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ABSTRACT

The nonlinear Schrödinger equations are widely used to model a number of im-

portant physical phenomena, including solitary wave propagations in optical fibers,

deep water turbulence, laser beam transmissions, and the Bose-Einstein condensa-

tion, just to mention a few. In the field of optics and photonics, the systems of

nonlinear Schrödinger equations can be used to model multi-component solitons and

the interaction of self-focusing laser beams. In three spatial dimensions, the nonlinear

Schrödinger equation is known as the Gross-Pitaevskii equation, which models the

soliton in a low-cost graded-index fiber. Recently, research on nonlinear space frac-

tional Schrödinger equations, which capture the self-similarity in the fractional envi-

ronment, has become prevalent. Our study includes the systems of multi-dimensional

nonlinear space fractional Schrödinger equations.

To solve the systems of multi-dimensional nonlinear Schrödinger equations efficiently,

several novel numerical methods are presented. The central difference and quartic s-

pline approximation based exponential time differencing Crank-Nicolson method is

introduced for solving systems of one- and two-dimensional nonlinear Schrödinger e-

quations. A local extrapolation is employed to achieve fourth-order accuracy in time.

The numerical examples include the transmission of a self-focusing laser beam. The lo-

cal discontinuous Galerkin methods combined with the fourth-order exponential time

differencing Runge-Kutta time discretization are studied for solving the systems of

nonlinear Schrödinger equations with hyperbolic terms, which are critical in modeling

optical solitons in the birefringent fibers. The local discontinuous Galerkin method

is able to achieve any order of accuracy in space, thanks to the usage of piecewise

polynomial spaces. The exponential time differencing methods are employed to deal

with the coupled nonlinearities for the reason that there is no need to solve nonlinear
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systems at every time step, while the approach achieves expected accuracy.

The fourth-order exponential time differencing Runge-Kutta method is combined

with the fourth-order compact scheme in space to solve the space fractional cou-

pled nonlinear Schrödinger equations, involving Riesz derivatives. The system of

four space fractional equations models the interaction of four water waves moving

in the Lévy motion. A locally extrapolated exponential operator splitting scheme is

applied to multi-dimensional nonlinear space fractional Schrödinger equations The

scheme achieves second-order accuracy in time for both two-dimensional and three-

dimensional problems, compared to the second-order ADI method, whose application

is constrained to two-dimensional problems. The Gross-Pitaevskii equation contain-

ing space fractional derivatives is demonstrated to indicate the usage of the scheme.

Theoretical and numerical study of stability and convergence of the numerical

methods have been discussed. Extensive numerical examples are provided to illustrate

the accuracy, efficiency, and reliability of the proposed methods.
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CHAPTER 1

INTRODUCTION

The nonlinear Schrödinger equation (NLSE) is an important model for the wave

envelope in the dispersive, conservative, and mildly nonlinear physical environment

[66]. In one spatial dimension, the NLSE is a key model describing the propagation

of solitary waves in optical fibers [1]. In two spatial dimensions, the NLSE models the

deep water turbulence. In the area of plasma physics, the two-dimensional NLSE is

used to model the collapse of Langmuir waves [71] and self-focusing laser beams [56].

In three spatial dimensions, the NLSE is also known as the Gross-Pitaevskii equation,

which can be used to model Bose-Einstein condensation [2, 5, 51]. Recently, the

three-dimensional NLSE has been used in modeling spatial solitons, such as solitons

in a graded-index multi-mode fiber [16]. The multi-dimensional NLSE system has a

general form:

i un t + βn∇un + δn ∆un +

(
N∑
m=1

fnm(|um|2)

)
un = 0, (1)

where i =
√
−1, un ≡ un(r, t), n = 1, 2, ...,N , t ≥ 0, βn and δn are real constants,

fnm are real functions, r ∈ Ω = Rd and d = 1, 2, 3.

A number of studies have been done on numerical methods for the multi-dimensional

NLSEs, including the alternating direction implicit method [72], the finite difference

method [21, 34], the linearly implicit method [33], the exponential time differencing

method [29], the discontinuous Galerkin method [3, 66], and the spectral method [17].

Exponential integrators have also been proposed by Berland et al. [8]. In the

context of exponential integrators in general, the reader is referred to Hochbruck and

Ostermann [27], and references therein. In Chapter 2, an exponential time differenc-
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ing Crank-Nicolson (ETD-CN) strategy is employed to deal with coupled nonlinear-

ities in the NLSEs. While our approach achieves expected accuracy and stability in

computations, there is no need to solve nonlinear systems at every time step. This

procedure ensures high efficiency.

In Chapter 3, we use the local discontinuous Galerkin (LDG) method as a spatial

discretization to solve the NLSEs. The LDG method was introduced by Cockburn

and Shu for solving the convection-diffusion equations [13]. It was derived from the

Runge-Kutta discontinuous Galerkin (RKDG) method, which utilizes discontinuous

basis functions [14]. The LDG method can be easily modified to achieve any order

of accuracy in space, thanks to the usage of piecewise polynomial spaces [12, 15].

The LDG method degenerates the equations with high-order spatial derivatives into

systems of equations with first-order spatial derivatives. Thus, for the LDG method,

we only need to construct matrices for the first derivatives according to different nu-

merical fluxes. The higher-order derivatives can be approximated by multiplications

of the first-order matrices. Therefore, the LDG method is extremely convenient for

an equation with both first-order and higher-order derivatives, such as a higher-order

NLSE.

The fourth-order exponential time differencing Runge-Kutta (ETDRK4) temporal

discretization we use in this research is based on the exponential time-differencing

fourth-order Runge-Kutta (ETD4RK) method introduced by Cox and Matthews [11].

The ETD4RK method was modified by Khaliq et al. in [39]. Hederi et al. applied the

ETDRK4 scheme to a single higher-order nonlinear Schrödinger (HONLS) equation

[24]. As shown in their numerical results, the ETDRK4 is approximately four times

faster than the fourth order split step Fourier method in simulating solutions of

the HONLS equation. In [8, 27], the Krylov subspace methods and the Chebyshev
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approximations of the matrix exponential operator are introduced. The ETDRK4

method uses the same idea as these methods.

1.1 One-dimensional NLSEs and optical solitons

In fiber optics, a soliton refers to an optical wave envelope that remains unchanged

during propagation due to an exact balance of the linear and nonlinear effects [25].

There are two categories of solitons: spatial solitons and temporal solitons. For spatial

solitons, the change of the electromagnetic field in the medium affects the refractive

index, which makes the nonlinear effect and the diffraction effect balance each other.

For temporal solitons, the nonlinear effect balances the dispersion effect in the medium

[25].

The NLSEs can model both spatial and temporal solitons. One-dimensional

NLSEs such as Eq. (2) are used to model temporal solitons:

iut + εuxx + β|u|2u = 0. (2)

In Eq. (2), u models the wave envelope. The linear term εuxx represents the Group-

velocity dispersion (GVD), which means the group velocity depends on the frequency.

The nonlinear term β|u|2u represents the Kerr effect, which means a change in the

refractive index of the medium because of the change of the electric field. The GVD

and Kerr effect balance each other under a proper combination as shown in the figure

on the web page [65].
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1.2 Two-dimensional NLSEs and self-focusing

laser beams

It is shown in [56] that in a plasma channel, when the self-focusing effect overcomes

the diffraction, a self-focusing laser beam will be generated. As indicated by Fig. 5

in [56], where z represents the normalized time, the beam self-focuses to reach a peak

at z = 87. Then the beam defocuses at z = 144. At z = 150, the beam refocuses to

reach another peak. This kind of self-focusing beam can be described by the NLSE

[56]:

iuz +
1

2k0

∇2
⊥u+

k0∆(|u|2)

n0

u = 0, (3)

where u is the electric field envelope, k0 is the wave number in the medium, n0 repre-

sents the base index, ∆(|u|2) is the change in nonlinear index. In Chapter 2, we will

demonstrate the numerical result for a specific initial-boundary value problem gener-

ated by Eq. (3). In Chapter 3, we propose a system of two NLSEs to demonstrate

the interaction of two co-propagating self-focusing laser beams.

1.3 NLSEs and vector solitons

As shown in [1], in a fiber communication system, the input pulse may be orthogonally

polarized in a birefringent fiber. The polarized components can form solitary waves,

which are named vector solitons. Because of the nonlinear coupling effect, the vector

solitons can propagate undistorted even when the components have different widths

and peak powers. The 2-coupled NLSE is in the following form:

i u1t + β∇u1 +
1

2
∆u1 + ε

(
|u1|2 + α|u2|2

)
u1 = 0,

i u2t + β∇u2 +
1

2
∆u2 + ε

(
α|u1|2 + |u2|2

)
u2 = 0,

(4)
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where u1 and u2 are amplitudes of waves through the orthogonal polarizations, (X, t) ∈

ΩT = Ω× [0, tn], Ω ⊂ Rd, d = 1, 2, 3. α is the coefficient of cross-phase modulation,

ε ≥ 0 is the nonlinear damping factor, which is a small real number. β is the linear

coefficient and X represents the convection velocities in different directions.

Most articles do not consider the group velocity for polarization components,

except for [35, 66]. In this research, we consider (4) with β 6= 0, since in high-

birefringent fibers, the polarization components β representing the mismatch of group

velocities between the fast and slow modes cannot be ignored [1]. Fig. 1.9 in [1] shows

an example of vector soliton propagation. The slow mode and fast mode propagate

together due to the nonlinear coupling effect.

1.4 NLSEs and solitons in a graded-index fiber

In fiber optics, the core size of a multi-mode fiber is larger than a single-mode fiber.

A graded-index fiber is a multi-mode fiber with the property that its refractive index

decreases while the core size increases. Solitons in graded-index fibres can improve

data rates to ensure a low cost in telecommunications [53].

There are examples of optical solitons in a graded-index fiber in [53]. As described

in Fig. 1 in [53], if there is only linear effects, the pulse will propagate inconsistently

because of the diffraction. If the nonlinear effects balance the diffraction, the pulse

will propagate in a pattern. This is how the soliton in a graded-index fiber delivers

information in a telecommunication system. Solitons in a graded-index fiber can be

modeled by a three-dimensional Gross-Pitaevskii equation [51]:

uz =
i

2k0

(uxx + uyy)− i
β

2
utt − i

k0∆

R2
(x2 + y2)u+ iγ|u|2u, (5)

where u models the slowly-varying wave envelope in a graded-index fiber, β represents
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the material group-velocity dispersion, γ is the nonlinear coefficient, ∆ is the difference

of index between the center and the cladding of the fiber, R is the fiber core radius

and k0 is the wave number in the medium.

1.5 FNLSEs and fractional quantum mechanics

Recently, fractional partial differential equations have been considered and utilized to

describe quantum phenomena in a fractal environment [26, 61]. For instance, in [19],

sound wave propagations in rigid porous materials are modeled by fractional partial

differential equations. The hereditary properties and memory of different materials

are better described by the fractional-order derivatives [68]. It is shown in [49, 68]

that space fractional derivatives are used to model anomalous diffusion or dispersion

effects caused by the movement of particles, as opposed to the Brownian model, which

describes the classical random motion of particles.

The nonlinear space fractional Schrödinger equations (FNLSEs), which include a

space fractional derivative of order α (1 < α ≤ 2), are derived with the path integral

over Lévy trajectories [43, 72]. Self-similarity of the quantum mechanical path, as an

important physical property, can be captured by the space fractional derivatives [43].

When α = 2, the Brownian motion takes the place of the Lévy motion, which leads

to standard nonlinear Schrödinger equations.

The FNLSE in one dimension is used to model the evolution of an inviscid perfect

fluid with nonlinear dynamics. It comes from the modification of water wave equations

in two spatial dimensions. The fractional Laplacian represents the dispersion effect

of the linearized gravity water waves equation for one dimensional surfaces [31]. The

cubic nonlinear term in the FNLSE governs the nonlinear dynamics of water waves.

The systems of FNLSEs can be used to describe the interaction of multiple water
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waves. The FNLSEs have been shown to have smooth solutions in [23].

In Chapter 4, the one-dimensional space fractional coupled nonlinear Schrödinger

equation (FCNLSE) containing the fractional Laplacian (−∆)α/2 (1 < α ≤ 2) is

considered:

i ut − γ (−∆)α/2u+ ρ(|u|2 + β|v|2)u = 0, x ∈ R, 0 < t ≤ T,

i vt − γ (−∆)α/2v + ρ(|v|2 + β|u|2)v = 0, x ∈ R, 0 < t ≤ T.

(6)

In a multi-dimensional space, the FNLSE can be used to model the optical soli-

tons, whose propagation is governed by fractional quantum mechanics. The three-

dimensional Gross-Pitaevskii equation introduced in Section 1.4 can be modified to

a FNLSE for the case of fractional quantum mechanics.

In Chapter 5, we will consider the three-dimensional FNLSE with Riesz derivatives

in the following form:

iut + γ(
∂α1

∂|x|α1
+

∂α2

∂|y|α2
)u+ η

∂α3

∂|z|α3
u+ f(u) = 0, (x, y, z) ∈ R3, t ∈ (0, T ], (7)

where the spatial partial derivatives of the Gross-Pitaevskii equation have been changed

to spatial fractional partial derivatives. Notice that when α1 = α2 = α3 = 2, Eq. (7)

becomes the general Gross-Pitaevskii equation.
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CHAPTER 2

ETD-CN WITH QUARTIC SPLINE APPROXIMATION AND FINITE

DIFFERENCE METHODS

2.1 Introduction

In this chapter, we study a central difference and quartic spline approximation based

exponential time differencing Crank-Nicolson (ETD-CN) method for solving systems

of one- and two-dimensional NLSEs. A local extrapolation is employed to achieve

fourth order accuracy in time. The stability properties of the spatial and tempo-

ral discretizations are proved and discussed. Numerical examples associated with

Dirichlet, Neumann, and periodic boundary conditions are provided to illustrate the

accuracy, efficiency and stability of the method proposed.

We consider the ETD-CN method together with central difference and quartic

spline approximations for the numerical solution of following three sets of equations:

i ψt + ψxx + λ|ψ|2ψ = 0, (8)

and

i ψ1t + αψ1xx +
(
|ψ1|2 + %|ψ2|2

)
ψ1 = 0,

i ψ2t + αψ2xx +
(
%|ψ1|2 + |ψ2|2

)
ψ2 = 0.

(9)

and

i ψt + ψxx + ψyy + |ψ|2ψ = 0. (10)

The numerical results by the ETD-CN method are compared with the results

by a linearly implicit method and the energy conservative Crank-Nicolson method,
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which illustrates the efficiency and accuracy of the ETD-CN method. To solve the

two-dimensional problem (10), we utilize a combination of the ETD-CN method and

an alternating direction implicit (ADI) method.

2.2 The ETD-CN method

Consider the following nonlinear initial-boundary value problem:

ut + Au = F (u, t), (x, t) ∈ Ω× (0,∞);

u(x, t) = ub, (x, t) ∈ ∂Ω× (0,∞), (11)

u(x, 0) = u0, x ∈ Ω,

where Ω ⊂ R is bounded by ∂Ω, A is a linear operator in a Banach space, and the

function F is bounded. See also [70]. Let τ = tn+1 − tn be the temporal step size to

be used on the mesh {tn} such that the approximate solution u(tn) is denoted by un.

Then the formal solution [38, 58] of (11) is

u(tn+1) = e−τAu(tn) + e−τA
∫ τ

0

esAF (u(tn + s), tn + s)ds. (12)

While (12) serves as a foundation for the general ETD-CN method [38, 70], a

different class of ETD schemes for problems with the mildly nonlinear operator A has

also been studied [37, 67]. Herewith we employ a second order [1/1] Padé approximant

R1,1 to the matrix exponential in (12). This yields a standard ETD-CN scheme [38]:

un+1 = bn + τ(2I + τA)−1[F (bn, tn+1)− F (un, tn)],

bn = R1,1(τA)un + 2τ(2I + τA)−1F (un, tn),

(13)

in which

R1,1(τA) = 4(2I + τA)−1 − I,
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where I is the identity operator.

Scheme (13) can be realized in two steps:

1. To acquire bn, we solve

(2I + τA)Nb = 4un + 2τF (un, tn)

for Nb first and then set

bn = Nb − un.

2. We solve

(2I + τA)Nu = τ [F (bn, tn+1)− F (un, tn)]

for Nu and subsequently,

un+1 = bn +Nu.

Kleefield et al. [38] proved the above-mentioned ETD-CN method converges quadrat-

ically. We are able to confirm computationally that its convergence is second order

in time.

2.3 The ETD-CN method with central

difference approximation

Let re and im represent the real and imaginary parts of a complex number z, respec-

tively. Therefore, we may express z in the form of a real vector, that is,

z ⇒
[
re
im

]
and consequently,

i · z ⇒
[

0 − 1
1 0

]
z.
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Now, to solve (8) numerically, we let 0 < h� 1 be a uniform spatial step size, n

be the total number of mesh points in space, u be the vector (u1, u2, . . . , uj, . . . un)>,

where uj’s are approximations of ψ at mesh points along x and ũj be the vector form

of {uj}n1 , that is, ωj =

[
vj
wj

]
, in which vj and wj are real and imaginary parts of

an approximation of that of uj, respectively. Then (8) under homogenuous Dirichlet

boundary conditions can be solved readily through the following semi-discretized

system,

ωt + A1ω = i f(|ω|2)ω, (14)

where A1 ∈ R2n×2n,

A1 = − 1

h2


−2P P 0 0 · · ·
P −2P P 0 · · ·
0 P −2P P · · ·

. . . . . . . . . . . .

· · · 0 0 P −2P

 , P =

[
0 − 1
1 0

]
, (15)

and

ω =
(
ω>1 , ω

>
2 , . . . , ω

>
j , . . . ω

>
n

)>
,

based on a second order central finite difference approximation.

2.4 ETD-CN method with quartic spline

approximation

For any sufficiently smooth function r(xj) = rj, we define

δ2
xrj = rj−1 − 2rj + rj+1, j = 1, 2, . . . , n. (16)

Let ũ(ξj, t) be a vector solution of (8) which is sufficiently smooth, and s(x, t) be

its quartic spline approximation. Then, according to the Numerov condition [57], we



12

have the following collocation relation,

mj−1 + 10mj +mj+1 =
12

h2
δ2
xωj + ej, j = 1, 2, . . . , n,

where ωj = ω(xj, t) are at least fourth order approximations of ũ(xj, t), mj =

sxx(xj, t), xj ∈ Ω, and ej are local truncation errors given by

ej = − h4

240
ũx6(ξj, t),

and ξj reside in neighborhoods of xj, j = 1, 2, . . . , n, respectively. Consequently,

equation (8) together with homogeneous boundary conditions can be approximated

by (
I2n +

1

12
Aq

)
ωt + A1ω = i

(
I2n +

1

12
Aq

)
f(|ω|2)ω, (17)

where I2n ∈ R2n×2n is the identity matrix and Aq ∈ R2n×2n, that is,

Aq =


−2I2 I2 0 0 · · ·
I2 −2I2 I2 0 · · ·
0 I2 −2I2 I2 · · ·

. . . . . . . . . . . .

· · · 0 0 I2 −2I2

 , I2 =

[
1 0
0 1

]
. (18)

The equation (17) leads to

ωt +

(
I2n +

1

12
Aq

)−1

A1ω = i f(|ω|2)ω.

Denote A2 = (I2n + (1/12)Aq)
−1A1. We acquire the desired ETD-CN method to use:

ωt + A2ω = i f(|ω|2)ω. (19)

2.5 Mass conservation

Since the mass of a numerical solution can be evaluated via the spectral norm ‖u‖2,

for given 0 ≤ ε� 1, its mass conservation can be defined by the following inequality
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[57], ∣∣‖u‖2
2 − c

∣∣ ≤ ε |t− t0|,

where c > 0 is a constant oriented from the mass of the analytic solution.

For any u, v ∈ R2n, we consider the inner product

〈u, v〉 = u>v =
2n∑
j=1

ujvj.

Therefore,

‖u‖2 =
√
h 〈u, u〉 =

√√√√h

2n∑
j=1

u2
j .

Let ω be an approximation of u. Since A1 is skew symmetric, we have [57]

1

2

d

dt
‖u‖2

2 ≈ h

〈
dω

dt
, ω

〉
= 0.

This implies that the solution of the NLSE may conserve approximately. Numerical

examples agree with these predictions.

2.6 Stability analysis

We now show that the ETD-CN schemes are unconditionally linearly stable. First we

present two lemmas and use ⊗ for the Kronecker product of matrices [9, pp.137-141].

Lemma 2.1 Let

E = tridiag(1,−2, 1) ∈ Rn×n.

Then its eigenvalues are

µj = −4 sin2 jπ

2(n+ 1)
, j = 1, 2, . . . , n.
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Consequently, eigenvalues of the TST matrices T± = In ± rE, where In ∈ Rn×n is

the identity matrix, are

λ±j = 1∓ 4r sin2 jπ

2(n+ 1)
, j = 1, 2, . . . , n,

and ∥∥T±∥∥
2

= max
1≤j≤n

|λj| .

Its proof is in [20, 59].

Lemma 2.2 Let λi, 1 ≤ i ≤ n, and µj, 1 ≤ j ≤ m, be eigenvalues of A ∈ Rn×n, B ∈

Rm×m, respectively. Then the eigenvalues of A⊗B are

λ1µ1, . . . , λ1µm, λ2µ1, . . . , λ2µm, . . . , λnµ1, . . . , λnµm.

Its proof is in [42].

Theorem 2.3 The ETD-CN schemes (14) and (17) are unconditionally linearly sta-

ble.

Proof 2.4 The linear stability of (14) and (17) depends on properties of

M = 2I2n + kA1, N = 2I2n + kA2,

respectively, where

A1 = − 1

h2
E ⊗ P, A2 = − 1

h2

(
I2n +

1

12
E ⊗ I2

)−1

(E ⊗ P ),

and P, I2 are given in (15) and (18), respectively.
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We need to show that ‖M−1‖2, ‖N−1‖2 < 1. To this end, we observe that A>1 =

−A1, A
>
2 = −A2 since P> = −P. Recalling the symmetry of E and I2, it follows that

MM> = (2I2n + kA1) (2I2n − kA1) = 4I2n − k2A2
1

= 4I2n −
k2

h4
(E ⊗ P )(E ⊗ P ) = 4I2n −

k2

h4
E2 ⊗ P 2.

Thus, utilizing Lemmas 2.1 and 2.2, eigenvalues of MM> are

eigen
(
MM>)

j
= 4− k2

h4
eigen

(
E2 ⊗ P 2

)
j

= 4 +
16k2

h4
sin4 jπ

2(2n+ 1)
> 1, j = 1, 2, . . . , 2n,

due to the fact that eigen (P 2)j = −1, j = 1, 2. The above inequalities imply that

‖M‖2 > 1.

Hence, ∥∥M−1
∥∥

2
< 1.

This ensures the stability of (14).

On the other hand,

NN> = 4I2n − k2A2
2.

Let λ be an eigenvalue and x be an eigenvector of NN>. We have

(
4I2n − k2A2

2

)
x = λ x.

The above can be reformulated to

A2
2x = µ2x,

where

µ2 =
4− λ
k2

. (20)
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Thus, A2x = µx and this leads to(
I2n +

1

12
E ⊗ I2

)−1

(E ⊗ P )x =

[
(E ⊗ P )−1

(
I2n +

1

12
E ⊗ I2

)]−1

x = h2µx.

Since I2n + 1
12
E ⊗ I2 and E ⊗ P are both nonsingular, A2 is nonsingular and subse-

quently, µ 6= 0. According to Lemmas 2.1 and 2.2, we have

(E ⊗ P )−1

(
I2n +

1

12
E ⊗ I2

)
x = (E−1 ⊗ P−1)

(
I2n +

1

12
E ⊗ I2

)
x

=

[
E−1 ⊗ P−1 +

1

12

(
E−1 ⊗ P−1

)
(E ⊗ I2)

]
x

=

(
E−1 ⊗ P−1 +

1

12
In ⊗ P−1

)
x

=

(
E−1 +

1

12
In

)
⊗ P−1x =

1

h2µ
x.

Recall that P−1 = P>. We acquire immediately that

1

h2µ
= ± i eigen

(
E−1 +

1

12
In

)
= ± i

(
− 1

4 sin2(jπ/(2n+ 2))
+

1

12

)
,

for j = 1, 2, . . . , n. It follows immediately that

µ2 = − 1

h4

(
1

12
− 1

4 sin2(jπ/(2n+ 2))

)−2

= −σ
2

h4
, j = 1, 2, . . . , n.

Thus,

σ2
j , σ

2
n+j = 2

(
1

3
− 1

sin2(jπ/(2n+ 2))

)−2

> 0, j = 1, 2, . . . , n.

Now, recall (20). We find that

4− λj = −k
2

h4
σ2
j < 0, j = 1, 2, . . . , 2n,

and they imply that max1≤j≤2n λj > 4 > 1 which leads to

∥∥N−1
∥∥

2
<

1

4
< 1.

The proof is thus completed.
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2.7 Stability regions

In the previous discussion, we studied the linear stability of the ETD-CN method.

Now, let us consider stability regions of the numerical method when applied to a

nonlinear equation similar to that in [11]. Given an ordinary differential equation,

ut = cu+ F (u), (21)

where F (u) is a nonlinear function. Assume that a fixed point u0 exists, such that

cu0 + F (u0) = 0. Suppose u is a perturbation of u0 and λ = F ′(u0), then Eq. (21)

can be linearized as

ut = cu+ λu. (22)

If Re(c+ λ) < 0, we can tell that the fixed point u0 is stable. Let x = λτ and y = cτ

and apply the ETD-CN method (14) or (17) for solving (22). Then we can compute

the amplification factor r(x, y) as

un+1

un
= r(x, y) =

2 + y + 2x

2− y
+

2x2 + 2yx

(2− y)2
. (23)

To obtain stability regions, we assume that r(x, y) < 1. When x and y are both

real, the stability region of the ETD-CN method is shown in Fig. 1. If x is complex,

we fix y to some non-positive values, and the stability regions are demonstrated in

Fig. 2. It can be observed that as |cτ | increases, the stability region expands.

2.8 Extrapolation of the ETD-CN method

Following the local extrapolation procedure by Lawson and Morris [44], let us consider

(13) over a temporal span of 2τ, that is,

un+2 = bn + 2k(2I + 2τA)−1[F (bn, tn+2)− F (un, tn)],

bn = R1,1(2τA)un + 2τ(2I + 2τA)−1F (un, tn),

(24)
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Figure 1: The stability region (light colored) of an ETD-CN method when x and y

are real.

where

R1,1(2τA) = 4(2I + 2τA)−1 − I.

Alternately, when (13) is applied twice, we have

un+2 = bn+1 + τ(2I + τA)−1[F (bn+1, tn+2)− F (un+1, tn+1)],

bn+1 = R1,1(τA)un+1 + 2τ(2I + τA)−1F (un+1, tn+1),

un+1 = bn + τ(2I + τA)−1[F (bn, tn+1)− F (un, tn)],

bn = R1,1(τA)un + 2τ(2I + τA)−1F (un, tn),

(25)

in which

R1,1(τA) = 4(2I + τA)−1 − I.

Let us denote the solution procedures in (24) and (25) by un+2
(1) and un+2

(2) , respectively.

However,

un+2
(E) =

4

3
un+2

(2) −
1

3
un+2

(1) (26)
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ETD−CN Stability regions for different y values
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Figure 2: Stability regions of the ETD-CN method with y fixed to some non-positive

values.

is a fourth order approximation to the true solution at tn+2 with a principal coefficient

being the truncation error E5 = 1/10. See also [32, 47] for the use of Richardson

extrapolation to gain the same order of accuracy.
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2.9 Numerical experiments

In the following numerical experiments, h represents the spatial step size and τ rep-

resents the time step size. An error vector, ER, is measured by using the `∞ and `2

norms defined by

‖ER‖∞ = max
1<m<N

{∣∣‖ψ(xm, tn)‖ − ‖ũn1,m + iũn2,m‖
∣∣ } ,

and

‖ER‖2 =

[
N∑
m=1

∣∣‖ψ(xm, tn)‖ − ‖ũn1,m + iũn2,m‖
∣∣2]1/2

,

where N is the dimension of ũ.

2.10 Systems of two NLSEs

We consider the following system [33, 69]:

i ψ1t + αψ1xx +
(
|ψ1|2 + %|ψ2|2

)
ψ1 = 0,

i ψ2t + αψ2xx +
(
%|ψ1|2 + |ψ2|2

)
ψ2 = 0.

(27)

We consider two key cases. In Case One, the following initial and boundary

conditions are utilized.

ψ1(x, 0) =

√
2α

1 + %
sech(

√
αx) exp(i υx),

ψ2(x, 0) =

√
2α

1 + %
sech(

√
αx) exp(i υx), (28)

ψ1(x, t)x = ψ2(x, t)x = 0 at x = −20, 60,

where % = 1, υ = 1 and α = 1. Corresponding analytic solutions of (27) are given in

[33]:

ψAj(x, t) =

√
2α

1 + %
sech

(√
α(x− υt)

)
exp

(
i(υx− (υ2 − α)t)

)
, j = 1, 2. (29)
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Figure 3: Numerical simulation of system (27) with initial conditions (28).
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The soliton solution of (27) together with (28) obtained via the ETD-CN method

with quartic spline approximation (h = 0.1, τ = 0.01 and T = [0, 30]) is shown in

Fig. 3. The modulus |ψ2| is identical to |ψ1| for the same initial values. We observe

that the phase of the soliton moves to the right at a constant speed of one. The

solitons indicate that, when the amplitudes of the underlying pulses are equal, the

waves should propagate with the same shape. Their phase traveling directions and

speeds are identical, respectively.

Eq. (27) is often called the integrable Manakov equation. It models solitons in a

birefringent optical fiber possessing a refractive index depending on the polarization

and propagation direction of pulses [69]. Two solitons can be formed by a decompo-

sition of each light ray. Initial condition (28) models two solitons traveling together

in the same direction.

Table 1: A comparison of L∞ errors of solutions to system (27)-(28) (h = 0.1, τ = 0.01

and T = [0, 30]).
t linearly implicit [33] Crank-Nicolson [33] ETD-CN Central Difference ETD-CN Quartic Spline

5 0.047690 0.01972 0.00595 5.60342e-5
10 0.089070 0.03777 0.01125 9.08083e-5
15 0.126621 0.05582 0.01663 2.17458e-4
20 0.188602 0.07379 0.02204 4.49535e-4
25 0.182201 0.09149 0.02768 7.73105e-4
30 0.276529 0.109349 0.03320 0.0011933

In Table 1, we compare the accuracy of the ETD-CN method with central dif-

ference approximation and the ETD-CN method with quartic spline approximation

to the accuracy of linearly implicit and Crank-Nicolson methods [33]. The linearly

implicit method loses it’s theoretical order of convergence when the nonlinear term

is treated explicitly, while the ETD-CN method with central difference approxima-

tion maintains it’s theoretical order of convergence with much less errors as shown
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in Table 1. The same h, τ and other parameters are used in all four cases. The

ETD-CN method is more accurate and efficient as compared with Crank-Nicolson

method because the nonlinear equations do not need to be solved at each time step.

When ETD-CN with quartic spline approximation is used, the method reaches a high

accuracy in space. This is due to the fact that the system of two NLSE generates

errors in both amplitude and horizontal position due to the horizontal movement of

the wave. The precision of the ETD-CN method with a quartic spline approximation

makes it better suited in this situation. During the computation, we only employ the

LU decomposition once and matrix multiplications for several times within the loop

of updating values of ψ(·, t+ 1). These results demonstrate the satisfactory efficiency

of our newly constructed ETD-CN method.

Table 2 is devoted to comparisons of the numerical results by the extrapolated

ETD-CN method with quartic spline approximation, and of the results given in [32]

via Richardson extrapolations. The same parameters given by [32] are used: α =

0.5, % = 2/3, υ = 1, h = 0.2, τ = 0.05.

Table 2: The `∞ error comparison of the extrapolated ETD-CN method with quartic

spline approximation, and of the Richardson extrapolation.
t Ismail and Alamri [32] Extrapolated ETD-CN
4 0.001321 0.001126
8 0.002408 0.002168
12 0.003750 0.003545
16 0.005429 0.005112
20 0.007226 0.006955

In Case Two, we consider the birefringent situation as given in [69]. We replace
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Figure 4: The propagation of solitons (27) based on (30).

the initial and boundary conditions for (27) by the following:

ψ1(x, 0) =
√

2α1 sech(α1x+ x0) exp(i υ1x),

ψ2(x, 0) =
√

2α2 sech(α2x− x0) exp(i υ2x), (30)

ψ1(x, t)x = ψ2(x, t)x = 0, at x = ±40,

where % = 2/3, υ1 = 0.2, υ2 = −0.2, α1 = 0.6, α2 = 0.5 and x0 = 20.

Table 3: Mass conservations of (27), (30) by using the ETD-CN method with a quartic

spline approximation.
t ‖ψ1‖2

2 Error in mass ‖ψ2‖2
2 Error in mass

0 1.549193 0 1.414214 0
20 1.549263 0.000070 1.414228 0.000014
40 1.549331 0.000138 1.414245 0.000031
60 1.549392 0.000199 1.414247 0.000033
80 1.549475 0.000282 1.414316 0.000102
100 1.549538 0.000345 1.414317 0.000103

This initial-boundary value problem generates two optical waves propagating and

interacting in a birefringent fiber. We may observe in Fig. 4 obtained via the ETD-

CN method based on a quartic spline approximation (h = 0.1, τ = 0.05, T = [0, 100])
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that in the situation with (30), the two solitons ψ1 and ψ2 start their propagation

at x = −20 and x = 20 respectively. After the solitons interact at t ≈ 40, their

phase travel directions are slightly altered and there appears to be a daughter wave

for each of them. The amplitude of such a daughter wave of |ψ2| is larger since the

amplitude of |ψ1| is larger, because the effect of |ψ1| on |ψ2| in the interaction is larger.

Table 3 gives mass profiles of the two solitons as t increases. It is found that after

the collision, mass errors of the numerical solutions grow only mildly; therefore, the

daughter waves are not consequences of numerical errors.

2.10.1 Two-dimensional NLSEs

In this section, we first consider the following two-dimensional NLSE:

i ψt + ψxx + ψyy = |ψ|2ψ, (x, y, t) ∈ Ω× Ω× (0,∞),

ψ = ψb, (x, y, t) ∈ ∂Ω× ∂Ω× (0,∞), (31)

ψ(x, 0) = ψ0, x, y ∈ Ω,

where Ω ⊂ R is bounded,

We consider the ETD-CN algorithm (13) and alternating direction implicit (ADI)

method [59] to solve problem (31). This indicates a split of the differential equation

(31) to two sub-equations. One with the x-derivative and the other with the y-

derivative.

First, we solve the following equation in the x-direction

νt + A1ν =
1

2
i|ν|2ν, (32)

where matrix A1 is the same as in (15) and ν is a 2N ×N matrix approximating ψ,
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that is,

ν =


ν11 ν12 ν13 · · · ν1N

ν21 ν22 ν23 · · · ν2N

ν31 ν32 ν33 · · · ν3N
...

...
...

. . .
...

νN1 νN2 νN3 · · · νNN


in which

νij =

[
vij
wij

]
,

where vij and wij are the real and imaginary parts of νij and |νij|2 = v2
ij + w2

ij. Let

us denote aij = |νij|2, then

|ν|2ν =


a11ν11 a12ν12 a13ν13 · · · a1Nν1N

a21ν21 a22ν22 a23ν23 · · · a2Nν2N

a31ν31 a32ν32 a33ν33 · · · a3Nν3N
...

...
...

. . .
...

aN1νN1 aN2νN2 aN3νN3 · · · aNNνNN

 .

By solving equation (32) using the ETD-CN method with central difference approxi-

mation, we acquire ν(t+ τ/2) as an intermediate value.

Then we repeat the procedure for (32) in the y-direction to obtain ν(t + τ).

This particular design is often referred to as the split-step finite difference (SSFD)

method [64]. We implement the above mentioned strategy to solve the following

two-dimensional NLSE.

We consider the two-dimensional NLSE [66]:

i ψt + ψxx + ψyy + |ψ|2ψ = 0, 0 < x, y < 2π, t > 0, (33)

together with the initial and homogeneous Neumann boundary conditions

ψ(x, y, 0) = (1 + sinx)(2 + sin y), 0 < x, y < 2π,

ψ(x, y, t)x = ψ(x, y, t)y = 0 at x = 0, 2π; y = 0, 2π.
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Figure 5: Modules of the initial function (1 + sin x)(2 + sin y) in (33).
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Figure 6: Solutions to Eq. (33) at t = 0.054 and t = 0.108.

Eq. (33) was considered recently by Sulem and Patera [60], and Xu and Shu [66].

The investigators reveal details of the blow-up of its solution in finite time. With our

given coefficients and initial conditions, the solution of (33) also blows up in finite

time. But by solving (33) using the ETD-CN with central difference approximation

and blended with an ADI method (N = 128, τ = 0.001), the solution to Eq. (33), as

shown in Fig. 6, models a self-focusing laser beam as described in Section 1.2.
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CHAPTER 3

THE LDG AND ETDRK4 METHODS

3.1 Introduction

In this chapter, we study the local discontinuous Galerkin (LDG) methods combined

with the fourth-order exponential time differencing Runge-Kutta (ETDRK4) time

discretization and combined with a fourth-order conservative method for solving the

system of NLSEs:

i un t + βn∇un + δn ∆un +

(
N∑
m=1

fnm(|um|2)

)
un = 0, (34)

where i =
√
−1, un ≡ un(r, t), n = 1, 2, ...,N , t ≥ 0, r ∈ Ω = Rd and d = 1, 2.

Based on different choices of numerical fluxes, we propose both the energy-conserving

and the energy-dissipative LDG methods. The stability of the numerical methods

are discussed analytically. The numerical methods are proven to be highly efficient

and stable for long-range soliton computations. Extensive numerical examples are

provided to illustrate the accuracy, efficiency and reliability of the proposed methods.

3.2 The local discontinuous Galerkin method

3.2.1 Notations

The computational domain I = [a, b] is divided into N subintervals called cells. We

denote the cells by Ij = [xj−1/2, xj+1/2] for j = 1, · · · , N . xj = (xj−1/2 + xj+1/2)/2 is

the center of a cell, and the mesh size is hj = xj+1/2− xj−1/2. The complex piecewise

polynomial space V k
h is defined as the space of polynomials P k of degree at most k in
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each cell Ij, that is

V k
h = {v : v ∈ P k(Ij) for x ∈ Ij, j = 1, · · · , N}.

Functions in V k
h could have discontinuities across the cell interfaces, and are complex

valued functions since the NLSE admits complex solutions.

We denote the numerical solution by uh, which belongs to the finite polynomial

space V k
h . (uh)

+
j+1/2 and (uh)

−
j+1/2 are the limit values of uh at xj+1/2 from the right

cell Ij+1 and from the left cell Ij, respectively. We use notations [uh] = u+
h − u

−
h and

{uh} = (u+
h + u−h )/2 to represent the jump and the average of the function uh at the

cell interfaces. For any complex function w, its conjugate is denoted by w∗. The inner

product of two functions w and r, and the L2 norm of w over the interval Ij are given

by

(w, r)Ij =

∫
Ij

wr∗dx, ‖w‖2
Ij

=

∫
Ij

ww∗dx =

∫
Ij

|w|2dx,

respectively.

3.2.2 The LDG method

We define the semi-discrete LDG method for the NLSE

iut + εuxx + i(g(|u|2)u)x + f(|u|2)u = 0, (35)

with an initial condition

u(x, 0) = u0(x), (36)

and periodic boundary conditions. Here f(u) and g(u) are smooth nonlinear func-

tions. The periodic boundary conditions can be changed to other types of boundary

conditions. Also, we remark that the extension of the proposed LDG method to the
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system of NLSEs (34) is straightforward, as these equations are coupled through the

last term (
∑N

m=1 βnm|um|2)un only, and that term does not include derivatives.

First, we introduce an auxiliary variable q = ux, and write the wave equation into

a first-order system

iut + εqx + i(g(|u|2)u)x + f(|u|2)u = 0,

q − ux = 0.

(37)

The LDG method for (37) is then formulated as follows: find uh, qh ∈ V k
h , such that

i((uh)t, v)Ij − (εqh, vx)Ij + ε(q̂h(v
∗)−)j+ 1

2
− ε(q̂h(v∗)+)j− 1

2
− i(g(|uh|2)uh, vx)Ij

+ i(ĝuh(v
∗)−)j+ 1

2
− i(ĝuh(v∗)+)j− 1

2
+ (f(|uh|2)uh, v)Ij = 0, (38)

(qh, w)Ij + (uh, wx)Ij − (ûh(w
∗)−)j+ 1

2
+ (ûh(w

∗)+)j− 1
2

= 0. (39)

for all test functions v, w ∈ V k
h . The hatted terms, q̂h, ĝuh and ûh, in (38)-(39) are the

cell boundary terms obtained from integration by parts, and they are the so-called

numerical fluxes. For the pair of q̂h and ûh, we could use the simple alternating fluxes:

q̂h = q−h , ûh = u+
h , (40)

Since the choice of the fluxes (40) is not unique, we can choose different numerical

fluxes, such as

q̂h = q+
h , ûh = u−h . (41)

For the other flux term ĝuh, we could follow the approach in [66] and define

ĝuh = ĝ(|u−h |
2, |u+

h |
2)ũh, (42)
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where

ũh = θuuph + (1− θ){uh}, 0 < θ ≤ 1, uuph =


u−h if ĝ ≥ 0,

u+
h if ĝ < 0,

and ĝ(a, b) is a monotone flux, such as the Lax-Friedrichs flux,

ĝ(a, b) =
1

2
(g(a) + g(b)− γ(b− a)), γ = max

l
|g′(l)|.

This resulting scheme is denoted as the LDG-D scheme. We could also define the flux

ĝuh as

ĝuh =

∫ |u+
h |

2

|u−h |2
g(s)ds

[|uh|2]
{uh} =

[G(|uh|2)]

[|uh|2]
{uh}, (43)

where

G(w) =

∫ w

g(s)ds. (44)

This resulting scheme is called the LDG-C scheme, where the ‘C’ and ‘D’ stand

for conservative and dissipative, respectively, representing the energy-conserving and

energy-dissipative property of the underlying schemes.

For simplicity, we introduce the notation

Tj(r, s; r̂) = −
∫
Ij

rsxdx+ (r̂s−)j+ 1
2
− (r̂s+)j− 1

2
, (45)

and the LDG methods (38)-(39) become

i((uh)t, v)Ij + εTj(qh, v∗; q̂h) + iTj
(
g(|uh|2)uh, v

∗; ĝuh
)

+ (f(|uh|2)uh, v)Ij = 0, (46)

(qh, w)Ij = Tj(uh, w∗; ûh). (47)

One can easily observe that∑
j

(
Tj(a, b; a−) + Tj(b, a; b+)

)
= 0, (48)
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3.2.3 Projections

We use P to denote the L2 projection of a function ω(x) with k + 1 continuous

derivatives into space V k
h , that is:

(Pω, φ)Ω = (ω, φ)Ω,

for any φ ∈ P k on K.

A one-dimensional projection P− for a real-valued function ω, which projects ω

into the one-dimensional piecewise polynomial space of degree k while taking the

values of ω at the cell interface, is defined as

(P−ω, φ)Ij = (ω, φ)Ij , ∀φ ∈ P k−1(Ij) and (P−ω)−(xj+ 1
2
) = ω−(xj+ 1

2
). (49)

Similarly, the one-dimensional projection P+ω is defined as the projection of ω such

that

(P+ω, φ)Ij = (ω, φ)Ij , ∀φ ∈ P k−1(Ij) and (P+ω)+(xj− 1
2
) = ω+(xj− 1

2
).

For these projections, it is easy to show (see [10]):

‖ωe‖+ h‖ωe‖∞ + h
1
2‖ωe‖Γh ≤ Chk+1, (50)

where ωe = ω − Pω or ωe = ω − P±ω, and Γh denotes the set of boundary points of

all cells. The constant C depends on the function ω, but is independent of the mesh

size h.

Let us now denote the errors for the function ω by

eω = ω − ωh, ηω = ω − P±ω, ζω = P±ω − ωh, (51)

which represent the errors between the numerical solution and the exact solution, the

projection errors, and the errors between the numerical solution and the particular

projection of the exact solution, respectively. The signs of the projection P± in (51)

are consistent with the choice of the numerical fluxes in (40).
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3.2.4 LDG for the two-dimensional NLSEs

Let us consider the two-dimensional NLSE

iut + uxx + uyy + f(|u|2)u = 0 (52)

with the initial condition

u(x, y, 0) = u0(x, y)

and periodic boundary conditions at x = 0, L and y = 0, L.

The LDG method is defined by rewriting Eq. (52) into a first-order system:

iut + px + qy + f(|u|2)u = 0,

p− ux = 0,

q − uy = 0.

Assume the domain Ω is polygonal and denote T∆x as a triangulation of Ω. The

finite element space is denoted as V∆x = {v : v ∈ P k(K) for ∀K ∈ T∆x}. To apply

the LDG method, we try to find u, p, q ∈ V∆x, such that ∀v, w, z ∈ V∆x,

i

∫
K

utvdxdy −
∫
K

pvxdxdy +

∫
∂K

p̂nx,Kv
intKds

−
∫
K

qvydxdy +

∫
∂K

q̂ny,Kv
intKds+

∫
K

f(|u|2)uvdxdy = 0,∫
K

pwdxdy +

∫
K

uwxdxdy −
∫
∂K

ûnx,Kw
intKds = 0,∫

K

qzdxdy +

∫
K

uzydxdy −
∫
∂K

ûny,Kz
intKds = 0.

3.3 Energy conservation of the LDG method

The L2 stability of the LDG-D method, i.e. d
dt

∫
|uh|2dx ≤ 0, has been proved in

[66]. In this subsection, we will show that the LDG-C method conserves the energy

exactly, which will also give us its L2 stability.
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Proposition 3.5 The solution to the semi-discrete LDG-C method (38)-(39) with

the choice of numerical fluxes (40)-(43) conserves the energy

Eh(t) = ‖uh‖2
I =

∫
I

|uh|2dx (53)

exactly for all time.

Proof 3.6 We first choose the test function v = uh in (38) and w = εqh in (39).

The sum of these two equations gives

i((uh)t, uh)Ij + εTj(qh, u∗h; q−h ) + iTj
(
g(|uh|2)uh, u

∗
h; ĝuh

)
+ (f(|uh|2)uh, uh)Ij + ε(qh, qh)Ij − εTj(uh, q∗h;u+

h ) = 0. (54)

We take the complex conjugate for every term in Eq. (54)

− i((u∗h)t, u∗h)Ij + εTj(q∗h, uh; (q∗h)
−)− iTj

(
g(|uh|2)u∗h, uh; ĝu

∗
h

)
+ (f(|uh|2)u∗h, u

∗
h)Ij + ε(q∗h, q

∗
h)Ij − εTj(u∗h, qh; (u∗h)

+) = 0. (55)

By subtracting Eqs. (54) and (55), summing over all cells, and using (48), we have

i
d

dt
‖uh‖2

I + i
∑
j

(
Tj
(
g(|uh|2)uh, u

∗
h; ĝuh

)
+ Tj

(
g(|uh|2)u∗h, uh; ĝu

∗
h

))
= 0.

Following the definition (43) of the flux ĝuh, we have∑
j

Tj
(
g(|uh|2)uh, u

∗
h; ĝuh

)
+
∑
j

Tj
(
g(|uh|2)u∗h, uh; ĝu

∗
h

)
=
∑
j

[
−
∫
Ij

g(|uh|2)uh(u
∗
h)xdx+ (ĝuh(u

∗
h)
−)j+ 1

2
− (ĝuh(u

∗
h)

+)j− 1
2

−
∫
Ij

g(|uh|2)u∗h(uh)xdx+ (ĝu∗h(uh)
−)j+ 1

2
− (ĝu∗h(uh)

+)j− 1
2

]

= −
∑
j

∫
Ij

g(|uh|2)(|uh|2)xdx−
∑
j

[G(|uh|2)]

[|uh|2]
({uh}[u∗h] + {u∗h}[uh])

∣∣∣∣
j+ 1

2

=
∑
j

[G(|uh|2)]j+ 1
2
−
∑
j

[G(|uh|2)]j+ 1
2

= 0,
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where G is the antiderivative of g, as defined in (44). Therefore, we have

d

dt
‖uh‖2

I = 0.

and the quantity Eh is invariant in time.

Remark 3.1 The above energy conservation property is proven for the single NLSE.

The same results hold for the N -coupled NLSE (34), which can be proven using a

similar technique.

3.4 The ETDRK4 method

The ETDRK4 method was constructed to solve the equation of the form

ut = Lu+ F(u, t), (56)

where L is a linear operator and F is nonlinear. After being discretized in space,

equation (56) can be written as a system of ODEs of the form

ut + Au = F (u, t). (57)

Considering the LDG method applied to a single one-dimensional NLSE in the system

(34), the semi-discrete method can be rewritten as

M
dU

dt
+ SU = F(U)

⇒ dU

dt
+ M−1SU = M−1F(U),

(58)

which is in the form of (57).

In Eq. (58), U is a kN × 1 vector containing coefficients of the solution uh ∈

V k
h on the polynomial basis. Letting xi = (x − xi)/dxi in the computational cell



36

[xi−0.5, xi+0.5], the basis in this cell is the set: 1, xi, xi2, ..., xik, where k is the degree

of polynomial used in the approximation. M is the mass matrix, which is a block

tridiagonal kN × kN matrix. The basis is not orthonormal, thus the mass matrix is

needed. MU approximates
∫
Ij
uhv

∗dx. S is the stiffness matrix, whose dimension is

kN × kN , and SU approximats the linear terms containing the numerical fluxes, as

indicated in Eqs. (38) and (39). F(U) approximates the projection of the nonlinear

terms into space V k
h .

We integrate equation (57) over a single time step from t = tn to tn+1 = tn + ∆t

(see also [11, 39, 45]) and get

u(tn+1) = e−τAu(tn) + e−τA
∫ τ

0

esAF (u(tn + s), tn + s)ds. (59)

To be consistent with the notations in Subsection 3.2.1, we denote the numerical

approximation of u(tn) by unh and denote F (unh, t
n) by F n

h . The time step ∆t is set as

τ .

Different time discretization for a particular ETD is obtained based on the for-

mulation (59). For example, the first order ETD takes the form of

un+1
h = e−τAunh + A−1(I − e−τA)F n

h . (60)

Several different ETD approximations are listed in [67], here we consider the fourth-

order ETD scheme introduced in [11, 37]. In [39], the scheme was modified so that

the resulting ETDRK4 scheme does not require computation of higher powers of the

matrix inverse. As explained in [39], the term e−z is approximated by the fourth-order

(2, 2)-Padé scheme and the ETDRK4 comes as

un+1
h = R2,2(τA)unh + P1(τA)F (unh, tn)

+ P2(τA)
(
F (an, tn + τ/2) + F (bn, tn + τ/2)

)
+ P3(τA)F (cn, tn + τ),

(61)
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where

R2,2(τA) = (12I − 6τA+ τ 2A2)(12I + 6τA+ τ 2A2)−1,

P1(τA) = τ(2I − τA)(12I + 6τA+ τ 2A2)−1,

P2(τA) = 4τ(12I + 6τA+ τ 2A2)−1,

P3(τA) = τ(2I + τA)(12I + 6τA+ τ 2A2)−1,

an = R2,2 (τA/2)unh + P (τA)F (unh, tn),

bn = R2,2 (τA/2)unh + P (τA)F (an, tn + τ/2),

cn = R2,2 (τA/2) an + P (τA)
(

2F (bn, tn + τ/2)− F (unh, tn)
)
,

P (τA) = 24τ(48I + 12τA+ τ 2A2)−1.

We notice that in this scheme, the matrix inverses we need are (12I + 6τA+ τ 2A2)−1

and (48I + 12τA + τ 2A2)−1. We can compute and store them during the initializa-

tion process to save computational time. To avoid the high condition numbers and

reduce truncation errors in computing the power of the matrices, a partial fraction

decomposition is used for scheme (61), as explained in [39]. The ETDRK4 scheme is

modified to the following four steps, where Re(z) denotes the real part of z:

1. an is updated by

an = unh + 2Re(α),

where α is the solution of

(τA− d̃1I)α = w̃1u
n
h + τ Ω̃1F (unh, tn).

2. bn is updated by

bn = unh + 2Re(β),

where β is the solution of

(τA− d̃1I)β = w̃1u
n
h + τ Ω̃1F (an, tn + τ/2).
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3. cn is updated by

cn = an + 2Re(γ),

where γ is the solution of

(τA− d̃1I)γ = w̃1a
n + τ Ω̃1(2F (bn, tn + τ/2)− F (unh, tn)).

4. un+1
h is updated by

un+1
h = unh + 2Re(φ),

where φ is the solution of

(τA− d1I)φ = w1u
n
h + τw11F (unh, t

n) + τw21F (an, tn + τ/2)

+τw21F (bn, tn + τ/2) + τw31F (cn, tn + τ).

Here, w and d are the coefficients used for the weights and poles:

d1 = −3.0 + i 1.73205080756887729352,

w1 = −6.0− i 10.3923048454132637611,

w11 = −0.5− i 1.44337567297406441127,

w21 = −i 1.15470053837925152901,

w31 = 0.5 + i 0.28867513459481288225,

d̃1 = −6.0 + i 3.4641016151377545870548,

w̃1 = −12.0− i 20.78460969082652752232935,

Ω̃1 = −i 3.46410161513775458705.

3.5 Stability regions

The stability of the ETDRK4 can be analyzed by plotting its stability regions (see

also [11] and [29]). Consider the nonlinear ODE

ut = cu+ F (u), (62)
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where F (u) is a nonlinear function. Assume that a fixed point u0 exists, such that

cu0 + F (u0) = 0. Suppose u is a perturbation of u0 and λ = F ′(u0), then Eq. (62)

can be linearized as

ut = cu+ λu. (63)

If Re(c+ λ) < 0, we can tell that the fixed point u0 is stable. Let x = λτ and y = cτ

and apply the ETDRK4 method to (63), then we can compute the amplification

factor:

un+1

un
= r(x, y) = c0 + c1x+ c2x

2 + c3x
3 + c4x

4, (64)

where

c0 =
1327104− 331776y − 55296y2 + 20736y3 + 3456y4 − 2160y5 + 372y6 − 30y7 + y8

(48− 12y + y2)3(12− 6y + y2)

c1 =
1327104− 331776y − 55296y2 + 20736y3 − 3456y4 + 432y5 − 36y6

(48− 12y + y2)3(12− 6y + y2)

c2 =
663552− 165888y − 27648y2 + 8064y3 − 288y4 − 48y5

(48− 12y + y2)3(12− 6y + y2)

c3 =
221184− 55296y − 9216y2 − 1152y3

(48− 12y + y2)3(12− 6y + y2)

c4 =
55296− 27648y

(48− 12y + y2)3(12− 6y + y2)
.

We notice that when y = 0, the amplification factor (64) becomes

r(x, 0) = 1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4,

which is the amplification factor for the explicit fourth-order Runge-Kutta (RK4)

method. The stability regions are shown in Fig. 7, where we plot the real and

imaginary part of x with fixed y as real values 0, −5, −10, −20. It can be observed

that as |cτ | increases, the stability region expands, which indicates the behavior of

the nonlinear stability of the method.
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Stability regions for different y values
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Figure 7: Stability regions of the ETDRK4 with y fixed to negative values.

3.6 An energy conserving time-stepping method

In section 3.2, we proposed both energy conserving (LDG-C) and energy dissipative

(LDG-D) methods for the Schrödinger equation. In order to extend the energy con-

servation property of the semi-discrete LDG-C method to the fully discrete method,

it is necessary to employ time stepping methods which also conserve discrete energy.

A family of temporal integrators having arbitrarily high order in time and which does

preserve the conservation laws up to round-off error is the implicit Runge-Kutta col-

location type methods associated with the diagonal elements of the Padé table for ez.

In this section, we consider the first two members of this family of energy conserving

schemes.

For the NLSE taking the form of

iut + εuxx + i(au)x + f(|u|2)u = 0, (65)

the fully discrete second-order in time LDG-C approximations are constructed using
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the midpoint rule in the following manner:

i

(
un+1
h − unh
τ

, v

)
Ij

+ εTj
(
qn+1
h + qnh

2
, v∗;

q̂n+1
h + q̂nh

2

)
+ iTj

(
a
un+1
h + unh

2
, v∗;

aûn+1
h + aûnh

2

)
+

(
˜f(|uh|2)

un+1
h + unh

2
, v

)
Ij

= 0, (66)

(qnh , w)Ij = Tj(unh, w∗; ûnh), (67)

(qn+1
h , w)Ij = Tj(un+1

h , w∗; ûn+1
h ). (68)

for all test functions v, w ∈ V k
h , where

˜f(|uh|2) =
F (|un+1|2)− F (|un|2)

|un+1|2 − |un|2
,

with F (a) =
∫
f(s)ds.

By taking v = (un+1
h +unh)/2, w = (qn+1

h +qnh)/2 in (66)-(68) and using some simple

algebra, we can see that ‖un+1
h ‖2

I = ‖unh‖2
I , which is the discrete energy conservation

property. Even more, for the case when a = 0, the NLSE equation conserves the term

‖q‖2
I + F (|u|2), in addition to the energy ‖u‖2. We can also prove that the above

energy conserving method in (66)-(68) conserves the term ‖qn‖2
I + F (|unh|2) in the

discrete level as well.

A fourth order energy conserving time-stepping method based on the midpoint

rule is provided in [9] to solve the nonlinear system (57). Let un+1 ∈ V k
h be defined

as

un+1 = un +
√

3(un,2 − un,1), (69)

with un,1 and un,2 given as solutions of the coupled system of equations,

un,1 − un + τ(a11f
n,1 + a12f

n,2) = 0,

un,2 − un + τ(a21f
n,1 + a22f

n,2) = 0,
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where fn,i = Aun,i − F (un,i, t), i = 1, 2 and a11 = a22 = 1/4, a12 = 1/4 −
√

3/6,

a21 = 1/4 +
√

3/6.

3.7 Numerical experiments

3.7.1 A Single NLSE

We consider the single NLSE

i ut + uxx + i α(|u|2u)x + β|u|2u+ γ|u|4u = 0, (70)

which admits an exact solution

u(x, t) = Z exp(i(cx− ωt)), (71)

where ω = c2 + α|Z|2c − β|Z|2 − γ|Z|4. In this numerical test, we set α = 0.5, β =

γ = 1, Z = c = 1, with periodic boundary conditions in [0, 2π].

Figure 8: Surface plots of the results by the ETDRK4 solving single NLSE (70) using

LDG-C in space (N = 128, τ = 0.1 and T=[0, 20]).

The surface plots of the real and imaginary parts of the results by the ETDRK4
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using LDG-C are shown in Fig. 8. It can be seen from the figures that the real and

imaginary parts change periodically. The absolute value |u| = 1 for all the t.

Table 4: A comparison of efficiencies of Crank-Nicolson method [32], the Second-order

conservative method [9], and the ETD-CN method [45] using LDG-C (N = 128, τ =

0.01) on (70).
Crank-Nicolson Second-order conservative ETD-CN

T CPU L2 error energy CPU L2 error energy CPU L2 error energy
5 5.57e+2 0.00157 2.506628 6.12e+2 0.00125 2.506628 2.5206 6.1342e-5 2.506628
10 9.36e+2 0.00315 2.506628 1.02e+3 0.00251 2.506628 4.2736 1.2268e-4 2.506731
20 1.78e+3 0.00630 2.506628 1.93e+3 0.00503 2.506628 7.4643 2.4536e-4 2.506937
30 2.61e+3 0.00946 2.506628 2.91e+3 0.00754 2.506628 10.653 4.9072e-4 2.507143

Table 4 indicates the CPU time and L2 errors of the Crank-Nicolson method

[32], the second-order conservative method [9] and the ETD-CN method [45] on (70).

These methods are second-order in time. The first two methods conserve the energy

exactly, but they require an iterative nonlinear solver such as Newton’s method [32].

The ETD-CN method achieves a higher efficiency considering the CPU time and

accuracy with little sacrifice in energy conservation. Newton’s method, used with the

proposed schemes in the numerical tests, has a tolerance of error of 1e− 8 and a max

number of iterations of 20.

Table 5: A comparison of efficiencies of the ETDRK4, RK4 and Fourth-order conser-

vative methods using LDG-C (N = 128) on (70).
ETDRK4 (τ = 0.1) RK4 (τ = 0.0001) Fourth-order conservative (τ = 0.1)

T CPU time L2 error CPU time L2 error CPU time L2 error
5 3.0436 9.3566e-007 20.1372 2.5194e-006 6.88e+003 3.5463e-006
10 4.6826 5.6233e-006 33.1450 4.3198e-005 1.21e+004 7.0926e-006
20 7.7688 3.6756e-005 47.9093 9.0924e-005 2.19e+004 1.4185e-005
30 10.9177 9.6743e-005 60.2801 3.0351e-004 3.26e+004 2.1278e-005
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Table 5 presents the advantage in efficiency of the ETDRK4. We can observe that

the ETDRK4 achieves more accurate results than RK4 and the Fourth-order conser-

vative method (69) with less CPU time. The CPU times are based on computations

via a Matlab R2014a platform based on an Intel Core i5-2410M 2.30GHz workstation.

3.7.2 A 4-coupled NLSE

In this subsection, we consider the following 4-coupled NLSE:

i u1t + i
1

v1

u1x +
β1

2
u1xx + γ1

(
|u1|2 + 2|u2|2 +B|u3|2 +B|u4|2

)
u1 = 0,

i u2t + i
1

v2

u2x +
β2

2
u2xx + γ2

(
2|u1|2 + |u2|2 +B|u3|2 +B|u4|2

)
u2 = 0,

i u3t + i
1

v3

u3x +
β1

2
u3xx + γ1

(
B|u1|2 +B|u2|2 + |u3|2 + 2|u4|2

)
u3 = 0,

i u4t + i
1

v4

u4x +
β2

2
u4xx + γ2

(
B|u1|2 +B|u2|2 + 2|u3|2 + |u4|2

)
u4 = 0,

(72)

with the initial conditions

u1(x, 0) =

√
2a

1 +B
sech(

√
2a(x− x0)) exp(i (c− α)(x− x0)),

u2(x, 0) =

√
2a

1 +B
sech(

√
2a(x− x0)) exp(i (c+ α)(x− x0)),

u3(x, 0) =

√
2a

1 +B
sech(

√
2a(x− x0)) exp(i (c− α)(x− x0)),

u4(x, 0) =

√
2a

1 +B
sech(

√
2a(x− x0)) exp(i (c+ α)(x− x0)),

(73)

as well as periodic boundary conditions in [−10, 40], where v1 = v2 = v3 = v4 =

1, β1 = β2 = 2, γ1 = γ2 = 2, a = 1, c = 1, α = 0.5, B = 2
3

and x0 = 0. (See as well

the system in [1].)

As explained in [1], the four-coupled NLSE equations can be used in modeling

solitons in the high-birefringent fibers. The parameter B = 2
3

for linearly birefringent
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Figure 9: Solutions of the 4-coupled NLSE (72) with initial conditions (73) obtained

via the ETDRK4 LDG-C method (h = 0.1, τ = 0.1 and T = [0, 30]).

fibers, and β1, β2 are the corresponding propagation constant. Most articles do not

consider the group velocity for polarization components, except for [35, 66]. In [46],

we consider 1
v1
6= 0, since the convection term has significant meanings in nonlinear

fiber optics. As shown in [1], even a single-mode fiber can support two degenerate

modes that are polarized in two orthogonal directions. Especially, in high-birefringent

fibers, the group velocity mismatch between the fast and slow components of the input

pulse cannot be neglected.

We run the simulation for the coupled NLSE with the fourth order ETDRK4 LDG-

C method. The numerical results are shown in Fig. 9. We observe that the numerical
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Figure 10: Time history of the energy of the 4-coupled NLSE (72) with initial con-

ditions (73) obtained via the ETDRK4 LDG-C method (h = 0.1, τ = 0.1 and

T = [0, 30]).

results of (72) are soliton waves that travel along the x-direction at a speed of 1. The

time history of energy, plotted in Fig. 10, indicates the energy of numerical results

by ETDRK4 will decrease slightly as time goes. This numerical test demonstrates

that the ETDRK4 LDG-C method works well on large systems.
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3.7.3 A system of damped NLSEs

Here, we consider a standard system of two-dimensional NLSEs with group velocity

dispersion terms [3]:

i u1t + β∇u1 +
1

2
∆u1 + ε

(
|u1|2 + α|u2|2

)
u1 = 0,

i u2t + β∇u2 +
1

2
∆u2 + ε

(
α|u1|2 + |u2|2

)
u2 = 0.

(74)

In two spatial dimensions, Eq. (74) is usually associated with the following initial

conditions:

u1(x, y, 0) = u2(x, y, 0) =

√
2α

1 + π
sech[(x− xL)(x− xR)(y − yL)(y − yR)],

and also the Neumann-type boundary conditions:

∇u1(x, y, t) = ∇u2(x, y, t) = 0, for x, y ∈ ∂Ω.

The parameters are chosen as β = ε = 1, α = 2
3
, xL = yL = −1, xR = yR = 1.
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Figure 11: Surface plots of the results by the ETDRK4 solving two-dimensional

system (74) using LDG in space.
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The surface plots of the results of system (74) by the ETDRK4 with LDG4 method

are shown in Fig. 11. From the figures we observe that system (74) models a pair of

damped solitons.

Table 6: A trace of energy errors using the ETDRK4 method with LDG4 (N = 128)

on (74).
t Energy of u1 Energy Error Energy of u2 Energy Error
0 12.516669 0 12.516669 0

0.2 12.516670 0.000001 12.516670 0.000001
0.4 12.516671 0.000002 12.516671 0.000002
0.6 12.516672 0.000003 12.516672 0.000003
0.8 12.516674 0.000005 12.516674 0.000005
1.0 12.516675 0.000006 12.516675 0.000006

Table 6 indicates how the ETDRK4 with LDG4 method performs in energy con-

servation solving a system of two-dimensional NLSEs.

3.7.4 Interaction of two laser beams

we consider a system of two-dimensional NLSEs [48]:

2i u1t +∇2
⊥u1 +N(u)u1 = 0,

2i u2t +∇2
⊥u2 +N(u)u2 = 0.

(75)

Eq. (75) models the nonlinear interaction of two co-propagating laser beams in under-

dense plasmas. The nonlinear term N(u) = (1− η/γ), where η = Max(0, 1 +∇⊥γ)

is the electron density which is normalized by unperturbed density, and γ = (1 +

|u1|2 + |u2|2)1/2 is the relativistic factor. u1 and u2 are normalized slowly varying

vector potentials for the first and the second beam respectively. ∇2
⊥ = ∇2

yy + ∇2
zz,

where y, z are the normalized transverse co-ordinates.
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The initial conditions to (75) as given in [48] are:

u1 = u01 exp

(
−1

2
((y1 − y01)2 + z2

1)ρ01

)
,

u2 = u02 exp

(
−1

2
((y2 − y02)2 + z2

2)ρ02

)
,

(76)

where y = [−60, 60], z = [−60, 60], ρ01 = ρ02 = 8, u01 = u02 = 1, y01 = 10 and

y02 = −10. The boundary conditions are periodic boundary conditions.

Figure 12: Solutions to Eq. (75) at t = 0 and t = 70.

Figure 13: Solutions to Eq. (75) at t = 100 and t = 150.

Fig. 12-14 indicate how the system of NLSEs models the merging and refocusing

of two self-focusing laser beams.
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Figure 14: Solutions to Eq. (75) at t = 270 and t = 330.
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CHAPTER 4

FOURTH-ORDER COMPACT SCHEMES FOR THE FNLSES

4.1 Introduction

In this chapter, the ETDRK4 scheme combined with a fourth-order compact scheme

in space is proposed for space fractional coupled nonlinear Schrödinger equations

(FCNLSEs). The stability and convergence of the compact scheme are discussed an-

alytically. It is shown that the compact scheme is fourth-order convergent in space

and in time. Numerical experiments are performed on systems of one, two and four

fractional nonlinear Schrödinger equations (FNLSEs). The results demonstrate accu-

racy, efficiency, and reliability of the scheme. A linearly implicit conservative method

with the fourth-order compact scheme in space is also considered and used on the

system of FNLSEs.

The space fractional coupled nonlinear Schrödinger equation (FCNLSE) contain-

ing the fractional Laplacian (−∆)α/2 (1 < α ≤ 2) is considered:

i ut − γ (−∆)α/2u+ ρ(|u|2 + β|v|2)u = 0, x ∈ R, 0 < t ≤ T

i vt − γ (−∆)α/2v + ρ(|v|2 + β|u|2)v = 0, x ∈ R, 0 < t ≤ T

(77)

with the initial conditions

u(x, 0) = u0(x),

v(x, 0) = v0(x),

(78)

and homogeneous Dirichlet boundary conditions on [xL, xR], where i =
√
−1, and

the parameters γ, ρ and β are some real constants.
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The fractional Laplacian can be computed as [63]

−(−∆)α/2u(x, t) = −F−1 (|ξ|αF (u(x, t))) , (79)

where F is the Fourier transformation. It is also shown in [68] that the fractional

Laplacian has a close relationship with the Riesz fractional derivative:

∂α

∂|x|α
u(x, t) = −(−∆)α/2u(x, t) = − 1

2cosπα
2

[
−∞D

α
xu(x, t) +x D

α
+∞u(x, t)

]
, (80)

where 1 < α < 2. −∞D
α
xu(x, t) and xD

α
+∞u(x, t) are the left and right Riemann-

Liouville derivatives:

−∞D
α
xu(x, t) =

1

Γ(2− α)

∂2

∂x2

∫ x

−∞

u(ξ, t)

(x− ξ)α−1
dξ,

and

xD
α
+∞u(x, t) =

1

Γ(2− α)

∂2

∂x2

∫ +∞

x

u(ξ, t)

(ξ − x)α−1
dξ,

Where Γ(·) is the Gamma function.

The FCNLSE (77) can be extended to a system of four equations:

i ut − γ (−∆)α/2u+ ρ(|u|2 + β(|v|2 + |w|2 + |z|2))u = 0, x ∈ R, 0 < t ≤ T

i vt − γ (−∆)α/2v + ρ(|v|2 + β(|u|2 + |w|2 + |z|2))v = 0, x ∈ R, 0 < t ≤ T

iwt − γ (−∆)α/2w + ρ(|w|2 + β(|u|2 + |v|2 + |z|2))w = 0, x ∈ R, 0 < t ≤ T

i zt − γ (−∆)α/2z + ρ(|z|2 + β(|u|2 + |v|2 + |w|2))z = 0, x ∈ R, 0 < t ≤ T

(81)

with the initial conditions taken as

u(x, 0) = u0(x), v(x, 0) = v0(x),

w(x, 0) = w0(x), z(x, 0) = z0(x),

(82)

and homogeneous Dirichlet boundary conditions on [xL, xR].
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The FCNLSE (77) conserves both mass and energy [63], defined as Q(t) and E(t)

at time t respectively:

Qu(t) = ‖u(·, t)‖2
L2

=

∫
R

|u(x, t)|2dx,

Qv(t) = ‖v(·, t)‖2
L2

=

∫
R

|v(x, t)|2dx,
(83)

E(t) =
γ

2

∫
R

(
ū(−∆)

α
2 u+ v̄(−∆)

α
2 v
)
dx− ρ

4

∫
R

(
|u|4 + |v|4 + 2β|u|2|v|2

)
dx. (84)

The existence and uniqueness of the global solution of the FCNLSEs have been

studied in [28]. To solve the FCNLSEs numerically, we need to combine a spatial

discretization scheme with a time integrator. In this research, we propose the appli-

cation of a fourth-order compact scheme (see [18]) to approximate the Riesz fractional

derivative in space. The compact scheme in space is proved and demonstrated in nu-

merical experiments to perform well on a space Riesz fractional diffusion equation.

The ETDRK4 scheme, which has been described in Chapter 3, is applied to solve

the FNLSEs in time. A second-order linearly implicit conservative method is used in

[63] for the FCNLSEs along with the second-order central difference approximation

to the space fractional derivative. In this chapter, we apply this linearly implicit

conservative method with the fourth-order compact scheme in space to the FCNLSEs.

The efficiency and energy conservation of the conservative method are demonstrated

in the numerical experiments.

4.2 Spatial discretization

As shown in [52], the left-sided Riemann-Liouville derivative −∞D
α
xv(x, t) can be

approximated with an upper triangular strip matrix B
(α)
M as:[

v
(α)
0 v

(α)
1 · · · v

(α)
M−1 v

(α)
M

]>
= B

(α)
M [vM vM−1 · · · v1 v0]> , (85)
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where

B
(α)
M =

1

hα



ω
(α)
0 ω

(α)
1

. . . . . . ω
(α)
M−1 ω

(α)
M

0 ω
(α)
0 ω

(α)
1

. . . . . . ω
(α)
M−1

0 0 ω
(α)
0 ω

(α)
1

. . . . . .

· · · · · · · · · . . . . . . . . .

0 · · · 0 0 ω
(α)
0 ω

(α)
1

0 0 · · · 0 0 ω
(α)
0


, ω

(α)
j = (−1)j

(
α

j

)
, (86)

with the spatial discretization point x = jh (j = 0, 1, . . . ,M), where h is the space

mesh size.

Similarly, the right-sided Riemann-Liouville derivative xD
α
+∞v(x, t) can be ap-

proximated with an lower triangular strip matrix L
(α)
M as:

[
v

(α)
0 v

(α)
1 · · · v

(α)
M−1 v

(α)
M

]>
= L

(α)
M [vM vM−1 · · · v1 v0]> , (87)

where

L
(α)
M =

1

hα



ω
(α)
0 0 0 0 · · · 0

ω
(α)
1 ω

(α)
0 0 0 · · · 0

ω
(α)
2 ω

(α)
1 ω

(α)
0 0 · · · 0

. . . . . . . . . . . . · · · · · ·
ω

(α)
M−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0 0

ω
(α)
M ω

(α)
M−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0


, ω

(α)
j = (−1)j

(
α

j

)
, (88)

The symmetric Riesz derivative of fractional order α can be approximated using

the fractional centered difference formula suggested by Ortigueira [50]:

[
v

(α)
0 v

(α)
1 · · · v

(α)
M−1 v

(α)
M

]>
= H

(α)
M [vM vM−1 · · · v1 v0]> , (89)
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where

H
(α)
M =

1

hα



ω
(α)
0 ω

(α)
1 ω

(α)
2 ω

(α)
3 · · · ω

(α)
M

ω
(α)
1 ω

(α)
0 ω

(α)
1 ω

(α)
2 · · · ω

(α)
M−1

ω
(α)
2 ω

(α)
1 ω

(α)
0 ω

(α)
1 · · · ω

(α)
M−2

. . . . . . . . . . . . · · · · · ·
ω

(α)
M−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0 ω

(α)
1

ω
(α)
M ω

(α)
M−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0


,

ω
(α)
j =

(−1)jΓ(α + 1)

Γ(α/2− j + 1)Γ(α/2 + j + 1)
, j = 0, 1, . . . ,M.

(90)

While scheme (89) is second order in space, a fourth-order compact scheme is

developed by Ding et al. in [18]:

∂αv(x, t)

∂|x|α
=

1

hα

[ α
24

∆α
hv(x− h, t)− (1 +

α

12
)∆α

hv(x, t) +
α

24
∆α
hv(x+ h, t)

]
+O(h4)

= − 1

hα

(
1− α

24
δ2
x

)
∆α
hv(x, t) +O(h4)

= − 1

hα

(
1 +

α

24
δ2
x

)−1

∆α
hv(x, t) +O(h4),

(91)

where δ2
xv(x, t) = v(x − h, t) − 2v(x, t) + v(x + h, t), and where −∆α

hv(x, t)

hα
is the

second-order fractional centered difference approximation (89) to the Riesz derivative

in space. The convergence rate of scheme (91) in space has been proved to be fourth

order in Theorem 11 in [18].

We use the Neumann boundary conditions from [36], where the elements of matrix



56

H
(α)
M are given as:

ω
(α)
i,j =



2g
(α)
1 , 1 ≤ i = j ≤M − 1;

g
(α)
2 + g

(α)
0 , j = i− 1, 2 ≤ i ≤M − 1;

g
(α)
2 + g

(α)
0 , j = i+ 1, 2 ≤ i ≤M − 1;

g
(α)
i−j+1, 1 ≤ j ≤ i− 2, 3 ≤ i ≤M − 1;

g
(α)
i−j+1, 3 ≤ j ≤M, 1 ≤ i ≤M − 2;

−g(α−1)
M−j , 1 ≤ j ≤M − 1, i = M ;

−2g
(α−1)
0 , i = j = M,

where g
(α)
k = (−1)k

(
α
k

)
.

4.3 Time integrators for the FCNLSE

4.3.1 Linearly implicit method

A second-order linearly implicit conservative scheme is described in [63] with the

second-order fractional centered difference approximation (89) in space. It is conve-

nient to apply this linearly implicit method with the fourth-order compact scheme

(91) in space:

i
un+1
j − unj
τ

− γ

hα

(
1 +

α

24
δ2
x

)−1

∆α
hu

n+ 1
2

j + ρ(|un+ 1
2

j |2 + β|vn+ 1
2

j |2)u
n+ 1

2
j = 0,

i
vn+1
j − vnj

τ
− γ

hα

(
1 +

α

24
δ2
x

)−1

∆α
hv

n+ 1
2

j + ρ(|vn+ 1
2

j |2 + β|un+ 1
2

j |2)v
n+ 1

2
j = 0,

(92)

where u
n+ 1

2
j = (unj +un+1

j )/2 and v
n+ 1

2
j = (vnj +vn+1

j )/2. The first time step is computed

with a second-order iterative time integrator.
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4.3.2 The ETDRK4 scheme

As described in Chapter 3, the ETDRK4 scheme (61) was constructed to solve the

equation of the form

ut = Lu+ F(u, t), (93)

where L is a linear operator and F is nonlinear. After being discretized in space,

equation (93) can be written as a system of ODEs of the form

ut + Au = F (u, t). (94)

Considering the fourth-order compact scheme (91) applied to a single FNLSE in

the system (77), matrix A = −iγ(I + α
24
D)−1H

(α)
M , where H

(α)
M is given in Eq. (90), I

is the identity matrix, and D is the matrix corresponding to the second-order central

difference approximation. F (u, t) is the nonlinear term which will be treated explicitly

in the ETDRK4 scheme.

Algorithm (61) uses implicit solvers with the same coefficient matrices that make

it highly efficient for this system of nonlinear PDEs. For the FCNLSEs, matrix

A = −iγ(I + α
24
D)−1H

(α)
M is a fully dense matrix, which means the computation of

exponential terms in the ETD schemes [11] are time consuming. The algorithm (61)

increases the computational efficiency by reducing the number of matrix multipli-

cation and avoiding the computation of matrix exponential functions. The explicit

treatment of the nonlinear terms decouples the FCNLSE while the scheme remains

fourth-order convergent in time. The compact ETDRK4 scheme is novel and attrac-

tive for the FCNLSEs in the sense that only second-order schemes in time [63] have

been applied to the FCNLSEs thus far.
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4.4 Stability analysis

The stability of the ETDRK4 scheme (61) can be analyzed by plotting its stability

regions as we did in Section 3.5. A similar idea is shown in [22], where the generalized

ETD methods are used for fractional order problems.
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Figure 15: Stability regions for y = −10i (left) and y = 10i (right).
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Figure 16: Stability regions for y = −75i (left) and y = 75i (right).

The stability regions for solving the FNLSEs are shown in Figs. 15 and 16, where

we plot the real and imaginary part of x for the cases of y = −10i, 10i, −75i, and

75i. It has been proven in Theorem 8 in [18] that matrix (I + α
24
D)−1H

(α)
M is positive
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definite, which indicates that matrix A = −iγ(I + α
24
D)−1H

(α)
M has eigenvalues of the

form −a · i, where a is some real number.

4.5 Numerical experiments

4.5.1 A single FNLSE

As shown in [63], when β = 0, then the system (77) is decoupled and becomes

i ut − γ (−∆)α/2u+ ρ|u|2u = 0, (95)

subject to the initial condition

u(x, 0) = sech(x) · exp(2ix), (96)

and homogeneous Dirichlet boundary conditions on xL = −20 and xR = 20.

For this example, we set the parameters as γ = 1, ρ = 2. When α = 2, the exact

solution is given as

u(x, t) = sech(x− 4t) · exp(i(2x− 3t)). (97)

For Figs. 17 – 20, the ETDRK4 scheme (61) and the fourth-order spatial dis-

cretization (91) are used with h = 0.05 and τ = 0.005 to solve Eq. (95) with different

α values.

In Table 7, the L2 error is computed as e(h, τ) = ‖u − uh‖L2 . The order of con-

vergence in space is computed as

Order =
log(e(hn, τ)/e(hn+1, τ))

log(hn/hn+1)
.

The time step τ is set to be a small value 0.0001, and the space mesh size h is reduced

by half each time we compute the L2 error. The orders of convergence of the numerical
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Figure 17: Numerical solution to Eq. (95) with α = 1.4

Figure 18: Numerical solution to Eq. (95) with α = 1.6.
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Figure 19: Numerical solution to Eq. (95) with α = 1.8.

Figure 20: Numerical solution to Eq. (95) with α = 1.999.



62

Table 7: Order of convergence in space solving (95) with τ = 0.0001 and α = 2.

h L2 error of scheme (90) Order L2 error of scheme (91) Order
0.4 1.33908 - 0.42178 -
0.2 0.33075 2.017 0.01978 4.414
0.1 0.05823 2.506 0.00125 3.984
0.05 0.01107 2.395 7.15e-05 4.128

results satisfy the analytic orders of convergence.

Table 8: Order of convergence in time solving (95) for different α values.

α τ = 0.02 τ = 0.01 Order
1.4 0.18150 0.01327 3.775
1.6 0.22254 0.01691 3.718
1.8 0.33677 0.02286 3.881
1.99 0.35833 0.02656 3.754

Table 8 indicates how the ETDRK4 scheme (61) performs for different α values.

The exact solution u is obtained by the linearly implicit method (92) with a very

fine space mesh and a small time step (h = 0.025 and τ = 0.0001). The order of

convergence in time is computed as

Order =
log(e(h, τn)/e(h, τn+1))

log(τn/τn+1)
.

The space mesh size h is set to be a small value of 0.025.

Fig. 21 indicates graphically that both the ETDRK4 scheme (61) and the fourth-

order fractional compact scheme (91) have fourth-order convergence when solving Eq.

(95) with α = 2, where the exact solution exists. This can be seen by looking at the

slopes of the regression lines in Fig. 21.
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Figure 21: Orders of convergence in space (left) and time (right) using the ETDRK4

scheme (61) and the compact scheme (91).

Table 9: The errors of mass solving (95) by the ETDRK4 scheme with h = 0.1,

τ = 0.01.

α t = 1 t = 2 t = 3 t = 4
1.4 1.007e-10 3.769e-07 3.896e-07 3.906e-07
1.7 1.470e-08 8.280e-08 8.275e-08 8.469e-08
1.9 9.790e-09 2.123e-08 2.298e-08 7.560e-09
2.0 1.532e-09 3.060e-09 4.581e-09 6.097e-09

In Table 9, the mass error is computed as |(Qtn −Qt0)/Qt0 |. Table 9 indicates the

behavior of mass conservation using the ETDRK4 scheme for different α values.

Table 10: Comparison of CPU time (seconds) with h = 0.1, τ = 0.01 and T = 3.

α ETDRK4 Linearly implicit
1.4 0.952965 7.505991
1.8 0.959274 7.276130
1.99 0.959053 7.259525
2.0 0.988483 6.570149
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In Table 10, we compare the time consumption of the ETDRK4 scheme and the

linearly implicit method with the same mesh size and time step. It can be observed

that the linearly implicit method consumes more CPU time, because it needs to invert

matrices inside the time update loop, while the ETDRK4 scheme inverts matrices and

stores the result outside the time update loop.
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Figure 22: A comparison of L2 errors vs CPU time.

In Fig. 22, we compare the efficiency of the ETDRK4 scheme with that of the

linearly implicit method using the Log-Log plot of CPU time and L2 errors. It can be

seen from Fig. 22 that using the same CPU time, the ETDRK4 scheme gives a smaller

error, which indicates better efficiency. The CPU times are based on computations

via a Matlab R2014a platform based on an Intel Core i5-2410M 2.30GHz workstation.
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4.5.2 Coupled FNLSEs

Consider the system of two equations with β 6= 0,

i ut − γ (−∆)α/2u+ ρ(|u|2 + β|v|2)u = 0,

i vt − γ (−∆)α/2v + ρ(|v|2 + β|u|2)v = 0,

(98)

with the initial conditions taken as

u(x, 0) = sech(x+D0) · exp(iV0x),

v(x, 0) = sech(x−D0) · exp(−iV0x),

(99)

and homogeneous Dirichlet boundary conditions on xL = −20 and xR = 20. For this

example, we set the parameters as D0 = 5, V0 = 3, γ = 1, ρ = 2.

Figure 23: Numerical solution to Eq. (98) with α = 1.6, β = 1

For Figs. 23 – 25, the results of the ETDRK4 scheme (61) and the fourth-order

compact spatial discretization (91) are shown when h = 0.05 and τ = 0.005 are used

to solve Eq. (98) with different α and β values on t ∈ (0, 5].
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Figure 24: Numerical solution to Eq. (98) with α = 1.5, β = 2.

Figure 25: Numerical solution to Eq. (98) with α = 1.8, β = 2.
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Figure 26: The errors of discrete energy |(En − E0)/E0| comparison of the time

integrators.

Fig. 26 gives a comparison of energy errors of numerical results using the ETDRK4

scheme (61) and the linearly implicit method (92). It can be seen that both time

integrators for this problem have similar conservation of energy.
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4.5.3 A system of four FNLSEs

We can extend the FCNLSE to a system of four equations with β 6= 0:

i ut − γ (−∆)α/2u+ ρ(|u|2 + β(|v|2 + |w|2 + |z|2))u = 0,

i vt − γ (−∆)α/2v + ρ(|v|2 + β(|u|2 + |w|2 + |z|2))v = 0,

i wt − γ (−∆)α/2w + ρ(|w|2 + β(|u|2 + |v|2 + |z|2))w = 0,

i zt − γ (−∆)α/2z + ρ(|z|2 + β(|u|2 + |v|2 + |w|2))z = 0,

(100)

with the initial conditions taken as

u(x, 0) = sech(x+D0) · exp(iV0x),

v(x, 0) = sech(x−D0) · exp(−iV0x),

w(x, 0) = sech(x+D1) · exp(iV1x),

z(x, 0) = sech(x−D1) · exp(−iV1x),

(101)

and homogeneous Dirichlet boundary conditions on xL = −20 and xR = 20. In this

example, we set the parameters as D0 = 10, D1 = 3, V0 = 5, V1 = 2, γ = 1, ρ = 1.

Fig. 27 gives the surface plot of the numerical solution using the ETDRK4 scheme

(61) and the fourth-order spatial discretization (91) with h = 0.05 and τ = 0.005.

To better illustrate the solution to the system of four equations, we give the plot of

solutions at t = 0, 2.5, 5 in Figs. 28 – 30. From the 2D plots, we observe clearly

how the four waves travel and interact with each other. Fig. 31 indicates how the

numerical methods conserve mass for the system of four equations. Fig. 32 gives the
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trace of discrete energy errors computed by |(E0 − E0)/E0|, where

E(t) =
γ

2

∫
R

(
ū(−∆)

α
2 u+ v̄(−∆)

α
2 v + w̄(−∆)

α
2w + z̄(−∆)

α
2 z
)
dx

− ρ

4

∫
R

(
|u|4 + |v|4 + |w|4 + |z|4 + 2β|u|2|v|2 + 2β|w|2|z|2

)
dx.

Figure 27: Numerical solution to Eq. (100) with α = 1.6, β = 2.
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Figure 28: Initial condition of Eq. (98) at t = 0 with α = 1.6, β = 2.
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Figure 29: Numerical solution to Eq. (98) at t = 2.5 with α = 1.6, β = 2.
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Figure 30: Numerical solution to Eq. (98) at t = 5 with α = 1.6, β = 2.
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Figure 31: Trace of discrete mass errors.
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CHAPTER 5

THE LOCALLY EXTRAPOLATED EXPONENTIAL OPERATOR

SPLITTING SCHEME FOR MULTI-DIMENSIONAL FNLSES

5.1 Introduction

Recently, numerical solutions of the FNLSEs are being discussed more and more. The

Crank-Nicolson (CN) scheme is used for time discretization in [4]. A compact ADI

scheme is used to solve the two-dimensional FNLSE in [72]. We adopt a locally ex-

trapolated exponential operator splitting (LE-EOS) scheme to achieve second-order

convergence in both space and time. The numerical method we use can be con-

veniently applied to systems of two-dimensional and three-dimensional PDEs. The

method is more widely applicable than the ADI scheme in [72] in the sense that it

treats the nonlinear terms explicitly, which makes the large systems solvable, and it

is not limited to the dimensions in space.

In this chapter, the two-dimensional space fractional coupled nonlinear Schrödinger

equations (FCNLSEs) involving the Riesz fractional derivatives are considered:

iut + γ(
∂α1

∂|x|α1
+

∂α2

∂|y|α2
)u+ ρ(|u|2 + β|v|2)u = 0, (x, y) ∈ R2, 0 < t ≤ T

ivt + γ(
∂α1

∂|x|α1
+

∂α2

∂|y|α2
)v + ρ(|v|2 + β|u|2)v = 0, (x, y) ∈ R2, 0 < t ≤ T

(102)

with the initial conditions

u(x, y, 0) = u0(x, y),

v(x, y, 0) = v0(x, y),

(103)

and homogeneous Dirichlet boundary conditions on ∂Ω, where i =
√
−1, and the
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parameters γ, ρ and β are some real constants. Eq. (102) can be used to model

optical solitons, whose propagation is governed by fractional quantum mechanics.

We also consider the three-dimensional FNLSE

iut + γ(
∂α1

∂|x|α1
+

∂α2

∂|y|α2
)u+ η

∂α3

∂|z|α3
u+ f(u) = 0, (x, y, z) ∈ R3, t ∈ (0, T ],

u(x, y, z, t) = 0, (x, y, z) ∈ ∂Ω, t ∈ [0, T ],

u(x, y, z, 0) = u0(x, y, z), (x, y, z) ∈ Ω ∪ ∂Ω,

(104)

Eq. (104) is derived from a modification of the three-dimensional Gross-Pitaevskii

equation [51], which is a special case of the FNLSE used to model solitons in a graded-

index multi-mode fiber. In fiber optics, a multi-mode fiber has a larger core size than

a single-mode fiber. A graded-index fiber has a refractive index that decreases while

the core size increases. Solitons in graded-index (GRIN) fibres can improve data

transmission rates to ensure low-cost in telecommunications [53].

5.2 Numerical methods

5.2.1 The exponential operator splitting scheme

Consider the three-dimensional FNLSE:

iut + γ(
∂α1

∂|x|α1
+

∂α2

∂|y|α2
)u+ η

∂α3

∂|z|α3
u+ f(u) = 0, (x, y, z) ∈ R3. (105)

We multiply the equation by −i and have

ut − iγ(
∂α1

∂|x|α1
+

∂α2

∂|y|α2
)u− iη ∂α3

∂|z|α3
u− if(u) = 0. (106)

To solve Eq. (106) we apply the matrix approximation in space as

Ut + AU = F(U), (107)
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where U is the vector containing the approximation to u, AU approximates the space

fractional derivatives, and F(U) approximates the nonlinear part f(u).

The exponential operator splitting is achieved by decomposing matrix A into

three block matrices containing the components in x, y, z directions, such that

A = Ax,M3 +Ay,M3 +Az,M3 , where Ax,M3 , Ay,M3 and Az,M3 are block-diagonal matrices

of order M3, where the diagonal blocks Ax,M2 , Ay,M2 and Az,M2 are block-diagonal

matrices of order M2, whose composing blocks are Aα1
x , A

α2
y and Aα3

z respectively.

As described in Chapter 4, the fractional centered difference approximation operators

Aα1
x , Aα2

y and Aα3
z are defined as

Aα1
x = −iγH(α1)

M ,

Aα2
y = −iγH(α2)

M ,

Aα3
z = −iηH(α3)

M ,

(108)

where H
(α1)
M , H

(α2)
M , H

(α3)
M are derived from (90).

To integrate (107) in time, we write the solution at tn+1 as

Un+1 = exp(−τ(Aα1
x + Aα2

y + Aα3
z ))(Un + τF(Un)),

which can be approximated by

Un+1 = exp(−τAα3
z ) exp(−τAα2

y ) exp(−τAα1
x )(Un + τF(Un)), (109)

which incurs an error of O(τ 2) [40, 54], since Aα1
x , Aα2

y and Aα3
z do not commute, in

general.

If we use Padé (0,1) approximation to the exponential functions for the exponential

terms, scheme (109) becomes:

Un+1 = (I + τAα3
z )−1(I + τAα2

y )−1(I + τAα1
x )−1(Un + τF(Un)). (110)
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The exponential operator splitting (EOS) scheme can be formulated as the split

form of scheme (110)

U∗ = (I + τAα1
x )−1(Un + τF(Un)),

U∗∗ = (I + τAα2
y )−1U∗,

Un+1 = (I + τAα3
z )−1U∗∗.

(111)

The EOS scheme (111) is first-order convergent in time (see also [40, 62]). For the

two-dimensional problem, we use a similar technique with one intermediate vector

and operators in the x and y directions.

5.2.2 The locally extrapolated exponential operator

splitting scheme

It is shown in [44] that the EOS scheme (111) can be locally extrapolated to achieve

second-order accuracy with the following procedure.

Firstly, we write scheme (111) over two single time steps:

U∗ = (I + τAα1
x )−1(Un + τF(Un)),

U∗∗ = (I + τAα2
y )−1U∗,

Un+1 = (I + τAα3
z )−1U∗∗.

U] = (I + τAα3
z )−1(Un+1 + τF(Un+1)),

U]] = (I + τAα2
y )−1U],

Un+2 = (I + τAα1
x )−1U]],

(112)

and we represent the solution Un+2 from (112) as U(0).
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Secondly, we compute scheme (111) over a double time step 2τ :

U∗ = (I + 2τAα1
x )−1(Un + 2τF(Un)),

U∗∗ = (I + 2τAα2
y )−1U∗,

Un+2 = (I + 2τAα3
z )−1U∗∗,

(113)

and we represent the solution Un+2 from (113) as U(1).

Thirdly, we compute scheme (111) over a double time step 2τ again but in different

directions:

U∗ = (I + 2τAα3
z )−1(Un + 2τF(Un)),

U∗∗ = (I + 2τAα2
y )−1U∗,

Un+2 = (I + 2τAα1
x )−1U∗∗.

(114)

and we represent the solution Un+2 from (114) as U(2).

Finally, we write the local extrapolation of scheme (111) as:

Un+2 = 2U(0) − 1

2

(
U(1) + U(2)

)
. (115)

Since (I + τAα1
x )−1 is a fully dense matrix of size M ×M , scheme (115) has a

computational complexity of O(M2) per time step. Without splitting the operator,

a matrix approximating the space derivatives has a computational cost of O(M6)

per time step, an incredibly burdensome complexity by most standards. The locally

extrapolated EOS scheme has been applied to multi-dimensional reaction-diffusion

systems in [6] and achieves second-order convergence in time.
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5.2.3 Stability regions

Using the same technique as shown in Section 2.7, we denote x = λτ and y = cτ , and

apply scheme (115) to solve (22) in one spatial dimension. The amplification factor

can be computed as

un+2

un
= r(x, y) = c0 + c1x+ c2x

2, (116)

where

c0 = 1 + 2y + 2y2 +O(y3),

c1 = 2 + 4y + 4y2 +O(y3),

c2 = 2 + 4y + 6y2 +O(y3).

(117)

To obtain stability regions, we assume that r(x, y) < exp(iθ), θ ∈ [0, 2π]. For

complex values of x, we fix y to various complex values and plot the stability regions

in Fig. 33.
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Figure 33: Stability regions of the EOS scheme with local extrapolation (115).

It can be seen from the stability regions in Fig. 33 that the innermost region

corresponds to y = 0 and the stability region expands as |y| increases from 0 to
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10, which indicates the stability of the extrapolation (115). Since H
(α)
M in (90) is

symmetric, its eigenvalues are real. Aα1
x , A

α2
y and Aα3

z have eigenvalues of the form

−i · a, where a is some real number. Therefore, y is chosen to be −10i, − 7.5i, −

5i, − 2.5i, 0, 2.5i, 5i, 7.5i, 10i.

5.3 Numerical experiments

5.3.1 A two-dimensional FNLSE

We solve the following two-dimensional problem [72]

iut + γ(∂αxu+ ∂βy u) + ρ|u|2u = 0, (x, y) ∈ Ω, t ∈ (0, T ],

u(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ [0, T ],

u(x, y, 0) = sech(x)sech(y) exp(i(x+ y)), (x, y) ∈ Ω = Ω ∪ ∂Ω,

(118)

where Ω = [−10, 10]2, γ = 1, ρ = 2, and T = 1.

Figure 34: Initial condition of Eq. (118).

In this section, we use ∂αx to denote ∂α

∂|x|α for simplicity. Fig. 34 shows the initial

condition of Eq. (118) from two different view points. We notice that the peak of
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Figure 35: Solution to Eq. (118) with α = β = 1.8 at t = 0.5.

Figure 36: Solution to Eq. (118) with α = β = 1.8 at t = 1.

the wave lies at the origin of the coordinate plane and the amplitude of the wave is

1. The numerical solutions of Eq. (118) at t = 0.5 and t = 1 are shown in Fig. 35

and Fig. 36, respectively. The results are achieved using the LE-EOS scheme (115),

and the mesh steps used are h = 0.05 and τ = 0.01. It can be seen that the wave

is moving in the (−x,−y) direction and the amplitude of the wave decreases as the

wave defocuses.

Table 11 is obtained using the EOS scheme (111) for different α and β values. The

order of convergence in time is computed using a very fine spatial mesh (h = 0.05).
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Table 11: Order of convergence in time without local extrapolation.

(α, β) = (1.2, 1.2) (α, β) = (1.4, 1.6) (α, β) = (1.8, 1.8)
τ e(τ) p e(τ) p e(τ) p Avg. CPU

1/100 1.7285e-3 0.999 1.6338e-3 1.006 1.7926e-3 1.008 1.3839
1/200 8.6493e-4 1.020 8.1360e-4 1.005 8.9162e-4 1.028 2.6552
1/400 4.2657e-4 1.001 4.0523e-4 1.053 4.3726e-4 1.015 5.0132
1/800 2.1182e-4 −− 1.9532e-4 −− 2.1643e-4 −− 10.0620
1/1600 −−−− −− −−−− −− −−−− −− 20.3490

Table 12: Order of convergence in time with local extrapolation.

(α, β) = (1.2, 1.2) (α, β) = (1.4, 1.6) (α, β) = (1.8, 1.8)
τ e(τ) p e(τ) p e(τ) p Avg. CPU

1/100 7.4388e-4 1.952 8.5339e-4 1.852 8.2256e-4 1.939 2.4601
1/200 1.9223e-4 1.976 2.3641e-4 1.985 2.1459e-4 1.944 4.9875
1/400 4.8872e-5 1.875 5.9003e-5 1.893 5.5772e-5 1.931 10.2160
1/800 1.3328e-5 −− 1.5883e-5 −− 1.4629e-5 −− 20.3865
1/1600 −−−− −− −−−− −− −−−− −− 40.7285

The L∞ error is computed as

e(τ) = ‖U(τ, h)− U(τ/2, h)‖∞.

The Order of convergence in time is computed as

p =
log(e(τn)/e(τn+1))

log(τn/τn+1)
.

The spatial mesh size h is set sufficiently small to 0.05. It can be observed from Table

11 that the EOS scheme (111) is first order in time since the order of convergence p

is around 1 for all the (α, β) chosen. Table 12 indicates that the the LE-EOS scheme

(115) is second-order in time. The CPU times are based on computations via Matlab

R2014a platforms based on an Intel Core i5-2410M 2.30GHz workstation.
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5.3.2 A system of two-dimensional FNLSEs

We consider the following initial-boundary value problem:

i u1t + γ (∂αxu1 + ∂βy u1) +
(
|u1|2 + ρ|u2|2

)
u1 = 0,

i u2t + γ (∂αxu2 + ∂βy u2) +
(
ρ|u1|2 + |u2|2

)
u2 = 0,

(119)

where (x, y, t) ∈ ΩT = Ω× [0, T ], with initial conditions:

u1(x, y, 0) = B1 exp(−(x− d)2 − y2) exp(−i ln(cosh(x2 + y2))),

u2(x, y, 0) = B2 exp(−(x+ d)2 − y2) exp(−i ln(cosh(x2 + y2))),

(120)

with γ = 1, ρ = 2, d = 5, B1 = 1, B2 = 0.8, and homogeneous Dirichlet boundary

conditions on ∂Ω.

Eq. (119) could model the interaction of two soliton in an optical fiber. The

system of FNLSEs is derived from the system of NLSEs given in [34] Fig. 37 and

Figure 37: Solutions to Eq. (119) at t = 0 and t = 0.2.

38 are solutions to Eq. (119) with α = β = 1.8. The results are achieved using the

LE-EOS scheme (115) and the mesh sizes used are h = 0.05 and τ = 0.01. It can be

observed from the figures that the two waves move towards each other before they
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Figure 38: Solutions to Eq. (119) at t = 0.5 and t = 0.8.

interact and merge into one wave at t = 0.5. Then the two waves separate and move

away from each other. Notice that during the movement, the waves defocus and the

amplitudes decrease. The shape of the solitons differs slightly from the solution to

the equation with α = β = 2, which is given in [34].

5.3.3 A three-dimensional FNLSE

We consider the following three-dimensional problem

iut + γ(∂α1
x u+ ∂α2

y u+ ∂α3
z u) + ρ|u|2u = 0, (x, y, z) ∈ Ω, t ∈ (0, T ],

u(x, y, z, t) = 0, (x, y, z) ∈ ∂Ω, t ∈ [0, T ],

u(x, y, z, 0) = sech(x)sech(y)sech(z) exp(i(x+ y + z)), (x, y, z) ∈ Ω ∪ ∂Ω,

(121)

where Ω = [−10, 10]3, γ = 1, ρ = 2, and T = 0.4.

Fig. 39 demonstrates the initial condition of Eq. (121). Since the equation is three

dimensional in space, the solution of |u| on the left is represented using different colors

on the color bar. To better illustrate the results, the solution of |u| with z = 0 is

shown on the right. Fig. 40 shows the solution of |u| at t = 0.4. It can be seen from
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Figure 39: Initial condition of Eq. (121).
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Figure 40: Solution to Eq. (121) with α1 = 1.2, α2 = 1.5, α3 = 1.8.

the figure that the amplitude at t = 0.4 is a little different from the initial condition.

Table 13 is obtained by the LE-EOS scheme (115). The spatial step is also chosen

to be relatively small (h = 0.05). The results from Table 13 indicate that the LE-EOS

scheme (115) is second-order in time, solving the three-dimensional problem.
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Table 13: Order of convergence in time with local extrapolation.

α1 = α2 = α3 = 1.2 α1 = 1.2, α2 = 1.5, α3 = 1.8 α1 = α2 = α3 = 1.8
τ e(τ) p e(τ) p e(τ) p

1/100 3.1256e-3 1.895 2.6483e-3 1.875 2.5659e-3 1.906
1/200 8.3722e-4 1.925 7.0365e-4 1.912 7.8231e-4 1.927
1/400 2.1802e-4 1.936 1.8933e-4 1.893 1.8716e-4 1.912
1/800 5.3671e-5 −− 4.9529e-5 −− 5.6502e-5 −−
1/1600 −−−− −− −−−− −− −−−− −−

5.3.4 The Gross-Pitaevskii equation

A special form of three-dimensional NLSE, the Gross-Pitaevskii equation, can be

utilized to model soliton propagation in a GRIN fiber [53]. We consider the Gross-

Pitaevskii equation with space fractional derivatives:

ut =
i

2k0

(∂α1
x u+ ∂α2

y u)− iβ
2
∂α3
z u− ik0(x2 + y2)u+ iγ|u|2u. (122)

When α1 = α2 = α3 = 2, an approximate analytic solution exists [53]:

u(x, y, z, t) = A0 exp(i
t

ς
) exp(

−(x2 + y2)

w2
0

+ i(θz2 + ρ(x2 + y2) + φ)), (123)

where ς is the pulse duration, w0 is the beam width, θ and ρ are chirp parameters,

and φ is an arbitrary phase. The parameters are chosen as A0 = k0 = β = γ = 1,

ς = w0 = θ = ρ = 1, φ = 0. The initial condition generated from the analytic solution

is:

u(x, y, z, 0) = exp(−(x2 + y2) + i(z2 + x2 + y2)), (124)

Fig. 41 demonstrates the numerical results by the centered difference scheme (89)

with the LE-EOS scheme (115) compared to the analytic solution (123). The mesh

sizes are chosen as h = 0.02, τ = 0.001. To better illustrate the differences, two
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Figure 41: Comparison with analytic solutions to Eq. (122) with α1 = α2 = α3 = 2.

spatial variables are fixed in each figure. In [53], the solution generated by the Gross-

Pitaevskii equation is compared to the real physical experimental data to illustrate

how the equation models the soliton in the GRIN fiber.
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Figure 42: Order of convergence of solutions to Eq. (122) with α1 = α2 = α3 = 2.

From Fig. 42 we observe the order of convergence in time and in space using the

second-order centered difference scheme (89) with the LE-EOS scheme (115). For

convergence in time, we fix the spatial step as h = 0.01, and for convergence in space,

we fix the time step as τ = 0.0001. We notice from the log-log plot that the numerical
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scheme is second-order in time and in space for solving the three-dimensional NLSE

(122).
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Figure 43: Initial condition of Eq. (122).
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Figure 44: Solutions to Eq. (122) with α1 = 1.2, α2 = 1.5, α3 = 1.8.

The results shown in Figs. 43 and 44 model the propagation of a soliton in a

GRIN fiber with a fractional refraction effect. It can be seen from the solution that

the peak of the soliton moves slightly due to the fractional effect.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

We have developed and analyzed a central difference and quartic spline approxi-

mation based exponential time differencing Crank-Nicolson method, and a local dis-

continuous Galerkin approximation based time-stepping methods for solving systems

of one-dimensional nonlinear Schrödinger equations and two-dimensional nonlinear

Schrödinger equations. A fourth-order compact spatial approximation based fourth-

order exponential time differencing Runge-Kutta scheme has been applied to solve

the coupled fractional nonlinear Schrödinger equations. A locally extrapolated ex-

ponential operator splitting scheme is introduced for solving the multi-dimensional

nonlinear fractional Schrödinger equations. The accuracy, efficiency, and stability of

the numerical methods are investigated. It is evident from the analysis and numeri-

cal experiments that the numerical methods we adopt, compared to other numerical

methods, are highly efficient and reliable.

Our continuing explorations include the development of highly accurate exponen-

tial time differencing schemes for nonlinear wave propagation simulations, numerical

methods for time-space fractional partial differential equations, semi and full mesh

adaptations, and priori, posterior error analysis of the underlying numerical methods.
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