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ABSTRACT

Although the number of workers’ compensation claims have been declining over

the last two decades, average cost per claim has been steadily increasing. Identifying

factors that contribute to severe claims and effectively managing those claims early

in the claim life-cycle could reduce cost for employers and insurers. This research

project utilizes machine learning algorithms to predict a binary severity outcome

variable. A text mining algorithm, Correlated Topics Model, was used to convert

textual description fields to topics. Support Vector Machines and Regularized Lo-

gistic Regression were implemented for severity classification and variable selection,

respectively. Due to asymmetric severity outcomes in the training data, a balancing

method for matching the volume of severe/non-severe claims was employed. Optimal

model parameters for both algorithms were selected based on a profitability metric

and 10-fold cross-validation. Discussion of data processing techniques and mathemat-

ical exposition of machine learning algorithms are provided. Open source statistical

programming software, R, was utilized in this project.
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CHAPTER 1

INTRODUCTION

In the year 2013 workplace injury cost employers $88.5 billion($1.37 per $100 of

covered wages) [5]. Among the three classes of workers compensation (WC) cases –

medical only, temporary disability, and permanent disability – permanent disability

cases, although rare, resulted in over 58% of cash benefits paid [5]. Sources of WC

insurance include private insurance, state funds, or self-insurance. Although the

number of work related claims have been declining over the last two decades, average

cost per claim has been steadily increasing [7]. According to NCCI’s State of the

Line report, combined ratio of WC insurers and state funds stood at 98%, and 115%,

respectively, in 2014 [6]; see Figure 1. Early intervention measures taken on claims

which have the propensity to become severe could reduce cost for employers and

insurers. This research project attempts to identify and investigate some commonly

accepted predictors that lead to escalation of claim severity. Effective data processing

techniques and machine learning algorithms are also discussed. A brief mathematical

exposition of algorithms utilized is provided.

1.1 Predictors

1.1.1 Commonly Accepted Predictors

Thirty predictors – Opioids usage, age, depression, obesity, diabetes, addiction, smok-

ing, litigation, lag between injury and filing claim, previous injury, stability of living

arrangements, early hospitalization, number of doctor visits, prescription drug usage,

occupation, specific doctor seen, therapies, injury type, hours worked, job title, com-

muting distance to job, emergency room visit, tenure, marital status, injury timing,

pre-existing conditions, and treatment patterns – were mentioned in a majority of

scholarly literature on the topic [7, 9, 10].
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Figure 1: NCCI State of Workers’ Compensation Line 2015

1.1.2 Predictors in Research Data

This study used simulated data based on observing real loss run data of self insured

entities. The data set contains 27 predictors of both numeric and categorical types,

and a dichotomous outcome variable indicating severity of claim. While some vari-

ables were directly used, others had to be calculated from the raw data. Gender,

line of business, full time status, and geographic location were used directly. Other

predictors, namely, age, tenure, and lag in reporting were calculated from date fields.

Some predictors related to the injury were the object involved, bodily reaction or

effect, and body part affected. Data fields containing description of events or injuries

were assigned topic numbers using a topic modeling algorithm. Binary indicators

were assigned for attorney involvement or litigated claims.
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1.2 Data Inspection & Preparation

1.2.1 Type Conversion

The data file is converted from .xlsx to .csv format. Loss run data is inspected 10

predictors at a time, and employee names, serial numbers, and other unique fields are

removed. Dates are formatted to become compatible with R. R compatible dates are

required to allow arithmetic operations, such as subtraction on dates. Categorical

predictors which are numbered and not ordinal are concatenated with a character to

enable R to recognize the categorical nature of data. Fields having dollar signs are

not recognized by R in the .csv format. Therefore, dollar signs, hyphens, commas,

and extra spaces are removed from dollar amounts. The fields that were fixed are

now grouped together to obtain an R compatible data set.

1.2.2 Calculated Variables

All date fields are converted to days following January 1, 1900 to enable Excel com-

patibility in the future. After date fields have been converted to numeric, age is

calculated as the difference between injury date and birth date. Similary, tenure

equals the difference between injury date and date of first employment. Report lag

is computed as claim filing date minus injury date. Although these calculations, be-

ing linear combinations of dates, are not required for training and testing the data,

such calculations are important in the context of interpretability and predicting claim

severity of new cases. Any date, being time dependent, is unique and cannot be ob-

served in the future. Differences between dates, as discussed before, are observable

in the future and have predictive value.
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1.2.3 Binary Indicator Assignment

The litigation date appeared in relatively few records. Sparsity of this data field

warrants the creation of a new field which considers litigation as a binary variable

based on the presence or absence of litigation date. The same method used with

litigation date variable was applied to attorney representation variable. Since the

goal of this research project is to predict claims that would ultimately become severe,

the data set was narrowed down to only those records which had a closed status and

with zero reserve amount to ensure that no development was anticipated.

1.2.4 Topic Modelling

The data set has fields containing textual data which cannot be processed directly by

machine learning algorithms. Such fields are modelled using Correlated Topics Model

[12], a topic modelling algorithm. Each textual field is assigned a topic which could

then be processed in machine learning.

1.3 Severity Classification

Typical loss runs of self insured entities consist of several data fields, including in-

curred loss, paid loss, and reserves. A dichotomous outcome variable indicating a

severe or non-severe claim was desired. As recommended by workers’ compensation

actuaries, claims with incurred loss exceeding the 95th percentile of losses in the data

set were marked as severe [11]. After this new field, named Severe, is created the in-

curred loss field is removed. Thus 95% of claim records were classified as non-severe

and 5% of claim records were classified as severe.
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1.4 Algorithms for Severity Classification

1.4.1 Support Vector Machines

Two machine learning algorithms - Support Vector Machines and Regularized Logistic

Regression - were used in this research. Support vector machines have been proven

for classification purposes due to their ability to map data into a higher dimensional

feature space where classes become easily separable. One key advantage of SVMs

is that the mapping to higher dimensional space is not explicitly known. Instead

the algorithm is implemented using a “kernel trick’,’ whereby the inner product of

mapped data is expressed as a kernel function. The learning is done in the feature

space to determine the optimal hyperplane separating the classes, which will then be

used for classifying new cases [1].

1.4.2 Regularized Logistic Regression

Regularized logistic regression utilizes a binomial loglikelihood using the logistic func-

tion with a combination of l1 (LASSO), and/or l2 (Ridge) penalties. When only the

LASSO is utilized, the algorithm tends to retain only one among the coefficients of a

group of correlated predictors [17]. This technique enables the fast detection of group

of most essential predictors. On the other hand, a combination of LASSO and Ridge

may be necessary for better predictive accuracy in a binary classification problem, as

was the case in this research.

1.5 Cost Containment Strategies

Once a new case has been labelled as severe, cost control measures can be implemented

effectively. Early intervention, claim management, and return to work programs could

reduce WC costs significantly. Case management, patient management, prescription

drug screening, and medical bill review ensure injured workers receive timely, medi-
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Table 1: Confusion Matrix Variables

Predicted N Predicted Y
Actual N True Negatives (TN) False Positives (FP)
Actual Y False Negatives (FN) True Positives (TP)

cally necessary, and cost effective care. Healthcare providers who are experienced in

treating WC cases, and who are aware of employee job responsibilites and alterna-

tive/light duty arrangements available can help injured workers return to work during

the recovery period. Machine learning algorithms can predict severity outcomes and

exemplify key correlations that exist between the predictors and outcome to help

drive administrative and engineering controls.

1.6 Efficiency Metrics

1.6.1 Confusion Matrix-based Metrics

To measure the efficiency of an algorithm 5 metrics, namely: Sensitivity, Specificity,

Positive Predictive Value, Negative Predictive Value, and Accuracy as defined by

Kabacoff were considered [4]; see Table 1 for a description of the confusion matrix

variables.

Sensitivity =
TP

TP+ FN

Specificity =
TN

TN + FN

Positive Predictive Value (PPV) =
TP

FP + TP

Negative Predictive Value (NPV) =
TN

FN + TN

Accuracy =
TN + TP

TN+FP+FN+TP
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The above metrics vary with algorithm chosen and parameters selected. An algo-

rithm or parameter selection cannot be done based on these 5 metrics alone. A more

appropriate metric based on profitability is discussed in the next sub-section.

1.6.2 Profitability-Based Efficiency Metric

When analyzing the efficiency of a machine learning algorithm, at first glance, one

feels the need to increase sensitivity to be able to predict many of the severe claims

correctly. Both Support Vector Machines, and Regularized Logistic Regression allow

parameter variation in order to change sensitivity. If parameters are changed to

increase sensitivity, it is possible that more of the not severe claims will be classified

as severe, thereby resulting in a decrease in specificity.

The Tail Value at Risk of a random variable at the 95th percentile, denoted by

TV aR.95, is defined as the expected value of all claims valued at or above the 95th

percentile [19]. In preparation of calculating the new metric, estimates of mean claim

cost of severe claims, ̂TV aR.95 , mean claim cost, X, and the mean cost of non-severe

claims, N̂S are calculated from the data. The cost of early intervention was estimated

as 10% of X, following the recommendation of experts familiar with loss run data

and third party administration [11]. The benefit of early intervention was estimated

as a 50% reduction in ultimate claim cost [21]; let S denote the savings from early

intervention effort. Then S is given by,

S = (.5)× (TP × ̂TV aR.95 + FP × N̂S)

TP and FP claims were worked on resulting in 50% savings in the severe and non-

severe cost category, respectively. Let C denote the costs associated with early inter-

vention. Then C is given by,

C = (TP + FP − FN)× (.1)×X

TP and FP claim handling costs incurred are partially offset by the cost reduction

from not handling FN misclassified claims. Let MS denote the savings not realized
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due to misclassification of severe claims. Then MS is given by,

MS = FN × (.5)× ̂TV aR.95

Since FN claims are truly severe claims, MS serves as a penalizing term for misclas-

sification. The profitability index Π of an algorithm parameter set p may be defined

as,

Π(p) := S − C −MS

An optimal algorithm parameter set is successful at classifying more of the severe

claims correctly, while ensuring that relatively few non-severe claims are misclassified.

The metric Π allows a better comparison between parameter sets having similar values

of metrics defined in 1.6.1.
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CHAPTER 2

TOPIC MODELLING

Workers’ compensation loss run data typically includes textual variables such as inci-

dent description or injury description. Verbal descriptions have high cardinality due

to each record’s textual entry being unique. Using such a field directly results in an

overfitted model which lacks predictive value. To overcome this obstacle a genera-

tive topic model is used to assign a topic to replace each textual data element. This

model assumes that a document is generated based on latent underlying topics, each

of which has its own term distribution. In this research the Correlated Topic Model

(CTM) was utilized which allows correlation between possible topics for a document.

2.1 Model Specification

Consider a document, w = (w1, · · · , wN), containing N words, in a corpus D. The

words are drawn from a vocabulary containing V words. The number of topics K is

specified beforehand. A random variable follows the categorical distribution if it has

a multinomial distribution with n=1 (one trial). CTM assumes the following 3-step

generative process for words in a document [12].

• For each topic zk determine its categorical word distribution parameter βzk ,

βzk ∼ Dirichlet(δ)

δ ∈ R+V , βzk ∈ RV , β := (βzk) ∈ RV×K

• The topic proportions θ of each document is determined from η,

η ∼ N (µ,Σ)

θ ∈ RK , η ∈ RK−1,Σ ∈ R(K−1)×(K−1), η̃T := (ηT , 0), θk = exp (η̃k)∑K
j=1 exp (η̃j)

• For each word wi in the document
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– Select a topic zi, zi ∼ Categorical(θ)

– Select a word wi, wi ∼ Categorical(βzi)

2.2 Estimating Model Parameters µ, Σ, and β

The sum of log-likelihoods of all documents is minimized by varying parameters µ,

Σ, and β. Log-likelihood of one document w ∈ D is as follows.

l(µ,Σ, β) = log(p(w|µ,Σ, β)) = log

∫
{
∑
z

[
N∏
i=1

p(wi|zi, β)p(zi|θ)]}p(θ|µ,Σ)dθ

A Variational Expectation Maximization (VEM) algorithm [14] as outlined in the

following steps is used to estimate model parameters instead of the usual Expectation

Maximization (EM) algorithm due to the intractable nature of integrals involved.

• Posterior distribution p(η, z|w, µ,Σ, β) is replaced by a variational distribution

q(η, z|λ, ν2, φ)

• Variational Parameters based on Kullback-Leibler (KL) divergence is deter-

mined:

(λ∗, ν∗, φ∗) = arg min
(λ,ν,φ)

DKL(q(η, z|λ, ν2, φ)‖p(η, z|w, µ,Σ, β))

q(η, z|λ, ν2, φ) =
K−1∏
k=1

q1(ηk|λk, νk2)
N∏
i=1

q2(zi|φi)

where q1() is a univariate Gaussian distribution with mean λk and variance νk
2,

and q2() denotes a categorical distribution with parameters φi.

log(p(w|µ,Σ, β)) = L(λ, ν, φ) +DKL(q(η, z|λ, ν2, φ)‖p(η, z|w, µ,Σ, β))

L(λ, ν, φ) := Eq[log(p(η, z, w|µ,Σ, β))]− Eq[log(q(η, z))]

Maximizing L with respect to variational parameters is equivalent to minimizing

KL divergence between functions p and q.
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• E-Step: For each document find optimal value of λ, ν, and φ.

• M-Step: Maximize resulting lower bound of log-likelihood with respect to η, Σ,

and β.

2.3 Document Term Matrix

The R package “topicmodels” accepts a document term matrix - matrix having rows

and columns representing records and words - for fitting a topic model. In order to

create a document term matrix from a text field, the R package “tm” is used. The

vocabulary is usually not known beforehand, but is extracted from pertinent data

field. All words in the field are initially considered. Several filters such as stem-

ming, punctuation removal, case lowering, minimum word length, etc. are applied to

the initial set of words. Furthermore, a term-frequency-Inverse document frequency

measure helps reduce the vocabulary to only those words occurring more frequently

and those occuring in not many documents based on acceptable threshold. The term-

frequency-Inverse document frequency of a term, t, in a corpus, D, could be defined as:

tfidf(t) := ft ∗ log
|D|

|d ∈ D : t ∈ D|

Whereas, first multiplicand (number of times term t occurs in the corpus) gives more

weight to terms having high frequency in the corpus, the second term gives more

weight to terms that are not found in many documents. While selecting the threshold

for eliminating terms with low tfidf values, care was taken to have this less than or

equal to the median [12] of values among the terms, but not as large to prevent the

algorithm from assigning a single topic to each document.
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2.4 Application of CTM to Incident Descriptions

After a document term matrix with a vocabulary of suitable size is created, it is fitted

to the CTM model using the R-package “topicmodels” by calling the “CTM” function

and providing necessary parameters. The number of topics was selected to be 30 as

seen in scholarly literature [12]. A cross validation method may be utilized to calculate

the optimal topic number for a given data set. To investigate the effectiveness of the

algorithm, the “terms” function is invoked to view the five most frequent terms under

each topic. In order to obtain reasonable groupings of terms under topics one may

need to change the number of topics. As the output of this function is a column of

topic numbers, the word “topic” is appended to each topic number to ensure proper

type recognition. Moreover, the incident description field is replaced by the new topic

field. Other textual description fields are identified and replaced with corresponding

topic fields.
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CHAPTER 3

SUPPORT VECTOR MACHINES

The R-package kernlab contains the ksvm function, an implementation of sup-

port vector classification [2]. Support vector machines(SVM) have gained popularity

due to their efficiency and simplicity in dealing with classification problems. SVMs

attempt to separate data points using an optimal hyperplane that maximizes the

separation between support vector margins of either class [3]. In cases where data

points are not linearly separable, they are mapped to a higher dimensional space to

enable linear separation. When data classes overlap across the decision surface a cost

parameter is included in the method to penalize misclassification. The problem is

solved as a constrained quadratic optimization problem.

3.1 SVM Theory

Consider the hyperplane (decision function),

f(x) = 〈w,Φ(x)〉+ b = 0

where Φ is a mapping from the data dimension to a higher dimension. The primal

optimization problem involving a soft margin (one that allows overlap across decision

surface) for a training set with m points has the form [1]:

Minimize t(w, ξ) =
1

2
‖w‖2 +

C

m

m∑
i=1

ξi

Subject to yi(〈Φ(xi),w〉+ b) > 1− ξi (i = 1, ...,m)

and ξi > 0 (i = 1, ...,m)

where C is the cost parameter, yi ∈ {+1,−1}. By the method of Lagrange multipliers

we get

w =
m∑
i=1

αiyiΦ(xi)
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Restating as a quadratic optimization problem [1],

Maximize W (α) = αT1− 1

2
αTHα

Subject to 0 6 αi 6
C

m
, i ∈ {1, ...,m}

and αTy = 0

where α ∈ Rm is a vector of Lagrange multipliers, Hi,j=yiyjk(xi,xj), y is the vector

of class labels, and k is the Gaussian radial basis function kernel given by

k(xi,xj) = 〈Φ(xi),Φ(xj)〉 = exp(−γ‖xi − xj‖2)

As seen in the kernel formula, instead of calculating Φ(xi) and Φ(xj) separately

and then obtaining the inner product, kernel function (“kernel trick”) allows direct

substitution of xi and xj to calculate entries in theH matrix. Solving the optimization

problem yields the vector α of lagrange multipliers. A non-zero value for αi indicates

that the corresponding data point is a support vector.

3.2 SVM Parameter Selection

Parameters C and γ are specified by the user to change the complexity of the model.

Generally, a higher cost parameter results in the algorithm creating a more complex

model due to the higher cost of a misclassification error. However, a higher cost

model, due to overfitting, may have poor generalization ability resulting in poor pre-

diction when used with test data.

The package e1071 has built-in parameter selection capability. In this research

project this function could not be used due to the high volume of data. An al-

ternate approach was to code in better error handling methods while using modified

10-fold cross validation to compute the five confusion matrix based metrics discussed

in Section 1.6.1. Furthermore, the profitability based metric discussed in Section 1.6.2

was calculated to provide another layer of selectivity. By considering all six metrics

one can find the best parameter set for the SVM algorithm.
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3.3 Addressing Assymetric Class Distribution in Data

In section 1.3, severe claims were defined as those at the 95th percentile or above. Due

to this definition, the data set has a disproportionate number of severe and non-severe

cases. Package e1071 has provision for adding class weights in the svm function call

[2]. For the data set being studied, class weighting resulted in a sensitivity of 43%.

3.3.1 Symmetry Factor & Proportion of Predictions

As advised by Qiang Wu [16], an analysis was conducted to measure the effect of

class symmetry on efficiency metrics. The symmetry factor, SF of a data set may be

defined as,

SF :=
Number of Non Severe Cases

Number of Severe Cases

The results of the analysis are given in Table 2. In Table 2, the leftmost column

indicates how many of the five predictive models derived from balanced data, used

for this study gave a severe outcome; the top row has different values for SF . The

table gives Π values associated with each combination in millions of dollars. The

metric, Π was optimal when SF ≈ 1, i.e. when the training data contained an equal

number of severe and non-severe cases. Moreover, when several balanced groupings

were trained and each of those models were used to predict outcomes for test data,

as long as at least one model classified as severe, the final outcomes had maximum

chance of being severe. Requiring more models to indicate a severe classification

resulted in decrease in sensitivity and Π. The above results warranted a deviation

from the conventional approach to running SVM algorithm on data. A modified

version of 10-fold cross validation is discussed in section 3.3.3.

3.3.2 Data Preparation For Cross Validation

It was suspected that there might be clusters of data from either class throughout the

data set. A random sampling method which shuffles the data records was employed
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Table 2: Severe Classification vs. Class Balance

# of Ys 1/3 1/2 1 2 3
> 0 1.92 1.97 1.84 1.53 1.37
> 1 1.86 1.87 1.70 1.40 1.29
> 2 1.84 1.83 1.54 1.39 1.27
> 3 1.75 1.65 1.42 1.10 1.04
> 4 1.56 1.40 1.12 .72 .58

to ensure a more uniform distribution of the classes. In preparation for 10-fold cross

validation [8], the data was partitioned into 10 equal non-overlapping parts. Nine

parts would serve as training data while one part would be the test data. The final

calculated metric values are the average of the 10 algorithm runs.

3.3.3 Modified 10-Fold Cross Validation

As indicated in the previous paragraph, svm algorithm is not directly run on the nine

parts of training data. Instead, a stratified cross validation methodology is utilized.

All severe classified records are extracted and paired with each of the 19 (on average

assuming uniform distribution of classes) possible non-severe classified record sets.

The algorithm is trained using each of these 19 symmetric data sets (each having

an equal number of severe and non-severe classified records), and a prediction is

performed on the held out training data. If at least one of 19 predictions indicated a

severe classification, the final classification assignment was severe. Thus this modified

10-fold cross-validation requires 190 train-predict cycles to compute the final average

efficiency metric values.

3.3.4 Multiple Modified 10-Fold Cross Validation

The procedure outlined in section 3.3.3 gives a single set of efficiency metric values.

In order to gauge the reliability of the algorithm, more sets of efficiency metrics
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are desired. When comparing two different algorithms, the data set is shuffled after

seeding the random number generator with the same value to aid proper comparison.

In this case where we need multiple sets of efficiency metrics, the random number

generator is seeded with different, but known values, and the process in section 3.3.3

is repeated to get more sets of efficiency metrics.

3.4 Prediction of Outcomes from Client’s Perspective

The methods discussed thus far involved training and prediction from an R program-

mer’s perspective. Once a model is trained it needs to be made available for prediction

to individuals who may not have a working knowledge of R programming. Also, in

some cases businesses are not willing to disclose proprietary information to vendors.

In response to a question posed by Tim Coomer & Lu Xiong [20], an investigation

was conducted to determine whether a set of coefficients or a coefficient matrix could

be extracted to facilitate prediction in an online platform that does not support R-

packages. The function svm in package e1071 does not allow extraction of certain

attributes required in this scenario. The function ksvm in package kernlab has pro-

vision for extracting the necessary attributes from the model object [2]. Consider the

decision function f(x) given by,

f(x) = 〈w,Φ(x)〉+ b = 〈
m∑
i=1

αiyiΦ(xi),Φ(x)〉+ b =
m∑
i=1

αiyi〈Φ(xi),Φ(x)〉+ b

=
m∑
i=1

αiyik(xi,x) + b =
m∑
i=1

αiyiexp(−γ‖xi − x‖2) + b

The following steps summarize the evaluation of the decision function f for a new

case x along with the necessary R code:

• Evaluate entries in the m×p matrix [xi−x] where xi corresponds to each vector

in the model matrix of support vectors, where m and p represents the number of

support vectors and the number of fields for each support vector, respectively.

[xi − x] ≡ X < − sweep(model@xmatrix[[1]], 2,x, ”− ”)
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Matrix of support vectors is represented by model@xmatrix[[1]]. The sweep

function subtracts x from each support vector, xi.

• Calculate entries in the vector, [‖xi − x‖2] of size m,

[‖xi − x‖2] ≡ Y < − rowSums(X ∗X)

This steps performs norm squared as an inner product. The * operation for

matrices, which performs product of elements having equal indices, followed by

rowSums function achieves the goal.

• Determine entries in the vector, [exp(−γ ∗ ‖xi − x‖2)] of size m of evaluated

kernel functions, . In the ksvm function γ is called σ.

γ < − model@kernelf@kpar$sigma

[exp(−γ ∗ ‖xi − x‖2)] ≡ K < − lapply(Y, function(x) exp(−γ ∗ x))

The lapply function replaces each element, x, in the argument object Y and

replaces it with exp(−γ ∗ x)) and assigns the results to an object K

• Evaluate the decision function f(x). In the function ksvm, b represents the

negative intercept.

b < − (−model@b)

f(x) ≡ Decision < − model@coef [[1]]% ∗%K + b

The vector [αiyi] of size m is stored in model@coef [[1]]. The operator % ∗ %

performs the inner product of the two vectors.

The severity classification of a given new case is determined as follows.

f(x) > 1⇒ Severe

f(x) 6 −1⇒ Not Severe
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CHAPTER 4

ALGORITHM & VARIABLE SELECTION

This chapter discusses the relative benefits of five different algorithms that are

widely used for classification problems as well as the method of regularized logistic

regression with lasso penalty in order to identify the best predictors in the data.

4.1 Algorithm Comparison

A discussion of SVM algorithm for severity classification was provided in chapter 3.

Five different types of algorithms - Support Vector Machines (SVM), Naive Bayes

(NB), CART, Logistic Regression (LR), and Regularized Logistic Regression (RLR)

were investigated for their suitability in severity classification. Table 3 summarizes

the performance metrics associated with each of these algorithms. SVM was selected

for this research due to its provision for varying cost and gamma parameters, and

also due its high overall accuracy. This parameter variability is more important

when the pi-metric is considered. Changes in savings from early intervention, and

early intervention costs, may necessitate change in algorithm parameters to ensure

maximum profit.

While studying logistic regression algorithm it was observed that prediction was

not always possible due to the high cardinality of certain variables. When data was

split into test and training data, several variables had records with categories in the

test set but not in the training set and vice versa. The random forest algorithm was

unusable due to its incapability to address high cardinality.

4.2 Variable Selection

To enable efficient and feasible implementation of predictive algorithms one needs to

identify predictors in the data-set which have the best predictive ability. As discussed
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in the previous section, the logistic regression algorithm encountered problems, and

thus could not be used for step-wise dimensionality reduction.

4.2.1 RLR for Dimension Reduction

Regularized logistic regression with the lasso, or l1 penalty using a cyclical coordinate

descent optimization method is known for fast executability [17]. The lasso penalty

shrinks coefficients of correlated variables so that only one of them will finally have a

non-zero coefficient.

RLR with the Lasso (l1) penalty minimizes the following function over (β0, β) ∈

Rp+1, where p is the dimension of the data [17].

l(β0, β) =
1

N

N∑
i=1

yi.(β0 + xTi β)− log(1 + exp(β0 + xTi β))− λ‖β‖l1

The value of λ that minimizes cross validated error for the model is selected using

“cv.glmnet” function [18]. The “predict” function uses the model coefficients associ-

ated with this λ to perform prediction on test data.

Although the model matrix initially consisted of over 3065 columns, after reg-

ularized logistic regression only 158 columns (predictors with non-zero coefficients)

remained. This corresponds to 28 predictors in the initial data set, and only 16 pre-

dictors in the dimension reduced data set. Among this new set of predictors were lag

time of reporting, injury causing object, litigation status, State of jurisdiction, cause

of injury, loss description topic, and target body part.

In addition to helping find the most effective variables, this algorithm yields the

subset of categories of a variable with the strongest influence on severity outcomes.

For implementing a predictive analytics solution online, a smaller set of variables and

a smaller subset of categories in those variables reduces the time a client has to spend

entering data or selecting categories for a new case for which a severity outcome is

desired.
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Table 3: Comparison of Algorithms

Algorithm Sensitivity Specificity PPV NPV Accuracy Π
SVM .98 .67 .14 1.0 .69 $585,111
NB .97 .63 .12 1.0 .65 $568,466
CART 1.0 .48 .09 1.0 .51 $573,231
RLR .93 .79 .19 1.0 .80 $539,157
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CHAPTER 5

RESULTS, CONCLUSION & RECOMMENDATION

5.1 Discussion of Results

The main purpose of this research was to predict severe outcomes. Existing methods

of prediction had predictive accuracy of 20% or less. Also some variables were not

effectively used as predictors. The topic modelling algorithm enabled classification

of textual data into categories. Many of these categories had significant predictive

content. A method of class balancing was utilized which improved predictive accuracy

to more than 80%. Class balancing resulted in several trained models and their

corresponding predictions on test data. As long as one model predicted an outcome

as severe, the test data had the most chance of being severe. To enable implementation

of SVM in an online platform that does not support R programs, model coefficients

and support vectors were extracted and manual calculations were performed to predict

outcomes. These outcomes were all cross checked with algorithm prediction on the

test set. In order to identify variables which had the strongest influence on severity

outcomes, the initial variable set was reduced to a smaller set using RLR with the

lasso penalty.

5.2 Conclusion

Loss run data from self-insured entities have significant informative content which

when properly extracted using machine learning or data mining algorithms could be

used to build predictive analytic solutions for those clients. Textual data in descrip-

tive fields can be effectively utilized to empower predictive models. Data in loss runs,

by nature are assymetric between severe and non-severe claims, resulting in poor

predictive results. Balancing techniques, when used properly, support the extraction
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of predictive knowledge to increase accuracy. Data dimension reduction can be ac-

complished by fast executable coefficient shrinkage methods such as RLR with lasso

penalty.

5.3 Recommendations

This research studied data specific to a single client, to enable prediction of future

outcomes of that client. A more universal model based on variables which are common

across industries and clients will enable higher versatility of the predictive model.

Also SVM radial basis kernel was used as an investigative tool. More sophisticated

kernels could improve performance. A better system of quantifying the reliability

of a model is desired. An improved metric derived from a confusion matrix that

allows cross-client algorithm comparison will aid in the development of a model that

is generalizable across multiple client data.
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