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Abstract 

 Neural networks are computational models that demonstrate the capability of 

advanced computing applications in plan development tasks.  Five influential projects 

that independently demonstrate various applications of neural network models include 

AlphaGO/AlphaGO Zero, Playing Atari with Deep Reinforcement Learning, 

NeuroChess, OpenAI Five, and Playing Checkers without Human Expertise.  Each of 

these projects includes different approaches to plan development tasks and are surveyed 

in this thesis using four criteria: the efficiency of the system, the form of their input based 

on their target environment, the structure of the neural network(s), and the processes 

through which they are trained.  Each project approaches the plan development problem 

with strict regard to the environment in which they are targeting and thus vary in 

implementation. This survey is a collection of the details regarding each project and how 

the research teams approached their development.  
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Introduction 

 Throughout the evolution of computing, research has aimed to create a 

computational model that is capable of handling complex analytical tasks similar to what 

humans do. One design that has been implemented in thousands of applications to solve 

this problem is the Artificial Neural Network model.  Neural Networks are composed of 

model neurons, also known as nodes, that are connected by arcs. An arc is a connection 

from one node to the next that may contain information including weights. Weights are 

modified after each iteration in which new input values are presented.  By repeatedly 

modifying weights, the network can begin to accurately identify patterns in input.  This 

phase is known as training the network. Examples of the most commonly used input 

forms include pixel values and audio information.   An agent is a program or source that 

utilizes the neural network.  As neural network research continues to grow and the utility 

of these computational models become more applicable in more environments, 

advancements continue to be made in the effectiveness of their application.  Although the 

range of neural network applications is broad, the structures and designs they use share 

similar characteristics.   

 The structure of a neural network is split into three layers: input, hidden, and 

output (Hinton 145).  The input layer can be composed of one or more input nodes 

depending on the type of input that the network is expecting to receive.  The input layer is 

also responsible for passing data into the hidden layer(s).  The hidden layers handle the 

majority of the processing of the input from the input layer. The data that these layers 

receive may or may not be modified from the original input depending on the application 

of the neural network.  The processing defined in the hidden layers is usually kept private 
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and protected.  This processing is done by the activation function.  Also referred to as 

input/output functions, activation functions are typically classified as linear, threshold, or 

sigmoid (Hinton 145).  The names refer to the type of processing that the network 

performs on input data which may vary depending on the implementation.   The results of 

this function are then passed from the hidden layer to the output layer (Hinton 145).  The 

output layer is similar to the input layer in that it is tuned to represent the desired output 

format (Hinton 146). The structure of a neural network allows for a versatile and 

maintainable framework that is capable of continuous modification and change. By using 

a process to continually provide input and subsequently alter the weights, the output can 

change over time to be more accurate in comparison to known data sets (Krogh 195). 

While the structure of most neural networks is similar, the way they process information 

can vary depending on the application. 

Some of the most common types of artificial neural networks include feedforward, 

recurrent, and convolutional.  A feedforward neural network is one of the simplest forms 

of neural networks.  This processing model linearly maps an input value to an output 

value.  This means that feedforward neural networks do not allow cycles between nodes 

(Schmidhuber 4).  This form is one of the most classic forms of neural networks and 

typically is used with a threshold-based processing technique.  A threshold is a value in a 

function used for comparison with incoming input within the network (Schmidhuber 6).  

The output from the node depends on whether the input exceeds the threshold value and, 

if not, the node typically passes on a negative value such as a -1.  However, not all 

problems can be solved using fixed-length input and output: the primary drawback of 
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feedforward neural networks.  In this case, a modified type of feedforward neural 

network referred to as a recurrent neural network is used. 

 Recurrent neural networks solve the fixed-length input problem by taking previous 

output or hidden states as input (Mallya 4).  This is useful because intermediate states can 

store information on past input over several iterations (Mallya 11). Recurrent neural 

networks are most often used with time-series data.  These models can also create copies 

of their cells over time, also known as unfolding, with different inputs at different time 

steps (Mallya 11). Sometimes, the process of training a recurrent neural network with 

many duplicated cells can be difficult.  In these cases, the network is treated as a single 

large feed-forward neural network.  Recurrent neural networks are also different than 

most basic feedforward neural networks in that classification algorithms can also be 

integrated to use previous strings of input to affect output (Venkatachalam).  Instead of 

only using the input vector, recurrent neural networks can also create influence based on 

a hidden vector that contains data on prior input/output (Venkatachalam).  This is in 

contrast to a basic neural network that is trained on a data set and is fixed in application.  

This also allows for the possibility for output to change after strings of input have been 

passed between two identical input values (Venkatachalam).  Another commonly used 

type of neural network is the convolutional neural network. 

Convolutional neural networks are most commonly used in image classification 

solutions and utilize a structure in which every node is fully connected.  This refers to the 

connections of nodes in one layer in the network to the nodes of the next layer.  Nodes 

within each layer have connections to every node within the next layer.  An issue that is 

common with this structure is that these networks commonly overfit data (Saha).  This 
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means that analysis corresponds exactly or very closely to the data set.  In this event, the 

network may perform well or even exceptionally well on training data but is unable to 

reliably produce accurate output on test data.  In this case, a regularization process is 

used.  Each node in a convolutional neural network responds to information from a 

specific region of the data set.  This is known as a receptive field.  A collection of 

receptive fields represents the entire data set (Saha).  Because an image is simply a matrix 

of pixel values, image classification is a popular use for this computational model. Within 

the structure of a convolutional neural network are convolution layers.  In these layers, 

the convolution operation is performed by the kernel (Saha). The kernel is a process that 

selects a region in the image and after the convolution operation is completed on the 

selected region, it shifts across by a degree that is known as a stride length (Saha).  The 

kernel continuously performs the operation over the entire data set.  After the 

convolutional layer is completed the network shifts to the pooling layer.  This layer is 

responsible for reducing the size of the resultant data from the convolutional layer and 

increase efficiency (Saha).  Once the data has been reduced or flattened, it becomes 

manageable enough to be processed through a normal neural network for classification 

(Saha). 

While neural networks have the potential to be effective at classifying data, they must 

first be conditioned on sample data sets in order to learn the patterns within them.  This is 

referred to as training.  In the study of this process, there are two major types of learning: 

supervised and unsupervised.  Both types of training have benefits specific to the type of 

neural network that is being trained. Two important terms for the study of these processes 
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is variance and bias within the data set.  The variance refers to the difference between 

individual items while the bias the error from false assumptions (Webb 100).    

Supervised learning is the process of using filtered input data for the neural network 

to process.  This is most commonly done by selecting values individually in the data set.  

For use of this process, the user must define the input as well as the desired output.  

While the data set must also be representative of the target environment in which the 

network will operate, the critical characteristic of supervised learning data is that it must 

be labeled for outcome-comparison. An example of this in practice could be labeled 

photos for use in training a convolutional network.  The accuracy of the output of the 

network is determined by comparing it to the predefined label attached to the input.  

However, there are many issues with this approach.  Some of these issues include the 

amount of training data, the dimensionality of the input space, and bias/variance tradeoffs 

(Mehryar et al. 1).     

The issue of the amount of training data hinges on the type of training algorithm used.  

If the classification function is too simple, then a learning algorithm with a high level of 

bias and low variance in the data will only need a small data set.  However, if the 

classification is too complex, then the amount of training data required by the same 

training algorithm will be far too large and take too much time to be considered effective 

(Mehryar et al. 1).  Another issue with this design is the dimensionality of the input 

space.  This is prevalent in models using many dimensions within the input data set for 

problems such as image classification.  In this example, there is a matrix for every pixel 

value for all color values: red, blue, yellow.  With many dimensions within the data set, 

the training algorithm that will perform best is one with a high variance and low bias. A 
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third issue is the bias-variance tradeoff dilemma.  In order to effectively train a neural 

network, the algorithm must be appropriately chosen based on the variance of the data set 

and the bias error of the algorithm (Gemen et al. 2).  This is important because if the 

algorithm has a low bias, then it must be able to appropriately bend to the variance within 

the data set.  This isn’t a problem for data sets that have a low variance.  However, if the 

data does have a high variance, then the network will classify the data differently each 

time (Gemen et al. 2).  Despite these concerns, supervised learning is highly effective 

when a sample data set with a labeled desired outcome that is also closely representative 

of the target environments data set is used.  However, applications in which the goal is to 

find patterns that were unknown before are better suited to an unsupervised learning 

approach. 

Unsupervised learning is the process of training a neural network on data that is not 

labeled.  This process is used to identify patterns in data that were not made apparent 

before.  This is used to find an underlying structure within the data set and can be used 

for accurate data set collection for supervised learning systems.  However, because there 

is no way to validate the output of a neural network trained with unlabeled data, there is 

no feasible way to determine the network’s accuracy.  There are four primary uses for 

unsupervised learning: clustering, anomaly detection, association mining, and latent 

variable models.  Clustering is used to divide the data set into groups that share 

characteristics (McGregor 15).  There are two types of clusters known as hard and soft 

clusters (McGregor 15).  A hard cluster is a cluster whose contents belong to one of many 

mutually exclusive classifications (McGregor 15).  Soft clusters contain data points that 

belong to multiple different groups (McGregor 15).  Anomaly detection is an application 
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of unsupervised models that determine outliers in the dataset.  In this model, the data set 

is considered normal and then any values that lie outside of the normal pattern are labeled 

(Eskin et. al. 3).  This has an application in error detection such as fraud, user error, and 

others (Eskin et. al. 3).  Associating mining is used to identify items in a data set that 

occur together.  This is similar to clustering, but instead of putting members into groups, 

it identifies groups that are natively in the data set.  Latent variable models are commonly 

used to reduce the number of features in the data set.  Unsupervised learning is similar to 

supervised learning models in that they recognize patterns, however, the application of 

unsupervised models is more advantageous in analytical studies of data sets.  While not 

able to determine the accuracy of output, these models are capable of efficiently 

classifying groups within the data when applied properly.  There are many forms of 

conditioning and many aspects of training to produce a network that provides accurate 

output. 

A common and effective form of training in neural network research is known as 

reinforcement learning.  Reinforcement learning is a process of machine learning based 

on the prospect of maximizing the reward for correct and/or optimal decisions of the 

neural network (Doya, Kenji 30).  Reinforcement learning, like most influences on neural 

network design, is similar to the way that the human brain learns effectively.  

Reinforcement learning in the application of neural networks can be integrated to work 

with many popular learning algorithms.  There are two primary forms of reinforcement 

learning that pertain to machine learning and neural networks in particular: positive and 

negative reinforcement.   
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Positive reinforcement learning engages in rewarding the network when the output 

from a given data set is similar or the same as the desired output (Doya, Kenji 30).  The 

more similar that output during the training process is to the desired output for the given 

data value, the more frequently that occurrences similar to the previous occurrence will 

be applied.  This means that the more correct the output is the more likely that future 

input of similar data will also be correct. 

Negative reinforcement learning engages in rewarding the network when negative 

conditions are avoided/prevented.  This is different from positive reinforcement learning 

because the network needs to be able to recognize that it avoided an error.  This means 

that when incorrect output is avoided that future input with similar data will also be 

avoided (Doya, Kenji 30).   

Both forms of reinforcement learning can be more or less effective than its 

counterpart based on the form of input, application, and other factors.  However, each is 

capable of effectively training each network given that the data set presented as input is 

appropriate for the type of reinforcement learning applied.  Also, the primary training 

algorithm used with this style of learning must be effective with the given data set to 

avoid hindering the effectivity of the learning process.   

Neural networks have countless applications in various environments.  They can be 

used to identify the contents of an image, process human language, and identify patterns 

in datasets that are too large for a human to effectively analyze.  More recently in neural 

network research, however, neural network applications have become more advanced and 

broader in application. These new applications can be seen in examples such as military 

planning frameworks, artificial intelligence in virtual services, and in the research of 
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discovering new strategies for games that are thousands of years old.  This research 

shows the promise of neural networks in complex environments. This survey will discuss 

five research projects in which neural networks have been used to demonstrate the 

capability of this computational model in planning architecture and development.  
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Section 1: Work Summary 

AlphaGo and AlphaGo Zero 

Introduction 

 In March of 2016, Google’s DeepMind research group demonstrated the power of 

deep neural networks and the capability that they have to solve complex strategic 

problems by defeating 18-time world champion Go player Lee Se-dol with their artificial 

intelligence system AlphaGo (Granter et al. 619).  This is not the first time the world has 

seen an artificial intelligence system that has bested champion board game players, 

however.  In 1997, IBM produced a chess-playing AI named Deep Blue that beat world 

chess champion Garry Kasparov (Granter et al. 619). However, AlphaGo is unique in 

comparison to Deep Blue in that the game that it has been trained to play is known as the 

most complex board game in the world.  Go itself is over 2000 years old with a very 

simple set of rules.  However, the environment of the game is capable of 10^360 different 

configurations (Granter et al. 619). This immense level of complexity is what sets 

AlphaGo apart from other artificial intelligence systems and is the reason AlphaGo 

exhibits a newly found problem-solving potential of deep neural networks.      

Overview 

 The rules of Go are relatively simple yet create a complex and large number of 

combinations of moves.  The board is composed of a 19 by 19 grid in which two 

competitors alternate placing black and white stones, respectively.  Once a stone is placed 

on the board it is no longer allowed to move.  The goal of the game is to use the stones to 

occupy as much of the grid as possible.  A player may form a group, a collection of 
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adjacent cells, around the opponent’s stones to capture them.  If this occurs, the whole 

group is removed from the board.  While this rule set is simple, it is difficult to 

implement a computerized system to choose moves.  This is because it is difficult to 

determine which player is winning.  While one player may occupy more of the board, the 

other player may be at a positioning advantage that will prove to be successful later in the 

game.  Because there is no adequate method of identifying who is winning in the game, 

traditional reward factor-based machine learning techniques prove inadequate.  This is 

one of the challenges that proved most difficult to overcome during the conceptualization 

of AlphaGo. 

 Most artificial intelligence applications designed to tackle problems similar to that 

of AlphaGo, like Deep Blue, are designed using specific sets of protocols that define the 

training process.  For example, Deep Blue approached the game of chess using a, as Dr. 

Scott Granter describes, “brute force algorithm” (Granter et al. 620).  Due to the 

complexity of Go, the design of AlphaGo followed a different play-style.  This was also 

because the research team at DeepMind wanted to create a system that would later be 

implemented in broader ranges of use outside of Go.  Many researchers have suggested 

that the AlphaGo framework could continue to be applied in medical research and 

diagnosis (Granter et al. 620).   

 AlphaGo utilizes a deep neural network structure that is different than other 

similar systems.  The structure of the AlphaGo system is referred to as a Parallel 

Intelligence System that uses separate software-defined systems (SDS) (Wang et al. 116).  

An SDS can refer to deep neural networks or other machine learning systems.  The use of 

SDS in the case of AlphaGo is that simulated environments can be utilized to perform 
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actions of the SDS against itself (Wang et al. 116).  This was utilized in the design of 

AlphaGo for one primary philosophy. This philosophy focuses on the fact that using 

human level play to train a deep neural network is highly effective, however, the level of 

accuracy of that network can only escalate to the level of the human examples it is given.  

Using an SDS within a Parallel Intelligence System, the neural network is able to train on 

input from a copy of itself within a simulated environment (Wang et al. 117). In this 

method, the system is able to experience settings in which typical human-based 

environments do not typically form.  This is critical within Go because of the extent of 

complexity within the game.  AlphaGo performed strategies that had never been 

experienced before during its matches with Lee Se-dol (Silver et al).  The strategic 

examples presented by AlphaGo have changed the way that the game is typically played 

– a traditional play style that has been present for thousands of years.  Dr. Scott Granter 

describes this with, “It makes moves that no human, including the team that made it, 

understands,” and continues with “AlphaGo is the creation of humans, but the way it 

plays is not” (Granter et al. 619).  The strength of AlphaGo, in this aspect, lies within its 

parallel design. 

 A parallel design, in this sense, is effective because of the difference between the 

representation of the physical system and an artificial system (Wang et al. 118).  In the 

setting of AlphaGO, this describes the setting of the game environment and the virtual 

system within the network. The parallel design of AlphaGo is able to be used with three 

modes of operation: learning and training, experiment and evaluation, and control and 

management (Wang et al. 118).  During the learning and training of the system, the two 

environments, the physical system, and the artificial system are different, and the goal of 
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this stage is to bring the virtual environment closer in relation to the physical 

environment (Wang et al. 118).  Because this is in the early stages of the process, not 

much action is required to generate large differences between the two systems.  The 

experiment and evaluation stage describe the process of generating, or simulating, 

environments and conducting computational experiments within the system.  During this 

process, the artificial and physical environments communicate with each other as 

solutions are generated (Wang et al. 118).  In the third stage, control and management, 

the artificial and physical systems continue to communicate in real-time while control 

and management are attempted over the entire system (Wang et al. 118).    AlphaGo is 

not famous because of the implementations of new methods or techniques.  Instead, it 

demonstrates the potential of current concepts within the artificial intelligence research 

community.   

Playing Atari with Deep Reinforcement Learning 

Introduction 

The DeepMind research programs commonly aim to improve the ease-of-use of 

reinforcement learning (RL) in applications of neural network architectures.  

Demonstrating the possibility of using neural networks in processing digital visual data 

effectively while creating a multi-purpose strategy game player was the focus of 

DeepMind’s Atari project.  Primarily, this project was aimed to create a convolutional 

neural network that is successfully able to learn control agents through high-dimensional 

sensory inputs such as vision and speech.  While the model to accomplish this goal is 

built on a convolutional model, its inspiration comes from breakthroughs in other 

architectural techniques such as multilayer perceptrons, restricted Boltzmann machines, 
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and recurrent neural networks, each of which have demonstrated their capabilities in 

deducing control agents through both supervised and unsupervised learning (Mnith, 

Volodymyr, et al. 5). 

Overview 

 The largest challenge of this project was in the unsupervised reinforcement 

learning approach. Reinforcement learning is a computational framework for an entity to 

learn by receiving rewards (Doya, Kenji 30).  The reward reinforces the action in which it 

was caused.  In the form of a neural network, rewards ultimately determine changes in 

weights.  However, these rewards are only received on occasion and are unreliable in 

timing.  This means that training could take exponentially long periods of time (Mnith, 

Volodymyr, et al. 5).  Another challenge that this approach encountered was that in 

deducing control agents, different states could and often would be very closely related.  

This relation would need to be considered during processing in order to ensure accurate 

results (Mnith, Volodymyr, et al. 5).  In order to overcome these challenges, the 

DeepMind research team decided to apply a convolutional neural network model to 

process video data throughout changing and complex reinforcement learning 

environments. 

Convolutional neural networks are an alternative type of deep neural network that 

is especially and most commonly used in image and speech recognition (Sainath, Tara, et 

al 1).  In convolutional neural networks, each hidden value is computed by multiplying 

small local inputs against the weight sets.  Those weights are then shared across the entire 

input space (Sainath, Tara, et al. 1).  After hidden units are computed, another layer, the 

max-pooling layer, helps remove possible discrepancies due to variations in the same 
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input (Sainath, Tara, et al. 1).  These include different speaking styles or variations in 

video quality.  A convolutional neural network is made up of convolutional layers where 

each node only processes data for a receptive field, which refers to the space in which 

input will modify the contents of that node (Sainath, Tara, et al. 1). 

This network was trained with a variant of the Q-learning algorithm.  Q learning 

is, in Dr. Christopher Watkin’s words, “a form of model-free reinforcement learning” 

(Watkins, Dayan 55).  The agent of this project is used within an Atari emulator for 

experimentation with different simulated digital environments.  The process in which the 

agent acts is broken into time-steps.  However, it not feasible to process efficiently and 

accurately one frame per time step.  To overcome this issue, consecutive observations are 

separated and processed at the same time (Watkins, Dayan 56). There is a standard 

assumption that rewards are discounted over time (Watkins, Dayan 56).  The future 

discounted return time is calculated with respect to the time step in which the game ends.   

The games that this network was trained to be implemented with offer several 

different sets of rules, controls, and reward systems.  Because the network processes 

input from an array of pixels, training the network is the same independent of the game 

platform.  This modularity allows for the potential of implementing this architecture in 

other environments as well.  However, encoding rules for each game is different per 

application.  Nonetheless, the potential that this technique demonstrates through its 

success in the Atari platform pushes the possibility of the future of using convolutional 

models in reinforcement learning projects. 
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NeuroChess 

Introduction 

The use of artificial intelligence to play chess has been a computing research topic 

for decades; however, typical techniques have proven ineffective and inefficient due to 

the variability in the game environment.  These techniques mostly include generators that 

evaluate every move on the board possible for each decision.  While this has proven 

effective in small instances, processing and maintenance require copious amounts of time 

and resources.  In order to mitigate these fallbacks, fast evaluation functions are used.  

However, these functions are typically made by hand and are difficult to maintain.  

Overall, these classical techniques are highly inefficient and ineffective.  NueroChess is a 

research program that challenges typical approaches by using an inductive deep neural 

network learning process, temporal differencing, and a variant of explanation-based 

learning (Thrun, 1069). 

Overview 

The beginning of this process starts at the end of the game of chess.  The goal of 

NeuroChess is to learn from the outcome of chess games.  The NeuroChess architecture 

is built around the concept of temporal difference learning or TD learning.  In author 

Sebastian Thrun’s words, “Temporal difference learning comprises a family of 

approaches to prediction in cases where the event to be predicted may be delayed by an 

unknown number of time steps” (Thrun, Sebastian 1070).  This approach is ideal for 

implementation in chess because of the variability in the length of potential strategies.  

The use of TD in NeuroChess is to find a function that evaluates the current chessboard 
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on the likelihood that it is winning.  TD finds this function by denoting each game board, 

being each setting between moves, into training patterns.  This evaluation function is 

denoted as V (Tesauro 58).  V is evaluated by a series of three rules depending on 

whether the current setting is winning, losing, or a draw (Tesauro 58).  The evaluation 

function is constructed recursively over the course of evaluations and is controlled by a 

decay constant γ so that the network favors quick success over lengthy or drawn-out 

conclusions (Thrun, Sebastian 1070).   

Inductive learning techniques such as back-propagation suffer from immense 

training times in settings like chess (Thrun, Sebastian 1071).  This is because some events 

have several different components that determine whether or not a specific action is good 

or bad, and aspects like the location of other components need to be considered as well. 

Explanation-based learning, however, generalizes more accurately from less training 

information and relies on the availability of domain knowledge instead (Thrun, Sebastian 

1071).  This way the program can consider the rules and format of the game to infer 

whether decisions are good or bad.  This is an immense advantage in the case 

NeuroChess where the environment is completely reliant on these factors.  

Chess, like many board games, is played by two players who engage in each 

other’s game pieces in order to eventually defeat their opponent by trapping their king in 

a state known as checkmate.  However, this game model features many different varying 

components.  These include different game pieces and special cases where moves may be 

made depending on the setting. Each different type of piece has different sets of rules on 

how that piece may move.  Additionally, each piece has a large tree of potential moves 

and paths.  In order to develop an artificial intelligence system that can perform at an 
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expert level, the system must be able to consider every possible move that is available. 

As stated previously, however, the immense amount of combinations makes evaluating 

each move non-feasible. The NeuroChess project implemented several different 

techniques to overcome these issues including parallel architecture, a knowledge base, 

and several optimization operations.  The success of this project demonstrates the ability 

for current machine learning techniques to handle complex learning tasks that have 

otherwise been seen as overly difficult.  

OpenAI Five 

Introduction 

 OpenAI Five is a team of five independent artificial neural networks that have 

been designed to handle continuously changing environments by using the environment 

within the strategy game Dota 2.  OpenAI Five is the second generation in research by 

OpenAI after its resounding success in a one-versus-one exhibition setting in the 2017 

Dota 2 championship.  The primary goal of OpenAI Five is to further the research into 

the OpenAI platform OpenAI Gym.  OpenAI Five uses a new training system developed 

by the OpenAI team.  This learning algorithm is known as Proximal Policy Optimization 

and aims to make training artificial neural networks simpler, more effective, safer, and 

more efficient than traditional training processes. 

Overview 

 The decision to use the Dota 2 game environment in this research project was to 

exhibit the potential of deep neural network’s capabilities to perform in continuously 

changing environments.  Dota 2 is an online game where thousands of variables are 



19 

 

constantly changing the game environment.  OpenAI aimed to use this in reference to the 

future of the application of the system in real-world environments.  OpenAI Five is a 

team of five independent neural networks that do not communicate with each other 

directly (Pachoki 1).  Instead, the research team decided that it would be more effective 

to only have each agent-driven purely by incentive.  While this seems counterintuitive at 

first, this system provides for much longer applicability and has proven to be effective in 

team-based environments, nonetheless. Because there are thousands of changing 

variables in the environment, the OpenAI team had to find a way to systemize and 

quantify each aspect of the game.  This was implemented successfully as a list of 20,000 

values that represent the aspects of the game that humans are able to observe; this is to 

ensure that the networks are not receiving any hidden information to give them an 

advantage (Pachoki 1).  Using the information stored in this list, the system can be 

trained using the general-purpose training system Rapid.   

 Rapid is the reinforcement learning system that OpenAI has developed to run on 

any Gym environment.  Gym is a framework for reinforcement learning for training a 

neural network (Pachoki 1).  An agent of the Gym framework learns on a system in 

which an agent’s experience is divided into episodes (Brockman, Greg et al. 1).  The 

initial state of an agent was randomly sampled from a distribution and the interactions in 

the environment continue until the agent reaches a terminal state (Brockman, Greg et al. 

1).  Each episode is divided into timesteps in order to keep simulations linear.  

Interactions are generated when the agent makes a decision.  With each decision, the 

agent receives an observation and a reward (Brockman, Greg et al. 1).  The goal of 

reinforcement learning is to maximize the reward an agent receives for each decision.  



20 

 

The effectivity of the agent is determined by the cumulative reward by each agent 

(Brockman, Greg et al. 1).  Thus, Gym’s approach to reinforcement is heavily reliant on 

proprietary mathematical theory.  This process generates a gradient on the batch which is 

averaged with the gradients generated from other batches (Pachoki 1).  After each 

iteration, the agent syncs with the other workers.  What sets Rapid apart, however, is that 

the Gym framework focuses on the abstraction of the environment as opposed to the 

agent (Brockman, Greg et al. 2).   

 OpenAI Five uses the advantages of Gym and Rapid to effectively and efficiently 

generate agents that are able to challenge professional players in Dota 2 to exhibit the 

advantages and the future of using reinforcement learning in complex environments.  As 

opposed to other neural network projects such as AlphaGO, the work by OpenAI focuses 

on the environment rather than the agent.  Because games like Chess and Go have very 

simple environments with very complex forms of strategies, their frameworks are limited 

in environments that are rapidly changing.  However, the agents in games like Go have to 

consider multiple game pieces at once while OpenAI five has separate agents for each 

artificial player.  The amount variability in the Dota environment comes from the 

continuous list of factors including, but not limited to, other players, non-player 

characters, character actions, enemy actions, item building, and obstacles.  

 OpenAI uses Dota 2 as the environment for its research projects because of the 

game’s complexity and popularity.  Dota 2 has been an extremely popular multiplayer 

game for several years and hosts annual competitions that draw millions of viewers.  To 

demonstrate the power of the Dota 2 neural network project, OpenAI developed a 

timeline that displays the progress that the project has made.  The project began on 
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November 5, 2016, and in January agents successfully defeated a scripted game against 

bots.  After this first proof of concept was a success, the project continued to grow all the 

way until on April 13, 2019, OpenAI Five becomes the first AI to beat a team of world 

champions in an esports game at national finals.  As OpenAI Five continues to grow, it 

continues to set new records on the potential that neural networks have in handling 

exceedingly complex learning and planning tasks. 

Playing Checkers Without Human Expertise 

Introduction 

Checkers is a classic board game played on an eight-by-eight board.  Each player 

controls 12 game pieces and makes one move per turn by choosing to move any of their 

remaining pieces in diagonals by one space.  However, if a player’s next move is 

obstructed by one of the other player’s pieces, that player may “jump” over the opposing 

piece and remove it from the game.  If more than one possible opportunity to jump is 

available, the player must decide which one to move.  The goal of this project was to 

exhibit the potential for AI to learn without the input of human expertise. This model, 

shared by other projects like OpenAI Five, aims to challenge traditional training practices 

that supply human input as a learning basis.    

Overview 

 In the design of this project, there were many restrictions that had to be followed.  

This is because the platform that the final agents would be performing on was an online 

checker tournament application.  Therefore, limitations, like time available for decision 

making, were set to lie within the rules of the online platform.  Also, within this platform 
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draws were permitted.  This was decided if both players mutually agreed to end the game. 

With restrictions set, the design of the agents was considered. 

 Each game field was represented by a vector with a length of 32 (Chellapilla et al. 

4).  This represented the total possible moves for the game piece’s potential moves. 

Because there is no limit to the number of moves that may be made during the game and 

there was no time limit to the game, the value of each move made by the agent was 

determined by the quality of the resulting positions (Chellapilla et al. 4).  This served as 

an effective method to ensure that throughout the game the intention of each play was to 

be able to make better moves in the future.  Each position was evaluated on quality based 

on several different factors including safety, jumping potential, and the number of moves 

required to reach the back of the board.  The structure of the network followed a standard 

layout with only one output node that represented the move decision.   

 Compared to other board games like chess and go, checkers is much less complex 

in terms of variability between boards.  This means that many typical brute force 

approaches might be an effective method to tackle this learning task.  However, one goal 

of this project was to determine if using the extra computational resources to use a fully 

evolved network over networks that rely solely on the piece differential was valuable.  In 

order to test this, two control experiments were performed.  The first experiment used a 

fully evolved network playing a total of fourteen games, two games were played to 

completion with the network winning both.  In the other twelve games, the network held 

a significant advantage in ten games while two of the games were held at a disadvantage.  

The second experiment consisted of the same limitations as the first experiment, but a 

limit of two minutes was implemented for search time.  In this case, the network won two 
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of the fourteen games, the same as the first experiment, but only held an advantage for six 

of the remaining twelve games.  These two experiments display the value of using the 

extra computational resources to implement a fully evolved network in the setting of 

checkers (Chellapilla et al. 6). 

 The human opponents were not made aware that they were playing against a 

computer to keep play bias at a minimum.  A total of 165 games were played against 

human opponents.  Each move was modified to take anywhere between 0 and 60 seconds 

to be executed.  Opponents were chosen based on availability with diverse ranges of skill 

levels.  Each game was rated based on a score approaching 3000.  The higher the score 

typically meant the game lasted longer and was more complex than average games.  In a 

distribution of scores, it is apparent that as the score approaches 3000 the win/loss ratio 

becomes smaller.  This is opposed to the large win/loss ratio from games with lower 

scores.  This is demonstrated in figure 1. 

Fig. 1 

 

Chellapilla, Kumar, and David B. Fogel. "Evolving an expert checkers playing program 

without using human expertise." IEEE Transactions on Evolutionary 

Computation 5.4 (2001): 422-428.  
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Section 2: Analysis 

AlphaGo/AlphaGo Zero 

 

Standard Go! Board by Yellow Mountain Imports 

Efficiency 

The reinforcement learning algorithm named the “lookahead search” is used inside 

the training loop to increase precision, speed, and stability during training.  The 

lookahead search is a combinatorial search component that identifies the limit in which 

the search explores (Wang, et al. 115).  This is critical in AlphaGo because the search 

tree that is processed each time is extremely large.  The use of a traditional search 

algorithm without the lookahead component could hinder the utility of the network 

because most traditional searches would consume the majority of available memory.  The 

neural network is represented by a function and is optimized on Google Cloud using 

TensorFlow.  The program is aided with the help of 64 dedicated graphics processing 
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units as well as a collection of 19 CPU parameter servers. The parameters within the 

neural network are optimized by stochastic gradient descent and the learning rate is 

annealed (Wang, et al. 116).   

Stochastic gradient descent is a powerful, yet simple training algorithm based on the 

gradient descent learning algorithm.  The gradient descent algorithm focuses on 

minimizing empirical risk.  Empirical risk measures the training set performance while 

the expected risk measures the expected performance on future samples (Bottou 2).  Each 

iteration of training using gradient descent updates weight values using the gradient of 

the empirical risk (Bottou 2). Stochastic gradient descent drastically simplifies the 

gradient descent model by removing the need to compute the empirical risk exactly 

(Wang, et al. 118). Instead, each iteration makes a general estimation using a single 

randomly picked sample.  However, it is important to note that because each updated 

weight value is calculated using an estimate that, in many instances, significant noise can 

change the behavior resulting in values that aren’t as accurate as they would have been 

using the classic gradient descent model (Bottou 2).   This model is extremely powerful 

because the stochastic algorithm can be deployed whenever needed in whatever 

application.  This is because it does not need to remember which examples it has seen 

before and thus optimizes the expected risk (Bottou 2).  This is highly effective in the 

environment of Go! because of the extremely large number of possibilities in the game 

environment.   

Input 

AlphaGo and AlphaGo Zero are both different in comparison to other neural network 

projects with similar goals in the simplicity of the input types.  Because the setting of Go! 
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is simply black and white game pieces on a checkerboard, the development team behind 

the AlphaGo projects decided the most efficient and effective method of organizing input 

would be by using a simple vector with values representing the black and white game 

pieces. This also contains the history data of the game environment for use in calculating 

values such as the probability of moves.  

Structure 

The AlphaGo projects were designed based on deep rule-based networks that were 

implemented for decision and evaluation using several layers that control different stages 

of the output generation process.  The four layers of the AlphaGo DNN networks are 

classification, association, deduction, and generation with given input vector and 

subsequent output vector. These layers are vastly different from each other and can be 

utilized independently with separate networks.  This structure allows for greater 

flexibility and allows for individual implementation based on the user’s preferences.  

This means that all four layers are not restricted to one type of network such as 

convolutional or recursive (Wang, et al. 116).  This can be visualized by figure 2. 

Fig 2. 

 

Source: Wang, Fei-Yue, et al. "Where does AlphaGo go: From church-turing thesis to 

AlphaGo thesis and beyond." IEEE/CAA Journal of Automatica Sinica 3.2 (2016): 113-

120. 

 



27 

 

Training 

The single neural network used in the AlphaGo projects is trained with a unique 

training algorithm. For each active position, a Monte Carlo Tree Search (MCTS) is 

executed. The Monte Carlo Tree Search was implemented in the AlphaGo projects 

because of its capability to evaluate the quality of different members of the tree which, in 

the case of the AlphaGo projects, are the possible moves.  In this search tree, entire 

games are completed starting with random choices for moves.  Once a game is 

completed, the nodes that represent the tree’s members are weighted, and, typically, the 

nodes with larger weights represent more promising options.  The MCTS is separated 

into four successive processes: selection, expansion, simulation, and finally 

backpropagation (Enzenberger et al. 259).  During the selection phase, the tree is 

traversed starting with the root of the tree until a leaf node is reached. However, a leaf 

node can only be reached once due to the actions in the expansion phase (Enzenberger et 

al. 259).  During the expansion phase, children are generated for the leaf node chosen 

during the selection phase.  One of the children created during this stage, labeled as X, is 

selected and used during the simulation phase.  During the simulation phase, an entire 

playout starting at node X until the game is completed. Finally, the backpropagation 

phase is completed in which the weights of the nodes traversed from the root to node X 

are updated based on the performance of the simulation phase. The algorithm used in this 

phase is common amongst many neural network training algorithms seen in other 

projects. 
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Over the three days of training of the AlphaGo Zero program 4.9 million games were 

completed with 1600 simulation cycles for each MCTS that was performed.  

Approximately, it required roughly 0.4 seconds of processing for each move. 

Playing Atari with Deep Reinforcement Learning 

Efficiency 

DeepMind’s research team was presented with several challenges while designing the 

system to control and maintain an efficient agent for playing digital Atari games. 

Arguably the most troublesome component in their project regarding the efficiency of the 

neural network was processing the visual data from the game environment and formatting 

it to be recognized by the neural network.  The raw components of visual input consist of 

a 210 x 160-pixel array containing color data from a pallet of 128 values.   Such a large 

set of values would take far too much time to be effective.  In order to create a data set 

that is much more consumable by the processing of the neural network, a series of 

preprocessing techniques was implemented to optimize the input vector (Mnith, 

Volodymyr, et al.  5).  First in this process was a system of converting each frame into a 

grayscale.  Second, the images were sampled down to a 110x84 pixel array.  Finally, the 

new array is cropped into an 84x84 pixel rough representation of the play screen (Mnith, 

Volodymyr, et al.   5).  This process shrinks the amount of data being collected each 

frame significantly and is enough to produce an input vector that is much more realistic 

to be processed by the main processing function.  This series of optimizations is unique to 

digital format applications. The final cropping to an 84 x 84 image is required by the 

GPU implementations of convolutions, which expects square input dimensions (Mnith, 

Volodymyr, et al.   5).  Also, another key optimization made by DeepMind is that only 
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the final four frames of each designated time step are recorded (Mnith, Volodymyr, et al.   

5).  This is important because not all frames are crucial for input.   

Input 

The input for this neural network consists of seven different games made for the 

original Atari console.  Each game is processed by the preprocessing function described 

above.  The games used in this research project include Beam Rider, Breakout, Enduro, 

Pong, Q*bert, Seaquest, and Space Invaders.  Each game environment is vastly different 

from the others in order to demonstrate the flexibility of this particular neural network 

framework without needing game-specific information.  However, each different 

application rewards success differently.  This was taken into account to ensure that 

training would be consistent independent of the game with which it was training.  The 

primary reward system used by the network used the reward systems for each game.  For 

example, the most well-known game included in the game set, Pong’s reward system 

uses the number of times that the player scored against the opponent and whether the 

game resulted in a victory for the player.  However, in games like space-invaders, this 

system does not translate over directly.  For example, the definition of scoring is 

destroying one of the many enemy ships.  Because there are thousands of potential points 

in space invaders, the reward system must be adapted proportionally to match the 

availability of potential points for the other games.   

Structure 

The Atari neural network model faced an issue with the way the activation function 

parameterized the input vector.  The design of this neural network model was considered 
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by two different approaches in response to this issue.  The first consideration used both 

the input vector as well as the history of the frame data as input.  However, this 

architecture requires a full second pass to compute the expected output for each input 

pass.  Considering the necessity of efficiency of this environment model, this approach 

was not appropriate for Atari game applications.  The second consideration uses only the 

input vector as input and a separate output unit for each action or pass.  Each output 

corresponds directly to the expected value of each input pass. This structure allows for 

only a single pass through the activation function for each input set providing for more 

efficient and quick processing time – an important aspect for many of the fast-passed 

target game environments (Mnith, Volodymyr, et al. 6).   

The neural network design for processing most pixel data representations primarily 

uses a convolutional model.  This network is no different and uses several layers with 

different convolutional operations.  The layer structure of the Atari neural network 

consists of one input layer, three individual hidden layers, and a single output layer 

(Mnith, Volodymyr, et al. 6).  The input layer takes the 84 x 84-pixel input vector and 

passes it through to the first hidden layer.  The first hidden layer convolves 16 8 x 8 

filters (Mnith, Volodymyr, et al. 6) This convolution includes a stride of four.  The 

second hidden layer differs with convolutions of 32 4 x 4 filters and with a stride of only 

two.  Both hidden layers one and two use a rectifier nonlinearity, a mathematical 

operation that reduces the prominence of noise, after each convolution cycle (Mnith, 

Volodymyr, et al. 6). Finally, the third hidden layer is fully connected and consists of 256 

rectifier units (Mnith, Volodymyr, et al. 6).  Fully connected to the third hidden layer, the 

output layer that produces a single action.  The structure of this neural network model 
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focuses primarily on efficiently processing the input vector and condenses into a single 

output that represents one action.   

Training 

The Atari neural network system focuses on deep reinforcement learning techniques 

within the training process using a stochastic descent gradient.  In most supervised 

learning studies, tracking the success of the network is fairly straight-forward and easily 

analyzed.  However, because the reward system for the game environments targeted by 

the Atari model needs to be adjusted before the end of processing, issues arise in 

deducing the success of a training set because of inconsistencies in the reward data.  

These inconsistencies can be confusing and depict less correlation between run time and 

success rates.  This can cause longer training times and can create less consistent results 

in the final application.  However, because this model is trained using deep reinforcement 

learning, a more accurate statistical representation of training success is in the estimated 

value plotted against training run time.  This representation demonstrates less noise and 

more appropriate distributions.     

NeuroChess 

Efficiency 

Similar to other neural network applications that feature game board environments, 

NeuroChess’s performance experiences issues with the more commonly used training 

algorithms such as back-propagation.  In order to maintain effective training times and 

still produce accurate results, NeuroChess uses an explanation-based learning technique.  

Explanation based learning is different from most learning algorithms because it uses a 
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set of knowledge of the domain of the environment in evaluations (Thrun, Sebastian 

1070).  This technique is not typically used for neural network applications, however, due 

to the complexity of the Chess environment, it serves well to reduce the time in the 

evaluation steps.  The format of this knowledge is a set of rules for game pieces.  Because 

the network does not have to evaluate every set of moves during each time step, the 

network can train more accurately with much less time.  However, the same database can 

be used to train other systems increasing the modularity of the project.  

The work of the primary neural network is divided between a series of workstations 

(Thrun, Sebastian 1073). There is one workstation that acts as a primary server that 

contains the most recent weight values and diagnostic information (Thrun, Sebastian 

1073). Each subsequent workstation remotely accesses the primary server to read weight 

values in between iterations as well as send its current weight values. This system 

increases training time to a much more manageable level.  

Input 

The chess pieces are represented by individual identification numbers and are stored 

into an input vector. Empty spaces are represented by their identification numbers.  The 

input vector is sent to the first hidden layer.  Unlike most neural networks with only a 

single network structure, the input is also sent to the secondary network. The secondary 

network handles the input by using a series of processing functions to determine likely 

input values in the next two moves. 
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Structure 

NeuroChess uses a set of two parallel neural networks to host the processing of the 

game environment (Thrun, Sebastian 1072).  The first network takes the input vector and 

passes it into a series of hidden layers.  The evaluation function considers the expected 

environment produced by the secondary network along with the input vector.  The output 

of this layer is the final move decision for the current time step.  The secondary network 

is constructed with 165 hidden layers that produce a set of expected values that represent 

the expected environment two moves ahead of the current environment (Thrun, Sebastian 

1072).  This network is trained prior to the training of the primary network using known 

chess games and is used to create a new input vector.  The new input vector is passed into 

a series of processing layers that are very similar to the primary evaluation system.  

Finally, the secondary network maps the expected game piece locations using a large 

database of grand-master chess games (Thrun, Sebastian 1072).  This way, the secondary 

network is able to determine differences between expert-level chess play and implement 

the same strategies in the training of the primary network.  Together, both neural network 

models work together to determine the best move regarding several different factors 

including but not limited to the likelihood of reaching checkmate and advantage between 

each piece. This structure is visualized in figure 3. 
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Fig. 3 : Representation of parallel network structure: 

Source: Thrun, Sebastian. "Learning to play the game of chess." Advances in neural 

information processing systems. 1995.  

Training 

The NeuroChess project employs the application of a process known as temporal-

difference learning – a collection of processes deployed in applications using delayed 

prediction (Thrun, Sebastian 1070).  Because NeuroChess uses the parallel network to 

find an expected input vector for two game-moves ahead, this approach is used 

effectively in the evaluation functions to rank the chessboard input vector on the 

likelihood to win.  The application of this technique is used to convert complete 

chessboard environments into one of three values: 1, 0, -1 where 1 represents a board that 

is likely to result in a win, a 0 represents a board that is likely to result in a draw, and -1 

represents a board that is likely to result in a loss (Thrun, Sebastian 1070).  0 rankings are 

more common to appear in later game scenarios rather than early game settings.   The 
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algorithm handling this ranking procedure is implemented using recursion to pass 

through each intermediate board between stages (Thrun, Sebastian 1070).  The evaluation 

function is also used at the end of the game to generate an overall rating of the game’s 

outcome.  However, the application of temporal-difference learning makes this procedure 

different than most standard outcome rating algorithms because the evaluation function is 

trained using the intermediate results generated by the parallel network for moves two 

steps in advance.   

There were three major concerns that the NeuroChess team encountered throughout 

the development of this project concerning the training and application of the network.  

The first was the issue of sampling.  Because most individual snapshots of board settings 

are insignificant among thousands of moves, a special system to assist the network in 

determining which move has the highest likelihood of leading to a victory is needed 

(Thrun, Sebastian 1073).  To remedy this, earlier stages of training rely more heavily on 

the grand-master game database until the system is more capable of making more moves 

completely on its own.  The second concern is quiescence, a criterion used to evaluate the 

depth of a search.  This applies to the evaluation of a board setting and determining the 

goodness of that board.  The primary issue here is that not all boards are equally complex 

and, while training, the evaluation of a board of higher complexity will not produce an 

adequate assessment (Thrun, Sebastian 1073).  To fix this, the evaluation is based on a 

simple measure of threat from opponent pieces.  The depth of the search for potential 

moves is based on this quiescence. The third major issue is discounting.  Discounting is a 

process of adjusting the sums of payoffs so that, in cases where the pay-off values are 

continuously compounding, the future rewards will not become absurdly large in 
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comparison to early rewards (Thrun, Sebastian 1073).  Initially, the research team did not 

think that a discount would be needed for chess, however, they discovered that due to a 

high level of random anomalies in the evaluation functions, that the network completely 

failed without a discount.  With appropriate adjustments to these issues, the neural 

network managed to perform exceedingly well against high-level opponents. 

OpenAI Five 

 

Efficiency 

The complexity of the OpenAI Five project is regarded as one of the most intensive 

neural network research studies to date.  Because the setting of the OpenAI Five agents is 

within the Dota 2 environment, there are thousands of factors influencing the 

environment every game tick.  Typical approaches towards categorizing environmental 

factors are virtually useless in the scenario of Dota 2.  Dota 2 is a multiplayer online 

game that focuses on controlling a predefined map.  The game sets two teams of five 
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players each against each other to continuously fight to gain control of the enemy team’s 

home base. Each player selects a character to control before the game begins, and each 

character has its own set of actions that is different than the other characters.  An action is 

an ability that the player can use to attack enemy players, defend themselves or 

teammates, or traverse the map.  Because of the extremely large sets of characters, 

actions, and items that change the effect of the character’s actions, Dota 2 has immensely 

complex environments that are vastly different between games.  This also means that 

search trees for each factor or option for each time step can be infinitely large.  

Obviously, this has an immense impact on the performance of any application to handle 

the environment because, from the perspective of the network, restrictions are virtually 

non-existent.  Putting this observation numerically, the environment of chess hosts an 

average of 35 potential moves per turn while Go hosts an average of 350 potential moves 

per turn (Pachoki 2).  Dota 2, however, hosts an average of 1000 potential moves/actions 

per game tick.  Furthermore, the average length of a game of Dota 2 lasts much longer 

than the average game of Chess or Go.  Chess usually ends in less than 40 moves while 

Go usually lasts around 150 moves (Pachoki 2).  OpenAI Five pulls game data every four 

game-ticks resulting in a game averaging 20,000 moves for each agent with an average of 

80,000 ticks per game. Traditional approaches for training neural networks to efficiently 

observe and process environmental data is not suited for an environment for which the 

complexity that Dota 2 is renowned.  In an attempt to approach the environmental 

optimization issue, OpenAI Five uses a massively scaled implementation of Proximal 

Policy Optimization. 
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Proximal Policy Optimization (PPO) is an approach to deep reinforcement learning 

approximation functions using a focus on first-order optimizations.  PPO has two primary 

applications of policy optimization: policy gradient methods and trust-region methods 

(Shulman 1).  Policy gradient methods implement a combination of estimating a policy 

gradient and then using it in a stochastic gradient ascent algorithm (Shulman 1).  

Stochastic gradient ascent is a close alternative to gradient ascent, which is a weight 

updating algorithm that uses the entire available data set for each update (Harrington 1).  

However, with large data sets such as the environment of Dota 2, this is not an effective 

approach.  Instead, stochastic gradient ascent takes classifier data in batches as they are 

available instead of taking all of it at once (Harrington 1).  This makes handling the 

immense amount of data easier by processing it in batches and updating the weights when 

needed.  This allows the process of updating classifiers to occur throughout the game 

while minimizing the processing time of the evaluation functions.   

One disadvantage that this concept has is that it is nearly impossible to draw 

information on what gameplay is considered better by pulling data from a set of previous 

known high-level games.  Instead, OpenAI Five relies solely on training data from games 

it plays against itself.  While this results in extremely long training times, it has proven to 

be the most effective method of implementing reinforcement learning approaches without 

using datasets from previous games.  The implementation of such a large concept 

requires massive amounts of computational resources.  OpenAI Five utilizes 128,000 

preemptible CPU cores and 256 P100 Graphics processing units (Pachoki 2).  The 

networks take one observation every four game-ticks with a total of 1,048,576 

observations per day (Pachoki 2).  Additionally, the agents play an accelerated gameplay 
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system that performs the equivalent of 180 years of gameplay every day for each agent.  

While the number of resources required to effectively implement OpenAI Five, it is 

optimized to be as high performing and as efficient as possible within the limits of the 

Dota 2 environment. 

Input 

The world of Dota 2 is full of variations and different concentrations of potential 

actions throughout the symmetrical and lane-based map.  OpenAI Five represents this 

environment by using a list of 20,000 numerical values for each factor (Pachoki 2).  

Additionally, because the game allows players, or in this case agents, to utilize a list of 8 

different actions based on the character, OpenAI Five represents each action by its own 

enumeration values. Among the environment, values are sampled ranging from fellow 

teammates, nearby enemies, enemies’ actions, non-player characters, structure and 

objects in the game, and affect areas of enemy attacks.  

Structure 

The structure of OpenAI Five consists of five separate networks that each contain 

independent, single layer Long Short-Term Memory networks (LSTM) with each 

containing 1024 units (Pachoki 2). An LSTM is a specially designed recurrent neural 

network that is capable of learning long-term dependencies (Olah). Typical recurrent 

neural network design involves keeping track of all past behaviors.  This approach was 

implemented because it remedies this issue while maintaining the effectivity of a 

recurrent neural network structure.  The core component of an LSTM is known as the cell 

state.  The cell state is a single pipeline that runs through each cell in the network with 
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very little linear interactions (Olah).  This allows information to pass through the pipeline 

virtually unchanged (Olah).  The LSTM is able to remove or add information into the cell 

state, however, this process is heavily regulated by a separate structure known as gates 

(Olah).  Each gate is constructed with a sigmoid neural network layer and hosts a 

predefined operation to determine what information makes it into the cell state.  Each 

network extracts data from the current game state, using a bot API developed by Valve 

corporation, which feeds into several input locations referred to as action heads (Olah).  

Each head is computed individually and holds specific semantic meaning representing 

possible actions – such as choosing an ability to use or a coordinate to move to in the 

game environment.  This structure allows for the ability to recognize missing information 

or inconsistencies in the game environment very similar to that of an unsupervised 

learning neural network structure.  An example of this in practice was observed when 

OpenAI Five was able to recognize when an area-of-effect attack was used by an enemy 

player.  This is when damage is applied to anything within a specific area.  The 

significance of this is that this attack style was not predefined in any way and the agent 

was able to avoid or escape the attack with no outside intervention (Pachoki 4).   

Training 

Because OpenAI Five learns solely from self-play, the training process begins with a 

sample of random values for weights.  However, this poses a problem in which the 

strategic planning of the network can fall into a system in which it gains an increased bias 

towards strategies that it has performed in the past.  To overcome this learning issue, 

OpenAI Five uses eighty percent of its gameplay against itself and twenty percent against 

playthroughs of its past selves (Pachoki 4).  This overall process results in initially 
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hopeless agents wandering aimlessly around the map.  However, over thousands of hours 

of training, the agents begin to exhibit strategy planning.  After several thousand hours of 

gameplay, the five agents began to exhibit advanced level strategy making including 

teammate swapping and resource farming to gain an advantage.  However, once this 

network was used against human opponents, it failed miserably due to the inconsistency 

in loadout, health, speed, start level and several other variables (Pachoki 4).  The network 

was retrained by playing against opponents with randomly selected loadouts to fix the 

issue in human play. This forced the network to explore various new strategies due to the 

network not having an implicit expectation of these variables.  It is also important to note 

that these changes were applied only during the training and were not applied against 

final play.  After these adjustments were made and several more training hours had 

completed, OpenAI Five began consistently beating human opponents.  These training 

adjustments allowed for great variability and flexibility in the final application against 

varying skill leveled human opponents.   

Because OpenAI Five utilizes deep reinforcement learning, one of the most important 

factors in training and effective network is measuring reward.  OpenAI Five uses a 

collection of metrics that are defined by what human players use to evaluate how well 

they are performing in the game such as net worth, kills, deaths, assists, last hits and 

various other values (Pachoki 4).  However, each agent has a hardcoded item and skill 

builds (Pachoki 4).  This was implemented to simplify the training procedure and save 

time.  The system that controls the reinforcement learning process is called Rapid.  This 

divides the training system into a collection of workers that each runs a copy of the game 

with its own agent that collects experience and optimizer nodes.  Optimizer nodes 
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perform independent synchronous gradient descent utilizing the system of GPUs for 

faster processing times (Pachoki 5).   

Playing Checkers without Human Expertise 

Efficiency 

The input format for the primary evaluation function is very lightweight 

compared to many other neural network input vectors and is represented using a single 

input vector of the game board.  The simplicity of the input allows for fast processing 

time while using very few computing resources.  In addition to the simplicity of the input 

vector’s format, the rules for Checkers is very simple and very limiting for individual 

pieces.  Because the vast majority of pieces are regular pieces that can only move in 

forward diagonal movements, the number of potential moves for each piece could be 

purely represented numerically (Chellapilla, and Fogel 4).  Also, because each piece is 

equivalent, with an exception for King pieces, the same evaluation could be used for each 

piece. Each of these components together enabled the network to process each board 

incredibly fast. 

Input 

Using a representation of the eight-by-eight board, preparing the game setting to be of 

the appropriate form for processing by the evaluation function consisted of several 

different representations for each game piece.  These representations include 

differentiating between which side a game piece belongs and King pieces.  Each square 

in the checker grid is represented using a unique data structure with an index representing 

the individual square and a variable that represents the piece that is currently using that 
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square during that time step (Chellapilla, and Fogel 4).  Each of the representative 

variables was only one of five values: -K, -1, 0, +1, +K (Chellapilla, and Fogel 4).  A 0 

represented an empty state, a 1 represented a normal checker piece, and a K represented a 

king piece.  Each value’s sign represented which side, player or opponent, whom the 

piece belongs (Chellapilla, and Fogel 4).  

Structure 

The neural network is broken into five total layers.  The first is the input layer that 

takes the input vector of length 32 and separates into a series of sub-vectors that 

sequentially represent overlapping sub-squares from the game board (see fig 4.) Each 

new sub-vector is passed into the first hidden layer referred to as the Spatial 

Preprocessing Layer (see fig 4.).  This layer consists of 91 nodes. After evaluation by the 

first hidden layer, the modified values are passed into a second hidden layer with only 40 

nodes.  The new values are then passed into the third and final hidden layers consisting of 

only 10 nodes.  Finally, the sum of the output from the third layer is passed into a single 

output node that represents the final move decision (see fig 4).   
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Fig 4.  

Source: Chellapilla, Kumar, and David B. Fogel. "Evolving an expert checkers playing 

program without using human expertise." IEEE Transactions on Evolutionary 

Computation 5.4 (2001): 422-428.  

    

Training 

The primary processes for evaluating weight modification were housed in an 

evolutionary algorithm that produced a scalar output of the board representing the worth 

from the perspective of the player (Chellapilla, and Fogel 4).  This output ranged from 0 

to 1 with 1 representing a perfect board with the most possibility for victory.  This 

algorithm begins by creating a population of 15 strategies that are defined by weights and 

biases.  These weights and biases are generated using a uniform sample over a range of 

0.4 (Chellapilla, and Fogel 4).  The size of this range determines the variability between 

strategies with the purpose of creating a useable variation for the initial stages of the 

training process (Chellapilla, and Fogel 5).  The network also includes a value known as 

a self-adaptive parameter (Chellapilla, and Fogel 5). This parameter was equivalent to the 
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variability range and was used to control the step size for each search process during 

evaluation.  Each iteration created offspring with new weights and biases and received a 

point value representing the success of their performance.  Each child performed in five 

randomly selected opponents (Chellapilla, and Fogel 5).  In order to prevent children 

from playing games that lasted too long or reaching a never-ending stalemate, games 

were ended as a draw if they exceeded a total of 100 moves.  If a game were lost, it 

would receive -2 points and if the network won, it would receive 1 point.  If a game 

exceeded 100 moves and resulted in a draw the point value would be unchanged.    In 

total, each generation played a total of 150 games with each generated strategy being 

implemented in 10 games (Chellapilla, and Fogel 5).  Each game utilized a search 

algorithm known as a minimax alpha-beta search with a search depth of four. The 

minimax alpha-beta search algorithm utilizes a process of alpha-beta pruning that focuses 

on decreasing the number of subsequent node evaluations (Knuth, and Moore 1).  The 

decision to use this algorithm in the setting of competitive checkers was made because of 

the efficiency of determining which subsequent moves to evaluate.  If the algorithm 

determines that one move possibility proves that the current move is worse than the 

previous, it stops evaluating that sub-tree altogether (Knuth, and Moore 1).   The process 

of evolving an expert level checker-playing neural network was completed over the 

course of six months through 840 total generations.   

Conclusion 

 AlphaGo/AlphaGo Zero, Playing Atari with Deep Reinforcement Learning, 

NeuroChess, OpenAI Five, and Playing Checkers without Human expertise are neural 

network projects that demonstrate the capability of neural networks in advanced plan 
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development tasks.  However, the approaches of each project vary between efficiency, 

input type, structure, and training techniques.   

 Each project utilized different forms of optimization to increase the efficiency of 

the network’s performance.  This is due to the variation between each project’s target 

environment and the availability of physical resources.  AlphaGo/AlphaGo Zero, OpenAI 

Five, and Playing Atari using Deep Reinforcement Learning had availability to larger 

amounts of processing power as compared to NeuroChess and Playing Checkers without 

Human Expertise. However, all networks used a system for optimizing search times and 

used a modification system suited appropriately to each network’s individual needs.  For 

example, OpenAI Five used proximal-policy optimization and only used game data 

pulled from previous iterations while NeuroChess was able to effectively pull game data 

from a database of grand-master level games.  While NeuroChess did not have as great of 

a need for input optimization as OpenAI Five, both networks performed well using their 

respective approaches. 

 All five projects utilize a form of vector to hold the input values used by the 

network.  AlphaGo/AlphaGo Zero utilizes a vector representing the pieces on the game 

board.  This approach is shared by NeuroChess and Playing Checkers without Human 

Expertise because each environment is a game board grid.  This is opposed to the input 

format of OpenAI Five and Playing Atari using Deep Reinforcement Learning because 

these projects focused on an environment that was much more dynamic.  Although these 

two projects utilized vectors of input values, the input was drawn from a continuously 

changing system.  For the Atari network, this was the pixel values of the screen and 

OpenAI Five used input pulled directly from the Dota 2 game environment.  
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 One of the more varying aspects between each project are the structures that each 

use.  Some networks, like AlphaGo/AlphaGo Zero and OpenAI Five, performed using 

parallel networks while Playing Checkers without Human Expertise utilized a single 

processing network instead.  Parallel structures allow for communication between 

networks that increase efficiency and decrease training times while using large input data 

sets.  However, not all environments produce large enough data sets and create large 

enough search trees that a parallel structure would be effective.  However, when using 

such a structure is appropriate, the potential that the network has to handle extremely 

complex tasks is much greater.  

 Finally, the training techniques used by each network varies as well.  While most 

neural network projects utilize forms of stochastic gradient descent algorithms for 

modifying weights, differences in how the network learns from the input can vary based 

on the network type, whether the network has continual access to sample data, whether 

the network maintains a memory of its previous iterations and other factors.  NeuroChess 

is a great example of the potentially short training times when using a set of predefined 

data.  However, networks like OpenAI Five, while training times are much longer, 

demonstrate the potential of using only sets of previous iterations by the network itself. 

The use of techniques like reinforcement learning is also effective is applied 

appropriately given the proper reinforcement type.  Playing Atari Using Deep 

Reinforcement Learning demonstrates the need for appropriately evaluating the reward 

systems for individual reinforcement learning applications. The effectivity of different 

training techniques is dependent on the use of the network, type of input, and overall 

application of the neural network model.   
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 Neural networks continuously demonstrate the future that the computational 

model has for advanced learning and planning tasks.  The application of these networks 

in continuously changing environments continuously proves the capability of modern 

computing.  AlphaGo/AlphaGo Zero, Playing Atari Using Deep Reinforcement Learning, 

NeuroChess, OpenAI Five, and Playing Checkers Without Human Expertise are five 

influential neural network projects that demonstrate the capability that this computational 

model has in complex plan development tasks. By observing these projects and the 

components that they share, it is shown that the complexity of the plan development 

problem has countless possible approaches using a neural network model. 
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Fig 5 – Findings Efficiency Components Input 

Components 

Structure 

Components 

Training Components 

AlphaGo/AlphaGo 

Zero 

-utilizes a lookahead 

search 

-64 GPUs and 19 CPUs 

-optimized with Stochastic 

Gradient Descent 

-represented 

with a single 

input vector 

-four processing 

layers 

-single pass for each 

iteration 

-utilizes a four-phase 

Monte Carlo Tree Search 

-3 days training time 

-4.9 million games 

throughout training 

-deep reinforcement 

learning 

Playing Atari with 

Deep Reinforcement 

Learning 

-preprocessing for input 

flattening 

-84x84 pixel vector 

-utilizes final-frame 

capture for optimization 

-optimized with Stochastic 

Gradient Descent 

-seven varying 

input vectors for 

each 

environment 

 

- single pass for each 

iteration 

-convolutional 

-reward proportion 

modification 

-deep reinforcement 

learning 

NeuroChess -explanation based 

learning for optimization 

-work divided across 

workstations 

- represented 

with a single 

input vector 

-parallel neural 

network structure 

-temporal difference 

learning 

OpenAI Five -proximal policy 

optimization 

-128,000 CPU cores 

-256 P100 GPUs 

-1,048,576 observations 

per day 

- optimized with 

Stochastic Gradient 

Descent 

-20,000 value 

representations 

and list of 8 

actions for each 

agent 

-multiple input 

nodes 

-five recurrent 

parallel networks 

 

-deep reinforcement 

learning with Rapid 

Playing Checkers 

Without 

HumanExpertise 

-small input vector -represented 

with a single 

input vector 

-five layers with 3 

hidden layers 

-proprietary evolutionary 

algorithm 

-minimax alpha/beta search 
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