-dimensional maze with varying goal states. In this task, the

agent is positioned in a random starting state at the beginning of each episode and must

traverse the maze moving either left or right to locate the active goal state. The environment

is partially observable in that the agent can observe its current state, but all other information

is kept hidden. The maze is also periodic such that if the agent moves beyond one end of

the maze it will land on the opposite side of the maze. After a number of episodes, the goal

state will switch positions and the agent must switch contexts to properly accommodate the

new goal. In the end, the agent should learn the optimal path to each of the goal positions

under their own contexts.

Methods

Similar to the WCST experiment, this experiment utilizes the Q-learning algorithm with

the framework’s context model to approximate the expected future rewards to learn the

optimal policy for traversal. As this task is temporally-extended, an episode may consist

of the agent taking multiple steps to get to the goal position. During each step, the agent

evaluates and determines the action to take based an ε-greedy policy.

We can now construct a context model to predict the Q-values based on the state and

action. Each of the possible states in the maze is one-hot encoded to be used as direct input

to the model. Due to the same issues described in the WCST task, the concatenation of the

one-hot encoded state and chosen action vectors will be required to produce appropriate

context deltas. This concatenated vector can then be given as input to the model to predict

the value of the given single state/action pair. The final architecture is described in Figure

14.

With the learning approach and model architecture, the 1D-maze task procedure is

created as shown in Figure 15. Like the WCST task, each goal is picked at random ensuring

34

for statically-allocated context models that each goal is selected once before a goal is ever

re-selected. At the beginning of each episode, the agent is inserted into a random starting

state always differing from the goal position. This eliminates immediate episode termination

and always gives the agent a chance to update its knowledge for each episode. The agent then

predicts and evaluates action choices for its current state and decides which adjacent state to

transition to based on the policy. Upon transitioning to the new state, the agent observes

the received reward and updates its predicted value for that previous state/action pair. It’s

important to note that as this is a temporally-extended task it’s required to denote absorbing

states when fitting the model to a target value to ensure the switching mechanisms are

correctly engaged. Since the calculation for the target value used in Q-learning is dependent

on whether the state is absorbing or not, indication of this information fits naturally within

the procedure.

Through experimentation using emulated context switching, the hyperparameters were

tuned and the reward schedule was created. The procedure rewards the agent with +1 for

reaching the goal and −1 for any intermediate steps. As mentioned in the WCST task, the

differentiation in positive and negative rewards assists in producing more distinct context

deltas and thus more accurate switching. However, in this task it was determined through

experimentation that enabling the bias weights within the dense layers produced context

deltas with much greater magnitude than without the bias weights. It was also found during

experimentation that large context deltas could occur when exploring new contexts for

the first time making it difficult to prevent inaccurate switching. This can be resolved

by explicitly increasing the initial context loss value, but the alternative approach used in

this experiment was to disable the autonomous switching mechanisms for the first nswitch

episodes of each new context. This gives the model time to learn the general shape of

the function for the current context before attempting to recognize context deltas. The

model weights are then updated using the stochastic gradient descent optimizer with a

35

lower learning rate to stabilize learning and avoid exploding gradients. All of the final

hyperparameters for this experiment are provided in Table 4.

State Action

1x1024 Relu

1x1 Linear

1x1024 Context Layer

Action Value

Figure 14: The model architecture for the 1D-maze task. The model receives two one-hot
encoded vectors, state and action, flattened into a single dimension. The output is a single
Q-value indicating the learned value of the action at the given state.

Table 4: 1D-maze Task Training Parameters

Name Value Description
n 3000 Total number of episodes
nswitch 500 Number of episodes between goal switches
ε 0.3 Probability of non-greedy action
αO 0.01 Learning rate for optimizer
αQ 1.0 Learning rate for Q-learning
αA 0.003 Learning rate for A(atr)
Adelay 250 Episodes to delay switching for new contexts
Ainitial 5.0 Initial loss value of A(atr)
tswitch −0.06 Context-switch threshold
tadd −0.06 Context-add threshold

36

Figure 15 1D-maze Task Procedure
1: function M A Z E TA S K(model, maze len, goals, n episodes, switch f requency)
2: goal indices = Shuffle(GoalIndices(goals))
3: goal index = null
4: for episode = 0 to n episodes do
5: if episode mod switch f requency == 0 then
6: if UsesDynamicContexts(model) or IsEmpty(goal indices) then
7: goal index = NewRandomGoal(goal index, goals)
8: else
9: goal index = Pop(goal indices)

10: end if
11: end if
12: Episode(model, maze len, goals[goal index])
13: end for
14: end function
15: function E P I S O D E(model, maze len, goal)
16: state = RandomStartingState(maze len, goal)
17: new state = null
18: moves = 0
19: while state 6= goal and moves < MOVE LIMIT do
20: action, value = Policy(model, state, ε)
21: new state = NextState(state, action, maze len)
22: reward = Reward(new state, goal)
23: if new state == goal then
24: target = value + α·(reward - value)
25: FitModel(model, state, action, target, retry f it=false, absorb=true)
26: else
27: qmax = MaxActionValue(model, new state)
28: target = value + α·(reward + γ ·qmax− value)
29: FitModel(model, state, action, target, retry f it=false, absorb=false)
30: end if
31: state = new state
32: moves = moves + 1
33: end while
34: end function

37

Results

We first provide and analyze two successful runs with both different models using each

context allocation method. The resulting traces for these runs are displayed in Figure 16.

The context delta’s triggering the context switches are quite distinct, but it’s also worth

noting the large context spikes that happen to occur during the early stages of training. In

Figure 16B, some context deltas during the model’s first experience with a new goal position

can even be seen spiking below the threshold. Since the context deltas generated during

early training can be quite large compared to the deltas later in the experiment, we utilize

the switch delay mechanism to disable autonomous switching during the first 250 episodes

of the task, rather than tweaking the initial loss hyperparameters. For problems where the

initial loss can be unpredictable, this alternative approach can prove much more reliable.

After analyzing the individual runs, a benchmark of 20 different models was performed

and evaluated by examining the overall accuracy in optimal move selection for each model,

as plotted in Figure 17. Of these models, all but one fully learned the optimal policy for each

of the goal positions under their own contexts. For each of the models, each goal position in

the maze is matched with the best-fitting context (i.e. the context generating the least loss).

By calculating the distance to the corresponding goal position at each state under each of

the contexts, the number of sub-optimal moves can be accumulated based on the current

learned policy. Computing the number of optimal moves vs. the number of non-terminal

states yields the model’s overall decision accuracy. Another common approach to evaluating

similar temporally-extended tasks is to evaluate the number of sub-optimal moves over time

by providing intermittent runs throughout training where exploratory moves are disabled.

While this approach was considered, unless setting the correct context explicitly, the number

of sub-optimal moves would would never approach zero as the model would frequently

require context switching to reach the correct goal position. It is for this reason that the

alternative approach to examining the number of sub-optimal moves was employed.

38

0

1

2

3

4

5
C

on
te

xt
L

os
s

Context 0
Context 1
Context 2

0 2000 4000 6000 8000 10000
Epoch

0

2

4

C
on

te
xt

D
el

ta

Switch Threshold
Context Delta

(A) Statically-allocated Contexts

0

2

4

6

8

C
on

te
xt

L
os

s

Context 0
Context 1
Context 2

0 2000 4000 6000 8000 10000
Epoch

0

2

4

6

8

C
on

te
xt

D
el

ta

Switch Threshold
Add Threshold
Context Delta

(B) Dynamically-allocated Contexts

Figure 16: The resulting context loss and context delta traces for each move for sample
runs of the 1D-maze task using two different models over 3,000 episodes, one consisting
of statically-allocated contexts and the other consisting of dynamically-allocated contexts.
These plots demonstrate successful runs in both context allocation methods while also
providing visualization of the distinct context deltas generated at the locations of goal
switches. The hyperparameters for these runs are specified in Table 4.

0 500 1000 1500 2000 2500 3000
Episode

60

70

80

90

100

D
ec

is
io

n
A

cc
ur

ac
y

%

Overall Decision Accuracy Over Time

Figure 17: The average accuracy for optimal move selection in the 1D-maze task over time
for 20 different models. For each model, each goal is mapped to its best-fitting context
and the policy is evaluated for its corresponding goal position by calculating the average
accuracy of optimal move selection across all possible states.

39

CHAPTER VI.

DISCUSSION & FUTURE WORK

Working memory is a critical feature to our decision making process. While current

research is able to accurately explain how working memory and its internal mechanisms

function, the computational models created have not been used much outside the realm of

working memory research. Here, we presented a new deep learning framework inspired

by these working memory models that allow traditional neural networks to autonomously

learn under a varying number of contexts. The implementation of this framework into

Tensorflow Keras allows for integration of context learning into existing neural networks

with minimal-to-no modifications to the architecture required.

Much of the framework’s capability and generalizability was demonstrated through a

variety of tasks. It was shown that the integration of the context layer in multi-layer neural

network models can allow for learning under multiple contexts in both supervised learning

and reinforcement learning settings with little-to-no task-specific modifications. Beyond

multi-layer neural networks, a convolutional neural network integrated with a context layer

was also successfully demonstrated to learn multiple classification rules on the MNIST

dataset.

Since the few existing models that include these contextual learning mechanisms have

been designed with reinforcement learning in mind, our framework is rather novel in the fact

that it is also compatible with supervised learning problems. Furthermore, the successful

integration of a context layer into convolutional neural networks presents powerful potential.

A single network could house a variety of image classifiers or even distinctly search for and

detect the presence of certain features within an image/video. While this framework lays the

foundation for the integration of context learning mechanisms into common neural network

models, there is much that remains to be explored.

It’s worth noting that the experiments in this framework focused mainly on static context

40

allocation to allot sufficient time and resources into the design and development of the

core mechanisms and components. As a result, these statically-allocated context models

require more careful dataset handling. Since each of these models would switch to the

next uninitialized context during the early stages of training, it was important that the

dataset for each given task was presented to the model once before re-occurring. This

prevents the model from having to unlearn and remap tasks to different contexts. With

this in mind, the supervised learning tasks were learned on the datasets in terms of cycles,

where each of the possible tasks are shuffled and presented to the model. This guarantees a

uniform distribution of the tasks/datasets. While sample runs were provided in each of the

experiments, models utilizing dynamically-allocated contexts would be capable of resolving

these issues and allowing for truly randomized task input. Future research with a focus on

dynamic context allocation could result in a significant advancement to the overall capability

of the framework.

While the context-switching mechanisms worked well for the experiments included

here, there are still clear limitations. Due to the stochastic nature of some tasks, or the

learning interference affecting inactive contexts, the static threshold may cause difficulty in

more complicated tasks potentially reducing the accuracy and increasing the task’s learning

difficulty. Investigation into dynamic threshold mechanisms could result in significant

performance increases as it could avoid unnecessary context switching. These mechanisms

could allow much more room for error during the early stages of training when a lot of noise

in context loss is expected, and narrow in as the model becomes more confident with its

predictions. It is also important to note that the current model ignores the sign of the context

deltas. In a reinforcement learning setting, observing the sign of the context delta can lead

to more information-driven context switching [7] as positive deltas can often indicate the

appropriate context for the current task.

Finally, there are additional concepts/methods of facilitating the context layer that could

41

be investigated. For instance, the framework currently only supports 1-dimensional abstract

task representations, but circular convolutions can be performed on higher dimensions.

Future work could include the implementation of these higher dimensional ATRs that can

be convolved with 2D or 3D activation/input vectors. Furthermore, the experiments in this

project focused on the use of a single context layer toward the end of the network, but the

implementation of the framework theoretically allows any number of context layers. These

additional layers could add levels of contextual support to a model, perhaps increasing

the range of problems by introducing macro/micro contexts. These concepts were not

experimented with during the development of this research; however, they could prove to be

a powerful addition to the framework architecture.

42

BIBLIOGRAPHY

[1] Christopher H. Chatham and David Badre. Multiple gates on working memory.

Current opinion in behavioral sciences, 1:23–31, Feb 2015. ISSN 2352-1546. doi:

10.1016/j.cobeha.2014.08.001. 26719851[pmid].

[2] Christopher H. Chatham, Michael J. Frank, and David Badre. Corticostriatal output

gating during selection from working memory. Neuron, 81(4):930–942, Feb 2014.

ISSN 1097-4199. doi: 10.1016/j.neuron.2014.01.002. 24559680[pmid].

[3] G. M. DuBois and J. L. Phillips. Working memory concept encoding using holographic

reduced representations. In Proceedings of the 28th Modern Artificial Intelligence and

Cognitive Science Conference, 2017.

[4] Michael J. Frank, Bryan Loughry, and Randall C. O’Reilly. Interactions between frontal

cortex and basal ganglia in working memory: A computational model. Cognitive,

Affective, & Behavioral Neuroscience, 1(2):137–160, Jun 2001. ISSN 1531-135X. doi:

10.3758/CABN.1.2.137.

[5] Ashish Gupta, Lovekesh Vig, and David C. Noelle. A Cognitive Model for Generaliza-

tion during Sequential Learning. Journal of Robotics, pages 1–12. ISSN 1687-9600.

doi: 10.1155/2011/617613.

[6] M. Jovanovich and J. L. Phillips. n-task learning: solving multiple or unknown

numbers of reinforcement learning problems. In In Proceedings of the 40th Annual

Meeting of the Cognitive Science Society, 2018.

[7] N. Khan and J. L. Phillips. Combined model for sensory-based and feedback-based

task switching: Solving hierarchical reinforcement learning problems statically and dy-

namically with transfer learning. In Proceedings of the 32nd International Conference

on Tools with Artificial Intelligence, 2020.

43

[8] Trent Kriete and David C. Noelle. Generalisation benefits of output gating in a model of

prefrontal cortex. Connection Science, 23(2):119–129, 2011. doi: 10.1080/09540091.

2011.569881.

[9] Trenton Kriete, David C. Noelle, Jonathan D. Cohen, and Randall C. O’Reilly. Indi-

rection and symbol-like processing in the prefrontal cortex and basal ganglia. 110(41):

16390–16395, 2013. ISSN 0027-8424. doi: 10.1073/pnas.1303547110.

[10] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT

Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

[11] Yael Niv, Reka Daniel, Andra Geana, Samuel J. Gershman, Yuan Chang Leong,

Angela Radulescu, and Robert C. Wilson. Reinforcement learning in multidimensional

environments relies on attention mechanisms. 35(21):8145–8157, 2015. ISSN 0270-

6474. doi: 10.1523/JNEUROSCI.2978-14.2015.

[12] Randall C. O’Reilly. Biologically based computational models of high-level cognition.

314(5796):91–94, 2006. ISSN 0036-8075. doi: 10.1126/science.1127242.

[13] Randall C. O’Reilly and Michael J. Frank. Making working memory work: A com-

putational model of learning in the prefrontal cortex and basal ganglia. 18(2), 2006.

ISSN 0899-7667.

[14] Randall C O’Reilly, David C Noelle, Todd S Braver, and Jonathan D Cohen. Prefrontal

cortex and dynamic categorization tasks: representational organization and neuromod-

ulatory control. Cerebral cortex (New York, N.Y. : 1991), 12(3):246—257, March

2002. ISSN 1047-3211. doi: 10.1093/cercor/12.3.246.

[15] J. L. Phillips and D. C. Noelle. A biologically inspired working memory framework

for robots. In ROMAN 2005. IEEE International Workshop on Robot and Human

Interactive Communication, 2005., pages 599–604, 2005.

44

[16] J. L. Phillips and D. C. Noelle. Working memory for robots: Inspirations from

computational neuroscience. In Proceedings of the 5th International Conference on

Development and Learning, 01 2006.

[17] T. A. Plate. Holographic reduced representations. IEEE Transactions on Neural

Networks, 6(3):623–641, 1995.

[18] Nicolas P. Rougier, David C. Noelle, Todd S. Braver, Jonathan D. Cohen, and Randall C.

O’Reilly. Prefrontal cortex and flexible cognitive control: Rules without symbols. 102

(20):7338–7343, 2005. ISSN 0027-8424. doi: 10.1073/pnas.0502455102.

[19] W. Schultz, P. Dayan, and P. R. Montague. A neural substrate of prediction and reward.

Science, 275(5306):1593–1599, Mar 1997.

[20] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3):

279–292, May 1992. ISSN 1573-0565. doi: 10.1007/BF00992698.

[21] A. S. Williams and J. L. Phillips. Multilayer context reasoning in a neurobiologically

inspired working memory model for cognitive robots. In Proceedings of the 40th

Annual Meeting of the Cognitive Science Society, 2018.

[22] A. S. Williams and J. L. Phillips. Transfer reinforcement learning using output-gated

working memory. In Proceedings of the 34th AAAI Conference on Artificial Intelligence,

New York, NY., 2020.

	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER INTRODUCTION
	CHAPTER BACKGROUND
	Working Memory
	Holographic Reduced Representations
	n-task Learning

	CHAPTER MODEL FRAMEWORK
	Component Design & Implementation
	Context Layer and Abstract Task Representations
	Context Switching Mechanisms
	Model & Training Regime

	Hyperparameter Tuning & Debugging Utilities
	Evaluation & Controls

	CHAPTER SUPERVISED LEARNING TASKS
	Logic Gate Task
	Methods
	Results

	MNIST Divisibility Task
	Methods
	Results

	CHAPTER REINFORCEMENT LEARNING TASKS
	Wisconsin Card Sorting Test (WCST)
	Methods
	Results

	1D-maze Task
	Methods
	Results

	CHAPTER DISCUSSION & FUTURE WORK
	BIBLIOGRAPHY

