

Survey of Deep Neural Networks Handling Plan Development Tasks Using

Simulations of Real-World Environments

by

Kaleb Askren

A thesis presented to the Honors College of Middle Tennessee State University in
partial fulfillment of the requirements for graduation from the University

Honors College

(Fall 2019)

ii

Survey of Deep Neural Networks Handling Plan Development Tasks Using Simulations

of Real-World Environments

By

Kaleb Askren

APPROVED:

Dr. Sal Barbosa

Dept. of Computer Science

Dr. Medha Sarkar

Dept. of Computer Science

Dr. John Vile, Dean

University Honors College

iii

Special thanks to Dr. Sal Barbosa for advising me throughout this project and to the

University Honors College of MTSU for providing this opportunity.

iv

Abstract

 Neural networks are computational models that demonstrate the capability of

advanced computing applications in plan development tasks. Five influential projects

that independently demonstrate various applications of neural network models include

AlphaGO/AlphaGO Zero, Playing Atari with Deep Reinforcement Learning,

NeuroChess, OpenAI Five, and Playing Checkers without Human Expertise. Each of

these projects includes different approaches to plan development tasks and are surveyed

in this thesis using four criteria: the efficiency of the system, the form of their input based

on their target environment, the structure of the neural network(s), and the processes

through which they are trained. Each project approaches the plan development problem

with strict regard to the environment in which they are targeting and thus vary in

implementation. This survey is a collection of the details regarding each project and how

the research teams approached their development.

v

Table of Contents

Introduction…………………………………………………………………………..1

Section 1: Summary…………………………………………………………………10

1. AlphaGo/AlphaGo Zero…………………………………………………….10

2. Playing Atari with Deep Reinforcement Learning………………………….13

3. NeuroChess………………………………………………………………….15

4. OpenAI Five…………………………………………………………………18

5. Playing Checkers Without Human Expertise.……………………………….19

Section 2: Analysis…………………………………………………………………..24

1. AlphaGo/AlphaGo Zero……………………………………………………..24

2. Playing Atari with Deep Reinforcement Learning…………………………..28

3. NeuroChess…………………………………………………………………..31

4. OpenAI Five…………………………………………………………………36

5. Playing Checkers Without Human Expertise………………………………..42

Conclusion…………………………………………………………………………...45

References…………………………………………………………………………...50

1

Introduction

 Throughout the evolution of computing, research has aimed to create a

computational model that is capable of handling complex analytical tasks similar to what

humans do. One design that has been implemented in thousands of applications to solve

this problem is the Artificial Neural Network model. Neural Networks are composed of

model neurons, also known as nodes, that are connected by arcs. An arc is a connection

from one node to the next that may contain information including weights. Weights are

modified after each iteration in which new input values are presented. By repeatedly

modifying weights, the network can begin to accurately identify patterns in input. This

phase is known as training the network. Examples of the most commonly used input

forms include pixel values and audio information. An agent is a program or source that

utilizes the neural network. As neural network research continues to grow and the utility

of these computational models become more applicable in more environments,

advancements continue to be made in the effectiveness of their application. Although the

range of neural network applications is broad, the structures and designs they use share

similar characteristics.

 The structure of a neural network is split into three layers: input, hidden, and

output (Hinton 145). The input layer can be composed of one or more input nodes

depending on the type of input that the network is expecting to receive. The input layer is

also responsible for passing data into the hidden layer(s). The hidden layers handle the

majority of the processing of the input from the input layer. The data that these layers

receive may or may not be modified from the original input depending on the application

of the neural network. The processing defined in the hidden layers is usually kept private

2

and protected. This processing is done by the activation function. Also referred to as

input/output functions, activation functions are typically classified as linear, threshold, or

sigmoid (Hinton 145). The names refer to the type of processing that the network

performs on input data which may vary depending on the implementation. The results of

this function are then passed from the hidden layer to the output layer (Hinton 145). The

output layer is similar to the input layer in that it is tuned to represent the desired output

format (Hinton 146). The structure of a neural network allows for a versatile and

maintainable framework that is capable of continuous modification and change. By using

a process to continually provide input and subsequently alter the weights, the output can

change over time to be more accurate in comparison to known data sets (Krogh 195).

While the structure of most neural networks is similar, the way they process information

can vary depending on the application.

Some of the most common types of artificial neural networks include feedforward,

recurrent, and convolutional. A feedforward neural network is one of the simplest forms

of neural networks. This processing model linearly maps an input value to an output

value. This means that feedforward neural networks do not allow cycles between nodes

(Schmidhuber 4). This form is one of the most classic forms of neural networks and

typically is used with a threshold-based processing technique. A threshold is a value in a

function used for comparison with incoming input within the network (Schmidhuber 6).

The output from the node depends on whether the input exceeds the threshold value and,

if not, the node typically passes on a negative value such as a -1. However, not all

problems can be solved using fixed-length input and output: the primary drawback of

3

feedforward neural networks. In this case, a modified type of feedforward neural

network referred to as a recurrent neural network is used.

 Recurrent neural networks solve the fixed-length input problem by taking previous

output or hidden states as input (Mallya 4). This is useful because intermediate states can

store information on past input over several iterations (Mallya 11). Recurrent neural

networks are most often used with time-series data. These models can also create copies

of their cells over time, also known as unfolding, with different inputs at different time

steps (Mallya 11). Sometimes, the process of training a recurrent neural network with

many duplicated cells can be difficult. In these cases, the network is treated as a single

large feed-forward neural network. Recurrent neural networks are also different than

most basic feedforward neural networks in that classification algorithms can also be

integrated to use previous strings of input to affect output (Venkatachalam). Instead of

only using the input vector, recurrent neural networks can also create influence based on

a hidden vector that contains data on prior input/output (Venkatachalam). This is in

contrast to a basic neural network that is trained on a data set and is fixed in application.

This also allows for the possibility for output to change after strings of input have been

passed between two identical input values (Venkatachalam). Another commonly used

type of neural network is the convolutional neural network.

Convolutional neural networks are most commonly used in image classification

solutions and utilize a structure in which every node is fully connected. This refers to the

connections of nodes in one layer in the network to the nodes of the next layer. Nodes

within each layer have connections to every node within the next layer. An issue that is

common with this structure is that these networks commonly overfit data (Saha). This

4

means that analysis corresponds exactly or very closely to the data set. In this event, the

network may perform well or even exceptionally well on training data but is unable to

reliably produce accurate output on test data. In this case, a regularization process is

used. Each node in a convolutional neural network responds to information from a

specific region of the data set. This is known as a receptive field. A collection of

receptive fields represents the entire data set (Saha). Because an image is simply a matrix

of pixel values, image classification is a popular use for this computational model. Within

the structure of a convolutional neural network are convolution layers. In these layers,

the convolution operation is performed by the kernel (Saha). The kernel is a process that

selects a region in the image and after the convolution operation is completed on the

selected region, it shifts across by a degree that is known as a stride length (Saha). The

kernel continuously performs the operation over the entire data set. After the

convolutional layer is completed the network shifts to the pooling layer. This layer is

responsible for reducing the size of the resultant data from the convolutional layer and

increase efficiency (Saha). Once the data has been reduced or flattened, it becomes

manageable enough to be processed through a normal neural network for classification

(Saha).

While neural networks have the potential to be effective at classifying data, they must

first be conditioned on sample data sets in order to learn the patterns within them. This is

referred to as training. In the study of this process, there are two major types of learning:

supervised and unsupervised. Both types of training have benefits specific to the type of

neural network that is being trained. Two important terms for the study of these processes

5

is variance and bias within the data set. The variance refers to the difference between

individual items while the bias the error from false assumptions (Webb 100).

Supervised learning is the process of using filtered input data for the neural network

to process. This is most commonly done by selecting values individually in the data set.

For use of this process, the user must define the input as well as the desired output.

While the data set must also be representative of the target environment in which the

network will operate, the critical characteristic of supervised learning data is that it must

be labeled for outcome-comparison. An example of this in practice could be labeled

photos for use in training a convolutional network. The accuracy of the output of the

network is determined by comparing it to the predefined label attached to the input.

However, there are many issues with this approach. Some of these issues include the

amount of training data, the dimensionality of the input space, and bias/variance tradeoffs

(Mehryar et al. 1).

The issue of the amount of training data hinges on the type of training algorithm used.

If the classification function is too simple, then a learning algorithm with a high level of

bias and low variance in the data will only need a small data set. However, if the

classification is too complex, then the amount of training data required by the same

training algorithm will be far too large and take too much time to be considered effective

(Mehryar et al. 1). Another issue with this design is the dimensionality of the input

space. This is prevalent in models using many dimensions within the input data set for

problems such as image classification. In this example, there is a matrix for every pixel

value for all color values: red, blue, yellow. With many dimensions within the data set,

the training algorithm that will perform best is one with a high variance and low bias. A

6

third issue is the bias-variance tradeoff dilemma. In order to effectively train a neural

network, the algorithm must be appropriately chosen based on the variance of the data set

and the bias error of the algorithm (Gemen et al. 2). This is important because if the

algorithm has a low bias, then it must be able to appropriately bend to the variance within

the data set. This isn’t a problem for data sets that have a low variance. However, if the

data does have a high variance, then the network will classify the data differently each

time (Gemen et al. 2). Despite these concerns, supervised learning is highly effective

when a sample data set with a labeled desired outcome that is also closely representative

of the target environments data set is used. However, applications in which the goal is to

find patterns that were unknown before are better suited to an unsupervised learning

approach.

Unsupervised learning is the process of training a neural network on data that is not

labeled. This process is used to identify patterns in data that were not made apparent

before. This is used to find an underlying structure within the data set and can be used

for accurate data set collection for supervised learning systems. However, because there

is no way to validate the output of a neural network trained with unlabeled data, there is

no feasible way to determine the network’s accuracy. There are four primary uses for

unsupervised learning: clustering, anomaly detection, association mining, and latent

variable models. Clustering is used to divide the data set into groups that share

characteristics (McGregor 15). There are two types of clusters known as hard and soft

clusters (McGregor 15). A hard cluster is a cluster whose contents belong to one of many

mutually exclusive classifications (McGregor 15). Soft clusters contain data points that

belong to multiple different groups (McGregor 15). Anomaly detection is an application

7

of unsupervised models that determine outliers in the dataset. In this model, the data set

is considered normal and then any values that lie outside of the normal pattern are labeled

(Eskin et. al. 3). This has an application in error detection such as fraud, user error, and

others (Eskin et. al. 3). Associating mining is used to identify items in a data set that

occur together. This is similar to clustering, but instead of putting members into groups,

it identifies groups that are natively in the data set. Latent variable models are commonly

used to reduce the number of features in the data set. Unsupervised learning is similar to

supervised learning models in that they recognize patterns, however, the application of

unsupervised models is more advantageous in analytical studies of data sets. While not

able to determine the accuracy of output, these models are capable of efficiently

classifying groups within the data when applied properly. There are many forms of

conditioning and many aspects of training to produce a network that provides accurate

output.

A common and effective form of training in neural network research is known as

reinforcement learning. Reinforcement learning is a process of machine learning based

on the prospect of maximizing the reward for correct and/or optimal decisions of the

neural network (Doya, Kenji 30). Reinforcement learning, like most influences on neural

network design, is similar to the way that the human brain learns effectively.

Reinforcement learning in the application of neural networks can be integrated to work

with many popular learning algorithms. There are two primary forms of reinforcement

learning that pertain to machine learning and neural networks in particular: positive and

negative reinforcement.

8

Positive reinforcement learning engages in rewarding the network when the output

from a given data set is similar or the same as the desired output (Doya, Kenji 30). The

more similar that output during the training process is to the desired output for the given

data value, the more frequently that occurrences similar to the previous occurrence will

be applied. This means that the more correct the output is the more likely that future

input of similar data will also be correct.

Negative reinforcement learning engages in rewarding the network when negative

conditions are avoided/prevented. This is different from positive reinforcement learning

because the network needs to be able to recognize that it avoided an error. This means

that when incorrect output is avoided that future input with similar data will also be

avoided (Doya, Kenji 30).

Both forms of reinforcement learning can be more or less effective than its

counterpart based on the form of input, application, and other factors. However, each is

capable of effectively training each network given that the data set presented as input is

appropriate for the type of reinforcement learning applied. Also, the primary training

algorithm used with this style of learning must be effective with the given data set to

avoid hindering the effectivity of the learning process.

Neural networks have countless applications in various environments. They can be

used to identify the contents of an image, process human language, and identify patterns

in datasets that are too large for a human to effectively analyze. More recently in neural

network research, however, neural network applications have become more advanced and

broader in application. These new applications can be seen in examples such as military

planning frameworks, artificial intelligence in virtual services, and in the research of

9

discovering new strategies for games that are thousands of years old. This research

shows the promise of neural networks in complex environments. This survey will discuss

five research projects in which neural networks have been used to demonstrate the

capability of this computational model in planning architecture and development.

10

Section 1: Work Summary

AlphaGo and AlphaGo Zero

Introduction

 In March of 2016, Google’s DeepMind research group demonstrated the power of

deep neural networks and the capability that they have to solve complex strategic

problems by defeating 18-time world champion Go player Lee Se-dol with their artificial

intelligence system AlphaGo (Granter et al. 619). This is not the first time the world has

seen an artificial intelligence system that has bested champion board game players,

however. In 1997, IBM produced a chess-playing AI named Deep Blue that beat world

chess champion Garry Kasparov (Granter et al. 619). However, AlphaGo is unique in

comparison to Deep Blue in that the game that it has been trained to play is known as the

most complex board game in the world. Go itself is over 2000 years old with a very

simple set of rules. However, the environment of the game is capable of 10^360 different

configurations (Granter et al. 619). This immense level of complexity is what sets

AlphaGo apart from other artificial intelligence systems and is the reason AlphaGo

exhibits a newly found problem-solving potential of deep neural networks.

Overview

 The rules of Go are relatively simple yet create a complex and large number of

combinations of moves. The board is composed of a 19 by 19 grid in which two

competitors alternate placing black and white stones, respectively. Once a stone is placed

on the board it is no longer allowed to move. The goal of the game is to use the stones to

occupy as much of the grid as possible. A player may form a group, a collection of

11

adjacent cells, around the opponent’s stones to capture them. If this occurs, the whole

group is removed from the board. While this rule set is simple, it is difficult to

implement a computerized system to choose moves. This is because it is difficult to

determine which player is winning. While one player may occupy more of the board, the

other player may be at a positioning advantage that will prove to be successful later in the

game. Because there is no adequate method of identifying who is winning in the game,

traditional reward factor-based machine learning techniques prove inadequate. This is

one of the challenges that proved most difficult to overcome during the conceptualization

of AlphaGo.

 Most artificial intelligence applications designed to tackle problems similar to that

of AlphaGo, like Deep Blue, are designed using specific sets of protocols that define the

training process. For example, Deep Blue approached the game of chess using a, as Dr.

Scott Granter describes, “brute force algorithm” (Granter et al. 620). Due to the

complexity of Go, the design of AlphaGo followed a different play-style. This was also

because the research team at DeepMind wanted to create a system that would later be

implemented in broader ranges of use outside of Go. Many researchers have suggested

that the AlphaGo framework could continue to be applied in medical research and

diagnosis (Granter et al. 620).

 AlphaGo utilizes a deep neural network structure that is different than other

similar systems. The structure of the AlphaGo system is referred to as a Parallel

Intelligence System that uses separate software-defined systems (SDS) (Wang et al. 116).

An SDS can refer to deep neural networks or other machine learning systems. The use of

SDS in the case of AlphaGo is that simulated environments can be utilized to perform

12

actions of the SDS against itself (Wang et al. 116). This was utilized in the design of

AlphaGo for one primary philosophy. This philosophy focuses on the fact that using

human level play to train a deep neural network is highly effective, however, the level of

accuracy of that network can only escalate to the level of the human examples it is given.

Using an SDS within a Parallel Intelligence System, the neural network is able to train on

input from a copy of itself within a simulated environment (Wang et al. 117). In this

method, the system is able to experience settings in which typical human-based

environments do not typically form. This is critical within Go because of the extent of

complexity within the game. AlphaGo performed strategies that had never been

experienced before during its matches with Lee Se-dol (Silver et al). The strategic

examples presented by AlphaGo have changed the way that the game is typically played

– a traditional play style that has been present for thousands of years. Dr. Scott Granter

describes this with, “It makes moves that no human, including the team that made it,

understands,” and continues with “AlphaGo is the creation of humans, but the way it

plays is not” (Granter et al. 619). The strength of AlphaGo, in this aspect, lies within its

parallel design.

 A parallel design, in this sense, is effective because of the difference between the

representation of the physical system and an artificial system (Wang et al. 118). In the

setting of AlphaGO, this describes the setting of the game environment and the virtual

system within the network. The parallel design of AlphaGo is able to be used with three

modes of operation: learning and training, experiment and evaluation, and control and

management (Wang et al. 118). During the learning and training of the system, the two

environments, the physical system, and the artificial system are different, and the goal of

13

this stage is to bring the virtual environment closer in relation to the physical

environment (Wang et al. 118). Because this is in the early stages of the process, not

much action is required to generate large differences between the two systems. The

experiment and evaluation stage describe the process of generating, or simulating,

environments and conducting computational experiments within the system. During this

process, the artificial and physical environments communicate with each other as

solutions are generated (Wang et al. 118). In the third stage, control and management,

the artificial and physical systems continue to communicate in real-time while control

and management are attempted over the entire system (Wang et al. 118). AlphaGo is

not famous because of the implementations of new methods or techniques. Instead, it

demonstrates the potential of current concepts within the artificial intelligence research

community.

Playing Atari with Deep Reinforcement Learning

Introduction

The DeepMind research programs commonly aim to improve the ease-of-use of

reinforcement learning (RL) in applications of neural network architectures.

Demonstrating the possibility of using neural networks in processing digital visual data

effectively while creating a multi-purpose strategy game player was the focus of

DeepMind’s Atari project. Primarily, this project was aimed to create a convolutional

neural network that is successfully able to learn control agents through high-dimensional

sensory inputs such as vision and speech. While the model to accomplish this goal is

built on a convolutional model, its inspiration comes from breakthroughs in other

architectural techniques such as multilayer perceptrons, restricted Boltzmann machines,

14

and recurrent neural networks, each of which have demonstrated their capabilities in

deducing control agents through both supervised and unsupervised learning (Mnith,

Volodymyr, et al. 5).

Overview

 The largest challenge of this project was in the unsupervised reinforcement

learning approach. Reinforcement learning is a computational framework for an entity to

learn by receiving rewards (Doya, Kenji 30). The reward reinforces the action in which it

was caused. In the form of a neural network, rewards ultimately determine changes in

weights. However, these rewards are only received on occasion and are unreliable in

timing. This means that training could take exponentially long periods of time (Mnith,

Volodymyr, et al. 5). Another challenge that this approach encountered was that in

deducing control agents, different states could and often would be very closely related.

This relation would need to be considered during processing in order to ensure accurate

results (Mnith, Volodymyr, et al. 5). In order to overcome these challenges, the

DeepMind research team decided to apply a convolutional neural network model to

process video data throughout changing and complex reinforcement learning

environments.

Convolutional neural networks are an alternative type of deep neural network that

is especially and most commonly used in image and speech recognition (Sainath, Tara, et

al 1). In convolutional neural networks, each hidden value is computed by multiplying

small local inputs against the weight sets. Those weights are then shared across the entire

input space (Sainath, Tara, et al. 1). After hidden units are computed, another layer, the

max-pooling layer, helps remove possible discrepancies due to variations in the same

15

input (Sainath, Tara, et al. 1). These include different speaking styles or variations in

video quality. A convolutional neural network is made up of convolutional layers where

each node only processes data for a receptive field, which refers to the space in which

input will modify the contents of that node (Sainath, Tara, et al. 1).

This network was trained with a variant of the Q-learning algorithm. Q learning

is, in Dr. Christopher Watkin’s words, “a form of model-free reinforcement learning”

(Watkins, Dayan 55). The agent of this project is used within an Atari emulator for

experimentation with different simulated digital environments. The process in which the

agent acts is broken into time-steps. However, it not feasible to process efficiently and

accurately one frame per time step. To overcome this issue, consecutive observations are

separated and processed at the same time (Watkins, Dayan 56). There is a standard

assumption that rewards are discounted over time (Watkins, Dayan 56). The future

discounted return time is calculated with respect to the time step in which the game ends.

The games that this network was trained to be implemented with offer several

different sets of rules, controls, and reward systems. Because the network processes

input from an array of pixels, training the network is the same independent of the game

platform. This modularity allows for the potential of implementing this architecture in

other environments as well. However, encoding rules for each game is different per

application. Nonetheless, the potential that this technique demonstrates through its

success in the Atari platform pushes the possibility of the future of using convolutional

models in reinforcement learning projects.

16

NeuroChess

Introduction

The use of artificial intelligence to play chess has been a computing research topic

for decades; however, typical techniques have proven ineffective and inefficient due to

the variability in the game environment. These techniques mostly include generators that

evaluate every move on the board possible for each decision. While this has proven

effective in small instances, processing and maintenance require copious amounts of time

and resources. In order to mitigate these fallbacks, fast evaluation functions are used.

However, these functions are typically made by hand and are difficult to maintain.

Overall, these classical techniques are highly inefficient and ineffective. NueroChess is a

research program that challenges typical approaches by using an inductive deep neural

network learning process, temporal differencing, and a variant of explanation-based

learning (Thrun, 1069).

Overview

The beginning of this process starts at the end of the game of chess. The goal of

NeuroChess is to learn from the outcome of chess games. The NeuroChess architecture

is built around the concept of temporal difference learning or TD learning. In author

Sebastian Thrun’s words, “Temporal difference learning comprises a family of

approaches to prediction in cases where the event to be predicted may be delayed by an

unknown number of time steps” (Thrun, Sebastian 1070). This approach is ideal for

implementation in chess because of the variability in the length of potential strategies.

The use of TD in NeuroChess is to find a function that evaluates the current chessboard

17

on the likelihood that it is winning. TD finds this function by denoting each game board,

being each setting between moves, into training patterns. This evaluation function is

denoted as V (Tesauro 58). V is evaluated by a series of three rules depending on

whether the current setting is winning, losing, or a draw (Tesauro 58). The evaluation

function is constructed recursively over the course of evaluations and is controlled by a

decay constant γ so that the network favors quick success over lengthy or drawn-out

conclusions (Thrun, Sebastian 1070).

Inductive learning techniques such as back-propagation suffer from immense

training times in settings like chess (Thrun, Sebastian 1071). This is because some events

have several different components that determine whether or not a specific action is good

or bad, and aspects like the location of other components need to be considered as well.

Explanation-based learning, however, generalizes more accurately from less training

information and relies on the availability of domain knowledge instead (Thrun, Sebastian

1071). This way the program can consider the rules and format of the game to infer

whether decisions are good or bad. This is an immense advantage in the case

NeuroChess where the environment is completely reliant on these factors.

Chess, like many board games, is played by two players who engage in each

other’s game pieces in order to eventually defeat their opponent by trapping their king in

a state known as checkmate. However, this game model features many different varying

components. These include different game pieces and special cases where moves may be

made depending on the setting. Each different type of piece has different sets of rules on

how that piece may move. Additionally, each piece has a large tree of potential moves

and paths. In order to develop an artificial intelligence system that can perform at an

18

expert level, the system must be able to consider every possible move that is available.

As stated previously, however, the immense amount of combinations makes evaluating

each move non-feasible. The NeuroChess project implemented several different

techniques to overcome these issues including parallel architecture, a knowledge base,

and several optimization operations. The success of this project demonstrates the ability

for current machine learning techniques to handle complex learning tasks that have

otherwise been seen as overly difficult.

OpenAI Five

Introduction

 OpenAI Five is a team of five independent artificial neural networks that have

been designed to handle continuously changing environments by using the environment

within the strategy game Dota 2. OpenAI Five is the second generation in research by

OpenAI after its resounding success in a one-versus-one exhibition setting in the 2017

Dota 2 championship. The primary goal of OpenAI Five is to further the research into

the OpenAI platform OpenAI Gym. OpenAI Five uses a new training system developed

by the OpenAI team. This learning algorithm is known as Proximal Policy Optimization

and aims to make training artificial neural networks simpler, more effective, safer, and

more efficient than traditional training processes.

Overview

 The decision to use the Dota 2 game environment in this research project was to

exhibit the potential of deep neural network’s capabilities to perform in continuously

changing environments. Dota 2 is an online game where thousands of variables are

19

constantly changing the game environment. OpenAI aimed to use this in reference to the

future of the application of the system in real-world environments. OpenAI Five is a

team of five independent neural networks that do not communicate with each other

directly (Pachoki 1). Instead, the research team decided that it would be more effective

to only have each agent-driven purely by incentive. While this seems counterintuitive at

first, this system provides for much longer applicability and has proven to be effective in

team-based environments, nonetheless. Because there are thousands of changing

variables in the environment, the OpenAI team had to find a way to systemize and

quantify each aspect of the game. This was implemented successfully as a list of 20,000

values that represent the aspects of the game that humans are able to observe; this is to

ensure that the networks are not receiving any hidden information to give them an

advantage (Pachoki 1). Using the information stored in this list, the system can be

trained using the general-purpose training system Rapid.

 Rapid is the reinforcement learning system that OpenAI has developed to run on

any Gym environment. Gym is a framework for reinforcement learning for training a

neural network (Pachoki 1). An agent of the Gym framework learns on a system in

which an agent’s experience is divided into episodes (Brockman, Greg et al. 1). The

initial state of an agent was randomly sampled from a distribution and the interactions in

the environment continue until the agent reaches a terminal state (Brockman, Greg et al.

1). Each episode is divided into timesteps in order to keep simulations linear.

Interactions are generated when the agent makes a decision. With each decision, the

agent receives an observation and a reward (Brockman, Greg et al. 1). The goal of

reinforcement learning is to maximize the reward an agent receives for each decision.

20

The effectivity of the agent is determined by the cumulative reward by each agent

(Brockman, Greg et al. 1). Thus, Gym’s approach to reinforcement is heavily reliant on

proprietary mathematical theory. This process generates a gradient on the batch which is

averaged with the gradients generated from other batches (Pachoki 1). After each

iteration, the agent syncs with the other workers. What sets Rapid apart, however, is that

the Gym framework focuses on the abstraction of the environment as opposed to the

agent (Brockman, Greg et al. 2).

 OpenAI Five uses the advantages of Gym and Rapid to effectively and efficiently

generate agents that are able to challenge professional players in Dota 2 to exhibit the

advantages and the future of using reinforcement learning in complex environments. As

opposed to other neural network projects such as AlphaGO, the work by OpenAI focuses

on the environment rather than the agent. Because games like Chess and Go have very

simple environments with very complex forms of strategies, their frameworks are limited

in environments that are rapidly changing. However, the agents in games like Go have to

consider multiple game pieces at once while OpenAI five has separate agents for each

artificial player. The amount variability in the Dota environment comes from the

continuous list of factors including, but not limited to, other players, non-player

characters, character actions, enemy actions, item building, and obstacles.

 OpenAI uses Dota 2 as the environment for its research projects because of the

game’s complexity and popularity. Dota 2 has been an extremely popular multiplayer

game for several years and hosts annual competitions that draw millions of viewers. To

demonstrate the power of the Dota 2 neural network project, OpenAI developed a

timeline that displays the progress that the project has made. The project began on

21

November 5, 2016, and in January agents successfully defeated a scripted game against

bots. After this first proof of concept was a success, the project continued to grow all the

way until on April 13, 2019, OpenAI Five becomes the first AI to beat a team of world

champions in an esports game at national finals. As OpenAI Five continues to grow, it

continues to set new records on the potential that neural networks have in handling

exceedingly complex learning and planning tasks.

Playing Checkers Without Human Expertise

Introduction

Checkers is a classic board game played on an eight-by-eight board. Each player

controls 12 game pieces and makes one move per turn by choosing to move any of their

remaining pieces in diagonals by one space. However, if a player’s next move is

obstructed by one of the other player’s pieces, that player may “jump” over the opposing

piece and remove it from the game. If more than one possible opportunity to jump is

available, the player must decide which one to move. The goal of this project was to

exhibit the potential for AI to learn without the input of human expertise. This model,

shared by other projects like OpenAI Five, aims to challenge traditional training practices

that supply human input as a learning basis.

Overview

 In the design of this project, there were many restrictions that had to be followed.

This is because the platform that the final agents would be performing on was an online

checker tournament application. Therefore, limitations, like time available for decision

making, were set to lie within the rules of the online platform. Also, within this platform

22

draws were permitted. This was decided if both players mutually agreed to end the game.

With restrictions set, the design of the agents was considered.

 Each game field was represented by a vector with a length of 32 (Chellapilla et al.

4). This represented the total possible moves for the game piece’s potential moves.

Because there is no limit to the number of moves that may be made during the game and

there was no time limit to the game, the value of each move made by the agent was

determined by the quality of the resulting positions (Chellapilla et al. 4). This served as

an effective method to ensure that throughout the game the intention of each play was to

be able to make better moves in the future. Each position was evaluated on quality based

on several different factors including safety, jumping potential, and the number of moves

required to reach the back of the board. The structure of the network followed a standard

layout with only one output node that represented the move decision.

 Compared to other board games like chess and go, checkers is much less complex

in terms of variability between boards. This means that many typical brute force

approaches might be an effective method to tackle this learning task. However, one goal

of this project was to determine if using the extra computational resources to use a fully

evolved network over networks that rely solely on the piece differential was valuable. In

order to test this, two control experiments were performed. The first experiment used a

fully evolved network playing a total of fourteen games, two games were played to

completion with the network winning both. In the other twelve games, the network held

a significant advantage in ten games while two of the games were held at a disadvantage.

The second experiment consisted of the same limitations as the first experiment, but a

limit of two minutes was implemented for search time. In this case, the network won two

23

of the fourteen games, the same as the first experiment, but only held an advantage for six

of the remaining twelve games. These two experiments display the value of using the

extra computational resources to implement a fully evolved network in the setting of

checkers (Chellapilla et al. 6).

 The human opponents were not made aware that they were playing against a

computer to keep play bias at a minimum. A total of 165 games were played against

human opponents. Each move was modified to take anywhere between 0 and 60 seconds

to be executed. Opponents were chosen based on availability with diverse ranges of skill

levels. Each game was rated based on a score approaching 3000. The higher the score

typically meant the game lasted longer and was more complex than average games. In a

distribution of scores, it is apparent that as the score approaches 3000 the win/loss ratio

becomes smaller. This is opposed to the large win/loss ratio from games with lower

scores. This is demonstrated in figure 1.

Fig. 1

Chellapilla, Kumar, and David B. Fogel. "Evolving an expert checkers playing program

without using human expertise." IEEE Transactions on Evolutionary

Computation 5.4 (2001): 422-428.

24

Section 2: Analysis

AlphaGo/AlphaGo Zero

Standard Go! Board by Yellow Mountain Imports

Efficiency

The reinforcement learning algorithm named the “lookahead search” is used inside

the training loop to increase precision, speed, and stability during training. The

lookahead search is a combinatorial search component that identifies the limit in which

the search explores (Wang, et al. 115). This is critical in AlphaGo because the search

tree that is processed each time is extremely large. The use of a traditional search

algorithm without the lookahead component could hinder the utility of the network

because most traditional searches would consume the majority of available memory. The

neural network is represented by a function and is optimized on Google Cloud using

TensorFlow. The program is aided with the help of 64 dedicated graphics processing

25

units as well as a collection of 19 CPU parameter servers. The parameters within the

neural network are optimized by stochastic gradient descent and the learning rate is

annealed (Wang, et al. 116).

Stochastic gradient descent is a powerful, yet simple training algorithm based on the

gradient descent learning algorithm. The gradient descent algorithm focuses on

minimizing empirical risk. Empirical risk measures the training set performance while

the expected risk measures the expected performance on future samples (Bottou 2). Each

iteration of training using gradient descent updates weight values using the gradient of

the empirical risk (Bottou 2). Stochastic gradient descent drastically simplifies the

gradient descent model by removing the need to compute the empirical risk exactly

(Wang, et al. 118). Instead, each iteration makes a general estimation using a single

randomly picked sample. However, it is important to note that because each updated

weight value is calculated using an estimate that, in many instances, significant noise can

change the behavior resulting in values that aren’t as accurate as they would have been

using the classic gradient descent model (Bottou 2). This model is extremely powerful

because the stochastic algorithm can be deployed whenever needed in whatever

application. This is because it does not need to remember which examples it has seen

before and thus optimizes the expected risk (Bottou 2). This is highly effective in the

environment of Go! because of the extremely large number of possibilities in the game

environment.

Input

AlphaGo and AlphaGo Zero are both different in comparison to other neural network

projects with similar goals in the simplicity of the input types. Because the setting of Go!

26

is simply black and white game pieces on a checkerboard, the development team behind

the AlphaGo projects decided the most efficient and effective method of organizing input

would be by using a simple vector with values representing the black and white game

pieces. This also contains the history data of the game environment for use in calculating

values such as the probability of moves.

Structure

The AlphaGo projects were designed based on deep rule-based networks that were

implemented for decision and evaluation using several layers that control different stages

of the output generation process. The four layers of the AlphaGo DNN networks are

classification, association, deduction, and generation with given input vector and

subsequent output vector. These layers are vastly different from each other and can be

utilized independently with separate networks. This structure allows for greater

flexibility and allows for individual implementation based on the user’s preferences.

This means that all four layers are not restricted to one type of network such as

convolutional or recursive (Wang, et al. 116). This can be visualized by figure 2.

Fig 2.

Source: Wang, Fei-Yue, et al. "Where does AlphaGo go: From church-turing thesis to

AlphaGo thesis and beyond." IEEE/CAA Journal of Automatica Sinica 3.2 (2016): 113-

120.

27

Training

The single neural network used in the AlphaGo projects is trained with a unique

training algorithm. For each active position, a Monte Carlo Tree Search (MCTS) is

executed. The Monte Carlo Tree Search was implemented in the AlphaGo projects

because of its capability to evaluate the quality of different members of the tree which, in

the case of the AlphaGo projects, are the possible moves. In this search tree, entire

games are completed starting with random choices for moves. Once a game is

completed, the nodes that represent the tree’s members are weighted, and, typically, the

nodes with larger weights represent more promising options. The MCTS is separated

into four successive processes: selection, expansion, simulation, and finally

backpropagation (Enzenberger et al. 259). During the selection phase, the tree is

traversed starting with the root of the tree until a leaf node is reached. However, a leaf

node can only be reached once due to the actions in the expansion phase (Enzenberger et

al. 259). During the expansion phase, children are generated for the leaf node chosen

during the selection phase. One of the children created during this stage, labeled as X, is

selected and used during the simulation phase. During the simulation phase, an entire

playout starting at node X until the game is completed. Finally, the backpropagation

phase is completed in which the weights of the nodes traversed from the root to node X

are updated based on the performance of the simulation phase. The algorithm used in this

phase is common amongst many neural network training algorithms seen in other

projects.

28

Over the three days of training of the AlphaGo Zero program 4.9 million games were

completed with 1600 simulation cycles for each MCTS that was performed.

Approximately, it required roughly 0.4 seconds of processing for each move.

Playing Atari with Deep Reinforcement Learning

Efficiency

DeepMind’s research team was presented with several challenges while designing the

system to control and maintain an efficient agent for playing digital Atari games.

Arguably the most troublesome component in their project regarding the efficiency of the

neural network was processing the visual data from the game environment and formatting

it to be recognized by the neural network. The raw components of visual input consist of

a 210 x 160-pixel array containing color data from a pallet of 128 values. Such a large

set of values would take far too much time to be effective. In order to create a data set

that is much more consumable by the processing of the neural network, a series of

preprocessing techniques was implemented to optimize the input vector (Mnith,

Volodymyr, et al. 5). First in this process was a system of converting each frame into a

grayscale. Second, the images were sampled down to a 110x84 pixel array. Finally, the

new array is cropped into an 84x84 pixel rough representation of the play screen (Mnith,

Volodymyr, et al. 5). This process shrinks the amount of data being collected each

frame significantly and is enough to produce an input vector that is much more realistic

to be processed by the main processing function. This series of optimizations is unique to

digital format applications. The final cropping to an 84 x 84 image is required by the

GPU implementations of convolutions, which expects square input dimensions (Mnith,

Volodymyr, et al. 5). Also, another key optimization made by DeepMind is that only

29

the final four frames of each designated time step are recorded (Mnith, Volodymyr, et al.

5). This is important because not all frames are crucial for input.

Input

The input for this neural network consists of seven different games made for the

original Atari console. Each game is processed by the preprocessing function described

above. The games used in this research project include Beam Rider, Breakout, Enduro,

Pong, Q*bert, Seaquest, and Space Invaders. Each game environment is vastly different

from the others in order to demonstrate the flexibility of this particular neural network

framework without needing game-specific information. However, each different

application rewards success differently. This was taken into account to ensure that

training would be consistent independent of the game with which it was training. The

primary reward system used by the network used the reward systems for each game. For

example, the most well-known game included in the game set, Pong’s reward system

uses the number of times that the player scored against the opponent and whether the

game resulted in a victory for the player. However, in games like space-invaders, this

system does not translate over directly. For example, the definition of scoring is

destroying one of the many enemy ships. Because there are thousands of potential points

in space invaders, the reward system must be adapted proportionally to match the

availability of potential points for the other games.

Structure

The Atari neural network model faced an issue with the way the activation function

parameterized the input vector. The design of this neural network model was considered

30

by two different approaches in response to this issue. The first consideration used both

the input vector as well as the history of the frame data as input. However, this

architecture requires a full second pass to compute the expected output for each input

pass. Considering the necessity of efficiency of this environment model, this approach

was not appropriate for Atari game applications. The second consideration uses only the

input vector as input and a separate output unit for each action or pass. Each output

corresponds directly to the expected value of each input pass. This structure allows for

only a single pass through the activation function for each input set providing for more

efficient and quick processing time – an important aspect for many of the fast-passed

target game environments (Mnith, Volodymyr, et al. 6).

The neural network design for processing most pixel data representations primarily

uses a convolutional model. This network is no different and uses several layers with

different convolutional operations. The layer structure of the Atari neural network

consists of one input layer, three individual hidden layers, and a single output layer

(Mnith, Volodymyr, et al. 6). The input layer takes the 84 x 84-pixel input vector and

passes it through to the first hidden layer. The first hidden layer convolves 16 8 x 8

filters (Mnith, Volodymyr, et al. 6) This convolution includes a stride of four. The

second hidden layer differs with convolutions of 32 4 x 4 filters and with a stride of only

two. Both hidden layers one and two use a rectifier nonlinearity, a mathematical

operation that reduces the prominence of noise, after each convolution cycle (Mnith,

Volodymyr, et al. 6). Finally, the third hidden layer is fully connected and consists of 256

rectifier units (Mnith, Volodymyr, et al. 6). Fully connected to the third hidden layer, the

output layer that produces a single action. The structure of this neural network model

31

focuses primarily on efficiently processing the input vector and condenses into a single

output that represents one action.

Training

The Atari neural network system focuses on deep reinforcement learning techniques

within the training process using a stochastic descent gradient. In most supervised

learning studies, tracking the success of the network is fairly straight-forward and easily

analyzed. However, because the reward system for the game environments targeted by

the Atari model needs to be adjusted before the end of processing, issues arise in

deducing the success of a training set because of inconsistencies in the reward data.

These inconsistencies can be confusing and depict less correlation between run time and

success rates. This can cause longer training times and can create less consistent results

in the final application. However, because this model is trained using deep reinforcement

learning, a more accurate statistical representation of training success is in the estimated

value plotted against training run time. This representation demonstrates less noise and

more appropriate distributions.

NeuroChess

Efficiency

Similar to other neural network applications that feature game board environments,

NeuroChess’s performance experiences issues with the more commonly used training

algorithms such as back-propagation. In order to maintain effective training times and

still produce accurate results, NeuroChess uses an explanation-based learning technique.

Explanation based learning is different from most learning algorithms because it uses a

32

set of knowledge of the domain of the environment in evaluations (Thrun, Sebastian

1070). This technique is not typically used for neural network applications, however, due

to the complexity of the Chess environment, it serves well to reduce the time in the

evaluation steps. The format of this knowledge is a set of rules for game pieces. Because

the network does not have to evaluate every set of moves during each time step, the

network can train more accurately with much less time. However, the same database can

be used to train other systems increasing the modularity of the project.

The work of the primary neural network is divided between a series of workstations

(Thrun, Sebastian 1073). There is one workstation that acts as a primary server that

contains the most recent weight values and diagnostic information (Thrun, Sebastian

1073). Each subsequent workstation remotely accesses the primary server to read weight

values in between iterations as well as send its current weight values. This system

increases training time to a much more manageable level.

Input

The chess pieces are represented by individual identification numbers and are stored

into an input vector. Empty spaces are represented by their identification numbers. The

input vector is sent to the first hidden layer. Unlike most neural networks with only a

single network structure, the input is also sent to the secondary network. The secondary

network handles the input by using a series of processing functions to determine likely

input values in the next two moves.

33

Structure

NeuroChess uses a set of two parallel neural networks to host the processing of the

game environment (Thrun, Sebastian 1072). The first network takes the input vector and

passes it into a series of hidden layers. The evaluation function considers the expected

environment produced by the secondary network along with the input vector. The output

of this layer is the final move decision for the current time step. The secondary network

is constructed with 165 hidden layers that produce a set of expected values that represent

the expected environment two moves ahead of the current environment (Thrun, Sebastian

1072). This network is trained prior to the training of the primary network using known

chess games and is used to create a new input vector. The new input vector is passed into

a series of processing layers that are very similar to the primary evaluation system.

Finally, the secondary network maps the expected game piece locations using a large

database of grand-master chess games (Thrun, Sebastian 1072). This way, the secondary

network is able to determine differences between expert-level chess play and implement

the same strategies in the training of the primary network. Together, both neural network

models work together to determine the best move regarding several different factors

including but not limited to the likelihood of reaching checkmate and advantage between

each piece. This structure is visualized in figure 3.

34

Fig. 3 : Representation of parallel network structure:

Source: Thrun, Sebastian. "Learning to play the game of chess." Advances in neural

information processing systems. 1995.

Training

The NeuroChess project employs the application of a process known as temporal-

difference learning – a collection of processes deployed in applications using delayed

prediction (Thrun, Sebastian 1070). Because NeuroChess uses the parallel network to

find an expected input vector for two game-moves ahead, this approach is used

effectively in the evaluation functions to rank the chessboard input vector on the

likelihood to win. The application of this technique is used to convert complete

chessboard environments into one of three values: 1, 0, -1 where 1 represents a board that

is likely to result in a win, a 0 represents a board that is likely to result in a draw, and -1

represents a board that is likely to result in a loss (Thrun, Sebastian 1070). 0 rankings are

more common to appear in later game scenarios rather than early game settings. The

35

algorithm handling this ranking procedure is implemented using recursion to pass

through each intermediate board between stages (Thrun, Sebastian 1070). The evaluation

function is also used at the end of the game to generate an overall rating of the game’s

outcome. However, the application of temporal-difference learning makes this procedure

different than most standard outcome rating algorithms because the evaluation function is

trained using the intermediate results generated by the parallel network for moves two

steps in advance.

There were three major concerns that the NeuroChess team encountered throughout

the development of this project concerning the training and application of the network.

The first was the issue of sampling. Because most individual snapshots of board settings

are insignificant among thousands of moves, a special system to assist the network in

determining which move has the highest likelihood of leading to a victory is needed

(Thrun, Sebastian 1073). To remedy this, earlier stages of training rely more heavily on

the grand-master game database until the system is more capable of making more moves

completely on its own. The second concern is quiescence, a criterion used to evaluate the

depth of a search. This applies to the evaluation of a board setting and determining the

goodness of that board. The primary issue here is that not all boards are equally complex

and, while training, the evaluation of a board of higher complexity will not produce an

adequate assessment (Thrun, Sebastian 1073). To fix this, the evaluation is based on a

simple measure of threat from opponent pieces. The depth of the search for potential

moves is based on this quiescence. The third major issue is discounting. Discounting is a

process of adjusting the sums of payoffs so that, in cases where the pay-off values are

continuously compounding, the future rewards will not become absurdly large in

36

comparison to early rewards (Thrun, Sebastian 1073). Initially, the research team did not

think that a discount would be needed for chess, however, they discovered that due to a

high level of random anomalies in the evaluation functions, that the network completely

failed without a discount. With appropriate adjustments to these issues, the neural

network managed to perform exceedingly well against high-level opponents.

OpenAI Five

Efficiency

The complexity of the OpenAI Five project is regarded as one of the most intensive

neural network research studies to date. Because the setting of the OpenAI Five agents is

within the Dota 2 environment, there are thousands of factors influencing the

environment every game tick. Typical approaches towards categorizing environmental

factors are virtually useless in the scenario of Dota 2. Dota 2 is a multiplayer online

game that focuses on controlling a predefined map. The game sets two teams of five

37

players each against each other to continuously fight to gain control of the enemy team’s

home base. Each player selects a character to control before the game begins, and each

character has its own set of actions that is different than the other characters. An action is

an ability that the player can use to attack enemy players, defend themselves or

teammates, or traverse the map. Because of the extremely large sets of characters,

actions, and items that change the effect of the character’s actions, Dota 2 has immensely

complex environments that are vastly different between games. This also means that

search trees for each factor or option for each time step can be infinitely large.

Obviously, this has an immense impact on the performance of any application to handle

the environment because, from the perspective of the network, restrictions are virtually

non-existent. Putting this observation numerically, the environment of chess hosts an

average of 35 potential moves per turn while Go hosts an average of 350 potential moves

per turn (Pachoki 2). Dota 2, however, hosts an average of 1000 potential moves/actions

per game tick. Furthermore, the average length of a game of Dota 2 lasts much longer

than the average game of Chess or Go. Chess usually ends in less than 40 moves while

Go usually lasts around 150 moves (Pachoki 2). OpenAI Five pulls game data every four

game-ticks resulting in a game averaging 20,000 moves for each agent with an average of

80,000 ticks per game. Traditional approaches for training neural networks to efficiently

observe and process environmental data is not suited for an environment for which the

complexity that Dota 2 is renowned. In an attempt to approach the environmental

optimization issue, OpenAI Five uses a massively scaled implementation of Proximal

Policy Optimization.

38

Proximal Policy Optimization (PPO) is an approach to deep reinforcement learning

approximation functions using a focus on first-order optimizations. PPO has two primary

applications of policy optimization: policy gradient methods and trust-region methods

(Shulman 1). Policy gradient methods implement a combination of estimating a policy

gradient and then using it in a stochastic gradient ascent algorithm (Shulman 1).

Stochastic gradient ascent is a close alternative to gradient ascent, which is a weight

updating algorithm that uses the entire available data set for each update (Harrington 1).

However, with large data sets such as the environment of Dota 2, this is not an effective

approach. Instead, stochastic gradient ascent takes classifier data in batches as they are

available instead of taking all of it at once (Harrington 1). This makes handling the

immense amount of data easier by processing it in batches and updating the weights when

needed. This allows the process of updating classifiers to occur throughout the game

while minimizing the processing time of the evaluation functions.

One disadvantage that this concept has is that it is nearly impossible to draw

information on what gameplay is considered better by pulling data from a set of previous

known high-level games. Instead, OpenAI Five relies solely on training data from games

it plays against itself. While this results in extremely long training times, it has proven to

be the most effective method of implementing reinforcement learning approaches without

using datasets from previous games. The implementation of such a large concept

requires massive amounts of computational resources. OpenAI Five utilizes 128,000

preemptible CPU cores and 256 P100 Graphics processing units (Pachoki 2). The

networks take one observation every four game-ticks with a total of 1,048,576

observations per day (Pachoki 2). Additionally, the agents play an accelerated gameplay

39

system that performs the equivalent of 180 years of gameplay every day for each agent.

While the number of resources required to effectively implement OpenAI Five, it is

optimized to be as high performing and as efficient as possible within the limits of the

Dota 2 environment.

Input

The world of Dota 2 is full of variations and different concentrations of potential

actions throughout the symmetrical and lane-based map. OpenAI Five represents this

environment by using a list of 20,000 numerical values for each factor (Pachoki 2).

Additionally, because the game allows players, or in this case agents, to utilize a list of 8

different actions based on the character, OpenAI Five represents each action by its own

enumeration values. Among the environment, values are sampled ranging from fellow

teammates, nearby enemies, enemies’ actions, non-player characters, structure and

objects in the game, and affect areas of enemy attacks.

Structure

The structure of OpenAI Five consists of five separate networks that each contain

independent, single layer Long Short-Term Memory networks (LSTM) with each

containing 1024 units (Pachoki 2). An LSTM is a specially designed recurrent neural

network that is capable of learning long-term dependencies (Olah). Typical recurrent

neural network design involves keeping track of all past behaviors. This approach was

implemented because it remedies this issue while maintaining the effectivity of a

recurrent neural network structure. The core component of an LSTM is known as the cell

state. The cell state is a single pipeline that runs through each cell in the network with

40

very little linear interactions (Olah). This allows information to pass through the pipeline

virtually unchanged (Olah). The LSTM is able to remove or add information into the cell

state, however, this process is heavily regulated by a separate structure known as gates

(Olah). Each gate is constructed with a sigmoid neural network layer and hosts a

predefined operation to determine what information makes it into the cell state. Each

network extracts data from the current game state, using a bot API developed by Valve

corporation, which feeds into several input locations referred to as action heads (Olah).

Each head is computed individually and holds specific semantic meaning representing

possible actions – such as choosing an ability to use or a coordinate to move to in the

game environment. This structure allows for the ability to recognize missing information

or inconsistencies in the game environment very similar to that of an unsupervised

learning neural network structure. An example of this in practice was observed when

OpenAI Five was able to recognize when an area-of-effect attack was used by an enemy

player. This is when damage is applied to anything within a specific area. The

significance of this is that this attack style was not predefined in any way and the agent

was able to avoid or escape the attack with no outside intervention (Pachoki 4).

Training

Because OpenAI Five learns solely from self-play, the training process begins with a

sample of random values for weights. However, this poses a problem in which the

strategic planning of the network can fall into a system in which it gains an increased bias

towards strategies that it has performed in the past. To overcome this learning issue,

OpenAI Five uses eighty percent of its gameplay against itself and twenty percent against

playthroughs of its past selves (Pachoki 4). This overall process results in initially

41

hopeless agents wandering aimlessly around the map. However, over thousands of hours

of training, the agents begin to exhibit strategy planning. After several thousand hours of

gameplay, the five agents began to exhibit advanced level strategy making including

teammate swapping and resource farming to gain an advantage. However, once this

network was used against human opponents, it failed miserably due to the inconsistency

in loadout, health, speed, start level and several other variables (Pachoki 4). The network

was retrained by playing against opponents with randomly selected loadouts to fix the

issue in human play. This forced the network to explore various new strategies due to the

network not having an implicit expectation of these variables. It is also important to note

that these changes were applied only during the training and were not applied against

final play. After these adjustments were made and several more training hours had

completed, OpenAI Five began consistently beating human opponents. These training

adjustments allowed for great variability and flexibility in the final application against

varying skill leveled human opponents.

Because OpenAI Five utilizes deep reinforcement learning, one of the most important

factors in training and effective network is measuring reward. OpenAI Five uses a

collection of metrics that are defined by what human players use to evaluate how well

they are performing in the game such as net worth, kills, deaths, assists, last hits and

various other values (Pachoki 4). However, each agent has a hardcoded item and skill

builds (Pachoki 4). This was implemented to simplify the training procedure and save

time. The system that controls the reinforcement learning process is called Rapid. This

divides the training system into a collection of workers that each runs a copy of the game

with its own agent that collects experience and optimizer nodes. Optimizer nodes

42

perform independent synchronous gradient descent utilizing the system of GPUs for

faster processing times (Pachoki 5).

Playing Checkers without Human Expertise

Efficiency

The input format for the primary evaluation function is very lightweight

compared to many other neural network input vectors and is represented using a single

input vector of the game board. The simplicity of the input allows for fast processing

time while using very few computing resources. In addition to the simplicity of the input

vector’s format, the rules for Checkers is very simple and very limiting for individual

pieces. Because the vast majority of pieces are regular pieces that can only move in

forward diagonal movements, the number of potential moves for each piece could be

purely represented numerically (Chellapilla, and Fogel 4). Also, because each piece is

equivalent, with an exception for King pieces, the same evaluation could be used for each

piece. Each of these components together enabled the network to process each board

incredibly fast.

Input

Using a representation of the eight-by-eight board, preparing the game setting to be of

the appropriate form for processing by the evaluation function consisted of several

different representations for each game piece. These representations include

differentiating between which side a game piece belongs and King pieces. Each square

in the checker grid is represented using a unique data structure with an index representing

the individual square and a variable that represents the piece that is currently using that

43

square during that time step (Chellapilla, and Fogel 4). Each of the representative

variables was only one of five values: -K, -1, 0, +1, +K (Chellapilla, and Fogel 4). A 0

represented an empty state, a 1 represented a normal checker piece, and a K represented a

king piece. Each value’s sign represented which side, player or opponent, whom the

piece belongs (Chellapilla, and Fogel 4).

Structure

The neural network is broken into five total layers. The first is the input layer that

takes the input vector of length 32 and separates into a series of sub-vectors that

sequentially represent overlapping sub-squares from the game board (see fig 4.) Each

new sub-vector is passed into the first hidden layer referred to as the Spatial

Preprocessing Layer (see fig 4.). This layer consists of 91 nodes. After evaluation by the

first hidden layer, the modified values are passed into a second hidden layer with only 40

nodes. The new values are then passed into the third and final hidden layers consisting of

only 10 nodes. Finally, the sum of the output from the third layer is passed into a single

output node that represents the final move decision (see fig 4).

44

Fig 4.

Source: Chellapilla, Kumar, and David B. Fogel. "Evolving an expert checkers playing

program without using human expertise." IEEE Transactions on Evolutionary

Computation 5.4 (2001): 422-428.

Training

The primary processes for evaluating weight modification were housed in an

evolutionary algorithm that produced a scalar output of the board representing the worth

from the perspective of the player (Chellapilla, and Fogel 4). This output ranged from 0

to 1 with 1 representing a perfect board with the most possibility for victory. This

algorithm begins by creating a population of 15 strategies that are defined by weights and

biases. These weights and biases are generated using a uniform sample over a range of

0.4 (Chellapilla, and Fogel 4). The size of this range determines the variability between

strategies with the purpose of creating a useable variation for the initial stages of the

training process (Chellapilla, and Fogel 5). The network also includes a value known as

a self-adaptive parameter (Chellapilla, and Fogel 5). This parameter was equivalent to the

45

variability range and was used to control the step size for each search process during

evaluation. Each iteration created offspring with new weights and biases and received a

point value representing the success of their performance. Each child performed in five

randomly selected opponents (Chellapilla, and Fogel 5). In order to prevent children

from playing games that lasted too long or reaching a never-ending stalemate, games

were ended as a draw if they exceeded a total of 100 moves. If a game were lost, it

would receive -2 points and if the network won, it would receive 1 point. If a game

exceeded 100 moves and resulted in a draw the point value would be unchanged. In

total, each generation played a total of 150 games with each generated strategy being

implemented in 10 games (Chellapilla, and Fogel 5). Each game utilized a search

algorithm known as a minimax alpha-beta search with a search depth of four. The

minimax alpha-beta search algorithm utilizes a process of alpha-beta pruning that focuses

on decreasing the number of subsequent node evaluations (Knuth, and Moore 1). The

decision to use this algorithm in the setting of competitive checkers was made because of

the efficiency of determining which subsequent moves to evaluate. If the algorithm

determines that one move possibility proves that the current move is worse than the

previous, it stops evaluating that sub-tree altogether (Knuth, and Moore 1). The process

of evolving an expert level checker-playing neural network was completed over the

course of six months through 840 total generations.

Conclusion

 AlphaGo/AlphaGo Zero, Playing Atari with Deep Reinforcement Learning,

NeuroChess, OpenAI Five, and Playing Checkers without Human expertise are neural

network projects that demonstrate the capability of neural networks in advanced plan

46

development tasks. However, the approaches of each project vary between efficiency,

input type, structure, and training techniques.

 Each project utilized different forms of optimization to increase the efficiency of

the network’s performance. This is due to the variation between each project’s target

environment and the availability of physical resources. AlphaGo/AlphaGo Zero, OpenAI

Five, and Playing Atari using Deep Reinforcement Learning had availability to larger

amounts of processing power as compared to NeuroChess and Playing Checkers without

Human Expertise. However, all networks used a system for optimizing search times and

used a modification system suited appropriately to each network’s individual needs. For

example, OpenAI Five used proximal-policy optimization and only used game data

pulled from previous iterations while NeuroChess was able to effectively pull game data

from a database of grand-master level games. While NeuroChess did not have as great of

a need for input optimization as OpenAI Five, both networks performed well using their

respective approaches.

 All five projects utilize a form of vector to hold the input values used by the

network. AlphaGo/AlphaGo Zero utilizes a vector representing the pieces on the game

board. This approach is shared by NeuroChess and Playing Checkers without Human

Expertise because each environment is a game board grid. This is opposed to the input

format of OpenAI Five and Playing Atari using Deep Reinforcement Learning because

these projects focused on an environment that was much more dynamic. Although these

two projects utilized vectors of input values, the input was drawn from a continuously

changing system. For the Atari network, this was the pixel values of the screen and

OpenAI Five used input pulled directly from the Dota 2 game environment.

47

 One of the more varying aspects between each project are the structures that each

use. Some networks, like AlphaGo/AlphaGo Zero and OpenAI Five, performed using

parallel networks while Playing Checkers without Human Expertise utilized a single

processing network instead. Parallel structures allow for communication between

networks that increase efficiency and decrease training times while using large input data

sets. However, not all environments produce large enough data sets and create large

enough search trees that a parallel structure would be effective. However, when using

such a structure is appropriate, the potential that the network has to handle extremely

complex tasks is much greater.

 Finally, the training techniques used by each network varies as well. While most

neural network projects utilize forms of stochastic gradient descent algorithms for

modifying weights, differences in how the network learns from the input can vary based

on the network type, whether the network has continual access to sample data, whether

the network maintains a memory of its previous iterations and other factors. NeuroChess

is a great example of the potentially short training times when using a set of predefined

data. However, networks like OpenAI Five, while training times are much longer,

demonstrate the potential of using only sets of previous iterations by the network itself.

The use of techniques like reinforcement learning is also effective is applied

appropriately given the proper reinforcement type. Playing Atari Using Deep

Reinforcement Learning demonstrates the need for appropriately evaluating the reward

systems for individual reinforcement learning applications. The effectivity of different

training techniques is dependent on the use of the network, type of input, and overall

application of the neural network model.

48

 Neural networks continuously demonstrate the future that the computational

model has for advanced learning and planning tasks. The application of these networks

in continuously changing environments continuously proves the capability of modern

computing. AlphaGo/AlphaGo Zero, Playing Atari Using Deep Reinforcement Learning,

NeuroChess, OpenAI Five, and Playing Checkers Without Human Expertise are five

influential neural network projects that demonstrate the capability that this computational

model has in complex plan development tasks. By observing these projects and the

components that they share, it is shown that the complexity of the plan development

problem has countless possible approaches using a neural network model.

49

Fig 5 – Findings Efficiency Components Input

Components

Structure

Components

Training Components

AlphaGo/AlphaGo

Zero

-utilizes a lookahead

search

-64 GPUs and 19 CPUs

-optimized with Stochastic

Gradient Descent

-represented

with a single

input vector

-four processing

layers

-single pass for each

iteration

-utilizes a four-phase

Monte Carlo Tree Search

-3 days training time

-4.9 million games

throughout training

-deep reinforcement

learning

Playing Atari with

Deep Reinforcement

Learning

-preprocessing for input

flattening

-84x84 pixel vector

-utilizes final-frame

capture for optimization

-optimized with Stochastic

Gradient Descent

-seven varying

input vectors for

each

environment

- single pass for each

iteration

-convolutional

-reward proportion

modification

-deep reinforcement

learning

NeuroChess -explanation based

learning for optimization

-work divided across

workstations

- represented

with a single

input vector

-parallel neural

network structure

-temporal difference

learning

OpenAI Five -proximal policy

optimization

-128,000 CPU cores

-256 P100 GPUs

-1,048,576 observations

per day

- optimized with

Stochastic Gradient

Descent

-20,000 value

representations

and list of 8

actions for each

agent

-multiple input

nodes

-five recurrent

parallel networks

-deep reinforcement

learning with Rapid

Playing Checkers

Without

HumanExpertise

-small input vector -represented

with a single

input vector

-five layers with 3

hidden layers

-proprietary evolutionary

algorithm

-minimax alpha/beta search

50

References

Bottou, Léon. "Stochastic gradient descent tricks." Neural networks: Tricks of the trade.

Springer, Berlin, Heidelberg, 2012. 421-436.

Brockman, Greg, et al. "Openai gym." arXiv preprint arXiv:1606.01540 (2016).

Chellapilla, Kumar, and David B. Fogel. "Evolving an expert checkers playing program

without using human expertise." IEEE Transactions on Evolutionary

Computation 5.4 (2001): 422-428.

Domingos, Pedro. "A unified bias-variance decomposition for zero-one and squared

loss." AAAI/IAAI 2000 (2000): 564-569.

Doya, Kenji. "Reinforcement learning: Computational theory and biological

mechanisms." HFSP journal 1.1 (2007): 30.

Enzenberger, Markus, et al. "Fuego—an open-source framework for board games and Go

engine based on Monte Carlo tree search." IEEE Transactions on Computational

Intelligence and AI in Games 2.4 (2010): 259-270.

Eskin, Eleazar et al. "A Geometric Framework For Unsupervised Anomaly Detection:

Detecting Intrusions In Unlabeled Data". Columbia University Press, 2014,

Accessed 17 Aug 2019.

Granter, Scott R., Andrew H. Beck, and David J. Papke Jr. "AlphaGo, deep learning, and

the future of the human microscopist." Archives of pathology & laboratory

medicine 141.5 (2017): 619-621.

Harrington, Peter. "Stochastic Gradient Ascent". Machine Learning In Action, 2011

51

Hinton, Geoffrey E. "How neural networks learn from experience." Scientific

American 267.3 (1992): 144-151.

Knuth, Donald E., and Ronald W. Moore. "An analysis of alpha-beta pruning." Artificial

intelligence 6.4 (1975): 293-326.

Krogh, Anders. "What are artificial neural networks?." Nature biotechnology 26.2

(2008): 195.

Mallya, Arun. “Introduction To Recurrent Neural Networks”. Illinois State University,

2015,

McGregor, Anthony, et al. "Flow clustering using machine learning

techniques." International workshop on passive and active network measurement.

Springer, Berlin, Heidelberg, 2004.

Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar. Foundations of Machine

Learning. MIT Press. (2012). Accessed 16 Aug 2019.

Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv preprint

arXiv:1312.5602 (2013).

Olah, Christopher. "Understanding LSTM Networks -- Colah's Blog". Colah.Github.Io,

2019, http://colah.github.io/posts/2015-08-Understanding-LSTMs/#lstm-

networks.

Pachoki, Jacob. "Openai Five". Openai, 2019, https://openai.com/five/.

Pachoki, Jacob. "Openai Five". Openai, 2019, https://openai.com/blog/openai-five/.

https://en.wikipedia.org/wiki/Mehryar_Mohri
https://openai.com/five/

52

Saha, Sumit. "A Comprehensive Guide To Convolutional Neural Networks". Medium,

2019, https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-

neural-networks-the-eli5-way-3bd2b1164a53.

Sainath, Tara N., et al. "Deep convolutional neural networks for LVCSR." 2013 IEEE

international conference on acoustics, speech and signal processing. IEEE, 2013.

Schmidhuber, Jürgen. "Deep learning in neural networks: An overview." Neural

networks 61 (2015): 85-117.

Geman, Stuart, Elie Bienenstock, and René Doursat. "Neural networks and the

bias/variance dilemma." Neural computation 4.1 (1992): 1-58.

Schulman, John, et al. "Proximal policy optimization algorithms." arXiv preprint

arXiv:1707.06347 (2017).

Silver, David, et al. "Mastering the game of go without human

knowledge." Nature 550.7676 (2017): 354.

 Silver, David et al. "Deterministic Policy Gradient Algorithms". Deepmind Technologies

(2017)

Tesauro, Gerald. "Temporal difference learning and TD-Gammon." Communications of

the ACM 38.3 (1995): 58-68.

Thrun, Sebastian. "Learning to play the game of chess." Advances in neural information

processing systems. 1995.

Venkatachalam, Mahendran. "Recurrent Neural Networks". Medium, 2019,

https://towardsdatascience.com/recurrent-neural-networks-d4642c9bc7ce.

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/recurrent-neural-networks-d4642c9bc7ce

53

Wang, Fei-Yue, et al. "Where does AlphaGo go: From church-turing thesis to AlphaGo

thesis and beyond." IEEE/CAA Journal of Automatica Sinica 3.2 (2016): 113-120.

Watkins, Christopher JCH, and Peter Dayan. "Q-learning." Machine learning 8.3-4

(1992): 279-292.

Webb, Geoffrey. Bias–variance decomposition, In Encyclopedia of Machine Learning.

Springer 2011. pp. 100–101

