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ABSTRACT 

Research results from this study reveal students have difficulties understanding 

and using of the concepts of average rate of change and the derivative function. Students 

in this study held multiple approach to understand the concepts that made it difficult to 

develop a strong understanding of the average rate of change and derivative function. In 

particular, students struggled to visualize or imagine a continuously varying rate of 

change and had difficulties in making meaning and interpreting concepts of average rate 

of change and derivative function.  

This dissertation presents research on how first-year calculus students develop 

smooth continuous covariational reasoning abilities in the context of the concepts of rate 

of change and derivative functions. This study utilizes a comparative case study 

methodology to explore each research participant’s construction of understanding and 

reasoning pattern development. An initial instructional sequence was designed to support 

Calculus I students in constructing understandings of average rate of change and 

derivative function. Students were then supported in reasoning about how two quantities 

vary and co-vary dynamically. The instruction supported students’ reasoning abilities 

when solving problems related to the concept of average rate of change and derivative 

function in linear and nonlinear function situations.  

The research findings show that the study participants demonstrated different 

types of reasoning to conceptualize the concept of quantity, variation, and covariation 

when solving mathematical problems related to the concept of average rate of change and 

derivative function. Sam, one of the study’s participants, demonstrated strong concrete 

object-oriented reasoning to conceptualize the average rate of change and derivative 
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function. Another study participant, Ruby, engaged in procedure-oriented reasoning to 

conceptualize the average rate of change and derivative function. Chris, the third study 

participant, engaged in terminology-oriented reasoning to conceptualize the average rate 

of change and derivative function. The analysis of the data results of this study shows in 

detail how these three types of reasoning were a limitation for the participants’ 

mathematical problem-solving ability and conceptualizations of covariation, average rate 

of change, and the derivative function. This study uncovered the above three types of 

problematic reasoning orientations as it relates to covariational reasoning and learning 

average rate of change and derivative, but these types of reasoning orientations are most 

certainly not the only types of problematic reasoning orientations for Calculus I students 

—there are likely other problematic reasoning orientations that might be discovered in 

future studies. 
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CHAPTER 1: INTRODUCTION 

Introduction 

First-year calculus students learning the foundational concepts of calculus, such 

as rate of change, derivatives, and integrals, depend on their deep mathematical reasoning 

abilities, especially on their variational, quantitative, and covariational reasoning abilities 

(Carlson et al., 2002; Castillo-Garsow, 2012; Orhun, 2012, Thompson & Carlson, 2017). 

In addition to the core mathematical reasoning abilities, current research in the teaching 

and learning of calculus indicates that a smooth continuous covariational reasoning 

ability is crucial for fostering students’ conceptual understanding in calculus, because the 

central concepts of calculus are founded on smooth continuous covariational reasoning 

schema (Ely & Ellis, 2018; Johnson et al., 2017; Oehrtman et al., 2008). Smooth 

continuous covariational reasoning means having an image of change in one variable 

value happening simultaneously with changes in another variable value, while both 

variables progressively change (Castillo-Garsow, 2012; Thompson & Carlson, 2017). 

Two reasons form the rationale to study first-year calculus students’ smooth 

continuous covariational processing abilities. The first reason is, in the researcher’s two 

years of teaching experience in first-year university Pre-Calculus and Calculus courses, 

smooth continuous covariational reasoning ability is a critical reasoning ability that first-

year calculus students must develop before they deal with nonlinear mathematical 

systems (i.e., from a covariational perspective, a nonlinear mathematical system is a 

system in which the change of the output variable value is not proportional to the change 

of the input variable) and advanced calculus concepts. The second reason originates from 

research results in calculus, which indicate that smooth continuous covariational 
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reasoning ability is a fundamental reasoning ability that will support students to develop a 

conceptual understanding (Castillo-Garsow, 2012; Thompson & Carlson, 2017). 

This study will add to the body of research in first year students’ calculus learning 

and teaching. Although many studies have explored first-year calculus students’ 

covariational reasoning abilities, it is rare to find studies that explored smooth continuous 

covariational reasoning abilities (Carlson et al., 2002, Johnson, 2015; Thompson & 

Carlson, 2017; Tyne, 2017). Therefore, this dissertation focuses on understanding how 

first-year calculus students develop smooth continuous covariational reasoning abilities 

in the context of the concepts of rate of change and derivative. 

Background for the Study 

Students’ covariational reasoning plays a critical role in conceptual understanding 

of the foundational concepts in calculus (Castillo-Garsow, 2010, 2012; Castillo-Garsow 

et al., 2013; Ely & Ellis, 2018; Thompson & Carlson, 2017). Covariational reasoning is 

having an image of two quantities varying together within specified intervals. In calculus, 

there are several theoretical constructs describing how students develop variational, 

covariational, and other related reasoning orientations among the major researchers such 

as Carlson et al. (2002), Confrey and Smith (1994), and Saldanha and Thompson (1998). 

The researcher describes these constructs below and shows how the constructs are 

utilized in the study. 

Confrey and Smith (1994) describe covariation as coordinating the change of 

fixed length from 𝑦𝑚 to 𝑦𝑚+1 with the change of fixed length from 𝑥𝑚 to 𝑥𝑚+1 without 

considering the change within the intervals. For these researchers, variation and 

covariation are “chunky” in the sense that change in a variable’s value is imagined as 
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adding nonzero (typically fixed) amounts repeatedly from the beginning value to the end 

value of the variable. Students then engage in “chunky” covariational reasoning; they 

may only coordinate discrete changes ∆𝑥 with the corresponding discrete changes ∆𝑦 

(Castillo-Garsow, 2012; Confrey& Smith, 1994, 1995; Saldanha &Thompson, 1998; 

Thompson & Carlson, 2017). 

In contrast, Saldanha and Thompson (1998) viewed covariation as “continuous 

covariation.” Saldanha and Thompson describe what they mean by continuous 

covariation, saying, “In the case of continuous covariation, one understands that if either 

quantity has different values at different times, it changes from one to another by 

assuming all intermediate values” (p.2.) The current study interprets and views Saldanha 

and Thompson’s idea of covariation as “smooth continuous covariation” because, for 

Saldanha and Thompson, variation of a quantity has a meaning of progressive change and 

at the same time the quantity has a measurable value, while the varying quantities 

progressively vary at the start and end of the interval (Saldanha & Thompson, 1998). For 

these researchers, students then engage in “smooth continuous” covariational reasoning 

when they coordinate change in progress in one variable with the corresponding change 

in another variable. The current study equally shares the ideas and views of Saldanha and 

Thompson and defines smooth continuous covariational reasoning, which entails an 

image of change in one varying quantity or variable’s value happening simultaneously 

with changes in another variable’s value, while both variables progressively change 

(Thompson & Carlson, 2017). 

More recently, Castillo-Garsow (2010, 2012) gave a refined view of variation that 

was developed from his study by extending Saldanha and Thompson’s (1998) views of 
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covariation. According to Castillo-Garsow students can think about variation in two 

ways: “chunky” variation and “smooth” variation. “Chunky” variation means a fixed 

amount of change of the variable value and the idea is rooted in the sets of integer 

numbers or sets of rational numbers. Smooth variation means change-in-progress of the 

value of a variable, and the idea is rooted in sets of real numbers. The current research in 

calculus supports the idea of Castillo-Garsow and redefines “smooth continuous 

covariation” as a top-level of covariational reasoning ability among different types of 

covariational reasoning (Thompson & Carlson, 2017, p.441). The ideas of the two types 

of reasoning are described below in connection to students’ calculus learning. 

Chunky and smooth covariational reasoning play a fundamental role in U.S. 

mathematics education in different ways, particularly in calculus. Chunky covariational 

reasoning—not smooth continuous covariational reasoning—is the current dominant 

form of reasoning in U.S. mathematics education, especially in the study of calculus 

(Boyer, 1949; Carlson et al., 2002; Castillo-Garsow, 2010, 2012; Castillo-Garsow et al., 

2013; Goldstine, 2012; Tall, 1992; Thompson & Carlson, 2017). For instance, a research 

review in the study of calculus by Thompson and Carlson (2017) reveals that the U.S. 

curriculum does not have a clear picture of the idea of smooth variation or continuously 

varying quantity. More importantly, in the U.S. curriculum, it is uncommon to reason 

covariationally, and this contributes to weakness in students’ conception of the rate of 

change and derivative (Thompson et al., 2017). The researcher argues that, to benefit 

calculus students’ conceptual learning, there should be a focus on smooth continuous 

covariational reasoning instruction in the U.S. curriculum, and to do so, faculty must 

better understand how calculus students reason covariationally. 
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Researchers in calculus argue that chunky continuous covariational reasoning 

may lead students to develop procedural knowledge regarding the concepts of calculus, 

such as variables, rates of change, and derivatives (Castillo-Garsow, 2010, 2012; 

Castillo-Garsow et al., 2013; Thompson & Carlson, 2017). However, research has shown 

that smooth continuous covariational reasoning is a better reasoning ability for promoting 

a strong conceptual understanding of the core concepts of calculus (Carlson et al., 2002; 

Castillo-Garsow, 2010, 2012; Castillo-Garsow et al., 2013; Thompson & Carlson, 2017). 

The researcher contends that in mathematics, particularly in calculus, there should be a 

greater focus on smooth continuous covariational reasoning practices, because smooth 

continuous covariational reasoning will facilitate first-year calculus students to a 

conceptual understanding of the concepts of calculus. In the following section, the 

researcher discusses the importance of this type of reasoning. 

The Importance of the Types of Reasoning 

Chunky and smooth reasoning can lead students into different mathematical 

understandings (Castillo-Garsow, 2012; Castillo-Garsow et al., 2013; Thompson & 

Carlson, 2017). Castillo-Garsow et al. indicates, “Chunky thinking generates chunky 

conceptions of variation, whereas smooth thinking generates smooth conceptions of 

variation, with these conceptions producing different mathematics” (p.36). Consequently, 

two different forms of reasoning for the same mathematical problem will likely lead 

students to produce two different mathematical representations and, hence, different 

mathematical understandings. Therefore, the current study argues that students’ smooth 

continuous covariational reasoning abilities are critical reasoning abilities when 

compared to chunky reasoning for students to foster conceptual understanding in 
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calculus. More importantly, the current study shares the idea of Thompson and Carlson 

(2017) and equally argues that smooth continuous covariational reasoning is 

epistemologically essential for students to develop the foundational ideas of calculus.  

More research on how students develop smooth continuous covariational 

reasoning needs to occur (Castillo-Garsow, Johnson, & Moore, 2013; Thompson & 

Carlson, 2017). Thus far, research results indicate that students have weak and 

unproductive covariational and smooth continuous covariational reasoning abilities 

(Carlson et al., 2002; Castillo-Garsow, 2012; Castillo-Garsow et al., 2013; Ely & Ellis, 

2018). For instance, a study by Carlson et al. (2002) indicates that many students, even 

high performing students, show difficulty in covariational reasoning in dynamic 

situations (i.e., a situation that engages students in critical thinking, exploration, and 

deeper mathematical discussion) and often students’ reasoning occurs at the gross 

variational or covariational level. Gross variational reasoning means a person understands 

that the value of a variable increases or decreases, but they have no idea that it might take 

on values in the given interval while changing. One idea that researchers suggest 

supporting students’ development of smooth continuous covariational reasoning is to 

implement instruction that uses dynamic mathematical tasks with the support of 

technology (Castillo-Garsow, 2012; Cory & Martin, 2012; Engelke, 2007, 2008; 

LaForest, 2015; Thompson & Carlson, 2017). Yet, how to implement this is still very 

much an open problem (Thompson & Carlson, 2017).  

This dissertation progresses by setting up a series of lessons that use dynamic 

mathematics tasks, interactive applets, and an instructional approach that focuses on 

facilitating students’ learning (Clement, 2000; Cobb, 2000; Thompson et al., 2007). 
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These three aspects support this investigation into students’ development of smooth 

continuous covariational reasoning ability, because research results show that these three 

aspects of teaching and learning support students’ knowledge construction (Clement, 

2000; Cobb, 2000; Thompson et al., 2007). While the lessons are not the focus of this 

study, they are an important part of the methodology because they facilitate opportunities 

for students to use and develop smooth continuous covariational reasoning. There is a 

further discussion about the lesson design, dynamic tasks, and technology in Chapter 

Three.  

Statement of the Problem 

Research results in calculus indicate that the root cause of first-year calculus 

students’ poor conceptual understanding of the concept of variation, rate of change, and 

derivatives is connected to their mathematical reasoning abilities, especially their 

quantity, variational, covariational, and smooth continuous covariational reasoning 

abilities (Byerley, Hatfield, & Thompson, 2012; Moore et al., 2009). More importantly, 

research results in calculus indicate that first-year university calculus students hold 

multiple and unproductive conceptual understandings of the average rate of change and 

derivative and because the conceptual understanding of the two concepts are significant 

for students’ advanced calculus learning, this should be addressed in early and high 

school curricula (Dorko& Weber, 2013; Dufour, 2015; Johnson, 2015; Tyne, 2014; Tyne, 

2017). In particular, students struggle to visualize or imagine a continuously varying rate 

of change and have difficulties in constructing meaning and interpreting concepts linked 

with increasing or decreasing rates for a physical situation (Castillo-Garsow et al., 2013). 
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The problem that students have while developing an understanding of rates of 

change and derivatives is understudied. As indicated in the research results in calculus, 

understanding the concept of rate of change and derivatives requires sophisticated 

reasoning. Reasoning about the concept of rates of change and derivatives relies on 

variation and covariation of quantity. To alleviate the students’ poor conceptual 

understanding of the concept of derivative and rate of change, researchers suggest that 

students first need to develop smooth continuous covariational reasoning in order to 

overcome their difficulty understanding the basic concepts of calculus (Carlson et al., 

2002; Thompson & Carlson, 2017). 

Statement of Purpose 

 The purpose of this study is to examine how first-year calculus students 

understand and develop smooth continuous covariational reasoning. Researchers 

emphasize the importance of developing students’ smooth continuous covariational 

reasoning abilities to support a robust understanding of the foundational ideas for 

calculus, including rate of changes and derivatives (Byerley, Hatfield, & Thompson, 

2012; Castillo-Garsow et al., 2013; Moore et al., 2009; Thompson & Carlson, 2017). 

Additionally, researchers view this type of reasoning as the main agent that allows 

undergraduate students to succeed in advanced mathematics courses, science, 

engineering, and STEM education in general (Johnson & McClintock, 2017). 

Consequently, to understand the development of students’ smooth continuous 

covariational reasoning, this study begins by engaging students in variational and 

covariational reasoning activities. Next, the study examines how students develop smooth 

continuous covariational reasoning abilities in first year Calculus I contexts. The purpose 
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of this study is to examine how first-year calculus students develop smooth continuous 

covariational reasoning in the context of Calculus I. This study utilizes a comparative 

case study methodology to explore each individual research participant’s construction 

and reasoning pattern development (McKenna et al., 2011; Orlikowski & Baroudi, 199; 

Moy, 2005; Patton, 2015). This study addresses the following two research questions: 

1. What types of reasoning do first-year calculus students engage in to 

conceptualize the relationship between two progressively covarying 

quantities?  

2. What methods of reasoning do first-year calculus students employ during a 

rate of change and derivative instructional sequence that supports smooth 

continuous covariational reasoning? 

Significance of the Study 

The proposed study is significant in three ways: the research contributes to a 

larger body of knowledge on students’ smooth continuous covariational reasoning in 

calculus learning; the results of the study inform the calculus curriculum and instruction 

based on students’ foundational reasoning abilities, and the results of this study fill a gap 

that the research results indicate as to the importance of developing undergraduate 

students’ smooth continuous covariational reasoning abilities (Byerley, Hatfield, & 

Thompson, 2012; Castillo-Garsow et al., 2013;Moore et al., 2009; Thompson and 

Carlson, 2017). 

 

https://journals.sagepub.com/doi/full/10.1177/1609406919862424
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Definitions 

Throughout this study, the following definitions will be used to clarify the meaning of 

each key term:   

A variable – A symbol that represents a quantity’s values within a given interval. 

Rate of change - Rate of change between two quantities is a ratio of the corresponding 

changes in these quantities. 

Average rate of change - The average rate of change between the two quantities is the 

constant rate of change that produces the same change in the dependent quantity as the 

original relationship over the given interval.  

Derivative function - A continuous varying rate of change function whose meaning is 

rooted in the concept of an average rate of change function that is the derivative of a 

function is the outputs of the limiting value of the average rate of change of function as 

the independent variable approaches to zero in a given interval or a refinement of the 

average rate of change function as the independent quantity continuously vary in the 

given interval. 

Covariational reasoning - The act of holding in mind a continued mental image of two 

quantities covarying simultaneously; that is, a person’s ability to imagine how one of the 

quantity changes while imagining a change in the other. 

Chunky variation - A fixed amount of change of a variable value. 

Chunky variational reasoning - Having an image of change of the variable value as the 

variable values change by intervals of a fixed size.  
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Chunky covariational reasoning - Having a mental image that entails adding fixed size 

value between successive values of one variable and coordinating this with another 

variable value. 

Gross variation - The value of a variable increases or decreases but little or no thought is 

given to the fact that it might have values while changing. 

Smooth variation - Change-in-progress of the variable value or change by the 

unnoticeable amount of the variable value.  

Smooth continuous variational reasoning – An imagination of a variable value 

progressively changing.  

Smooth continuous covariational reasoning - Image of change in one quantity’s or 

variable’s value happening simultaneously with changes in another variable’s value, 

while both variables progressively change (Thompson & Carlson, 2017). 
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CHAPTER 2: LITERATURE REVIEW 

Theoretical Perspective and Literature Review 

The purpose of this study is to examine how first-year calculus students develop 

smooth continuous covariational reasoning in the context of the concept of rate of change 

and derivatives. This study proposes the following two research questions: 

1. What types of reasoning do first-year calculus students engage in to 

conceptualize the relationship between two progressively covarying 

quantities?  

2. What methods of reasoning do first-year calculus students employ during a 

rate of change and derivative instructional sequence that supports smooth 

continuous covariational reasoning? 

The theories of constructivism (Cobb et al., 1992; Dubinsky & McDonald, 2001) and 

genetic epistemology (Campbell, 2006; Kitchener, 1986; Piaget, 1970, 1971) guide this 

study. These two theories are used to assess, measure, and understand the process of the 

students’ knowledge development and the design, implementation, and data analysis of 

the study. Additionally, this chapter discusses the literature concerning students’ 

conceptual learning of the concepts of rate of change and derivative in connection to 

covariational and smooth continuous covariational reasoning abilities of which first-year 

calculus students have limited conceptual understanding. 

Theoretical Perspective 

This study is built on the idea of a constructivist view of learning; in this view, 

individual learning is viewed as a process of discovering, constructing, and self-learning 

by engaging with other learners (Cobb et al., 1992; Dubinsky & McDonald, 2001). This 
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theory views a classroom as a place that a group of students meets to discover, 

conjecture, and explore by actively participating, asking questions, and justifying their 

reasoning and the reasoning of other students. In this process of knowledge construction, 

an individual’s knowledge gains will be independent of another individual’s knowledge 

gains; it is a unique experience for individual students. The newly gained knowledge is 

the result of each individual student's reflection and abstraction activity on the concept 

they are learning. In this regard, knowledge is viewed as a process of an individual 

altering his or her prior knowledge due to a change in internal mental structure. More 

importantly, in this theory, the teacher’s role changes from a controlling the classroom to 

being more of a facilitator. Constructivism does not dismiss the role of teachers in the 

students’ knowledge gain process. In this theory, teachers will be positioned as more a 

guide of the students’ reflection and abstraction process by asking questions, listening, 

and catalyzing students’ work, rather than telling and showing the students what to do. 

For instance, according to this theory, in the learning of the concept of the derivative, the 

teacher's role changes from merely presenting the definition of derivative to enabling 

students to construct or produce their own definition of the derivative. 

As Piaget indicated, in the process of knowledge construction, two things happen 

in the students’ minds, that is, students’ knowledge assimilation and accommodation 

(Piaget, 1970, 1971).In this knowledge construction process, students seek a balance 

between knowledge assimilation and accommodation. For example, for students to 

construct abstract knowledge, like the concept of derivative function from smooth 

continuous covariational reasoning, students first need to assimilate the new experience, 

that is, the progressively covarying nature of two quantities in a dynamic situation. 
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Students then need to modify their existing knowledge about variations and this 

knowledge modification is called accommodation.  

The glue that creates the balance (the equilibrium or the understanding) between 

the new experience in the student’s mind and the modification of the existing knowledge 

is what Piaget calls reflective abstraction (Campbell, 2006; Kitchener, 1986; Piaget, 

1971). For example, the students’ experience and their actions will help them understand 

that a derivative function is the result of limit value of the average rate of change function 

as x varies progressively throughout the given interval. This means that the students’ 

abstraction and reflection on their actions will lead students to understand the concept of 

the derivative function.  

Piaget identifies two types of abstraction. The first is an abstraction created from 

the object, that is, empirical abstraction, and the second is an abstraction originating from 

the mental activity itself, which is a reflective abstraction (Kitchener, 1986; Piaget, 1970, 

1971; Tsou, 2006). This study builds on the idea of both types of abstraction. The 

empirical abstraction view of knowledge is abstracted from observation or obtained from 

knowing the property of the object (Kitchener, 1986; Piaget, 1970). For example, 

knowing that a variable has a fixed value or varying value is a type of empirical 

abstraction.  

Reflective abstraction occurs at a higher-level of mental reorganization. It arises 

from coordinating between two mental actions. For example, reflective abstraction can 

arise by coordinating the concepts of ratio and one varying quantity (Kitchener, 1986; 

Piaget, 1970). Interaction among actions is the basis of reflective abstraction. For 

instance, the coordination of change, that is, the knowledge of the covarying nature of the 
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two covarying quantity values is the result of reflective abstraction from the action, which 

is a bit higher knowledge. For example, a rate is a reflectively abstracted conception of a 

constant ratio between two covarying quantities (i.e., students’ image of a rate of change) 

(Piaget, 1970; Thompson, 1992). The knowledge that draws from the action is logical and 

mathematical. Therefore, according to the genetic epistemology theory, mathematical 

knowledge is constructed by the process of repeated reflective abstraction activity inside 

the students’ mind (Kitchener, 1986; Piaget, 1970, 1971). This means that a student 

constructs his knowledge from his experience through action, not from the transfer of 

knowledge from another student, person, or teacher. 

In this study, the theory of reflection and abstraction is viewed as the means to 

enable students to construct knowledge. Thus, the goal of teaching is to create 

opportunities for individuals to participate in abstract and reflective actions. Moreover, 

teaching must prepare situations in which students face a dynamic change in their 

cognitive structure so that they can actively engage in constructing knowledge.  

Background for the Study 

Research in the area of smooth continuous covariational reasoning is limited 

(Castillo-Garsow et al., 2013; Thompson & Carlson, 2017). The lack of research in this 

area may be due to the complex nature of the topic. The researcher planned to explore 

smooth, continuous, covariational reasoning because this reasoning type is viewed as a 

critical reasoning ability that will lead students to a conceptual understanding of the main 

concepts of calculus. However, the researcher found limited research availability in 

smooth, continuous, covariational reasoning, and thus research results from covariational 
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reasoning ability, rate of change, and the derivative function comprise a significant 

amount of the literature review section of this study. 

Smooth continuous covariational reasoning entails an image of change in one 

quantity or variable’s value happening simultaneously with changes in another variable’s 

value, while both variables progressively change (Thompson & Carlson, 2017). Research 

results in first-year calculus suggests that smooth, continuous, covariational reasoning is 

fundamental for the development of students’ conceptual understanding of the rate of 

change, derivative, and accumulation (Johnson et al., 2017; Thompson & Carlson, 2017.) 

For instance, Thompson and Carlson (2017), Castillo-Garsow (2012), and Castillo-

Garsow et al. (2013) indicate that smooth, continuous, covariational reasoning is vital and 

critical when students learn advanced ideas of calculus, especially when students learn 

the ideas of nonlinear functions. Therefore, in this study, the view is that building 

students’ smooth, continuous, covariational reasoning will lead them to the right path of 

understanding concepts of calculus, such as rate of change and derivatives.  

The notion of covariational reasoning means a student has an image of two quantities 

varying together within specified intervals (Carlson et al., 2002; Castillo-Garsow, 2012; 

Thompson & Carlson, 2017). The cognitive activity that results from students 

constructing a covariational relationship by coordinating the values of two covarying 

quantities provides a foundation for students to reflect and abstract and then develop 

mathematical understanding. Students’ development of conceptual understanding about 

the concept of rate of change and derivative is connected with their reflection and 

abstraction ability on the nature of two covarying quantities. For example, according to 

the Covariation Framework (see Appendix A) the students’ covariational reasoning first 
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starts by, “Coordinating the value of one variable with changes in the other,” then 

students, “Coordinate the direction of change of the two quantities,” and then next 

students, “Coordinate the values of two quantities.” After that, students “Coordinate 

average rate of change one quantity with the other quantity,” and finally, students, 

“Coordinate the instantaneous rate of change of the function with continuous changes in 

the input variable,” which is the top level of reasoning (MA5) according to the Carlson 

framework (Carlson et al., 2002). All the above reasoning activities will lead students to 

construct a new concept and develop mathematical understanding. Further, Carlson 

classified each student’s mental action into five levels of reasoning: MA1 (L1) is a 

coordination level, and at this level, the students’ image of covariation can support the 

mental action of coordinating the change of one variable with changes in the other 

variable (MA1); Level 2 (L2)  coordinating the direction of change of one variable with 

changes in the other variable; Level 3 (L3) is quantitative coordination; Level 4 (L4) is 

average rate; and Level 5 (L5) is instantaneous rate (Carlson et al., 2002).Therefore, 

engaging in this type of reasoning is important for understanding the central concepts of 

calculus, such as rate of change and derivative (Carlson et al., 2002; Thompson, 1994; 

Thompson & Carlson, 2017). 

Covariational Reasoning in Calculus 

Research results in calculus indicate that covariational reasoning is 

epistemologically necessary for students to develop the foundational ideas of calculus 

(Ely & Ellis, 2018; Engelke, 2007; Moore & Paoletti, 2015). Covariational reasoning is 

the act of imagining how one quantity’s value changes while imagining the change in the 
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other quantity’s value (Ely & Ellis, 2018; Engelke, 2007; Moore & Paoletti, 2015; 

Thompson and Carlson, 2017). 

Several research results in the study of calculus indicate that students’ learning of 

the foundational concepts of calculus, like the rate of change and derivative function, 

relies on their clear and explicit covariation reasoning schema (Carlson et al., 2002; 

Castillo-Garsow, 2012; Engelke, 2004, 2007; Gray et al., 2007; Moore, 2010; Moore & 

Paoletti, 2013; Moore & Paoletti, 2015; Thompson & Carlson, 2017; Weber & Carlson, 

2010). Engelke (2004, 2007) indicates that students’ covariational reasoning allows them 

to create the problem situation in their minds, which helps them to understand how the 

system works. “For example, consider the following problem:” “Coffee is poured at a 

uniform rate of 20 𝑐𝑚3/𝑠𝑒𝑐   into a cup whose inside is shaped like a truncated cone. If 

the upper and lower radii of the cup are 4 cm and 2 cm, respectively, and the height of the 

cup is 6 cm, how fast will the coffee level be rising when the coffee is halfway up the 

cup.” (p.8.) One of the study’s participants, Adam, noted that the volume depends on the 

height, and he said “Just imagine that you already filled it up with coffee to here, um, 

because who cares about the total volume. All you want to know is how fast the coffee is 

rising when you’re at this volume.” For Adam, having the correct reasoning, in this case, 

the covariational reasoning abilities between how the volume and the height related, 

enabled him to focus on the problem situation and solve the problem. Similarly, Weber 

and Carlson (2010, p.8) indicate that, “Students’ quantification of the situation in terms of 

fixed and varying quantities allows them to create a dynamic mental image of the 

situation.” Another study by Moore and Paoletti et al. (2013) also indicates that 



19 
 

 

covariational thinking enabled students to perceive something that can be visualized and 

quantified by producing the mathematical relationship between two covarying quantities.  

A commonality among the above studies is that covariational reasoning is a 

critical reasoning ability for students to construct concepts like variation, function, rate of 

change, and derivative in calculus. “For example, consider the following problem:” “A 

box designer has been charged with the task of determining the volume of various boxes 

that can be constructed from cutting four equal-sized square corners of a 14-inch by 17-

inch sheet of cardboard and turning up the sides. Construct a formula that relates the 

volume 𝑉of the box, to the length of the side of the cutout 𝑥” (Weber & Carlson, 2010, 

p.8). The research participant of the study, Chris, understood that, “The length and width 

get smaller as you increase x, which is the cutout size,” (p.10). His covariational 

reasoning ability helped him to predict patterns of the volume of the box in relation to the 

length of the cutout based on his understanding of the box. Similarly, a student from 

Moore and Paoletti et al. (2013) study was tasked to construct the graph of 𝑓(𝜃)  =

 2𝜃 +  1 𝑖 n the polar coordinate system (PCS) and 𝑦 =  2𝑥 + 1 in the Cartesian 

coordinate system (CCS). This student understood both graphs in terms of a structure of 

covarying quantities, which enabled him to understand a graph in the PCS, and a graph in 

the CCS is produced by the same reasoning. 

Moreover, all the above research findings asserted that covariational reasoning is 

fundamental reasoning to develop students’ conceptual understanding of the main idea of 

functions, rate of change, and derivative (Carlson, 1998; Carlson, Larsen, & Jacobs, 

2001; Carlson et al., 2002; Saldanha & Thompson, 1998; Thompson & Carlson, 2017). 
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Therefore, covariational and smooth continuous covariational reasoning is critical for 

students to construct and develop understandings of the basic concepts of calculus.  

Role of Covariational Reasoning 

Several studies in calculus indicate that covariational reasoning is a crucial 

reasoning ability that leads students into a conceptual understanding for many calculus 

concepts such as rate of change (Castillo-Garsow, 2013; Confrey, 1994; Thompson & 

Thompson, 1996; Thompson, 1994) and derivative (Ely & Ellis, 2018; Engelke, 2007; 

Moore &Paoletti, 2015; Moore, 2010). A study by Moore (2010) shows that students, at 

first, exhibit limited understanding of angle measure, but after, they develop their 

covariational reasoning by engaging in dynamic mathematical tasks with technology, 

students develop an understanding of the concept of radius as the unit of measuring arc 

length. “For example, consider the following problem:” “While site seeing in New York 

City, Bob stopped 1000 feet from the Empire State Building and looked up to see the top 

of the building. Given that the angle of Bob’s site from the ground was 56 degrees, 

determine the height of the Empire State Building.” Zac at first constructs a 

mathematically incorrect equation cos (0.98) =1000; however, after some thought, he 

imagines determining, in radii, using this measure to determine the radius length and then 

determining a value that represented a multiplicative relationship between a length and 

radius. Zac’s correct covariational reasoning enables him to plan the solution by 

explaining that cos (0.98) represented a fraction of the radius without executing a 

calculation to determine this value. This correct covariational ability of Zac was due to 

his uniquely oriented, planned, and executed ability to model the problem situation by 

constructing a diagram of the situation and by clearly labeling the given variable values. 
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Similarly, Moore et al. (2013) indicate that covariational reasoning supported students to 

create a connection between different graphical representational activities. For example, 

students’ covariational reasoning abilities enable them to understand that both graphs 

𝑓(𝜃)  =  2𝜃 +  1 in polar and 𝑦 =  2𝑥 + 1 in the Cartesian system are representative of 

the same relationship, a relationship such that there is a constant rate of change between 

the quantities. Another study by Weber and Carlson (2010) illustrates that students’ 

covariational reasoning enables them to make sense of a complex mathematics problem 

by creating a diagram of the problem situation. For instance, Zac, one of the research 

participants, gave the correct explanation to the problem “A box designer has been 

charged with the task of determining the volume of various boxes that can be constructed 

from cutting four equal-sized square corners of a 14-inch by 17-inch sheet of cardboard 

and turning up the sides. Construct a formula that relates the volume 𝑉 of the box, to the 

length of the side of the cutout x.” 

This is due to Zac’s developed covariational reasoning abilities about how the 

length and width of the box change in tandem with the cutout length. He answers, “The 

length and width get smaller as you increase 𝑥, which is the cutout size” (p.10). 

Collectively, the above studies illustrate that covariational reasoning is foundational for 

making sense, understanding, constructing, and justifying the mathematics concepts and 

problems.    

Carlson, Larsen, and Jacobs (2001) study 24 students’ covariational reasoning 

abilities. The purpose of the study was to explore the effect of instructional materials on 

the development of students’ covariational reasoning abilities. The study consists of five 

separate activities designed to promote students’ ability to attend to the covariant nature 
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of dynamic functional relationships. Moreover, each activity contains a collection of 

prompts that encourages students to coordinate an image of the two variables changing 

and to attend to and represent the way in which the independent and dependent variables 

change in relationship to one another. That is, as the results of this study, students are 

able to give correct reasoning when they solve the limit and accumulation problem. In 

particular, the data analysis results of the pre- and post-test reveal a positive shift in 

students’ covariational reasoning abilities. Additionally, at the end of the semester, out of 

the 24 students, 23 of them provide the correct responses using the covariational language 

of concave down, then concave up, when solving the classic bottle problem. Moreover, at 

the end of the course, the students’ level of reasoning had reached a higher point, that is, 

at the MA5 level of reasoning. Therefore, the study reveals that the development of 

students’ covariational reasoning enables students to understand specific tasks for limit 

and accumulation.  

All three studies reveal that covariational reasoning is a mental activity, because 

covariational reasoning demands students construct their knowledge from the action and 

not from the object, and supports students to develop conceptual   understanding of the 

concepts of rate of change. Practically, what the above research results shows is that 

covariational reasoning is epistemologically necessary for students to develop the 

foundational ideas of calculus. Moreover, many studies suggest that students’ 

covariational reasoning abilities are developed by engaging students in dynamic 

mathematics instructional materials with the support of technology.  
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Students’ Covariational Reasoning 

Several studies in calculus investigate students’ covariational competence using 

Carlson’s covariational framework (2002). The studies’ results reveal that undergraduate 

calculus students, graduate students, and even experts have weak covariational reasoning 

abilities (Carlson et al., 2002; Hobson & Moore, 2017; Moore & Bowling, 2008; 

Thompson, Hatfield, Yoon, Joshua, & Byerley, 2017). 

Carlson et al. (2002) investigate 20 high-performing calculus students’ 

covariational reasoning abilities. The study's purpose is to explore how students develop 

covariational reasoning abilities in a mathematical context and also to propose a 

framework for describing the mental activities involved in applying covariational 

reasoning. Students in this study engaged in three different mathematical problems: the 

bottle problem, the temperature problem, and the ladder problem. The results of the study 

show that many students had difficulty creating images of a continuous rate of change by 

imagining an increasing and decreasing rate of change function within the given interval. 

Moreover, the study reveals that all students could not pass MA4 and L4 and had 

difficulty interpreting the rate of change (see Appendix A for a detailed description of 

MA4 and L4). Most significantly, the results of the study show that students were unable 

to interpret the concept of instantaneous rate of change. “For instance, for the bottle 

problem: Imagine this bottle filling with water. Sketch a graph of the height as a function 

of the amount of water that’s in the bottle,” only five (25%) of the students provided the 

correct answer and other students struggled and were not able to describe inflection 

points or increasing and decreasing rate of change for dynamic function situations. In 

particular, students showed difficulty characterizing the nature of change while imagining 
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the independent variable changing continuously and progressively. Similarly, for the 

temperature problem, only four (20%) students constructed an acceptable temperature 

graph, but most students were unable to produce a smooth curve with clear indications of 

concavity changes. In summary, the results of the study show that the majority of the 

students had difficulties in giving a well-reasoned solution, were unable to coordinate 

change between two covarying quantities, and had difficulty interpreting why the curve is 

smooth and what is conveyed by an inflection point on a graph; their reasoning level was 

below MA4 (see Appendix A). 

Moore and Bowling (2008) explore ten college algebra students’ covariational 

reasoning and quantification abilities. The purpose of the study was to classify the 

students’ level of covariational reasoning using the Carlson et al. (2002) covariational 

framework. The study results reveal that most students exhibited difficulty reasoning at a 

level higher than L2-L3 covariational reasoning behaviors (see Appendix A.) Most 

students were able to describe a directional change in volume as the cutout length 

increased and decreased (i.e., L2-L3) however, students were not able to describe the 

covariational relationship between the volume of the box and the cutout length. More 

importantly, they did not have images of varying rate.  

Hobson and Moore (2016) explore two students’ covariational reasoning. The 

study focuses on investigating students’ reasoning in a dynamic situation. The results of 

the study indicate that, besides students’ similar graph drawing between the two 

participants, the ways of reasoning between the two students throughout this task 

unfolded quite differently. Jake did not relate his construction of the tangent line to a 

coordination of change in one variable with change in the other . Covariational reasoning 
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is to construct equal changes in one variable value by comparing a corresponding change 

in the second variable values. This dissertation uses a similar idea to this study to 

determine models of students’ mathematics. 

All these three studies reveal that covariational reasonings are important to 

students’ conceptual understandings, but students have difficulty engaging with it. 

Students have difficulty reasoning beyond L3 covariational reasoning and also unpacking 

their reasoning of the rate of change by saying the rate of change is the quotient of the 

amount of change in one variable with a change in the other variable values. The currents 

study engages students in an activity that supports them to construct the idea of changes 

of one quantity by comparing the corresponding change in the other quantity. More 

importantly, this study relates the idea of the rate of change with the amount of change of 

the quotient of two varying quantities. 

Students’ Smooth Continuous Covariational Reasoning 

Studies in calculus suggest that smooth continuous covariational reasoning is 

critical for students to deal with calculus ideas, particularly ideas related to nonlinear 

functions (Castillo-Garsow, 2010, 2012; Castillo-Garsow et al., 2013; Thompson & 

Carlson, 2017). However, there are few research studies that focus on how students 

develop smooth continuous covariational reasoning in the context of the rate of change 

and derivative. The current study explores the development of students’ smooth, 

continuous, covariational reasoning and finds that this type of reasoning supports students 

to a more conceptual understanding of different calculus concepts (Castillo-Garsow, 

2012; Castillo-Garsow et al., 2013; Thompson & Carlson, 2017). For instance, smooth 

continuous covariational thinking can enable students to conceptually understand and 
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distinguish the difference between the concepts of the constant rate of change, the 

average rate of change, and the derivative function of a function (Castillo-Garsow et al., 

2013; Thompson & Carlson, 2017). 

The current study, in particular, argues that changing from chunky covariational 

reasoning learning, which is dominant in school mathematics, to smooth continuous 

covariational reasoning practices is important because smooth continuous, covariational 

reasoning abilities leads students to the right path of understanding concepts of calculus 

(Johnson, McClintock, & Hornbein, 2017; Oehrtman, Carlson, & Thompson 2008). The 

current study explores students’ smooth, continuous, covariational reasoning by engaging 

students in dynamic mathematics tasks with the support of technology.  

Literature on Rate of Change and Derivative 

Research available on students’ understanding of the rate of change and derivative 

in calculus provides an insight into students’ understanding and application of the two 

concepts and informs the design of this study. The research results in calculus informs 

that students hold limited and unproductive understandings of the rate of change and 

derivative function.  

The idea of the rate of change has many meanings in mathematics education and 

is used to describe the relationship between changing quantities. Many first-year 

undergraduate calculus students have a poor conceptual understanding of the concept of 

average rate of change, that is, students often view the rate of change as the arithmetic 

mean, slope, and rise over run (Bezuidenhout, 1998; Byerley et al., 2012; Dorko& 

Weber, 2013; Johnson, 2015; Musgrave & Carlson, 2016; Tyne, 2014; Thompson, 

1994). The concept of a derivative function in calculus is deeply rooted in the concept of 
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variation and rate of change (Park, 2013; Thompson, 1994). The concept of derivative 

developed from the idea of an average rate of change to a continuous varying rate of 

change function (Carlson et al., 2002; Thompson &Ashbrook, 2016; Thompson & 

Carlson, 2017). Most students don’t understand the derivative from this perspective, and 

this is linked with their procedural knowledge of the average rate of change of a 

function (Byerley et al., 2012; Dorko & Weber, 2013; Park, 2013; Park, 2015). A detailed 

literature analysis for the two concepts is provided below. 

Students’ Understandings of Rate of Change 

The concept of rate of change is central in calculus; an improper conceptual 

knowledge of rate of change will deter students’ abilities to understand other related 

major concepts in calculus. The concept of rate of change is rests upon conceptualizing 

the relationship between two dynamically changing quantities. For example, students 

who develop rich knowledge about concept of rate of change can easily explain that a 

rate of change is a mathematical relationship between two simultaneously covarying 

quantities (Musgrave & Carlson, 2016). For example, students who developed a correct 

conceptual understanding of rate of change can easily imagine that the average rate of 

change of quantity 𝑥 with respect to quantity y is the constant rate of change that yields 

the same change in quantity 𝑦 as the original relationship over the given interval. 

However, most research findings in calculus indicate that many calculus students are did 

not conceptualize the idea of the rate of change function in this way (Bezuidenhout, 

1998; Byerley et al., 2012; Carlson, 1998; Musgrave & Carlson, 2016). 

Bezuidenhout (1998) investigates 523 first-year calculus students’ knowledge of 

the rate of change. The results of this study reveal that many students (90%) show 
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misconceptions about the concept of the average rate of change. For instance, one of the 

students, Piet, used the procedural formula 
𝑔’(3)+𝑔’(0)

2
, to answer the problem, “Find the 

average rate of change of 𝑔(𝑥) with respect to 𝑥 over the interval [0, 3].” (p.398) When 

he was asked to describe his procedure, he said, “The average rate of change over an 

interval equals the sum of the derivatives at the two endpoints of the interval divided by 

two.” The response of Piet illustrates that he did not understand the fundamental ideas 

that built the concept of the average rate of change due to his poor conceptual 

understanding of the rate of change (Bezuidenhout, 1998, p.393). Moreover, the results 

show that the majority of research participants (90%) hold similar weak reasoning ability 

about the idea of the rate of change due to their use of the concepts of arithmetic mean to 

find the average rate of change. 

Byerley, Hatfield, and Thompson (2012) investigate seven first-year university 

calculus students’ concepts of division and rate of change. The goal of the study is to 

understand how calculus students conceptualize the idea of division and rate. The study 

found that almost all students had a weak understanding of the idea of rate. The study 

results reveal that the research participant students struggled to interpret quotient as a 

measure of relative size. Many students showed difficulty abstracting division as a 

quotient of two covarying quantities, and this difficulty limited students’ ability to 

abstract the main idea behind the concepts of the average rate of change and 

instantaneous rate of change. For instance, one of the research participants, Arlene, 

showed difficulty explaining how 29.66 is related to 0.236 for the given equation of 

7

0.236
= 29.66; however, she should have said that 29.66 is approximately 7 times as large 
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as 
1

0.236
. Although she was a successful high school calculus student, she struggled to 

relate them. Similarly, like Arlene, many (or more than 75%) of the study participants 

showed difficulty in conceptualizing the idea of rate and division. In summary, the 

findings show that many of the study participants exhibited a strong procedural 

knowledge in calculating and a weak conceptual knowledge to interpret and reason about 

the concept of rate of change. 

Dorko and Weber (2013) study 16 multivariable calculus students’ concept 

images of average rate of change. The purpose of the study was to investigate how the 

students’ meaning of average influenced their conceptions of average rate of change and 

instantaneous rate of change. The results reveal that most students’ mental images of 

average influenced their concept image of average rate of change. “For instance, for the 

question: suppose we define a function 𝑓, so that 𝑓(𝑥, 𝑦) = 𝑒−𝑐𝑜𝑠(𝑥𝑦). Discuss the 

process you would use to determine the average rate of change of the function with 

respect to 𝑥 over the interval [2.0, 2.2]” (p.390), the students’ responses to this question 

demonstrate that many students responded by using the concept images for the average in 

the concept images for average rate of change. For instance, Jane’s concept image for 

average included the property of an average being ‘common’ and she thought the average 

rate of change as the most common value. She said, “The average rate of change tells me 

the most commonly occurring rate of change of all the rate of change…,” and she added, 

“I find the change in y over the change in x, and it tells me that, the most common value” 

(p.390). This response shows that students’ images of average were influenced by their 

images of average rate of change. The researchers conclude that students did not seem to 
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have an image of 𝑥, 𝑦 and 𝑧 as measure of varying quantities or an image of a quantity 

value changing as the other quantity value changes at a constant rate. 

Thompson (1994) investigates 19 senior and graduate mathematics students’ 

images of rate. The results of the study indicate that senior and graduated mathematics 

students had poor concepts of rate of change due to their under-developed idea of 

covariation. “For instance, for the problem: when an object falls from a resting start, the 

distance it has fallen 𝑡seconds after being released is given by the function  

𝑑(𝑡) = 16𝑡2”(p.21), after students develop the average rate of change function  

𝑓ℎ(𝑡) =
𝑑(𝑡+0.1)−𝑑(𝑡)

0.1
, when asked to interpret what it means, students interpret it as,  “How 

fast it [the function] is changing,” “Divide by 2,” without interpreting the details of the 

expression as an amount of change in one quantity in relation to a change in another. 

Additionally, for the problem “The volume in cubic meters of a cooling object 𝑡 hours 

after removing a heat source is given by the function 𝑣(𝑡). Suppose a function 𝑥(𝑡) is 

defined as 𝑥(𝑡) =
𝑣(𝑡+0.1)−𝑣(𝑡)

0.1
. State precisely what information x(t) gives about this 

object” (p.61), students’ responses were unproductive and had a poor image towards to 

the concept of rate of change. For instance, two students said an average, but not an 

average rate of change, and six students said that 𝑥(𝑡) is a derivative. Overall, the results 

of the study illustrate that students did not have a precise image for the average rate of 

change function. 

Musgrave and Carlson (2016) investigate 21 Ph.D., graduate teaching assistant 

(GTA) students about the meaning of the average rate of change. The results of this study 

reveal that GTA students struggled to give accurate interpretations about the meaning of 
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the average rate of change. In the pre-intervention, semi-structured interview, many of 

the students failed to give a conceptually well-reasoned answer when they were asked, 

“What does the average rate of change mean to you?” For instance, one of the student’s, 

Alan's, response was, “A straight line between two points on a graph,” and Edger, 

another student, responded to the same question as, “Rate of change over an interval.” 

The pre-intervention participants hold a weak understanding of the meaning of the rate of 

change, and their ideas were predominantly influenced by their geometric interpretation. 

Even after the post-intervention, some students struggled to give the correct meaning of 

the rate of change. One participant indicated, “I will forever think of the average rate of 

change as the slope of the secant line.”  

From the results of these four studies, one can conclude that the concept of rate of 

change is one of the difficult concepts for students in U.S. mathematics education. 

Moreover, all four studies indicate that calculus students have difficulty interpreting and 

reasoning about the rate of change. The difficulty of conceptualizing the idea of the rate 

of change in this study connected with their reasoning abilities. Moreover, results in the 

studies of the rate of change show that students had difficulty coordinating the effect of a 

change in one variable with the effect of the change to the other variable. To overcome 

students’ problem of understanding of the concept of rate of change, it is important to 

unpack concept of rate of change by engaging students in a problem that leads them “to 

coordinate the amount of change of the output variable with a progressive change in the 

input variables” (Carlson et al., 2002, p.357). Therefore, the results of these four studies 

inform the current study that developing students’ reasoning about two covarying 
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quantities will likely lead students to develop a conceptual understanding of the concept 

of rate of change. 

Students’ Understandings of Derivative 

The concept of a derivative function in calculus is deeply rooted in the concepts 

of the variation and rate of change (Park, 2013; Thompson, 1994.) Typically, students are 

introduced to the concept of the derivative at post-secondary or after pre-calculus using 

the concept of limit and the average rate of change function (Hart, 2019; Stewart, 2015.) 

The concept of derivative develops from the idea of the average rate of change to a 

continuous varying rate of change function (Carlson et al., 2002; Thompson & Ashbrook, 

2016; Thompson & Carlson, 2017.) Many students don’t understand the derivative 

function from this perspective, and this is perhaps linked with their procedural knowledge 

of the average rate of change of a function (Park, 2013; Tyne, 2014, Tyne,2015). 

Therefore, the current study is aimed to direct students to understand that derivative 

function is the result of the quotient of two smoothly and continuously covarying 

quantities in a dynamic situation or the results of the quotient between two unnoticeable 

covarying quantities or limiting value of the average rate of change. Moreover, the 

current study planned for students to have awareness that derivative function resulted 

from smaller and smaller refinements of the average rate of change of a function.  

Park (2013) studied 12 calculus students' conceptual understanding of the concept 

of the derivatives. The goal of the study is to examine calculus students’ utterance about 

the derivative as a function based on the idea of a function at a point. The study results 

reveal that students’ thinking about the derivative as a function was underdeveloped even 

after they completed their semester course in the area of the concept of the derivative. 
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Moreover, the results show that many students had difficulty describing derivative in 

general, and, in particular derivative as a function. For instance, all 12 students gave 

correct procedural answers when they were asked to find 𝑓’(2) for 𝑓’(𝑥) = 𝑥2 − 7𝑥 + 6, 

but they showed conceptual difficulty when asked to give the reasoning behind 𝑓’(2). 

One student, when asked to give the reason and meaning behind 𝑓’(2),  said, “It is a rule 

… can’t remember why.”  

Tyne (2014) investigates 75 first-year calculus students’ conceptual knowledge of 

slope and derivative. The results of the study indicate that only 7% of students were 

successful in interpreting the concept of the derivative. The results of the study show that 

students frequently had more success with slope questions than derivative questions. 

Students correctly used the slope of a linear relationship to make predictions, but they did 

not conceptualize derivative as an instantaneous rate of change and an estimate of the 

marginal change.  

Similarly, a study by Tyne (2015) illustrates that, from 100 research participants 

who were calculus students, only 13% correctly interpreted the derivative for the problem 

“Let 𝐵(𝑛) be the number of bushels of corn produced on a 10-acre tract of farmland that 

is treated with n pounds of nitrogen, what does the derivative of  𝐵’(20) is equals to 2 

means?” The results show that many students struggle with knowing what the derivative 

represents and how to use it appropriately to make predictions. Some of the students 

incorrectly responded that “𝐵’(20) = 2 means that when 20 pounds of nitrogen are 

applied, the total bushels are equal to 2.” Rather, the students should have correctly said, 

“𝐵’(20) = 2 means that when the nitrogen is equal to 20 pounds, the corn yield is 

increasing at a rate of change value of 2 bushels per pound of nitrogen.”  
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In each of the above studies, the results show that most students lack a conceptual 

understanding of the concept of the derivative function. Some of the studies link students’ 

difficulty with their procedural knowledge of the average rate of change of a function, 

and others link students’ difficulty with the treatment of such a concept in the curriculum. 

This means that students, in their school time or learning period, did not have an 

awareness or had not studied that the derivative function “resulted from smaller and 

smaller refinements of the average rate of change of a function” or did not discuss a 

derivative function is the limiting value of the average rate of change of the function 

(Carlson et al., 2002, p.357). Moreover, students did not demonstrate an understanding of 

the derivative function as an instantaneous rate of change function. This means that for 

students to understand the derivative as a function, students must first develop strong 

covariational reasoning; in particular, students should have a smooth continuous 

covariational reasoning. For example, the meaning and the conceptual understanding of 

the concept of rate of change, function, and derivative relied on the students’ basic 

smooth continuous covariational reasoning abilities. More importantly, the conceptual 

understanding of derivative depends upon the ability to reason that change in one variable 

value is occurring instantly as the other variable values change, and also having an image 

that both variables change progressively in the given interval. This dissertation proposes 

that having in place the smooth continuous covariational reasoning in students’ minds at 

first will enable students to understand that a derivative function is the result of the limit 

value of the average rate of change function or a derivative function resulting from 

smaller and smaller refinement of the average rate change of a function.  
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The results of the above studies clearly show that students have misconceptions 

about the concept of rate of change and derivative, but none of the studies articulate the 

cause of the problem for the students’ misconception. This dissertation, however, seeks to 

investigate the link between students’ misconceptions and their weak reasoning ability (in 

particular, shortcomings in their covariational and smooth continuous covariational 

reasoning) and proposes to develop such reasoning ability. Students' reasoning about the 

concept of rate of change and the derivative is related to their mental activity of 

coordinating two or more covarying quantities. A cognitive activity, such as the 

reasoning about varying quantity, reasoning about the rate of change of two covarying 

quantities, and reasoning about a continuously varying rate of change of two covarying 

quantities is needed to understand the key calculus concepts.  

Summary of the Chapter 

This chapter provides a detailed discussion of the theoretical perspective, which 

combined the views of constructivism and Piaget's theory of genetic epistemology, builds 

the basis for the current study. The main idea of the constructivism theory lies in the 

perspective that each student is unique, and their knowledge construction is independent 

of other students or persons. Additionally, in this theory, it is viewed that the students’ 

construction of new knowledge or concept lies in their reflection and abstraction abilities. 

This chapter also discusses a literature review on the area of rate of change and 

derivatives. These research results in the area of rate of change and derivative function 

informed the researcher that first-year calculus students hold a weak and limited 

conceptual understanding of the concept of rates of change and derivatives. Study results 

on the rate of change showed that students had difficulty imagining the effect of a change 
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in one variable with the effects of the change to the other variable. Moreover, research 

results in the studies of derivative indicate that first-year calculus students did not view 

that the derivative function is a limiting value of the average rate of change function or 

did not view it resulted from a smaller and smaller refinement of the average rate of 

change of functions. For the students to develop the conceptual understanding of the 

concept of rate of change and derivative, students should first construct and reason about 

the dynamic or unnoticeable changing relationships between two covarying quantities. 

For students to understand the concept of rate of change and derivative, students must 

first develop strong, covariational reasoning, in particular, a strong, smooth, continuous, 

covariational reasoning ability.  

This chapter provides a summary of a critical review of covariational reasoning 

abilities: the role of covariational reasoning in the students’ conceptual understanding 

development. Additionally, the chapter gives some insight into the critical importance of 

smooth continuous covariational reasoning abilities. Smooth continuous covariational 

reasoning ability is viewed as a crucial and more important reasoning ability to lead 

students into a conceptual understanding in calculus. The next chapter provides the 

methodology of this study, which aims to gain insight into the reasoning abilities and 

foundational understanding needed to construct a meaningful knowledge of the concept 

of rate of change and derivative. 
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CHAPTER 3: METHODOLOGY 

The aim of this study is to explore and understand first-year calculus students’ 

reasoning when they have opportunities to develop smooth continuous covariational 

reasoning and conception of the rate of change and derivative functions. Results of this 

study might be used to improve students’ Calculus I learning. Efforts like this, the 

purpose of which is to inform calculus instruction, should plan, first, to understand 

students’ ways of reasoning, such as how they try to construct concepts, like rate of 

change or derivative. Thus, understanding of how students understand and reason about 

these concepts is critical for informing calculus instruction and research. 

The purpose of this chapter is to discuss the methodology of the research that 

guided the investigation of the research questions of this study: 

1. What types of reasoning do first-year calculus students engage in to 

conceptualize the relationship between two progressively co-varying 

quantities?  

2. What methods of reasoning do first-year calculus students employ during a 

rate of change and derivative instructional sequence that supports smooth, 

continuous, covariational reasoning? 

In particular, this study utilizes a comparative case study methodology, which is a 

qualitative methodology used to provide an analysis of similarities and differences to 

identify patterns found across multiple cases. The purpose is to produce knowledge that 

assists researchers in generalizing knowledge about the research questions which, in this 

case, describe students’ mathematical reasoning and construction of knowledge related to 

smooth, continuous, covariation in calculus topics (Bartlett & Vavrus, 2017; Baxter & 
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Jack, 2008; Dennis & O'hair, 2010; Rashid et al., 2019; Kaarbo & Beasley, 1999). The 

method of this study includes three phases: a pre-instruction task; instruction session 

observations; and a post-instruction interview. In this chapter, the researcher describes 

the participants and setting of the study and then the comparative case study 

methodology. Finally, the researcher describes the methods of data collection and 

analysis. 

Research Participants and Settings 

This study examined Calculus I students’ covariational and smooth, covariational 

reasoning. Three students who enrolled in a Calculus I course at a public university 

during the Spring semester 2021 participated in this study. The public university is 

located in the southeastern United States. This university has a total population of 22,000 

undergraduate and graduate students with a diverse student body of 34% non-white or 

underrepresented minority groups and 55% females. Details about the study participants 

will be provided in Chapter 4.   

At this university, the Calculus I course is given for students as an introductory 

course with an emphasis on analysis of functions, multidisciplinary applications of 

calculus, and theoretical understanding of differentiation and integration. The topics 

include the definition of limit and continuity, rate of change, derivative, differentiation 

techniques, and applications of the derivative function. The course concludes with the 

fundamental theorem of calculus, the definition of anti-differentiation and the definite 

integral, basic applications of integration, and introductory techniques of integration. 

Students who participated in this study learned in a classroom where instruction consisted 

of lecture, group discussion, and randomly selected individual student presentations. 
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Passing pre-calculus with a grade of “C” or better is one of the prerequisites for the 

calculus course. In this study, three students from this class participated voluntarily as 

research participants. The researcher took observation notes and recorded events that 

showed the students’ learning development, the interaction between the students and the 

instructor, and the classroom activities. 

The pre-instruction recruitment task was used to document students' prior 

covariational reasoning abilities. The task was sent to each student through their e-mail. 

The purpose of the recruitment task (see Appendix B) was to examine and document each 

student's prior covariational reasoning abilities and helped the researcher to understand 

each student's prior reasoning ability and conceptions of the rate of change and derivative 

concepts. From the whole class of students, three students were selected who scored 

lower, medium, and higher in the recruitment task, and who followed up during the 

instruction session and post-instruction interview. These students took part voluntarily in 

the study. The data from the pre-instruction task helped the researcher to compare and 

contrast and track individual student change or development when they progressed 

throughout the study period. The purpose of the recruitment task was used to document 

the entire classroom students’ prior variational, covariational reasoning abilities, and their 

conception of the rate of change function; because the results of the recruitment task 

helped the researcher to trace, compare, and evaluate students’ development. The first 

problem in the task aimed to examine students’ simple variational reasoning abilities. The 

second and third problems of the task aimed to examine students’ general covariational 

reasoning abilities. 
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Comparative Case Study 

A comparative case study involves an analysis of two or more cases with the goal 

of understanding patterns, knowledge development, and why the process of knowledge 

development in a certain context works or fails to work (Bartlett & Vavrus, 2017; Baxter 

& Jack, 2008; Brown, 2008; Philips & Schweisfurth, 2014). A comparative case study 

promotes a model of multi-sited fieldwork that studies through and across contexts 

(Bartlett & Vavrus, 2017). It enables the researcher to conduct multi-case analysis 

simultaneously and concurrently by using three axes of comparison: horizontal, which 

compares how similar or different phenomena unfold in the study context; vertical, which 

traces phenomena across scales of the study; and transversal, which traces phenomena 

and cases across the study time (Bartlett & Vavrus, 2017; Philips & Schweisfurth, 2014). 

That is to say, a comparative case study engages the researcher into two types of logics of 

comparison: first, compare and contrast between two or more cases; and second, a 

“tracing across” all cases of the study in the given context to understand, discover, and 

trace individuals’ and groups of students’ changes in certain contexts of the study(Bartlett 

& Vavrus,2017). 

Comparative case study methodology supports researchers’ investigation of an in-

depth analysis of the cases within some specific context by comparing and tracing across 

all cases of the study reasoning pattern and knowledge development (Bartlett & Vavrus, 

2017; Rashid et al., 2019; Kaarbo & Beasley, 1999; Philips & Schweisfurth, 2014). 

Moreover, a comparative case study as a research methodology helps in the exploration 

of a phenomenon within some particular context through various data sources, and it 

undertakes the exploration through a variety of lenses in order to reveal multiple facets of 
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the phenomenon (Bartlett & Vavrus, 2017; Rashid et al., 2019; Kaarbo & Beasley, 1999; 

Philips & Schweisfurth, 2014). Comparative case study methodology is used in this study 

to compare, contrast, and trace patterns across all cases of the study to understand how 

students develop mathematics knowledge. That is, to explore how students construct 

mathematical knowledge related to developing smooth, continuous variation in calculus 

courses, and comparative case study methodology facilitates the kind of exploration and 

investigation necessary for this purpose (Bartlett &Vavrus, 2017; Rashid et al., 2019; 

Kaarbo & Beasley, 1999; Philips & Schweisfurth, 2014; Greener, 2008; McKenna, 

Richardson, &Manroop, 2011). According to Bartlett and Vavrus (2017), comparative 

case study allows the researcher to compare and contrast and trace patterns across all 

cases of research participants. It focuses on each case’s behaviors, actions, and 

interactions to identify essential factors, processes, and individual knowledge 

development, and it also makes meaning of relationships among cases. The cases of this 

study were three calculus students who learned the concept of rate of change and 

derivative in a class where they had an opportunity to develop smooth continuous 

covariational reasoning. Their learning was supported with dynamic mathematics tasks, 

interactive applets, and constructive instructional approaches that focused on facilitating 

their learning. 

Comparative case study methodology is selected for this study because it allowed 

the researcher to discover, explore, and describe (i.e., to understand and know) the 

students’ reasoning and mathematics conceptual development abilities. In this study, the 

students' type of reasoning, the method of reasoning that students engaged with, and the 

ways that students used their developed reasoning to conceptualize mathematics concepts 
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was explored. For instance, in this study, the researcher examined, described, and 

compared and contrasted each student’s mathematics reasoning abilities when they 

solved problems related to concepts of rate of change and derivative. In particular, the 

comparative case study allowed the researcher to trace patterns across all cases to identify 

essential factors, build relationships, discover new patterns among the cases, and 

understand students’ actions as well as the students’ explanations, and mistakes that were 

made in the research as the students come to understand mathematics (Bartlett & Vavrus, 

2017; Rashid et al., 2019; Kaarbo & Beasley, 1999; Philips & Schweisfurth, 2014). The 

selection of the students for the comparative case study employed purposive sampling 

(Patton, 2015). Specifically, the rationale was to provide an opportunity to compare and 

contrast and trace patterns across each student with other groups of the students in the 

study. Thus, three students were selected for this study because they scored lower, 

average, and higher in their pre-instruction task. The comparative case study students 

attended their regular remote class and were observed and tracked as they participated in 

the teaching and learning process. Each activity of the case study was observed and 

recorded using Zoom video, audio, students’ homework and exam written responses, and 

researcher observation notes. In the following section, the researcher describes the 

sequence and design process of the three tasks. 

The Sequences and Design Process of Mathematical Task 

Three mathematics tasks (see Appendix C, D, and E) were used to develop 

students’ smooth, continuous, covariational reasoning ability in phase two of the study. It 

was anticipated that students who develop smooth, continuous, covariational reasoning 

were able to understand the concept of rate of change and derivative. In particular, this 
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study was aimed at students to understand that a varying quantity can assume all values 

in the given interval. Not only this, but it was also proposed that students understand the 

rate of change as a dynamic relationship between two covarying quantities. Moreover, 

this study provided opportunities for students to unpack the ideas of the rate of change by 

solving problems in the task that was asked of them to coordinate the amount of change 

of the output variable with progressive changes in the input variables. This study 

proposed students to develop an image of covariation that supports students’ ideas related 

to the instantaneous rate of change of the function with continuous changes in the input 

variable. More specifically, this study planned to support students to have a mindfulness 

that the derivative function is the result of the limiting value of the average rate of change 

or is constructed from smaller and smaller refinements of the average rate of change. 

Based on the above instructional goal, the mathematics tasks were sequenced to develop 

students’ conceptual understanding of the concept of rate of change and derivative 

function. Details about the mathematics tasks will be provided in Chapter 4. 

Understanding of student knowledge growth and construction of new 

understandings is rooted in Piaget’s genetic epistemology ideas (Campbell, 2006; 

Kitchener, 1986; Piaget, 1970, 1971; Thompson & Carlson, 2017). Thus, three tasks were 

designed with the idea that the students’ experience would produce knowledge growth 

and a new understanding of the concept of a rate of change and derivative through 

reflective abstraction and discussions with other students and the instructor. Three 

principles were applied to design the task: a task that incorporates students’ prior 

knowledge, a task that encourages the student to anticipate, and a task that used 

technology. 
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First, the task is built on students’ prior knowledge because this study holds that 

students are actively building new knowledge from experience or their prior knowledge 

(Cobb et al., 2003; NCTM, 2000; Steffe & Thompson, 2000; Thompson & Carlson, 

2017). Second, students’ ideas of imagination are incorporated because imagination is an 

act of reflecting, and tasks that encourage students to anticipate will help students to 

reflect on their actions (Castillo-Garsow, 2012; Johnson, 2010; Piaget, 1967; Thompson, 

1994; Thompson & Carlson, 2017). Third, the design of the task is supported with 

technology, because technology has the power to help students visualize mathematics 

ideas and concepts (Castillo-Garsow, 2012; Castillo-Garsow et al., 2013; Johnson et al., 

2017; Johnson et al., 2013; Thompson & Carlson, 2017). 

Research results in the area of varying quantities show that the majority of the 

students’ variable reasoning is at the gross variational reasoning level (Ayalon et al., 

2016; Thompson & Carlson, 2017). To conceptualize the variation of quantity, a student 

first needs to construct a varying quantity value from a situation and attend to the 

measure of those varying quantities (Ayalon et al., 2016; Philipp, 1992; Carlson et al., 

2002; Thompson & Carlson, 2017). This was the purpose of the first task. The first task 

(see Appendix C) had seven investigation problems and seven homework problems that 

were intended to develop students’ smooth, continuous reasoning. The task was designed 

to incorporate students’ prior knowledge and their imagination through the support of 

technology that is guided by the analytical framework of this study (Appendix A). The 

first three problems of the task are focused on engaging students in their intuitive and 

prior knowledge about continuously varying quantities. In these problems, students are 

asked to explore the difference between chunky, continuous variation (i.e., assuming the 
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variable has a value at the start and end of the interval) and smooth, continuous variation 

(i.e., assuming the variable value progressively changes throughout the interval) and the 

task supported using the GeoGebra applet. The fourth problem focuses on engaging 

students in their prior knowledge of chunky reasoning that asked students to compare the 

actual length of a tree and a change that a tree will have after a certain period. This 

problem was simply intended to engage students in the idea and meaning of a change or a 

variation. The fifth problem expands students’ background knowledge about variation 

and engages them in more computational ways on how the size of variation will affect the 

number of lengths of the interval. The sixth problem engages students in a new situation 

with the support of animation to support their imagination process of variation in a small 

chunky and smooth variation problem. Finally, the last problem engages students 

purposely in a mathematics problem that asked them to use their smooth, covariational 

reasoning abilities to solve the problem. Particularly, the final problem is intended to ask 

students to use their smooth, continuous, covariational reasoning to solve a mathematical 

problem. At the end of the phase, students solved homework problems that were intended 

to build their conceptual understanding and exploration of variational, covariational 

reasoning, and rate of change concepts.   

Research results in the studies of the rate of change show that many students had 

struggled to conceptualize the rate of change as the quotient of two covarying quantities 

(Johnson et al., 2017; Thompson & Carlson, 2017). This means that most students 

exhibited difficulty in higher than L2-L3 covariational reasoning behaviors or were 

unable to reach MA4 or above covariational reasoning abilities (Carlson et al., 2002). The 

second task is intended to develop students’ conceptual understanding and reasoning 
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ability to interpret the rate of change as as the quotient of the coordinated changes in 

measures of two covarying quantities that are in a dynamic relationship (see Appendix 

D). Moreover, in the current study, it was planned to develop students’ understanding that 

the rate of change is a coordinated the quotient of the amount of change of the output 

variable with progressive change in the input variables. At this stage, the lesson sequence 

supported students’ insight into the relationship between two continuously covarying 

quantities over smaller intervals. This task helped students to develop an idea that 

covariational reasoning is having an image of two quantities’ values varying 

simultaneously, and the rate of change is the dynamic relationship between quotient of 

two covarying quantities within a given interval. Finally, the first five problems of the 

second task were focused on developing students’ smooth continuous covariation 

reasoning abilities, and the final problem of the task is focused on engaging students in 

applying their covariational reasoning ability to solve a problem related to the rate of 

change. Research results show that calculus students often lack conceptual understanding 

of the concept of the derivative function, and this is linked with their procedural 

knowledge of the average rate of change function (Park, 2013; Tyne, 2014, Tyne, 2015). 

This means that students did not have an awareness that the derivative function results 

from smaller and smaller refinements of the average rate of change of a function or 

derivative function is the result of the limiting value of the average rate of change 

function (i.e., L5 or MA1 through MA5 see Appendix A) (Carlson et al., 2002). 

Moreover, students did not demonstrate an understanding of the derivative as an 

instantaneous rate of change (i.e., do not reach L5) (Carlson et al., 2002). The final 

mathematics task is aimed to develop students’ understanding of derivatives as a function 
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by first developing their smooth continuous covariational reasoning ability. At this stage 

of the instructional sequence, it was anticipated that students developed smooth, 

variational reasoning, covariational reasoning, and smooth, continuous, covariational 

reasoning. Moreover, at this instructional stage, students developed an understanding 

concept of variable and average rate of change function. In the final task, the problems 

(see Appendix E) were designed to engage students in smooth, continuous, covariational 

reasoning; for instance, in one of the problems, students explored the change of one 

quantity value with progressive change of the other quantity value. Another problem 

engaged students to explore the behavior of a given function and its average rate of 

change of function when the independent variable varies continuously in the given 

interval. Moreover, the problems in the final task asked students to apply what they 

constructed in previous problems, and then they were asked to give a reason for what 

relationship is revealed when the two quantities vary smoothly and continuously on the 

given interval. In all of the problems, students were asked to explain and understand that 

the derivative function results from smaller and smaller refinements of the average rate of 

change of a function. This means that it was expected in this problem that students 

understood that, when ℎ approaches 0, , the quotients between the dependent variable and 

the independent variable will be a smaller refinement of the average rate of change of a 

function or the limiting value  of the average rate of change, which is the derivative of the 

function.  

Post-Instruction Interviews 

After the instruction session, the researcher conducted a post-instruction interview 

with the three research participants to get a refined insight into students’ mathematics 
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models and reasoning. In this phase, the three students participated in a final one-to-one 

post-instruction Zoom video interview (task-based interview). A one-to-one, post-

instruction Zoom video interview with each student allowed the researcher to get a deep 

understanding of each student’s mathematics reality (see Appendix F for interview 

questions). In the interview question, students were asked to explain, justify, and show 

their reasoning, and this helped the researcher to understand and gain insight about each 

student’s reasoning type that was used to solve the mathematics problems. Additionally, 

the post-instruction interview allowed the researcher to interact and personally know each 

student’s mathematics understanding and reasoning. In general, the main purpose of this 

interview was to understand each student’s conceptual understanding and reasoning 

ability. In the post-instruction interview, Zoom video, audio data, and students’ written 

work were generated. 

Data Collection and Analysis 

Throughout the research period, the following data was collected. Table 1 shows 

the type of data source and the event in which the research data was collected. There are 

five data sources: pre-instruction task problem and students’ written solution, homework 

and exam problems and students’ written solutions, instruction session video, and post-

instruction interview and students’ written work. The data that comes from all these 

sources was recorded using Zoom video, audio, students’ written responses to the 

homework and exam problems, and computer screen captures (Zoom). Table 1 describes 

the type of data that was generated during each event, the total amount of data, and the 

total amount of time that was taken to record each datum.  
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Table 1  

The Source of Data for the Study  

Data 

sources 

and 

purpose 

 

Pre-instruction Data 

 

During Instruction Data 

 

Post-instruction data 

• Sources  Recruitment task 

students’ response 

(Three students’ 

written solution or 

response) 

 

Zoom video and audio 

of instruction session 

(approximately 7 hours 

of class data) 

 

Students’ written work 

during the class session 

(3 ) 

 

Students’ solution for 

the homework 

problems (3 ) 

 

Students’ solution for 

the exam problems (3) 

Researcher observation 

notes (approximately 

seven notes) 

Zoom video and audio of 

the students’ post-

instruction online video 

interview (approximately 

a three- to six-hour 

interview data, i.e., one 

to two hours for each 

student) 

 

Students written work 

during the post-

instruction interview 

(approximately three to 

six written works)  

 

Researcher field 

observation notes 

(approximately three for 

each student)  

 

 

Purpose  The data used to 

answer RQ1 

The data used to 

answer RQ1 & RQ2 

The data used to answer 

RQ1 & RQ2 

 

The preliminary data analysis occurred during and after the instructional sessions. 

Students’ written work, the researcher notes about participant thinking, Zoom audio, and 

video records, or any student’s work during the post-instruction interview were stored in 

a secured area. The research data from Zoom audio, video, students’ written work, and 

researcher observation notes were transcribed by using ATLAS software and analyzed by 
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using the combination of Thompson and Carlson (2017) and Carlson (2002) frameworks 

(see Tables 2 & 3 and Appendix A for a more detailed description). Both Thompson and 

Carlson (2017) and Carlson's frameworks were used to code each student’s response by 

matching with the mental action of the framework (see Appendix A). Additionally, each 

student’s response was interpreted, analyzed, and categorized by creating a corresponding 

relationship with the mental action descriptions and behaviors that are provided inside the 

framework. Therefore, the initial stage of the data analysis helped the researcher to 

understand students’ initial or prior mathematics reality and their knowledge construction 

abilities in the context of the rate of change and derivative function. 

 

Table 2  

Mental Actions and Levels of the of the Covariation Framework (Carlson et al., 2002, p. 

357-358) 

Mental action Description of 

mental action 

Behaviors 

Mental Action 1 

(MA1) 

Coordinating the value of 

one variable with changes in 

the other 

Labeling the axes with variables 

indications of coordinating the two 

variables (e.g., y changes with changes 

in x) 

Mental Action 2 

(MA2) 

Coordinating the direction 

of change of one variable 

with changes in the other 

variable 

Constructing an increasing straight line 

Verbalizing an awareness of the 

direction of change of the output while 

considering changes in the input 

Mental Action 3 

(MA3) 

Coordinating the amount of 

change of one variable with 

changes in the other 

variable 

Plotting points/constructing secant lines 

Verbalizing an awareness of the 

amount of change of the output while 

considering changes in the input 

Mental Action 4 

(MA4) 

Coordinating the average 

rate-of-change of the 

function with uniform 

increments of 

Constructing contiguous secant lines 

for the domain  

Verbalizing an awareness of the rate of 

change of the output (with respect to 
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change in the input variable the input) while considering uniform 

increments of the input 

Mental Action 5 

(MA5) 

Coordinating the 

instantaneous rate of change 

of the function with 

continuous changes in the 

independent variable for the 

entire domain of the 

function 

Constructing a smooth curve with clear 

indications of concavity changes 

Verbalizing an awareness of the 

instantaneous changes in the rate of 

change for the entire domain of the 

function (direction of concavities and 

inflection points are correct) 

 

Table 3  

Major Levels of Covariational Reasoning of the of the Smooth Covariation Framework 

(Thompson & Carlson, 2017, p. 440-441) 

Level Description 

Smooth continuous covariation The person envisions increases or decreases 

(hereafter, changes) in one quantities or variable’s 

value (hereafter, variable) as happening 

simultaneously with changes in another variable’s 

value, and the person envisions both variables 

varying smoothly and continuously. 

Chunky continuous covariation  The person envisions changes in one variable’s 

value as happening simultaneously with changes in 

another variable’s value, and they envision both 

variables varying with chunky continuous variation. 

Coordination of values The person coordinates the values of one variable 

(x) with values of another variable (y) with the 

anticipation of creating a discrete collection of pairs 

(x, y). 

Gross coordination of values The person forms a gross image of quantities’ values 

varying together, such as “this quantity increases 

while that quantity decreases.” The person does not 

envision that individual values of quantities go 

together. Instead, the person envisions a loose, 

nonmultiplicative link between the overall changes 

in two quantities’ values. 

Pre-coordination of values The person envisions two variables’ values varying, 

but asynchronously—one variable changes, then the 

second variable changes, then the first, and so on. 

The person does not anticipate creating pairs of 

values as multiplicative objects. 



52 
 

 

No coordination The person has no image of variables varying 

together. The person focuses on one or another 

variable’s variation with no coordination of values. 

 

The data that was gathered from the instruction sessions are Zoom video and 

audio recorded lessons, students’ written responses, homework and exam responses, 

researcher’s field observation notes, and daily journal (the researcher recorded the daily 

journal). All the collected data during this session was analyzed using the framework. 

The framework was used to code, categorize, level, and interpret each student’s response 

based on the descriptions and behaviors of the mental action of the framework (see Table 

2 and Appendix A for a more detailed description). Therefore, this stage of the data 

analysis supported the researcher in understanding how students develop smooth 

continuous reasoning during the instruction sessions. The post-instruction data analysis 

focused on analyzing the post-instruction interview data of the three students. The data 

that emerged from this session was video and audio recordings of the post-instruction 

interview data with three students, the research participants’ written work, and the 

researcher's observation notes. All the data collected reflecting students’ reasoning during 

this session initially was mapped to the Thompson and Carlson (2017) and Carlson 

(2002) framework and then students’ mathematics were described. The framework was 

used to code, interpret, categorize, level, and analyze by creating a corresponding match 

between the descriptions and behaviors of each mental action of the framework with 

post-instruction students’ data. Additionally, the framework helped the researcher to track 

the different patterns of students’ reasoning in the student response data (see Appendix 

A.) In general, the data that was collected from the research study helped the researcher 
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to describe, compare and contrast, and understand students’ mathematics and reasoning 

orientations. In particular, the data coded by looking for recurring regularities in the data 

that were identifying and tracing patterns across each case of behavior by categorizing. 

The framework was used as a guide for analyzing the students’ reasoning. Each coded 

datum, categorized data, and the classified pattern of students’ reasoning was examined 

by comparing and tracing across with each mental action description and behavior of the 

framework.  

After examining and describing students’ reasoning orientations and 

conceptualizing the mathematics concept, the researcher also looked at the patterns and 

applied a compare-and- contrast methodology between each of the three students' 

reasoning orientations. More specifically, the researcher looked at tracing patterns across 

the students’ thinking when the researcher examined their thinking from the prior 

knowledge by comparing with their instruction and post-instruction interview. 

Furthermore, the researcher examined each student’s ways of reasoning that supports and 

delimits their construction of new understanding and knowledge about the concept of rate 

of change and derivative using the framework, and the framework was used to guide the 

interpretation, analyzing all of the research participants’ ways of reasoning by comparing 

them with each behavior and mental action descriptions of the framework and with each 

other. Furthermore, the framework guided the researcher as a tool to measure each 

student’s level of reasoning and to identify student mental actions in correspondence with 

the framework of mental action behavior and descriptions. To remind the reader, the goal 

of this study was to examine in what ways students engage to reason when they construct 

mathematics concepts and to understand how students develop smooth continuous 
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covariational reasoning in the context of the concept of rate of change and derivatives 

throughout the study period.  

Data Analysis Procedure 

The data analysis procedure focuses on creating themes, finding patterns, 

reconstructing, and comparing and contrasting the data analysis results from the start to 

the end of the study about students’ mathematical reasoning. This study employed a 

comparative case study methodology that involves horizontal, vertical, and transversal 

axes of comparison. In this section, the researcher describes how the analysis was aligned 

with these three axes of comparison.  

First, the primary analysis of the students’ reasoning patterns and behavior 

produced the refined data analysis consisting of ordering, creating themes, and 

identifying patterns of the student's written work. Particularly, in the data analysis the 

researcher engaged in comparing how similar or different phenomena unfold between 

each case across the time of study. During this time, the researcher was taking notes, 

engaging in reflecting and tracing on the patterns of each student understanding, and 

making sense of each student’s thinking and reasoning. This analysis was a baseline data 

analysis or a preliminary data analysis.  

Next, to refine and detail analysis, the procedure of checking line-by-line a 

student's reasoning ability or conceptual understanding ability work done by comparing 

horizontally, vertically, and transversally across each case.  For instance, the researcher 

engaged in analyzing students' particular instances horizontally that showed their 

conceptual understanding of the concept of rate of change and derivative as the phases of 

the study were completed. In this data analysis stage, the researcher engaged in grouping 
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data, transcribing, interpreting, and analyzing the collected data. During this stage of 

analysis, the researcher identified each student's understanding and reasoning abilities. 

After the primary data analysis was complete, the researcher engaged in vertical 

and transversal analysis across the pre-instruction, during instruction, and post-

instruction by describing and understanding each student’s utterance and written work. In 

this phase of the analysis process, each student's work was separately examined and 

described for each student. More importantly, the researcher engaged in a deep 

examination, comparing and contrasting, and tracing across each case and understanding 

of each student's reasoning abilities at the different instances that showed each student’s 

action and activity in class or during one-to-one interview sessions. More specifically, the 

researcher engaged in analyzing any instance that showed students’ reasoning ability 

about the rate of change and derivative during the instruction sequence.  In all these 

analyses, the framework was used as a guiding tool to examine each student’s 

mathematics reasoning with each behavior and description of the mental action of the 

framework. The framework in the process of examining and describing each student's 

reasoning was used to level the students’ mental action and identify what form of 

reasoning students engage when constructing their mathematical reality in the context of 

the rate of change and derivative. Moreover, the framework guided to produce and 

identify a situation that shows students’ conception and reasoning ability when they talk 

about the concept of rate of change and derivatives. This analysis of students’ activity 

and their behavior led the researcher to describe each student’s mathematics reasoning 

abilities. Additionally, the results of this analysis indirectly informed the role of the 
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instruction sequence, the group set up of the instruction, and the use of technology for the 

students’ conceptual development.  

Finally, the researcher compared and contrasted each student's reasoning type and 

the relationship between each student's mathematics conception of the concept of rate of 

change and derivative by using horizontal, vertical, and transversal analysis. This stage 

provided an insight into the critical reasoning ability that students must have to 

understand the core concept of calculus, in particular, for the concept of rate of change 

and derivative. Therefore, the results of the data analysis in the pre-instruction and post-

instruction interviews helped to understand the students’ mathematics reasoning. In 

particular, the post-instruction data analysis together with instruction data analysis results 

helped to answer the first and second research questions. 

Summary of the Chapter 

This chapter discusses the research methodology of the study of Calculus I 

students' reasoning in the context of the concept of rate of change and derivative. A 

qualitative, comparative case study methodology was used as a research method and 

helped the researcher to understand and explore students’ mathematics and reasoning 

abilities. In each instruction stage, a significant amount of data collected about research 

participants’ thinking and understanding about the concept of rate of change and 

derivative was generated. The collected data analyzed and interpreted by examining, 

finding patterns, and looking at similarities and differences to examine and understand 

students’ mathematics and reasoning orientations. The next chapter will discuss the 

results of the data analysis by exploring students' reasoning in the context of the concept 

of rate of change and derivative.  
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CHAPTER 4: RESULTS 

Introduction 

This chapter presents an account of three first-year calculus students’ reasoning 

and problem-solving behaviours revealed during the study, which sought to answer the 

following research questions:  

1. What types of reasoning do first-year calculus students engage in to 

conceptualize the relationship between two progressively co-varying 

quantities?  

2. What methods of reasoning do first-year calculus students employ during a 

rate of change and derivative instructional sequence that support smooth 

continuous covariational reasoning? 

The report first provides a description of the three participants’ pre-instruction 

conceptions and reasoning ability, and this result is compared to their shift after their 

participation in the study within the context of the learning with other students enrolled in 

the Calculus I course. The report includes a characterization of the three students’ initial 

conceptions of quantity, variation, covariation, and rate of change functions. Following 

this initial characterization, students’ actions during the instruction are reported by 

tracing patterns in each case that show the productive and unproductive ways students 

understood content as they tried to solve the mathematics problems in the course. Next, 

post-instruction interviews of the three students are presented to further understand their 

reasoning and mathematical Problem-solving abilities. Attending to the three axes of 

comparative case study analysis in each phase of the study to compare, contrast, and trace 

across each case of the study horizontally, vertically, and transversally provided a means 
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to conceptualize the types and means of thinking across the cases (Bartlett & Vavrus, 

2017). The horizontal axis in the comparative analysis allowed the researcher to compare 

and contrast each case with the other cases to understand the similarities and differences 

in reasoning and conceptual understanding abilities that each case applied when they 

were solving mathematical problems. The vertical axis allowed the researcher to examine 

a single case development across each phase of the study (i.e., pre-instruction, 

instruction, post-instruction). Transversal axis in the comparative analysis allowed the 

researcher to understand how the three cases shifted and changed across time, from the 

start of the study to the end of the study. Finally, the report utilizes the results from the 

three-axis analysis to present a conceptualization of the students’ reasoning when they 

were solving mathematical problems related to concepts of rate of change and derivative. 

For reference, the three students who participated in the study were Sam, Ruby, and Chris 

(all names are pseudonyms). 

The results of the study revealed three core categories in student reasoning. Each 

category was primarily exemplified in one case, but some cases exhibited multiple 

instances of these core categories of reasoning. The categories are as follows: (a) concrete 

object-oriented reasoning ⎯ when a student exhibits confusion between object, attribute, 

unit of quantity; (b) procedure-oriented reasoning ⎯ when a student has a strong focus 

on procedural understanding; and (c) terminology-oriented reasoning ⎯ when a student 

is focused on scientific aspects of the problem situations. In the discussion that follows, 

the results of the analysis of the data collected in this study are presented to better 

understand the conceptions of variation, co-variation, average rate of change, and 

derivative functions exhibited by Sam, Ruby, and Chris. This analysis revealed the core 
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categories stated above. In the following section, the three students’ pre-instruction 

assessment results are presented. 

Pre-Instruction Assessment 

The pre-instruction assessment (see Appendix B) was developed and adapted 

from previous research studies that used the task to understand students’ variational and 

co-variational reasoning (Carlson, Oehrtman & Moore, 2010; Schoenfeld & Arcavi, 

1988). Similarly in this study, the initial survey (pre-instruction assessment) task was 

used to understand student pre- or initial conception about variation, co-variation, and 

rate of change. In the pre-instruction assessment, three questions were asked. The first 

question is focused on understanding students’ variational and covariational reasoning 

(see Table1). The second question (see Table 2) and third question (see Table3) are 

focused on understanding students’ variational and co-variational reasoning, and rate of 

change conceptions. In this section, the analysis is presented beginning with an analysis 

along the horizontal axis, examining how each student reasoned for each of the key ideas 

that are addressed in the pre-instruction assessment: quantity, variation, covariation, and 

rate of change.  

Result of Sam’s Pre-Instruction Assessment 

This section presents Sam's reasoning and problem-solving abilities exhibited 

during the study. This description first provides his pre-instruction assessment results to 

illustrate his pre -course reasoning type. This is followed by a description of Sam’s initial 

conceptions of quantity, variation, covariation, and rate of change measures as assessed 

in the pre-course assessment.  
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Sam is a full-time, traditional student at a large public university in the southern 

United States. He is a Bachelor of Science major with a focus in Computer Science. Prior 

to Sam’s enrolment at the university, he had high school algebra and pre-calculus 

courses. Sam was one of the few students who responded to participate voluntarily for 

this study. Additionally, Sam was selected for this study because he performed below 

average when compared to all students who responded for the pre-instruction assessment 

questions. 

Sam’s Conception of Quantity and Variation 

The goal of the pre-instruction assessment was to record students’ pre-instruction 

mathematical reasoning and problem-solving approaches. Sam explained a quantity for 

the question that asked, “Which is the larger, 2𝑛 or 2 + 𝑛?” (see Table1) by saying “The 

one that is larger is 2𝑛 because 2𝑛 can be the higher portion if 𝑛 has been replaced by a 

number.” However, he doesn’t specify what number “𝑛” is being replaced with; but his 

reasoning showed he is viewing “𝑛” as an object, not as a quantity value, whose values 

are continuously varying. More importantly, Sam’s thinking is based on procedural 

thinking (“2𝑛 can be a higher portion than 2 + 𝑛 of the quantity 𝑛”), but is not focusing 

on the quantity’s values varying within an interval. 

 

Table 4  

Quantity and Variation Problem 

 Which is the larger, 2𝑛 or 2 + 𝑛? Explain 
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Note that in Sam’s response, he described a quantity as a replacement for a 

number or place holder of a number. The answer given by Sam is incorrect because if the 

value of 𝑛 <  2, 2 + 𝑛 is greater; if 𝑛 =  2, 2𝑛 =  𝑛 + 2; and if 𝑛 >  2, 2𝑛 is greater. 

From Sam’s response, it could be deduced that Sam failed to see the continuous or 

progressive change in the value of variable 𝑛 to the change in the expression of 2𝑛 and 

𝑛 + 2. This is predominantly due to his thinking about the object of the quantity value 

(the number that replaces or holds value) that Sam reached the aforementioned 

conclusion and failed to recognize the increasing, decreasing, or the directional change of 

“𝑛” on the expressions “2𝑛” and “2 + 𝑛.” The findings suggest that he sees the variable 

itself as an object (e.g., 𝑛 is replaced by a number or just a symbol rather than thinking of 

it as a varying quantity value or as continuously changing variable). This showed that 

Sam was engaged in concrete object-oriented reasoning. This concrete object-oriented 

reasoning widely influences Sam’s thinking, and he lacks knowledge pertaining to 

variation or a varying quantity. This response shows that Sam’s initial conceptions of 

quantity and variation consisted of a combination of objects, and it is numerical values. 

As a result, viewing quantity as object or replacement of number impacted and/or 

impaired Sam’s reasoning about quantity, and, therefore, limited his reasoning about 

varying and fixed quantities.  Consequently, Sam was unable to give a correct answer for 

the question, “Which is the larger, 2𝑛 or 2 + 𝑛?”, because Sam viewed “𝑛” as symbol, 

place holder, or object, and this impacted his reasoning to provide a solution of the 

mathematics problem. In the next section, Sam’s conception of covariation and rate of 

change is presented. 
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Sam’s Conception of Covariation and Rate of Change  

In the vehicle problem of the pre-instruction (see Table 5) students were asked to, 

“a. Draw a diagram to illustrate the situation and use variables to represent relevant 

quantities in their drawing.” Sam’s response to the problem is illustrated in Figure 1. Sam 

represented two vehicles (i.e., the objects in the problem) facing each other as points in 

the coordinate plane, but he did not correctly label all the relevant quantities (the distance 

that separates the two vehicles in km, the total distance in kilo meter (𝑘𝑚), the time since 

the vehicles began moving in ℎ seconds, and the speed/velocity of the two vehicles in 

𝑘𝑚/ℎ). Sam was able to label the automobile and bus using two points; however, he did 

not relate them to one another. In addition to this, he drew two vehicles in the plane 

showing the automobile and the bus travelling at different speeds. His response to the 

question shows the two cars moving on inclined planes, and the bus moves at a faster rate 

compared to the automobile, depicted using a steeper incline. Hence, Sam’s concrete 

object-oriented reasoning is clearly evident in this illustration. Likewise, Sam did not 

draw a diagram that illustrates the relationship between the quantities in the situation. 

Rather, he drew illustrations of the objects involved, with one illustration depicting the 

two objects together and a second illustration depicting that one object was moving at a 

faster rate than the other. Sam’s illustration depicts the objects in the situation and not the 

relationships between the relevant varying and constant quantities. Consequently, Sam 

did not view the dynamic function relation between the speed of the bus as it varies with 

time and the speed of the automobile as it varies with time.  
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Figure 1. Diagram Constructed by Sam for the Vehicle Problem 

Table 5 

The Vehicle Problem 

Two vehicles, an Automobile, and a Bus are 560 kilometers apart. They start at the same 

time and drive toward each other. The Automobile travels at a rate of 75 kilometers per 

hour and the Bus travels 53 kilometers per hour. 

a. Draw a diagram to illustrate the situation and use variables to represent relevant 

quantities in your drawing.  

b. Identify the quantities whose values are continuously changing and those whose 

values are kept constant in this scenario 

 

In Part ‘b’ of the vehicle problem question, students were asked to identify the 

fixed and continuously varying quantities. Similarly, Sam’s response for Part b of the 

vehicle problem, “The one that is kept constant is the Automobile and the continuous is 

the Bus,” reflects his lack of reasoning on quantity variation and quantity covariation. 

The Automobile and the Bus are not quantities, and they are not representing a process of 

varying quantities. Sam identified the objects within the scenario and named them as 

constant and varying quantities without having a proper understanding of what the 

question seeks to ask. The solution provided by Sam is incorrect, as automobiles and 

buses are objects, not a measurable quantity. Concerning the solution given by Sam to the 
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proposed problem, it shows that Sam’s thinking was inspired more by the object of the 

quantity. 

 

Table 6 

Bacterial Infection Problem 

Suppose a town’s Board of Health reports that a bacterial infection has been spreading 

for the last several days. They use a model that relates the number of days since 

January 1, 2017, to the number of people who are infected. The graph represents the 

relationship between these two.  

a. Draw a horizontal line segment on the graph from the point (2, 5) to (10, 5). 

What does this horizontal line segment represent in the context of this 

question? How does it vary within this given interval?  

b.  Describe what the graph conveys about how the number of people infected 

changes over time.   

 

 

 

Figure 2. Graph Constructed by Sam for Bacterial Infection Problem 

For the Bacterial Infection Problem (see Table 6) Sam responded that, “The line 

represents the two slopes interacting. It represents the infected people are a kind of 
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constant and it may vary the days that infected.” He draws and labels the start and end 

points of the horizontal line segment (see figure 2). In this response, it is unclear what he 

means by, “The line represents the two slops interacting. It represents the infected people 

are a kind of constant.” Although Sam was successful in drawing the change using a 

straight horizontal line, he was unable to identify what exactly was the change in relevant 

quantities in the situation represented between the two points. Instead, he appears to be 

treating the two slopes as objects that represent the intersection of infected people. This 

response indicates that Sam’s variational and covariational reasoning is not strong 

enough to interpret what the line segment “𝑥”represents and how it varies within the 

given interval.  

Following Part a of the Bacteria Problem discussion, Sam responded to Part b of 

the problem, “It shows that people are getting infected at a slow but increasing rate.” Sam 

did not describe clearly how the number of people at first infected by the bacteria is 

rapidly growing and then levels off in the rate of infection. Then the rate of infection 

slows down until the number of infected people begins to decrease, starting on day 10 

and the next day after January 10, 2017. Moreover, Sam did not read the graph as 

representing how two quantities change together between the start and end values. Sam 

did not show an understanding of how to coordinate changes in individual quantities in a 

covariational problem to make sense of the overall situation presented in the problem. 

Specifically, Sam did not clearly reason covariationally as he did not relate the number of 

people getting infected with the number of days. Sam focused on “people,” rather than 

“number of people,” which is a quantity, as he read the graph, and this contributed to his 

difficulty coordinating the change between the two quantities. Viewing quantity as an 
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object impaired Sam’s reasoning about covariation and its relationship to rate of change. 

Sam employed concrete object-oriented reasoning which addresses the first research 

question, since Sam’s actions during the initial study assessment reveal that his 

conception of quantity, quantity variation, and covariation consisted of a loose 

coordination of object (e.g., symbol, automobile, bus, and people) and attributes of this 

object (e.g., replaced by a number, automobile speed, bus speed, and infected people). 

Moreover, his responses for the quantity problem, the vehicle problem, and the bacterial 

problem did not reveal a process view of quantity variation (e.g., the continuous variation 

of quantity “𝑛” and its mathematical relationship with the expression “2𝑛” and “2 + 𝑛”) 

that consisted of coordinating measure attributes. Concrete object-oriented reasoning is a 

primary feature of Sam’s problem solving. This will also show up in the next student’s 

reasoning, but with different nuances that expose the complexity of the students’ 

approaches. The next section describes Ruby’s pre-instruction assessment result. 

Results of Ruby Pre-instruction Assessment 

This section presents Ruby’s reasoning and problem-solving abilities exhibited 

during the pre-instruction of the study. The narrative provides her pre-instruction 

assessment results to illustrate her pre-instruction reasoning type, which includes her 

initial characterization of quantity, variation, covariation, and rate of change. 

Ruby was a full-time student at a large, public university in the southern United 

States. She is a Bachelor of Science major with a focus in Computer Science. She took 

high school Algebra One, Algebra Two, Geometry, and Pre-calculus courses. After high 

school, she served in the military for four years as a Marine Corps radio operator. Her 

future goal is to become a computer programmer. Ruby was one of the few students who 
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responded to the initial survey task and voluntarily participated in this study. In addition 

to this, Ruby was selected for this study because she performed on average when 

compared to all students who responded to the survey question. 

Ruby’s Conception of Quantity and Variation 

While assessing the difficulty faced by Ruby in identifying which of the two 

expression values from 2𝑛 or 2 + 𝑛 is larger for the quantity problem (see Table 4) Ruby 

affirmed that “If 𝑛 > 2, then 2𝑛 will be larger than 2 + 𝑛 because will get doubled 

instead of just adding two. So, if 𝑛 = 3, then 2(3) = 6 while 2 + 3 = 5. If 𝑛 < 2, then 

2 + 𝑛 will be larger, for example, if 𝑛 = 1, then 2 + (1) = 3 while 2(1) = 2. If 𝑛 = 2, 

then both answers will be the same.” The answer given by Ruby is correct; however, the 

reasoning given by Ruby to justify her answer was incorrect. She replaced or substituted 

numbers to justify why 2𝑛 is larger or smaller when compared to 2 + 𝑛. Ruby failed to 

recognize the variation in the values of “𝑛” due to her dependencies on the regress 

computation and her action view. Thus, it can be concluded that Ruby possessed both 

object and procedural thinking, or her solution had a calculation focus and lacked 

variational reasoning of the quantity 𝑛. Her justification displayed her inclination towards 

procedural knowledge as she tried to introduce numbers into the equations to support her 

reasoning.  

Ruby’s Conception of Covariation and Rate of Change  

Concerning the solution drawn by Ruby on the vehicle problem (see Table 5 part “a”) 

Ruby easily drew the problem situation (see Figure3) but without labeling the values of 

the variables (the distance between the two vehicles or the distance that separates the two 

vehicles, the total distance in kilo meter, the time 𝑡 in ℎ second, and the speed/velocity of 
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the two vehicles in 𝑘𝑚/ℎ). Moreover, Ruby did not present a correct diagram that shows 

the two vehicles were driving towards each other. This depicts that Ruby did not have a 

clear understanding of the problem situation. Ruby was successful in coordinating the 

distance between the bus and the automobile and their speeds, but she incorrectly labeled 

the quantities’ values and the direction of change. The diagram more prominently 

indicates that the vehicles are separated by some distance, but they do not approach each 

other.  

 

 

Figure 3. Diagram Constructed by Ruby for the Vehicle Problem 

In the context of Part b of the vehicle problem (see Table 5) Ruby stated, “The 

speed of the automobile (75km/h) and the speed of the bus (53km/h) are constant, neither 

vehicle changes their speed. The distance (560km) between the two-vehicles, however, 

changes because of the difference in speed between the two, so it is a variable.” From her 

response, it can be identified that Ruby can easily verify constant quantities, but she 

incorrectly identified the total distance (560km) as a varying quantity. Moreover, Ruby 

failed to identify the quantity time and distance between the vehicles as varying 

quantities, which she confused with the total distance (560km). This may be attributed to 

the fact that Ruby could not illustrate the problem situation using a graph and could not 

provide clear variational and covariational reasoning. It can be suggested that Ruby is not 



69 
 

 

well-versed in drawing graphs representing the relationship between quantities that 

covary.  Moreover, the response indicates that Ruby is not clear about the idea of 

covariation and variation, or reasoning regarding the amount of quantity change, which is 

shown in that she did not label the variables indicating the coordination of the two 

variables (e.g., the varying distance between the two vehicles and the time 𝑡 in hours, the 

𝑑𝑎𝑢𝑡𝑜(𝑡), 𝑑𝑏𝑢𝑠(𝑡)and the time 𝑡). Furthermore, she did not have awareness of the 

directional of change of the two varying quantities as they co-vary towards each other. 

 

 

Figure 4. Graph Constructed by Ruby for Bacterial Infection Problem 

Next, for the bacterial problem, Ruby asserted that, “This segment is according to 

the diagram, 8 days”. From the graph plotted (see Figure2,) it can be assumed that, 

although Ruby could plot the graph correctly and knew the variation is 8 days, she failed 

to comprehend how 𝑥 varied, and her variation reasoning is not clearly articulated as she 

just proclaimed "8 days.” Ruby assumed the number of days between January 2 to 

January 10 as a single value, not a changing value or the result of the variation. Thus, it is 

observed that Ruby was unable to produce a meaningful inference about the change of 

days since the bacterial infection started.  
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Similarly, for Part b of the bacterial problem (see Table 6) Ruby answered that, 

“The graph shows a sharp increase in the number of infected patients, growing from 4 

patients infected at the start of the graph (0 𝑑𝑎𝑦𝑠) to peaking at 30 infected patients on 

the tenth day. After the tenth day, the infected cases per day start to decline to 27 infected 

patients on the 12𝑡ℎ day.” From the response given by Ruby, it could be confirmed that 

Ruby read the graph, but she gave loose covariational analysis for describing the problem 

situation; rather, she should have said, “The graph relates the number of people who were 

infected by bacteria with the number of days that started infecting people on January 1, 

2017.  At first the number people who were infected by the bacteria demonstrate rapid or 

fast growth and then levels off in the rate of infection. Then, the rate of infection slows 

down until the number of infections begins to decrease, starting on day 10, and the next 

days after January 10, 2017.” This exhibits that Ruby did not possesses covariational 

reasoning at the initial point of the study, and, rather, she showed unsettled reasoning 

type.  She showed strong object and procedure-oriented reasoning for the first problem, 

in which she viewed quantity as replacement of number value due to her action view of 

the problem situation and loose variational and covariational reasoning ability for the 

second and third problems. Procedure-oriented reasoning is a primary feature of Ruby’s 

reasoning, and this will also show up in the next student’s reasoning, along with object   

reasoning like Sam, but with different nuances that fill out the complexity of the students’ 

approaches. The following section discussed Chris’s pre-instruction assessment result.  

Results of Chris’s Pre-instruction Assessment 

This section presents Chris’s reasoning and problem-solving abilities exhibited 

during the initial study. The narrative provides his pre-instruction assessment results to 
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illustrate his pre-instruction reasoning type, which includes his characterization of 

quantity, variation, covariation, and rate of change.  

Chris was a full-time student at a large public university in the southern United 

States. He was a Bachelor of Science major with a focus on mechatronics engineering. 

He graduated from high school where he had high school Algebra One, Algebra Two, 

Geometry, and Pre-calculus courses.  After high school, he graduated with a bachelor’s 

degree in modern German language. After his graduation, he served and worked for the 

Navy as an electronics technician for more than ten years. His future goal is to become a 

mechatronics and robotic engineer. Chris was one of the few students who responded to 

the initial survey task and voluntarily participated for this study. In addition to this, Chris 

was selected for this study because he scored above average or top score when compared 

to all students who responded for the survey question. Below, Chris’s initial reasoning is 

described. 

Chris’s Conception of Quantity and Variation 

While assessing which out of the two values 2𝑛 and 2 + 𝑛 is larger (see Table 4 

for Quantity and Variation Problem,) Chris replied, “While n is greater than 2, 2𝑛 will 

always be larger than 2 + 𝑛. While 𝑛 is equal to 2, 2𝑛 will be equal to 2 + 𝑛. While “𝑛” 

is less than 2, 2𝑛 will be less than 2 + 𝑛.” From the response given by Chris, it can be 

clearly indicated that Chris easily coordinates the value of one variable with change in the 

other variable. Moreover, Chris is also able to relate the directional changes in one of the 

variables with the other variable and reach to a correct conclusion. Chris correctly related 

that when 𝑛 > 2, 2𝑛 will be greater; when  𝑛 < 2, 2 + 𝑛 will be greater; and when 𝑛 =

2, 2𝑛 and 2 + 𝑛 will be equal, without mentioning or using procedure-oriented reasoning 
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nor was he calculation-focused. From the response, it can be shown that Chris had a 

strong variational reasoning ability, and he viewed “𝑛” as a varying value of the quantity.  

Chris’s Conception of Covariation and Rate of Chang 

In the diagram constructed by Chris (see Figure 5 below) for the vehicle problem 

(see Table 5, part a), it is observed that Chris labels all the quantities and all the variables 

(the distance between them or the distance that separates the two vehicles, the total 

distance in km, and the speed/velocity of the two vehicles in km/h). Moreover, Chris is 

successful in illustrating the change in one variable with the change in the other, and he 

clearly coordinates the amount of change of each variable. Additionally, Chris can 

coordinate the distance between the two vehicles with their corresponding speeds. Chris 

correctly labels the direction of change; in the drawing he was also able to show that the 

two vehicles approached each other (see Figure5). 

 

 

Figure 5. Diagram Constructed by Chris for the Vehicle Problem 

From the drawing by Chris, it can be also deduced that he can illustrate the value 

of change of one of the quantities with the change of the other. Similarly, for Part b of the 

vehicle problem, Chris replied, “Constant quantity: auto velocity =75𝑘𝑚𝑝ℎ, bus velocity 

=53𝑘𝑚𝑝ℎ and distance apart =560𝑘𝑚; variable or varying quantity: auto distance 
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traveled, bus distance traveled.” But in his illustration, he missed the time quantity, which 

is the time since the auto and the bus are traveling towards each other. However, from his 

response, it can be clearly asserted that Chris describes clearly the constant and varying 

quantities. Moreover, Chris could easily coordinate the amount of change, the directional 

change, and the change of one variable with other quantities. It can be proclaimed that 

Chris exhibited strong quantitative reasoning (e.g., creating and illustrating the quantities 

relationship using graph ). Therefore, in this problem situation it’s evident that Chris 

clearly reasoned as to the amount of quantity change and also engaged in coordinating the 

amount of change of one variable with change in the other variable.  

 

 
Figure 6. Response of Chris for Bacterial Infection Problem 

Similarly, for part a of the bacterial problem (see Table 6,) Chris asserted, “The 

horizontal line represents the number of people infected on 2 January 2017.” From 

Chris’s response, it is observed that Chris could not comprehend the line segment in the 

graph as a quantity that changed between the start-to-end values of a point. Chris easily 

and correctly drew the horizontal line segment, but Chris did not comprehend that the 

value of ‘𝑥’ varies, or he did not reveal how it varied in between the intervals. Chris 

describes the horizontal line segment as representing a single day infection value, which 

is not correct, since the horizontal line segment represents the change in the number of 



74 
 

 

days from January 2 to January 10. Concerning the question in part ‘b’ of the bacteria 

problem (see Table 6) Chris answered, “The graph shows that infections start off at 2 on 

the first, increases and peaks at 30 by the 10𝑡ℎ and then decreases.” From the response 

given by Chris, it can be asserted that Chris loosely read the graph and gave quantitative 

and covariational reasoning using increase and decrease directional change, but he 

doesn’t use rate of change to describe the number of infected people over the given time 

or days. Rather, he should have said, “The graph relates the number of people who were 

infected by bacteria with the number of days that started infecting people on January 1, 

2017. At first the number of people who are infected by the bacteria rapidly grows and 

then levels off in the rate of infection. Then the rate of infection slows down until the 

number of infections begins to decrease, starting on day 10, and the next days after 

January 10, 2017.” It can be affirmed that Chris reasoned on the idea of covariation and 

the amount of quantity change but was limited in reasoning with rate of change with the 

change of two quantities. Chris reasoned clearly on the idea of amount of quantity change 

and showed strong quantitative and variational reasoning in Problem 1 and Problem 2 

above, but not in Problem 3. Chris showed a loose covariational reasoning type and rate 

of change conception at the initial point of the study.  

Summary of Pre-instruction Assessment 

This section summarized the three students reasoning orientations and their level 

of reasoning during the pre-instruction using the horizontal comparative analysis lens. 

The horizontal comparative analysis allowed the researcher to compare the three 

students’ reasoning and conceptual understanding during the pre-instruction phase. First 

Sam’s responses are summarized, then Ruby’s, and finally Chris’s. Sam’s responses to 
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the pre-instruction assessment showed that his initial reasoning and conception of 

quantity, variation, covariation, and rate of change consisted of poor coordination of 

objects (e.g., people, bus) and attributes of these objects (e.g., the bus moves fast, two 

slopes interacting). Sam’s reasoning level was below MA1 on Thompson and Carlson’s 

covariational reasoning framework, and is identified as MA0, which is described as 

students who are unable to label the axes with variables’ values (quantity) and indications 

of coordinating the two quantities (e.g., unable of coordinating the change in y with the 

change in 𝑥) (Carlson et al., 2002; Thompson &Carlson, 2017). His responses did not 

reveal a process for measuring quantity and variation of the quantity value that consisted 

of coordinating measurable attributes. Rather, measurements were pre-defined properties 

for the quantity objects. For instance, when Sam was solving the vehicle problem, Sam 

was unable to reason on quantity variation and quantity covariation answering, “The one 

that is kept constant is the Automobile and the continuous is the Bus.” These responses 

imply that Sam confused object and quantity and did not reason variationally as he was 

identifying the object and not the quantity. Automobiles and a Bus are not a quantity, and 

they are not representing a process of a varying quantity. 

Ruby’s responses to the pre-instruction assessment showed that her initial 

reasoning and conception of quantity and variation were dominated by her procedure-

oriented reasoning (e.g., 𝑛 is replaced by number, get doubled instead of just adding two). 

For instance, for the first problem, she justified her reasoning by saying, “2𝑛 will be 

larger than 2 + 𝑛 because will get doubled instead of just adding two.” This showed that 

Ruby, at the initial stages of the study, possessed strong procedural thinking and lacked 

variational thinking about quantity. Similarly, for the second problem, Ruby correctly 
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depicts the problem situation, but she did not represent relevant quantities in her drawing, 

coordinate the value of change of one quantity with the change of the other, or coordinate 

directional change of the quantity. Since Ruby correctly depicts the problem situation but 

was unable to represent relevant quantities in her drawing, it can be suggested that her 

mental action can be grouped MA1 level; this implies that Ruby could coordinate the 

value of change of one quantity with the change of the other, but she did not coordinate 

directional change of one quantity with changes in the other quantity at the onset of the 

study (Carlson et al., 2002; Thompson &Carlson, 2017). 

Chris’s responses during the pre-instruction task reveal that his conception of 

variation, co-variation, and rate of change consisted of a coordination of quantity and 

attributes of these. His responses revealed that he had a strong variational and 

quantitative reasoning ability of process for measuring a variable as a progressively 

varying quantity (e.g., 𝑛 as a continuously varying variable) that consisted of 

coordinating measurable attributes. Chris better possessed strong quantity and variational 

reasoning ability when compared to Sam and Ruby at the start of the study. This depicted 

that the variational and covariational reasoning of Chris is strong compared to Sam and 

Ruby; and it is easy to level his reasoning between MA1 to MA 3, which is he was easily 

able to coordinate change of one variable with change in the other variable, he 

understood directional change, and quantitative coordination of two or more co-varying 

quantities, but he was unable to coordinate the rate of change of the function with 

uniform increment of change in the input quantity. (Carlson et al., 2002; Thompson 

&Carlson, 2017). Therefore, at the onset of the study, Sam’s reasoning was concrete 

object-oriented reasoning about quantity, he had no variational and covariational 
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reasoning, and he was unable to coordinate the value of one variable with change in the 

other variable. Similarly, Ruby, at the initial stage of the study, showed both procedural 

and concrete object-oriented reasoning about quantity, but she showed loose variational 

and covariational reasoning when compared to Sam. Chris, on the other hand, at the onset 

of the study, showed a strong quantity, variational, and covariational reasoning type, but 

he showed limited reasoning with the coordination of rate of change of one variable with 

another variable. In the next section, the analysis along the horizontal axis is continuously 

presented. A trace of each of the cases’ reasoning for the instruction phase of the study is 

presented by analysing their homework assignments and their answers on the exam. 

Instruction Assessments 

The first six instruction sessions, which included two breakout sessions, consisted 

of investigations 1-6 (Appendix G.) Only investigation 1, 2, 3, and 6 are reported in this 

study, because these investigations contained the research problems which were 

integrated with the instructional materials. This section describes the instructional tasks 

that were implemented during these teaching sessions. The data analysis from all three 

students’ responses for homework and exams showed the students’ preliminary model of 

thinking and reasoning during the instruction. The instruction sessions provided students 

with the opportunity to work with conception of variation, quantity, covariation. smooth 

continuous covariation reasoning, average rate of change function, and derivative 

function. Homework and exams were given to the students at the end of section 4 and 6, 

respectively. The homework and exam problems asked students to apply and use what 

they had learned about quantity, variation, and covariation, rate of change, and derivative 

concepts. Additionally, the homework and exam response data were collected to 
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understand their learning and conceptual development of rate of change and derivative. 

The analysis of each student’s response is presented below.  This is followed by a 

characterization of each student’s response for homework and exam questions. The data 

analysis result of the homework and the exam showed each student’s model of thinking 

and reasoning. First, Sam’s results are presented, next Ruby’s results are discussed, and 

finally, Chris’s work is presented. 

Sam’s Homework Assessment Results 

In the water filling problem (see Table 7 below) the question was asked, “Using 

the grids below, sketch traces that you think would reasonably describe the function 𝑉 =

𝑓(𝑡) in the interval 0 ≤  𝑡 ≤  10 and the function 𝑉 = 𝑔(ℎ) in the interval 0 ≤  ℎ ≤

 12. You must explain your strategy for full credit.” Sam did not draw the graph; instead, 

he sketched a bottle (the object) without coordinating the way the volume of the water in 

the bottle (one of the quantities) increased with time, in seconds, within the interval 0 <

 𝑡 <  10 (another quantity) and the volume of the water’s change as the height of the 

water grew in inches in the interval 0 < ℎ < 12 (the third quantity.) This suggests that, 

because Sam was focused on the object, he failed to apply the concepts of covariation and 

did not graph the relationship between two co-varying quantities. That is, he could not 

associate by drawing the co-varying quantities that are volume of the water in gallons and 

time taking to fill the bottle in water in the given time for each second, and he did not 

formulate the association between the volumes of water in gallons with the height of 

water in inches in the bottle. 
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Table 7 

Water Filling Problem 

Wilhelmina purchased the beaker shown below at a flea market. The beaker is twelve 

inches tall and is capable of holding one gallon of liquid. Wilhelmina places the beaker 

under a faucet and begins to fill it at a constant rate of 0.10 gallons per second. 

Problem 1. Imagine the process of water filling the beaker.  Let 𝑡 represent measures of 

the quantity “time passed since the faucet was turned on, measured in seconds.”   Let 𝑉 

represent measures of the quantity “the volume of water in the beaker, measured in 

cubic inches.” Let ℎ represent measures of the quantity “the depth of water in the 

beaker, measured in inches.” 

Part (a). Using the grids below, sketch traces that you think would reasonably 

describe the function 𝑉 = 𝑓(𝑡) in the interval 0 ≤  𝑡 ≤  10 and the function 

𝑉 = 𝑔(ℎ) in the interval 0 ≤  ℎ ≤  12. You must explain your strategy for full 

credit 

Part (b). Use the grid below to sketch a trace that could reasonably describe the 

function ℎ = 𝑚(𝑡) in the interval 0 ≤ 𝑡 ≤  10. You must explain your strategy 

for full credit. 

Problem 2 (Extension Question): I have included a diagram on the next page to help 

you think about the graph of volume as a function of depth. You can draw a similar 

diagram to help you think about the graph of depth as a function of time. 

 

 
 

This diagram shows fixed height increments ∆ℎ =  1 𝑖𝑛𝑐ℎ. What can you say about 

corresponding volume increments ∆𝑉? Your second graph in Part (a) should reflect 

what you observe. 
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In the justification for his answer, Sam explained, “My reason is that since time 

has passed and water (object) would be a little full by then in a few seconds. Seeing the 

width of the beaker, the water (object) should be around there by a few seconds it would 

vary if the water (object) is still on.” Note that Sam only mentions the water, which is the 

object,  he does not focus on a measurable attribute of the object. He understood that time 

and volume co-vary together as he suggested, “since time has passed and water (object) 

would be a little fall by then in a few seconds.” However, he was still thinking on the 

object “water” not the volume of the water in gallons.  Sam’s “concrete object-oriented 

reasoning” impacted his ability to provide clear explanations about the association 

between the volume of water in gallons and height of the water that changes in inches as 

the volume of the water in the bottle varies. Thus, Sam showed a weak understanding 

about the two co-varying quantities’ relationship, and, rather, he showed a strong 

concrete object-oriented reasoning type and he reasoned using the physical object (see 

Figure 7 below). He didn’t apply what he learned, and his reasoning was impaired by his 

concrete object-oriented reasoning. In the next section Sam’s responses for the exam 

problem are presented. 

 

 
Figure 7. Response of Sam to Part (a) of Water Filling Problem 
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Sam’s Exam Assessment Results 

The response given by Sam for linear problem (see Table 8 Problem 1 below) was 

“(𝑥 + ℎ)(𝑥 + ℎ) = 𝑥2 + 2𝑥ℎ + ℎ2=>8 − 6 = 6 & − 2/3(6) = −4, −4 + 5 = 1.” It can 

be observed that although Sam did provide the correct answer, his approach towards the 

problem is unclear, and he didn’t apply variational reasoning to solve the problem. Sam 

failed to apply what he learned about the variation equation in y and x, and he computed 

the value without any clear descriptions. Sam did not display an understanding of the 

relationship between the variation in one variable and the corresponding variation in the 

other variable, instead he produced an unrelated expression “(𝑥 + ℎ)(𝑥 + ℎ) = 𝑥2 +

2𝑥ℎ + ℎ2,” which is not a covariational analysis. The way Sam has calculated the 

solution is unclear, and it is known that Sam did not use any variational and covariational 

analysis. Sam approaches the problem by inserting the given number without applying 

variational or covariational reasoning due to his action view approach or procedure-

oriented reasoning to the problem situation, and this hampered the development of his 

variational and covariational reasoning. Next, for Problem 2, part a, the question asked, 

“What is the change equation for this linear function? “Sam produced a 

relationship ∆𝑉 =  −
1

15
; he did not write the variation in variable 𝑡, but he was able to see 

variation in the volume (one of the quantities). From the response given by Sam, it can be 

seen that Sam determined the change in the volume equation, but he did not mention the 

change in time variable or variation in time ‘𝑡’. Sam did not write a covariational 

equation correctly about change in volume ‘𝑉’ and change in time ‘𝑡,’ thus, he displayed 

poor coordination of reasoning between the two co-varying quantities 𝑉 and 𝑡.  
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Table 8 

Linear Function Problem 

Problem 1. Suppose that 𝑦 = 𝑓(𝑥) is a linear function whose change equation is ∆𝑦 =

 −
2

3
∆𝑥. If we happen to know that 𝑓(2)  =  5, what is the value of 𝑓(8)? You must 

show your work for full credit. 

Problem 2. A bucket of water initially contains 140 ounces of water. The bucket springs 

a leak, and water seeps out at a constant rate so that two ounces of water drains out every 

30 seconds. Let 𝑡 represent values of the quantity “the time passed since the bucket 

began leaking, measured in seconds.” Let 𝑉 represent values of the quantity “the volume 

of water in the bucket, measured in ounces.” Let 𝑡 = 𝑓(𝑉) be the function action that 

gives the values of 𝑡 in terms of the values of 𝑉. Assume that the function f is linear. 

Part (a). What is the change equation for this linear function? 

Part (b). When ∆𝑉 =  −10 ounces, what is the corresponding time variation ∆𝑡? 

You must show your work for full credit. 

Part (c). We know that 𝑓(140)  =  0 seconds. Use this information and the 

change equation to construct a formula for the function f. 

 

 

For part c of Problem 2, Sam produced a formula “140 −
1

15
𝑉” which is not 

correct, since 𝑓(140) should be 0; however, in this formula, f (140) is equal to 130.667. 

Here, it can be observed that Sam did not use the change function to compute a specific 

function value also; instead, he substituted number; Sam did not describe his approach 

and did not use the idea of variation and co-variation to describe the change in the 

function value with a corresponding variation in time. Sam displayed poor covariational 

reasoning, and he did not coordinate the change in value of one variable with changes in 

the other. Therefore, Sam showed a slight improvement in his reasoning of quantity and 

variation, but he is still struggling and confused with his concrete object-oriented 

reasoning. His concrete object-oriented reasoning limited him in not developing quantity, 
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variational, and covariational reasoning, and this impaired his conceptualization of the 

mathematics concept. Sam’s concrete object-oriented reasoning dominated his 

mathematics problem solving and this will also show up in the next student’s reasoning, 

but with different nuances that fill out the complexity of Sam’s approaches. Next, Ruby’s 

instructional assessment results are presented. 

Ruby’s Homework Assessment Results  

Ruby was able to draw the relationship between the volume of the water and the 

time taken to fill the bottle for water problem (See Figure 8 below for the water filling 

problem of Table 7) for the question that asked, “Using the grids below, sketch traces that 

you think would reasonably describe the function 𝑉 = 𝑓(𝑡) in the interval 0 ≤  𝑡 ≤  10 

and the function 𝑉 = 𝑔(ℎ) in the interval 0 ≤  ℎ ≤  12. You must explain your strategy 

for full credit.” The graph sketched by Ruby depicted that there exists a linear 

relationship between the volume of the water and the time passed in seconds, i.e.,𝑉 =

𝑓(𝑡). Moreover, Ruby portrayed a nonlinear graph between the volume and height of the 

water, i.e., 𝑉 = 𝑔(ℎ). In this problem situation, it can be easily justified that Ruby 

learned and understood variation, covariation, the rate of change function, and function, 

and she could easily draw the graph for both the situations (linear and nonlinear). 

 

 

Figure 8. Response of Ruby to Part (a) of Water Filling Problem 
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Concerning the relationship between the height of the water and the time taken to 

fill the bottle, Ruby depicted a nonlinear association between the height and time in the 

graph (see figure 9 below); wherein, the height increases to some point and then 

decreases after some time. Again, since Ruby learned and understood variation, co-

variation, the rate of change functions, and function, she was able to draw correct graph 

for the two co-varying quantities in this situation. In this context, Ruby replied, “The 

bottom section can hold more water, so it takes a longer time to fill up as well as the 

amount of water it takes to fill up is more. The second segment of the beaker takes 

gradually less time and water to fill up, so the height starts to gradually increase faster. 

The very top part of the beaker is narrower and holds less liquid, so it fills up fast and 

increases the height faster.” 

 

 

Figure 9. Response of Ruby to Part (b) of Water Filling Problem 

Ruby had clarity regarding the co-variational reasoning and, therefore, could 

easily identify why the lower part of the bottle would take more time to fill, the second 

portion of the bottle takes less time to fill, and the top part would take little time to fill. 

Moreover, since Ruby used terms like gradually increasing, increase at a faster rate, fill 

up fast, and increase fast, it can be identified that Ruby could easily recognize the terms 
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like variation, covariation, the rate of change function, and function. This further 

indicates that Ruby’s reasoning level can be placed in the level of MA1-MA3, since 

Ruby depicts a clear understanding of coordinating the value of one variable with 

changes in the other, coordinating the direction of change of one variable with changes in 

the other variable, coordinating the amount of change of one variable with changes in the 

other variable, and coordinating the average rate-of-change of the function with uniform 

increments of change in the input variable. Moreover, the results of this analysis showed 

that Ruby substantially developed a strong variational and covariational reasoning when 

compared to her initial reasoning abilities.  

Ruby’s Exam Assessment Results 

Next, for the question that asked, “Suppose that 𝑦 = 𝑓(𝑥) is a linear function 

whose change equation is ∆𝑦 =  −
2

3
 ∆𝑥. If we happen to know that 𝑓(2)  =  5, what is 

the value of 𝑓(8)? You must show your work for full credit,” Ruby described and 

showed every step (see Figure 10) to arrive at the correct solution. Ruby computed the 

variation in y as a −
2

3
 in variation in x, and then she transferred the expression to get the 

function value.  

 

 

 

Figure 10. Ruby’s Written Solution for Problem 1 
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Ruby could correctly define the change or variation equation as (𝑓(8) − 𝑓(2) = −
2

3
(8 −

2)), and her correct covariational reasoning leads her to justify 𝑓(8) = 1. Ruby learned 

and understood how to coordinate the change value of one variable with changes in the 

other, coordinate the direction of change of one variable with changes in the other 

variable, and coordinate the amount of change of one variable with changes in the other 

variable. 

 

 
Figure 11. Ruby’s Written Solution Problem 2 Part a 

 

Similarly, for the question, “What is the change equation for this linear function?”, the 

response given by Ruby suggests that Ruby could easily identify the change equation (see 

Figure 11) for the linear function correctly, and she could formulate the relationship 

between the two varying quantities (e.g., ∆𝑡 and ∆𝑉). Ruby understood the change 

equation of the given quantity, and she produces a correct solution. The response given 

by Ruby suggests that Ruby can easily use her covariational analysis to determine the 

change equation of the linear function of the variation in 𝑡 and 𝑉 to conclude  ∆𝑡 =

−15∆𝑉.  
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Figure 12. Ruby’s Written Solution Problem 2 Part b 

In the context, Ruby can correctly compute the corresponding time variation as 

the volume varies by -10 ounces. She used quantitative and variational reasoning. Ruby 

understood and analyzed the change equation of the given quantity, and then she 

produced a correct solution. Since Ruby developed a strong covariational reasoning 

during the instruction, she was able to comprehend to produce a correct solution. 

 

 
Figure 13. Ruby’s Written Solution Problem 2 Part c 

For this part of the problem, Ruby developed the variation equation, and she 

could easily evaluate the variation of time in seconds with the variation in volume of 

water in gallons, and she produced the function formula in terms of quantity volume. 

From the response given by Ruby, it can be concluded that Ruby easily comprehended 

the change equation of the given quantity, and she produced a correct solution. Her 

covariational reasoning is strong enough and helped her to analyze the problem situation. 
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Figure 14. Ruby’s written solution Problem 3 Part a 

Finally, for the problem, “Use this graph to estimate the value of 

𝐴𝑅𝑜𝐶2.00(−2.80),” Ruby read the graph and she was able to estimate the value of ARoC 

with clear steps. It was observed that Ruby was able to coordinate the change in the input 

variable with the change in the output variable to determine the average rate-of-change of 

the function with uniform increments of change in the input variable, and she was able to 

reason the covariation between the two covarying quantities. This is because Ruby could 

easily coordinate the average rate-of-change of the function with uniform increments of 

change in the input variable. 

 

 
Figure 15. Ruby’s written solution for ARoC Problem 
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Here, it can be observed that Ruby constructed the ARoC function formula and was able 

to observe her steps or reasoning to conclude ARoCh(x) = 2 − 2x − h. It can be 

concluded that Ruby can coordinate the average rate-of-change of the function with 

uniform increments of change in the input variable, and she is able to reason 

covariationally between two covarying quantities. Ruby’s reasoning can be grouped 

under the MA4 level of the Mental Action Framework. This is because Ruby could easily 

coordinate the average rate-of-change of the function with uniform increments of change 

in the input variable. It can be observed that Ruby could answer the question correctly, 

and she produced a correct 𝐴𝑅𝑜𝐶0.2(0.6) = 8 (for the problem she was asked to compute 

𝐴𝑅𝑜𝐶0.2(06)) by correctly reading the input and output quantity information from the 

graph. Ruby used a proper input-output process with the quotient relationship with ARoC 

at ℎ = 0.2. Since Ruby can coordinate the average rate-of-change of the function with 

uniform increments of change in the input variable, she is able to reason covariation 

between two covarying quantities. Therefore, during the instruction session, Ruby 

developed strong quantity, variational, and covariational reasoning abilities when 

compared to Sam as well as to her initial reasoning. She also used ARoC to create or 

produce correct covariational relationship between two covarying quantities. Her 

reasoning was deepening and showed tremendous change when compared to her prior 

reasoning or pre-instruction reasoning. She developed strong variational, quantity, and 

covariational reasoning abilities during the instructional session, which helped her to 

produce mathematically correct or justified solutions for each problem situation. Next, 

Chris’s instructional assessment results are presented.  
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Chris’s Homework Assessment Results 

Concerning the homework problem for Part a, it was found that Chris developed a 

graph of the situation for the relationship between the volume of the water and the time 

taken to fill the bottle with water (see Figure 16 below). 

 

  

Figure 16. Response of Chris to Part (a) of Water filling Problem 

 The graph depicted a linear relationship between the volume of water and the time 

passed to fill the volume of the water. Chris proclaimed, “𝑉 = 𝑓(𝑡) is a straight line 

because the faucet fills the beaker 1 gal/sec. The shape of the beaker doesn’t matter in 

this instance, 𝑉 = 𝑔(ℎ) on the other h and does change based on the shape of the beaker. 

The volume rises steadily as the depth increases during the cylindrically shaped section. 

In the cone-shaped section, the volume increase will slow down because there are smaller 

and smaller sections to fill. When the volume is at the small cylinder the volume will 

increase slowly, but steadily, because each inch of depth only adds a small amount of 

volume.” From the graph plotted and the response given by Chris, it can be deduced that 

Chris used covariational reasoning to assert that the relationship between the volume of 

the bottle and the time taken is a straight line irrespective of the shape of the bottle.  
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Figure 17. Response of Chris to Part (a) of Water filling Problem 

Next, for part b of the water problem, Chris stated that, “As time increases the depth 

increases steadily over the interval [0,5] because the cylinder is straight up and down the 

change in ℎ will stay steady. Over the interval [5,9] the change in h will become larger 

because the fill rate will stay constant but the volume to fill will steadily decrease. Over 

the interval [9,12] the change in h will remain steady due to another cylindrical section, 

but the interval for each change in h will be smaller than the change in ‘ℎ’ over the 

interval [0,5]”. Chris clearly used his co-variational reasoning to analyze the input and 

output processes between the quantities volume and height. He indicated that the 

relationship between the volume and height of the bottle is impacted by the shape of the 

bottle. Moreover, regarding the height of the bottle and the time required to fill the bottle, 

Chris gave a clear causal relationship between the time taken to fill and the corresponding 

height increase for each section of the bottle using covariational reasoning. Moreover, 

Chris correctly used the terms increase, decrease, higher filling rate, and steady rate to 

describe the covariational relationship between the volume of the water and the height of 

the water. This exhibits that Chris learned and understood the concepts of variation, co-
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variation, the average rate of change function, and function during the instructional 

session.   

Chris’s Exam Assessment Results 

The response given by Chris for the exam for the linear problem showed that 

Chris arrived at his solution by justifying using correct variational and covariational 

reasoning (see below Figure 18).  

 

                                   

Figure18. Response of Chris for Problem1 

Chris computed the variation in 𝑦 as a −
2

3
 in variation in 𝑥, and then he correctly 

transferred the expression to get the function value. Chris coordinated the value of the 

variation in 𝑥 with a change in the value of 𝑦.  This implies that Chris learned a 

coordination change in one variable with the change to the other variable, which helped 

him to reach a correct conclusion to the problem situation. 

 

                               
Figure 19. Response of Chris for Part a of Problem 2  
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Furthermore, for part a of Problem 2 of, it was observed that the change equation was 

correctly interpreted, and he assigned a new variable ‘𝑚,’ which may be interpreted as 

rate of change (see Figure 19). Chris first formulated the relationship between the two 

varying quantities correctly, and this showed that he can coordinate the value of one 

variable with changes in the other, coordinate the direction of change of one variable with 

changes in the other variable, and coordinate the amount of change of one variable with 

changes in the other variable.  

 

                    
Figure 20. Response of Chris for Problem 2 Part b 

Next, the response given by Chris for part b of Problem 2 of showed that he correctly 

computed the corresponding time variation in seconds as the volume varies by -10 ounces 

(see Figure 20). Moreover, it is observed that Chris used quantitative reasoning and 

variation reasoning for evaluating the relationship between the two quantities.  This 

implies that Chris can coordinate the value of one variable with changes in the other, 

coordinate the direction of change of one variable with changes in the other variable, and 

coordinate the amount of change of one variable with changes in the other variable.  
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Figure 21. Response of Chris for Problem 2 part c 

In addition to this, it can be observed that Chris constructed the ARoC function formula, 

and he clearly showed his steps and reasoning to produce ARoCh(x) = 2 − 2x − h for 

this part of the Problem (see figure 21). From the response given by Chris, it can be 

asserted that Chris can coordinate the average rate-of-change of the function with 

uniform increments of change in the input variable, and he can reason covariationally 

between two covarying quantities. 

 

 
Figure 22. Response of Chris Problem 3 Part b 

Finally, for the last problem, Chris produced a correct 𝐴𝑅𝑜𝐶0.2(0.6)  = 8 by correctly 

reading the input and output quantities information from the graph. He used a proper 

input-output process with the quotient relationship with ARoC at ℎ = 0.2 (see Figure 22). 

As a result, Chris is able to coordinate the average rate-of-change of the function with 

uniform increments of change in the input variable, and he is able to display his 
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understanding regarding the concept of co-variation. Both Chris and Ruby demonstrated 

strong covariational and variational reasoning to analyze the problem situation in the 

instructional assessment problems. Therefore, from the homework and exam responses, it 

can be inferred that Chris developed strong quantity, variational, and covariational 

reasoning when compared to his pre-instruction reasoning abilities. 

Summary of the Instructional Assessment  

This section summarized the three students’ reasoning type and their level of 

reasoning during the instruction using a horizontal comparative analysis lens. The 

horizontal comparative analysis allowed comparison of the three students’ reasoning and 

conceptual understanding during the instruction phase. First Sam’s responses are 

summarized, then Ruby’s, and finally Chris’s. The water filling problem revealed Sam’s 

thought process while constructing a diagram of the object as a graph. He then used his 

concrete object-oriented reasoning (for instance, he sketched a bottle (the object), he used 

terms like “the water;” instead he should have said “the volume of the water” which is a 

measurable quantity) to construct quantities and, subsequently, reason about relationships 

between these quantities. Sam’s reasoning about the rate of change of the volume of 

water in gallons and the time it takes to fill the bottle was not supported by identifying 

equal changes of time and comparing corresponding changes of the volume of water, and 

he did not reach the reasoning level (MA3-MA5). Sam did not envision increases or 

decreases in one quantity or variable value as it is happening simultaneously with the 

change in another variable value in the water filling problem.  

Similarly, for the exam problems, Sam reasoned procedurally without applying 

conceptual reasoning due to his poor reasoning ability of the quantity relationship. For 
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instance, in the linear and nonlinear problem, his actions led to Sam to produce an 

unrelated relationship between the independent quantity,𝑥, and the dependent quantity, 𝑦,  

that reflected his concrete object-oriented reasoning. As it is demonstrated, Sam's 

responses for the water filling and nonlinear function problems were impaired by his 

concrete object-oriented reasoning of the two varying quantities, that is, “My reason is 

that since time has passed and water (object) would be a little full by then in a few 

seconds. Seeing the width of the beaker, the water (object) should be around there by a 

few seconds it would vary if the water (object) is still on.” His concrete object-oriented 

reasoning could not enable him to construct a covariational relationship between the two 

varying quantities (for instance, Sam thinking about the water but not the volume of the 

water in a gallon and time taken in seconds). Sam’s concrete object-oriented reasoning 

also impacted his ability to reason covariationally. His concrete object-oriented reasoning 

leads him to produce poor mathematics relationships between two covarying quantities 

(e.g., ∆𝑣 =  −
1

15
 and 140 −

1

15
𝑉). 

On the other hand, Ruby constructed a deep understanding of variation and 

covariation reasoning that was revealed on her response for the water filling problem. She 

learned and used her reasoning to coordinate the covariational relationship between the 

volumes of the water with the time, in seconds, it takes to fill the bottle. Ruby depicted 

the situation by correctly drawing the graph of the volume of water and the height of the 

water as the time passed to fill the bottle. She used covariational reasoning to construct 

the quantities and subsequent relationships. More importantly, Ruby solved the bottle 

problem by identifying equal changes of time, in seconds, to fill the bottle with water and 

comparing corresponding changes of the volume of water, and then she reached a correct 
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conclusion. Ruby envisioned increases or decreases in one quantity or variable value as it 

is happening simultaneously with the change in another variable value in the water filling 

problem (MA1-MA3). For linear and nonlinear functions, Ruby reasoned and applied 

covariational reasoning to justify her solution and she used covariational reasoning to 

analyze and obtain the correct solution. Ruby learned and understood variation, 

covariation, the average rate of change function, and function compared to her pre-

instruction; that is procedure-oriented reasoning and loose variational and covariational 

reasoning. Her reasoning is grouped under MA1-MA4. 

The water filling problem revealed Chris's clear understanding the covariational 

relationship between the two covarying quantities: the volume of the water and the time 

taken to fill the volume of water. Chris showed strong covariational reasoning to analyze 

the input-output quantity relationship; for instance, he said “𝑉 = 𝑓(𝑡) is a straight line 

because the faucet fills the beaker 1 𝑔𝑎𝑙/𝑠𝑒𝑐. The shape of the beaker doesn’t matter in 

this instance.” Chris plotted a graph that depicted the covariational relationship between 

the volume of water and the height of water in the bottle. The graph plotted by Chris 

depicted an increased, nonlinear relationship between the volume of the water and height, 

and also the height versus the time throughout the given interval of 𝑡. For linear and 

nonlinear problems, Chris used correct covariational reasoning to analyze the problem 

situation. Therefore, Chris learned and understood variation, covariation, and the average 

rate of change; he was also able to draw the graph for two covarying quantities in this 

situation. His reasoning was placed under MA1-MA4 as he improved his reasoning 

compared to his pre-instruction reasoning ability. This is because Chris could also 
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coordinate the rate of change of the function with continuous changes in the independent 

variable for the entire domain of the function.  

Both Chris and Ruby developed strong quantity, variation, and covariational 

reasoning. Then again, Sam still struggled to develop quantity, variational, and co-

variational reasoning abilities. Sam used his concrete object-oriented reasoning, and that 

affected his variational and covariational reasoning development. In the next section, the 

analysis along the horizontal axis is continuously presented. A trace of each of the cases’ 

reasoning for the post-instruction phase of the study is presented by analyzing interview 

responses. 

Post-Instruction Interview 

After the instruction sessions, a post-instruction interview (Appendix F) was 

conducted with the three students to further understand their reasoning that was revealed 

in the instructional setting. Four open-ended interview questions were asked to better 

situate their thinking about quantity, variation, covariation, average rate of change, and 

derivative concept. The rectangle area problem was used to assess their variational and 

covariational reasoning as they constructed a relationship between two quantities that 

included any varying value of one quantity when there is a simultaneously changing 

value of the other quantity. The distance function and average rate of change function 

problems were designed to assess students’ reasoning ability when solving the average 

rate of change and the derivative function problems. The results of the post-instruction 

sessions are also presented to further illustrate each student’s mathematics construction 

during the instruction sessions and to identify the role various reasoning abilities (e.g., 

variational, quantitative, and covariational reasoning) played in their learning. First, 
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Sam’s results are presented, next Ruby’s results are presented, and, finally, Chris’s results 

are presented below.  

Sam’s Post-instruction Interview 

After reading the rectangle area problem (see Table 9 below) Sam described 

quantity as a fixed rate (see excerpt below). 

 

Table 9 

Quantity and Variation Reasoning 

Area of Rectangle Problem  

You have 240 feet of fence to enclose a rectangular lawn. You are free to make the enclosure 

have any possible length and width, but you must use all the fences. Play the GeoGebra (GG) 

animation applet of the Covariation and Area function. 

a. Define the constant variable in this situation. 

b. Define the varying variables in this situation. State the intervals over which they     

are varying. 

 

Interviewer: So, the question is, describe the constant quantity in this situation. 

Sam:  A constant variable is something that just not changes or it's something 

that does not affect. I try to say the right word, it is a fixed rate. 

Interviewer:  What do you mean a fixed rate? 

Sam:  So, is this in a fixed rate being the right word for it to be like a like a fixed   

rate? Like, I think it cannot change or keep the same value. 

Interviewer: So, from these quantities [showing the GeoGebra applet] which one 

of the quantities keeping the same value. 

Sam: Which one keeping the same, I will say the length keep the same, 

Interviewer: Which one keeps the same? 

Sam: I will say the length keep the same.  

Interviewer: The length OK. Why have you said that?  

Sam:  Ok I see, I am sorry, the length of the rectangle is keep changing [he said 

that after he saw all the length, width, and area is keep changing in the 

applet]. Since the width just keeps changing, and so I just put small a 
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small change, rectangle shape “concrete object-oriented reasoning”, just 

keeps changing constantly, 

Interviewer: Nice. It is a nice way of expressing your idea. So now my question 

for you    is, when you say a quantity vary by constant or fixed amount 

what you mean that 

Sam: It just means that the value of the quantity increases by fixed amount or 

noticeable amount. 

 

Sam was asked to describe the constant variable in the scenario. In this context, Sam 

revealed that a constant variable is something that just does not change or it's something 

that is not affected. He further described the constant variable as a “fixed rate.” After 

further investigating the meaning of the word fixed rate, Sam revealed that he meant 

something that does not change. Here, Sam showed confusion between the concept of 

“fixed rate” and “constant quantity or fixed quantity.” Sam explained that the meanings of 

fixed rate and constant variable are similar to him. To further assist Sam, the interviewer 

provided Sam with a GeoGebra applet and asked Sam to make a comparison and observe 

the change in the applet. After observing the GeoGebra applet for the question asked, “Why 

you said that?,” Sam suggested that, “…so I just put small a small change, rectangle shape, 

just keeps changing constantly.” Here, it was shown that Sam was thinking about the object 

(e.g., the shape, the rectangular shape,) not the quantity (e.g., length, width, area, & 

perimeter of the rectangle). The interviewer further assisted Sam and guided him by 

revealing that the blue part indicated the area of the rectangle, in hopes that Sam could 

label the length and width of the rectangle. After looking at the applet, he noticed that the 

length, width, and area keep changing. Sam seems to have adjusted his reasoning here after 

looking at the applet and suggested that the width is also constantly changing, so the area 

might be a constant quantity. However, Sam then pointed to the area of the rectangle and 

asserted that the “rectangle changes continuously.” Sam resisted changing his concrete 
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object-oriented reasoning; he used the object (the rectangle) to reason about changing and 

fixed quantities of the rectangle problem. To gain insight into Sam’s reasoning, he was 

asked further question about varying quantity, and he describes quantity as an object (the 

rectangular shape).See excerpt below. 

Interviewer: So, the question is, can you identify which one is a varying quantity 

in this type of situation. 

Sam: You know. So, I'm seeing right now, it just keeps going up, it just keeps 

changing the shape, the rectangular shape [object] is keeping change. 

Interviewer: Ok. Yeah. Show me. Show me. Exactly. 

Sam: And so right here is the rectangle [object] with variable changes. So, it's not 

really good drawing. But rectangles right here is changing, [by point to the 

area of the rectangle]  

Interviewer: What about if the quantity is changing continuously or by an 

unnoticeable amount or by little amount or by a very small amount. What 

can you say about this kind of change? 

Sam: I was saying that maybe the quantities were joined together, the area of the 

rectangle keeps changing continuously. 

 

In this segment, the interviewer asked Sam to define varying quantity. Sam described 

how the object (rectangle) is changing, but he didn’t use a quantity, such as area of the 

rectangle, length of the rectangle, width of the rectangle, or perimeter of the rectangle as 

he described which quantity is constant or varying. This response shows that Sam had 

confusion between the object of the quantity (rectangle) and the quantity (area of 

rectangle.) Sam struggled to identify the difference between the object of the quantity and 

the attribute of the quantity. Next, Sam was asked a question to understand the 

development of his smooth, continuous, covariation reasoning (see below Table 10). 

 

Table 10 

Smooth Continuous Covariational Reasoning 
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Area of Rectangle Problem continued above  

You have 240 feet of fence to enclose a rectangular lawn. You are free to make the enclosure 

have any possible length and width, but you must use all the fences. Play the GeoGebra (GG) 

animation applet of the Covariation and Area function. 

c. When the width of the rectangle varies by 10 feet between the interval what 

relationship do you notice between the rectangle’s enclosed area and its width? 

What can you conclude from the relationship? Is it possible to make a table that 

shows all possible values of the variables that this relationship produces? If so, 

make the table, if not, explain why not. 

d. When the width of the rectangle varies smoothly and continuously between the 

interval (in all points in the interval). What relationship do you notice between the 

rectangle’s enclosed area and its width? How does the area of the rectangle vary as 

the width of the rectangle varies all intermediate values within the given interval? Is 

it possible to make a table that shows all possible values of the variables that this 

relationship produces? If so, make the table, if not, explain why not. 

e. Make graphs for the situation in part (c) and (d). Did you get the same graph for 

part c and d? If you found different graphs, explain why this is occurred. 

 

After reading parts c, d, and e of the rectangle area problem (see Table 10) Sam explained 

his solution and he produced the physical object as a graph illustration (see below excerpt.) 

Interviewer:  Yeah, what relationships do you notice between the rectangle 

enclosed area and the width of the rectangle? 

Sam: It keeps changing. Right. 

Interviewer: Ok, how it keeps changing. 

Sam:  Keeps changing, both keeps changing. The width it kind of stays the same, 

but the length and area of the rectangle just keeps changing. 

Interviewer: Ok, how they are changing? 

Sam: I really don't know. I really don't know about this. 

Interviewer:  Ok, why part d is tough to draw the graph? 

Sam:  It will a different graph and yeah, since its shape of the rectangle keep 

change on both cases, but for part d since the area is continuously keep 

change it is hard to draw the graph, since the rectangle is just keeps 

changing continuously. Part d it is really hard to tell the area but at least in 

part c we got number like 10 feet. 

Interviewer:  Can draw the two graphs, if possible, for you? 

Sam: I will try graph part c but I can tell it is hard to graph part d. 

Interviewer: You can try.  

Sam: Let me use piece of paper.  

Interviewer: Yeah, I can give you time. 



103 
 

 

Sam: I said, this is my interpretation right here. This is right here. This is for 

graph for c. [He presented his drawing] 

Interviewer:   Ok, Show me the graph. 

Sam:  Just standing right here in the bottom. 

 

 
Figure 23. Sam response for the Area Problem 

Interviewer: Why you draw this graph for part D? 

Sam:  Since the width just keeps changing, and so I just put small a small change, 

rectangle shape, just keeps changing constantly. 

Interviewer: Nice. It is a nice way of expressing your idea. 

Interviewer: Ok, so that's good. So the other question is when you define two 

quantities co-varying together, how can you define their relationship? 

How are they relating to each other? 

Sam: I mean, to each other, it is just like one cause the other to change, I just 

trying to pick the right words for it's like, I think they cause each other. 

 

After reading the question, the interviewer asked Sam to identify the relationship 

between the rectangle’s enclosed area and the width. Sam suggested that the width stays 

the same, but the length and area of the rectangle just keep changing. However, Sam did 

not explain how this change exactly occurs. The interviewer next asked Sam regarding the 

kind of relationship and assisted Sam by displaying the GeoGebra Applet. Sam asserted 

that, as the width keeps on increasing, the area of the rectangle just keeps changing. Sam 

further explained that, if the width gets high, then the area of the rectangle gets as close or 

as high as, or it just disappears. In other words, Sam stated that the area of the rectangle 
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could be smaller and larger as the width just keeps getting larger or even smaller or could 

be constant at some value. The interviewer further investigated that, if the width is large, 

what impact would it have on the area? Sam, in this context, affirmed that the area will just 

be way too high, way too small, or just constant. The interviewer asked Sam to construct a 

graph for any possible value of the area and width of the rectangle. Sam, in this context, 

constructed the object of the graph of rectangle, where the width was 10 feet. 

The interviewer further asked Sam to establish a relationship between the area of 

the rectangle and the width of the rectangle when the width of the rectangle smoothly and 

continuously varies. Sam again asserted that it is all continuous, and, if the width keeps 

changing, then the area and shape just keep changing. Moreover, Sam affirmed that finding 

the area is hard, since the rectangle shape just keeps changing (he used here his object 

thinking “shape”) as the width varies. The interviewer asked Sam to draw a graph for parts 

c & d questions. Sam was ready to draw the graph for part ‘c’ but found part ‘d’ difficult. 

Sam stated that drawing the graph for part ‘d’ is difficult since the rectangle kept changing 

continuously (concrete object-oriented reasoning) for part d; however, in part c (see Figure 

23,) he was able to draw, since there is a fixed number that is 10 feet. Since Sam’s thinking 

was with symbol or object, it was easy for him to draw and reason about the object’s 

change. Sam then developed a graph of part ‘c’ of the object of the rectangle (see Figure 

23,) wherein, Sam asserted that, since the width just keeps changing, he depicted a small 

change, rectangular shape (object), which just kept changing constantly. In summary, 

Sam’s action on this problem revealed that Sam’s reasoning is about object o not the 

quantities relationship, and this affects his mathematics problem-solving abilities that 
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demand variational and covariational reasoning abilities. Sam struggled to conceptualize 

smooth continuous change which changes in a small amount. 

Nonlinear Function Problem  

After the area of rectangle problem, Sam was asked a nonlinear function problem 

(see Table 11) that assessed his covariational reasoning ability and his conceptual 

understanding of rate of change and derivative. Sam used concrete object-oriented 

reasoning to analysis the problem (see below excerpt). 

 

Table 11 

Meaning of Average rate of change and Derivative function 

Problem 2. Suppose d=f(t)=2t2 represents the distance (measured in meters) of a car from a stop 

sign in terms of the number of seconds t since the car started to move away from the stop sign. 

a. Determine the average rate of change of the distance of the car from the stop sign on 

the time intervals from 𝑡 = 0 to 𝑡 = 1.5 seconds. 

b. Describe what this average rate of change function is tells you about the change in 

distance of the car from the stop sign over the time interval from 𝑡 = 0 to 𝑡 = 1.5seconds.  

c. Determine 𝑟ℎ(𝑡) when ℎ = 0.5 seconds and describe what this tells you about the 

change in the distance of the car from the stop sign?  

d. Determine 𝑟ℎ(𝑡) when ℎ = 0.1 seconds and describe what this tells you about the 

change in the distance of the car from the stop sign. 

e. Sketch a graph of 𝑟ℎ(𝑡)from the stop sign in terms of number of seconds since the car 

stared to travel for ℎ = 0.5, ℎ = 0.4, ℎ = 0.3, ℎ = 0.2, ℎ = 0.1, ℎ = 0.001 and ℎ =
0.00001 seconds. What can you say about the graph of 𝑟ℎ(𝑡) when ℎ = 0.000001 

seconds? Explain the graph of  𝑟ℎ(𝑡) 

Note. The formula 𝑟ℎ(𝑡) =
𝑓(𝑡+ℎ)−𝑓(𝑡)

𝑡+ℎ−𝑡
=

𝑓(𝑡+ℎ)−𝑓(𝑡)

ℎ
 gives the average rate of change for 

𝑑 = 𝑓(𝑡) with respect to 𝑡over any sub-interval from 𝑡 to 𝑡 + ℎ, where ℎ ≠ 0 is the 

length of the interval on which 𝑡varies. 

 

Interviewer: OK, how did you calculate the average rate of change? 

Sam: Yeah, what you replaced with the numbers like 0 and 1.5 one will get 4.5. 
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Figure 24. Average rate of change formula when ℎ = 1.5 

 

The interviewer asked Sam to determine the average rate of change of the distance of the 

car from the stop sign on the time intervals from 𝑡 = 0 to 𝑡 = 1.5 seconds. Sam, in this 

context, suggested replacing 𝑡 = 0 and 1.5 and stated that the answer would be  4.5. Sam 

depicted the solution on paper (see Figure4.) The interviewer further asked Sam the steps 

employed for calculating the average rate of change. Sam suggested that he replaced the 

numbers with 0 and 1.5 and received the solution as 4.5. Furthermore, Sam suggested that 

the value 4.5 was the average rate of change for the given question. Sam described the 

variation in quantity 𝑡 as replacing the variable value of 𝑡 and as a placeholder here. He 

didn’t show evidence of thinking about variation and covariation between the two co-

varying quantities of distance and time to evaluate the average rate of change (ARoC.) 

Sam confused the variation in 𝑡 values with a placeholder value, or he wasn’t aware that t 

is a quantity whose value can change or vary between 0 and 1.5. Sam used his action 

view (he viewed ℎ as placeholder) to evaluate the ARoC function by substituting the 

initial and end values of the quantity time and variation in distance of the car between 

these two points; he didn’t use the idea of ARoC to determine the value of the ARoC. 

After Sam was asked to calculate the average rate of change for ℎ = 1.5, to gain insight 

about his reasoning, he was also asked a further question for small change of ℎ =  0.1 
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and for small variation of time t and its meaning as shown below. Sam described ARoC 

as fast and slow (see below excerpt.) 

Interviewer: Yes. Describe what this average rate of change function is for h =
0.1. 

Sam:  I would say the average rate change function may tell you how far fast or 

going very slow from the stop sign. 

Interviewer: Ok, that's good. Yeah. So, what do you mean it goes fast.  

Sam:  Asking a question like this is like going fast, growing very slow. That's in 

the context this I think it might be going a bit slow, but I know most 

people I just can't close with normal speed. 

Interviewer:  Yeah. what the Average rate of change is tells you about the 

distance of the car from the stop sign in this time interval. 

Sam:  Ultimately, how far back the car right here or just going by really fast or 

just like really going slow but take his brakes and stuff just right on a stop 

sign right here. It just slowly going down there. 

 

In this context, Sam described that the average rate of change function suggests how fast 

or slow one moves from the stop sign. The interviewer further inquired what the average 

rate of change means in the context of the distance of the car from the stop sign in this 

time interval (ℎ = 0.1). Sam asserted that, “How far back the car right here or just going 

by really fast or just like really going slow but take his brakes and stuff just right on a 

stop sign right here. It is just slowly going down there.” Moreover, Sam revealed that the 

stop sign right here tells you it keeps going right here.  Sam didn’t define ARoC using co-

variation between quantities; average rate of change (ARoC) between the two quantities; 

nor did he explain that ARoC is the constant rate of change that produces the same 

change in the dependent quantity as the original relationship over the given interval. 

Instead, he used the term how far, fast, or going very slow for the car to define ARoC, 

which is not sequitur relative to the definition of ARoC function. The researcher further 

asked Sam questions to understand his reasoning when the variation in 𝑡 is a very small 

or an unnoticeable amount (ℎ = 0.001) and aimed to understand his smooth continuous 
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covariational reasoning and concept of rate of change, and Sam related ℎ = 0.1, ℎ =

0.01 and ℎ = 0.001 with slow, fast and very fast (see excerpt below.) 

Interviewer: What can you say about the graph of rh(t) when h = 0.1 seconds 

and when h = 0.5 seconds? Explain.  

Sam:  Ok, for h = 0.5 the distance, it's just like I feel like it's definitely going to 

stop sign, but it’s going to really slow. But for h = 0.1 a distance from the 

stop sign.  It'll take a while for it to get their signal speed fast. That's right. 

Interviewer:  Ok, yeah, I think so. So finally, I want to ask you if h = 0.0001 

what will tell us? You know, you described to me about zero point one 

that is the case.  

Sam:  It's a very small. Will it be a bit faster? 

 

Concerning the graph of 𝑟ℎ(𝑡) when ℎ = 0.1 seconds, ℎ = 0.5 seconds, for the question 

the researcher then asked: What can you say about the graph of 𝑟ℎ(𝑡) when ℎ = 0.1 

seconds and when ℎ = 0.5 seconds? Explain. Sam suggested that “for ℎ = 0.5, the car is 

travelling slowly to the stop sign, and the distance covered is extremely large. Moreover, 

for ℎ = 0.1, Sam suggests that it will take a while for it to get to stop sign, and the car has 

a fast speed. And finally, for h=0.0001, Sam revealed that it is extremely small and was 

unsure of whether it will be a bit faster.” Sam connected the average rate of change 

function with the idea of fast and slow movement when ℎ = 0.1, ℎ = 0.5, or ℎ = 0.001. 

The smallest ℎ value related with fast moving and large value of ℎ means the average rate 

of change of the function tells him how slowly the distance of the car changes (i.e.,ℎ =

0.0001 means for him a bit faster compared to ℎ = 0.1. That is, when h is small that 

means fast, and when the ℎ is large, then it is slow) Sam couldn’t create a connection or 

ideate how the ARoC converges to the derivative of the function as h was getting smaller 

or closer to zero. Sam confused the idea of ℎ approaching zero with the idea of slowness 

and fast (when ℎ = 0.1, fast speed; when ℎ = 0.001, a bit fast speed; and when ℎ = 0.5, 

the slow speed.) He did not relate the idea of ℎ approaching zero with the idea of ARoC 
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converging to the derivative function or to some constant rate function or derivative 

function is the result of the limiting value of the average rate of change. Next, Ruby’s 

post instruction results are presented. 

Ruby’s Post-instruction Interview Assessment 

After reading the rectangle area problem (Table 10) Ruby explained her solution 

(see below excerpt).  

Interviewer: So, you can you read it out loud the problem.  

Ruby: Ok.  

 Interviewer: What is your response for the first problem? 

Ruby: It says we have 240 feet of fence enclosing a lawn and you can have any 

length and width, but you must use all the fence.  So, the constant variable 

would be 240 feet of fence. 

Interviewer: What about the varying quantity in this situation? 

Ruby: So, the length and width are varying, it has to all equal 240 in the end. 

Interviewer: Yeah, yeah.  

Ruby: So, the length and width is varying. I forgot what the term is. Mm hmm. 

They're varying together when one is, the other one decreases. 

Interviewer:  So, you're right. What about other variables? 

Ruby:  The area is also changing.  

Interviewer: Yes. 

 

For the question, “Define the constant quantity in this situation?”, Ruby 

immediately responded that the constant quantity in this context would be 240 feet of 

fence. Ruby identifies what the constant quantity in this situation is. After this question, 

the interviewer asked Ruby, “Define the varying quantity in this situation. State the 

intervals over which they vary.” Ruby believed that the length and width are varying; she 

also said “… the length and width are varying; it has to all equal 240 in the end.”  Ruby 

further affirmed that the length and the width vary together, and also the area is changing 

as she said, “The area is also changing.” Moreover, Ruby stated that the length and the 

width were varying between zero and 120; although, 240 total foot length of fence is a 
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constant. Ruby knew the length, width, and area of the rectangle are varying quantities, 

and the 240 feet length face is a constant quantity. Interestingly, she identified the 

constant/fixed quantity and the varying quantity in this situation. Moreover, Ruby 

described the covariational relationship between the three quantities: length, width, and 

area of the rectangle. This instance showed that Ruby developed strong variational and 

covariational reasoning about the problem situation. To further understand Ruby’s 

variational and covariational reasoning, the interviewer asked Ruby a question when the 

width of the rectangle varies by 10 feet and unnoticeable amount between the intervals 

0 ≤ 𝑤 ≤ 120 she analyzed the problem using covariational reasoning (see excerpt 

below.) 

Interviewer:  Ok, yeah, that's right; it is increasing by 10 feet, but how? 

Ruby:  It increases by 10, so every time it's increased by 10, until it reached to 

120. Mm hmm.  

Interviewer: So that's good observation. So, what will be the area and how the 

area varies as the length or width of the rectangle change by 10 feet? 

Ruby:  So, I’m stuck on because I kind of figure out like this, I'd like to see the 

formula. 

Interviewer: Ok, let's go back to the formula. 

Ruby: Ok, A(area of the rectangle) equals w (width of the rectangle) times one 

hundred twenty minus w [A = w ∗ (120 − w)]. 

Interviewer: So, what kinds of relationship exist between the area and the width 

for part c. What about their relationship?  

Ruby: So, I think between area and width there is a directly varying as width 

increase that area increase, and the width and length has inverse 

relationship, as the length increase the width decrease.   

Interviewer: Ok, yeah. 

Ruby:  For the length and width I think they're like inverse variation maybe. I get 

really confused. 

Interviewer: What do you mean they are vary inversely? 

Ruby: They're covering. 

Interviewer:  Ok, nice. 

Ruby:  Ok, yeah. 
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For the question that asked, “When the width of the rectangle varies by 10 feet between 

the intervals, what relationship do you notice between the rectangles enclosed area and its 

width?”, Ruby was stuck and wanted to see the formula. She said, “So, I’m stuck on 

because I kind of figure out like this, I'd like to see the formula.” Interestingly, she wanted 

to refer back to the formula to figure out the relationship between the two covarying 

quantities (the area and width of the rectangle). Ruby then clarified width of the rectangle 

increases by 10, so every time it's increased by 10, until it reached to 120. The interviewer 

again asked Ruby what the area will be, and how the area varies as the length or width of 

the rectangle changes by 10 feet. Ruby indicated that both the area and the width co-vary 

with each other by a chunky size of 10 feet and states that, as the width increases, the area 

increases accordingly, and she knew, after some point, the area starts to decrease. The 

interviewer further inquired for Ruby to assess her smooth continuous covariational 

reasoning if it is possible to make a table that shows all possible values of the variables that 

this relationship produces (see excerpt below.) For the smooth and continuous variations, 

she did not make a table, and she said, “It is hard or impossible to include every single 

possible point.” She knew for any continuous change in width of the rectangle (i.e., for all 

possible values of w in the interval) the area of the rectangle will have all possible real 

numbers. Ruby said that “It is hard or impossible to include every single possible point 

…because it is like smoothly or millions of points.” From the responses given by Ruby, it 

was clear that Ruby affirmed that the area is continuously increasing. While talking about 

the relationship between area and width, Ruby stated that area and width are directly 

varying. She suggested that as width increases, area increases; similarly, she said that the 

width and length had an inverse relationship, that is, as the length increased, the width 
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decreased.  Here, Ruby used the ideas of direct and inverse relationships to describe 

covariational relationships between two covarying quantities. Ruby got confused between 

covariation and inverse functional relationship. Ruby said, “So, I think between area and 

width, there is a directly varying as width increase that area increase, and the width and 

length has inverse relationship, as the length increase the width decrease.” Here, it shows 

that Ruby was in the state of disequilibrium between her procedure-oriented reasoning 

(direct relationship and inverse relationship) and the new covariational reasoning 

(coordination of two or more co-vary quantities.) She reverses her covariational reasoning 

that was developed during the instructional session, and she used procedure-oriented 

reasoning to justify the covariational relationship between the area of the rectangle and the 

width of the rectangle, and she used the formula to describe this relationship. For instance, 

she used direct relationship and inverse relationship to describe the functional relationship 

between the area of the rectangle and the width of the rectangle as the width of the rectangle 

varies smoothly and continuously in the given interval, which is incorrect; rather, she 

should have used the idea of covariation to describe the functional relationship between the 

two covarying quantities (see excerpt below). 

Interviewer: Thank you. So, let's go and see part d. 

Ruby:  Ok, So I did not make a table for this one. 

Interviewer:  Why? You didn’t make a table. 

Ruby: That's because I think it'd be a hard, it is impossible, to include every single 

possible point that would be on. Because it would be like smoothly, so 

you'd have, like, millions of them on the table? But I don't think the graph 

would change. . 

Interviewer:  So, now, let's talk about the graph, so what kind of graph can you 

draw for the graph situation for part d? 

Ruby:  I would be any point that would just be a smooth line. 

Interviewer: Can you draw and illustrate using graph what you are thinking? 

Ruby:  I said I was confused. Here, the picture [she showed here picture] and 

point out that the graph is like a parabola.  
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Figure 25. Graph on Situation Chunky and Smooth Continuous Covariation 

 

Nonlinear Function Problem  

After the area of rectangle problem, Ruby was asked a nonlinear function Problem 

(see Table 10) to understand her covariational reasoning ability. The nonlinear distance 

function problem was used to assess Ruby’s reasoning and actions and how she constructed 

a covariational relationship between two covarying quantities that included the ability to 

reason about a constant rate of change. Moreover, the distance problem was designed to 

understand Ruby’s conceptual understanding about average rate of change and derivative 

function. Ruby’s response to the problem is presented in the excerpt below. 

Ruby had a clear understanding of the problem and suggested that, if 𝑑 is the distance 

measured in meters from the starting point to a stop sign, it can be observed that the 

distance formula is defined as the function of 𝑡, which is two times the square of 𝑡, and 
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the time is measured in number of seconds passed since the car moved away from the 

stop sign. Ruby easily calculated the average rate of change of the distance of the car 

from the stop sign in the given time intervals from 𝑡 = 0 to 𝑡 = 1.5, and she determined 

that the ARoC is 3 meters. Ruby said “I hate fractions ...hahahaha...so for the first 

question, I got three. So, the average rate of change of the distance when 𝑡 varies from 0 

to 1.5, I got three. And if you can read my work that I tried to make it readable.” Ruby’s 

was utilizing covariational reasoning, since she does not use proper units of the average 

rate of change function; she just said 3 meters, without interpreting what is represented. 

Further, the interviewer inquired the meaning of average rate of change function. Ruby, 

in this context, suggested that ARoC would tell her “the car travels three meters,” 

reasoning was incomplete. The interviewer further assisted Ruby to recognize the actual 

meaning of ARoC.  She interpreted that three is the change in distance when time 

changes from 0 to 1.5seconds (see excerpt below.) Ruby confused distance and ARoC. 

She coordinated the change in time with the change in distance that the car traveled, but 

she interpreted ARoC as distance, which is not covariational reasoning, and she was 

influenced by rise over run concept and she described ARoC as distance (see below 

excerpt). 

Interviewer:  So, go ahead and determine part a, or use the formula in the box to 

answer part a. 

Ruby:  What do you square? 

Interviewer: One point five. 

Ruby:  One point five. 

Interviewer: Yeah, then one point five means three over two. 

Ruby:  Ok. 

Interviewer: When you square it, it will be nine over four. 

Ruby:  Really, I hate fractions, hahahahaa ...so I like decimals I will go to 

decimals. I hate fraction hahahahaha. This was going to go this way. 

Interviewer: If you change into fractions, it would be easy. 
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Ruby:  I hate fractions ...hahahaha...So for the first question, I got three. So for the 

average rate of change from the distance of t zero to t equals one point 

five, I got three. And if you can read my work that I tried to make it 

readable. 

Interviewer:  Yeah. Thank you. So, what is average rate of change function tells 

you for the relation between the distance of the car in meter and the time t 

in seconds? 

Ruby:  So, I thought that would tell me is in a one point five second interval, the 

car travels three meters. 

Interviewer: The car travels three meters OK.  So, let us go back; see what 3 

meters represent in part a. 

Ruby:  Three would be the distance from the stop sign. 

Interviewer:  How did you find three in part a? 

Ruby: So, when in one point five seconds, the car moves three meters from the 

stop sign. 

Interviewer: Now Ok. How did you determine three in part a? Look at what it tells 

you three. 

Ruby: So, three is the change in distance when time goes from zero to one point 

five seconds. 

 

However, she seemed confused regarding how it correlated with the change in distance 

and the change in time. Ruby associated it with the concept of distance, and she could not 

relate it with the concepts of average rate of change function due to her strong procedure-

oriented reasoning. The interviewer assisted Ruby and explained that the average rate of 

change is produced when taking the quotient of two covarying quantities, but Ruby 

resisted to changing her procedural thinking, and said, “Three meters is the distance from 

the stop sign.” Ruby confused AroC with distance of the car. She demonstrated a strong 

procedure-oriented reasoning by applying rise over run, thinking, “The change in time is 

1.5, and so the change in distance is three,” the reasoning was incomplete. After this 

question, the researcher further probed Ruby’s deep reasoning about ARoC and 

derivative function (see excerpt below.) 

Interviewer:  When h is zero point five, what is the value of the average rate of 

change function? 

Ruby:  So, when h is zero point five. 



116 
 

 

Interviewer:  You can calculate for h = 0.5. 

Ruby:  Ok, it is four t plus one [4𝑡 + 1]. 

Interviewer:  So now we found out ARoC that is 4t + 1. 

Ruby:  Yeah. 

Interviewer:  What is 4𝑡 + 1? What it tells you about 𝑑 and 𝑡?. Yeah. OK, so 

when ℎ = 0.5, 4𝑡 + 1 is the functions of the average rate of change 

function. 

Ruby:  Yes. 

Interviewer:  So, what it tells you four t plus one [4𝑡 + 1] about the distance and 

time relationship. So, describe what this tells you about the change in 

distance of the car from the stopping sign. 

Ruby:  OK, so it is a derivative right, it is 4𝑡 + 1 [four t plus one]? No, it's not. 

Interviewer:  Why you said derivative? 

Ruby:  Because isn't that what you get when you fill everything out and cancel out 

h so it would be like when h is like close to zero, just be like…. 

 

Ruby correctly determined the formula for ARoC, which was found to be 4𝑡 + 1 

and explained that 4𝑡 + 1 was derivative function. The interviewer asked Ruby to 

describe the meaning of 4𝑡 + 1 in context of distance and time, which Ruby described: 

“It is a derivative function.” The interviewer further enquired the reason behind defining 

it as a derivative function, in response of which Ruby asserted that “It is what you get 

when you fill everything out and cancel out h, so it would be like when h is close to 

zero.” Ruby used procedure-oriented reasoning here to justify why she said 4𝑡 + 1 is 

derivative by memorizing the ARoC function. Ruby was unable to reach and verdict that 

4𝑡 + 1 is an average rate of change function when ℎ = 0.5. In the next excerpt, Ruby was 

asked to illustrate her reason about ARoC, and derivative function and she described 

derivative as when ℎ has no effect on the ARoC. 

Interviewer: So, if you see part c and d, can you graph this part when ℎ is 

0.5, 0.4, 0.3 and so on? Can you graph that part? 

Ruby: Yeah. 

Interviewer: So, let me take that [picture]. OK, let me take that. So, what this 

graph tells you about ARoC and derivative function, what is their 

difference. Can you tell me? 
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Ruby: So, as h is getting closer and closer to zero, it's kind of like moving down 

there like parallel to each other. But when h approaches zero, like at the 

smallest value, zero point zero, zero, zero, one [0.0001]. Yeah. It's like as 

close to zero as possible. So that's close to the derivative. 

Interviewer: Why you said it is close to the derivative? Why did you say that is a 

derivative? How do you know it is a derivative? 

Ruby:  Because the derivative is when h has almost no effect on the average rate 

of change. 

Interviewer: What do you mean when h has almost no effect on ARoC? How does 

it relate to the derivative of the function? 

Ruby: So, if you take like the formula given like the 
[((f(t+h)−f(t))]

h
, like the closer 

h gets to zero, the less h has no effect on any part of the graph. So, it just 

is closer to the derivative of f(t). 
Interviewer: What does it mean when you said h doesn't have an effect on the 

ARC? 

Ruby: So, it means that like at the end the gap on the graph are getting smaller 

and smaller and it no longer like the window of error. So h doesn't really 

affect the graph anymore. There's not really a lot of error in that room I 

guess [She used her graph to explain…]. 

 

 
Figure 26. The Average Rate of Change Function when ℎ =

0.5,0.4,0.3,0.2,0.1,0.001 and 0.00001 
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For the question, “So what does this graph tell you about ARoC and derivative function,” 

Ruby said, “As h drew closer to zero, the ARoC drew closer to the derivative,” but she 

still did not know the meaning of the ARoC or the derivative function.  She still struggled 

to give the meaning behind ARoC; she does not know ARoC is a constant rate of change 

that relates the change in distance and change in time on the interval whose size ℎ = 0.5, 

or ℎ = 0.001, and as the size of the interval or as the time change in small amount then 

the ARoC will be the limiting value of the derivative function. She does not know the 

average rate of change between the two quantities is the constant rate of change that 

produces the same change in the dependent quantity as the original relationship over the 

given interval. Ruby said:  

So, if you take like the formula given like the 
(𝑓(𝑡+ℎ)−𝑓(𝑡))

ℎ
, like the closer 

h gets to zero, the less h has no effect on any part of the graph. So, it just is 

closer to the derivative of 𝑓(𝑡).  

 

Interestingly, Ruby confused the idea of derivative with situations in which the value of h 

has almost no effect of the ARoC. Here, when she said no effect, that means, for her, ℎ is 

detached from ARoC function. More importantly, ℎ doesn’t affect means, for her, no gap 

between the graph of the derivative and the graph produced when h does not affect 

ARoC. Ruby did not define ARoC using covariational idea; average rate of change 

(ARoC) between the two quantities is the constant rate of change that produces the same 

change in the dependent quantity as the original relationship over the given interval. 

Ruby did not have any idea that, as ℎ approaches zero, the ARoC converges to the 

derivative function. 
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Chris’s Post-instruction Interview Assessment 

After reading the rectangle problem (see Table 10) Chris explained his solution 

and Chris described fixed and varying quantity as tiny bit and micro bit (see excerpt 

below).  

Interviewer: Define the constant variable in this situation.  

Chris: Well, the constant variable in this situation is two hundred and forty feet of 

the face. 

Interviewer: Ok. 

Chris: Yeah, Ok, so my constant variable is the perimeter of the rectangle.  

Interviewer: Ok so what are the varying variables in this situation? 

Chris: Yeah, Ok, we want to be defining variable or define the varying variables 

in this situation. We're looking at length, width and area are the ones that 

are going to vary, and the intervals over which they're going to vary are 

going to be zero to one hundred and twenty feet, not inclusive just because 

the smallest area that I can make is going to be like except not quite 

together and it's going to be almost one hundred and twenty feet long 

except for that little, tiny bit or little micro bit at the top and the bottom. 

Interviewer: You can use paper maybe to show me or to write the formula or the 

expression.  

Chris:  I'm trying to find the area in terms of width. So, you got to rewrite the 

length in terms of the width first, that is 2l + 2w = 240. 

Interviewer: Yeah. And so.  

Chris: Oh, oh. I get it. I need one half of 240 minus. That is Area is equal to width 

times 120 minus the width [ A = w ∗ (120 − w)] this should give me the 

area. 

 

Chris identified the constant quantity and varying quantities in this problem situation. 

Moreover, Chris suggested the interval over which the length and width of the rectangle 

are varying. However, when he verbalized how they are going to vary, he did not reason 

how the area of the rectangle is varying when the length and width are varying. Chris 

identified the three variables and defined length in terms of width, but he failed to 

identify the interval over which the area varies. The interval over which the area of the 

rectangles is varying will be between 0 to 3600 square feet. Chris is not necessarily 

“incomplete conception” here. He just is not precise in his language. He does not provide 
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an interval, over which area is varying, but he does provide an interval over which length 

and width is varying. In his reasoning about variation, we see Chris used scientific 

sounding language, like “a little micro bit,” to define how the quantities vary. This 

scientific language will show up again later in Chris’s reasoning on later questions. In the 

next excerpt, Chris is asked further to explain his reasoning when two quantities co-vary 

in chunky and smooth continuous contexts. Chris used terminology-oriented reasoning to 

describe chunky and smooth covariation (see excerpt below).  

Interviewer: So, the next question is, part c. 

Chris:  Ok. 

Interviewer:  The width of the rectangle varies by 10 feet between the intervals, 

what relationship do you notice between the rectangle’s enclosed area and 

width of the rectangle and what can you conclude from the relationship? 

It's possible to make tables.  

Chris: It’s possible to make a table that shows the variables, so I mean, since it's a 

quadratic equation, we're going to have a curve. But we're only looking for 

the spot points to points of wherever we're going to have.  

Interviewer: Ok, how the area of the rectangle varies as the width of the rectangle 

vary by 10 feet. 

Chris: There is at least one spot where the area would stay the same. 

Interviewer:  Ok, so what about when the width of the rectangle varies smoothly 

and continuously between the interval0 ≤ w ≤ 120, how the area vary? Is 

that possible to create a table for each value of the width a corresponding 

value for the area? 

Chris: So, it is impossible to make a table that shows all possible values of the 

variables that this relationship produces in. Because we have all the little 

stuff in between one point, it is like a little micro bit, so make the table out 

of that, because that's too many things to list. We can make a summary of 

it. What it would be, but again it is impossible to list all the points in a 

table. 

Interviewer: Yeah, so when you said little stuff or little micro bits, in between 

one, what do you mean that? 

Chris: So, as we're going. There's always a smaller interval. 

Interviewer: Ok. 

Chris:  So if I have. I can make a table that has, let's just say, all the all the 

averages at an interval of one, and there would still be we can just use the 

metric system at this point and say, oh, but look, we could do instead of 

every meter. I know ten feet right now. But let's just I'm thinking in terms 

at the moment so we could always look at instead of a meter, we can look 
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at decimeter and that's ten down and oh, we made a table with all the best 

meters of this, this curve. No, but wait. Now we can move to centimeters, 

and we can make that table and we can keep going down to very small 

fraction of meters. And there's still something smaller than that. And we 

can keep on going until eventually either we find out what the fabric of 

reality does. And at that point, we would have to start making some 

definitions or we keep finding smaller and smaller particles or whatever. 

But and then the other side of it is I could, in fact, have a table that just 

says, oh, here's my zero point and here's my 120 points. And so average 

between them is going to be zero. 

Interviewer: Yeah, so can you try to graph this idea of what you said for both 

those ideas for chunky and continuous variation? 

Chris:  All. Ok, Ok. 

Interviewer:  Yeah, I like it. Let me take a picture 

 

 
Figure 27. Area of the Rectangle in Chunky and Smooth Continuous Covariation 

Interviewer:  All right, this is a very nice 

Chris: Yeah, so. So, when we have moving in a chunky or in a discreet fixed 

amount the graphs will look like a discrete. And when we move in and he 

continues all in small quantities of the graph look like smooth.  

Interviewer: Correct. 

 

When Chris was asked to create a table that relates the width and the area of the rectangle 

as the width of the rectangle varies by 10 feet, he suggested “It’s possible to make a table 

that shows the variables, so I mean, since it's a quadratic equation, we're going to have a 

curve. …But we're only looking for the spot points to points of wherever we're going to 

have.” In this context, he suggested that it is possible to make tables to show variation 
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from point to point. However, Chris did not coordinate the chunky variational analysis to 

justify how the width and the area of the rectangle co-vary together. Rather, Chris said 

that “…we're only looking for the spot points to points,” he then said, “There is at least 

one spot where the area would stay the same.” Chris did not analyze with reasoning that 

relates fixed changes in the width of the rectangle to the change in the area of the 

rectangle. Following this interaction, when the interviewer asked Chris about the 

possibility of creating a table when the width of the rectangle varies smoothly and 

continuously throughout the interval, Chris asserted that it is impossible to make a table 

that shows all possible values of the variables that this relationship produces. However, 

he used scientific measurement language moving from meters, to decimeters, to 

centimeters, to, “a very small fraction of meters,” in his reasoning. He knew it is 

impossible to create the table, but the terminology-oriented reasoning he utilized that led 

him to consider the ultimate “fabric of reality" to explain why it is impossible seems to 

have impaired his reasoning about the two quantities and the particular aspects of how 

they vary together. Rather than coordinating variation, Chris used procedure-oriented 

reasoning to explain that progressive variation was like taking the average of all point in 

the interval. It appears that Chris’s terminology-oriented reasoning impaired his 

mathematical conceptions of covariation. Even though he knew at the beginning of the 

excerpt that the graph of the relation between the width and area produces a quadratic 

function, he produces a linear graph of the situation (see Figure 27 above). The researcher 

hypothesizes that focusing on the fabric of reality impaired his reasoning focus on the 

specific covariational relationship being discussed. It seems that Chris did use chunky 

variational reasoning of some sort here. Maybe it can be called discrete reasoning? In any 
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case, he is noting that, as one variable changes by ten, the other one will change from a 

point to another point (and not all of the points in between). 

Nonlinear Function Problem 

After the area of rectangle problem, Chris was asked a nonlinear function problem 

(see Table 10). The nonlinear distance function problem was used to better understand 

how Chris constructed a covariational relationship between two covarying quantities, 

including the ability to reason about a constant rate of change and derivative function. 

Chris described ARoC as acceleration and his response to the problem is presented below 

(see excerpt below). 

Interviewer: Yeah, let's talk about it. 

Chris: So, at this point, if I’m just doing it the one time, then I would just I just 

solve it. Yes. So, one point five squared times to whatever that ends up 

giving me subtract zero squared times two which is zero and that's going 

to be over one divided by one point five. And that should give me the 

average rate of change over this particular distance. 

Interviewer:  Ok, you can describe what this average rate of change function tells 

you about the change in just over the time interval from zero to one point 

five. So, what does it tell you? 

Chris: We could be going away from the stop sign yet because the number got 

bigger on level instead of getting smaller. So, I am getting further away 

from the stop sign. The average rate of change function should tell me the 

acceleration that I used to get away from the stop sign. 

Interviewer: Ok. 

Chris: Yeah, that means change in velocity over time. 

Interviewer:  Yeah. 

Chris: The change in y is happening because of the change in t the change in time. 

The change in distance happens over the change in time. I don't know how 

else to say that. I just know I'm getting further away this that's. 

 

Chris had showed strong co-variational reasoning in the pre-instruction and instructional 

assessment; however, in this excerpt, we see him struggling to show a strong 

understanding of ARoC. Chris states, “The average rate of change function should tell me 

the acceleration that I used to get away from the stop sign,” his reasoning was 
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incomplete. Chris does not define ARoC using co-variation between quantities, for 

example the average rate of change (ARoC) in this case, is the constant rate of change 

that produces the same change in the distance over the given interval of time. 

Interestingly, Chris brings up the notion of acceleration. In this context, acceleration is a 

related concept, as Chris explains, “Yeah, that means change in velocity over time.” 

Chris brings this prior knowledge from understanding he developed from study of science 

as an engineering major. Here, it appears this terminology-oriented reasoning impaired 

his mathematical reasoning. That is, he did not relate the ARoC as a constant rate of 

change on the given interval over which the two quantities co-vary together, his 

reasoning was incomplete. Further, Chris was asked questions when the variation in 𝑡 

varies in small and unnoticeable amounts, aimed to understand his reasoning, and assess 

his smooth continuous covariational reasoning and concept of rate of change and 

derivative function. Chris described derivative as acceleration (see excerpt below). 

Interviewer: Thank you. We can move to part d. 

Chris:  Mm hmm.  It says that determine rh(t) of t when h is equal to 0.1. OK. 

We care about the smallest unit that will go down to one astronomical 

unit. Like, I can have a circle that is I draw it. It has one astronomical unit 

on the side, and it’ll still look like a pretty small, good circle if you go far 

enough away from it. 

Interviewer: When you say the value of h is almost one astronomical unit, then 

what is happening to ARoC? 

Chris:  Yeah, yes, like the smaller, h, or interval or the smaller h is, it gets closer 

and closer. It’s ok if we’re off by a thousand miles, because all we got to 

do is hit the planet or it’s ok if we’re off by 50 feet because we can correct 

for that at the end or I don’t know. It’s I don’t necessarily care about what 

acceleration a car has atone ten thousandth of a second. I care how fast it 

goes, from zero to 65 in seconds for maybe a tenth of a second. 

Interviewer: Is that possible to construct a graph? 

Chris:  Absolutely, it is very possible. Yeah, I don’t particularly want to do it, but 

it’s possible. 

Interviewer: Yeah. 

Chris: Ok, so here’s a graph, four point five, point one and so on. 
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Interviewer: Ok. 

 
Figure 28. Average Rate of Change Function Graph when ℎ = 0.5, ℎ = 0.1 and 

so on 

 

 

Interviewer:  Oh, yes. Very helpful. Yeah, so now the question is, if you go from 

0.5 to 0.1 and then go to 0.00001, something very small. So what can you 

say about these different graphs. What is the difference between these 

family ARoC graphs, what do they tell you about the relationship between 

the distance and the time? Is there anything that can you say about it. 

Chris: Well, they’re all headed towards they’re all headed towards that limit, 

they’re all headed toward that thing. So, yeah, it’s all headed towards the 

acceleration which is the derivative. 

Interviewer: Ok. Interesting. 

 

After reading the question, Chris suggested that “We care about the smallest unit 

that will go down to one astronomical unit,” which is the distance from the center of 

Earth to the center of the sun. He did not see ℎ as variation in time (∆𝑡) rather, he focuses 

on the smallest unit that we care about, which he says is one astronomical unit. 

Reasoning with science introduced confusion for Chris as he expressed his understanding 

of variation and covariation. This limited his ability to produce a meaningful explanation 

of the ARoC in this context involving distance and time. This limitation is observable 

when he says, “I don't necessarily care about what acceleration a car has at one ten 

thousandth of a second, I care how fast it goes.” Toward the end of the excerpt, Chris 
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developed a graph to answer part ‘c’ of the question, depicting on the graph the average 

rate of change function when ℎ = 0.5, ℎ = 0.1, and so on. When the interviewer further 

enquired about the difference between the graphs, Chris asserted, “Well, they're all 

headed towards that limit, they're all headed toward that thing. So, yeah, it's all headed 

towards the acceleration which is the derivative.” It seems Chris had confused the 

concept of acceleration with that of derivative. Chris did not use covariational reasoning 

to relate the change in ℎ with the family of ARoC functions to the derivative function, 

and he had not built an understanding that as ℎ approach to zero, the families of ARoC 

converge to the derivative function (not the acceleration of the function). Further, it 

appears that his focus on other scientific concepts limited his understanding of this 

relationship. Following this analysis in the next section, the vertical comparative analysis 

among the three cases is presented.  

Summary of Post-Instruction Interview Assessment 

This section summarizes the three students’ reasoning type and their level of 

reasoning during the post-instruction using horizontal comparative analysis lens. The 

horizontal comparative analysis allowed to compare the three students’ reasoning and 

conceptual understanding during the post-instruction phase. First Sam’s responses are 

summarized, then Ruby’s, and finally Chris’s. The area of rectangle problem revealed 

Sam’s reasoning and conception of quantity variation and covariation. Sam used concrete 

object-oriented reasoning as means to construct his mathematics. For instance, for the 

question that asked, “identify continuous co-varying quantity” Sam used concrete object-

oriented reasoning to respond, “…so I just put small a small change, rectangle shape, just 

keeps changing constantly,” to justify his construction of the relationship. He then 
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produced a physical object graph to show the covariational relationship between the 

width of the rectangle and the area of the rectangle. The post-instruction result showed 

that Sam’s persistent concrete object-oriented reasoning limited him from developing 

variational and covariational reasoning, even after he participated in the instruction. Sam 

did not develop the concept of covariational relationship he constructed the physical 

object graph, not a graph that was produced from the covariational relationship between 

the area of the rectangle and the width of the rectangle. Sam did not reach a reasoning 

level (MA1-MA3) as described in Carlson framework (Carlson et al., 2002) and his 

reasoning level is still in gross covariational reasoning as described in Thompson and 

Carlson’s smooth continuous covariational framework. Similarly, for the nonlinear 

distance problem Sam used his action view (he viewed ℎ as placeholder) to evaluate the 

ARoC function by substituting the initial and end values of the quantity time and 

variation in distance of the car between these two points; he didn’t use the idea of 

covariation to determine the value of the ARoC. As result of his concrete object-oriented 

reasoning Sam did not envision or understand derivative function is the result of the 

limiting value of the average rate of change or is a refinement of ARoC function as ℎ 

approaches zero. Sam did not reach a reasoning level (MA1-MA4) as described in 

Carlson framework (Carlson et al., 2002).  

On the other hand, Ruby constructed a deep understanding of variation and 

covariation reasoning during the instruction, but she reversed during the post-instruction 

due to her use of procedure-oriented reasoning that showed on her response for area of 

rectangle and non-liner distance problems. For instance, in the area of rectangle problem 

she used procedure-oriented reasoning to analyze the covariational relationship between 
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the width and area of the rectangle. Ruby was stuck and wanted to see the formula, and 

she said, “So, I’m stuck on because I kind of figure out like this, I'd like to see the 

formula.” Interestingly, she wanted to refer back to the formula to figure out the 

relationship between the two covarying quantities (the area and width of the rectangle). 

Not only this, but she also started to use direct relationship and inverse relationship to 

describe the covariational relationship, which she had not learned during this 

investigation. She reverses her covariational reasoning that was developed during the 

instructional session, and she used procedure-oriented reasoning to justify the 

covariational relationship between the area of the rectangle and the width of the 

rectangle, and she used the formula to describe this relationship. Similarly, for the 

nonlinear distance problem, Ruby was engaged in procedure-oriented reasoning, and she 

was unable to define ARoC and derivative function using covariation ideas. When she 

was asked to give the meaning of 4𝑡 + 1  she said, “It is what you get when you fill 

everything out and cancel out h, so it would be like when h is close to zero.” Ruby used a 

procedure-oriented reasoning to justify why she said 4𝑡 + 1 is derivative by memorizing 

the ARoC function. Her reasoning level does not reach MA4 or above and she 

demonstrated strong procedure-oriented reasoning during post-instruction interview. 

For the area of rectangle and nonlinear distance problems Chris used terminology-

oriented reasoning to engage with the problem situation. For instance, in the area problem 

in his reasoning about variation, Chris used scientific sounding language, like “a little 

micro bit” to define how the quantities vary and his uses of terminology-oriented 

reasoning impaired his reasoning about variation of the two quantities and the particular 

aspects of how they vary together. Similarly, for nonlinear distance problem his uses of 
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terminology-oriented reasoning impaired his able to engage in covariational reasoning. 

For example, when he described the ARoC he said, “The average rate of change function 

should tell me the acceleration that I used to get away from the stop sign,” here Chris 

used alternative conceptions. Chris does not define ARoC using co-variation between 

quantities. Chris had a strong co-variational reasoning in the pre-instruction and 

instructional assessment; however, in post-instruction, he struggled to conceptualize the 

idea of ARoC and derivative function due to his reliance on terminology-oriented 

reasoning. As a result, in post-instruction, Chris was not able to reach reasoning level 

MA4 and his reasoning was impaired by his uses of terminology-oriented reasoning. The 

post-instruction results show that both Chris and Ruby reversed their strongly developed 

covariational reasoning due to their use of terminology-oriented reasoning and procedure-

oriented reasoning, respectively, to analyze the covariational relationship problem. 

Because of this, both Chris and Ruby were not able to reach or demonstrate a reasoning 

level beyond MA1-MA3.  Then again, Sam still struggled to develop quantity, 

variational, and co-variational reasoning abilities due to his use of concrete object-

oriented reasoning to analyze the covariational problem. Sam’s concrete object-oriented 

reasoning affected his development of variational and covariational reasoning and as a 

result he did not construct meaningful mathematics understanding.  

Vertical Axis Comparative Analysis of Students’ Reasoning 

This section compares the study participants’ conceptions of variation, co-

variation, and average rate of change and derivative functions using vertical comparative 

analysis. The vertical comparative analysis allows the researcher to look at each student’s 

development across all three phases, that is, their development from pre-instruction to 
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post-instruction. The students’ ways of thinking are compared, while the reasoning 

abilities that were revealed to be critical for understanding central concepts of the average 

rate of change and derivative function are highlighted. This section also provides a 

discussion of the students’ problem-solving and reasoning abilities by comparing the 

primary themes that emerged in an analysis of the students’ pre-instruction assessment, 

during the instruction assessment, and the post-instruction interview assessment. The 

result of the study shows Sam often displayed what the researcher has termed concrete 

object-oriented reasoning, which impacted his reasoning while solving problems focused 

on progressively varying and covarying quantities, as well as his conceptualization of 

average rate of change and derivative concept. Object-oriented reasoning is reasoning 

that is focused on the physical object in a problem context in such a way as to hinder 

focused reasoning about a quantity, the process of measuring a quantity, or an 

understanding of progressively varying quantities. Similarly, the result of the study shows 

Ruby had a strong focus on procedure-oriented reasoning and initially some concrete 

object-oriented reasoning on concept of quantity, and this impacted the types of 

reasoning she exhibited in solving problems related to covariation, the average rate of 

change, and derivative function. The researcher uses procedure-oriented reasoning to 

refer to moments when, prior to understanding and reasoning with the quantities in the 

problems, the student attempts to use calculations and procedures learned in prior 

mathematics experiences to obtain an answer. Chris’s results show that he displayed what 

the researcher terms terminology-oriented reasoning, which somehow impaired his 

covariational reasoning abilities and his conception of the average rate of change and 

derivative function. Terminology-oriented reasoning is when the student focuses on the 
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scientific sounding terminology of the problem situation when reasoning to a solution, 

rather than focusing on the quantities of the problem and how the quantities vary 

together. Although all three of these students’ actions revealed some progress in their 

approaches to problem-solving, the primary themes present in their reasoning in this 

study speak to their ability to conceptualize and reason about quantities and their 

relationships. 

Below, the vertical comparison analysis between the three students across the 

three phases is presented. First, Sam’s pre-instruction, instruction, and post-instruction 

vertical comparison analysis is presented. Next, Ruby’s pre-instruction, instruction, and 

post-vertical comparison analysis is presented. And finally, Chris’ pre-instruction, 

instruction, and post-vertical comparison analysis is presented. Recall that the study 

research questions are: 

1. What types of reasoning do first-year calculus students engage in to 

conceptualize the relationship between two progressively co-varying 

quantities?  

2. What methods of reasoning do first-year calculus students employ during a 

rate of change and derivative instructional sequence that supports smooth 

continuous covariational reasoning? 

Sam’s Pre-Instruction Assessment 

Sam’s responses during the pre-instructional task reveal that his conception of 

variation, covariation, and rate of change consisted of loose coordination of objects and 

attributes of objects. Moreover, his responses did not reveal a process for measuring a 

variable as progressively varying quantity (e.g., 𝑛 as a continuously varying variable) that 
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consisted of coordinating measurable attributes. Sam’s justifications for his solution had a 

computational or calculation focus independent of the quantities of the problem. As a 

result, Sam described a quantity as a replacement of a number, or holder of a number. 

More importantly, his thinking is based on concrete object-oriented reasoning but not 

thinking in variational and covariational reasoning.  For instance, for vehicle problem, 

Sam said, “The one that is kept constant is the Automobile and the continuous is the 

Bus.” The Automobile and a Bus are not quantities, and they are not representing a 

process of a varying quantity. This depicted that the variational and covariational 

reasoning of Sam at the start of the study is not strong enough, and his covariational 

reasoning label was below MA1. Therefore, Sam’s responses during the pre-instruction 

revealed that his conception of variation, co-variation, and rate of change consisted of 

weak coordination of objects and attributes of these objects. 

Sam’s Instruction Assessment 

Sam showed little improvement for his variational and quantitative reasoning 

during the instruction (e.g., he wrote ∆𝑉 =  −
1

15
, instead he should have written ∆𝑉 =

 −
1

15
∆𝑡 ). He struggled to develop covariational reasoning, and his reasoning can be 

labeled as gross-coordination covariational reasoning, as he can envision the two 

quantities varying, but he does not anticipate coordination of the covarying nature of two 

or more quantities. Sam still struggled with concrete object-oriented reasoning while 

taking part in the instructional session. For instance, for the water filling problem, Sam 

constructed the diagram of the object as a graph rather than constructing a covariational 

relationship graph between the volume of the water and the time taken to fill the bottle 
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with water. He then used his concrete object-oriented reasoning of the situation to 

construct quantities and, subsequently, reason about relationships between these 

quantities. Sam did not reason about the rate of change of the volume of water in gallons 

and the time it takes to fill the bottle. Sam drew the object (bottle of the water,) but he 

failed to construct the graph out of the two covarying quantity relationships (see Figure 

7). Sam did not support his reasoning by identifying equal changes in time and 

comparing corresponding changes of the volume of water, and he did not reach the 

reasoning level (MA1-MA3) after participating in the instructional session.  

For the linear function Problem, Sam reasoned procedurally, and he used action 

view without applying conceptual reasoning likely due to his poor reasoning about the 

quantity value. Sam used his action view for the Problem situation to analyze the 

covariational relationship between the quantities 𝑦 and 𝑥. For instance, in the linear 

Function Problem, his actions led him to produce an unrelated relationship between the 

independent quantity 𝑥 and the dependent quantity y “(𝑥 + ℎ)(𝑥 + ℎ) = 𝑥2 + 2𝑥ℎ +

ℎ2 => 8 − 6 = 6 & −
2

3
(6) = −4, −4 + 5 = 1.” Sam’s reasoning is still 

underdeveloped, and he struggled to develop strong covariational reasoning ability, and 

his reasoning can be grouped under gross-coordination covariational reasoning. 

Following this analysis his post-instruction interview result is presented. 

Sam’s Post-instruction Interview Assessment 

Regarding Post-instruction interview assessment for the area and the nonlinear 

function Problems, Sam’s reasoning about varying and constant quantity is still impacted 

by his concrete object-oriented reasoning (e.g., Rather than stating that the rectangle is 

continuously varying, he should state that the area of the rectangle is continuously 
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varying), and this impaired his covariational as well as smooth, continuous, covariational 

reasoning ability. Sam’s weak covariational reasoning is exhibited in his drawing for the 

problem situation (for instance, see Figure 7) where he produced the physical object of 

the bottle as an illustration of his concrete object-oriented reasoning.  

Concerning the nonlinear function problem, Sam reasoned procedurally without 

applying covariational reasoning between the changes in distance function with the 

change in time, and he did not relate the average rate of change function with the 

variation in the input quantity value. Thus, Sam did not construct a smooth, continuous, 

covariational relationship between the ARoC and ℎ. Even though Sam developed 

variational reasoning and conception of the quantity within the course of the study, he is 

still impaired by his object thinking. Therefore, Sam’s responses during post-instruction 

interview revealed that his conception of variation, covariation, and rate of change 

consisted of loose coordination of objects and attributes of these objects. His response did 

not reveal a process for measuring a variable as progressively varying quantity (e.g., n as 

continuously varying variable) that consisted of coordinating measurable attributes. 

Sam’s reasoning can be labeled as gross covariational reasoning since his reasoning is 

loose coordination between two covarying quantity values and his resonating level was 

gross coordination of value as describe in Thompson and Carlson covariational 

framework. In the next section Ruby’s pre-instruction, instruction, and post-interview 

result are discussed. 
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Ruby’s Pre-Instruction Assessment 

Ruby’s responses during the pre-instructional task reveal that her conceptions of 

variation, covariation, and rate of change consisted of weak coordination of quantity and 

attributes of these. For instance, for the quantity and variation problem, Ruby said that   

“If 𝑛 > 2 then 2𝑛 will be larger than 2 + 𝑛 because will get doubled instead of just 

adding two. So, if 𝑛 = 3 then 2(3) = 6 while 2 + 3 = 5. If 𝑛 < 2 then 2 + 𝑛 will be 

larger, for example if 𝑛 = 1 then 2 + (1) = 3 while 2(1) = 2. If 𝑛 = 2 then both 

answers will be the same.” Ruby used her procedure-oriented reasoning to justify why 2𝑛 

is larger or lesser than 2+n, and she failed to recognize the progressive variation in the 

values of 𝑛 due to her dependence on the regress computation and her action view. Her 

responses did not reveal a process for measuring a variable as progressively varying 

quantity (e.g., n as continuously varying variable), as similar to Sam's reasoning that 

consisted of action view. However, Ruby possesses loose variational and covariational 

reasoning when compared to Sam for the other pre-instructional assessment problem at 

the start of the study. Therefore, Ruby’s mental actions can be placed in the levels of 

MA1 of Carlson’s five levels of reasoning. 

Ruby’s Instructional Assessment 

Ruby developed strong variational and covariational reasoning during an 

instructional session. For the water problem, Ruby used her developed covariational 

reasoning to draw a correct graph and justify her solution about the covariational 

relationship between the volume of the water and the time taken to fill the bottle with 

water. For instance, Ruby depicted the situation by correctly drawing the graph of the 

volume of water and the height of the water as the time passed to fill the volume of the 
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bottle with water (see Figure 8). Similarly, for the nonlinear problem, Ruby analyzed and 

justified her approach to the problem using variational and covariational reasoning to 

show the correct solution (see Figures 8 to 9). Therefore, Ruby developed strong 

variation, covariation, average rate of change function, and function ideas during the 

instruction, and her reasoning could be grouped under MA1-MA4. 

Ruby’s Post-instruction Interview Assessment  

Regarding the post-instruction interview assessment, Ruby used her developed 

covariational reasoning to validate why the area of the rectangle covaries with the width 

of the rectangle and she produced a correct illustration for the problem situation (see 

Figure 25). However, when she engaged with the nonlinear function problem, Ruby’s 

prior procedural knowledge caused confusion between the concept of distance and the 

average rate of change. Her strong covariational reasoning continued to be hampered by 

her procedural knowledge, which often caused disequilibrium that was difficult to 

resolve. Ruby is confused with coordinating the variation in h and how that relates to the 

average rate of change. That is, Ruby’s confusion of h approaching zero with the concept 

of subtraction a small amount from the previous value. Ruby had difficulty viewing h as 

the variation or change of the independent variable in the given interval, but she 

considered h as if it is a value that resulted by subtracting by some amount. She confused 

h approaching zero with concept of subtraction that impaired her reasoning about the 

average rate of change and derivative concepts. Thus, Ruby did not use a smooth 

continuous covariational reasoning to relate concept of ARoC and h. Even though she 

developed variational reasoning and conception of a quantity within the course of the 

study, she is impaired by her procedure-oriented reasoning and failed to conceptualize the 
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concept of average rate of change and derivative function and her reasoning level did not 

reach MA4 as described in Carlson’s framework. In the next section Chris’s pre-

instruction, instruction, and post-interview results are discussed. 

Chris’s Pre-Instruction Assessment 

 Chris’s responses during the pre-instructional task reveal that his conceptions of 

variation, co-variation, and rate of change consisted of a strong coordination of quantities 

and attributes of these. His responses revealed that he had a strong variational and 

covariational reasoning ability of process view for measuring a quantity as a 

progressively varying quantity at the start of the study (e.g., n as continuously varying 

variable) that consisted of coordinating measurable attributes of the process. This 

depicted that at the beginning of the study the variational and covariational reasoning of 

Chris is between MA1 and MA3, which means he coordinates change of one variable 

value with change in the other variable value. He understood directional change and 

quantitative coordination of two or more covarying quantities.  

Chris’s Instructional Assessment 

Chris developed strong variational and covariational reasoning during an 

instructional session. For the water problem, Chris used his developed covariational 

reasoning to draw a correct graph and justify his solution about the covariational 

relationship between the volume of the water and the time taken to fill the bottle of water. 

For instance, Chris depicted the situation by correctly drawing the graph of the volume of 

water and the height of the water as the time passed to fill the volume of the bottle with 

water (see Figure 16.) Chris reached MA1-MA 4 level of covariation reasoning. Chris 

developed strong covariational and variational reasoning during the instruction, and he 
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used his developed covariational reasoning to analyze the problem situation. For 

example, Chris used correct covariational reasoning to analyze the problem situation (see 

Figure 21 to Figure 23). 

Chris’s Post-Instruction Interview Assessment  

Chris had strong covariational reasoning at the start and during the instruction 

session (see Figure 5) but for this part of the post-instruction assessment, Chris showed 

weak mathematical reasoning. Regarding the area problem, Chris’s reasoning was 

impacted by his terminology-oriented reasoning; for example, he used “little, tiny bit” or 

“little micro bit” to describe variation or quantity change. Instead, he should say “varying 

quantity” or “continuously changing quantity”. This may have impaired his variational, 

as well as covariational, reasoning ability which led him to a incomplete conclusion for 

the problem situation. Chris reversed his reasoning compared to his pre-instruction and 

during the instructional assessment, likely due to his use of terminology-oriented 

reasoning. 

 Similarly, Chris, for the nonlinear function problem, used his terminology-oriented, 

and that likely influenced his justification and conclusion about the concept of ARoC and 

derivative function and led him to a incomplete conclusion. Concerning the average rate 

of change problem, Chris’s reasoning was impaired by his terminology-oriented 

reasoning of the two covarying quantities, and that impacted his ability to coordinate the 

average rate of change of the function with uniform increments of changes in the input 

variable. Thus, Chris did not construct a smooth continuous covariational relationship 

between the ARoC and ℎ. Even though Chris developed variational reasoning and 

conception of a quantity within the course of the study, he was impaired by his 



139 
 

 

terminology-oriented reasoning at the end of the course of study, and he was unable to 

conceptualize the concepts of ARoC and derivative function. Chris's terminology-

oriented reasoning caused him to reach a incomplete conclusion about the concept of 

derivative and acceleration, as he did not view uniform increments of changes in the 

input variable as coordinated with the quotient of the output quantity, which converges to 

the derivative of the function or derivative function is the limiting value of the average 

rate of change function, but not the acceleration of the function, His reasoning level did 

not reach MA4 as described in the Carlson framework. In the next section, the analysis 

along the transversal axis is presented. A trace of each of the three cases’ reasoning 

throughout the study time is presented. The table below (Table 12) summarized the 

vertical analysis of the three students reasoning orientation.  

 

Table 12 

Summary results of vertical analysis  

Phases Sam’s Response  Ruby’s Response Chris’s Response 

Pre-instruction  Sam’s conception of 

variation, covariation, 

and rate of change 

consisted of loose 

coordination of objects 

and attributes of 

objects. For instance, 

for vehicle problem, 

Sam said, “The one 

that is kept constant is 

the Automobile and 

the continuous is the 

Bus.” 

At the start of the 

study Sam’s 

Ruby’s conceptions 

of variation, 

covariation, and 

rate of change 

consisted of weak 

coordination of 

quantity and 

attributes of these. 

For instance, “If 

𝑛 > 2 then 2𝑛 will 

be larger than 2 + 𝑛 

because will get 

doubled instead of 

just adding two. So, 

if 𝑛 = 3 then 

Chris’s responses 

during the pre-

instructional task 

reveal that his 

conceptions of 

variation, co-

variation, and rate of 

change consisted of a 

strong coordination 

of quantities and 

attributes of these 
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covariational 

reasoning label was 

below MA1 

 

2(3) = 6 while 2 +
3 = 5. If 𝑛 < 2 

then 2 + 𝑛 will be 

larger, for example 

if 𝑛 = 1 then 2 +
(1) = 3 

while 2(1) = 2. If 

𝑛 = 2 then both 

answers will be the 

same.” She used 

procedure-oriented 

reasoning to justify 

why 2𝑛 is larger or 

lesser than 2+n 

 

Instruction Sam showed little 

improvement for his 

variational and 

quantitative reasoning 

during the instruction 

(e.g., he wrote 

∆𝑉 =  −
1

15
, instead 

he should write 

∆𝑉 =  −
1

15
∆𝑡 ). He 

struggled to develop 

covariational 

reasoning, and his 

reasoning can be 

labeled as gross-

coordination 

covariational 

reasoning, as he can 

envision the two 

quantities varying, but 

he does not anticipate 

coordination of the 

covarying nature of 

two or more quantities 

 

Ruby developed 

strong variation, 

covariation, 

average rate of 

change function, 

and function ideas 

during the 

instruction, and her 

reasoning could be 

grouped under 

MA1-MA4. For 

instance, Ruby 

depicted the 

situation by 

correctly drawing 

the graph of the 

volume of water 

and the height of 

the water as the 

time passed to fill 

the volume of the 

bottle with water 

(see Figure 8). 

 

Chris developed 

strong variational and 

covariational 

reasoning during an 

instructional session. 

For instance, Chris 

depicted the situation 

by correctly drawing 

the graph of the 

volume of water and 

the height of the 

water as the time 

passed to fill the 

volume of the bottle 

with water (see 

Figure 16.) Chris 

reached MA1-MA 4 

level of covariation 

reasoning 

 

Post-instruction Sam’s reasoning about 

varying and constant 

quantity still impacted 

by his object 

reasoning (e.g., the 

Ruby’s strong 

covariational 

reasoning continued 

to be hampered by 

her procedure-

Chris reversed his 

developed 

covariational 

reasoning and he 

used terminology-
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shape of the rectangle 

change, the rectangle 

continuously varying 

instead he should say 

the area of the 

rectangle continuously 

vary) 

Sam often displayed 

concrete object-

oriented reasoning 

through all the three 

phases 

 

oriented 

knowledge, which 

often caused 

disequilibrium that 

was difficult to 

resolve. 

 

oriented reasoning; 

for example, he used 

“little, tiny bit” or 

“little micro bit” to 

describe variation or 

quantity change 

 

Transversal Comparative Analysis between Sam, Ruby, and Chris 

This section compares the study participants’ conceptions of variation, co-

variation, and average rate of change and derivative functions using transversal 

comparative analysis across the time of the study. At the beginning of the study and 

during the instruction period, both Ruby and Chris on average constructed functional 

relationships and rate of change conceptions that were rooted in variational and 

covariational relationships. After engaging in the instructional activities, they 

conceptualized processes of measuring varying quantities that stemmed from reasoning 

about quantities (e.g., area, length and width of the rectangle, the volume of the water, 

and the time taken to fill the bottle with water and the relationship between the height of 

the water and the volume of the water) and relationships between these quantities.  

Throughout the study, when Ruby and Chris engaged with mathematical problems, they 

first conceived of the relevant quantities, and then they leveraged their understandings of 

variational and covariational reasoning to solve the tasks. On the contrary, Sam did not 

appear to construct a process for measuring quantities and their attributes that consisted 
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of quantities and relationships between quantities. Rather, he conceived of varying 

quantity measures as numerical labels of objects. In general, Sam relied on his concrete 

object-oriented reasoning and used an action view to solve problems, and this limited his 

ability to justify with clear reasoning about relationships between two covarying 

quantities. Therefore, throughout the study when Sam engaged mathematics problems, he 

used concrete object-oriented reasoning and he did not apply variational and 

covariational reasoning to solve the problem situations.  

However, for the Post-instruction interview assessment, both Ruby and Chris 

reversed their developed variational and covariational reasoning, and instead engaged 

with procedural and terminology-oriented, respectively, when they solved problems 

related to concept of average rate of change and derivative functions. It is not clear why 

they were trapped by their procedural and terminology-oriented, respectively, but both 

had difficulty conceptualizing the average rate of change and derivative concept. On the 

other hand, Sam resisted changing his concrete object-oriented reasoning that limited his 

ability to develop robust conception of the idea of function, graph, rate of change, and 

derivative. Therefore, the result of this study shows the study participants rely on this sort 

of reasoning (procedural and scientific) before they develop robust covariational 

reasoning. It can impede their progress toward developing deep understanding of the 

mathematics. For instance, Ruby is a good example of a student who relies too strongly 

on procedure-oriented reasoning which impaired her covariational reasoning. Similarly, 

Chris is also an example of someone who has strong terminology-oriented reasoning that 

is interfering with his learning of the calculus concepts. Likely, after developing 

covariational reasoning, procedural and terminology-oriented reasoning could potentially 
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be beneficial. Object-oriented reasoning, on the other hand, is always a problem because 

it confuses objects with quantity. Sam is a good example of how some students really 

struggle with calculus when they have strong concrete object-oriented reasoning. 

Therefore, the results of this study can be used to better understand students like Sam, 

Ruby and Chris in calculus classrooms. The table below (Table 13) summarized the 

transversal analysis of the three students reasoning orientation. 

 

Table 13 

Summary results of transversal analysis  

Cases Pre-instruction Instruction Post-instruction 

Sam’s 

Response  

Sam did not appear to 

construct a process for 

measuring quantities 

and their attributes that 

consisted of quantities 

and relationships 

between quantities. 

Rather, he conceived of 

varying quantity 

measures as numerical 

labels of objects.  

 

Sam relied on his 

concrete object-oriented 

reasoning and used an 

action view to solve 

problems, and that 

limited him to justify 

with clear reasoning 

about the functional 

ratio of multiplicative 

relationships between 

quantities. 

 

Sam resisted 

changing his 

concrete object 

orientation 

reasoning that 

limited him to 

develop robust 

conception of the 

idea of function, 

graph, rate of 

change, and 

derivative 

 

Ruby’s 

Response  

At the beginning of the 

study Ruby had 

procedure-oriented 

conception towards 

functional relationships 

and rate of change 

conceptions that were 

rooted in variational and 

covariational 

relationships 

 

After engaging in the 

instructional activities, 

Ruby and Chris 

conceptualized 

processes of measuring 

varying quantities that 

stemmed from reasoning 

about quantities (e.g., 

area, length and width of 

the rectangle, the 

volume of the water, and 

For the Post-

instruction 

interview 

assessment, both 

Ruby and Chris 

reversed their 

developed 

variational and 

covariational 

reasoning, and 

instead engaged 
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Chris’s 

Response  

At the beginning of the 

study Chris on average 

constructed functional 

relationships and rate of 

change conceptions that 

were rooted in 

variational and 

covariational 

relationships 

 

the time taken to fill the 

bottle with water and the 

relationship between the 

height of the water and 

the volume of the water) 

and relationships 

between these 

quantities.  Throughout 

the study, when Ruby 

and Chris engaged with 

mathematical problems, 

they first conceived of 

the relevant quantities, 

and then they leveraged 

their understandings of 

variational and 

covariational reasoning 

to solve the tasks. 

 

with procedure-

oriented and 

terminological 

oriented  

reasoning, 

respectively, both 

had difficulty 

conceptualizing 

the average rate of 

change and 

derivative concept 

 

 

A Conceptualization of Students' Development of Covariational Reasoning 

This study explored and analyzed three students’ quantity, variation, and 

covariation reasoning development and their conception of average rate of change and 

derivative function in light of Carlson et al (2002) and Thompson and Carlson (2017) 

Covariational and Smooth Continuous covariational framework. The participants of the 

study exhibited different types of reasoning when they attempted to solve dynamic 

mathematical problems. To close this results chapter, the results of the horizontal, 

vertical, and transversal analyses are taken together to theorize the following 

relationships that may be present in the thinking and reasoning of students similar to the 

cases in this study.  

Understanding a quantity as an object leads students to obscurity when engaging in 

covariational reasoning. 
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A strong understanding of quantity is fundamental for students to develop 

understanding of calculus (for example, variation, covariation, rate of change, and 

derivative). Clearly describing a quantity is fundamental to understanding variation and 

covariation. Students who learn the idea of quantity at early school (elementary or high 

school) by differentiating the object that is being measured, the attribute of the object that 

is being measured, and the unit used in the measurement will have the opportunity to 

succeed when learning concepts that build on the idea of quantity. If students did not 

develop the concept of quantity in their schooling, it will adversely affect their 

understanding of variation, covariation, rate of change, and derivative, and advanced 

concept of calculus. In this study, Sam exemplified this result by consistently showing 

difficulty to differentiate between quantity and object. This impaired his ability to 

develop understandings of variation, covariation, ARoC, and the derivative function. 

Sam’s concrete object-oriented reasoning was so strong that he was observed graphing 

the physical object to reason with rather than conceptualizing and imagining the 

quantitative relationship between two or more varying quantities of that object. The 

concrete object-oriented reasoning that he used prevented him from understanding the 

variational and covariational relationship when two or more quantities dynamically 

change together. Sam exemplified students who consistently focus their reasoning on the 

object, whether it be a symbol, automobile, bus, or people. For students like Sam, it 

appears that persistent concrete object-oriented reasoning will be a strong barrier, 

preventing them from developing variational and covariational understandings, thus 

preventing them from coordinating changes in the dependent variable with the continuous 

changes in the independent variable. The results of this study show that students who do 
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not develop a clear understanding of quantity beyond an understanding of the object will 

not be able to develop variational reasoning (fixed, chunky, and continuous variation), 

and will therefore struggle to understand covariation, ARoC, and derivative function in 

calculus. 

The use of strong procedural understanding has a tendency to impair students’ 

covariational reasoning.  

Utilizing procedural understanding will lead students to develop a pseudo-

conceptual understanding of the concept of calculus. This is an indication of a tendency 

towards using formulas or memorized procedures to justify why their approaches to the 

mathematics solution is correct. For instance, in this study Ruby used her procedure-

oriented reasoning to justify why her final verdict is correct when she solved quantitative 

relationship problem and she reached incomplete conclusion. Students whose 

understanding is rooted in procedure-oriented reasoning will eventually have confusion 

or uncertainty when they try to solve mathematics problems that demand their conceptual 

understanding. In this study it is noted that students’ inability to form an image of the 

dynamically changing events appeared to stem from their procedure-oriented reasoning, 

as the result the students confused their prior knowledge and newly constructed 

knowledge of covariation. Ruby was an example of this. In this study, the results suggest 

that through continuous and regress instructional intervention, students’ procedure-

oriented reasoning can be developed into more productive covariational reasoning 

through instruction that focuses on the ideas of quantity, variation, and covariation 

reasoning.  



147 
 

 

Reasoning based on science terminology understandings may lead students to incorrect 

conclusions about covariational relationships. 

Student’s use of terminology-oriented reasoning to justify their mathematics 

solution resulted in constructing inappropriate images of the relationship between two 

covarying quantities. In this study, in one of the problems, Chris was obstructed from 

using his developed covariational reasoning by introducing related scientific concepts, 

which limited him to move forward in his use of covariational reasoning for analyzing the 

mathematics problem. Terminology-oriented reasoning is not problematic, however. In 

this study, the researcher found that inappropriate use of such type of reasoning impaired 

Chris’s mathematical conceptions of covariation, ARoC, and derivative function. For 

instance, for the nonlinear problem, when Chris was asked to interpret what the ARoC 

would tell him about the relationship between two dynamically co-varying quantities he 

stated that, “The average rate of change function should tell me the acceleration that I 

used to get away from the stop sign.” When students do not develop a strong 

covariational reasoning ability they may use related scientific understanding to reason, 

for instance, Chris used incomplete related terminology to justify his solution approach. 

Students should develop a strong variational and covariational reasoning in their calculus 

learning first to enable them to easily isolate unrelated concepts when they engage to 

solve covariational problems in calculus. For instance, Chris was observed 

communicating information that was not related to situations presented in the tasks. In 

this study what the researcher found is that there is a variation in how students engage 

and develop covariational understanding. Moreover, the development of covariational 

reasoning is not linear or not a one-time encounter, it needs a long-time intervention and 
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emphasis. Therefore, the results of the study showed that procedure-oriented reasoning 

can serve as a starting point for deeper covariational understanding. Terminology-

oriented reasoning can both help and hinder students' development of covariational 

reasoning; however, concrete object-oriented reasoning is problematic and will not allow 

students to develop covariational reasoning. 
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CHAPTER 5: CONCLUSION 

Conclusions 

This chapter concludes the study’s investigation of three student’s types of 

reasoning and conceptual understanding of the average rate of change and derivative 

functions. The three students’ ways of thinking are reported in this chapter, while 

highlighting the reasoning abilities that were revealed to be critical for understanding 

central concepts of the average rate of change and derivative functions. This conclusion is 

discussed in light of related research results in mathematics education. The fundamental 

reasoning abilities, such as quantity, variation, and covariation, were found to be critical 

to learning calculus concepts, in particular the concept of rate of change and derivative 

functions.  The students’ actions in this study revealed that their approaches to problem-

solving were related to their ability to conceptualize and reason about quantities and their 

relationships. Considering this, the chapter provides a discussion of the relationship 

between terminology-oriented reasoning and covariational reasoning, procedure-oriented 

reasoning and development of covariational reasoning, and concrete object-oriented 

reasoning and its influence on students’ variational and covariational reasoning 

development. Suggestions for curriculum and instruction are also provided in the context 

of this dissertation’s findings. Finally, this dissertation is concluded by addressing the 

limitations of this study, as well as this study’s directions for future mathematics 

education research.  

Quantity, Variation, and Covariational Reasoning   

The three students’ responses during the instructional tasks offered insights into 

this study’s research questions. Specifically, data analysis revealed various conceptual 
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understanding that the students demonstrated and the reasoning abilities the students used 

when learning and using the ideas of the rate of change and derivative function. The 

concept map below (Figure 29) illustrates the type of reasoning that students engaged 

with while solving covariational reasoning related problems. The concept map shows 

students may utilize procedural, concrete object, and terminology-oriented reasoning to 

solve covariational relationship problems. The peach oval shape shows the type of 

reasoning that students utilized when they solved covariational reasoning problems. The 

arrow from each type of reasoning shows the means of reasoning. For instance, in 

procedure-oriented reasoning students utilize the idea of formula, equation, and 

memorizing procedures to engage and solve the covariational problems. Similarly, for 

concrete object-oriented reasoning, students use the idea of physical objects, symbols, 

and numbers to justify their solution procedures. In terminology-oriented reasoning 

students use the ideas of micro bit, average, velocity, and acceleration while solving the 

covariational problem. The results of the study showed that procedure-oriented reasoning 

may be developed into covariational reasoning; however, terminology-oriented reasoning 

may likely hinder the development of students’ covariational reasoning, and concrete 

object-oriented reasoning is problematic to develop into covariational reasoning. This 

section outlines these findings by comparing the ways of thinking exhibited by the three 

students in this study. First, the students’ understanding of quantity and variation are 

described, and then the students’ conceptions of covariation are characterized. Next, the 

students’ conceptions of the average rate of change and derivative function are presented, 

and the role of variational and covariational reasoning is also addressed throughout the 
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characterization of the students’ thinking for their conceptualization of the idea of the rate 

of change and derivative concept.  

  

 

Figure 29. Concept Map of Students’ Reasoning Orientations 

 Students’ Conceptions of Quantity and Variation  

This section describes procedure-oriented and concrete object-oriented reasoning 

and how that influences the ways that students came to understand the concept of 

quantity and variation. The participants in this study showed different levels of 

understanding upon entry to this study related to their conception of quantity and 

variable. Each student showed a different type of reasoning when they tried to define and 
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describe the meaning of a quantity and variation. For instance, Chris showed strong 

quantitative reasoning at the beginning of the study and he defined quantity as fixed and 

varying, but Sam utilized concrete object-oriented reasoning when he was asked about 

properties of a quantity (e.g., he said that the automobile is kept constant, and the bus is 

continuous—these statements focus on the physical object or concrete object, as 

described in the concept map of Figure 29, and not quantities) rather than utilizing 

quantitative reasoning focused on a measurement process involving measurable 

attributes. Due to his inability to reason about the process of measuring the varying 

quantity n in terms of coordinating quantities, he did not justify why 2𝑛 is greater than 

2 + 𝑛 when given sufficient details to accomplish this task. Similarly, Ruby failed to 

recognize the variable 𝑛 due to her focus on procedure-oriented reasoning, which 

depended on computation. Sam and Ruby were also unable to give meaningful 

explanations of the calculations they performed when trying to solve the pre-interview 

task, revealing that they engaged with concrete object and procedure-oriented reasoning. 

This result adds to the body of research that shows calculus students have difficulty using 

variables as measures of varying quantity value. Trigueros and Ursini (2003) found that 

there was strong evidence among the 164 first-year undergraduates in their study that the 

students did not understand the concept of a variable when it is was used as a varying 

quantity in variational situations. Gray, Loud, and Sokolowski (2007) indicated in their 

study that most of their research participants had difficulty using variables as generalized 

numbers and varying quantities. However, this study compared to other studies 

specifically identified three types of resonating that hinder students’ development of 
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covariational reasoning abilities: concrete object-oriented, procedure-oriented, and 

terminology-oriented reasoning. 

As this study progressed, there were moments when Ruby correctly 

conceptualized quantity as both fixed and progressively varying, and she used her 

developed quantity and variational reasoning ability to analyze problems. When she 

completed the area problem in the post-instruction task, Ruby identified fixed quantities 

and varying quantities as measurable attributes of a rectangle (see Figure 29). Then, as 

she reflected on the relationship between the area and width of the rectangle of various 

sizes, she determined that the area of the rectangle varied continuously as the width of the 

rectangle varied continuously throughout the interval. This showed that procedure-

oriented reasoning can developed into covariational reasoning abilities. In contrast to 

Ruby’s thinking, Sam did not show evidence that he developed the ability to reason about 

quantity and variation as a process of measuring in each situation. Rather, Sam 

conceptualized quantity and variation as numerical labels of concrete objects (see Figure 

29).  

In summary, in this study, the results showed that concrete object-oriented 

reasoning centrally focuses on reasoning using physical objects, symbols, and plugging 

of numbers (see Figure 29). This type of reasoning limited students’ (for example, Sam) 

understanding and conceptualizing the concept of quantity and variation.  For instance, 

Sam did not appear to construct a process for measuring quantity, quantity variation, and 

relationships between covarying quantities. Rather, he conceived of quantity and quantity 

variation as numerical labels of objects, as opposed to the result of a process of change 

measuring the number of length or width in feet. As he encountered variational or 
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covariational problems that demand his quantity and variational reasoning, he was unable 

to apply covariational reasoning to analyze the problem situation due to his strong 

concrete object-oriented reasoning.  

The result of this study showed that procedure-oriented reasoning is focused on 

solving task using formulas, equations, and memorized procedures (see Figure 29). This 

type of reasoning led students to develop pseudo or a weak type of reasoning towards 

quantity and variation. Ruby, at the beginning of the study, used procedure-oriented 

reasoning to analyze quantitative relationship. However, in this study the result showed 

that procedure-oriented reasoning can be developed into covariational reasoning when 

compared to concrete object-oriented reasoning. For instance, in this study Ruby, after 

she engaged in the instruction session, she developed a strong conception of quantity and 

quantity variation that was rooted in quantitative relationships that helped her to 

overcome her initial conception of quantity and variation. She used her developed 

quantitative and variational reasoning to analyze homework and exam problems during 

the instruction period.  

Students’ Conceptions of Covariation 

This section describes concrete object-oriented reasoning, procedure-oriented 

reasoning, and terminology-oriented reasoning and how that influence the ways that 

students came to understanding covariation. Object-oriented reasoning is centrally 

focused on reasoning with the physical object or concrete object, symbols and numbers 

and is problematic to develop into covariational reasoning (see Figure 29). For instance, 

Sam did not engage with covariational reasoning (compared to Ruby and Chris), nor did 

he appear to use this reasoning to solve the problem throughout the study period due to 
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his dependence on concrete object-oriented reasoning. His use of concrete object-oriented 

reasoning to analyze two smoothly and continuously co-varying quantities’ relationship 

led him to produce a concrete object without applying and using covariational reasoning 

to analyze the problem. Sam struggled and confused with his concrete object-oriented 

reasoning, and that limited him to not develop quantity, variational, and covariational 

reasoning. This also impaired his conceptualization of the mathematics concept. 

Reasoning about concrete objects instead of quantities that covary impaired Sam's 

development of covariational reasoning. For example, in the vehicle problem Sam did not 

draw a diagram that illustrates the interaction between the quantities in the situation. 

Rather, he drew illustrations of the concrete object involved, with one illustration 

depicting the two concrete objects together and a second illustration depicting that one 

object was moving at a faster rate than the other. Sam's use of concrete object-oriented 

reasoning to engage in a different mathematics problem (linear, nonlinear, and rate of 

change mathematics problems) limited him to develop covariational reasoning. 

Ruby and Chris reversed their variational and covariational reasoning during post-

instruction that was strongly developed during the instructional period. Ruby had used 

procedure-oriented reasoning to interpret the quantitative relationship between two 

covarying quantities and this limited her ability to conceptualize and give correct 

meaning for the average rate of change. Procedure-oriented reasoning utilized formulas, 

equations, and memorizing procedures to solve mathematics problems. Students who 

depend on the use of procedure-oriented reasoning as a means to analyze covariational 

relationship problems may not likely develop strong conceptual understanding. For 

instance, when Ruby engaged with the nonlinear function problem, Ruby’s prior 
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procedural knowledge caused confusion between the concept of distance and the average 

rate of change. Ruby is confused with coordinating the variation in h and how that relates 

to the average rate of change. Procedure-oriented reasoning may be developed into 

covariational reasoning through support of dynamic mathematics instruction. For 

instance, during the instruction session of this study, Ruby developed a strong 

covariational reasoning even though she reversed her developed covariation reasoning 

during post-instruction. For example, when presented with a water filling problem, Ruby 

conceived the graph of the two dynamically varying quantities as a nonlinear graph (e.g., 

for the water filling problem, the graph represents continuously co-varying quantity 

between the height of the water and the time taken to fill the bottle of the water) and then 

reasoned about an increasing or decreasing rate of change of the highest of the water with 

the time taken to fill the bottle with water (MA5 of Carlson et al.’s  Covariation 

Framework). She supported her reasoning during instruction problem response by 

comparing changes of the height of the water in the bottle with continuously varying 

time t in seconds (MA3), which resulted in the graph and the formula of the nonlinear 

function emerging from this reasoning. This showed that procedure-oriented reasoning 

can be developed into covariational reasoning with support of dynamic mathematics 

tasks.    

Similarly, Chris used terminology-oriented reasoning while he engaged in the 

post-instructional assessment. For instance, Chris states, “The average rate of change 

function should tell me the acceleration that I used to get away from the stop sign.” Chris 

does not define ARoC using co-variation between quantities; he did not comprehend the 

quotient of a corresponding change in one quantity value by comparing a corresponding 
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change in the second quantity value to define what the ARoC means. Terminology-

oriented reasoning may include a reasoning with micro bit, average, velocity, and 

acceleration which are related terms to variation, average rate of change, and derivative.  

Terminology reasoning can hinder development of students covariational reasoning. 

Here, it appears that the students’ concrete object-oriented, procedure-oriented, and 

terminology-oriented reasoning impaired their mathematical reasoning, especially their 

use of covariational reasoning to analyze mathematical concepts like ARoC and derivate 

function. Similar studies reveal that students have difficulty engaging with covariational 

reasoning, and many students have difficulty reasoning beyond L3 covariational 

reasoning and also unpacking their reasoning of the rate of change by saying rate of 

change between two quantities is a ratio of the corresponding changes in these quantities 

(Carlson et al.,2002; Moore & Bowling,2008; Hobson & Moore, 2016).   

Students’ Conceptions of Rate of Change and Derivative Function 

This section summarizes the influence of concrete object-oriented, procedure-

oriented, and terminology-oriented reasoning on the students’ conception of average rate 

of change and derivative function (see Figure 29). Consistent with a research study on 

students’ conception of the rate of change and derivative functions (Carlson et al., 2002; 

Moore & Bowling,2008; Thompson,1994), the findings from this study showed that the 

students’ prior reasoning (for instance, in this study concrete object-oriented, procedure-

oriented, and terminology-oriented reasoning) influenced their conception of the average 

rate of change and derivative function. Each student was trying to conceptualize the 

concept of the average rate of change function and derivative function using of properties 

of physical objects, procedure-oriented, and terminology-oriented reasoning rather than 
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using idea of a measurement of the covariational relationship between two or more 

quantities. The study findings by Carlson (2002) reveal that many students had difficulty 

creating images of a continuous rate of change by imagining an increasing and decreasing 

rate of change function within the given interval. Similarly, Moore and Bowling (2008) 

indicate that most students did not have images of varying rate. Additionally, other 

research findings indicate that students did not have a precise image of the average rate of 

change function (Thompson, 1994). However, this study uniquely identified what type of 

reasoning students engaged in when solving covariational related problems: concrete 

object-oriented, procedure-oriented and terminology-oriented reasoning, that hinder their 

construction of covariational reasoning and conceptualization of ARoC and derivative 

function. More importantly, this study results reveals that all students could not pass 

MA4 and L4 and had difficulty interpreting the rate of change due to the types of 

reasoning they were engaged (i.e., object-oriented, procedure-oriented and terminology 

oriented reasoning) (see Appendix A for a detailed description of MA4 and L4). For 

instance, Sam used concrete object-oriented reasoning to define ARoC, but he did not 

define ARoC using idea of co-variation; he used the term how far, fast, or going very 

slow to define ARoC, which are not relevant to the definition of ARoC function. Ruby 

used procedure-oriented reasoning, “It is what you get when you fill everything out and 

cancel out h so it would be like when h is close to zero,” to the connection between 

ARoC and derivative. Similarly, Chris states, “The average rate of change function 

should tell me the acceleration that I used to get away from the stop sign,” using his 

terminology-oriented reasoning. Most significantly, the results of this study show that 

students were unable to interpret the concept of derivative function as related to the 
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concept of the average rate of change function. That is, students do not have the 

awareness that the average rate of change between the two quantities is the constant rate 

of change that produces the same change in the dependent quantity as the original 

relationship over the given interval and derivative function is the limiting value of the 

average rate of change function or results from smaller and smaller refinements of the 

average rate of change of a function.  

Ruby and Chris developed strong covariational reasoning during the instructional 

session; however, both students reversed their developed covariational reasoning and had 

difficulty conceptualizing the idea of the average rate of change and derivative function 

during the post-instruction interview.  For instance, for the nonlinear problem, Ruby 

confused distance and ARoC. She coordinates the change in time with the distance that 

the car travels, but she interpreted ARoC as distance by defining procedurally and she did 

not define and use the idea of covariation in her understanding of ARoC. More 

importantly, for the question that asked, “Why you said derivative instead of ARoC,” she 

indicated that, “It is what you get when you fill everything out and cancel out h so it 

would be like when h is close to zero.” She used procedure-oriented reasoning to justify 

why she said 4𝑡 + 1 is derivative when rather she should have engaged in covariational 

reasoning and said this is ARoC when ℎ = 0.5. Ruby tends to depend on procedure-

oriented reasoning (canceling out h) when making sense of mathematical situations. This 

procedure-oriented reasoning is impeding her understanding of ARoC.  

 Like Ruby, Chris reversed his developed covariational reasoning and he used 

strong terminology-oriented reasoning to engage in post-instruction interview tasks, 

which impaired his conceptualized idea of the rate of change and derivative function. For 
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instance, when Chris was asked to give the meaning of the ARoC function he said, “The 

average rate of change function should tell me the acceleration that I used to get away 

from the stop sign.” Rather he should define using the idea of covariation by saying the 

average rate of change between the two quantities is the constant rate of change that 

produces the same change in the dependent quantity as the original relationship over the 

given interval. When the interviewer further asked Chris about what will happen as h 

approaches to zero or for h=0.0001for nonlinear problem, Chris asserted, “Well, they're 

all headed towards that limit, they're all headed toward that thing. So, yeah, it's all headed 

towards the acceleration which is the derivative.” It seems Chris had confused the 

concept of acceleration with that of derivative. This study finding shows that Chris's 

terminology-oriented reasoning impaired his developed covariational reasoning and, as 

result, he showed a weak conception of the rate of change and derivative function. More 

importantly, in this study, it appears that familiarity with science terminology concepts is 

impeding Chris’s covariational reasoning. He seems to be skipping over the coordination 

of two quantities in thinking about ARoC and derivative function and going straight to 

the science terminology ideas. This is impeding his understanding of the covariational 

relationships in the problem. In this study Chris terminology-oriented reasoning impaired 

his covariational reasoning development.  

Sam’s reasoning during the study was dominated by concrete object-oriented 

reasoning and concrete object-oriented reasoning influenced his conceptual development 

to mathematics concepts. Throughout the study period, he resisted changing his concrete 

object-oriented reasoning, and that impaired his development of covariation reasoning. 

As a result, he did not show evidence of thinking about variation and covariation between 
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the two co-varying quantities of distance and time to evaluate the average rate of change 

(ARoC). Sam connected the average rate of change function with the idea of the fast and 

slow move when ℎ = 0.1, ℎ = 0.5, or ℎ = 0.001. Sam showed confused the ideas of 

ℎ approaching 0 with the idea of slow and fast (when ℎ = 0.1 fast speed, when ℎ =

0.001 a bit fast speed, and when ℎ = 0.5 the slow speed). Reasoning about concrete or 

physical objects instead of quantities that covary led Sam to have difficulty 

conceptualizing the idea of the average rate of change and derivative function. Moreover, 

his concrete object-oriented reasoning limited his development of variational and 

covariational reasoning also contributed to his inability to reason about covariation 

relationships and conceptualize concepts like average rate of change and derivative 

function.  

In general, research findings in calculus and science indicated that well-developed 

covariational reasoning ability will help students to understand functional relationships, 

concepts like ARoC and derivative, and science concepts like gravity and acceleration 

(Weber & Carlson, 2010; Panorkou & Germia, 2021). However, many studies reported 

that students had limited understandings of covariational relationships as and a result they 

exhibited limited conceptions for the idea of ARoC and derivative (Moore, 2010; Park, 

2013; Tyne, 2014; Tyne, 2015; Weber, 2005). But most often, studies did not clearly 

identify the types of reasoning that hinder the students’ development of covariational 

reasoning and conception of ARoC and derivative function. In this study, results 

identified three types of such problematic reason: concrete object, procedure, and 

terminology-oriented reasoning that hinder students’ covariational development and their 

conceptualization of ARoC and derivative function. The findings of this study shows that 
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these types of reasoning (i.e., concrete object, procedural, and terminology-oriented 

reasoning) impaired students’ development of quantity, variation, covariation reasoning 

as well as their conception of rate of change, function, ARoC, and derivative function. 

Implications for Curriculum and Instruction 

This section presents an implication to inform curriculum and instruction on 

students’ reasoning type such as object, procedural, and terminology-oriented reasoning 

and its influence on the students’ calculus learning. This study implemented a sequence 

of instruction that was designed to support students to develop variational and 

covariational reasoning abilities by engaging in dynamic mathematics tasks. However, 

the result of the study showed that the study participant did not always engage in 

reasoning on the level that was set as a goal in the instructional sequence. The results of 

the study showed that students did not reach a level of reasoning that promotes 

conceptual understanding of mathematics. For example, the results of this study showed 

that some students demonstrated a strong concrete object-oriented reasoning, procedural, 

and terminology-oriented.  For instance, in this study, Sam demonstrated strong concrete 

object-oriented reasoning and his approach to mathematics problems did not help him to 

construct quantity, variational, covariational reasoning. Similarly, with Ruby and Chris, 

their use of procedural and terminology-oriented reasoning respectively did not help them 

to engage in covariational reasoning ability. To support students’ development of 

productive covariational understanding curriculum needs to help students progress in this 

regard.  Thus, the current curriculum and instruction must promote a problem-solving 

approach that is founded on quantity, variational, and covariational reasoning. When 

students participate in such kind of instruction which promotes quantity, variational, and 
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covariational reasoning in a dynamic instructional environment they will likely construct 

and develop mathematical understanding. For instance, in the case of Sam, if he had 

exposure to the concepts of quantity, variation, and covariation in his high school 

mathematics, he might not be confused between the quantity and the physical object. A 

study by Thompson and Carlson (2017) revealed that the U.S. curriculum does not have a 

clear picture of the idea of smooth variation or continuously varying quantity. A student’s 

approach to mathematics problem solving is influenced by their previous experiences in 

mathematics courses. Ruby is an example of this, at the beginning of the study she 

demonstrated strong procedure-oriented reasoning and as she participated in the 

instruction session she quickly learned and developed covariational reasoning. However, 

her developed covariational reasoning would not last long as she reversed and used her 

strong procedure-oriented reasoning again during post instruction. This shows that 

developing students’ covariational reasoning is not a one-time or a linear process, it needs 

a long period intervention and emphasis. Therefore, in the school of mathematics 

curriculum and instruction, the need is to focus on teaching students the fundamental 

reasoning abilities such as quantity, variation, and covariation reasoning to promote 

strong mathematics learning and to help students to develop conceptual understanding in 

mathematics class, especially for their future advanced calculus learning by designing 

instruction that promotes covariational reasoning in elementary and secondary schools. 

The findings of this study suggest developing students' quantity, variational and 

covariational reasoning requires a long period of intervention by designing dynamic 

instructional tasks, and it is understood that implementing and practicing such kind of 
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instruction is beneficial for the students' mathematics problem-solving ability and for 

their future advanced mathematics learning. 

Findings of this study show that student conceptions of quantity, variational, and 

covariational reasoning were critical for their understanding of the average rate of change 

function and derivative function. The concept of the average rate of change and 

derivative function is rooted in understanding quantity, variation, and covariation.  Also, 

conceptualizing quantitative and covariational relationship and its process at the end will 

lead students to conceptualize the idea of a function as an input-output relationship 

between two co-varying quantities. The average rate of change is the constant rate of 

change that produces the same change in the dependent quantity as the original 

relationship over the given interval as the independent quantity progressively vary, and 

derivative function is the limiting value of the average rate of change of function as the 

independent variable approaches to zero in the given interval  or a refinement of the 

average rate of change function as the independent quantity continuously vary in the 

given interval. Developing such types of reasoning at an early stage will support students 

to have the imagine of the input-output process without needing any procedure or 

calculation of the average rate of change and derivative function. Findings from previous 

studies show that students’ learning the foundational concepts of calculus such as rate of 

change, derivative, and integral depend on their deep mathematical reasoning abilities, 

especially on their variational, quantitative, and covariational reasoning abilities (Carlson 

et al., 2002; Castillo-Garsow, 2012; Orhun, 2012, Thompson & Carlson, 2017). The 

result of this study avail three types of reasoning: concrete object, procedure, 

terminology-oriented reasoning that instructor and curriculum designer to be aware of 
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them when they are teaching and design instruction materials to avoid in engaging in 

these types of reasoning. Instructors could use examples of each type of reasoning when 

they teach by comparing with correct reasoning types such as, variational and 

covariational reasoning. Curriculum developers could develop content that reflect 

concrete object-oriented, procedure-oriented reasoning and terminology-oriented 

reasoning by comparing with variational and covariational reasoning type. This study 

also reveals the importance of students engaging in learning quantities and constructing 

relationships between quantities. Therefore, in schools of mathematics instruction, it's 

important to focus on quantity, variation, and covariational reasoning teaching and 

learning rather than procedural and computational-based mathematics teaching and 

learning. 

Limitations of the Study 

This study examines three calculus students' quantity, variation, and covariation 

reasoning abilities and also their average rate of change and derivative conceptual 

understanding abilities. Each student engages in different and unique conceptual and 

reasoning abilities. The results of this qualitative study may not be generalized to all 

levels of first-year calculus students. This is one of the limitations of this study. The main 

goal of the study is to understand students' variational and covariational reasoning 

abilities and their conceptual development of the concept average rate of change and 

derivative. To explore such kind of development in this study, students were engaged in 

dynamic instructional activity with the support of technology, which is a much different 

instructional approach to traditional calculus instruction. For this, this study result might 

not reflect and generalize to all calculus classroom situations. 
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 A second limitation of this study was the zoom video group setting in which the 

students engaged in the instructional activities. This setting made it difficult to capture 

the entire progress of each student on the instructional activities, as each student’s level 

of participation varied during these activities, and it is impossible to follow and record 

the entire class activity. An interview setting was used to pose additional tasks to the 

students to test the researcher’s models of their mathematics, but their engagement during 

the initial instructional tasks was not captured at this individualized level. 

The third limitation was that the study only tracked what the students did during 

the videotaped instruction. Additionally, the study only occurs over a three-week period 

of time and that cannot represent the entire semester of calculus study and mathematics 

experience. 

Lastly, this study collected the students' written work data during the pre-course 

and instruction period due to the remote instruction setup. Thus, the results presented 

should be read as the researcher’s interpretation of the students’ understandings and 

reasoning, where this interpretation was grounded in building and testing models of the 

students’ mathematics, which were inferred from the students’ observable behaviors from 

collected data. 

Directions for Future Research 

This study investigated the role of quantity, variational, and covariational 

reasoning in first-year calculus students’ learning of the average rate of change and 

derivative function. Specifically, this dissertation focused on calculus students 

constructing and reasoning about the average rate of change and derivative functions in 

the contexts of the linear and nonlinear function mathematics problems. To explore the 
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role of a quantity, variational, and covariational reasoning of students’ development of 

conception in the area of average rate of change and derivative function, future studies 

could explore the average rate of change function by comparing with derivative function 

learning. Future study could especially explore students' smooth continuous covariational 

reasoning and average rate of change as h varies progressively throughout the given 

interval. 

Second, future studies could explore the cause of students' concrete object-

oriented reasoning and implications of how to support students to move from such type of 

reasoning to variational and covariational reasoning abilities. The variation and 

covariation conceptions held by the students of this study appeared to play a role in their 

thinking and reasoning abilities. Given students’ varying conceptions of measurement 

labels as an object, the role of students’ variation and covariation conceptions should be 

further explored in the context of the average rate of change and derivative function. 

Third, this dissertation revealed insights into the relationship between variational 

and covariational reasoning with terminology-oriented reasoning on students’ problem-

solving behaviors. The findings of this study show that students' use of terminology-

oriented reasoning limited students' conception of the average rate of change and 

derivative function. Future studies may see the relationship between terminology-oriented 

reasoning and covariational reasoning and its influence on understanding mathematics as 

well as science concepts. 

In summary, this study uniquely identified three types of reasoning (i.e., concrete 

object-oriented, procedure-oriented, and terminology-oriented reasoning) that hinder the 

students’ conceptualization of concepts of ARoC and derivative function, but these are 
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most certainly not the only types of problematic reasoning orientations—there are likely 

others. It would serve the field well future researcher to identify additional problematic 

reasoning orientations for students when they are using covariational reasoning to 

understand ARoC and the derivative function.    
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Appendix A: Analytical Framework 

Table 1 

Mental Actions and Levels of the of the Covariation Framework (Carlson et al., 2002, p. 

357-358) 

Mental action Description of 

mental action 

Behaviors 

Mental Action 1 

(MA1) 

Coordinating the value of 

one variable with changes in 

the other 

Labeling the axes with variables 

indications of coordinating the two 

variables (e.g., y changes with changes 

in x) 

Mental Action 2 

(MA2) 

Coordinating the direction 

of change of one variable 

with changes in the other 

variable 

Constructing an increasing straight line 

Verbalizing an awareness of the 

direction of change of the output while 

considering changes in the input 

Mental Action 3 

(MA3) 

Coordinating the amount of 

change of one variable with 

changes in the other 

variable 

Plotting points/constructing secant lines 

Verbalizing an awareness of the 

amount of change of the output while 

considering changes in the input 

Mental Action 4 

(MA4) 

Coordinating the average 

rate-of-change of the 

function with uniform 

increments of 

change in the input variable 

Constructing contiguous secant lines 

for the domain  

Verbalizing an awareness of the rate of 

change of the output (with respect to 

the input) while considering uniform 

increments of the input 

Mental Action 5 

(MA5) 

Coordinating the 

instantaneous rate of change 

of the function with 

continuous changes in the 

independent variable for the 

entire domain of the 

function 

Constructing a smooth curve with clear 

indications of concavity changes 

Verbalizing an awareness of the 

instantaneous changes in the rate of 

change for the entire domain of the 

function (direction of concavities and 

inflection points are correct) 
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Table 2 

Covariational reasoning levels 

Covariational Reasoning Levels 

The covariation framework describes five levels of development of images of 

covariation. These images of covariation are presented in terms of the mental actions 

supported by each image.  

 

Level (L1). Coordination 

At the coordination level, the images of covariation can support the mental action of   

coordinating the change of one variable with changes in the other variable (MA1). 

 

Level (L2). Direction 

At the direction level, the images of covariation can support the mental actions of 

coordinating the direction of change of one variable with changes in the other variable. 

The mental actions identified as MA1 and MA2 are both supported by L2 images.  

 

Level (L3). Quantitative Coordination 

At the quantitative coordination level, the images of covariation can support the mental 

actions of coordinating the amount of change in one variable with changes in the other 

variable. The mental actions identified as MA1, MA2 and MA3 are supported by L3 

images.  

 

Level (L4). Average Rate  

At the average rate level, the images of covariation can support the mental actions of 

coordinating the average rate of change of the function with uniform changes in the 

input variable. The average rate of change can be unpacked to coordinate the amount 

of change of the output variable with changes in the input variable. The mental actions 

identified as MA1 through MA4 are supported by L4 images. 

 

Level (L5). Instantaneous Rate 

At the instantaneous rate level, the images of covariation can support the mental 

actions of coordinating the instantaneous rate of change of the function with 

continuous changes in the input variable. This level includes an awareness that the 

instantaneous rate of change resulted from smaller and smaller refinements of the 

average rate of change. It also includes awareness that the inflection point is where the 

rate of change changes from increasing to decreasing or decreasing to increasing. The 

mental actions identified as MA1 through MA5 are supported by L5 images.    
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Table 3 

Major Levels of Covariational Reasoning of the of the Smooth Covariation Framework 

(Thompson & Carlson, 2017, p. 440-441) 

Level Description 

Smooth continuous covariation The person envisions increases or decreases 

(hereafter, changes) in one quantities or variable’s 

value (hereafter, variable) as happening 

simultaneously with changes in another variable’s 

value, and the person envisions both variables 

varying smoothly and continuously. 

Chunky continuous covariation  The person envisions changes in one variable’s 

value as happening simultaneously with changes in 

another variable’s value, and they envision both 

variables varying with chunky continuous variation 

Coordination of values The person coordinates the values of one variable 

(x) with values of another variable (y) with the 

anticipation of creating a discrete collection of pairs 

(x, y) 

Gross coordination of values The person forms a gross image of quantities’ values 

varying together, such as “this quantity increases 

while that quantity decreases.” The person does not 

envision that individual values of quantities go 

together. Instead, the person envisions a loose, 

nonmultiplicative link between the overall changes 

in two quantities’ values. 

Precoordination of values The person envisions two variables’ values varying, 

but asynchronously—one variable changes, then the 

second variable changes, then the first, and so on. 

The person does not anticipate creating pairs of 

values as multiplicative objects 

No coordination The person has no image of variables varying 

together. The person focuses on one or another 

variable’s variation with no coordination of values 
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Appendix B: Recruitment Task 

The purpose of the task  

o The task is designed to examine students general covariational reasoning abilities. 

Anticipation for the students’ response  

o The students’ response to this task will vary. Some students may engage in 

covariational reasoning and others may not engage in covariational reasoning to 

give answers to the questions.  

o All students’ response will be examine using the analytical framework of this 

study.  

o The goal of the task  

o To recruit students for this study who scored low, medium, and high. 

o To further study their smooth continuous covariational reasoning abilities.  

Possible solution for this task   

1. Which is the larger, 2n or 2+n? Explain 

Answer  

o The correct answer for this question is “It depends. If n<2, 2+n is greater, if n=2, 

2n =n+2, if n>2, 2n is greater.” (Schoenfeld&Arcavi, 1988) 

o The students’ answer will be scored using Carlson framework of this study (see 

Appendix A) 

2. Two vehicles, an Automobile and a Bus, are 560 kilometers apart. They start at the same 

time and drive toward each other. The Automobile travels at a rate of 75 kilometers per 

hour and the Bus travels 53 kilometers per hour.  
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a. Illustrate the situation by drawing and use variable to represent each situation in your 

drawing.  

Answer  

o Drawing of two vehicles facing each other (i.e., drawing of Automobile and Bus) 

separated by varying distance measured in kilometers (with a clear label a 

variable “d” or “D” that represent the number of kilometers between the two 

vehicles), with labels of total distance measured in kilometers (a constant 

variable), and a variable t that represent the number of hours since the vehicles 

started moving.  A formula that relates the distance covered by each vehicle while 

they travel within the given rate of change (d=560-128t) or a formula that show 

the covariational relationship between d in the number of km between the two 

vehicles in terms of the amount of time in hours since they started driving towards 

each other. 

o Below is one possible drawing of the situation  

 

53t                      d                             75t 

         560km                      

Figure 1. Two vehicle problem  

 

b. Identify the quantities whose values are continuously changing those whose values are 

kept constant in this scenario.   

Answer  

Continuously varying quantities  

o The distance d in km between the two vehicles.  
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o The time t in hours since the vehicles started moving.  

o Each vehicle distance that vary with time (53t and 75t). 

Continuously Constant quantities  

o The total distance in kms (560 kms) 

o The rate of change of the two vehicles (53km/h and 75km/h)  

o The students’ answer will be scored using the analytical framework of this study 

(see table 3). 

o The students’ answer will be scored using the variational reasoning analytical 

framework of this study (see table 3) 

3. Suppose a town’s Board of Health reports that a bacterial infection has been spreading for 

the last several days. They use a model that relates the number of days since January 1, 

2017, x, to the number of people who are infected with the infection, y. The graph 

represents the relationship between these two variables in this model.  
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Figure 2. Bacterial infection problem  

a. Draw a horizontal line segment on the graph from the point (2, 5) to (10, 5). What does 

this horizontal line segment represent in the context of this question? How is 𝑥 vary 

within this given interval?  

Answer 

o A correct drawing of a horizontal line segment that joined point (2, 5) to (10, 

5). 

o The horizontal line segment represents the change in the number of days from 

January 2 to January 10.  

o The horizontal line segment represents a change of 8 days.  
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o 𝑥 vary smoothly and continuously within the given interval from 2 to 10 or 𝑥 

varies progressively in all intermediate values within the given interval from 2 

to 10. 

b. Describe what the graph conveys about how the number of people infected changes over 

time.   

Answer 

o The graph relates the number of people who infected by bacteria with the 

number of days that started infecting people on January 1, 2017.  At first the 

number people who infected by the bacteria are rapidly or fast grow and then 

levels off in the rate of infection. Then the rate of infection slows down until 

the number of infections begins to decrease starting day 10 and the next days 

after January 10, 2017.   

o The students’ answer will be scored using the variational, covariational, and 

smooth continuous covariational reasoning analytical framework of this study 

(see table 3). 
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Appendix C: Mathematics Task 1 

This investigation is focused to develop students’ image of variation. 

Some important terminology:  

o If the value of a quantity does not change, the quantity is called a fixed 

quantity and its value is a constant.  

o If the value of the quantity does change, the quantity is called a varying 

quantity and the quantity can assume more than one value or multiple values.  

o Key concept: imagining of variation happen within a unnoticeable amount of 

change or imagining the varying quantity change in a progress. 

This investigation has two goals  

o To create an image that variation in a quantity's value can happen over smaller 

intervals. 

o To give insight into at variation over smaller intervals often reveals more of a 

relationship's overall behavior. 

Problem 1.  Open the GeoGebra applet 1 and describe how you anticipate variation of 𝑣 

and 𝑢.  How 𝑢 is varying compared to 𝑣? What types of variation do you notice between 

𝑣 and 𝑢? Explain the different variations that you notice between the two varying 

quantities? By how much do 𝑣 vary? By how much do 𝑢 vary? Is that possible to notice 

by how much amount does 𝑢 vary?  

(show the screen of the applet) 

Answer 

o The purpose of this question is to develop students’ knowledge of smooth 

continuous variation of a variable value. I anticipate that students will answer 
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correctly for chunky continuous variation, and they will say v is varying by 1 

unit each time (i.e., by 1 cm) but student may not give exact answer about the 

variation of u. To help student to understand the variation of the variable u the 

instructor must ask students what they notice, or they imagine about the 

variation in the value of u until students understand u vary smoothly and 

continuously in the given interval or until they know u vary in all intermediate 

values of the given intervals GG applet will help for this part of discussion. 

 

Problem 2. Let 𝑥 = the tree’s height measured in feet. What is the difference between 

saying 𝑥 = 1.5 feet and ∆𝑥 = 1.5 feet? 

Answer 

o 𝑥 = 1.5 feet represent the actual height of the tree as it is measured.  

o ∆𝑥 = 1.5 feet represent the change of the height of the tree when it is 

measured in between certain time interval.   

Problem 3. The variable x varies through the interval [2,7] by varying through intervals 

of length ∆𝑥 = 0.0001. Through how many subintervals of length ∆𝑥 will the value of x 

vary as it varies from x=2 to x=7? 

Answer 

o The length of the interval [2,7] is 5 where x can vary and the number of 

subintervals of length ∆𝑥 = 0.0001 is 
5

0.0001
= 50,000( or 50,000 number of 

subintervals of length equals to 0.0001 of the bigger interval of length 5) . The 

purpose of this problem is to show students a large variation can be made 



191 
 

 

from small variation or large variation can be partition into a very small size 

variation and within that size interval x can also vary or there is variation.   

Problem 4. You have 240 feet of fence to enclose a rectangular lawn. You are free to 

make the enclosure have any possible length and width, but you must use all the fence. 

Play the GeoGebra (GG) animation applet2. Drag point D to the left and to the right to 

see how the enclosed rectangular area vary as the width and the length of the rectangle 

varying.  

a. Define the constant variable in this situation. 

Answer 

o The constant variable in this situation is the total fence length that used to 

enclose a rectangular lawn (240 feet). 

b. Define the varying variables in this situation. State the intervals over which they vary. 

Answer 

o The varying variable in this situation are 

o The area of the enclose rectangular lawn and the area of the rectangle can vary 

in the interval between 0 to 3600𝑓𝑡2.  

o The length of the enclose rectangular lawn and the length of the rectangle can 

vary between the interval 0 to 120𝑓𝑡.  

o The width of the enclose rectangular lawn and the width of the rectangle can 

vary between the interval 0 to 120𝑓𝑡.  

o  

c. Express the relationship between the rectangle’s width and length using a formula. 

Answer 
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o Let 𝑤 represents the width of the enclose rectangular lawn in ft and 𝑙 

represents the length of the enclose rectangular lawn in ft 

o 2𝑤 + 2𝑙 = 240𝑓𝑡  ⇒ 𝑤 + 𝑙 = 120𝑓𝑡  ⇒ 𝑤 = (120 − 𝑙)𝑓𝑡  or 𝑙 = (120 −

𝑤)𝑓𝑡   

d. Express the relationship between the rectangle’s enclosed area and either its width or 

its length using a formula. 

Answer 

o Let 𝐴(𝑤) represents the area of the enclose rectangular lawn in 𝑓𝑡2 and 𝑤 

represents the length of the enclose rectangular lawn in ft 

o 𝐴(𝑤) = 𝑤(120 − 𝑤)   

e. When the width of the rectangle varies by 10 feet between the interval 0 ≤ 𝑤 ≤ 120. 

What relationship do you notice between the rectangle’s enclosed area and its width? 

What can you conclude from the relationship? Is it possible to make a table that shows all 

possible values of the variables that this relationship produces? If so, make the table, if 

not, explain why not. 

Answer 

o The answer for this part is depends on the classroom discussion with the 

instructor but students expected to notice the rectangle’s enclosed area and its 

width coordinately covary by 10 ft length of intervals. Students should 

produce a table for all possible values of the two variables. The big message 

of this part is a chunky variation in the width of the rectangle will produced 

corresponding chunky variation in the area of the enclosed rectangle and 
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students should understand there is a chunky covariation between the area of 

the rectangle and the width of the rectangle.  

f. When the width of the rectangle varies smoothly and continuously between the interval 

0 ≤ 𝑤 ≤ 120 (open GG applet 2 to explore this question). What relationship do you 

notice between the rectangle’s enclosed area and its width? How does the area of the 

rectangle vary as the width of the rectangle vary all intermediate values within the given 

interval? Is it possible to make a table that shows all possible values of the variables that 

this relationship produces? If so, make the table, if not, explain why not. 

Answer 

o The answer for this part depends on the classroom discussion with the 

instructor but students expected to notice the rectangle’s enclosed area and its 

width coordinately covary smoothly and continuously in given interval the 

GG applet will help for this part the discussion. If they can, students can 

produce a table for all possible values of the two variables (i.e., the instructor 

can use this question to discuss a question why or why not produce a table. It 

is true that students cannot produce a table for smoothly and continuously 

covary quantities, since each variation is in a bit or cannot be noticed). The 

big message of this part is a smooth variation in the width of the rectangle will 

produce a corresponding smooth variation in the area of the enclosed 

rectangle or students should understand there is a smooth continuous 

covariation between the area of the rectangle and the width of the rectangle or 

there is a smooth continuous covariation relationship between the width and 

area of the rectangle.  
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g. Make graphs for the situation in part (e) and (f). Did you get the same graph for part e 

and f? If you found different graphs, explain why this is occurred. 

Answer  

o Possible graph for part (e) 

 

 
Figure 3. Chunky covariational graph  

 

 

o Possible graph for part (f) 

 

 

 
Figure 4. Smooth covariational graph  
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Appendix D: Mathematical Task 2 

This investigation is focused to develop students’ image of covariation reasoning. 

This investigation has two goals  

o To create an image that variation in a quantity's value can happen over smaller 

intervals and the change can also be unnoticeable.  

o To give insight of the relationship between two continuously covarying 

variables over smaller intervals. 

Note: 

o We will use the letter "𝑑" preceding a variable to mean that the variable's 

value "varies a little bit". The symbols "𝑑𝑥" and "𝛥𝑥" have different 

meanings. "𝑑𝑥" represents a change of variable that we cannot notice in our 

eyes but we have awareness or consciousness which has a value that is 

imaginable or very little bit. Or "𝑑𝑥" represents a small variation in the 

variable x. "𝛥𝑥" represents a change that we can notice or have fixed values 

that we can measured. 

Problem 1. Open GG applet 3 and give your explanation how 𝑑𝑢 and 𝑑𝑣 vary.  

a) By how much do you think 𝑑𝑢 varies?  

Answer  

o ∆𝑢 varies by 0.2 amount  

b) By how much do you think ∆𝑣 varies? 

Answer  

o ∆𝑣 varies by 0.4 amount  

c) What meaning do you have for ∆𝑢 and ∆𝑣? 

Answer  
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o ∆𝑢 represents 0.2 variation in the variable u 

o ∆𝑣  represents 0.4 variation in the variable v  

 

d) What relationship can you conclude from these two covarying quantities?  

Answer  

o One possible answer for this question is when every time  𝑑𝑢 vary by 0.2 

amount 𝑑𝑣 vary by 0.4 amount or 𝑑𝑣 = 2𝑑𝑢 or 
1

2
𝑑𝑣 = 𝑑𝑢 (for further 

discussion the instructor possibly can ask the meaning of 2 or ½ in this 

relationship).  

o In this part of the task I want students to know that two quantities can covary 

in a chuck continuous covariation relationship. 

 

Problem 2. Open GG applet 4 and first explore how 𝑑𝑣 and 𝑑𝑢 vary independently and 

then explore how the two small variations co-vary together.  

 

a) What do you notice when the two quantities co-vary simultaneously?  

Answer  

o One possible answer for this question is du and dv covary simultaneously by 

unnoticeable amount or they covary in a bit. 

o Another possible answer for this part could be both dv and du vary smoothly 

and continuously in the given interval.  

 

b) What is 
𝑑𝑣

𝑑𝑢
? What is 

𝑑𝑢

𝑑𝑣
?  

Answer  

o One possible answer for this question is students may say it is a derivative or 

students may say something else like rate of change or ratio (further 

discussion can be facilitated by the instructor based on students’ response). 

o Another possible answer for this part could be students see  
𝑑𝑢

𝑑𝑣
 𝑜𝑟

𝑑𝑣

𝑑𝑢
  as the 

quotient of two smoothly and continuously covarying quantities (further 

discussion can be facilitated by the instructor based on students’ response). 

 

Problem 3. Suppose the mass m of a bacterial culture, measured in grams, varied at a 

constant rate of 5 𝑔𝑟𝑎𝑚𝑠/ℎ𝑟 with respect to time, measured in hours, for t hours. This 

means that within this period, any variation in the culture’s number of grams will be 5 

times as large as the variation in the number of hours since measurements began that 

produced it. 
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Let 𝑑𝑚 represent a varying change in the culture’s mass during this period and let 𝑑𝑡 

represent a varying change in the number of hours during which 𝑑𝑚 happens. Then 

𝑑𝑚 = 5𝑑𝑡 as the value of 𝑑𝑡 varies. 

 

a. When ∆𝑡 = 0.1 hours compute ∆𝑑 and explain how the mass varied. 

Answer  

o When ∆𝑡=0.1hours, ∆𝑑=5grams/ hours *0.1hours=0.5grams, that means the 

mass varied by 0.5 grams for0.1 hours  

o b. When ∆𝑡 = −3.2 hours compute ∆𝑑 and explain how the mass varied.  

o Answer  

o When ∆𝑡=-3.2hours, ∆𝑑=5grams/ hours *-3.2hours=-16grams, that means the 

mass varied by -16 grams for -3.2 hours  

 

c. When ∆𝑡 = 0.000 001hours compute ∆𝑑 and explain how the mass varied.  

Answer  

o When ∆𝑡=0.000001hours, ∆𝑑=5grams/ hours *0.000001hrs=0.00005grams, 

that means the mass varied by 0.00005 grams for 0.000001 hours  

 

d. When ∆𝑑 = −0.3288732 compute ∆𝑡and explain how the time varied. 

Answer  

o When ∆𝑑=−0.3288732 grams, −0.3288732𝑔𝑟𝑎𝑚𝑠 =5grams/ hours *∆𝑡, so 

∆𝑡=-0.0657464hours, that means the time varied by -0.0657464hrs when the 

mass is −0.3288732 grams 

 

Problem 4. Open GG applet 5 and explore the two covarying quantities. 

a) By how much does 𝑟 vary?  

Answer  

o Possible answer for this question is r vary by a little bit or by small 𝑑𝑟 amount 

or by unnoticeable amount  

 

b) By how much does 𝑘 vary?  

Answer  

o Possible answer for this question is k vary by a little bit or by small 𝑑𝑘 

amount or by unnoticeable amount  

c) What relationship can you predict from these continuously covarying 

quantities? 

Answer  

o Possible answer for this question is when the two quantities covary smoothly 

and continuously in the given interval the value of k vary in a little bit (dk) 

and the value of r is also varying simultaneously by small 𝑑𝑟 amount or by 

unnoticeable amount.  
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o Another possible answer is r and k have a smooth continuous covariation 

relationship. 

 

d) Plot the graph of 𝑟 as a function of 𝑘.  

                                                r 

k 

Figure 5. Covariational graph  

 

Problem 5. Answer the question below by using the graph of a function 𝑓 that represents 

the amount of money in a banking account (measured in thousands of dollars) as a 

function of the number of years since 1995.  

 

 

 

Figure 6. Graph of the amount of money in the bank  
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a. How did the amount of money in the bank account change from 0 to 5 years after 

1995?  

Answer  

o As the number of years since 1995 increases from 0 to 5 years the total 

amount of money in the account increases from approximately 1,000 to7, 000 

dollars, or the amount of money in the account changes from approximately 

$1,000 to $7,000. This is a change of $7000-$1000≅$6000.   

 

b. What does the point P on the graph convey about the amount of money in the account 

is changing with time? 

Answer  

o The point P conveys two things about the amount of money in the account: 

o Below the point P (4.5 years, $5,000) conveys for any smooth continuous 

increase of time since the begging until 4.5 years the change in the amount of 

money in the account increase and yield $5,000.  

o After the time passes through 4.5 years the point P (4.5 years, $5,000) 

conveys the change in the amount of money in the account decreases as the 

time increase smoothly and continuously from 4.5 years and for the 

continuous years.   

c. The graph is concave down on the interval 4.5<t<10. How is the amount of money in 

the account changing on this time interval? How is the rate of change of the amount of 

money in the account changing on this time interval?  
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Answer  

o The change in the amount of money in the account continuously decreases as 

the time increase smoothly and continuously from 4.5 years to 10 years.  

o The rate of change of the amount of money continuously decreases as the time 

increase smoothly and continuously from 4.5 years to 10 years.  
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Appendix E: Mathematical Task 3 

This investigation is focused to help students to apply smooth continuous covariation 

reasoning ability to solve mathematics problem. 

The goal of investigation 3 

• is to apply students’ smooth continuous covariation reasoning. 

• is to develop students’ conceptual understanding of derivative function 

 

Problem 1.  Suppose Fatima deposits $100 into an account at Incredible Bank on January 

1.  The table below shows the amount of money in her account, rounded to the nearest 

dollar, at the end of each month passed since January 1. 

Table 4 

Trend of the amount of money in the account in each month 

Month 

 
1 2 3 4 5 6 7 8 9 10 11 12 

Amount 

in the 

Account 

135 182  246 332 448 605 817 1,103 1,489 2,011 2,714 3,664 

 

Let 𝐴 represent the amount of money in the account, measured in dollars; and let 𝑡 

represent the time passed since January 1, measured in months.  If we assume 𝑡 and the 

amount of money in the account continuously increases over the interval from 𝑡 = 1 to 

𝑡 = 12. 

a) What amount of money will Fatima have in the account at the second day of 

the month of January? By how much interest rate is the amount of money in 

the account growing? Explain your reasons.  
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Answer  

o There are many ways to solve this problem. One may approach this problem 

by looking each month trend and he/she may relate the accumulated amount 

of money per each month 𝐴(𝑡) and the monthly interest rate of the bank 𝑟𝑚, 

that is, the time t measured in months, and 𝑟𝑚 is the interest rate in month. Or 

one may use the regular compound interest formula 𝐴(𝑡) = 100(1 + 𝑟𝑚)𝑛, 

where 𝑛 is the number of periods that the amount of money compounded (i.e, 

n=m*t) and 𝑟𝑚 is the monthly interest rate. However, this approach may not 

be helpful for students, since every time students need to change the interest 

rate when they asked to calculate the amount of money in the account in each 

period or time, that is, for each day, minute, second, or even microsecond.  

o This approach for me has two problems for the student to solve this particular 

question, first, since the amount days in each month is different (i.e., January 

has 31 days, but February has 28 days, 28 days in common years and 29 days 

in leap years), because of this, each month will have different daily interest 

rate and solving the interest rate using this approach will be problematic for 

the students in the context of this problem.  

o Second, when we converted 365 days by dividing into 12 equal months, and 

this also will have a fraction of days (~30.41666666…days per each month) in 

each month and this will also be problematic for the students to solve this 

particular problem. 

o Another approach to solve this particular problem is using a smooth 

continuous covariational thinking, i.e., if students think all variables are 
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covary smoothly and continuously in a given interval it may help them to 

solve this particular problem easily. 

o For instance, for this particular problem if students think at first the amount of 

money in the account can smoothly and continuously covary within the given 

interval of time, that is, thinking the amount of money in the account can vary 

or change continuously within the year of each day, month, hour, second, 

microsecond and so on. Like laying a ruler and seeing the total length, seeing 

the small part of the ruler within the total length, seeing within each small part 

of the ruler another very little or bit small part. For example, within 1cm there 

is a 10−6 cm … so on.  or assuming in this case the time t is varying 

progressively or gradually by a very bit amount or unnoticeable amount.  

o  

o Figure 7. Marked ruler  

 

o Additionally, students need also reason the interest rate can also by 

continuously co-vary with time, that is, student who think at each variation in 

time the amount of the interest rate will also change, that is thinking of for 

each day they will have a corresponding daily interest rate, for each month 

there is monthly interest rate, for each second there is interest rate within the 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiPiImcscbjAhXmTN8KHSsvCqIQjRx6BAgBEAU&url=https://www.ginifab.com/feeds/cm_to_inch/actual_size_ruler.html&psig=AOvVaw2klV2dlGEvKpbjppo-Ljw8&ust=1563811295032542
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second… so on. The mathematics relationship that will develop using this way 

of thinking may need students at first to reason in smooth continuous 

covariational and if students have this reasoning at first it is easy to produce a 

meaningful mathematics relationship between the smoothly and continuously 

co-varying quantities of 𝐴(𝑡), 𝑟𝑡, and 𝑡 . 

o One possible mathematics relationship that can student produce for this 

particular problem using smooth continuous covariation reasoning is 𝐴(𝑡) =

100(1 + 𝑟𝑡)𝑡. Where A(t) is the function that represents the amount of money 

in the account covary smoothly and continuously with time t, t represents the 

time measured in month, day, second, or even microsecond or any bit time in 

the given interval and 𝑟𝑡 represent the interest rate that covary smoothly and 

continuously in a given interval of time t.  

o Let us solve this particular problem using smooth continuous covariational 

reasoning, to solve this particular problem students first think how the amount 

of money vary within 365 days by partitioning the given 12 months (365 days 

are 12 months). This will lead them easily to develop a formula that focus to 

solve the daily interest rate at first and then solve the daily amount of money 

in the account.  

o For instance,  at the end of the year or 12 months the amount of money in  the 

account is 3664 dollars and the account started with 100 dollar bills, this 

means that,  3664 = 100(1 + 𝑟𝑑)𝑡, 𝑟𝑑represents the daily interest rate, t 

represent number of days, so after finding 𝑟𝑑 it is easy to calculate the daily 

amount of money in the account. For instance, for this particular problem 
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𝑟𝑑 = 0.009915 and t=2, then it is easy to find A (2) = 100(1 +

0.009915)2=$101.9928. where, 𝑟𝑑 = 0.009915 is the daily interest rate that 

the amount of money will grow in the account. 

o To solve this particular problem using the regular compound interest formula 

it will be difficult for students, since each month will have a different number 

of days that means each days of the 12 months will have a different interest 

rate for each day in the month and it is impossible for the students solve the 

problem using this ways of reasoning for this particular problem unless they 

partitioned the 12 months into 365days. 

b) What amount of money will Fatima have in the account at the 15th day of the 

month of February? Explain your reason. 

Answer  

o Students can answer this problem after they develop the smooth continuous 

covariational reasoning by using the idea in part a.  

o They can use the pervious formula that developed by the idea of SCCR that is 

𝐴(𝑡) = 100(1 + 𝑟𝑡)𝑡 = 𝐴(46) = 100(1 + 0.00915)46, where t is in number 

of days, 𝑟𝑡 the interest rate per day, and A(t) is the amount of money in the 

account per given day. 

c) What amount of money will Fatima have in the account after 1 second, she 

deposited $100 into the account? Is reasonable to ask the bank to calculate the 

amount of money in the account after microseconds Fatima deposited her 

$100? 

Answer  
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o This problem will be difficult if students used the regular compounding 

formula to solve the problem, but it will be easy when they first approach 

using SCCR (That is everything change smoothly and continuously with 

time). 

o Students can answer this problem after they develop the smooth continuous 

covariational reasoning  

o They can use the previous formula that develop by the idea of SCCR that is 

𝐴(𝑡) = 100(1 + 𝑟𝑠)𝑡 = 𝐴(1) = 100(1 + 𝑟𝑠)1, where t is in number of 

seconds, 𝑟𝑠 = 0.000000114191423941 interest rate per seconds, and A(t) is the 

amount of money in the account in each second. 

A(1)=100*(1.000000114191423941)=100.0000114191423941, this is the 

amount of money in the account after one second the money deposited.  

o Yes, it is possible to ask the bank to calculate the amount of money in the 

account after microsecond of deposited.   

d) Is that possible to think the deposited amount of money in nanosecond (i.e., 

one billionth of a second)? Can you calculate the amount of money in the 

bank after one billionth of a second deposited? What change can you notice 

on the $100 bill after a nanosecond you deposited?  

 

Answer  

o This problem will be difficult if students used the regular compounding 

formula to solve the problem, but it will be easy when they first approach 
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using SCCR (That is everything change smoothly and continuously with 

time). 

o Students can answer this problem instantly after they develop the smooth 

continuous covariational reasoning  

o They can use the previous formula that develop by the idea of SCCR that is 

𝐴(𝑡) = 100(1 + 𝑟𝑠)𝑡 = 𝐴(0.000000001) = 100(1 + 𝑟𝑠)10−9
, where t is in 

number of seconds, 𝑟𝑠 the interest rate per seconds, and A(t) is the amount of 

money in the account in each second., where 𝑟𝑠 = 0.000000114191423941 and 

𝐴(0.000000001) = 100(1 + 0.000000114191423941 )10−9
= 

o Yes, it is possible to think the deposited amount of money in nanosecond. 

o The change for the $100 bill is unnoticeable or is a small bit but there is a 

change, or a very small change  

o 𝐴(0.000000001) − 𝐴(0) = 100.00000000000001141914174211599 −

100.000000000000000000=0.00000000000001141914174211599 ≅

1.14 ∗ 10−14, for unit of money this change is unnoticeable or meaningless, 

however, if the deposited amount of money is big enough or in trillion dollars 

this change is noticeable.      

 

e) Produce a formula of the function 𝐴 = 𝑓(𝑡) as t varies over the interval from 

𝑡 = 1 to 𝑡 = 12?  

Answer  
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o 𝐴(𝑡) = 100(1 + 𝑟𝑡)𝑡, where t is in number of periods, 𝑟𝑡 the interest rate per 

that period of time, and A(t) is the amount of money in the account in that 

period of time or the given time. 

o 𝐴(𝑡), 𝑟𝑡, 𝑎𝑛𝑑 𝑡 covary continuously and smoothly simultaneously 

 

f) Describe how the rate of change of the function is change as t varies in 

interval from 𝑡 = 1 to 𝑡 = 12. 

Answer  

o  The rate of change of the amount of money in the account function at first 

grow slowly and then grow or change exponentially over the given interval of 

time t.  

 

Figure 8. Rate of change graph  
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g) Produce a graph that could represent the function 𝐴 = 𝑓(𝑡) on this interval. 

Answer  

o  

Figure 9. Rate of change function at A=f(t) 

Problem2. Suppose 𝑑 = 𝑓(𝑡) = 2𝑡2 represents the distance 𝑑 (measured in meters) of a 

car from a stop sign in terms of the number of seconds 𝑡 since the car started to move 

away from the stop sign.  

 

a. Determine the average rate of change of the distance of the car from the stop 

sign on the time intervals from 𝑡 = 0 to 𝑡 = 1.5 seconds.   

Note:  
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• The formula 𝑟ℎ(𝑡) =
𝑓(𝑡+ℎ)−𝑓(𝑡)

𝑡+ℎ−𝑡
=

𝑓(𝑡+ℎ)−𝑓(𝑡)

ℎ
 gives the average rate of 

change for 𝑑 = 𝑓(𝑡) with respect to 𝑡 over any subinterval from t to 𝑡 + ℎ, 

where ℎ ≠ 0 is the length of the interval on which 𝑡 varies. 

 

Answer  

o Let 𝑟ℎ(𝑡) =
𝑓(𝑡+ℎ)−𝑓(𝑡)

𝑡+ℎ−𝑡
=

𝑓(𝑡+ℎ)−𝑓(𝑡)

ℎ
 represents the average rate of change of 

the distance over the time interval ℎ = 𝑡 + ℎ − 𝑡 = 1.5 − 0=1.5.  

o 𝑟ℎ(𝑡) =
𝑓(𝑡+ℎ)−𝑓(𝑡)

𝑡+ℎ−𝑡
=

𝑓(𝑡+ℎ)−𝑓(𝑡)

ℎ
=> 𝑟ℎ(𝑡) =

2(𝑡+ℎ)2−2𝑡2

ℎ
=

2𝑡2+4𝑡ℎ+ℎ2−2𝑡2

ℎ
, h≠

0 

o =>𝑟ℎ(𝑡) =
2(𝑡+ℎ)2−2𝑡2

ℎ
=

2𝑡2+4𝑡ℎ+ℎ2−2𝑡2

ℎ
=4𝑡 + ℎ, ℎ ≠ 0 

o Within the interval  ℎ = 1.5 

o 𝑟1.5(𝑡) =
𝑓(𝑡+1.5)−𝑓(𝑡)

𝑡+1.5−𝑡
=

𝑓(𝑡+1.5)−𝑓(𝑡)

1.5
=>𝑟1.5(𝑡) =

2(𝑡+1.5)^2−2𝑡2

1.5
=

2𝑡2+4𝑡ℎ+ℎ2−2𝑡2

ℎ
=4𝑡 + 1.5 

 

a. Describe what this average rate of change function is tells you about the 

change in distance of the car from the stop sign over the time interval from 

𝑡 = 0 to 𝑡 = 1.5 seconds.  

Answer  

o 𝑟1.5(𝑡) = 4𝑡 + 1.5 is the average rate of change of the distance of the car or in 

the given interval h=1.5 or in the given interval h=1.5 as t continually vary the 
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car distance measured in meters change with average rate of change function 

of 𝑟1.5(𝑡) = 4𝑡 + 1.5 

 

b. Determine 𝑟ℎ(𝑡) when h=0.5 seconds and describe what this tells you about 

the change in the distance of the car from the stop sign?  

Answer  

o 𝑟0.5(𝑡) = 4𝑡 + 0.5  is the average rate of change of the distance of the car in 

the interval h=0.5  or as t vary the car distance in meters change by the 

average rate of change function of 𝑟1.5(𝑡) = 4𝑡 + 0.5 as  t continuously vary 

in the given interval h=0.5 

 

c. Determine 𝑟ℎ(𝑡) when h=0.1 seconds and describe what this tells you about 

the change in the distance of the car from the stop sign. 

Answer  

o 𝑟0.1(𝑡) = 4𝑡 + 0.1  is the average rate of change of the distance of the car in 

the given interval h=0.1 or in the given interval h=0.1 as t continually vary the 

car distance in meters change with average rate of change function of 

𝑟1.5(𝑡) = 4𝑡 + 0.1 

 

o Sketch a graph of rh(t)from the stop sign in terms of number of seconds since 

the car stared to travel for h=0.5, h=0.4, h=0.3, h=0.2, h=0.1, h=0.001 and 
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h=0.00001 seconds. What can you say about the graph of rh(t) when 

h=0.000001 seconds?  

o Answer  

o The graph of rh(t) when h=0.000001 seconds is almost behaved similarly like 

the graph of 4t and their difference is almost unnoticeable, which at this 

instance change in t average rate of change function and derivative function of 

f(t) are equal or the same.  

 

 
Figure 10. Family of average rate of change functions of 𝑓(𝑡) = 2𝑡2 

 

d. What is the graph of 𝑟ℎ(𝑡) tell you about the change in the distance of the car 

from the stop sign when h=0.5, h=0.4, h=0.3, h=0.2, h=0.1, and 

h=0.000001seconds?  

Problem 3. Open GG1 and explore the graph of the function 𝑓(𝑥) = 2𝑥 and the average 

rate of change function𝐺(𝑥). 
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a. As you vary ℎ by sliding from right to left through the interval 0 to 1 in small 

amount, what mathematical relationship do you notice about the average rate 

of change function 𝐺(𝑥) and the input variable𝑥?  

Answer  

o When you slide h from left to right the average rate of change of the function 

almost behave like the derivative of the function f(x) for a very small 

h=0.0000001, that is, for a very small change in x or in a bit change in x or for 

a very unnoticeable amount of h the average rate of change of the function 

f(x) will be the derivative of the function.  

o Students may relegalize and understand that the instantaneous rate of change 

resulted from smaller and smaller refinements of the average rate of change 

gh(x). If students realize this fact it may show that students have a smooth 

continuous covariational reasoning abilities or they have an awareness of both 

x and gh(x)varying smoothly and continuously as size of h is vary in a bit or 

in small amount or in unnoticeable amount.  

o The following graph illustrates this fact 

 

Figure 11. Family of average rate of change functions of 𝑓(𝑡) = 2𝑥 
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Problem 4. Open GG2 and explore the graph of any function by inserting any function in 

the open dialog box.  

a. After inserting any function in the open dialog box drag ℎ from right to left 

and record what do you notice on the varying value of 𝑔ℎ(𝑥). 

Answer  

a. When students drag h from left to right, they can record any value of𝑔ℎ(𝑥).   

 

 

b. As you vary ℎ by a very small amount what mathematical relationship 

revealed between the function that you inserted and the average rate of change 

function 𝑔ℎ(𝑥). 

Answer  

o When you slide or vary value of h from left to right the average rate of change 

of the function for a very small h=0.0000001 will almost behave like the 

derivative of the function f(x), that is, for a very small change in 𝑥 or in a bit 

change in 𝑥 or for a very unnoticeable value of ℎ the average rate of change of 

the function 𝑓(𝑥) is the derivative of the function.  

o When you slide h from left to right the average rate of change of the function 

will almost behave like the derivative of the given function f(x) or it is a 
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derivative function, for a very small h=0.0000001. That is, for a very small 

change in 𝑥 or for a bit change in 𝑥 or for a very unnoticeable value of h the 

average rate of change of the function f(x) is same as the derivative of the 

function.  

o Students may relegalize and understand that the instantaneous rate of change 

resulted from smaller and smaller refinements of the average rate of change 

𝑔ℎ(𝑥). This may be due to the fact that students develop a smooth continuous 

covariational reasoning or their awareness of both x and 𝑔ℎ(𝑥)varying 

smoothly and continuously as size of h is a bit or small amount. 
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Appendix F: Post-Instruction Interview Questions and Protocol 

The following sample or hypothetical interview questions guided the post-instruction 

interview questions. The design of the interview questions is guided by the theoretical 

framework of this study (see Appendix A). 

1. Sample questions that will examine students’ variational reasoning for problem 1 

below: 

o By how much does this quantity varies? What do you notice when this 

quantity varies by unnoticed amount? By how much does it vary? Small 

amount or unnoticed amount? Can you justify your reasoning by drawing 

graph or anything you can? 

o How does the two quantities vary? What do you notice about their variations? 

o By how much does the variable value vary in this interval? Explain your 

reason. 

2. Sample questions that will examine students’ covariational and smooth continuous 

covariational reasoning for problem 2 below:  

o By how much does the change in one variable changes the other variable?  

o  What happen when two variables change by unnoticed amount 

simultaneously? What are the results of the quotient of the two unnoticeable 

changing quantities? 

o What kind of variation do you noticed between these two co-varying 

quantities? Can you justify or reason out about this? 

Problem 1. You have 240 feet of fence to enclose a rectangular lawn. You are free to 

make the enclosure have any possible length and width, but you must use all the fence. 



217 
 

 

Play the GeoGebra (GG) animation applet2. Drag point D to the left and to the right to 

see how the enclosed rectangular area vary as the width and the length of the rectangle 

varying.  

a. Define the constant variable in this situation. 

b. Define the varying variables in this situation. State the intervals over which 

they vary. 

c. When the width of the rectangle varies by 10 feet between the interval What 

relationship do you notice between the rectangle’s enclosed area and its width? 

What can you conclude from the relationship? Is it possible to make a table 

that shows all possible values of the variables that this relationship produces? 

If so, make the table, if not, explain why not. 

d. When the width of the rectangle varies smoothly and continuously between the 

interval (in all points in the interval). What relationship do you notice between 

the rectangle’s enclosed area and its width? How does the area of the rectangle 

vary as the width of the rectangle varies all intermediate values within the given 

interval? Is it possible to make a table that shows all possible values of the 

variables that this relationship produces? If so, make the table, if not, explain 

why not. 

Make graphs for the situation in part (c) and (d). Did you get the same graph 

for part c and d? If you found different graphs, explain why this is occurred 

Problem 2. Suppose d=f(t)=2t2 represents the distance (measured in meters) of a car 

from a stop sign in terms of the number of seconds t since the car started to move away 

from the stop sign. 
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a. Determine the average rate of change of the distance of the car from the stop sign 

on the time intervals from 𝑡 = 0 to 𝑡 = 1.5 seconds. 

b. Describe what this average rate of change function is tells you about the change in 

distance of the car from the stop sign over the time interval from 𝑡 = 0 to 𝑡 =

1.5seconds.  

c. Determine 𝑟ℎ(𝑡) when ℎ = 0.5 seconds and describe what this tells you about the 

change in the distance of the car from the stop sign?  

d. Determine 𝑟ℎ(𝑡) when ℎ = 0.1 seconds and describe what this tells you about the 

change in the distance of the car from the stop sign. 

e. Sketch a graph of 𝑟ℎ(𝑡)from the stop sign in terms of number of seconds 

since the car stared to travel for ℎ = 0.5, ℎ = 0.4, ℎ = 0.3, ℎ = 0.2, ℎ = 0.1, 

ℎ = 0.001 and ℎ = 0.00001 seconds. What can you say about the graph of 

𝑟ℎ(𝑡) when ℎ = 0.000001 seconds? Explain the graph of  𝑟ℎ(𝑡) 

Note. The formula 𝑟ℎ(𝑡) =
𝑓(𝑡+ℎ)−𝑓(𝑡)

𝑡+ℎ−𝑡
=

𝑓(𝑡+ℎ)−𝑓(𝑡)

ℎ
 gives the average rate of change for 

𝑑 = 𝑓(𝑡) with respect to 𝑡 over any subinterval from 𝑡 to 𝑡 + ℎ, where ℎ ≠ 0 is the 

length of the interval on which 𝑡varies. 

 

 

 

 

 

 

 

 


