SYNTHESIS OF NOVEL ANALOGS OF BELACTOSIN A AND CARFILZOMIB

by Mahesh K. Yadab

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemistry

Middle Tennessee State University May 2018

> Thesis Committee: Dr. Norma K. Dunlap Dr. Scott Handy Dr. Kevin L. Bicker

ACKNOWLEDGEMENTS

Writing this thesis has been fascinating and extremely rewarding So Firstly, I am deeply grateful, and I would like to express my sincere appreciation and gratitude to Dr. Norma K. Dunlap for her guidance during my research. Her support, encouragement, and inspiring suggestion has been precious for the development of this content and I will be forever grateful for her advice throughout my carrier at MTSU. I would like to thank Dr. Scott Handy for giving good advice which has been invaluable on both an academic and personal level, for which I am extremely grateful. I would also like to thank Dr. Kevin L. Bicker for being in the thesis committee and for making this thesis even better.

I also take this opportunity to express a deep sense of gratitude with a huge thank to Jessie Weatherly for keeping all the instrument running and helping me, whenever I needed with NMR and chromatography. I place on record my sense of gratitude to one and all other faculty, staff member and friends in chemistry department who support me directly or indirectly and have lent their helping hand in this venture.

Lastly, I must express my very profound gratitude to my family for providing me with unfailing support and continuous encouragement through the process of researching and writing this thesis.

ABSTRACT

Belactosin A, a naturally occurring proteasome inhibitor with potent anti-tumor activity, was discovered in the late 1980's. The key structural features of the natural product include a cyclopropane ring with a terminal β -lactone "serine trap". Activity is conferred by acylation of the β -lactone with a threonine of the proteasome. Carfilzomib is a tetrapeptide epoxyketone, and an analog of epoxomicin with improved properties. In phase I and phase II clinical trials, carfilzomib exhibited higher selectivity, equal potency and less peripheral neuropathy than bortezomib and salinosporamide. Its activity is due to the formation of a highly stable six membered morpholine ring by the interaction between epoxyketone, free hydroxy and α -amino groups of the threonine.

Several syntheses of belactosin A and carfilzomib have been reported, however only a handful of analogs have been reported. An approach to the synthesis of novel hybrid analogs is reported here, with the synthesis of phenylalanine, leucine and valine cyclopropyl analogs of belactosin A with the epoxyketone of carfilzomib. Key steps in the synthetic route include a cyclopropanation and formation of an enone followed by epoxidation.

TAE	BLE	OF	CONTENTS
-----	-----	----	----------

LIST OF TABLESv
LIST OF FIGURES vi
LIST OF SCHEMES vii
CHAPTER I: INTRODUCTION
Proteasome structure and function
Proteasome's catalytic mechanism
Proteasome inhibitors
1.1 Peptide aldehyde4
1.2 Peptides boronates 5
1.3 β-lactones and lactacystin inhibitors7
1.4 Belactosin and derivatives
1.5 Peptide epoxyketones. 11
Goals of project
Synthesis of cyclopropyl esters
Proposed synthesis of epoxides
CHAPTER II: MATERIALS AND METHODS
Instruments, materials, and reagents
Synthetic methods
2.1 Synthesis of hybrid analog from Cbz-phenylalanine
2.2 Synthesis of hybrid analog from Cbz-leucine
2.3 Synthesis of hybrid analog from Cbz-valine
Simple epoxides

Experimental procedures	23
2.4 Cbz-phenylalanine series.	23
2.5 Cbz-leucine series.	30
2.6 Cbz-valine series.	37
CHAPTER III: RESULTS AND DISCUSSION	46
Synthesis of cyclopropyl Weinreb amide	46
Protection of alcohol	48
Synthesis of the cyclopropyl enone	49
Synthesis of the epoxide	50
Results of testing in phenotypic assay	52
Conclusions	53
REFERENCES	54
APPENDICES	60
APPENDIX A: NMR SPECTRA	61

LIST OF TABLES

Table 1: Attempts at protection of the alcohol 9a	48
Table 2: Summary of the attempted synthesis of the simple epoxides	50
Table 3: Summary of the attempted synthesis of the cyclopropyl epoxyketone	51

LIST OF FIGURES

Figure 1: The simplified scheme of the ubiquitin-proteasome pathway
Figure 2: General proposed mechanism for the proteasome-catalyzed hydrolysis of
peptides
Figure 3: Inhibitors showing active site (a serine trap X)
Figure 4: General mechanism of aldehyde inhibitors
Figure 5: Structure of MG132 (Z-Leu-Leu-Leu-al) (a serine trap in red)
Figure 6: General mechanism of boronate inhibitors
Figure 7: Structure of bortezomib, CEP-18770 and ixazomib (a serine trap in red) 6
Figure 8: Lactacystin interconversion to omuralide 7
Figure 9: General mechanism of β-lactones and lactacystin inhibitors
Figure 10: Salinosporamide A (a serine trap in red) 8
Figure 11: Mechanism of the irreversible inhibition of Salinoporamide A
Figure 12: Structure of belactosin A and <i>cis</i> -cyclopropane analog
Figure 13: Development of potent proteasome inhibitors using belactosin A analog, compounds assayed for inhibition of ChT-L activity of proteasome and for cancer cell growth
Figure 14: General mechanism of peptide epoxyketone proteasome inhibition 11
Figure15: Naturally occurring epoxyketone epoxomicin (a serine trap in red) 11
Figure 16: Carfilzomib and oprozomib (a serine trap in red) 12
Figure 17: Retro-synthetic approach to proposed analogs
Figure 18: General cyclopropanation mechanism
Figure 19: Phenotypic assay

LIST OF SCHEMES

Scheme 1: Synthesis of cyclopropyl esters 1	14
Scheme 2: Proposed synthesis of epoxyketones hybrids 1	15
Scheme 3: Synthesis of hybrid analog of belactosin A and carfilzomib from Cbz-	
phenylalanine 1	18
Scheme 4: Synthesis of hybrid analog of belactosin A and carfilzomib from Cbz-	
leucine	20
Scheme 5: Synthesis of hybrid analog of belactosin A and carfilzomib from Cbz-	
valine 2	21
Scheme 6: Attempted synthesis of cyclopropyl Weinreb amide 4	16
Scheme 7: Successful synthesis of cyclopropyl Weinreb amide 4	47
Scheme 8: Synthesis of the cyclopropyl enone	9
Scheme 9: The two-step mechanism of the Weitz-Scheffer epoxidation	52

CHAPTER I: INTRODUCTION

Proteasome structure and function

The traditional methods for treatment of cancers are surgery, radiation and chemotherapy. However, many treatments cause side effects, and not all are effective. A novel treatment for cancer chemotherapy is by proteasome inhibition.¹ The 26S proteasome is an ATP-dependent multi-subunit proteolytic complex expressed in the nucleus and cytoplasm of all eukaryotic cells.² It is responsible for regulation of the mutant, damaged and misfolded proteins by the ubiquitin proteasome pathway (UPP), and is a subject of research in anticancer therapy.³ The proteasome consists of two 19S regulatory particles (RP) and a 20S catalytic core particle (CP). The 20S CP is barrel-shaped and is composed of four stacked rings (α_7 , β_7 , β_7 , α_7) with 28 subunits (**Figure 1**). Two outer rings on either side are composed of seven different α -subunits while the central two rings are composed of seven different β -subunits (β 1, β 2, β 3, β 4, β 5, β 6, β 7) with six active sites; two of each chymotrypsin-like (CT-L), trypsin-like (T-L) and caspase-like (C-L)^{2,4,5}. The 19S RP binds polyubiquitined proteins and, due to its ATP activities, polyubiquitined proteins begin to unfold and insert the protein into the 20S CP, where the protein breaks into smaller peptides having 3-22 amino acids in length.

The protein to be degraded is flagged by polyubiquitination.⁶ This process is catalyzed by the enzyme E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugation enzyme) and E3 (ubiquitin ligase) which activate free ubiquitin and attach it to the target protein.

Figure 1: The simplified scheme of the ubiquitin-proteasome pathway

The process starts by the formation of a thioester bond between E1 and ubiquitin in the presence of ATP. This activated ubiquitin then transfers to the E2 enzyme and E2 presents ubiquitin to E3 which brings ubiquitin. This process is repeated several times, creating a polyubiquitin chain that tags the protein for degradation by the proteasome.

Proteasome's catalytic mechanism

The proteasome plays a vital role to control protein quality, antigen processing, signal transduction, cell differentiation, cell-cycle progression and apoptosis.⁷ Proteasomes contain a new class of proteolytic enzyme called threonine (Thr) proteases,⁸ which are activated by the catalytic triad having acidic (Asp or Gly), a basic histidine (His) and the nucleophilic (Thr) residue.⁹ The N-terminal threonine of β -subunits are utilized by all the proteolytic sites present in proteasomes. According to X-ray crystallography, in presence of a water molecule the nucleophilic (Thr-O) attack is activated by N-terminal Thr1 to add to the carbonyl carbon of a protein substrate to form an intermediate tetrahedral oxyanion (**Figure 2**), which forms an intramolecular hydrogen bond with the Gly 47-N (oxyanion hole).

A water molecule is activated by the deprotonated Thr1 amino group to hydrolyze the acylenzyme to regenerate the Thr1-OH (free proteasomes) and second product (**Figure 2**).⁷

Figure 2: General proposed mechanism for the proteasome-catalyzed hydrolysis of peptides

Proteasome inhibitors

The proteasome crucial role was discovered in the late 1980s.⁸ The cell cycle depends on degradation of protein, and proteasome inhibition mechanism is a new way to fight against non-small cell lung carcinoma (NSCLC),¹⁰ chemo resistant multiple myeloma

(MM)¹¹, and several other types of cancers. According to one model, proteasome inhibitors caused apoptosis mostly in transformed cancer cells.¹² Common features of inhibitors include being peptide-like and having a reactive group "serine trap" to form a covalent bond (**Figure 3**) with the nucleophilic threonine.⁸

Figure 3: Inhibitors showing active site (a serine trap X)

Proteasome inhibitors are basically two types on the basis of sources: chemically synthesized small molecules, and derivatives of natural products.¹³ All inhibitors act on CT-L activity, but also have a weaker effect on T-L and C-L sites. Synthetic inhibitors are classified as peptide aldehydes, peptide boronates, peptide lactones and peptide epoxyketones, and will be discussed further.

1.1 Peptide aldehyde

Peptide aldehydes were the first reported reversible proteasome inhibitors. Aldehyde inhibitors have slow binding activity. These also block other serine and cysteine proteases leading to off-target effects. Because of fast dissociation rates, these are quickly metabolized into inactive acids by the oxidation process and taken out of the cell through the multi-drug resistance (MDR) system carrier.^{7,8,13} The electrophilic carbon atom of the carbonyl group forms a covalent bond with the nucleophile, which is semi-reversible (**Figure 4**).

Figure 4: General mechanism of aldehyde inhibitors

Only a few aldehyde inhibitors, like MG132 (Z-Leu-Leu-Leu-al) in **Figure 5**, are commercially available, and can inhibit CT-L activity of proteasomes. None are approved as drugs but are used as research tools to study the proteasome.

MG132 (Z-Leu-Leu-Leu-al)

Figure 5: Structure of MG132 (Z-Leu-Leu-Leu-al) (a serine trap in red)

1.2 Peptide boronates

Peptide boronates are formed by replacing the aldehyde functionality of aldehyde inhibitors by a boronic acid moiety and are much improved over aldehyde inhibitors.¹⁴ Even low nanomolar concentrations inhibit CT-L activity and have no effect on cysteine proteases.⁷ Because of much slower dissociation rate of the boronate-proteasome adducts with respect to the aldehyde-proteasome adducts, these are practically irreversible, despite being reversible inhibitors. A covalent tetrahedral boron adduct is formed between the electrophilic boron atom and the active site Thr1-O (**Figure 6**).

Figure 6: General mechanism of boronate inhibitors

Boronate inhibitors are found to be more specific than aldehyde inhibitors and show very poor inhibitory effect on cysteine proteases due to the weak interaction between boron and sulfur. Bortezomib (**Figure 7**) is a dipeptide boronate inhibitor, marketed as Velcade. It was approved by the FDA to be used clinically for the treatment of multiple myeloma and mantle cell lymphoma in 2003 and 2006, respectively.¹⁵ The drug is currently given with the various chemotherapeutic agents (doxorubicin, thalidomide, melphalan) in several active clinical trials for the treatment of several types of cancers, but has severe side effects like nausea, diarrhea, and peripheral neuropathy.^{7,16} Ixazomib (**Figure 7**) is also known as MLN9708. Ixazomib is the first oral compound and second-generation proteasome inhibitor approved by the US FDA for the treatment of multiple myeloma (MM). Ixazomib has better pharmacokinetic and pharmacodynamic terms with respect to bortezomib. By the use of ixazomib severe peripheral neuropathy was hardly noticed, but side effects like thrombocytopenia, nausea, vomiting, diarrhea, fatigue, and rash were very common.^{17,18}

Figure 7: Structure of bortezomib, CEP-18770 and ixazomib (a serine trap in red)

CEP-18770 (**Figure 7**) is found to be far better than bortezomib in terms of various biological activities like enzymatic, cellular and antiproliferative and pharmacological properties,⁷ but is not yet approved.

1.3 β-lactones and lactacystin inhibitors

Lactacystin (Figure 8) was discovered by Omura and co-workers, and later synthesized by Corey and co-workers.⁸ This is the first natural non-peptidic proteasome inhibitor and was isolated from a strain of *Streptomyces* which produces omuralide or lactacystin- β -lactone.

Figure 8: Lactacystin interconversion to omuralide

Omuralide's low nanomolar concentrations can inhibit the CT-L activity of the proteasome (**Figure 8**) without inhibiting most of the serine and cysteine proteases. The β -lactone forms an adduct with proteasome, which is slowly ($t_{1/2} \approx 20$ hr) hydrolyzed by water, though it is regarded as an irreversible inhibitor and more selective than aldehyde inhibitors.^{7,8,14,19}

Figure 9: General mechanism of β-lactones and lactacystin inhibitors

Salinosporamide A (**Figure 10**) was isolated from the marine actinomycete *Salinispora tropica* by Fenical *et al.* in 2003.¹⁴ It is very important γ -lactam- β -lactone.

salinosporamide A

Figure 10: Salinosporamide A (a serine trap in red)

Salinosporamide A has a unique structure, that is a fused γ -lactam- β -lactone bicyclic ring structure similar to lactacystin. According to X-ray crystallography structure, Groll *et al.* proposed it as an irreversible proteasome inhibitor. The N-terminal Thr-O group is acylated through opening of the β -lactone ring (**Figure 11**), and the C6 hydroxy group displaces the chloride group to form the tetrahydrofuran intermediate.¹⁴

Figure 11: Mechanism of the irreversible inhibition of Salinosporamide A

It stops the cell proliferation of various tumor cells lines (IC₅₀ < 10 nM) as well as bortezomib-resistant myeloma cell lines. It is 35 times more potent than omuralide, which irreversibly inhibits 20S proteasome CT-L activity with IC_{50s} of 2.5 to 4.3 nM.

1.4 Belactosin and derivatives

Belactosin A (**Figure 12**) is a tripeptide natural product. Asai and co-worker discovered and isolated it from *Streptomyces sp.* in 2000.¹⁹ It is a reversible proteasome inhibitor with antitumor activity. From X-ray crystallographic analysis, it is found that β -lactone ring opening inhibits CT-L activity of proteasome by acylating the active-site Thr reside.^{20,21}

Figure 12: Structure of belactosin A and *cis*-cyclopropane analog

The studies by Shuto *et al.* show that the natural belactosin A with the *trans*-cyclopropane structure is less potent than the unnatural *cis* isomer (Figure 12).²² While investigating the synthesis of cyclopropane derivatives with a desired stereochemistry, Shuto *et al.* studied

systematic structure-activity relationship (SAR) of belactosin A and found compounds **1-3** (Figure 13) were highly effective proteasome inhibitors.²³ In addition to finding that the trans-cyclopropane stereochemistry is not required, they also found that replacing the carboxylic acid with a hydrophobic group such as phenylethyl improved potency.²⁴ Also, protection of the primary amine as a carbobenzoxy (cbz) group improved potency (compound 1).

Figure 13: Development of potent proteasome inhibitors using belactosin A analog, compounds assayed for inhibition of ChT-L activity of proteasome and for cancer cell growth.

1.5 Peptide epoxyketones

Epoxyketones are very specific, effective irreversible proteasome inhibitors. They have a different mechanism to act on proteasome active sites. A very stable six membered morpholine adduct (**Figure 14**) is formed by reacting both Thr1 hydroxy and amino group of the proteasome with the epoxyketone site.^{8,25}

Figure 14: General mechanism of peptide epoxyketone proteasome inhibition.

The first epoxyketone reported as a proteasome inhibitor was epoxomicin (Figure 15), which was isolated from the actinomycete strain Q996-17. It is a α,β -epoxyketone peptide and primarily inhibits CT-L activity irreversibly. It has shown high in vivo antitumor activity against solid B16 melanoma tumors.^{7,8,14}

Figure 15: Naturally occurring epoxyketone epoxomicin (a serine trap in red)

Other natural epoxyketone derivatives like eponemycin and epopromycins A (**Figure 15**) have *in vivo* antitumor activity.^{8,14} After the clinical success of bortezomib and to enhance

effect of epoxomicin, a second-generation proteasome inhibitor carfilzomib (**Figure 16**) was developed. It is a tetrapeptide epoxyketone and an analog of epoxomicin.

Figure 16: Carfilzomib and oprozomib (a serine trap in red)

Carfilzomib was approved by FDA in 2012 for the treatment of multiple myeloma, non-Hodgkin's lymphoma and solid tumors. In phase I and phase II clinical trials, carfilzomib exhibited higher selectivity (IC₅₀= 6 nM, 3600 nM, 2400 nM for CT-L, T-L, PA activity respectively), equal potency and less peripheral neuropathy with respect to bortezomib and salinosporamide.^{7,27,28}

To make treatment easier, and to remove adverse effects of intravenously administered agents like carfilzomib and bortezomib, recently the next generation oprozomib (**Figure 16**) was developed.²⁹ Oprozomib is orally bioactive and irreversible proteasome inhibitor, and selectively inhibits the CT-L activity.

Since the discovery of the first proteasome inhibitors, much effort has been put into developing these compounds into drugs. While a number of proteasome inhibitors have been developed, there are still only a few on the market.

Goals of project

The primary goal of this project is to synthesize a hybrid analog of belactosin A and carfilzomib. This would combine the semi-rigid cyclopropyl backbone of belactosin A with the epoxyketone serine trap of carfilzomib. The first objective is to synthesize the cyclopropyl backbone of belactosin A from the protected amino acids phenylalanine, leucine and valine, which will give three different hydrophobic replacements for the acid. The second objective is to incorporate the epoxyketone of carfilzomib in the analogs. The final objective is to study biological activity assays on proteasome inhibition and on cancer cells. The retrosynthetic (**Figure 17**) approach to synthesize the final product is a sevenstep process.

Figure 17: Retro-synthetic approach to proposed analogs

Synthesis of cyclopropyl esters

Dr. Dunlap's group has developed a new route to the cyclopropyl backbone which is outlined in **Scheme 1**. The synthesis starts with protected amino acids peptidomimetic and affords cyclopropyl esters. The protected amino acids are converted to Weinreb intermediate enones (5 in Scheme 1). The enones, on treatment with EDSA (ethyl (dimethylsulfuranylidene) acetate, a sulfonium ylide afford cyclopropyl esters, which are then reduced to the corresponding alcohols (7 in Scheme 1).^{30,31,32}

Scheme 1: Synthesis of cyclopropyl esters

Proposed synthesis of Epoxides

The goal is to adapt this synthesis to give cyclopropyl epoxides as hybrid analogs. The synthesis will be modified to give a cyclopropyl Weinreb amide **8**, which will be reduced to the alcohol **9**, as outlined in **Scheme 2**.^{33,34}

Addition of vinylmangnesium bromide to either 9 or a protected alcohol derived from 9 should give the cyclopropyl enone 10. Finally, epoxidation of the enone will give the hybrid cyclopropyl epoxyketone 11.

CHAPTER II: MATERIALS AND METHODS

Instruments, materials, and reagents

The NMR data are obtained using a 500 MHz FT-NMR model ECA-500 JEOL (Peabody, MA) purchased with funding provided by National Science Foundation through the NSF-RUI program (#0321211) and a 300 MHz FT-NMR model ECA-300 JOEl (Peabody, MA). The Chemical shifts are reported in parts per million with respect to tetramethylsilane (TMS). The splitting pattern are represented by the following: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublets), ddd (doublet of doublets), dt (doublet of triplets) and br (broad signal). Coupling constant (J values) are recorded in Hz. High-resolution electrospray ionization-mass spectrometry (ESI-MS) was performed at Notre Dame University, Notre Dame, Indiana.

Thin layer chromatography (TLC) was performed on glass plates coated with silica get and UV active backing purchased from Fisher Scientific, Pittsburg, PA. The TLC plates were analyzed with a short wavelength (254 nm) UV light and followed by staining with either phosphomolybdic acid (PMA), ninhydrin, or anisaldehyde (reagent grade, Aldrich, Milwaukee, WI). Flash column chromatography was performed with silica gel, 32-63-micron ASTM (reagent grade, Fisher Scientific, Pittsburg, PA), and flash chromatography was performed on an ISCO CombiFlash R_f 200 (Teledyne ISCO, Lincoln, NE) using a Teledyne ISCO cartridge preloaded with 5g of normal phase silica and a Teledyne ISCO preloaded 12g flash column.

Dichloromethane (DCM), methanol (MeOH), acetone, ethyl acetate (EA), ethanol (EtOH), and hexanes (Hex) were purchased from Fisher Scientific, Pittsburg, PA. Chloroform was purchased reagent grade form Acros Organic, New Jersey, USA. Anhydrous tetrahydrofuran (THF) was obtained using a Pure Solv solvent purification system (Model PS-MD-3, Innovative Technology, Amesbury, MA). deutero-chloroform (CDCl₃), deutero-methanol (Methanol-*d*₄), and Deutero-acetone (Acetone-*d*₆) were purchased from Aldrich, Milwaukee, WI. Solvent extractions were performed using EA or DCM where indicated and washed with either distilled water, 1M hydrochloric acid (HCl), saturated sodium bicarbonate (NaHCO₃), and brine (reagent grade, Fisher Scientific, Pittsburg, PA). The organic layer was dried with magnesium sulfate (Fisher Scientific, Pittsburgh, PA) and filtered. Evaporation of solvents was achieved using a Heidolph rotary evaporator (Model G3, Schwabach, Germany).

Triethylamine (NEt₃) was obtained from Fisher Scientific, Pittsburgh, PA. Anhydrous reagent grade vinylmagnesium bromide and tetrahydrofuran (THF) were purchased from Aldrich, Milwaukee, WI. Other reagents including vinylmagnesium bromide solution (1M), N-carbobenzyloxy)-L-phenylalanine, Z-L-phenylalanine, N-(3dimethylaminopropyl)-N¹-ethylcarbodimide hydrochloride, bromoacetyl bromide. dimethyl sulphide, carbobenzyloxy-valine, tert-butylhydroperoxide solution, potassium anhydride (TFAA), N,O-dimethyl tert-butoxide, trifluoroacetic hydroxylamine hydrochloride, N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (EDCI), sodium borohydride, and ammonium formate were obtained from Aldrich, Milwaukee, WI.

Synthetic methods

The specific synthesis of three of the analogs is described here.

2.1 Synthesis of hybrid analog from Cbz-phenylalanine

The Cbz protected phenylalanine was converted to a Weinreb amide **4a**, followed by treatment with vinylmagnesium bromide to afford an enone **5a**. The enone was treated with DMSB salt and a base to form mixture of cyclopropyl ketone isomers **8a**. There were reduced by sodium borohydride to form mixture of cyclopropyl alcohols **9a**.

Scheme 3: Synthesis of hybrid analog of belactosin A and carfilzomib from Cbzphenylalanine

The alcohol group was protected by acylation then treated with vinylmagnesium bromide to afford enone **12a**, as well as deacylated alcohol **10a**. The enone was treated with tbutylperoxide in presence of base toafford a hybrid analog of belactosin A and carfilozomib **13a**. The route is outlined in **Scheme 3**.

2.2 Synthesis of hybrid analog from Cbz-leucine

The Cbz protected leucine was converted to a Weinreb amide **4b**, followed by treatment with vinylmagnesium bromide to afford an enone **5b**. The enone was treated with DMSB salt and a base to form mixture of cyclopropyl ketone isomers **8b**. There were reduced by sodium borohydride to form mixture of cyclopropyl alcohols **9b**. The alcohol group was protected by acylation then treated with vinylmagnesium bromide to afford enone **12b**, as well as deacylated alcohol **10b**. The enone was treated with t-butylperoxide in presence of base to afford a hybrid analog of belactosin A and carfilozomib **11b**. The route is outlined in **Scheme 4**.

Scheme 4: Synthesis of hybrid analog of belactosin A and carfilzomib from Cbz-leucine

2.3 Synthesis of hybrid analog from Cbz-valine

The Cbz protected phenylalanine was converted to a Weinreb amide **4c**, followed by treatment with vinylmagnesium bromide to afford an enone **5c**. The enone was treated with DMSB salt and a base to form mixture of cyclopropyl ketone isomers **8c**. There were reduced by sodium borohydride to form mixture of cyclopropyl alcohols **9c**. The alcohol group was protected by acylation then treated with vinylmagnesium bromide to afford enone **12c**, as well as deacylated alcohol **10c**. The enone was treated with t-butylperoxide in presence of base to afford a hybrid analog of belactosin A and carfilozomib **11c** The route is outlined in **Scheme 5**.

Simple epoxides

The synthesis of of simple epoxides was accomplished by treating Cbz-protected enones **5a-c** with t-butyl hydrogen peroxide in the presence of the strong base potassium

tert-butoxide, These were prepared as model systems for the cyclopropyl epoxyketones hybrid analogs.

syn and anti isomers

Experimental procedures

(2-(methoxy(methyl)amino)-2-oxoethyl)dimethylsulfonium bromide (DMSB) (3):

Formation of 2-bromo-N-methoxy-N-methylamide: To a stirred suspension of N,Odimethylhydroxylamine hydrochloride (2.1 g, 21.5 mmol), and K₂CO₃ (14.86 g, 107.70 mmol) in MeCN (80 mL), bromoacetyl bromide (4.32 mL, 49.54 mmol) was added dropwise at room temperature. After 80 minutes, the reaction mixture was poured into water and extracted twice with CH₂Cl₂. The organic layer was dried over anhydrous magnesium sulfate, filtered and the solvent was evaporated to afford 3.2 g (81.75 %) of the Weinreb amide. H-NMR (500 MHz, CDCl₃): δ 3.70 (2H, s), 3.44 (3H, s), 2.86 (3H, s)

To a solution of bromo-N-methoxy-N-methylamide (3.2 g, 17.6 mmol) in acetone, dimethyl sulfide (1.93 mL, 26.41 mmol) was added, and stirred for 18 hours. The mixture was filtered and washed with acetone, the solid was dried under vacuum for 20 minutes to afford 3.22 g (75.01%) (**3**), mp 107-109 °C.

2.4 Cbz-phenylalanine series

Benzyl(1-(2-(methoxy(methyl)carbamoyl)cyclopropyl)-1-oxo-3-Phenylpropan-2yl)carbamate (8a):

To a suspension of NaH (60%, in mineral oil, 370.0 mg, 9.32 mmol) in DMSO (11 mL), (2-(methoxy(methyl)amino)-2-oxoethyl) dimethylsulfonium bromide (2.27 g, 9.32 mmol) was added at room temperature, and was stirred for 25 minutes. The solution was cooled to 0°C, a solution of the (S)-enone 5a (1.31 g, 4.23 mmol) in THF (11 ml) was added, and the mixture was stirred for 10 minutes. The creamy semisolid was dissolved in methylene chloride, and then poured into 1M HCl and extracted with methylene chloride thrice. The organic layer was washed with brine, dried with anhydrous magnesium sulfate and the solvent was evaporated. The crude product was purified by CombiFlash and evaporated to afford 1.25 g (72.1%) (8a) as a mixture of syn and antiisomers. ¹H-NMR (500 MHz, CDCl₃): δ 7.34-7.08 (m, 10H, aryl), 5.71, 5.68 (2d, J=7.45, 7.45 Hz, 1H, NH), 5.06 (m, 2H, CbzCH₂), 4.81 (m, 1H, CHN), 3.69, 3.67 (s, 3H, OCH₃), 3.18, 3.17 (s, 3H, NCH₃), 3.07 (m, 2H, CH₂Ph), 2.8-2.69 (d, 1H, CHcpyl), 2.58 (m, 1H, CHcpyl), 1.5, 1.41 (m, 1H, CH₂cpyl); ¹³C NMR (125 MHz, CDCl₃): δ 206.04, 205.91 (C=O, ketones), 171.0 (C=O, amide), 156.73, 155.65 (CbzCH₂), 136.5, 135.7(4°aryls), 129.51, 129.46, 128.62, 128.27, 128.16, 127.25 (10 aryl), 66.98 (CbzCH₂), 61.92 (OCH₃), 61.70, 61.58 (CHN'S), 37.35, 37.25 (CH₂Ph), 32.63 (NCH₃), 27.34, 27.19 (CHcpyl), 23.05, 22.90 (CHcpyl), 18.48, 18.03 (CH₂cpyl); mass spectrum (ESI-MS) m/z (C₂₃H₂₇N₂O₅) calculated for (M+H) 411.1917, found 411.1914.

Benzyl(1-hydroxy-1-(2-methoxy(methyl)carbamoyl)cyclopropyl)-3-phenylpropanan-2-yl)carbamate (9a):

To a solution of the ketone (8a) (1.18 g, 2.87 mmol) in methanol, NaBH₄ (200 mg, 5.23 mmol) was added and the mixture was stirred for 170 minutes at room temperature. The solution was poured in to 1M HCl and extracted with methylene chloride twice. The solution was washed with NaHCO₃ and brine, and was dried with anhydrous magnesium sulfate, filtered and the solvent evaporated. The crude was purified on CombiFlash and evaporated to afford 904.9 mg (76%) (9a) as a mixture of isomers. ¹H-NMR (500 MHz, CDCl₃): δ 7.3-7.18 (m, 10H, aryl), 5.83, 5.75, 5.71 (3d, J= 9.15, 9.15, 8.6 Hz, 1H, NH), 5.42, 5.38 (d, J=9.74 Hz, NH), 4.99 (m, 2H, CH₂Cbz), 4.1, 3.9 (m, 1H, CHN), 3.69, 3.65 (s, 3H, OCH₃), 3.52, 3.35 (m, 1H, CHO), 3.16, 3.14, 3.12 (s, 1H, NCH₃), 2.99, 2.94, 2.79 (m, 2H, CH₂Ph), 2.25, 2.15 (brs, 1H, OH), 1.64, 1.25, 1.17 (m, 1H, CHcpyl), 1.03, 0.9, 0.65 (m, 2H, CH₂cpyl); ¹³C (125 MHz, CDCl₃): δ 172.82 (C=O, amide), 155.99, 155.86, 155.67 (C=O, Cbz), 137.44, 137.3, 135.62, 135.52 (4° aryl C's), 128.18, 127.46, 126.99, 126.89, 126.83, 125.37 (aryl C's), 74.18, 73.23, 72.38, 71.48 (CHO), 65.62 (CH₂Cbz), 60.70 (OCH₃), 56.43, 56.15 (CHN), 36.90, 36.71, 34.82, 34.55 (CH₂Ph), 31.56 (NCH₃), 24.27, 23.92, 23.12, 22.56 (Ccpyl), 14.82, 14.12, 13.55 (Ccpyl), 11.37, 11.04 (CH₂cpyl); Mass spectrum (ESI-MS) m/z (C₂₃H₂₉N₂O₅) calculated for (M+H) 413.2071, found 413.2071.

Formation of (2S)-2-(((benzyloxy)carbonyl)amino)-1-(2-

(methoxy(methyl)carbamoyl)cyclopropyl)-3-phenylpropyl acetate (15a):

To a solution of (9a) (254 mg, 0.614 mmol) in 5 mL CH₂Cl₂, acetic anhydride (0.48 mL, 4.30 mmol) and pyridine (0.35 mL, 4.3 mmol) were added. The resulting solution was stirred for 36 hours, and then poured into 1M HCl and extracted with ethyl acetate twice. The organic layer was washed with aqueous NaHCO₃ and dried over magnesium sulfate, filtered and the solvent was evaporated. The crude product was purified on flash column chromatography on silica gel eluting with 1:3, 1:1, and 2:1 ethyl acetate-hexane to afford 248.6 mg (88.38%) (15a) as a mixture. ¹H-NMR (500 MHz, CDCl₃): δ 7.28-7.17 (m, 10H, aryl), 5.64, 5.42, 5.32, 5.29 (4d, J= 9.15, 9.7, 10.3, 10.3 Hz, 18.3 Hz, 12.6Hz,1H, NH), 5.06-4.83 (m, 2H, CH₂Cbz), 4.67, 4.5, 4.34 (m, 1H, CHO), 4.28, 4.19 (m, 1H, CHN), 3.69, 3.65, 3.62 (s, 3H, OCH₃), 3.15, 3.14, 3.11, 3.1 (s, 3H, NCH₃), 2.96, 2.75 (m, 2H, CH₂Ph), 2.28-2.2 (d, 1H, CHcpyl), 2.01, 1.99 (s, 3H, CH₃), 1.72 (m, 1H, CHcpyl), 1.29, 1.2, 1.01, 0.91, 0.71 (m, 2H, CH₂cpyl); ¹³C NMR (125Hz, CDCl₃): δ 173.19, 172.95 (C=O, ester), 170.71, 170.68, 170.31 (C=O, amide), 156.29, 156.11, 156.06 (C=O, CbZ), 137.60, 137.4, 137.22, 136.73, 136.54 (4° aryl), 129.27, 129.09, 128.54, 128.19, 127.99, 127.91, 127.81, 126.75, 126.62 (6 aryl C's), 76.7, 76.41, 75.54 (CHO), 66.85, 66.49 (CH₂Cbz), 61.79, 61.73, 61.65 (OCH₃), 55.55, 55.41, 54.74, 54.46 (CHN), 38.71, 38.39, 36.44, 36.20

(CH₂Ph), 32.56 (NCH₃), 23.34, 22.85, 21.74, 21.11 (CHcpyl), 21.05 (CH₃CO), 15.79, 15.58 (CHcpyl), 12.92, 12.66, 12.59 (CH₂cpyl) Mass spectrum (ESI-MS) m/z (C₂₅H₃₁N₂O₆) calculated for (M+H) 455.2178, found 455.2177.

Formation of benzyl ((2S)-1-(2-acryloylcyclopropyl)-1-hydroxy-3-phenylpropan-2yl) carbamate (10a) and ((2S)-1-(2-acryloylcyclopropyl)-2-(((benzyloxy)carbonyl)amino)-3-phenylpropyl acetate, (12a):

To a solution of (**15a**) (110 mg, 0.24 mmol) in THF (1.5 mL), at 0°C under argon, vinylmagnesium bromide (0.61 ml of 1M solution) was added, and stirred for 1 hour, and again the same amount of vinylmagnesium bromide was added. After 3 hours, the resulting solution was poured into 1M HCl, and extracted with ethyl acetate thrice. The organic layer was washed with NaHCO₃, dried over anhydrous magnesium sulfate, filtered and the solvent evaporated. The crude product was purified by flash column chromatography on silica gel eluting with 1:10, 1:5, 1:3, and 1:2 ethyl acetate-hexane to afford 31.49 mg (28.5%) (**10a**) and 19.2 mg (19.2%) (**12a**) as a mixture of isomers.

COMPOUND (10a): ¹H-NMR (500 MHz, CDCl₃): δ 7.33-7.18 (m, 10H, aryl), 6.44 (m, 1H, CH alkene), 6.3 (m, 2H, CH₂ trans alkene), 5.85 (m, 2H, CH₂ cis alkene), 5.00 (m, 3H, NH and Cbz CH₂) alkene), 4.03 (s, 1H, CHN), 3.63, 3.45 (s, 1H, CHO), 3.18, 3.09 (s, 1H, OH), 2.96, 2.81 (m, 2H, CH₂Ph), 2.34 (m, 1H, CHcpyl), 1.68 (m, 1H, CHcpyl), 1.28, 1.12, 1.02, 0.88 (m, 2H, CH₂cpyl); ¹³C (125 Mz, CDCl₃): δ 200.41 (C=O, ketone), 157.23 (C=O,Cbz), 137.66, 136.65, 136.15 (CH alkene and 4° aryl C's), 129.12, 128.11, 128.5 (CH alkene and aryl C's), 74.90, 74.4 (CHO), 66.86 (CH₂Cbz), 57.83, 57.32 (CHN), 35.74, 29.71 (CH₂Ph), 27.09, 26.7 (CHcpyl), 23.19, 23.18 (CHcpyl), 15.16, 14.65 (CH₂cpyl); Mass spectrum (ESI-MS) m/z (C₂₃H₂₆NO₄) calculated for (M+H) 380.1849, found 380.1856.

COMPOUND (12a): ¹H-NMR (500 MHz, CDCl₃): δ 7.34-7.14 (m, 10H, aryl), 6.42 (m, 1H, CH alkene), 6.24 (m, 2H, CH₂ trans alkene), 5.8 (m, 2H, CH₂ cis alkene) 5.43, 5.3 (m, 1H, NH), 4.98 (m, 2H, CH₂Cbz), 4.66, 4.53, 4.35 (m, 1H, CHO), 4.26, 4.19 (m, 1H, CHN), 2.95, 2.71 (m, 2H, CH₂Ph), 2.42, 2.25 (m, 1H, CHcpyl), 2.02, 1.99 (s, 3H, CH₃), 1.76 (m, 1H, CHcpyl), 1.25, 1.1, 1.02, 0.88, 0.81 (m, 2H, CH₂cpyl); ¹³C-NMR (125 MHz, CDCl₃): δ 198.91, 198.69, 198.27, 198.15 (C=O, ketone), 170.35, 170.30, 169.98, 169.88 (C=O, ester), 155.67 (C=O, Cbz), 136.99, 136.51, 136.07 (CH alkene, 4° aryl C's), 128.8, 128.67, 128.31, 128.23, 127.73, 127.62, 127.48, 127.42, 126.38, 126.26 (CH₂ alkene, 6 aryl C's), 76.26, 75.83, 75.24, 74.97, 73.78, 72.1 (CHO), 66.46, 66.4, 66.13 (CH₂Cbz), 54.93, 54.35, 54.15 (CHN), 38.29, 37.95, 35.84, 35.78 (CH₂Ph), 32.53, 31.30, 30.53, 29.93, 29.33 (CHcpyl), 26.45, 25.46, 25.29, 24.38, 23.8 (CHcpyl), 23.05, 22.83, 20.68, 20.54 (acetate CH₃), 15.63, 15.40, 15.56, 15.56 (CH₂cpyl); Mass spectrum (ESI-MS) m/z (C₂₅H₂₈NO₅) calculated for (M+H) 422.1950, found 422.1962.
Formation of (2S)-2-(((benzyloxy)carbonyl)amino)-1-(2-(oxirane-2carbonyl)cyclpropyl)-3-phenylpropyl acetate (13a):

A solution of potassium tert-butoxide in tetrahydrofuran (1.0 M, 0.73 µL, 0.806 mmol) was added to a stirred solution of (12a) (50 mg, 0.12 mmol) and tert-butyl hydroperoxide in hexane (26.46 μ L, 0.237 mmol) in tetrahydrofuran (1.64 mL) at 0°C. To the reacting mixture the same amount of tert-butyl hydroperoxide was added after one and three hours, and the same amount of potassium tert-butoxide was added every 1 hour over 8 h. The reacting mixture was maintained at 0°C for another 13 h, and solid then sodium sulfite (75 mg, 0.6 mmol) was added. The resulting mixture was stirred at room temperature for an hour. The crude product was dissolved in ethyl acetate (15 mL), and filtered, evaporated, then purified by flash column chromatography on silica gel eluting with 1:10, 1:5 and 1:3 ethyl acetate-hexane to afford 31 mg (59.61%) (13a) as a mixture of isomers. ¹H-NMR (500 MHz, CDCl₃): 8 7.36-7.20 (m, 10H, aryl) 5.06-4.96 (m, 2H, CbzCH₂), 4.88, 4.78 (2d, J= 10, 10 Hz, 1H, NH), 4.71, 4.57, 4.35 (m, 1H, CHO), 4.26, 4.16, 4.21 (m, 1H, CHN), 3.41 (m, CH epoxide), 3.01 (m, 2H, CH₂ epoxide), 2.75 (m, 2H, CH₂Ph), 2.07, 2.06, 2.05, 2.04 (s, 3H, acetate CH₃), 1.88, 1.74, 1.66, 1.25 (m, 1H, CHcpyl), 0.86 (m, 2H, CH₂cpyl); ¹³C-NMR (125 MHz, CDCl₃): δ 204.91, 204.73, 204.57 (C=O, ketone), 169.52, 169.12 (C=O, ester), 154.93, 154.79 (C=O, Cbz), 135.96, 135.4, 135.29 (4°aryl C's), 128.06, 127.68,

127.57, 127.14, 126.3 (aryl C's), 75.36, 75.07, 74.43, 74.32 (CHO), 66.04, 65.85 (CH₂Cbz), 54.3, 54.1, 53.83, 53.32,52.78, 52.66 (CH epoxide, CHN), 44.87, 44.63 (CH₂ epoxide), 37.9, 37.47, 35.36, 35.22 (CH₂Ph), 26.12, 25.57, 25.25, 24.94, 24.78, 24.35, 23.99 (CHcpyl), 20.79, 19.98, 19.8, 19.26, 18.75, 18.03 (CHcpyl and acetate CH₃), 16.01, 15.08, 14.92, 14.24, 13.88 (CH₂cpyl); mass spectrum (ESI-MS) m/z (C₂₅H₂₈NO₆) calculated for (M+H) 438.1907, found 438.1911.

2.5 Cbz-leucine series

Formation of benzyl ((2S)-1-(2-(methoxy(methyl)carbamoyl)cyclopropyl)-4-methyl-1-oxopentan-2-yl) carbamate (8b):

To a suspension of NaH (60% in mineral oil, 52.0 mg, 1.28 mmol) in DMSO (1.5 mL), DMSB (310.0 mg, 1.27 mmol) was added at room temperature, and was stirred for 25 minutes. The solution was cooled to 0°C, a solution of (**5b**) (160 mg, 0.58 mmol) in THF (1.6 ml) was added, and the mixture was stirred for 20 minutes. The creamy semisolid was dissolved in methylene chloride, and then poured in to 1M HCl and extracted with methylene chloride thrice. The organic layer was washed with brine, dried with anhydrous magnesium sulfate and the solvent was evaporated. The crude product was purified by CombiFlash and evaporated to afford 148 mg (67.62%) (**8b**) as a mixture of syn and anti-isomers. ¹H-NMR (500 Mhz, CDCl₃): δ 7.37-7.35 (m, 5H, aryl isomers), 5.29 (d, J=8 Hz,

1H, NH isomers), 5.1, 5.09 (s, 2H, CbzCH₂ isomers), 4.61 (d, J=14.9 Hz, 1H, CHN isomers), 3.72 (s, 3H, OCH₃ isomers), 3.21 (s, 3H, CH₃ isomers), 2.56, 2.50 (m, 1H, CHcpyl isomers), 1.76-1.72 (m, 2H, isobutyl CH and one H of isobutyl CH₂ isomers), 1.54, 1.50 (m, 2H, CHcpyl and one H of CH₂cpyl isomers), 1.43-1.39 (m, 2H, one H of isobutyl CH₂ and one H of CH₂ cpyl), 1.01 (t, J=4.6 Hz, 3H, isobutyl CH₃), 0.93, 0.92 (d, J=6.3, 6.85 Hz, 3H, isobutyl CH₃); ¹³C-NMR (125 MHz, CDCl₃): δ 207.48 (C=O, ketone), 171.12 (C=O, amide), 156.13, 155.6 (C=O, Cbz), 136.40, 136.17 (4°aryl C), 128.57, 128.18, 128.09 (aryl C's), 66.95 (CH₂Cbz), 61.87, 61.82 (OCH₃), 59.49, 59.32 (CHN), 40.61, 40.51 (isobutyl CH₂), 32.57 (NCH₃), 26.94, 26.55 (CHcpyl), 24.95, 24.91 (isobutyl CH), 23.42, 23.35 (CH₃), 22.42 (CHcpyl), 21.75 (CH₃), 17.84, 17.72 (CH₂ cpyl); mass spectrum (ESI-MS) m/z (C₂₀H₂₉N₂O₅) calculated for (M+H) 377.2053, found 377.2071.

Formation of benzyl ((2S)-1-hydroxy-1-(-2-(methoxy(methyl)carbamoyl) cyclopropyl)-4-methylpentan-2-yl)carbamate (9b):

To a solution of (**8b**) (129 mg, 0.34 mmol) in methanol (5 mL), NaBH₄ (26 mg, 0.68 mmol) added and the mixture was stirred for 120 minutes at room temperature. The solution was poured in to 1M HCl and extracted with ethyl acetate twice. The solution was washed with NaHCO₃ and brine, and was dried with anhydrous magnesium sulfate, filtered and the solvent evaporated. The crude was purified on CombiFlash and the solvent evaporated to afford 117.4 mg (90%) (**9b**) as a mixture of isomers. ¹H-NMR (500 MHz, CDCl₃): ¹H-

NMR (500 MHz, CDCl₃): δ 7.34-7.27 (m, 5H, aryl isomers), 5.33, 5.28, 5.24 (d, J=8.6, 4.6, 12.95 Hz, 1H, NH isomers), 5.12-5.4 (m, 2H, Cbz CH₂ isomers), 3.89 (m, 1H, CHN isomers), 3.74, 3.72 (d, J=3.6, 12.05 Hz, 3H, OCH₃ isomers), 3.45, 3.29 (d, J=4.0, 5.15 Hz, 1H, CHO isomers), 3.17, 3.16 (s, 3H, NCH₃ isomers), 2.20, 2.15 (br s, 1H, OH isomers), 1.65-1.63 (m, 1H, isobutyl CH isomers), 1.5-1.43 (m, 2H, CHcpyl and one H of isobutyl CH₂), 1.34-1.29 (m, 1H, isobutyl CH isomers), 1.2-1.18 (m, 2H, CH₂cpyl isomers), 1.18-1.14 (m, 1H, CHcpyl isomers), 0.9, 0.86 (s, 6H, isobutyl CH₃ isomers); ¹³C-NMR (125 MHz, CDCl₃): δ 173.88 (C=O, amide), 157.36, 157.31 (C=O, Cbz), 136.6, 136.44 (4° aryl C's), 128.58, 128.21, 128.08 (aryl C's), 76.93, 75.26 (CHO), 66.98, 66.94 (CH₂Cbz), 61.67, (OCH₃), 54.45, 54.36, 53.92 (CHN), 39.98, 38.67 (isobutyl CH₂), 32.05 (CH₃N), 25.28, 24.83, 24.67 (isobutyl CH), 23.69, 23.61, 23.30, 23.13 (CHcpyl), 22.13, 21.75, 21.65 (CH₃), 14.26, 14.17 (CHcpyl), 11.86, 11.56 (CH₂cpyl); mass spectrum (ESI-MS) m/z (C₂₀H₃₁N₂O₅) calculated for (M+H) 379.2233, found 379.2227.

Formation of (2S)-2-((benzyloxy)carbonyl)amino)-(2(methoxy(methyl) carbamoyl)cyclopropyl)-4-methylpentyl acetate (15b):

To a solution of (**9b**) (104 mg, 0.275 mmol) in 3 mL CH₂Cl₂, acetic anhydride (0.182 mL, 1.92 mmol) and pyridine (0.166 mL, 2.061 mmol) were added. The resulting solution was stirred for 48 hours at room temperature, and then poured into 1M HCl and extracted with ethyl acetate twice. The organic layer was washed with aqueous NaHCO₃ and dried over

magnesium sulfate, filtered and the solvent was evaporated. The crude product was purified on flash column chromatography on silica gel eluting with 1:20, 1:10, 1:5, 1:2, 1:1, 2:1 and 3:1 ethyl acetate-hexane to afford 248.6 mg (94.89%) (**15b**). ¹H-NMR (500 MHz, CDCl₃): δ 7.35-7.33 (m, 5H, aryl isomers), 5.10-5.06 (m, 2H, Cbz CH₂), 4.95, 4.89 (d, J=9.7, 10.0 Hz, 1H, NH isomers), 4.55, 4.49, 4.44, 4.36 (dd, J=11.45 Hz, 1H, CHO isomers), 4.06-4.02 (m, 1H, CHN isomers), 3.75, 3.68 (s, 3H, OCH₃ isomers), 3.18 (t, J=15.45 Hz, 3H, NCH₃ isomers), 2.03, 2.00 (s, 3H, acetate CH₃ isomers), 1.68-1.64 (m, 1H, isobutyl CH isomers), 1.61-1.57 (m, 1H, CHcpyl isomers), 1.41-136 (m, 2H, isobutyl CH₂ isomers), 1.26, 1.19 (m, 1H, CHcpvl isomers), 1.01 (m, 2H, CH₂cpvl isomers), 0.9 (m, 6H, isobutvl CH₃ isomers): ¹³C-NMR (125 MHz, CDCl₃): δ 173.24, 173.09 (C=O, ester), 170.71, 170.65, 170.5, 170.41 (C=O, amide), 156.16 (C=O, Cbz), 136.64, 136.55 (4°aryl C's), 128.6, 128.54, 128.27, 128.22, 128.1, 128.98 (aryl C's), 76.96, 76.27 (CHO), 66.89, 66.71 (CH₂Cbz), 61.78, 61.62 (OCH₃), 52.19, 51.87, 55.77 (CHN), 41.52, 39.13, 39.02 (isopropyl CH₂), 32.58 (CH₃N), 24.76, 24.64 (CHcpyl), 23.58, 23.54 (CH₃), 23.21, 22.39 (CHcpyl), 21.63, 20.89 (acetate CH₃), 21.54, 21.09 (CHcpyl) 15.45 (isobutyl CH), 12.73, 12.33 (CH₂cpyl); mass spectrum (ESI-MS) m/z (C₂₂H₃₂N₂O₆) calculated for (M) 420.2260.

Formation of (2S)-1-(2-acryloylcyclopropyl)-2-(((benzyloxy)carbonyl)amino)-4methylpentyl acetate (12b) and benzyl ((2S)-1-(2-acryloylcyclopropyl)-1-hydroxy-4methylpentan-2-yl) carbamate (10b):

To a solution of (**15b**) (151 mg, 0.36 mmol) in THF (2.0 mL), at 0°C under argon, vinylmagnesium bromide (0.9 mL of 1M solution) was added, and stirred for 1 hour and gradually warmed to RT and again same amount of vinylmagnesium bromide was added after 2 and 4.0 hrs. After 5 hours, the resulting solution was poured into 1M HCl, and extracted twice with ethyl acetate. The organic layer was washed with NaHCO₃, dried over anhydrous magnesium sulfate, filtered and the solvent evaporated. The crude product was purified by flash column chromatography on silica gel eluting with 1:10, 1:5, 1:2, and 1:1 ethyl acetate-hexane to afford and 64.3 mg (51.85%) (**10b**) and 24 mg (17.15%) (**12b**) as a mixture of isomers.

Compound (10b) (alcohol) : ¹H-NMR (500 MHz, CD₃OD): δ 7.33-7.26 (m, 5H, aryl isomers), 6.47-6.4 (m, 1H, vinyl CH isomers), 6.35, 6.34, 6.30 (d, J=1.15 Hz, 1H, vinyl CH₂ trans isomers), 5.88-5.82 (m, 1H, vinyl CH₂ trans isomers), 5.08-4.94 (m, 2H, Cbz CH₂ isomers and 1H, NH isomers), 3.68-3.65 (m, 1H, CHN isomers), 3.06-3.04 (m, 1H, CHO isomers), 2.35-2.31 (m, 1H, CHcpyl isomers), 1.66-1.58 (m, 2H, CHcpyl isomers and isobutyl CH isomers), 1.45-1.38 (m, 2H, isobutyl CH₂ isomers), 1.2-1.17 (m, 2H, CH₂ cpyl isomers), 1.05-1.02 (m, 2H,CH₂cpyl isomers), 0.9-0.82 (m, 6H, isobutyl CH₃ isomers); ¹³C-NMR (125 MHz, CD₃OD): δ 200.45, 199.87 (C=O, ketone), 156.86, 156.81 (C=O, Cbz), 135.95, (alkene, CH), 135.85 (4° aryl C), 127.55, 126.79 (aryl C's), 126.91 (alkene CH₂), 75.30, 75.18 (CHO), 65.44 (CH₂Cbz), 53.56 (CHN), 38.47, 38.39 (isobutane CH₂), 28.32, 27.75 (isobutyl CH), 24.03, 24.01 (CHcpyl), 22.74, 23.37, 22.28 (CHcpyl), 19.96 (CH₃), 14.06, 13.88 (CH₂cpyl); mass spectrum (ESI-MS) m/z (C₂₀H₂₈NO₄) calculated for (M+H) 346.2009, found 346.2013.

Compound (12b): ¹H-NMR (500 MHz, CDCl₃): δ 7.37-7.33 (m, 5H, aryl isomers), 6.48-6.34 (m, 1H, CH alkene isomers), 6.30-6.24 (m, 2H, CH₂ alkene trans isomers), 5.85 (m, 2H, CH₂ alkene cis isomers), 5.07, 4.70 (m, 3H, one H of NH and two H of Cbz isomers), 4.56, 4.53, 4.38 (dd, J= 3.45, 2.85 Hz, 1H, CHO isomers), 4.0 (m, 1H, CHN isomers), 2.44, 2.25, 2.16 (m, 1H, CHcpyl isomers), 2.03 (m, 3H, acetate CH₃ isomers), 1.72, 1.64 (m, 2H, one H of isobutyl CH and one of H of CHcpyl isomers), 1.29 (m, 2H, isobutyl CH₂), 1.16, 1.12 (m, 2H, CH₂ cpyl), 0.9-0.85 (m, 6H, isobutyl CH₃); ¹³C-NMR (125 MHz, CDCl₃): δ 197.72, 197.38, 197.19 (C=O, ketone), 169.39, 169.16 (C=O, ester), 154.83, 154.78 (C=O, amide), 135.33 (CH alkene), 135.14 (4° aryl), 127.30 (CH₂ alkene), 126.99, 126.95, 126.83, 126.76 (aryl C's), 77.02, 76.50 (CHO), 65.63, 65.58 (CH₂ Cbz), 50.87, 50.60 (CHN), 40.31, 39.96, 37.59 (CH₂ isobutyl), 28.45 (CH isobutyl), 25.38, 24.39, 24.11, 23.3, 22.64, 22.26, 21.77 (CHcpyl), 20.77, 20.24 (CH₃ acetate), 19.80, 19.60 (CH₃ isobutyl), 14.52, 14.39 (CH₂ cpyl); mass spectrum (ESI-MS) m/z (C₂₂H₂₉NO₅) calculated for (M) 387.2046.

Formation of benzyl ((2S)-1-hydroxy-4-methyl-1-(2-(oxirane-2-carbonyl)cyclopropyl pentan-2-yl)carbamate (11b):

A solution of potassium tert-butoxide in tetrahydrofuran (1.0 M, 65 μ L, 0.52 mmol) was added to a stirred solution of (**10b**) (60 mg, 0.17 mmol) and tert-butyl hydroperoxide in hexane (67 μ L, 0.87 mmol) in tetrahydrofuran (2.0 mL) at 0°C. To the reacting mixture, the same amount of tert-butyl hydroperoxide and the same amount of potassium tertbutoxide were added in every 1 hr for another 6 hrs, and the reacting mixture was maintained at 0°C for another 14 hrs. The resulting mixture was stirred at room temperature by adding solid sodium sulfite (220 mg, 1.74 mmol) for 30 minutes. The crude product was dissolved in ethyl acetate (15 mL), and filtered, evaporated, then purified by flash column chromatography on silica gel eluting with 1:10, 1:5, 1:4, and 1:2 ethyl acetate-hexane to afford 35.8 mg (57.02%) (11b) as a mixture of isomers. ¹H-NMR (500 MHz, CDCl₃): δ 7.36-7.34 (m, 5H, aryl isomers), 5.10-5.08 (m, 2H, Cbz CH₂ isomers), 4.89 (t apparently (real dd, J=8.6, 8.0 Hz), 1H, NH isomers), 3.87-3.85 (m, 1H, CHN isomers), 3.48 (m, 1H, CHO isomers), 3.47-3.45 (m, 1H, CH epoxide isomers), 3.02, 2.96 (m, 2H, CH₂ epoxide isomers), 2.15, 2.14 (1H, OH), 2.09-2.02 (m, 1H, isobutyl CH isomers), 1.65, 1.59 (m, 2H, CHcpyl isomers), 1.40 (m, 2H, one H of isobutyl CH₂ and one H of CH₂cpyl isomers), 1.28 (m, 2H, one H of isobutyl CH₂ and one H of CH₂cpyl isomers), 0.97-0.84 (m, 6H, isobutyl CH₃ isomers); ¹³C-NMR (125 MHz, CDCl₃): δ 206.87, 206.42 (C=O, ketone), 157.53, 157.37 (C=O, Cbz), 136.52, 136.22 (4°aryl C), 128.64, 128.36, 128.16 (aryl C's), 74.58, 74.13 (CHO), 67.24, 67.08 (CH₂Cbz), 54.66, 54.52, 54.18 (CHN), 53.85, 53.68 (CHepoxide) 46.13, 45.92 (CH₂epoxide), 39.18, 38.73 (isobutyl CH₂), 24.93 (CHcpyl), 23.54 (CHcpyl), 21.64 (CH₃), 19.79, 18.90 (isobutyl CH), 15.03, 14.20 (CH₂cpyl); mass spectrum (ESI-MS) m/z (C.H.N2O5) calculated for (M) 403.1995.

Formation of benzyl ((2S)-1-(2-(methoxy(methyl)carbamoyl)cyclopropyl)-3-methyl-1-oxobutan-2-yl)carbamate (8c):

To a suspension of NaH (60% in mineral oil, 157.0 mg, 3.92 mmol) in DMSO (5.0 mL), DMSB (957.0 mg, 3.92 mmol) was added at room temperature, and was stirred for 25 minutes. The solution was cooled to 0°C, a solution of (5c) (465.9 mg, 1.78 mmol) in THF (5.0 ml) was added, and the mixture was stirred for 15 minutes. The creamy semisolid was dissolved in ethyl acetate and pure into 1M HCl and extracted with ethyl acetate. The organic layer was washed with NaHCO₃, dried with anhydrous magnesium sulfate and the solvent was evaporated. The crude product was purified by CombiFlash and the solvent evaporated to afford 472.6 mg (73.16%) (8c). ¹H-NMR (500 MHz, CDCL₃): δ 7.37-7.29 (m, 5H, aryl isomers), 5.54-5.50 (t apparently (real d, J= 8.6, 8.6 Hz), 1H, NH), 5.09 (s, 2H, CbzCH₂), 4.59, 4.58 (dd, J= 4.0, 4.0 Hz, 1H, CHN isomers), 3.70, 3.69 (s, 3H, OCH₃) isomers), 3.2 (s, 3H, NCH₃ isomers), 2.59-2.54 (m, 1H, CHcpyl isomers), 2.39, 2.33 (m, 1H, isopropyl CH isomers), 1.50 (m, 1H, CHcpyl), 1.40 (m, 2H, CH2cpyl isomers), 1.04 (t,J=14.35 Hz, 3H, isopropyl CH₃), 0.78 (t, J=16.5, 3H, isopropyl CH₃); ¹³C-NMR (125 MHz, CDCl₃): δ 206.87 (C=O, ketone), 171.02 (C=O, amide), 156.50, 155.8 (C=O, Cbz), 136.49 (4° aryl C), 128.53, 128.09 (aryl C's), 66.84, 66.41 (CH₂Cbz), 65.74, 65.63 (CHN), 61.74 (OCH₃), 31.49 (NCH₃), 30.01 (isopropyl CH), 27.52, 27.18 (CHcpyl), 22.66, 22.22

(CHcpyl), 19.8 (CH₃), 17.6, 17.27 (CH₂ cpyl), 16.9 (CH₃);mass spectrum (ESI-MS) m/z (C₁₉H₂₇N₂O₅) calculated for (M+H) 363.1906, found 363.1914.

Formation of benzyl ((2S)-1-hydroxy-1-(2-(methoxy(methyl)carbamoyl)cyclopropyl)-3-methylbutan-2-yl)-3-methylbutan-2-yl)carbamate (9c):

To a solution of (8c) (391 mg, 1.08 mmol) in methanol (13 mL), NaBH₄ (75 mg, 0.075 mmol) added and the mixture was stirred for 2 hrs at room temperature. The solution was poured in to 1M HCl and extracted twice with ethyl acetate. The organic layer was washed with NaHCO3 and brine, and was dried with anhydrous magnesium sulfate, filtered and the solvent evaporated. The crude was purified on CombiFlash and the solvent evaporated to afford 374.1 mg (95.19 %) (9c) as a mixture of isomers. ¹H-NMR (500 MHz, CDCL₃): δ 7.25-7.19 (m, 5H, aryl isomers), 5.51 (t (apparently), real 2d, J= 9.15, 9.15 Hz 1H, NH), 5.03-4.94 (m, 2H, CH2Cbz isomers), 3.61 (s, 3H, CH3 isomers), 3.57- 3.52 (m, 1H, CHN and CHO isomers), 3.38 (m, 1H, CHO isomers), 3.06, 3.04 (s, 3H, NCH₃ isomers), 2.16, 2.01 (br s, 1H, OH), 1.91 (m, 1H, isopropyl CH isomers), 1.49, 1.44 (m, 1H, CHcpyl isomers), 1.08, 1.02 (m, 1H, CHcpyl isomers), 0.94 (m, CH₂cpyl isomers), 0.87 (d, J= 6. 85 Hz, 3H, isopropyl CH₃), 0.84 (t, J= 10.9 Hz, 3H, isopropyl CH₃); ¹³C-NMR (125 MHz, CDCl₃): δ 174.02, 173.38, 171.24 (C=O, amide), 157.6, 157.19, 157.15 (C=O, Cbz), 136.82, 136.64 (4° aryl C's), 128.48, 128.06, 127.97, 127.85 (aryl C's), 72.54, 72.04 (CHO), 66.75 (CH₂Cbz), 61.58, 60.42 (OCH₃), 61.39 (CHN), 32.52 (CH₃N), 28.66

(isopropyl CH), 23.94 (CHcpyl), 23.14 (CHcpyl), 20.69, 20.55 (CH₃), 18.49, 18.38 (CH₃), 14.20 (CHcpyl), 11.66, 11.34 (CH₂cpyl); mass spectrum (ESI-MS) m/z (C_{.19}H₂₈N₂O₅) calculated for (M) 364.1998.

Formation of (2S)-2-(((benzyloxy)carbonyl)amino)-1-(2-(methoxy(methyl)carbamoyl) cyclopropyl)-3-methylbutyl acetate (15c):

To a solution of (**9c**) (332.1 mg, 0.91 mmol) in 5.0 mL CH₂Cl₂, acetic anhydride (0.6 mL, 6.38 mmol) and pyridine (0.52 mL, 6.38 mmol) were added. The resulting solution was stirred for 52 hours at room temperature, and then poured into 1M HCl and extracted twice with ethyl acetate. The organic layer was washed with aqueous NaHCO₃ and dried over magnesium sulfate, filtered and the solvent was evaporated. The crude product was purified on CombiFlash ethyl acetate-hexane (55:45) to afford 326.9 mg (88.35%) (**15c**) as a mixture of isomers. H-NMR (500 MHZ, CDCl₃): δ 7.30-7.24 (m, 5H, aryl isomers), 5.07, 5.05 (d, J= 6.85, 5.15 Hz, 1H, NH isomers), 5.03 (m, 2H, CH₂ Cbz isomers), 4.69, 4.61 (dd, J= 5.2, 5.15 Hz, 1H, CHO isomers), 3.76 (m, 1H, CHN isomers), 3.7, 3.64, 3.62 (s, 3H, OCH₃ isomers), 3.11, 3.1 (s, 3H, NCH₃ isomers), 1.98, 1.96 (s, 3H, acetate CH₃ isomers), 1.83 (m, 1H, isopropyl CH isomers), 1.67, 1.6, 1.54 (m, 1H, CHcpyl isomers), 1.12 (m, 2H, CH₂cpyl isomers), 0.95 (d, J= 6.85 Hz, 3H, isopropyl CH₃ isomers), 0.85 (d, J= 6.85 Hz, 3H, CH₃); ¹³C-NMR (125 MHz, CDCl₃): δ 173.28, 172.96 (C=O, ester), 170.55, 170.46 (C=O, amide), 156.62, 156.59 (C=O, Cbz), 136.72 (4°aryl C's), 128.53,

128.12, 128.08, 127.98 (aryl C's), 75.05, 74.58 (CHO), 66.75 (CH₂Cbz), 61.68, 61.61, 60.42 (OCH₃), 58.67 (CHN), 32.56 (CH₃N), 28.85, 28.77 (isopropyl CH), 21.66, 21.08, 20.89 (CHcpyl), 20.39, 20.34(acetate CH₃) 18.22 (CH₃), 15.45, 14.25 (CHcpyl), 12.09, 11.89 (CH₂cpyl); mass spectrum (ESI-MS) m/z (C₂₁H₃₀N₂O₆) calculated for (M) 406.2104.

Formation of (2S)-1-(2-acryloylcyclopropyl)-2-(((benzyloxy)carbonyl)amino)methylbutyl acetate (12c) and benzyl ((2S)-1-(2-acryloylcyclopropyl)-1-hydroxy-3-

methylbutan-2-yl) carbamate (10c):

To a solution of (**15c**) (151.3 mg, 0.36 mmol) in THF (2.0 mL), at 0°C under argon, vinylmagnesium bromide (0.93 ml of 1M solution) was added, and stirred for 1 hour on melting ice bath, and again same amount of vinylmagnesium bromide was added in every 1 hour for two more time at 0°C under argon. After 4 hours, the resulting solution was poured into 1M HCl, and extracted twice with ethyl acetate. The organic layer was washed with NaHCO₃, dried over anhydrous magnesium sulfate, filtered and the solvent evaporated. The crude product was purified by flash column chromatography on silica gel eluting with 1:10, 1:5, and 1:2 ethyl acetate-hexane to afford and 41.1 mg (33.31%) (**10c**) and 39.8 mg (28.63%) (**12c**) as a mixture of isomers.

Compound 10c (alcohol group):¹H-NMR (500 MHz, CDCl₃): δ 7.35-7.31 (m, 5H, aryl isomers), 6.47-6.39 (m, 1H, vinyl CH isomers), 6.28 (d, J= 17.75 Hz, 2H, vinyl CH₂ trans isomers), 5.81, 5.77 (dd, J= 10.9, 10.85 Hz, 2H, vinyl CH₂ cis isomers), 5.11-5.05 (m, 2H,

CH₂Cbz), 5.0 (m, 1H, NH isomers), 3.69 (m, 1H, CHO isomers), 3.63 (m, 1H, CHN isomers), 3.48 (m, 1H, CHO isomers), 3.01, 2.96 (1H, OH isomers), 2.32, 2.26 (m, 1H, CHcpyl isomers), 1.94 (m, 1H, isopropyl CH isomers), 1.61 (m, 1H, CHcpyl isomers), 1.24, 1.12 (m, 2H, CH₂cpyl isomers), 0.97 (t, J= 12.6 Hz, 3H, isobutyl CH₃ isomers), 0.92 (t, J=12.6 Hz, 3H, isobutyl CH₃ isomers); ¹³C-NMR (125 MHz, CDCl₃): δ 201.06, 200.05 (C=O, ketone), 157.73, 157.65 (C=O, Cbz), 136.77, 136.73 (alkene, CH), 136.32 (4°aryl C), 128.63, 128.3, 128.14 (aryl C's), 128.22 (alkene CH₂), 73.32, 71.86 (CHO), 67.17 (CH₂Cbz), 61.75, 61.6 (CHN), 28.89, 28.65 (isopropyl CH), 27.33, 26.32 (CHcpyl), 22.46, 22.12 (CHcpyl), 20.59, 20.51, 18.97, 18.49 (CH₃), 15.00, 14.22 (CH₂cpyl); mass spectrum (ESI-MS) m/z (C₁₉H₂₆N₂O₄) calculated for (M+H) 332.1857, found 332.1856.

Compound (12c): ¹H-NMR (500 MHz, CDCl₃): δ 7.38-7.2 (m, 5H, aryl isomers), 6.43 (m, 1H, vinyl CH isomers), 6.28, 6.25 (dd, J= 6.85, 6.85 Hz, 2H, vinyl CH₂ trans isomers), 5.84 (m, 2H, vinyl CH₂ cis isomers), 5.07 (m, 2H, CH₂ Cbz isomers), 4.79 (m, 1H, NH isomers), 4.70, 4.55 (m, 1H, CHO isomers), 3.82, 3.66 (m, 1H, CHN isomers), 2.49, 2.39, 2.20 (m, 1H, CHcpyl isomers), 2.06, 2.03, 2.02, 1.99 (s, 3H, acetate CH₃ isomers), 1.86 (m, 1H, isopropyl CH isomers), 1.74, 1.69 (m, 1H, CHcpyl isomers), 1.39, 1.35, 1.28, 1.12 (m, 2H, CH₂cpyl isomers), 0.99, 0.93, 0.89 (ddd, J=2.85, 1.7, 4.6 Hz, 6H isopropyl CH₃ isomers); ¹³C-NMR (125 MHz, CDCl₃): δ 199.05, 198.65 (C=O, ketone), 170.68, 170.61 (C=O, ester), 156.62, 156.53 (C=O, Cbz), 137.03 (4°aryl C), 136.57, 136.48 (alkene, CH), 128.64, 128.42, 128.27, 128.23, 128.15 (aryl C's), 128.62 (alkene CH₂), 75.78, 74.59 (CHO), 67.03, 66.98 (CH₂Cbz), 58.59 (CHN), 28.61 (isopropyl CH), 25.80 (CHcpyl), 23.53 (CHcpyl), 21.16, 20.5 (acetate CH₃), 17.79 (CH₃), 15.25, 14.94 (CH₂cpyl); mass spectrum (ESI-MS) m/z (C₂₁H₂₇NO₅) calculated for (M) 373.1889.

Formation of benzyl ((2S)-1-hydroxyl-3-methyl-1-(2-(oxirane-2-

carbonyl)cyclopropyl) butan-2-yl)carbamate (11c):

A solution of potassium tert-butoxide in tetrahydrofuran (1.0 M, 43 µL, 0.348 mmol) was added to a stirred solution of (10c) (38.5 mg, 0.116 mmol) and tert-butyl hydroperoxide in hexane (65 μ L, 0.58 mmol) in tetrahydrofuran (1.0 mL) at 0°C. To the reacting mixture, the same amount of tert-butyl hydroperoxide and the same amount of potassium tertbutoxide were added in every 1 hr for another 5 hrs, and the reacting mixture was maintained at 0°C for another 17 hrs. The resulting mixture was stirred at room temperature by adding solid sodium sulfite (146 mg, 1.16 mmol) for 30 minutes. The crude product was dissolved in ethyl acetate (15 mL), and filtered, the solvent evaporated. The crude product was purified by flash column chromatography on silica gel eluting with 1:10, 1:5 and 1:2 ethyl acetate-hexane to afford 18.6 mg (46.1%) (11c) as a mixture of isomers. ¹H-NMR (500 MHz, CDCl₃): δ 7.36-7.31 (m, 5H, aryl isomers), 5.10, 5.06 (dd, J=13.75, 3.4 Hz, 2H, CH₂ Cbz isomers), 4.84 (d, J= 8.05 Hz, 1H, NH), 3.7 (m, 1H, CHO isomers), 3.61 (m, 1H, CHN isomers), 3.46, 3.43 (q, J=6.85Hz, 1H, CHepoxide isomers), 3.35 (m, 1H, CHO isomers), 3.12, 2.96, 2.90 (dd, J= 10.0, 10.5, 8.6 Hz, CH₂epoxide isomers), 2.78 (m, 1H, CHcpyl isomers), 2.35, 2.31 (1H, OH isomers), 2.14, 2.09, 1.93, 1.87 (m, 1H, isopropyl CH isomers), 1.30, 1.21 (m, 1H, CH₂cpyl isomers), 0.98-0.9 (m, 6H, isopropyl CH₃ isomers); ¹³C-NMR (125 MHz, CDCl₃): δ 205.66, 205.5 (C=O, ketone), 156.44, 156.27

(C=O, Cbz), 134.94 (4°aryl C), 127.40, 127.12, 126.96, 126.80 (aryl C's), 72.48, 70.91, 70.5, 70.35, 70.07 (CHO), 66.03 (CH₂Cbz), 60.44, 60.27 (CHN), 52.67, 52.36 (CHepoxide) 44.88, 44.72 (CH₂epoxide), 28.5, 27.69, 27.54, 27.24, 27.14 (CHisopropyl), 25.52 (CHcpyl), 19.26, 19.11 (CHcpyl), 17.75, 17.52 (CH₃), 13.34 (CH₂cpyl); mass spectrum (ESI-MS) m/z (C₁₉H₂₆N₂O₅) calculated for (M+H) 348.1802, found 348.1805.

benzyl ((2S)-3-methyl-1-(oxiran-2-yl)-1-oxobutan-2-yl)carbamate (14c):

A solution of potassium tert-butoxide in THF (1.0 M, 1.3 μ L, 0.096 mmol) was added to a stirred solution of (**5c**) (50 mg, 0.19 mmol) and tert-butyl hydroperoxide in hexane (43 μ L, 0.38 mmol) in THF (1.5 mL) at 0°C and stirred. In every one-hour same amount of tert-butyl hydroperoxide and potassium tert-butoxide were added over 4 h, then the resulting solution was kept at 0°C for another 13 h, then solid sodium sulfite (121 mg, 0.96 mmol) was added and stirred at room temperature for 1 h. The crude compound was dissolved in ethyl acetate (15 mL) and filtered, the solvent evaporated, and then purified by flash column chromatography on silica gel eluting with 1:20, 1:10 and 1:6 ethyl acetate-hexane to afford 25.1 mg (47.36%) (**14c**) as a mixture of syn and anti-isomers. ¹H-NMR (500 MHz, CDCl₃): δ 7.36 (m, 5H, aryl), 5.38 (d, J=8.6 Hz, 1H, NH), 5.1 (m, 2H, CH₂Cbz), 4.59 (m, 1H, CHN), 3.67 (s, 1H, CH epoxide), 2.99, 2.92 (d, 2H, CH₂ epoxide), 2.28 (m, 1H, CH(CH₃)₂, 1.06, 0.88 (s, 3H, CH₃); ¹³C-NMR (125 MHz, CDCl₃): δ 204.84 (C=O, ketone), 156.39 (C=O, Cbz), 136.17 (4° aryl C's), 128.67, 128.37, 128.22 (3 aryl C's),

67.29 (CH₂Cbz), 63.37 (CHN), 51.12 (CH epoxide), 48.02 (CH₂ epoxide), 30.19 (CH(CH₃)₂, 19.85, 17.01 (CH₃); Mass spectrum (ESI-MS) m/z (C₁₅H₂₀NO₄) calculated for (M+H) 278.1370, found 278.1387.

benzyl ((2S)-4-methyl-1-(oxiran-2-yl)-1-oxopentan-2-yl)carbamate (14b):

A solution of potassium tert-butoxide in THF (1.0 M, 1.3 µL, 0.011 mmol) was added to a stirred solution of (**5b**) (60 mg, 0.21 mmol) and tert-butyl hydroperoxide in hexane (48.64 µL, 0.44 mmol) in THF (2.0 mL) at 0°C and stirred. In every 1 h, the same amount of tert-butyl hydroperoxide and the same amount of potassium tert-butoxide were added over 3 h, then the resulting solution was kept at 0°C for another 12 h, then solid sodium sulfite (137 mg, 1.1 mmol) was added and stirred at room temperature for 1 h. The crude compound was dissolved in ethyl acetate (20 mL) and filtered, the solvent evaporated, and then purified by flash column chromatography on silica gel eluting with 1:20, 1:10 and 1:6 ethyl acetate-hexane to afford 34.6 mg (56.72%) (**14b**) as a mixture of syn and anti-isomers. ¹H-NMR (500 MHz, CDCl₃): δ 7.36-7.33 (m, 5H, aryl), 5.16 (d, j=8.6, 1H, NH), 5.07 (m, 2H, CH₂Cbz), 4.38 (m, 1H, CHN), 3.51 (s, 1H, CH epoxide), 3.14, 3.06 (d, 2H, CH₂ epoxide), 1.73 (m, 1H, CH(CH₃)₂), 1.57, 1.28 (m, 2H, CH₂), 0.97, 0.94 (s, 3H, CH₃); ¹³C-NMR (125 MHz, CDCl₃): δ 207.23 (C=O, ketone), 156.19 (C=O, CH₂Cbz), 136.17 (4° aryl C's), 128.63, 128.3, 128.01 (3 aryl C's), 67.11 (CH₂Cbz), 52.73 (CHN), 52.61 (CH epoxide),

46.39 (CH₂ epoxide), 40.26 (CH₂), 25.04 (CH(CH₃)₂), 23.42, 21.41 (CH₃); mass spectrum (ESI-MS) m/z (C₁₆H₂₂NO₄) calculated for (M+H) 292.1529, found 292.1543.

CHAPTER III: RESULTS AND DISCUSSION

Synthesis of cyclopropyl Weinreb amide

In order to synthesize the proposed cyclopropyl epoxy ketones, the starting point would be our existing synthesis of cyclopropyl esters. The amino acid-derived enones need to be converted to cyclopropyl Weinreb amides. These could then be converted to enones which could be epoxidized to give the epoxyketones. Hoping to get a stereoselective cyclopropyl Weinreb amide as reported by Gaunt, the bromo Weinreb amide of bromoacetic acid (BWA) was treated with **5a** in presence of the quinine catalyst and CsCO₃ as seen in **Scheme 6**.³⁵ But, it was found that the starting compound **5a** was decomposed at the end of the reaction despite trying different reaction times.

Scheme 6: Attempted synthesis of cyclopropyl Weinreb amide

Although Gaunt had reported successful stereoselective cyclopropranations of other enones using BWA, this did not work with our substrate. After the failure with BWA, a salt, (2-(methoxy(amino)-2-oxoethyl)dimethylsulfonium bromide (DMSB), was synthesized by displacing the bromide of BWA with dimethyl sulfide. This salt was a precursor to the sulfonium ylide, an analog of EDSA, used in the earlier synthesis. The salt was treated with NaH in DMSO followed by **5a** to afford the cyclopropyl Weinreb amide **8a**, as a 1:1 mixture of diastereomers (Scheme 7). During this reaction, it was observed that the reaction time was very crucial, that is, the reactants were decomposed completely when they were allowed to react for 1 hour.

Scheme 7: Successful synthesis of cyclopropyl Weinreb amide

The general mechanism for Michael induced ring closure to form a cyclopropyl ester or Weinreb amide is shown in **Figure 18**. The strong base NaH removes an acidic hydrogen from BWA or DMSB *in situ* to form an ylide that can react with **5a** to form an intermediate enolate, which displaces the leaving group and forms a cyclopropane.

Figure 18: General cyclopropanation mechanism

Protection of alcohol

The ketone of compound **8a** was reduced to the alcohol **9a** with NaBH₄ without difficulty, but with the alcohol group, a vinylmagnesim bromide addition to the Weinreb amide did not work in presence of the acidic hydrogen.^{30,31} So, several protecting groups were investigated to protect this hindered alcohol.³⁶ The first attempts were to add silyl protecting groups using either t-BDMSCl or TMSCl. These were attempted several times using different conditions, but they gave only the starting materials. Also, addition of a benzyl ether protecting group failed with the hindered alcohol.

Table 1: Attempts at protection of the alcohol 9a

9a 15a				
R	R'	Conditions	Results	
t-Bu(CH ₃) ₂ Si	Cbz	t-Bu(CH ₃) ₂ SiCl , Et ₃ N, CH ₂ Cl ₂ , RT, 24 hrs	No reaction	
(CH ₃) ₃ Si	Cbz	(Me ₃) ₃ SiCl , NEt ₃ , CH ₂ Cl ₂ , RT, 8 hrs	No reaction	
Bn	Cbz	BnBr, NaH, THF, 24 hrs	decomposition	
Bn	PhCH ₂ CO	BnBr, NaH, THF	decomposition	
Ac	Cbz	(CH ₃ O) ₂ O, Pyridine, CH ₂ Cl ₂ , 3 days	88% yield	

These protecting groups did not work because of their bulky size towards the hindered alcohol. In this case, with both the Cbz analog **9a** or its corresponding amide, we saw decomposition. So, the final attempt was to protect the alcohol group as the acetate, using acetic anhydride, which successfully gave the acetate **15a**.³³ The protection results are summarized in Table **1**.

Synthesis of the cyclopropyl enone

After the successful protection of the hindered alcohol as an acetate group, compound **15a** was treated with vinylmagnesium bromide to convert it into the enone **12a**. During the reaction, we also observed a cleavage of the acetate, affording the alcohol **10a** as a byproduct (**Scheme 9**)^{30,31}. This was an acceptable result since both series could be tested for bioactivity.

Scheme 8: Synthesis of the cyclopropyl enone

Synthesis of the epoxide

Formation of the epoxide proved to be another challenging task. Three different procedures were attempted multiple times. Reactions were investigated first using the simple enone 5c.^{34,37,38} The first attempts used mCPBA However no reaction was observed even after 6 days. A second attempt with oxone also gave no reaction. We concluded that this electron- deficient alkene needed a different approach. Finally, the Weitz-Scheffer epoxidation in basic conditions was the successful route to synthesize **14c** from **5c** (**Table 2**).

Table 2: Summary of the attempted synthesis of the simple epoxides

5c ▶ 14c				
Reagents	Conditions	Results		
mCPBA	CH ₂ Cl ₂ , RT, 3 days	No reaction		
mCPBA	CH ₂ Cl ₂ , 0°C, 19 hrs	No reaction		
mCPBA	CH ₂ Cl ₂ , 0°C, 6 days	No reaction		
Oxone, NaHCO ₃	acetone, 4 hrs	No reaction		
t-BuOOH, t-BuOK	THF,0°C, 4 hrs	47 yield%		

After the success of the synthesis of simple epoxides by Weitz-Scheffer epoxidation, it was implemented to synthesize the cyclopropyl epoxyketone **13a** from **12a** in presence of peroxide (t-BuOOH) and a strong base (t-BuOK) at 0°C (**Table 3**).

Table 3: Summary of the attempted synthesis of the cyclopropyl epoxyketone

syn and anti isomers

12a —	13 a	
Reagents	Conditions	Results
mCPBA	CH ₂ Cl ₂ , RT,4 hrs	No reaction
mCPBA	CH ₂ Cl ₂ , RT,18 hrs	No reaction
t-BuOOH, t-BuOK	THF,0°C, 13 hrs	60%

The peroxyanion formed from alkyl hydroperoxide *in situ* under basic conditions undergoes conjugate addition at the beta-position of an α , β -unsaturated ketone (16) to afford an intermediate β -peroxyenolate (17). This further undergoes intramolecular nucleophile substitution by the cleavage of O-O bond with the removal of alkoxide (RO⁻) to afford (14). The mechanism of the Weitz-Scheffer epoxidation is shown in Scheme 9. Scheme 9: The two-step mechanism of the Weitz-Scheffer epoxidation

Results of testing in phenotypic assay

Several of the simple epoxides and also compound 13a were tested in a

phenotypic assay in the nematode C. *elegans* as seen in Figure 19.³⁹ Simple epoxides **14b** and **14c** show similar in potency to bortezomib at 20 and 200 μ M and hybrid analog **13a** less potent than **14b** and **14c** at 20 and 200 μ M.

Figure 19: Phenotypic assay for simple epoxides and analog

Conclusions

Belactosin A is a naturally occurring proteasome inhibitor with potent anti- tumor activity that has inhibitory effects on the 20s core particle of the proteasome. Several analogs have been proposed and synthesized. Carfilzomib is a tetrapeptide epoxyketone, and an analog of epoxomicin with improved properties. Carfilzomib was approved by FDA for the treatments of multiple myeloma, non-Hodgkin's lymphoma and solid tumors. The primary goal of this project was to synthesize hybrid analogs of belactosin A and carfilzomib, with the cyclopropyl backbone and epoxyketone serine trap.

Several problems were encountered during the synthesis. The first one was a protection of a hindered alcohol. While silyl ethers and benzyl ether were not obtained, it was finally protected as an acetate. Another issue was encountered during epoxidation of the cyclopropyl enone. Traditional epoxidation with electrophilic reagents was not successful. However a Weitz-Scheffer epoxidation led to two different series of epoxyketones.

In summary a successful synthesis of the hybrid analogs of belactosin A and carfilozomib has been completed. Starting from phenylalanine, leucine and valine, three series, giving both the acetate analogs **13a-c** and alcohol analogs **11a-c** have been made. In addition, the "simple" epoxyketones **14a-c** have been prepared. Initial testing of several epoxyketones in a phenotypic assay indicates that both the simple epoxides and hybrid analogs are effective proteasome inhibitors.³⁹

REFERENCES

- 1. Almond, JB.; Cohen, GM. "The Proteasome: a novel target of cancer chemotherapy" *leukemia*, **2002**, 16, 433-443.
- Crawford, L.J.; Walker, B.; Irvine, A. E. "Proteasome inhibitors in cancer therapy" *Journal Cell Communication and Signaling*, 2011, 5(2), 101-110.
- Zhou, HJ; Aujay, A. M.; Bennett, MK.; Dajee, M.; Demo, S.D.; Fang, Y.; Ho, M.N.; Jiang, J.; Kirk, C.J.; Laidig, G.J.; Lewis, E.R.; Lu, Y.; Muchmuel, T.; Parlati, F.; Ring, E.; Shenk, K.D.; Shields, J.; Shwonek, P.J.; Stanton, T.; Sun,C.M.; Sylvain, C.; Woo, T.M.; Yang, J. "Design and synthesis of an Orally Bioavailable and Selective Peptide Epoxyketone Proteasome Inhibitor" (PR-047), *Journal of Medicinal Chem*istry, **2009**, 52, 3028-3038.
- Hasegawa, M.; Kinoshita, K.; Nishimura, C.; Matsumura, U.; Shionyu, M.; Ikeda, S.; Mizukami, T.; "Affinity labeling of the proteasome by a belactosin A derived inhibitor" *Bioorganic and Medicinal Chemistry Letters*, 2008, 18, 5668-5671.
- Groll, Michael.; Ditzel, L.; Lowe, J.; Stock, D.; Bochtler, M.; Bartunik, H.D.; Huber, R. "Structure of 20S proteasome from yeast at 2.4 A resolution" *Nature International Journal of Science*, **1997**, 386, 461-471.
- 6. Adams, J. "Nature Reviews Cancer" 2004, 4, 349-360
- Genin, E.; Rebound-Ravaux, M.; Vidal, Joelle. "Proteasome inhibitors: recent advances and new perspectives in medicinal chemistry" *Current Topics in Medicinal Chemistry*" 2010, 10 (30), 232-256.
- Kisselev, A.F.; Goldberg, A.L. "Proteasome inhibitors: from research tools to drug candidates" *Chemistry and Biology*, 2001, 8, 739-758.

- Huber, E.M.; Heinemeyer, W.; Li, X.; Arendt, C.S.; Hochstrasser, M.; Groll, M.
 "A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome" *Nature Communications*, 2016, 1-10.
- Yuan, B-Z.; Chapman, J.; Reynolds, SH. "Proteasome inhibitors induce apoptosis in human lung Cancer cells through a positive feedback mechanism and the subsequent Mcl-1 protein cleavage" *Oncogene*, **2009**, 28, 3775-3786.
- Mitsiades, N.; Mitsiades, C. S.; Poulaki, V.; Chauhan, D.; Fanourakis, G.; Gu, X.; Bailey, C.; Joseph, M.; Libermann, T. A.; Treon, S.; Munshi, N.C.; Richardson, P.G.; Hideshima, T.; Anderson, K.C. "Molecular sequelae of proteasome inhibition in human multiple myeloma cells" *PNAS*, **2002**, 99, 14374-14379.
- 12. Orlowski, R.Z.; Kuhn, D.J. "Proteasome Inhibitors in Cancer Therapy: Lessons from the First Decade" *Clinical Cancer Research*, **2008**, 14(6), 1649-1657.
- Huang, Li.; Chen C.H. "Proteasome regulators: activators and inhibitors" *Current Medicinal Chemistry*, 2009, 16(8), 931-939.
- Rentsch, A.; Landsberg, D.; Brodmann, T.; Bulow, L.; Girbig, A-K.; Kalesse, M.
 "Synthesis and Pharmacology of Proteasome Inhibitors" *Angewandte Chemie Edition*, 2013, 52, 5450-5488.
- Ge, Y.; Li, A.; Wu, J.; Feng, H.; Wang, L.; Liu, H.; Xu, Y.; Xu, Q.; Zhao, L.; Li, Y. "Design, synthesis and biological evaluation of novel non-peptide boronic acid derivatives as proteasome inhibitors" *European Journal of Medicinal Chemistry*, 2017, 128, 1180-191.
- Crawford, L.J.; Walker, B.; Irvine, A.E. "Proteasome inhibitors in cancer therapy" *Journal of Cell Communication Signaling*, 2011, 5, 101-110.

- 17. Offidani, M.; Corvatta, L.; Caraffa, P.; Gentili, S.; Maracci, L.; Leoni, P. "An evidence-based review of ixazomib citrate and its potential in the treatment newly diagnosed multiple myeloma" *Onco Targets Therapy*, **2014**, *7*, 1793-1800.
- Muz, B.; Ghazarian, R. N.; Ou, M.; Luderer, M. J.; Kusdono, H. D.; Azab, A. K.
 "Spotlight on ixazomib: potential in the treatment of myltiple myeloma" *Drug Design Development and Therapy*, 2016, 10, 217-226.
- 19. Yoshida, K.; Yamaguchi, K.; Mizuno, A.; Unno, Y.; Asai, A.; Sone, Takayuki.; Yokosawa, H.; Matsuda, A.; Arisawa, M.; Shuto, S. "Three-dimensional structureactivity relationship study of belactosin A and its stereo- and regioismomers: development of potent proteasome inhibitor by a stereochemical diversity-oriented strategy" *Organic and Bimolecular Chemistry*, **2009**, 7, 1868-1877.
- 20. Kawamura, Shuhei.; Unno, Y.; Hirokawa, T.; Asai, A.; Arisawa, M.; Shuto, S. "Rational hopping of a peptidic scaffold into non-peptidic scaffolds: structurally novel potent proteasome inhibitors derived from a natural product, belactosin A" *Chemical Communication*, **2014**, 50, 2445-2447.
- Kawamura, S.; Unno, Y.; List, A.; Mizuno, A.; Tanaka, M.; Sasaki, T.; Arisawa, M.; Asai, A.; Groll, M.; Shuto, S. "Potent Proteasome Inhibitors Derived from the Unnatural *Cis*-cyclopropane Isomer of Belactosin A: Synthesis, Biological Activity, and Mode of Action" *Journal of Medicinal Chem*istry, **2013**, 56, 3689-3700.
- 22. Yoshida, K.; Yamaguchi, K.; Sone, T.; Unno, Y.; Asai, A.; Yokosawa, H.; Matsuda, A.; Arisawa, M.; Shuto, S. "Synthesis of 2,3- and 3,4-Methanoamino Acid Equivalents with Stereochemical Diversity and Their Conversion into the

Tripeptide Proteasome inhibitor Belactosin A and Its Highly Potent Ciscyclopropane Stereoisomer" *Organic Letters*, **2008**, 10, 3571-3574.

- 23. Kawamura, S.; Unno, Y.; Tanaka, M.; Sasaki, T.; Yamano, A.; Hirokawa, T.; Kameda, T.; Asai, A.; Arisawa, M.; Shuto, S. "Investigation of the Noncovalent Binding Mode of Covalent Proteasome Inhibitors around the Transition State by Combined Use of Cyclopropylic Strain-Based Conformational Restriction and Computational Modeling" *Jounal of Medicinal Chemistry*, **2013**, 56, 5829-5842.
- 24. Kawamura, S.; Unno, Y.; Asai, A.; Arisawa, M.; Shuto, S. "Structurally Novel Highly Potent Proteasome Inhibitors Created by the Structure-Based Hybridization of Nonpeptidic Belactosin Derivative and Peptide Boronates" *Journal of Medicinal Chemistry*, **2014**, 57, 2726-2735.
- 25. Kim, K.B.; Crews, C.M. "From epoxomicin to carfilzomib: chemistry, biology, and medical Outcomes" *Natural Product Reports*, **2013**, 30, 600-604.
- 26. Kapur, S.A.; Anderl, J.L.; Kraus, M.; Parlati, F.; Shenk, K. D.; Lee, S. J.; Muchamuel, T.; Bennett, M. K.; Driessen, C.; Ball, A. J.; Kirk, C. J. "Nonproteasomal Targets of the Proteasome Inhibitors Bortezomib and Carfilzomib: a Link to Clinical Adverse Events" *Clinical Cancer Research*, 2011, 17(9), 2734-2743.
- 27. Zhang, J.; Cao, J.; Xu, L.; Zhou, Y.; Liu, J.; Hu, Y. "Design, synthesis and biological evaluation of novel tripeptidyl epoxyketone derivatives constructed from β-amino acid proteasome inhibitors" *Bioorganic and Medicinal Chemistry*, 2014, 22, 2955-2965.

- Kuhn, D. J.; Chen, Q.; Voorhees, P. M.; Strader, J. S.; Shenk, K. D.; Sun, C. M.; Demo, S. D.; Bennett, M. K.; Leeuwen, F. W. B. V.; Khan, A. A. C.; Orlowski, R. Z. "Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitinproteasome pathway, against preclinical modes of multiple myeloma" *Blood*, 2007, 110, 3281-3290.
- Vandewynckel, Y. P.; Coucke, C.; Laukens, D.; Devisscher, L.; Paridaens, A.; Bogaerts, E.; Vandierendonck, A.; Raevens, S.; Verhelst, X.; Steenkiste, C. V.; Libbrecht, L.; Geerts, A.; Vlierberghe, H. V. "Next-generation proteasome inhibitor oprozomib synergizes with modulators of the unfolded protein response to suppress hepatocellular carcinoma" *Oncotarget*, **2016**, *7*, 23, 34988-35000.
- Dunlap, N. K.; Basham, J.; Wright, M.; Smith, K.; Chapa, O.; Huang, J. "Synthesis of nitrocyclopropyl peptidomimetics" *Tetrahedron Letters*, 2013, 53, 6596-6598.
- Dunlap, D.; Lankford, K. R.; Pathiranage, A. L.; Taylor, J.; Reddy, N.; Gouger, D.; Singer, P.; Griffin, K.; Reibenspies, J. "Three-Step Synthesis of Cyclopropyl Peptidomimetics" *Organic Letters*, 2011, 13, 4879-4881.
- 32. Donohoe, T. J.; Fishlock, L. P.; Basutto, J.; Bower, J. F.; Procopiou, P. A.; Thompson, A. L. "Synthesis of Substituted Pyridines and Pyridazines via Ring Closing Methathesis" *Chemical Communication*, **2009**, 63008–3010.
- Zweifel, G.S.; Nantz, M. H. "Modern Organic Synthesis an Introduction" W. H. Freeman and Company, New York.
- 34. Svenda, J.; Myers, A. G. "Anti-Selective Epoxidation of Methyl α-Methylene-βtertpbutyldimethyl-silyloxycarboxylate Esters. Evidence for Stereospecific

Oxygen Atom Transfer in a Nucleophilic Epoxidation Process" *Orgnic Letters* **2009**, 11 (11), 2437-2440.

- 35. Papogeorgiou, C. D.; de Dios, M. A. C.; Ley, S. V.; Gaunt, M. J. "Enantioselective organocatalytic cyclopropanation via ammonium ylides" *Angewandte Chmie International Edition*, 2004, 43, 4641-4644.
- 36. Sin, N.; Kim, K. B.; Elofsson, M.; Meng, L.; Aath, H.; Kwok, B. H. B.; Crews, C. M. "Total synthesis of the potent proteasome inhibitor epoxomicin: a useful tool for understanding proteasome biology" *Bioorganic and Medicinal Chemistry Letters*, **1999**, 9, 2283-2288.
- 37. Garicia-Echeverria, C.; D France, P.; M Lang, Furst, P.; Noorani, M.; Scholz, D.; Zimmermann, J.; Furet, P. "A new structural class of selective and non-covalent inhibitors of chymotrypsin-like activity of 20S proteasome" *Bioorganic and Medicinal Chemistry Letters*, 2001, 11, 1317-1319.
- Ferraz, H. M. C.; Muzzi, R. M.; de a Vieira, T.; Viertler, H. "A simple and efficient protocol for epoxidation of olefins using dimethyldioxirane" *Tetrahedron Letters*, 2000, 41, 5021-5023.
- 39. L, Boyd and K, Sampuda "Unpublished results"

APPENDICES

APPENDIX A: NMR SPECTRA

¹ H-NMR (500 MHz, CDCl₃)

¹³C-NMR (125 MHz, CDCl₃)

HRMS

Mass Spectrum SmartFormula Report

Analysis Info				Acquisition Date	2/2/2017 2:50:53 PM		
Analysis Name Method Sample Name Comment	D:\Data\0202\6782 050916_ns_tune_k 4.MYp51	5-4.MYp51 .d ow_pos.m		Operator Instrument / Ser#	BDAL@DE micrOTOF II	8213750.1 0314	
Acquisition Par	ameter						
Source Type Focus Scan Begin Scan End	ESI Not active 50 m/z 1650 m/z	lon Polarity Set Capillary Set End Plate Offset n/a	Positive 4500 V -500 V n/a	Set Nebulizer Set Dry Heat Set Dry Gas Set Divert Va	r 0.3 Ba er 180 °C 4.0 l/n lve Sourc	ar C nin e	

itens.							+MS, 1	1.0-1.0min	#57-60, Smo	othed (0.17	,1,SG
20			43	3.1729							
1.5											
1.0								043.36			
0.53								843.36	30		
0.0											
100	200	300	400	500	009	700) ' ' ' ' (300'''	900	1000	m/;
x105							+MS, 1	1.0-1.0min	#57-60, Smo	othed (0.17	,1,SG
2.0					43	3.1729					
2.0					43	3.1729					
2.0 1.5					43	3.1729					
2.0 1.5 1.0				411,4917	43	3.1729					
2.0 1.5 1.0 0.5 367.2024	ł			4114917	43	3.1729	449.1486 J		470.241:	8	
2.0 1.5 1.0 0.5 367.2024	380		400	411,1917	43 1., 420	3.1729 	449.1486 1,	460	470.241	480	m/z
2.0 1.5 1.0 0.5 367.2024 0.0 ×10 ⁴	380		400	4114917	43 1., 420	440	449.1486 l,	460	470.241: +. C ₂₈ H	3 480 1 ₂₇ N ₂ O ₁ , 411	m/2
2.0 1.5 1.0 0.5 367.2024 0.0 ×10 ⁴	sao		400	4114917 	43 1., 	440	449.1486	460	470.2411 ∳. C₂₂H	3 480 1 ₂₇ N ₂ O ₁₀ , 413	m/d 1914
2.0 1.5 1.0 0.5 367.2024 0.0 ×10 ⁴ 5 4	380		400	4114917 411.1917 411.1914	43 	440	449.1486	460	470.241: c _{as} H	3 480 127N2O1, 411	m/2
2.0 1.5 1.0 0.5 367.2024 0.0 ×104 5 4 3	380		400	4114917 ,	43 1., 	440	449.1486 1,.	460	470.241 * C ₂₈ H	3 480 1 ₂₇ N ₂ O ₅ , 413	m/a 1.1914
2.0 1.5 1.0 0.5 367.2024 0.0 ×10 ⁴ 5 4 3 2	380		400	4114917 411.1917 411.1914	43 	440	449.1486	460	470.241: c.a.H	8 480 127 N2O1, 411	m/2
2.0 1.5 1.0 0.5 367.2024 0.0 ×104 5 4 3 2 1 2	380	8	400	411.1917 1+ 411.1914	43 	440	449.1486 1,.	460	470.241 *	3 480 1 ₂₇ N ₂ O ₅ , 413	m/i .191

¹³C-NMR (125 MHz, CDCl₃)

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name	D:\Data\0202\67825-3.NYp53.d
Method	050916_ns_tune_low_pos.m
Sample Name Comment	3.NYp53

ass opeon and official official repor

Acquisition Date	2/2/2017 2:42:	23 PM
Operator	BDAL@DE	8213750.1
Instrument / Ser#	micrOTOF II	0314

Acquisition Parameter

Acquisition Farame	ler				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.3 Bar
Focus	Not active	Set Capillary	4500 V	Set Dry Heater	180 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min
Scan End	1650 m/z	n/a	n/a	Set Divert Valve	Source

¹³C-NMR (125 MHz, CDCl₃)

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Info		Acquisition Date	4/12/2017 10:44:52 AM	
Analysis Name	D:\Data\0412\71447-2.MYp95.d			
Method	050916_ns_tune_low_pos.m	Operator	BDAL@DE	
Sample Name	2.MYp95	Instrument / Ser#	micrOTOF II 82	13750.1
Comment	direct infusion		03	14

Acquisition Parameter									
Source Type	ESI	lon Polarity	Positive	Set Nebulizer	0.3 Bar				
Focus	Not active	Set Capillary	4500 V	Set Dry Heater	180 °C				
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min				
Scan End	1650 m/z	n/a	n/a	Set Divert Valve	Source				

¹³C-NMR (125 MHz, CDCl₃)

¹³C-NMR (125 MHz, CDCl₃)

Mass S	Spectrometry &	Proteomics P	acility		Mass Sp	ectrum 9	SmartFo	rmula	Repo
Analysis Info					Acquis	sition Date	6/9/2017 3	:37:57 P	м
Analysis Name	D:\Data\0609\742	31-1.MY 131.d			1				
/lethod	050916_ns_tune_	low_pos.m			Opera	tor	BDAL@DE		
Sample Name	1.MY 131				Instru	ment / Ser#	micrOTOF	II 82	13750
Comment	direct infusion							03	14
cquisition Pa	rameter	las Delas		D		0.1N-1.5			
ource Type ocus	ESI Not active	Set Capill	y arv	4500 V		Set Nebulizer Set Dry Heat	r u er 1	.4 Ыаг 80 °C	
can Begin	50 m/z	Set End P	late Offset	-500 V		Set Dry Gas	1	.5 l/min	
can End	1650 m/z	n/a		n/a		Set Divert Va	lve S	ource	
Intens 1									
x10 ⁴						74231-1.MY	131 .d: +MS, 1	1-1.3min	#68-76
		402.1667							
-									
1									
	185.1138		88.1571		78	1.3430			
100	200 300	400	500	600	700	800	900	1000	m/z
ntens.							+MS, 1	.1-1.3min	#68-76
			781 3	430			,		
3000-			F 80 8 1 1	- TUP 0					
3000									
3000 2000 1000-			776 3936	I					
3000 2000 1000		765.3684	776.3836	h.	797.3181				
3000 2000 1000 0	740	765.3684	776.3836 	h.,	797.3181 	,	820	.,	m/z
3000 2000 1000 0 ×104	740	765.3684	776.3836 	L	797.3181 	,	820 +MS, 1		m/z #68-76
3000 2000 1000 0 ×104 3	740	765.3684 760	776.3836 	402.1667	797.3181 800		820 +MS, 1	.1-1.3min	m/z #68-76
3000 2000 1000 0 ×104 3 2	740	765.3684 760	776.3836 	402.1667	797.3181 800		820 +MS, 1	.1-1.3min	m/z #68-76
3000 2000 1000 0 x104 3 2 1	740	765.3684 760 380.184	776.3836	402.1667	797.3181 800 418.1	404	820 +MS, 1	.1-1.3min	m/z #68-76
3000 2000 1000 0 x104 3 2 1 0 340	740 362.1741	765.3684 760 2 380.184	776.3836 780 780	402.1667	797.3181 800 418.1	404	820 +MS, 1	.1-1.3min	m/z #68-76
3000 2000 1000 0 x104 3 2 1 0 340 x104	740 362.1742 360	765.3684 760 2 380.484 2	776.3836 780 780	402.1667	797,3181 800 418.1	404	820 +MS, 1 440		m/z #68-76
3000 2000 1000 0 x104 3 2 1 0 340 x104 1.0	740 362.1742 360	765.3684 760 2 380.384 4 380 1+	776.3836 780	402.1667	797.3181 800 418.1	404	820 +MS, 1 440 C ₂₃	1-1.3min 	m/z #68-76
3000 2000 1000 0 x104 3 2 1 3 40 x104 1.0	740 362.1742 360	765.3684 760 2 380.184 2 380.184 1+ 380.185	776.3836 780 19	402.1667	797.3181 800 418.1	404	820 +MS, 1 440 C ₂₃ 1	1-1.3min 	m/z #68-76
3000 2000 1000 0 x104 3 2 1 0 340 x104 1.0 0.5	740 362.1742 1. 360	765.3684 760 2 380.84 2 380.84 2 380.85 1+ 380.185	776.3836	402.1667	797,3181 800 418.1	404	820 +MS, 1 440 C ₂₂ 1	.1-1.3min .1-1.3min 	m/z #68-76
3000 2000 1000 0 x104 3 2 1 340 x104 1.0 0.5 0.0	740 362.1742 360	765.3684 760 2 380.184 380 1+ 380.185	776.3836	402.1667	797,3181 800 418,1	404	820 +MS, 1 440 C ₂₃ 1	.1-1.3min 	m/z #68-76

CbzHN S Me

¹³C-NMR (125 MHz, CDCl₃)

🙀 Mas	Mass Spectrometry & Proteomics Facility					Mass Spectrum SmartFormula Repo				
nalysis Info	D						Acqu	uisition Date	7/26/2017 3:	07:10 PM
nalysis Nam	ne D	Data\07	26\76527-4	.MYIIp17.	đ					
ethod	06	61517_tur	ne_low_pos	s_NS.m			Ope	rator	BDAL@DE	
ample Nam	e 4.	MYIIp17					Instr	ument / Ser#	micrOTOF II	821375
omment	di	rect ifusio	n							0314
quisition	Parame	eter								
ource Type		ESI		Ion Pola	arity	Positive		Set Nebulize	er 0.4	Bar
CUS		Not activ	/e	Set Cap	illary Plate Offect	4500 V		Set Dry Hea	ter 180	°C I/min
an Begin		1650 m/z	z	n/a	Fiate Offset	-300 V n/a		Set Divert V	alve Wa	ste
ntens.								76527-4.M	Yllp17.d: +MS, 0.2	-0.8min #14-4
x104				460	1715					
41				400						
3										
2			20	1 2055				80	7 2526	
1	175.1	433	30	1.2555	5	80.4042		83	1.5520	
100	·····	200	300	400	500	600	700	800	900 100	0 m
ntens.								5	1MS 0.7	0 8min #14-4
x10 ⁴									1113, 0.2	-0.00000 #14
4								460.1715		
3										
21										
1		406	5.2717		428.2498	438 4907		1 11	476.1	448
01,		, , , ,	her you	· · · · · · ·	, here			her fler		
390		400	410	420	430	440	450	460	470	480 m
2500						1+			C ₂₅ H ₂₇ NO ₆ , N	4+nH, 438.191
2000						438.1911				
1500										
1000										
1000						1				
500						1				
500				100		, MAp				

Bruker Compass DataAnalysis 4.2 printed: 7/26/2017 3:15:14 PM Page 1 of 1

This material is based upon work supported by the National Science Foundation under CHE-0741793

0 1 ↓ CbzHN S _OMe `Me N.

¹³C-NMR (125 MHz, CDCl₃)

¹³C-NMR (125 MHz, CDCl₃)

|--|

Mass Spectrum SmartFormula Report

Anal	VCIC	Into
Alla	17313	
	-	

D:\Data\0206\86718-3.MYIIp35.d	
0118_tune_low_pos_NS.m	Ope
3.MYIIp35	Inst
	D:\Data\0206\86718-3.MYIIp35.d 0118_tune_low_pos_NS.m 3.MYIIp35

Acquisition Date	2/6/2018 2:37:	08 PM
Operator	BDAL@DE	8213750.1
Instrument / Ser#	micrOTOF II	0314

Acquisition Parameter							
Source Type Focus	ESI Not active	Ion Polarity Set Capillary	Positive 4500 V	Set Nebulizer Set Dry Heater	0.4 Bar 180 °C		
Scan Begin Scan End	50 m/z 1650 m/z	n/a	-500 V n/a	Set Divert Valve	4.0 l/min Source		

¹³C-NMR (125 MHz, CDCl₃)

¹³C-NMR (125 MHz, CDCl₃)

0 L Cbz、 Ń S Н ÓН

¹³C-NMR (125 MHz, CD₃OD)

Mass Spectrometry	/ &	Proteomics Facility
-------------------	-----	---------------------

Mass Spectrum SmartFormula Report

Acquisition Date 2/6/2018 2:31:06 PM

Analysis Info

Association Dec				
Comment				0314
Sample Name	2.NDMYp57	Instrument / Ser#	micrOTOF II	8213750.1
Method	0118_tune_low_pos_NS.m	Operator	BDAL@DE	
Analysis Name	D:\Data\0206\86718-2.NDMYp57.d			

Acquisition Fara	meter					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.4 Bar	
Focus	Not active	Set Capillary	4500 V	Set Dry Heater	180 °C	
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min	
Scan End	1650 m/z	n/a	n/a	Set Divert Valve	Source	

¹³C-NMR (125 MHz, CDCl₃)

¹³C-NMR (125 MHz, CDCl₃)

Mass Spectrum SmartFormula Report

	VEIC	Into.
niiai	Y 212	
	,	

A	t			
Comment				0314
Sample Name	3.MYIIp73	Instrument / Ser#	micrOTOF II	8213750.1
Method	0118_tune_low_pos_NS.m	Operator	BDAL@DE	
Analysis Name	D:\Data\0302\88438-3.MYIIp73.d			
Analysis Info		Acquisition Date	3/2/2018 3:19:	:47 PM

Acquisition Parameter								
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.4 Bar			
Focus	Not active	Set Capillary	4500 V	Set Dry Heater	180 °C			
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min			
Scan End	1650 m/z	n/a	n/a	Set Divert Valve	Source			

0 Cbz N S H 1 ÓН

¹³C-NMR (125 MHz, CDCl₃)

¹³C-NMR (125 MHz, CDCl₃)

Mass S	Spectrom	netry & Pr	roteomics F	acility		Mass Spe	ectrum S	martForm	ula Repo
nalysis Info						Acquis	ition Date	7/26/2017 2:41	:45 PM
alysis Name ethod ample Name omment	D:\Data\0726\76527-2.MYp151.d 061517_tune_low_pos_NS.m 2.MYp151 direct ifusion			Operator BD/ Instrument / Ser# mic		BDAL@DE micrOTOF II	DAL@DE crOTOF II 8213750.1 0314		
couisition Par	ameter								
urce Type icus :an Begin :an End	ESI Not ac 50 m/z 1650 r	ctive z m/z	lon Polarity Set Capilla Set End Pla n/a	ry ate Offset	Positive 4500 V -500 V n/a		Set Nebulizer Set Dry Heate Set Dry Gas Set Divert Val	0.4 Ba r 180 °(4.0 l/n ve Sourc	ar C nin e
ntens.							76527	-2.MYp151.d: +MS	, 0.5min #32
x10 ⁴⁴						300.1187			
4									
3									
2									
1	210.1	.083	244.0918		278.1370		316.0922	342.1640	356.1798
180	200	220	240	260	280	300	320	340	m/z
ntens								+M5	, 0.5min #32
x10+									
						300.1187			
4									
2-									
1	210.1	.083	244.0918		278,1370		316.0922	342.1640	356.1798
180	200	220	240	260	280	300	320	340	m/z
								C15H20N	04, 278.1387
3000-					1+ 278 1387				
2000									
1000									
0					<u>, Ц</u>		, ,		

Bruker Compass DataAnalysis 4.2 prir

printed: 7/26/2017 2:51:20 PM

Page 1 of 1

This material is based upon work supported by the National Science Foundation under CHE-0741793

¹³C-NMR (125 MHz, CDCl₃)

Mass S	Spectrometry & Proteomics Facility	Mass Spectrum SmartFormula Repor				
Analysis Info		Acquisition Date	7/26/2017 2:3	3:24 PM		
Analysis Name	D:\Data\0726\76527-1.MYIIp5.d					
Method	061517 tune low pos NS.m	Operator	BDAL@DE			
Sample Name	1.MYIIp5	Instrument / Ser#	micrOTOF II	8213750.1		
Comment	direct ifusion			0314		

toquiora on r u	univer					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.4 Bar	
Focus	Not active	Set Capillary	4500 V	Set Dry Heater	180 °C	
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min	
Scan End	1650 m/z	n/a	n/a	Set Divert Valve	Source	

 Meas. m/z
 #
 Ion Formula
 m/z
 err [ppm]
 Mean err [ppm]
 rdb
 N-Rule
 e⁻ Conf

 292.152982
 1
 C16H22NO4
 292.154335
 4.6
 3.0
 6.5
 ok
 even

 Bruker Compass DataAnalysis 4.2
 printed:
 7/26/2017 2:40:56 PM
 Page 1 of 1

 This material is based upon work supported by the National Science Foundation under CHE-0741793